WO2021206032A1 - 光電変換膜、分散液、光検出素子およびイメージセンサ - Google Patents

光電変換膜、分散液、光検出素子およびイメージセンサ Download PDF

Info

Publication number
WO2021206032A1
WO2021206032A1 PCT/JP2021/014425 JP2021014425W WO2021206032A1 WO 2021206032 A1 WO2021206032 A1 WO 2021206032A1 JP 2021014425 W JP2021014425 W JP 2021014425W WO 2021206032 A1 WO2021206032 A1 WO 2021206032A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion film
group
ligand
quantum dots
Prior art date
Application number
PCT/JP2021/014425
Other languages
English (en)
French (fr)
Inventor
雅司 小野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022514051A priority Critical patent/JP7372452B2/ja
Priority to CN202180024996.8A priority patent/CN115461878A/zh
Publication of WO2021206032A1 publication Critical patent/WO2021206032A1/ja
Priority to US17/937,461 priority patent/US20230040906A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a photoelectric conversion film containing quantum dots.
  • the present invention also relates to a dispersion liquid containing quantum dots, a photodetector element, and an image sensor.
  • silicon photodiode using a silicon wafer as a material for a photoelectric conversion layer has been used for a photodetector element used in an image sensor or the like.
  • silicon photodiodes have low sensitivity in the infrared region with a wavelength of 900 nm or more.
  • InGaAs-based semiconductor materials known as near-infrared light receiving elements require extremely high-cost processes such as epitaxial growth and substrate bonding steps in order to achieve high quantum efficiency. The problem is that it is not widely used.
  • Non-Patent Document 1 describes a solar cell having a photoelectric conversion film containing a quantum dot of AgBiS 2.
  • one of the characteristics required of a photodetector is that it has high external quantum efficiency with respect to light of a target wavelength to be detected by the photodetector. By increasing the external quantum efficiency of the photodetector, it is possible to improve the accuracy of light detection by the photodetector.
  • the photoelectric conversion film containing the quantum dots of AgBiS 2 had a wavelength in the infrared region. It was found that the external quantum efficiency for light (particularly light having a wavelength of 900 nm or more) is low, and the light detection element using this photoelectric conversion film has insufficient detection accuracy for light having a wavelength in the infrared region.
  • an object of the present invention is to provide a novel photoelectric conversion film, dispersion liquid, photodetector element, and image sensor having high external quantum efficiency with respect to light having a wavelength in the infrared region.
  • a quantum of a compound semiconductor containing an Ag element, at least one element selected from Sb element and Bi element, and at least one element selected from Se element and Te element The dots have a small band gap, and the photoelectric conversion film containing the quantum dots has been found to have high external quantum efficiency with respect to light having a wavelength in the infrared region, and has completed the present invention. Therefore, the present invention provides the following. ⁇ 1> A photoelectric conversion film containing quantum dots of a compound semiconductor containing an Ag element, at least one element selected from Sb element and Bi element, and at least one element selected from Se element and Te element.
  • ⁇ 2> The photoelectric conversion film according to ⁇ 1>, wherein the compound semiconductor contains an Ag element, a Bi element, and at least one element selected from a Se element and a Te element.
  • ⁇ 3> The photoelectric conversion film according to ⁇ 1>, wherein the compound semiconductor contains an Ag element, a Bi element, and a Te element.
  • ⁇ 4> The photoelectric conversion film according to any one of ⁇ 1> to ⁇ 3>, wherein the compound semiconductor further contains an S element.
  • the compound semiconductor contains Ag element, at least one element selected from Sb element and Bi element, Te element and S element, and the number of Te elements is determined by the number of Te elements and the S element.
  • the photoelectric conversion film according to ⁇ 1> wherein the value divided by the total number of elements is 0.05 to 0.5.
  • ⁇ 6> The photoelectric conversion film according to any one of ⁇ 1> to ⁇ 5>, wherein the crystal structure of the compound semiconductor is cubic or hexagonal.
  • ⁇ 7> The photoelectric conversion film according to any one of ⁇ 1> to ⁇ 6>, wherein the band gap of the quantum dots is 1.2 eV or less.
  • ⁇ 8> The photoelectric conversion film according to any one of ⁇ 1> to ⁇ 6>, wherein the band gap of the quantum dots is 1.0 eV or less.
  • ⁇ 9> The photoelectric conversion film according to any one of ⁇ 1> to ⁇ 8>, wherein the average particle size of the quantum dots is 3 to 20 nm.
  • the ligand contains at least one selected from a ligand containing a halogen atom and a polydentate ligand containing two or more coordination portions.
  • ⁇ 12> The photoelectric conversion film according to ⁇ 11>, wherein the ligand containing the halogen atom is an inorganic halide.
  • the photodetector element comprising the photoelectric conversion film according to any one of ⁇ 1> to ⁇ 12>.
  • An image sensor including the photodetector according to ⁇ 14>.
  • the present invention it is possible to provide a novel photoelectric conversion film, dispersion liquid, photodetector element and image sensor having high external quantum efficiency with respect to light having a wavelength in the infrared region.
  • the photoelectric conversion film of the present invention contains quantum dots of a compound semiconductor containing an Ag element, at least one element selected from Sb element and Bi element, and at least one element selected from Se element and Te element. It is characterized by that.
