WO2021235229A1 - シャント抵抗器およびその製造方法 - Google Patents

シャント抵抗器およびその製造方法 Download PDF

Info

Publication number
WO2021235229A1
WO2021235229A1 PCT/JP2021/017370 JP2021017370W WO2021235229A1 WO 2021235229 A1 WO2021235229 A1 WO 2021235229A1 JP 2021017370 W JP2021017370 W JP 2021017370W WO 2021235229 A1 WO2021235229 A1 WO 2021235229A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
hole
substrate
fused
fused material
Prior art date
Application number
PCT/JP2021/017370
Other languages
English (en)
French (fr)
Inventor
亮 大澤
毅 黒田
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to CN202180035639.1A priority Critical patent/CN115605966A/zh
Priority to US17/925,211 priority patent/US20230194572A1/en
Priority to DE112021002813.8T priority patent/DE112021002813T5/de
Publication of WO2021235229A1 publication Critical patent/WO2021235229A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06526Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of metals

Definitions

  • the present invention relates to a shunt resistor for current detection, and particularly to a voltage detection terminal of the shunt resistor.
  • the present invention also relates to a method for manufacturing such a shunt resistor.
  • shunt resistors have been widely used for high-current current detection applications such as monitoring the charging / discharging current of in-vehicle batteries.
  • a shunt resistor includes a resistor made of a low resistance material, electrodes connected to both ends of the resistor, and a voltage detection terminal electrically connected to the electrodes. The voltage detection terminal is used to measure the voltage (potential difference) applied to the resistor.
  • Patent Documents 1 to 3 various structures of the voltage detector have been conventionally proposed.
  • Patent Document 1 discloses a technique in which a pin as a voltage detection terminal is erected on an electrode. Specifically, a through hole is first formed in the electrode, then a pin is inserted into the through hole, and then the pin is fixed to the electrode.
  • Patent Document 2 discloses a technique of fixing a circuit board holding a voltage detection IC to a bus bar with a screw.
  • the technique of Patent Document 2 needs to form a screw hole for inserting a screw.
  • fixing with screws requires a large area to some extent and may affect the current detection accuracy.
  • Patent Document 3 discloses a technique of connecting a pair of bonding wires for detecting a voltage to a resistor. However, the bonding strength of the bonding wire is low, and the current detection accuracy may decrease over time.
  • the present invention provides a shunt resistor having a voltage detection terminal capable of ensuring high current detection accuracy and a method for manufacturing the same.
  • a fusion material and a second fusion material, and at least one substrate connected to the first electrode and the second electrode by the first fusion material and the second fusion material are provided, and the first fusion material is provided.
  • the material is arranged in the first through hole formed in the first electrode or the substrate, and the second fusion material is in the second through hole formed in the second electrode or the substrate.
  • a shunt resistor that has been placed is provided.
  • the first through hole and the second through hole are formed in the substrate.
  • the substrate further comprises a conductive layer constituting the first through hole and the inner wall of the second through hole.
  • the first fused material and the second fused material include solder.
  • the substrate is a wiring board having a first wiring and a second wiring electrically connected to the first fusion material and the second fusion material, respectively. In one aspect, it further comprises an insulating plate disposed between the substrate and the first and second electrodes.
  • At least one substrate having a first hole and a second hole is prepared, and the first and second fused materials having conductivity are provided in the first hole and the second hole.
  • the first fusing material and the first hole are arranged in the holes, with the first hole and the second hole facing the first electrode and the second electrode connected to both sides of the resistor, respectively. 2
  • the first fused material and the second fused material are melted, and the substrate is connected to the first electrode and the first electrode by the first fused material and the second fused material.
  • a method for manufacturing a shunt resistor to be connected to a second electrode is provided.
  • the first fused material and the second fused material include solder.
  • a first electrode and a second electrode connected to both sides of the resistor are prepared, and the conductive first and second fusion materials are applied to the first electrode and the second electrode.
  • the first fusion material and the second fusion material are arranged in the first through hole and the second through hole, respectively, and the substrate faces the first through hole and the second through hole, respectively.
  • the first fused material and the second fused material are melted, and the substrate is made into the first electrode and the second electrode by the first fused material and the second fused material.
  • a method of manufacturing a shunt resistor to be connected is provided.
  • the first fused material and the second fused material include solder.
  • the first fused material and the second fused material itself function as voltage detection terminals.
  • the present invention does not require elements such as pins, bonding wires, and screws, and the current detection accuracy does not deteriorate due to improper installation of these elements. Therefore, the shunt resistor of the present invention can achieve high current detection accuracy.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. It is sectional drawing which shows the shunt resistor before the 1st fusion material and the 2nd fusion material melt. It is a figure which shows one Embodiment of the manufacturing method of the shunt resistor shown in FIG. 1 and FIG. It is a figure which shows one Embodiment of the manufacturing method of the shunt resistor shown in FIG. 1 and FIG. It is a figure which shows one Embodiment of the manufacturing method of the shunt resistor shown in FIG. 1 and FIG. It is sectional drawing which shows the other embodiment of a shunt resistor.
  • FIG. 1 is a perspective view showing an embodiment of a shunt resistor
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • the shunt resistor 1 is electrically connected to the resistor 3, the first electrode 5A and the second electrode 5B connected to both sides of the resistor 3, and the first electrode 5A and the second electrode 5B, respectively. It comprises a welding material 6A and a second welding material 6B, and a substrate 10 connected to the first electrode 5A and the second electrode 5B by the first welding material 6A and the second fusion material 6B.
  • Examples of the material of the resistor 3 include a nickel-chromium alloy, a copper nickel alloy, a copper manganese alloy, and a copper-manganese-nickel alloy, and the material of the resistor 3 can achieve the intended purpose. As long as it is a thing, it is not particularly limited. Copper (Cu) is mentioned as an example of the material of the first electrode 5A and the second electrode 5B, but the material of the first electrode 5A and the second electrode 5B can also achieve the intended purpose as long as it can achieve the intended purpose. Not particularly limited.
  • the first electrode 5A and the second electrode 5B each have bolt holes 9A and 9B for fixing the overall position of the shunt resistor 1.
  • the first fused material 6A and the second fused material 6B are made of a conductive material, and in this embodiment, they are made of solder. As shown in FIG. 2, the first fusing material 6A is arranged in the first through hole 7A formed in the substrate 10. The first fused material 6A made of solder is in a cured state after being heated and melted, and the end portion of the first fused material 6A is in contact with the first electrode 5A.
  • the second welding material 6B is arranged in the second through hole 7B formed in the substrate 10. Similar to the first fused material 6A, the second fused material 6B made of solder is also in a cured state after being heated and melted. The end portion of the second welding material 6B is in contact with the second electrode 5B.
  • the substrate 10 used in this embodiment is a wiring board (or printed circuit board) on which wiring is printed.
  • the substrate 10 has a base plate 12 and an insulating layer 14 that covers the upper and lower surfaces of the base plate 12.
  • Examples of the material of the base plate 12 include resins such as glass epoxy, ceramics, metals such as aluminum, and combinations thereof.
  • the upper and lower surfaces of the substrate 10 are formed of an insulating layer 14, and the insulating layer 14 forming the lower surface of the substrate 10 is in contact with the first electrode 5A, the second electrode 5B, and the resistor 3.
  • the substrate 10 may further include an amplifier, an A / D converter, a temperature sensor, and the like.
  • the substrate 10 shown in FIGS. 1 and 2 is an example, and the configuration of the substrate 10 is the implementation shown in FIGS. 1 and 2 as long as the base plate 12, the first through hole 7A, and the second through hole 7B are provided. It is not limited to the form.
  • the first through hole 7A faces the first electrode 5A
  • the second through hole 7B faces the second electrode 5B.