  • the photoelectric conversion film of the present invention has high external quantum efficiency with respect to light having a wavelength in the infrared region. Therefore, by using the photoelectric conversion film of the present invention as a photodetector, it is possible to obtain a photodetector having high sensitivity to light having a wavelength in the infrared region. Further, since the photoelectric conversion film of the present invention has high external quantum efficiency with respect to light having a wavelength in the visible region, the light detection element using the photoelectric conversion film of the present invention has a wavelength in the infrared region. Light and light having a wavelength in the visible range (preferably light having a wavelength in the range of 400 to 700 nm) can be detected at the same time.
  • the thickness of the photoelectric conversion film is not particularly limited, but is preferably 10 to 1000 nm from the viewpoint of obtaining high electrical conductivity.
  • the lower limit of the thickness is preferably 20 nm or more, and more preferably 30 nm or more.
  • the upper limit of the thickness is preferably 600 nm or less, more preferably 550 nm or less, further preferably 500 nm or less, and particularly preferably 450 nm or less.
  • the photoelectric conversion film of the present invention is selected from Ag (silver) element, at least one element selected from Sb (antimony) element and Bi (bismus) element, Se (selenium) element and Te (tellurium) element.
  • a compound semiconductor is a semiconductor composed of two or more kinds of elements. Therefore, in the present specification, "a compound semiconductor containing an Ag element, at least one element selected from Sb element and Bi element, and at least one element selected from Se element and Te element” is a compound.
  • As an element constituting a semiconductor it is a compound semiconductor containing an Ag element, at least one element selected from Sb element and Bi element, and at least one element selected from Se element and Te element.
  • the compound semiconductor which is a quantum dot material constituting the quantum dot, is preferably a compound semiconductor containing an Ag element, a Bi element, and at least one element selected from a Se element and a Te element, and the Ag element.
  • a compound semiconductor containing the Bi element and the Te element is more preferable. According to this aspect, it is easy to obtain a photoelectric conversion film having high external quantum efficiency with respect to light having a wavelength in the infrared region.
  • the compound semiconductor is preferably a compound semiconductor further containing an S (sulfur) element. According to this aspect, it is easy to obtain a photoelectric conversion film having high external quantum efficiency with respect to light having a wavelength in the infrared region.
  • the compound semiconductor is preferably a compound semiconductor containing an Ag element, a Bi element, a Te element and an S element (hereinafter, also referred to as an Ag-Bi-Te-S-based semiconductor).
  • an Ag-Bi-Te-S-based semiconductor the value obtained by dividing the number of Te elements by the total of the number of Te elements and the number of S elements (the number of Te elements / (the number of Te elements + the number of S elements). )) Is preferably 0.05 to 0.5.
  • the lower limit is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more.
  • the upper limit is preferably 0.45 or less, and more preferably 0.4 or less.
  • the type and number of each element constituting the compound semiconductor can be measured by ICP (Inductively Coupled Plasma) emission spectroscopy or energy dispersive X-ray analysis.
  • the compound semiconductor is preferably a compound represented by the formula (1).
  • X 1 represents Sb or Bi
  • Y 1 represents Te or Se
  • n1 and n2 independently represent numbers greater than 0 and less than or equal to 2
  • n3 represents numbers greater than 0 and less than or equal to 4.
  • n4 represents a number of 0 or more and 4 or less.
  • X 1 is preferably Bi.
  • Y 1 is preferably Te.
  • the value of n1 / n2 is preferably 0.2 to 3.0.
  • the lower limit is preferably 0.3 or more, more preferably 0.5 or more, and further preferably 0.6 or more.
  • the upper limit is preferably 2.5 or less, more preferably 2.0 or less, and even more preferably 1.8 or less.
  • the value of (n3 + n4) / n2 is preferably 1.5 to 3.0.
  • the lower limit is preferably 1.6 or more, more preferably 1.8 or more, and even more preferably 1.9 or more.
  • the upper limit is preferably 2.5 or less, more preferably 2.4 or less, and even more preferably 2.2 or less.
  • n3 / (n3 + n4) is preferably 0.05 to 0.5.
  • the lower limit is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more.
  • the upper limit is preferably 0.45 or less, and more preferably 0.4 or less.
  • the value of n3 / (n3 + n4) may be 1 (ie, n4 may be zero).
  • the crystal structure of the compound semiconductor is not particularly limited. Various crystal structures can be taken depending on the types of elements constituting the compound semiconductor and the composition ratio of the elements, but cubic crystals are easy to control the band gap as a semiconductor and to realize high crystallinity. It preferably has a systematic or hexagonal crystal structure.
  • the crystal structure of a compound semiconductor can be measured by an X-ray diffraction method or an electron beam diffraction method.
  • the band gap of the quantum dots of the compound semiconductor is preferably 1.2 eV or less, and more preferably 1.0 eV or less.
  • the lower limit of the band gap of the quantum dots of the compound semiconductor is not particularly limited, but is preferably 0.3 eV or more, and more preferably 0.5 eV or more.
  • the average particle size of the quantum dots of the compound semiconductor is preferably 3 to 20 nm.
  • the lower limit of the average particle size of the quantum dots of the compound semiconductor is preferably 4 nm or more, and more preferably 5 nm or more.
  • the upper limit of the average particle size of the quantum dots of the compound semiconductor is preferably 15 nm or less, and more preferably 10 nm or less.