  • the substrate 10 is formed on the first conductive layer 15A constituting the inner wall of the first through hole 7A, the second conductive layer 15B constituting the inner wall of the second through hole 7B, and the first conductive layer 15A and the second conductive layer 15B. Further, the first land 16A and the second land 16B connected to each other are further provided.
  • the first conductive layer 15A and the first land 16A constituting the inner wall of the first through hole 7A are integrated.
  • the second conductive layer 15B and the second land 16B constituting the inner wall of the second through hole 7B are integrated.
  • Examples of the first land 16A, the second land 16B, the first conductive layer 15A, and the second conductive layer 15B include conductive materials such as copper foil, gold foil, and silver foil.
  • the copper foil or gold foil can be formed on the base plate 12 by plating.
  • the first land 16A and the second land 16B are electrically connected to the first wiring 17A and the second wiring 17B arranged on the base plate 12.
  • the first wiring 17A and the second wiring 17B are printed wirings.
  • the first wiring 17A and the second wiring 17B may be located inside the base plate 12 (inner layer pattern), on the front surface, or on the back surface, and are not limited thereto.
  • the horizontal cross-sectional shape of the first through hole 7A and the second through hole 7B is not particularly limited, and examples of the horizontal cross-sectional shape include a circle and a semicircle. In the case of a circular shape, the diameters of the first through hole 7A and the second through hole 7B are 10 mm or less.
  • the first welding material 6A is in contact with the first conductive layer 15A and the first electrode 5A constituting the inner wall of the first through hole 7A. Therefore, the first welding material 6A establishes an electrical connection between the first conductive layer 15A and the first electrode 5A.
  • the second welding material 6B is in contact with the second conductive layer 15B and the second electrode 5B constituting the inner wall of the second through hole 7B. Therefore, the second welding material 6B establishes an electrical connection between the second conductive layer 15B and the second electrode 5B.
  • mechanical connecting elements such as screws, bolts, and resin materials may be further provided.
  • FIG. 3 is a cross-sectional view showing a shunt resistor 1 before the first fused material 6A and the second fused material 6B are melted. As shown in FIG. 3, the first fused material 6A and the second fused material 6B made of solder are arranged (filled) in the first through hole 7A and the second through hole 7B.
  • the first fused material 6A and the second fused material 6B are melted.
  • the first fused material 6A and the second fused material 6B are melted in the first through hole 7A and the second through hole 7B, and the first electrode 5A and the second electrode 5B are melted.
  • the first fused material 6A and the second fused material 6B are cured.
  • the cured first welding material 6A is bonded to both the first electrode 5A and the first conductive layer 15A forming the inner wall of the first through hole 7A, and the cured second fusion material 6B is the second electrode. It is joined to both 5B and the second conductive layer 15B forming the inner wall of the second through hole 7B. In this way, the substrate 10 is electrically connected to the first electrode 5A and the second electrode 5B through the first fused material 6A and the second fused material 6B.
  • the first fused material 6A and the second fused material 6B shown in FIG. 2 electrically function as voltage detection terminals.
  • this embodiment does not require elements such as pins, bonding wires, and screws, and the current detection accuracy does not deteriorate due to improper installation of these elements. Therefore, the shunt resistor 1 of the present embodiment can achieve high current detection accuracy.
  • the present embodiment since it is not necessary to form a through hole or a screw hole in the first electrode 5A and the second electrode 5B, the current detection accuracy due to the hole processing accuracy due to the requirement of the electric function is obtained. Can be prevented from decreasing.
  • solder examples of the solder as the first fused material 6A and the second fused material 6B arranged in the first through hole 7A and the second through hole 7B before being heated include solder paste and thread solder.
  • the first fused material 6A and the second fused material 6B may be materials other than solder as long as they are conductive materials and have adhesive and fixing functions.
  • a copper paste or a conductive adhesive may be used.
  • the substrate 10 may include a first substrate having a first through hole 7A and a second substrate having a second through hole 7B. Also in this configuration, the first substrate is connected to the first electrode 5A by the first welding material 6A arranged in the first through hole 7A, and the second welding material 6B arranged in the second through hole 7B. The second substrate is connected to the second electrode 5B.
  • a method for manufacturing the shunt resistor 1 shown in FIGS. 1 and 2 will be described with reference to FIGS. 4 to 6.
  • a substrate 10 having a first through hole 7A and a second through hole 7B is prepared.
  • the resistor 3 and the assembly 20 including the first electrode 5A and the second electrode 5B connected to both sides of the resistor 3 are prepared.
  • the substrate 10 is assembled so that the first through hole 7A and the second through hole 7B face the first electrode 5A and the second electrode 5B connected to both sides of the resistor 3, respectively. Place on top. As described with reference to FIG. 3, the unmelted first fused material 6A and the second fused material 6B are arranged (filled) in the first through hole 7A and the second through hole 7B, respectively. In one embodiment, after the substrate 10 is placed on the assembly 20, the unmelted first fused material 6A and second fused material 6B are arranged in the first through hole 7A and the second through hole 7B, respectively. It may be (filled).
  • the first fused material 6A and the second fused material 6B are heated to heat the first fused material 6A and the second fused material 6B. Melt.
  • the heating temperature is equal to or higher than the melting points of the first fused material 6A and the second fused material 6B.
  • the heating of the first fused material 6A and the second fused material 6B may heat the entire substrate 10 and the assembly 20 including the first fused material 6A and the second fused material 6B, or the first 1 Fusing material 6A and 2nd fusing material 6B may be locally heated.
  • the heating of the first fused material 6A and the second fused material 6B can be carried out by using a reflow device, a laser heater, or the like.
  • the first fused material 6A and the second fused material 6B are cured as described with reference to FIG.
  • the cured first welding material 6A is bonded to both the first electrode 5A and the first conductive layer 15A forming the inner wall of the first through hole 7A
  • the cured second fusion material 6B is the second electrode. It is joined to both 5B and the second conductive layer 15B forming the inner wall of the second through hole 7B.
  • the substrate 10 is connected to the first electrode 5A and the second electrode 5B by the first welding material 6A and the second welding material 6B.
  • the first fused material 6A and the second fused material 6B are shunted. It functions as a voltage detection terminal of the resistor 1.
  • FIG. 7 is a cross-sectional view showing another embodiment of the shunt resistor 1. Since the configuration and manufacturing method of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 1 to 6, the duplicated description thereof will be omitted.
  • a flexible substrate is used for the substrate 10.
  • the substrate 10 made of a flexible substrate includes a base plate 12 made of a flexible sheet.
  • the base plate 12 of the present embodiment is thinner than the base plate made of general glass epoxy.
  • the thickness and material of the substrate 10 used for the shunt resistor 1 are not particularly limited.
  • FIG. 8 is a cross-sectional view showing still another embodiment of the shunt resistor 1. Since the configuration and manufacturing method of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 1 to 6, the duplicated description thereof will be omitted.
  • the substrates 10 and 11 are connected to the first electrode 5A and the second electrode 5B by the first welding material 6A and the second welding material 6B in a state where the two substrates 10 and 11 are overlapped with each other.
  • the two substrates 10 and 11 have a first through hole 7A and a third through hole 22A, respectively, and the first through hole 7A and the third through hole 22A are arranged in series.
  • the first welding material 6A is arranged in the first through hole 7A and the third through hole 22A.
  • the two substrates 10 and 11 have a second through hole 7B and a fourth through hole 22B, respectively, and the second through hole 7B and the fourth through hole 22B are arranged in series.
  • the second welding material 6B is arranged in the second through hole 7B and the fourth through hole 22B.
  • the two substrates 10 and 11 are connected to each other by the first fused material 6A and the second fused material 6B, and the two substrates 10 and 11 are further connected to the first fused material 6A and the second fused material. It is connected to the first electrode 5A and the second electrode 5B by 6B. Since each of the two substrates 10 and 11 has the same configuration as the substrate 10 shown in FIG. 2, detailed description thereof will be omitted.
  • Each of the boards 10 and 11 is a printed circuit board having wiring electrically connected to the first fusion splicing material 6A and the second fusion splicing material 6B as voltage detection terminals.
  • the wirings 17A and 17B of one of the two substrates 10 can be used for measuring the voltage (potential difference) for the purpose of current detection.
  • the wirings 23A and 23B of the other substrate 11 can be used for measuring the current or voltage as a control signal.
  • the shunt resistor 1 provided with the plurality of substrates 10 and 11 having the wirings 17A, 17B, 23A and 23B electrically connected to the first welding material 6A and the second fusion material 6B is originally a shunt resistor 1. It can be used for various purposes including current detection. In the embodiment shown in FIG. 8, two substrates 10 and 11 are overlapped, but three or more substrates may be overlapped.
  • FIG. 9 is a cross-sectional view showing still another embodiment of the shunt resistor 1. Since the configuration and manufacturing method of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 1 to 6, the duplicated description thereof will be omitted.
  • the inner wall forming the first through hole 7A and the second through hole 7B is composed of the base plate 12 itself. That is, the first through hole 7A and the second through hole 7B are holes formed in the base plate 12, and the conductive layer covering the inner wall of these holes is not provided.
  • the open ends of the first through hole 7A and the second through hole 7B are surrounded by the first land 16A and the second land 16B made of a conductive material such as copper foil or gold foil, respectively.
  • the first fused material 6A and the second fused material 6B are filled in the entire first through hole 7A and the second through hole 7B.
  • One end of the first fused material 6A and the second fused material 6B is in contact with the first electrode 5A and the second electrode 5B, respectively, and the other of the first fused material 6A and the second fused material 6B.
  • the end of the is in contact with the first land 16A and the second land 16B, respectively.
  • the first land 16A and the second land 16B are connected to the first wiring 17A and the second wiring 17B, respectively.
  • the first wiring 17A and the second wiring 17B are printed wirings, but may be wirings made of conductive wires.
  • the first electrode 5A is electrically connected to the first wiring 17A through the first welding material 6A and the first land 16A
  • the second electrode 5B is the second wiring through the second fusion material 6B and the second land 16B. It is electrically connected to 17B.
  • the positions of the first land 16A and the second land 16B may be the front surface, the back surface, or the like of the base plate 12, and the positions are not particularly limited.
  • FIG. 10 is a cross-sectional view showing still another embodiment of the shunt resistor 1. Since the configuration and manufacturing method of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 1 to 6, the duplicated description thereof will be omitted.
  • the shunt resistor 1 includes an insulating plate 25 arranged between the substrate 10 and the first electrode 5A and the second electrode 5B.
  • the insulating plate 25 has through holes 26A and 26B arranged in series with the first through hole 7A and the second through hole 7B, respectively.
  • the first fused material 6A is arranged in the through hole 7A of the first through hole 7A and the through hole 26A of the insulating plate 25, and the second fused material 6B is arranged in the through hole 26B of the second through hole 7B and the insulating plate 25.
  • the insulating plate 25 can be provided with a mark, a tag, or the like that can be visually recognized by the user.
  • the shunt resistor 1 shown in FIG. 10 is basically the same as the embodiment described with reference to FIGS. 1 to 6. That is, the substrate 10 having the first through hole 7A and the second through hole 7B, the insulating plate 25 having the through holes 26A and 26B, the resistor 3, and the first electrode 5A connected to both sides of the resistor 3 and The assembly 20 including the second electrode 5B is prepared. Next, the unmelted first welding material 6A is arranged (filled) in the through hole 26A of the first through hole 7A and the insulating plate 25, and inside the through hole 26B of the second through hole 7B and the insulating plate 25. The second fused material 6B that has not been melted is placed (filled) in.
  • the first fused material 6A and the second fused material 6B are heated, and the first fused material 6A and the second fused material 6A and the second fused material 6B are heated. Melt material 6B.
  • the substrate 10 is connected to the first electrode 5A and the second electrode 5B by the cured first fused material 6A and the second fused material 6B.
  • the first fused material 6A and the second fused material 6B function as voltage detection terminals.
  • FIG. 11 is a cross-sectional view showing still another embodiment of the shunt resistor 1. Since the configuration and manufacturing method of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 1 to 6, the duplicated description thereof will be omitted.
  • the first through hole 7A and the second through hole 7B are formed in the first electrode 5A and the second electrode 5B, respectively.
  • the substrate 10 does not have a through hole.
  • the first wiring 17A and the second wiring 17B of the substrate 10 face the first electrode 5A and the second electrode 5B.
  • the first fused material 6A is arranged in the first through hole 7A formed in the first electrode 5A
  • the second fused material 6B is arranged in the second through hole 7B formed in the second electrode 5B.
  • the first welding material 6A is in contact with both the first electrode 5A and the first wiring 17A
  • the second fusion material 6B is in contact with both the second electrode 5B and the second wiring 17B.
  • the substrate 10 is connected to the first electrode 5A and the second electrode 5B by the first welding material 6A and the second welding material 6B.
  • the first fused material 6A and the second fused material 6B function as voltage detection terminals.
  • a method for manufacturing the shunt resistor 1 shown in FIG. 11 will be described with reference to FIGS. 12 to 15.
  • a set including a substrate 10 having a first wiring 17A and a second wiring 17B, a resistor 3, and a first electrode 5A and a second electrode 5B connected to both sides of the resistor 3.
  • the first electrode 5A and the second electrode 5B have a first through hole 7A and a second through hole 7B, respectively.
  • the first fused material 6A and the second fused material 6B are arranged (filled) in the first through hole 7A and the second through hole 7B.
  • the substrate 10 is arranged so that the first wiring 17A of the substrate 10 faces the first through hole 7A and the second wiring 17B of the substrate 10 faces the second through hole 7B. ..
  • the unmelted first fused material 6A and second fused material 6B are arranged in the first through hole 7A and the second through hole 7B, respectively. It may be (filled).
  • the first fused material 6A and the second fused material 6B are heated to heat the first fused material 6A and the second fused material 6B. Melt.
  • the heating temperature is equal to or higher than the melting points of the first fused material 6A and the second fused material 6B.
  • the heating of the first fused material 6A and the second fused material 6B may heat the entire assembly 20 including the substrate 10 and the first fused material 6A and the second fused material 6B, or the first 1 Fusing material 6A and 2nd fusing material 6B may be locally heated.
  • the heating of the first fused material 6A and the second fused material 6B can be carried out by using a reflow device, a laser heater, or the like.
  • first fused material 6A and the second fused material 6B are cured.
  • the cured first welding material 6A is bonded to both the first electrode 5A and the first conductive layer 15A forming the inner wall of the first through hole 7A
  • the cured second fusion material 6B is the second electrode. It is joined to both 5B and the second conductive layer 15B forming the inner wall of the second through hole 7B.
  • the substrate 10 is connected to the first electrode 5A and the second electrode 5B by the first welding material 6A and the second welding material 6B.
  • the first fused material 6A and the second fused material 6B are in contact with the first electrode 5A and the second electrode 5B, respectively, the first fused material 6A and the second fused material 6B are shunt resistors. It functions as a voltage detection terminal of 1.
  • the shunt resistor 1 of each of the above-described embodiments can be applied to current measurement such as 4-terminal measurement. If the shunt resistor 1 according to the above embodiment is used, highly accurate current detection can be achieved.
  • the present invention relates to a shunt resistor for current detection, and can be particularly applied to a voltage detection terminal of the shunt resistor.
  • the present invention can also be used in a method for manufacturing such a shunt resistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Fuses (AREA)