  • the value of the average particle size of the quantum dots is the average value of the particle sizes of 10 arbitrarily selected quantum dots.
  • a transmission electron microscope may be used to measure the particle size of the quantum dots.
  • the photoelectric conversion film of the present invention preferably contains a ligand that coordinates the quantum dots of the compound semiconductor.
  • the ligand include a ligand containing a halogen atom and a polydentate ligand containing two or more coordination bonds.
  • the photoelectric conversion film may contain only one type of ligand, or may contain two or more types of ligands.
  • the photoelectric conversion film preferably contains a ligand containing a halogen atom and a polydentate ligand. When a ligand containing a halogen atom is used, it is easy to increase the surface coverage of the quantum dot ligand, and as a result, higher external quantum efficiency can be obtained.
  • the polydentate ligand When a polydentate ligand is used, the polydentate ligand is easy to chelate to the quantum dot, the peeling of the ligand from the quantum dot can be suppressed more effectively, and excellent durability is obtained. Be done. Furthermore, by chelate coordination, steric hindrance between quantum dots can be suppressed, high electrical conductivity can be easily obtained, and high external quantum efficiency can be obtained. When a ligand containing a halogen atom and a polydentate ligand are used in combination, higher external quantum efficiency can be easily obtained. As mentioned above, the polydentate ligand is presumed to be chelated with respect to the quantum dots.
  • the ligand that coordinates the quantum dot when the ligand containing the halogen atom is further included, the ligand containing the halogen atom is arranged in the gap where the polydentate ligand is not coordinated. It is presumed that the surface defects of the quantum dots can be further reduced. Therefore, it is presumed that the external quantum efficiency can be further improved.
  • a ligand containing a halogen atom will be described.
  • the halogen atom contained in the ligand include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and an iodine atom is preferable from the viewpoint of coordinating power.
  • the ligand containing a halogen atom may be an organic halide or an inorganic halide.
  • an inorganic halide is preferable because it is easy to coordinate to both the cation site and the anion site of the quantum dot.
  • the inorganic halide is preferably a compound containing a metal element selected from a Zn (zinc) atom, an In (indium) atom and a Cd (cadmium) atom, and more preferably a compound containing a Zn atom.
  • the inorganic halide is preferably a salt of a metal atom and a halogen atom because it is easily ionized and easily coordinated with quantum dots.
  • the ligand containing a halogen atom include zinc iodide, zinc bromide, zinc chloride, indium iodide, indium bromide, indium chloride, cadmium iodide, cadmium bromide, cadmium chloride, gallium iodide, and the like.
  • examples thereof include gallium bromide, gallium chloride, tetrabutylammonium iodide, tetramethylammonium iodide, and zinc iodide is particularly preferable.
  • the halogen ion may be dissociated from the above-mentioned ligand and the halogen ion may be coordinated on the surface of the quantum dot.
  • the site other than the halogen atom of the above-mentioned ligand may also be coordinated to the surface of the quantum dot.
  • zinc iodide zinc iodide may be coordinated to the surface of the quantum dot, and iodine ion or zinc ion may be coordinated to the surface of the quantum dot.
  • Examples of the coordination portion contained in the polydentate ligand include a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group, and a phosphonic acid group.
  • polydentate ligand examples include ligands represented by any of the formulas (A) to (C).
  • X A1 and X A2 independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group.
  • LA1 represents a hydrocarbon group.
  • X B1 and X B2 independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group, respectively.
  • X B3 represents S, O or NH LB1 and LB2 each independently represent a hydrocarbon group.
  • X C1 to X C3 independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group.
  • X C4 represents N LC1 to LC3 independently represent hydrocarbon groups.
  • the amino groups represented by X A1 , X A2 , X B1 , X B2 , X C1 , X C2 and X C3 are not limited to -NH 2 , but also include substituted amino groups and cyclic amino groups.
  • the substituted amino group include a monoalkylamino group, a dialkylamino group, a monoarylamino group, a diarylamino group, an alkylarylamino group and the like.
  • -NH 2 a monoalkylamino group and a dialkylamino group are preferable, and -NH 2 is more preferable.
  • the L A1, L B1, L B2 , L C1, hydrocarbon group L C2 and L C3 represents preferably an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group.
  • the hydrocarbon group preferably has 1 to 20 carbon atoms. The upper limit of the number of carbon atoms is preferably 10 or less, more preferably 6 or less, and even more preferably 3 or less.
  • Specific examples of the hydrocarbon group include an alkylene group, an alkenylene group, and an alkynylene group.
  • Examples of the alkylene group include a linear alkylene group, a branched alkylene group and a cyclic alkylene group, and a linear alkylene group or a branched alkylene group is preferable, and a linear alkylene group is more preferable.
  • Examples of the alkenylene group include a linear alkenylene group, a branched alkenylene group and a cyclic alkenylene group, and a linear alkenylene group or a branched alkenylene group is preferable, and a linear alkenylene group is more preferable.
  • alkynylene group examples include a linear alkynylene group and a branched alkynylene group, and a linear alkynylene group is preferable.
  • the alkylene group, alkenylene group and alkynylene group may further have a substituent.
  • the substituent is preferably a group having 1 or more and 10 or less atoms.
  • Preferred specific examples of the group having 1 to 10 atoms are an alkyl group having 1 to 3 carbon atoms [methyl group, ethyl group, propyl group and isopropyl group], an alkenyl group having 2 to 3 carbon atoms [ethenyl group and Propenyl group], alkynyl group having 2 to 4 carbon atoms [ethynyl group, propynyl group, etc.], cyclopropyl group, alkoxy group having 1 to 2 carbon atoms [methoxy group and ethoxy group], acyl group having 2 to 3 carbon atoms [ Acetyl group and propionyl group], alkoxycarbonyl group with 2-3 carbon atoms [methoxycarbonyl group and ethoxycarbonyl group], acyloxy group with 2 carbon atoms [acetyloxy group], acylamino group with 2 carbon atoms [acetylamino group] , Hydroxyalkyl groups with 1 to 3 carbon
  • the X A1 and X A2 is L A1, it is preferable that the separated 1 to 10 atoms, more preferably that are separated 1-6 atoms, that are separated 1-4 atoms Is even more preferable, and it is even more preferable that they are separated by 1 to 3 atoms, and particularly preferably that they are separated by 1 or 2 atoms.
  • the X B1 and X B3 is L B1, it is preferable that the separated 1 to 10 atoms, more preferably that are separated 1-6 atoms, that are separated 1-4 atoms Is even more preferable, and it is even more preferable that they are separated by 1 to 3 atoms, and particularly preferably that they are separated by 1 or 2 atoms.
  • X B2 and X B3 are preferably separated by LB2 by 1 to 10 atoms, more preferably 1 to 6 atoms, and further preferably 1 to 4 atoms. It is even more preferably separated by 1 to 3 atoms, and particularly preferably separated by 1 or 2 atoms.
  • the X C1 and X C4 is L C1, it is preferable that the separated 1 to 10 atoms, more preferably that are separated 1-6 atoms, that are separated 1-4 atoms Is even more preferable, and it is even more preferable that they are separated by 1 to 3 atoms, and particularly preferably that they are separated by 1 or 2 atoms.
  • the X C2 and X C4 is L C2, it is preferable that the separated 1 to 10 atoms, more preferably that are separated 1-6 atoms, more preferably that are separated 1-4 atoms, It is even more preferably separated by 1 to 3 atoms, and particularly preferably separated by 1 or 2 atoms.
  • the X C3 and X C4 is L C3, it is preferable that the separated 1 to 10 atoms, more preferably that are separated 1-6 atoms, more preferably that are separated 1-4 atoms, It is even more preferably separated by 1 to 3 atoms, and particularly preferably separated by 1 or 2 atoms.
  • X A1 and X A2 by L A1, and are spaced 1 to 10 atoms, the number of atoms constituting the molecular chain of the shortest distance connecting the X A1 and X A2 is 1 to 10 Means.
  • X A1 and X A2 are separated by 2 atoms, and in the case of the following formulas (A2) and (A3), X A1 and X A2 are separated by 3 atoms.
  • the numbers added to the following structural formulas represent the order of the arrangement of atoms constituting the shortest distance molecular chain connecting X A1 and X A2.
  • the 3-mercaptopropionic acid, at a site corresponding to the X A1 is a carboxy group
  • at the site corresponding to the X A2 is a thiol group
  • a portion corresponding to the L A1 is an ethylene group structure (Compound having the following structure).
  • X A1 (carboxy group) and X A2 (thiol group) are separated by 2 atoms by LA1 (ethylene group).
  • X B1 and X B3 is L B1, that are separated 1-10 atoms, by X B2 and X B3 is L B2, that are separated 1-10 atoms, by X C1 and X C4 is L C1, that are separated 1-10 atoms, by X C2 and X C4 is L C2, that are separated 1-10 atoms, by X C3 and X C4 is L C3, of that separated 1-10 atoms
  • the meaning is the same as above.
  • polydentate ligands include 3-mercaptopropionic acid, thioglycolic acid, 2-aminoethanol, 2-aminoethanethiol, 2-mercaptoethanol, glycolic acid, ethylene glycol, ethylenediamine, aminosulfonic acid, and glycine.
  • the dispersion liquid of the present invention is a dispersion liquid for forming a photoelectric conversion film, and is at least one element selected from Ag element, Sb element and Bi element, and at least one element selected from Se element and Te element. It contains a quantum dot of a compound semiconductor containing an element, a ligand coordinating to the quantum dot, and a solvent.
  • the details of the quantum dots are as described above, and the preferred embodiment is also the same.
  • the content of the quantum dots in the dispersion is preferably 1 to 500 mg / mL, more preferably 10 to 200 mg / mL, and even more preferably 20 to 100 mg / mL.
  • the ligand contained in the quantum dot dispersion liquid acts as a ligand that coordinates the quantum dots and has a molecular structure that easily causes steric hindrance, and serves as a dispersant that disperses the quantum dots in the solvent. It is preferable that it also fulfills.
  • the ligand is preferably a ligand having at least 6 or more carbon atoms in the main chain, and is a ligand having 10 or more carbon atoms in the main chain. Is more preferable.
  • the ligand may be either a saturated compound or an unsaturated compound.
  • the ligand include decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, erucic acid, oleylamine, stearylamine, 1-aminodecane, dodecylamine, aniline, dodecanethiol, 1,2-hexadecanethiol, tributylphosphine, trihexylphosphine, trioctylphosphine, tributylphosphine oxide, trioctylphosphine oxide, cetrimonium bromide and the like can be mentioned and selected from oleic acid, oleylamine, dodecanethiol and trioctylphosphine. At least one is preferable.