Abstract

シャント抵抗器(1)は、抵抗体(3)と、抵抗体(3)の両側に接続された第1電極(5A)および第2電極(5B)と、第1電極(5A)および第2電極(5B)にそれぞれ電気的に接続された、導電性を有する第1融着材(6A)および第2融着材(6B)と、第1融着材(6A)および第2融着材(6B)によって第1電極(5A)および第2電極(5B)に連結された基板(10)を備える。第1融着材(6A)は、第1電極(5A)または基板(10)に形成された第1通孔(7A)内に配置されており、第2融着材(6B)は、第2電極(5B)または基板(10)に形成された第2通孔(7B)内に配置されている。

Description

シャント抵抗器およびその製造方法
 本発明は、電流検出用のシャント抵抗器に関し、特にシャント抵抗器の電圧検出端子に関する。また、本発明は、そのようなシャント抵抗器の製造方法に関する。
 従来から、シャント抵抗器は、車載用バッテリーの充放電の電流を監視するなどの大電流の電流検出用途に広く用いられている。このようなシャント抵抗器は、低抵抗材料から構成された抵抗体と、抵抗体の両端に接続された電極と、電極に電気的に接続された電圧検出端子を備えている。電圧検出端子は、抵抗体にかかる電圧(電位差)を測定するために使用される。
 市場要求の一つである大電流化が進むにつれて、抵抗体を挟む電極の厚みや幅は大きくなる傾向にある。このような電極の大型化に伴い、電極に接続される電圧検出器の構造自体も電流検出精度に影響しうる。そこで、特許文献1乃至3に示すように、従来から電圧検出器のさまざまな構造が提案されている。
特開2017-009419号公報 特開2014-085245号公報 特開2015-184206号公報
 特許文献1には、電圧検出端子としてのピンを電極に立設する技術が開示されている。具体的には、まず貫通孔を電極に形成し、その後ピンを貫通穴に挿入し、さらにピンを電極に固定する。しかしながら、ピンを受け入れる貫通穴の加工精度は、電流検出精度に大きく影響を及ぼす。
 特許文献2には、電圧検出ICを保持した回路基板をねじによってバスバーに固定する技術が開示されている。しかしながら、この特許文献2の技術は、ねじを挿入するためのねじ孔を形成する必要がある。さらに、ねじによる固定は、ある程度の広い面積を必要とし、電流検出精度にも影響しうる。
 特許文献3には、電圧を検出するための一対のボンディングワイヤを抵抗器に接続する技術が開示されている。しかしながら、ボンディングワイヤの接合強度が低く、経時的に電流検出精度が低下するおそれがある。
 そこで、本発明は、高い電流検出精度を確保できる電圧検出端子を有するシャント抵抗器およびその製造方法を提供する。
 一態様では、抵抗体と、前記抵抗体の両側に接続された第1電極および第2電極と、前記第1電極および前記第2電極にそれぞれ電気的に接続された、導電性を有する第1融着材および第2融着材と、前記第1融着材および前記第2融着材によって前記第1電極および前記第2電極に連結された少なくとも1つの基板を備え、前記第1融着材は、前記第1電極または前記基板に形成された第1通孔内に配置されており、前記第2融着材は、前記第2電極または前記基板に形成された第2通孔内に配置されている、シャント抵抗器が提供される。
 一態様では、前記第1通孔および前記第2通孔は、前記基板に形成されている。
 一態様では、前記基板は、前記第1通孔および前記第2通孔の内壁を構成する導電層をさらに備えている。
 一態様では、前記第1融着材および前記第2融着材は、はんだを含む。
 一態様では、前記基板は、前記第1融着材および前記第2融着材にそれぞれ電気的に接続された第1配線および第2配線を有する配線基板である。
 一態様では、前記基板と、前記第1電極および前記第2電極との間に配置された絶縁プレートをさらに備えている。
 一態様では、第1通孔および第2通孔を有する少なくとも1つの基板を用意し、導電性を有する第1融着材および第2融着材を、前記第1通孔および前記第2通孔内に配置し、前記第1通孔および前記第2通孔が、抵抗体の両側に接続された第1電極および第2電極にそれぞれ対向した状態で、前記第1融着材および前記第2融着材を加熱することで、前記第1融着材および前記第2融着材を融解させ、前記第1融着材および前記第2融着材により前記基板を前記第1電極および前記第2電極に連結する、シャント抵抗器の製造方法が提供される。
 一態様では、前記第1融着材および前記第2融着材は、はんだを含む。
 一態様では、抵抗体の両側に接続された第1電極および第2電極を用意し、導電性を有する第1融着材および第2融着材を、前記第1電極および前記第2電極にそれぞれ形成された第1通孔および第2通孔内に配置し、基板が前記第1通孔および前記第2通孔に対向した状態で、前記第1融着材および前記第2融着材を加熱することで、前記第1融着材および前記第2融着材を融解させ、前記第1融着材および前記第2融着材により前記基板を前記第1電極および前記第2電極に連結する、シャント抵抗器の製造方法が提供される。
 一態様では、前記第1融着材および前記第2融着材は、はんだを含む。
 本発明によれば、第1融着材および第2融着材自体が、電圧検出端子として機能する。従来の電圧検出端子とは異なり、本発明は、ピン、ボンディングワイヤ、ねじなどの要素は不要であり、これらの要素の取り付け不良などに起因する電流検出精度の低下が起こらない。したがって、本発明のシャント抵抗器は、高い電流検出精度を達成することができる。
シャント抵抗器の一実施形態を示す斜視図である。 図1のA-A線断面図である。 第1融着材および第2融着材が融解する前のシャント抵抗器を示す断面図である。 図1および図2に示すシャント抵抗器の製造方法の一実施形態を示す図である。 図1および図2に示すシャント抵抗器の製造方法の一実施形態を示す図である。 図1および図2に示すシャント抵抗器の製造方法の一実施形態を示す図である。 シャント抵抗器の他の実施形態を示す断面図である。 シャント抵抗器のさらに他の実施形態を示す断面図である。 シャント抵抗器のさらに他の実施形態を示す断面図である。 シャント抵抗器のさらに他の実施形態を示す断面図である。 シャント抵抗器のさらに他の実施形態を示す断面図である。 図11に示すシャント抵抗器の製造方法の一実施形態を示す図である。 図11に示すシャント抵抗器の製造方法の一実施形態を示す図である。 図11に示すシャント抵抗器の製造方法の一実施形態を示す図である。 図11に示すシャント抵抗器の製造方法の一実施形態を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、シャント抵抗器の一実施形態を示す斜視図であり、図2は図1のA-A線断面図である。シャント抵抗器1は、抵抗体3と、抵抗体3の両側に接続された第1電極5Aおよび第2電極5Bと、第1電極5Aおよび第2電極5Bにそれぞれ電気的に接続された第1融着材6Aおよび第2融着材6Bと、第1融着材6Aおよび第2融着材6Bによって第1電極5Aおよび第2電極5Bに連結された基板10を備えている。