  • the content of the ligand in the dispersion is preferably 0.1 mmol / L to 500 mmol / L, more preferably 0.5 mmol / L to 100 mmol / L, based on the total volume of the dispersion. ..
  • the solvent contained in the dispersion is not particularly limited, but it is preferably a solvent that is difficult to dissolve the quantum dots and easily dissolves the ligand.
  • an organic solvent is preferable. Specific examples include alkanes (n-hexane, n-octane, etc.), alkenes (octadecene, etc.), benzene, toluene, and the like.
  • the solvent contained in the dispersion liquid may be only one type or a mixed solvent in which two or more types are mixed.
  • the content of the solvent in the dispersion liquid is preferably 50 to 99% by mass, more preferably 70 to 99% by mass, and further preferably 90 to 98% by mass.
  • the dispersion liquid of the present invention may further contain other components as long as the effects of the present invention are not impaired.
  • the photoelectric conversion film of the present invention comprises quantum dots of a compound semiconductor containing an Ag element, at least one element selected from Sb element and Bi element, and at least one element selected from Se element and Te element.
  • a dispersion containing a ligand coordinating to a quantum dot and a solvent is applied onto a substrate to form a film of an aggregate of quantum dots (quantum dot aggregate forming step). Can be done.
  • the structure of the substrate may be a single-layer structure or a laminated structure.
  • a substrate composed of silicon, glass, an inorganic material such as YSZ (Yttria-Stabilized Zirconia; yttria-stabilized zirconia), a resin, a resin composite material, or the like can be used.
  • electrodes, an insulating film and the like may be formed on the substrate. In that case, the quantum dot dispersion liquid is also applied to the electrodes and the insulating film on the substrate.
  • the method of applying the quantum dot dispersion liquid on the substrate is not particularly limited. Examples thereof include a spin coating method, a dip method, an inkjet method, a dispenser method, a screen printing method, a letterpress printing method, an intaglio printing method, and a spray coating method.
  • the film thickness of the quantum dot aggregate formed by the quantum dot aggregate forming step is preferably 3 nm or more, more preferably 10 nm or more, and more preferably 20 nm or more.
  • the upper limit is preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.
  • a ligand exchange step may be further performed to exchange the ligand coordinated to the quantum dots with another ligand.
  • a ligand different from the ligand contained in the dispersion liquid hereinafter, ligand A
  • ligand A a ligand different from the ligand contained in the dispersion liquid
  • a ligand solution containing (also referred to as) and a solvent is applied to exchange the ligand coordinated to the quantum dot with the ligand A contained in the ligand solution.
  • the quantum dot aggregate forming step and the ligand exchange step may be alternately repeated a plurality of times.
  • Examples of the ligand A include a ligand containing a halogen atom and a polydentate ligand containing two or more coordination bonds. These details include those described in the section on photoelectric conversion film described above, and the preferred range is also the same.
  • the ligand solution used in the ligand exchange step may contain only one type of ligand A, or may contain two or more types of ligand A. Further, two or more kinds of ligand solutions may be used.
  • the solvent contained in the ligand solution is preferably appropriately selected according to the type of ligand contained in each ligand solution, and is preferably a solvent that easily dissolves each ligand.
  • the solvent contained in the ligand solution is preferably an organic solvent having a high dielectric constant. Specific examples include ethanol, acetone, methanol, acetonitrile, dimethylformamide, dimethyl sulfoxide, butanol, propanol and the like.
  • the solvent contained in the ligand solution is preferably a solvent that does not easily remain in the formed photoelectric conversion film.
  • the solvent contained in the ligand solution is preferably one that does not mix with the solvent contained in the quantum dot dispersion liquid.
  • the solvent contained in the quantum dot dispersion is an alkane such as hexane or octane or toluene
  • the solvent contained in the ligand solution is a polar solvent such as methanol or acetone. Is preferable.
  • the method of applying the ligand solution to the film of the aggregate of quantum dots is the same as the method of applying the quantum dot dispersion liquid on the substrate, and the preferred embodiment is also the same.
  • the rinsing solution may be brought into contact with the membrane after the ligand exchange step to rinse the membrane (rinsing step).
  • the rinsing step By performing the rinsing step, it is possible to remove excess ligands contained in the film and ligands desorbed from the quantum dots. In addition, the remaining solvent and other impurities can be removed.
  • As a rinse solution it is easier to more effectively remove excess ligands contained in the film and ligands desorbed from the quantum dots, and the surface of the quantum dots is rearranged to keep the film surface uniform.
  • An aprotic solvent is preferable because it is easy to use.
  • aprotonic solvents include acetonitrile, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, dioxane, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, hexane, octane.
  • Cyclohexane, benzene, toluene, chloroform, carbon tetrachloride, dimethylformamide, and acetonitrile and tetrahydrofuran are preferable, and acetonitrile is more preferable.
  • the rinsing step may be performed a plurality of times using two or more kinds of rinsing liquids having different polarities (relative permittivity). For example, first rinse with a rinse solution having a high relative permittivity (also referred to as a first rinse solution), and then a rinse solution having a lower relative permittivity than the first rinse solution (also referred to as a second rinse solution). It is preferable to perform rinsing using (referred to as). By rinsing in this way, the surplus component of the ligand A used for the ligand exchange is first removed, and then the desorbed ligand component generated in the ligand exchange process (originally arranged in the particles). The coordinated component) can be removed, and both the surplus or the desorbed ligand component can be removed more efficiently.
  • a rinse solution having a high relative permittivity also referred to as a first rinse solution
  • a rinse solution having a lower relative permittivity than the first rinse solution also referred to as a
  • the relative permittivity of the first rinsing liquid is preferably 15 to 50, more preferably 20 to 45, and even more preferably 25 to 40.
  • the relative permittivity of the second rinsing liquid is preferably 1 to 15, more preferably 1 to 10, and even more preferably 1 to 5.
  • the method for producing the photoelectric conversion film may include a drying step. By performing the drying step, the solvent remaining on the photoelectric conversion film can be removed.
  • the drying time is preferably 1 to 100 hours, more preferably 1 to 50 hours, and even more preferably 5 to 30 hours.
  • the drying temperature is preferably 10 to 100 ° C, more preferably 20 to 90 ° C, and even more preferably 20 to 50 ° C.
  • the photodetector of the present invention includes the above-mentioned photoelectric conversion film of the present invention.
  • the thickness of the photoelectric conversion film of the present invention in the photodetector is preferably 10 to 1000 nm.
  • the lower limit of the thickness is preferably 20 nm or more, and more preferably 30 nm or more.
  • the upper limit of the thickness is preferably 600 nm or less, more preferably 550 nm or less, further preferably 500 nm or less, and particularly preferably 450 nm or less.
  • Examples of the type of photodetector include a photoconductor type photodetector and a photodiode type photodetector. Of these, a photodiode-type photodetector is preferable because a high signal-to-noise ratio (SN ratio) can be easily obtained.
  • SN ratio signal-to-noise ratio
  • the light detection element of the present invention can be used as a light detection element for detecting light having a wavelength in the infrared region. It is preferably used. That is, the photodetector of the present invention is preferably used as an infrared photodetector.
  • the light having a wavelength in the infrared region is preferably light having a wavelength exceeding 700 nm, more preferably light having a wavelength of 800 nm or more, further preferably light having a wavelength of 900 nm or more, and having a wavelength of 1000 nm or more. It is even more preferable that it is light. Further, the light having a wavelength in the infrared region is preferably light having a wavelength of 2000 nm or less, more preferably light having a wavelength of 1800 nm or less, and further preferably light having a wavelength of 1600 nm or less.
  • the light detection element may be a light detection element that simultaneously detects light having a wavelength in the infrared region and light having a wavelength in the visible region (preferably light having a wavelength in the range of 400 to 700 nm).
  • FIG. 1 shows an embodiment of a photodiode type photodetector.
  • the arrows in the figure represent the incident light on the photodetector.
  • the photodetector 1 shown in FIG. 1 includes a lower electrode 12, an upper electrode 11 facing the lower electrode 12, and a photoelectric conversion film 13 provided between the lower electrode 12 and the upper electrode 11.
  • the photodetector 1 shown in FIG. 1 is used by injecting light from above the upper electrode 11.
  • the photoelectric conversion film 13 is composed of the above-mentioned photoelectric conversion film of the present invention.
  • the refractive index of the photoelectric conversion film 13 with respect to light of a target wavelength detected by the photodetector can be 1.5 to 5.0.
  • the thickness of the photoelectric conversion film 13 is preferably 10 to 1000 nm.
  • the lower limit of the thickness is preferably 20 nm or more, and more preferably 30 nm or more.
  • the upper limit of the thickness is preferably 600 nm or less, more preferably 550 nm or less, further preferably 500 nm or less, and particularly preferably 450 nm or less.
  • the wavelength ⁇ and the optical path length L ⁇ satisfy such a relationship, the light (incident light) incident from the upper electrode 11 side and the surface of the lower electrode 12 are reflected by the photoelectric conversion film 13. It is possible to align the phase with the light (reflected light), and as a result, the light is strengthened by the optical interference effect, and higher external quantum efficiency can be obtained.
  • is the wavelength of the target light to be detected by the photodetector.
  • L ⁇ is the optical path length of light having a wavelength ⁇ from the surface 12a on the photoelectric conversion film 13 side of the lower electrode 12 to the surface 13a on the upper electrode side of the photoelectric conversion film 13.
  • m is an integer greater than or equal to 0.
  • M is preferably an integer of 0 to 4, more preferably an integer of 0 to 3, further preferably an integer of 0 to 2, and particularly preferably 0 or 1.
  • the optical path length means the product of the physical thickness of the substance through which light is transmitted and the refractive index.
  • the photoelectric conversion film 13 when the thickness of the photoelectric conversion film is d 1 and the refractive index of the photoelectric conversion film with respect to the wavelength ⁇ 1 is N 1 , the wavelength ⁇ 1 transmitted through the photoelectric conversion film 13 The optical path length of light is N 1 ⁇ d 1 .
  • the photoelectric conversion film 13 is composed of two or more laminated films, or when an intermediate layer described later is present between the photoelectric conversion film 13 and the lower electrode 12, the integrated value of the optical path length of each layer is calculated.
  • the optical path length L ⁇ when the photoelectric conversion film 13 is composed of two or more laminated films, or when an intermediate layer described later is present between the photoelectric conversion film 13 and the lower electrode 12, the integrated value of the optical path length of each layer is calculated.