 抵抗体3の材料の例として、ニッケルクロム系合金、銅ニッケル系合金、銅マンガン系合金、銅-マンガン-ニッケル系合金が挙げられるが、抵抗体3の材料は、その意図した目的を達成できるものである限りにおいて特に限定されない。第1電極5Aおよび第2電極5Bの材料の一例として、銅(Cu)が挙げられるが、第1電極5Aおよび前記第2電極5Bの材料も、その意図した目的を達成できるものである限りにおいて特に限定されない。第1電極5Aおよび第2電極5Bは、シャント抵抗器1の全体の位置を固定するためのボルト孔9A,9Bをそれぞれ有している。
 第1融着材6Aおよび第2融着材6Bは、導電性を有する材料から構成されており、本実施形態では、はんだから構成されている。図2に示すように、第1融着材6Aは、基板10に形成された第1通孔7A内に配置されている。はんだからなる第1融着材6Aは、加熱されて融解した後、硬化した状態であり、第1融着材6Aの端部は第1電極5Aに接触している。第2融着材6Bは、基板10に形成された第2通孔7B内に配置されている。はんだからなる第2融着材6Bも、第1融着材6Aと同様に、加熱されて融解した後、硬化した状態である。第2融着材6Bの端部は第2電極5Bに接触している。
 本実施形態に使用される基板10は、配線がプリントされた配線基板(あるいはプリント基板)である。基板10は、基台プレート12と、基台プレート12の上下面を覆う絶縁層14を有している。基台プレート12の材料の例としては、ガラスエポキシなどの樹脂、セラミックス、アルミニウムなどの金属、およびこれらの組み合わせが挙げられる。基板10の上下面は絶縁層14から形成されており、基板10の下面を形成する絶縁層14は、第1電極5A、第2電極5B、および抵抗体3に接触している。図示しないが、基板10は、増幅器、A/D変換器、温度センサなどをさらに備えてもよい。図1および図2に示す基板10は例であり、基台プレート12、第1通孔7A、第2通孔7Bを備えている限りにおいて、基板10の構成は図1および図2に示す実施形態に限られない。
 第1通孔7Aは、第1電極5Aに対向しており、第2通孔7Bは第2電極5Bに対向している。基板10は、第1通孔7Aの内壁を構成する第1導電層15Aと、第2通孔7Bの内壁を構成する第2導電層15Bと、第1導電層15Aおよび第2導電層15Bにそれぞれ接続された第1ランド16Aおよび第2ランド16Bをさらに備えている。第1通孔7Aの内壁を構成する第1導電層15Aと第1ランド16Aは一体である。第2通孔7Bの内壁を構成する第2導電層15Bと第2ランド16Bは一体である。第1ランド16A、第2ランド16B、第1導電層15A、および第2導電層15Bの例としては、銅箔、金箔、銀箔等の導電物が挙げられる。銅箔または金箔は、めっきにより基台プレート12上に形成することができる。第1ランド16Aおよび第2ランド16Bは、基台プレート12に配置された第1配線17Aおよび第2配線17Bに電気的に接続されている。本実施形態では、第1配線17Aおよび第2配線17Bは、プリント配線である。尚、第1配線17Aおよび第2配線17Bは、基台プレート12の内部(内層パターン)、表面、裏面いずれにあってもよく、限定するものではない。
 第1通孔7Aおよび第2通孔7Bの水平断面形状は特に限定されないが、水平断面形状の例としては、円形、半円形が挙げられる。円形の場合、第1通孔7Aおよび第2通孔7Bの直径は、10mm以下とされる。
 第1融着材6Aは、第1通孔7Aの内壁を構成する第1導電層15A、および第1電極5Aに接触している。したがって、第1融着材6Aは、第1導電層15Aと第1電極5Aとの電気的な接続を確立する。同様に、第2融着材6Bは、第2通孔7Bの内壁を構成する第2導電層15B、および第2電極5Bに接触している。したがって、第2融着材6Bは、第2導電層15Bと第2電極5Bとの電気的な接続を確立する。尚、基板10と第1電極5Aおよび第2電極5Bとを機械的に連結するために、ねじ、ボルト、樹脂材などの機械的な連結要素をさらに設けてもよい。
 図2に示す、はんだからなる第1融着材6Aおよび第2融着材6Bは、加熱されて融解した後、硬化した状態である。図3は、第1融着材6Aおよび第2融着材6Bが融解する前のシャント抵抗器1を示す断面図である。図3に示すように、はんだからなる第1融着材6Aおよび第2融着材6Bは、第1通孔7Aおよび第2通孔7Bに配置(充填)される。
 第1融着材6Aおよび第2融着材6Bを加熱することで、第1融着材6Aおよび第2融着材6Bを融解させる。その結果、図2に示すように、第1融着材6Aおよび第2融着材6Bは、第1通孔7Aおよび第2通孔7B内で融解し、第1電極5Aおよび第2電極5Bにそれぞれ接触する。第1融着材6Aおよび第2融着材6Bの温度が低下するにつれて、第1融着材6Aおよび第2融着材6Bは硬化する。硬化した第1融着材6Aは、第1電極5A、および第1通孔7Aの内壁を形成する第1導電層15Aの両方に接合し、硬化した第2融着材6Bは、第2電極5B、および第2通孔7Bの内壁を形成する第2導電層15Bの両方に接合する。このようにして、基板10は、第1融着材6Aおよび第2融着材6Bを通じて第1電極5Aおよび第2電極5Bに電気的に接続される。
 本実施形態によれば、図2に示す第1融着材6Aおよび第2融着材6B自体が、電圧検出端子として電気的に機能する。従来の電圧検出端子とは異なり、本実施形態は、ピン、ボンディングワイヤ、ねじなどの要素は不要であり、これらの要素の取り付け不良などに起因する電流検出精度の低下が起こらない。したがって、本実施形態のシャント抵抗器1は、高い電流検出精度を達成することができる。さらに、本実施形態によれば、第1電極5Aおよび第2電極5Bに通孔やねじ穴を形成することが不要であるので、電気的機能の要求による孔の加工精度に起因する電流検出精度の低下を防止することができる。
 加熱される前に第1通孔7Aおよび第2通孔7Bに配置される第1融着材6Aおよび第2融着材6Bとしてのはんだの例としては、はんだペースト、糸はんだが挙げられる。第1融着材6Aおよび第2融着材6Bは、導電性を有し、かつ接着、固着機能を有する材料であれば、はんだ以外の材料でもよい。例えば、銅ペースト、導電性接着剤を用いてもよい。
 上述した実施形態では、第1通孔7Aおよび第2通孔7Bの両方を有する単一の基板10が使用されているが、本発明は上述した実施形態に限定されない。一実施形態では、基板10は、第1通孔7Aを有する第1基板と、第2通孔7Bを有する第2基板を備えてもよい。この構成でも、第1通孔7A内に配置された第1融着材6Aにより第1基板は第1電極5Aに連結され、第2通孔7B内に配置された第2融着材6Bにより第2基板は第2電極5Bに連結される。
 次に、図1および図2に示すシャント抵抗器1の製造方法について、図4乃至図6を参照して説明する。
 まず、図4に示すように、第1通孔7Aおよび第2通孔7Bを有する基板10を用意する。さらに、抵抗体3、および抵抗体3の両側に接続された第1電極5Aおよび第2電極5Bを含む組立体20を用意する。
 図5に示すように、第1通孔7Aおよび第2通孔7Bが、抵抗体3の両側に接続された第1電極5Aおよび第2電極5Bにそれぞれ対向するように基板10を組立体20上に配置する。
 図3を参照して説明したように、第1通孔7Aおよび第2通孔7B内に、融解していない第1融着材6Aおよび第2融着材6Bをそれぞれ配置(充填)する。
 一実施形態では、基板10を組立体20上に配置した後に、融解していない第1融着材6Aおよび第2融着材6Bを第1通孔7Aおよび第2通孔7B内にそれぞれ配置(充填)してもよい。
 図6に示すように、基板10が組立体20に接触した状態で、第1融着材6Aおよび第2融着材6Bを加熱し、第1融着材6Aおよび第2融着材6Bを融解させる。加熱温度は、第1融着材6Aおよび第2融着材6Bの融点以上である。第1融着材6Aおよび第2融着材6Bの加熱は、第1融着材6Aおよび第2融着材6Bを含む基板10および組立体20の全体を加熱してもよいし、または第1融着材6Aおよび第2融着材6Bを局所的に加熱してもよい。例えば、第1融着材6Aおよび第2融着材6Bの加熱は、リフロー装置、レーザー加熱器などを用いて実施することができる。
 融解した第1融着材6Aおよび第2融着材6Bが冷却されると、図2を参照して説明したように、第1融着材6Aおよび第2融着材6Bは硬化する。硬化した第1融着材6Aは、第1電極5A、および第1通孔7Aの内壁を形成する第1導電層15Aの両方に接合し、硬化した第2融着材6Bは、第2電極5B、および第2通孔7Bの内壁を形成する第2導電層15Bの両方に接合する。基板10は、第1融着材6Aおよび第2融着材6Bにより第1電極5Aおよび第2電極5Bに連結される。硬化した第1融着材6Aおよび第2融着材6Bは、第1電極5Aおよび第2電極5Bにそれぞれ接触しているので、第1融着材6Aおよび第2融着材6Bは、シャント抵抗器1の電圧検出端子として機能する。
 図7は、シャント抵抗器1の他の実施形態を示す断面図である。特に説明しない本実施形態の構成および製造方法は、図1乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
 本実施形態では、基板10にフレキシブル基板が使用されている。フレキシブル基板からなる基板10は、可撓性シートからなる基台プレート12を備えている。本実施形態の基台プレート12は、一般的なガラスエポキシからなる基台プレートよりも薄い。このように、シャント抵抗器1に使用される基板10の厚さおよび材料は、特に限定されない。
 図8は、シャント抵抗器1のさらに他の実施形態を示す断面図である。特に説明しない本実施形態の構成および製造方法は、図1乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
 本実施形態では、2枚の基板10,11が重なった状態で、これら基板10,11が、第1融着材6Aおよび第2融着材6Bにより第1電極5Aおよび第2電極5Bに連結されている。2枚の基板10,11は第1通孔7Aおよび第3通孔22Aをそれぞれ有しており、第1通孔7Aおよび第3通孔22Aは直列に並んでいる。第1融着材6Aは第1通孔7Aおよび第3通孔22A内に配置されている。同様に、2枚の基板10,11は第2通孔7Bおよび第4通孔22Bをそれぞれ有しており、第2通孔7Bおよび第4通孔22Bは直列に並んでいる。第2融着材6Bは第2通孔7Bおよび第4通孔22B内に配置されている。2枚の基板10,11同士は、第1融着材6Aおよび第2融着材6Bにより互いに連結され、さらに2枚の基板10,11は、第1融着材6Aおよび第2融着材6Bにより第1電極5Aおよび第2電極5Bに連結されている。2枚の基板10,11のそれぞれは、図2に示す基板10と同じ構成を有しているので、その詳細な説明を省略する。
 それぞれの基板10,11は、電圧検出端子としての第1融着材6Aおよび第2融着材6Bに電気的に接続された配線を有したプリント基板である。2つの基板10のうちの一方の配線17A,17Bは、上述したように、電流検出の目的で電圧(電位差)を測定する用途に使用できる。さらに、他方の基板11の配線23A,23Bは、制御信号としての電流または電圧を測定する用途に使用できる。このように、第1融着材6Aおよび第2融着材6Bに電気的に接続された配線17A,17B,23A,23Bを有する複数の基板10,11を備えたシャント抵抗器1は、本来の電流検出を含む様々な用途に使用することができる。図8に示す実施形態では、2枚の基板10,11が重なり合っているが、3枚以上の基板が重なり合ってもよい。
 図9は、シャント抵抗器1のさらに他の実施形態を示す断面図である。特に説明しない本実施形態の構成および製造方法は、図1乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
 本実施形態では、第1通孔7Aおよび第2通孔7Bを形成する内壁は、基台プレート12自体から構成されている。すなわち、第1通孔7Aおよび第2通孔7Bは、基台プレート12に形成された孔であり、これらの孔の内壁を覆う導電層は設けられていない。第1通孔7Aおよび第2通孔7Bの開口端は、銅箔または金箔などの導電材からなる第1ランド16Aおよび第2ランド16Bにそれぞれ囲まれている。
 第1融着材6Aおよび第2融着材6Bは、第1通孔7Aおよび第2通孔7Bの全体に充填されている。第1融着材6Aおよび第2融着材6Bの一方の端部は第1電極5Aおよび第2電極5Bにそれぞれ接触しており、第1融着材6Aおよび第2融着材6Bの他方の端部は第1ランド16Aおよび第2ランド16Bにそれぞれ接触している。第1ランド16Aおよび第2ランド16Bは、第1配線17Aおよび第2配線17Bにそれぞれ接続されている。本実施形態では第1配線17Aおよび第2配線17Bはプリント配線であるが、導電線からなる配線であってもよい。第1電極5Aは、第1融着材6Aおよび第1ランド16Aを通じて第1配線17Aに電気的に接続され、第2電極5Bは、第2融着材6Bおよび第2ランド16Bを通じて第2配線17Bに電気的に接続されている。尚、第1ランド16Aおよび第2ランド16Bの位置は、基台プレート12の表面、裏面などであってもよく、その位置は特に限定されない。