  • the optical path length L ⁇ when the photoelectric conversion film 13 is composed of two or more laminated films, or when an intermediate layer described later is present between the photoelectric
  • the upper electrode 11 is preferably a transparent electrode formed of a conductive material that is substantially transparent to the wavelength of the target light detected by the photodetector.
  • substantially transparent means that the light transmittance is 50% or more, preferably 60% or more, and particularly preferably 80% or more.
  • the material of the upper electrode 11 include a conductive metal oxide. Specific examples include tin oxide, zinc oxide, indium oxide, indium tungsten oxide, indium zinc oxide (IZO), indium tin oxide (ITO), and fluorine-doped tin oxide (fluorine-topped). Tin oxide: FTO) and the like.
  • the film thickness of the upper electrode 11 is not particularly limited, and is preferably 0.01 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m, and particularly preferably 0.01 to 1 ⁇ m.
  • the thickness of each layer can be measured by observing the cross section of the light detection element 1 using a scanning electron microscope (SEM) or the like.
  • Examples of the material forming the lower electrode 12 include metals such as platinum, gold, nickel, copper, silver, indium, ruthenium, palladium, rhodium, iridium, osnium, and aluminum, the above-mentioned conductive metal oxides, carbon materials, and the like. Examples include conductive polymers.
  • the carbon material may be any material having conductivity, and examples thereof include fullerenes, carbon nanotubes, graphite, graphene and the like.
  • the film thickness of the lower electrode 12 is not particularly limited, and is preferably 0.01 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m, and particularly preferably 0.01 to 1 ⁇ m.
  • a transparent substrate may be arranged on the surface of the upper electrode 11 on the light incident side (the surface opposite to the photoelectric conversion film 13 side).
  • Examples of the type of transparent substrate include a glass substrate, a resin substrate, and a ceramic substrate.
  • an intermediate layer may be provided between the photoelectric conversion film 13 and the lower electrode 12 and / or between the photoelectric conversion film 13 and the upper electrode 11.
  • the intermediate layer include a blocking layer, an electron transport layer, and a hole transport layer.
  • a preferred embodiment includes a mode in which the hole transport layer is provided between the photoelectric conversion film 13 and the lower electrode 12 and between the photoelectric conversion film 13 and the upper electrode 11. It is possible that one of the photoelectric conversion film 13 and the lower electrode 12 and one of the photoelectric conversion film 13 and the upper electrode 11 has an electron transport layer and the other has a hole transport layer. preferable.
  • the hole transport layer and the electron transport layer may be a single-layer film or a laminated film having two or more layers.
  • the blocking layer is a layer having a function of preventing reverse current.
  • the blocking layer is also called a short circuit prevention layer.
  • Examples of the material forming the blocking layer include silicon oxide, magnesium oxide, aluminum oxide, calcium carbonate, cesium carbonate, polyvinyl alcohol, polyurethane, titanium oxide, tin oxide, zinc oxide, niobium oxide, tungsten oxide and the like.
  • the blocking layer may be a single-layer film or a laminated film having two or more layers.
  • the electron transport layer is a layer having a function of transporting electrons generated in the photoelectric conversion film 13 to the upper electrode 11 or the lower electrode 12.
  • the electron transport layer is also called a hole block layer.
  • the electron transport layer is formed of an electron transport material capable of exerting this function. Examples of the electron transporting material include fullerene compounds such as [6,6] -Phenyl-C61-Butyric Acid Methyl Ester (PC 61 BM), perylene compounds such as perylene tetracarboxydiimide, tetracyanoquinodimethane, titanium oxide, and tin oxide.
  • the electron transport layer may be a single-layer film or a laminated film having two or more layers.
  • the hole transport layer is a layer having a function of transporting holes generated in the photoelectric conversion film 13 to the upper electrode 11 or the lower electrode 12.
  • the hole transport layer is also called an electron block layer.
  • the hole transport layer is formed of a hole transport material capable of exerting this function.
  • PTB7 poly ( ⁇ 4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b'] dithiophene-2,6-diyl ⁇ ⁇ 3-fluoro-2- [(2-Ethylenehexyl) carbonyl] thieno [3,4-b] thiopheneyl ⁇ )
  • PEDOT PSS (poly (3,4-ethylenedioxythiophene): poly (4-styrene sulfonic acid)), MoO 3 And so on.
  • the organic hole transport material or the like described in paragraph Nos. 0209 to 0212 of JP-A-2001-291534 can also be used.
  • Quantum dots can also be used as the hole transport material.
  • the average particle size of the quantum dots is preferably 0.5 to 100 nm.
  • Materials for quantum dots include, for example, a) group IV semiconductors, b) group IV-IV, group III-V, or group II-VI compound semiconductors, c) group II, group III, group IV, and group V. Examples thereof include compound semiconductors composed of a combination of three or more of group VI elements.
  • the hole transport material includes the Ag element described in the section of the photoelectric conversion film described above, at least one element selected from the Sb element and the Bi element, and at least one selected from the Se element and the Te element.
  • Compound semiconductors containing elements can also be used.
  • a ligand may be coordinated on the surface of the quantum dot. Examples of the ligand include the ligand described in the above-mentioned section of the photoelectric conversion film.
  • the image sensor of the present invention includes the above-mentioned photodetector of the present invention. Since the photodetector of the present invention has excellent sensitivity to light having a wavelength in the infrared region, it can be particularly preferably used as an infrared image sensor.