 図10は、シャント抵抗器1のさらに他の実施形態を示す断面図である。特に説明しない本実施形態の構成および製造方法は、図1乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
 本実施形態では、シャント抵抗器1は、基板10と、第1電極5Aおよび第2電極5Bとの間に配置された絶縁プレート25を備えている。絶縁プレート25は、第1通孔7Aおよび第2通孔7Bにそれぞれ直列に並ぶ通孔26A,26Bを有している。第1融着材6Aは第1通孔7Aおよび絶縁プレート25の通孔26A内に配置されており、第2融着材6Bは第2通孔7Bおよび絶縁プレート25の通孔26B内に配置されている。絶縁プレート25には、ユーザーが視覚的に認識することができる目印や、タグなどを付すことができる。
 図10に示すシャント抵抗器1は、図1乃至図6を参照して説明した実施形態と基本的に同じである。すなわち、第1通孔7Aおよび第2通孔7Bを有する基板10と、通孔26A,26Bを有する絶縁プレート25と、抵抗体3、および抵抗体3の両側に接続された第1電極5Aおよび第2電極5Bを含む組立体20を用意する。
 次に、第1通孔7Aおよび絶縁プレート25の通孔26A内に、融解していない第1融着材6Aを配置(充填)し、第2通孔7Bおよび絶縁プレート25の通孔26B内に、融解していない第2融着材6Bを配置(充填)する。
 そして、絶縁プレート25が基板10と組立体20との間に配置された状態で、第1融着材6Aおよび第2融着材6Bを加熱し、第1融着材6Aおよび第2融着材6Bを融解させる。第1融着材6Aおよび第2融着材6Bの温度が低下すると、基板10は、硬化した第1融着材6Aおよび第2融着材6Bによって第1電極5Aおよび第2電極5Bに連結され、第1融着材6Aおよび第2融着材6Bは電圧検出端子として機能する。
 図11は、シャント抵抗器1のさらに他の実施形態を示す断面図である。特に説明しない本実施形態の構成および製造方法は、図1乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
 本実施形態では、第1通孔7Aおよび第2通孔7Bは、第1電極5Aおよび第2電極5Bにそれぞれ形成されている。基板10は通孔を有していない。基板10の第1配線17Aおよび第2配線17Bは、第1電極5Aおよび第2電極5Bに対向している。第1融着材6Aは、第1電極5Aに形成された第1通孔7A内に配置され、第2融着材6Bは、第2電極5Bに形成された第2通孔7B内に配置されている。第1融着材6Aは、第1電極5Aと第1配線17Aの両方に接触し、第2融着材6Bは、第2電極5Bと第2配線17Bの両方に接触している。基板10は、第1融着材6Aおよび第2融着材6Bによって第1電極5Aおよび第2電極5Bに連結されている。本実施形態でも、第1融着材6Aおよび第2融着材6Bは、電圧検出端子として機能する。
 次に、図11に示すシャント抵抗器1の製造方法について、図12乃至図15を参照して説明する。
 まず、図12に示すように、第1配線17Aおよび第2配線17Bを有する基板10と、抵抗体3、および抵抗体3の両側に接続された第1電極5Aおよび第2電極5Bを含む組立体20を用意する。第1電極5Aおよび第2電極5Bは、第1通孔7Aおよび第2通孔7Bをそれぞれ有している。
 次に、図13に示すように、第1融着材6Aおよび第2融着材6Bを、第1通孔7Aおよび第2通孔7B内に配置(充填)する。
 図14に示すように、基板10の第1配線17Aが第1通孔7Aに対向し、かつ基板10の第2配線17Bが第2通孔7Bにそれぞれ対向するように該基板10を配置する。
 一実施形態では、基板10を組立体20上に配置した後に、融解していない第1融着材6Aおよび第2融着材6Bを第1通孔7Aおよび第2通孔7B内にそれぞれ配置(充填)してもよい。
 図15に示すように、基板10が組立体20に接触した状態で、第1融着材6Aおよび第2融着材6Bを加熱し、第1融着材6Aおよび第2融着材6Bを融解させる。加熱温度は、第1融着材6Aおよび第2融着材6Bの融点以上である。第1融着材6Aおよび第2融着材6Bの加熱は、基板10および第1融着材6Aおよび第2融着材6Bを含む組立体20の全体を加熱してもよいし、または第1融着材6Aおよび第2融着材6Bを局所的に加熱してもよい。例えば、第1融着材6Aおよび第2融着材6Bの加熱は、リフロー装置、レーザー加熱器などを用いて実施することができる。
 融解した第1融着材6Aおよび第2融着材6Bが冷却されると、第1融着材6Aおよび第2融着材6Bは硬化する。硬化した第1融着材6Aは、第1電極5A、および第1通孔7Aの内壁を形成する第1導電層15Aの両方に接合し、硬化した第2融着材6Bは、第2電極5B、および第2通孔7Bの内壁を形成する第2導電層15Bの両方に接合する。基板10は、第1融着材6Aおよび第2融着材6Bにより第1電極5Aおよび第2電極5Bに連結される。第1融着材6Aおよび第2融着材6Bは、第1電極5Aおよび第2電極5Bにそれぞれ接触しているので、第1融着材6Aおよび第2融着材6Bは、シャント抵抗器1の電圧検出端子として機能する。
 上述した各実施形態のシャント抵抗器1は、4端子測定などの電流測定に適用することができる。上記実施形態に係るシャント抵抗器1を用いれば、精度の高い電流検出が達成される。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、電流検出用のシャント抵抗器に関し、特にシャント抵抗器の電圧検出端子に利用可能である。また、本発明は、そのようなシャント抵抗器の製造方法に利用可能である。
 1   シャント抵抗器
 3   抵抗体
 5A  第1電極
 5B  第2電極
 6A  第1融着材
 6B  第2融着材
 7A  第1通孔
 7B  第2通孔
 9A,9B  ボルト孔
10,11  基板
12   基台プレート
14   絶縁層
15A  第1導電層
15B  第2導電層
16A  第1ランド
16B  第2ランド
17A  第1配線
17B  第2配線
20   組立体
22A  第3通孔
22B  第4通孔
23A,23B  配線
25   絶縁プレート
26A,26B  通孔

Claims (10)

  1.  抵抗体と、
     前記抵抗体の両側に接続された第1電極および第2電極と、
     前記第1電極および前記第2電極にそれぞれ電気的に接続された、導電性を有する第1融着材および第2融着材と、
     前記第1融着材および前記第2融着材によって前記第1電極および前記第2電極に連結された少なくとも1つの基板を備え、
     前記第1融着材は、前記第1電極または前記基板に形成された第1通孔内に配置されており、
     前記第2融着材は、前記第2電極または前記基板に形成された第2通孔内に配置されている、シャント抵抗器。
  2.  前記第1通孔および前記第2通孔は、前記基板に形成されている、請求項1に記載のシャント抵抗器。
  3.  前記基板は、前記第1通孔および前記第2通孔の内壁を構成する導電層をさらに備えている、請求項1または2に記載のシャント抵抗器。
  4.  前記第1融着材および前記第2融着材は、はんだを含む、請求項1乃至3のいずれか一項に記載のシャント抵抗器。
  5.  前記基板は、前記第1融着材および前記第2融着材にそれぞれ電気的に接続された第1配線および第2配線を有する配線基板である、請求項1乃至4のいずれか一項に記載のシャント抵抗器。
  6.  前記基板と、前記第1電極および前記第2電極との間に配置された絶縁プレートをさらに備えている、請求項1乃至5のいずれか一項に記載のシャント抵抗器。
  7.  第1通孔および第2通孔を有する少なくとも1つの基板を用意し、
     導電性を有する第1融着材および第2融着材を、前記第1通孔および前記第2通孔内に配置し、
     前記第1通孔および前記第2通孔が、抵抗体の両側に接続された第1電極および第2電極にそれぞれ対向した状態で、前記第1融着材および前記第2融着材を加熱することで、前記第1融着材および前記第2融着材を融解させ、
     前記第1融着材および前記第2融着材により前記基板を前記第1電極および前記第2電極に連結する、シャント抵抗器の製造方法。
  8.  前記第1融着材および前記第2融着材は、はんだを含む、請求項7に記載のシャント抵抗器の製造方法。
  9.  抵抗体の両側に接続された第1電極および第2電極を用意し、
     導電性を有する第1融着材および第2融着材を、前記第1電極および前記第2電極にそれぞれ形成された第1通孔および第2通孔内に配置し、
     基板が前記第1通孔および前記第2通孔に対向した状態で、前記第1融着材および前記第2融着材を加熱することで、前記第1融着材および前記第2融着材を融解させ、
     前記第1融着材および前記第2融着材により前記基板を前記第1電極および前記第2電極に連結する、シャント抵抗器の製造方法。
  10.  前記第1融着材および前記第2融着材は、はんだを含む、請求項9に記載のシャント抵抗器の製造方法。
PCT/JP2021/017370 2020-05-19 2021-05-06 シャント抵抗器およびその製造方法 WO2021235229A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180035639.1A CN115605966A (zh) 2020-05-19 2021-05-06 分流电阻器及其制造方法
US17/925,211 US20230194572A1 (en) 2020-05-19 2021-05-06 Shunt resistor and manufacturing method thereof
DE112021002813.8T DE112021002813T5 (de) 2020-05-19 2021-05-06 Nebenschlusswiderstand und Verfahren zum Herstellen von diesem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020087233A JP7500271B2 (ja) 2020-05-19 2020-05-19 シャント抵抗器およびその製造方法
JP2020-087233 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021235229A1 true WO2021235229A1 (ja) 2021-11-25

Family

ID=78606738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017370 WO2021235229A1 (ja) 2020-05-19 2021-05-06 シャント抵抗器およびその製造方法

Country Status (5)

Country Link
US (1) US20230194572A1 (ja)
JP (1) JP7500271B2 (ja)
CN (1) CN115605966A (ja)
DE (1) DE112021002813T5 (ja)
WO (1) WO2021235229A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202854A1 (de) * 2022-04-22 2023-10-26 Isabellenhütte Heusler Gmbh & Co. Kg Strommesseinrichtung und zugehöriges herstellungsverfahren
WO2023248729A1 (ja) * 2022-06-24 2023-12-28 ローム株式会社 抵抗体の実装構造
DE102022214047A1 (de) 2022-12-20 2024-06-20 Continental Automotive Technologies GmbH Verfahren zur Herstellung eines Stromsensors, Messwiderstandsbaugruppe und Leiterplatte für Stromsensor und Stromsensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022131096A1 (de) 2022-11-24 2024-05-29 Bayerische Motoren Werke Aktiengesellschaft Shunt-Messeinrichtung mit genauer Temperaturüberwachung sowie damit ausgestattete Batterie und Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003360A1 (ja) * 2016-06-27 2018-01-04 Koa株式会社 電流測定装置
JP2019066499A (ja) * 2019-02-05 2019-04-25 Koa株式会社 抵抗器および電流検出装置
JP2019201131A (ja) * 2018-05-17 2019-11-21 Koa株式会社 シャント抵抗器の実装構造
WO2020021987A1 (ja) * 2018-07-26 2020-01-30 Koa株式会社 シャント抵抗器およびそれを用いた電流検出装置
WO2020095733A1 (ja) * 2018-11-06 2020-05-14 パナソニックIpマネジメント株式会社 抵抗器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085245A (ja) 2012-10-24 2014-05-12 Yazaki Corp シャント抵抗式電流センサ
JP2015184206A (ja) 2014-03-25 2015-10-22 Koa株式会社 電流検出装置
JP6622491B2 (ja) 2015-06-22 2019-12-18 Koa株式会社 電流検出装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003360A1 (ja) * 2016-06-27 2018-01-04 Koa株式会社 電流測定装置
JP2019201131A (ja) * 2018-05-17 2019-11-21 Koa株式会社 シャント抵抗器の実装構造
WO2020021987A1 (ja) * 2018-07-26 2020-01-30 Koa株式会社 シャント抵抗器およびそれを用いた電流検出装置
WO2020095733A1 (ja) * 2018-11-06 2020-05-14 パナソニックIpマネジメント株式会社 抵抗器
JP2019066499A (ja) * 2019-02-05 2019-04-25 Koa株式会社 抵抗器および電流検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202854A1 (de) * 2022-04-22 2023-10-26 Isabellenhütte Heusler Gmbh & Co. Kg Strommesseinrichtung und zugehöriges herstellungsverfahren
WO2023248729A1 (ja) * 2022-06-24 2023-12-28 ローム株式会社 抵抗体の実装構造
DE102022214047A1 (de) 2022-12-20 2024-06-20 Continental Automotive Technologies GmbH Verfahren zur Herstellung eines Stromsensors, Messwiderstandsbaugruppe und Leiterplatte für Stromsensor und Stromsensor

Also Published As

Publication number Publication date
DE112021002813T5 (de) 2023-03-02
JP7500271B2 (ja) 2024-06-17
US20230194572A1 (en) 2023-06-22
JP2021182579A (ja) 2021-11-25
CN115605966A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2021235229A1 (ja) シャント抵抗器およびその製造方法
JP2649491B2 (ja) Smd構造の抵抗器、その製造方法及びこの抵抗器を取り付けたプリント回路板
US9437352B2 (en) Resistor and structure for mounting same
JPH06224014A (ja) 電気抵抗の製造方法
WO2016208612A1 (ja) フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法
JP3993852B2 (ja) 対称構造を持つサーミスタ
CN107995775B (zh) 自带过流保护柔性电路及制造工艺
WO2021241204A1 (ja) シャント抵抗器
JP7433811B2 (ja) ヒューズエレメント、ヒューズ素子および保護素子
JP2002184601A (ja) 抵抗器
JP7207415B2 (ja) フレキシブルプリント配線板、接合体、圧力センサ及び質量流量制御装置
KR100349905B1 (ko) 터치 패널의 제조 방법
CN102809441B (zh) 作为倒装芯片安装在电路板上的温度传感器
JP7490351B2 (ja) シャント抵抗モジュール及び、シャント抵抗モジュールの実装構造
JP3670593B2 (ja) 抵抗器を用いる電子部品及びその使用方法
JPH0465046A (ja) チップ形ヒューズ抵抗器
CN213600775U (zh) 一种复合电流传感器
JP2022123429A (ja) シャント抵抗器と電圧信号検出基板との接続方法、および電流検出装置
JPS6013149Y2 (ja) 温度ヒユ−ズ
JPS5828382Y2 (ja) 印刷配線板
CN112305295A (zh) 一种复合电流传感器
JP2023013977A (ja) 金属板抵抗器及び電流検出装置
KR100665289B1 (ko) 와이어 테이프
JP2002050271A (ja) 温度ヒューズ
CN116930265A (zh) 传感器及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808415

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21808415

Country of ref document: EP

Kind code of ref document: A1