  • the configuration of the image sensor is not particularly limited as long as it includes the photodetector of the present invention and functions as an image sensor.
  • the image sensor may include an infrared transmission filter layer.
  • the infrared transmission filter layer preferably has low light transmittance in the visible wavelength band, and more preferably has an average transmittance of light in the wavelength range of 400 to 650 nm of 10% or less. It is more preferably 5.5% or less, and particularly preferably 5% or less.
  • Examples of the infrared transmission filter layer include those made of a resin film containing a coloring material.
  • Examples of the coloring material include chromatic color materials such as red color material, green color material, blue color material, yellow color material, purple color material, and orange color material, and black color material.
  • the color material contained in the infrared transmission filter layer is preferably a combination of two or more kinds of chromatic color materials to form black or contains a black color material.
  • Examples of the combination of the chromatic color materials in the case of forming black by the combination of two or more kinds of chromatic color materials include the following aspects (C1) to (C7).
  • C2 An embodiment containing a red color material, a blue color material, and a yellow color material.
  • C3 An embodiment containing a red color material, a blue color material, a yellow color material, and a purple color material.
  • C4 An embodiment containing a red color material, a blue color material, a yellow color material, a purple color material, and a green color material.
  • C5 An embodiment containing a red color material, a blue color material, a yellow color material, and a green color material.
  • C6 An embodiment containing a red color material, a blue color material, and a green color material.
  • C7 An embodiment containing a yellow color material and a purple color material.
  • the chromatic color material may be a pigment or a dye. Pigments and dyes may be included.
  • the black color material is preferably an organic black color material.
  • examples of the organic black color material include bisbenzofuranone compounds, azomethine compounds, perylene compounds, and azo compounds.
  • the infrared transmission filter layer may further contain an infrared absorber.
  • infrared absorbers include pyrolopyrrole compounds, cyanine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterylene compounds, merocyanine compounds, croconium compounds, oxonor compounds, iminium compounds, dithiol compounds, triarylmethane compounds, pyromethene compounds, and azomethine compounds.
  • examples thereof include compounds, anthraquinone compounds, dibenzofuranone compounds, dithiolene metal complexes, metal oxides, and metal boroides.
  • the spectral characteristics of the infrared transmission filter layer can be appropriately selected according to the application of the image sensor.
  • a filter layer satisfying any of the following spectral characteristics (1) to (5) can be mentioned.
  • the maximum value of the light transmittance in the film thickness direction in the wavelength range of 400 to 750 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the light in the film thickness direction.
  • the maximum value of the light transmittance in the film thickness direction in the wavelength range of 400 to 830 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the light in the film thickness direction.
  • the maximum value of the light transmittance in the film thickness direction in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the light in the film thickness direction.
  • the maximum value of the light transmittance in the film thickness direction in the wavelength range of 400 to 1100 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the wavelength range is 1400 to 1500 nm.
  • a filter layer having a minimum value of 70% or more preferably 75% or more, more preferably 80% or more.
  • the maximum value of the light transmittance in the film thickness direction in the wavelength range of 400 to 1300 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the wavelength range is 1600 to 2000 nm.
  • a filter layer having a minimum value of 70% or more preferably 75% or more, more preferably 80% or more).
  • the infrared transmission filter includes JP-A-2013-077009, JP-A-2014-130173, JP-A-2014-130338, International Publication No. 2015/166779, International Publication No. 2016/178346, International Publication No.
  • the membranes described in 2016/190162, International Publication No. 2018/016232, JP-A-2016-177079, JP-A-2014-130332, and International Publication No. 2016/0277798 can be used.
  • two or more filters may be used in combination, or a dual bandpass filter that transmits two or more specific wavelength regions with one filter may be used.
  • the image sensor of the present invention may include an infrared shielding filter for the purpose of improving various performances such as noise reduction.
  • the infrared shielding filter include, for example, International Publication No. 2016/186050, International Publication No. 2016/035695, Japanese Patent No. 6248945, International Publication No. 2019/021767, Japanese Patent Application Laid-Open No. 2017-066963, Patent. Examples thereof include the filters described in Japanese Patent Application Laid-Open No. 6506529.
  • the image sensor of the present invention may include a dielectric multilayer film.
  • the dielectric multilayer film include those in which a plurality of layers of a dielectric thin film having a high refractive index (high refractive index material layer) and a dielectric thin film having a low refractive index (low refractive index material layer) are alternately laminated.
  • the number of laminated dielectric thin films in the dielectric multilayer film is not particularly limited, but is preferably 2 to 100 layers, more preferably 4 to 60 layers, and even more preferably 6 to 40 layers.
  • As the material used for forming the high refractive index material layer a material having a refractive index of 1.7 to 2.5 is preferable.
  • Specific examples include Sb 2 O 3 , Sb 2 S 3 , Bi 2 O 3 , CeO 2 , CeF 3 , HfO 2 , La 2 O 3 , Nd 2 O 3 , Pr 6 O 11 , Sc 2 O 3 , SiO. , Ta 2 O 5 , TiO 2 , TlCl, Y 2 O 3 , ZnSe, ZnS, ZrO 2, and the like.
  • a material having a refractive index of 1.2 to 1.6 is preferable.
  • the method for forming the dielectric multilayer film is not particularly limited, and for example, an ion plating method, a vacuum deposition method such as an ion beam, a physical vapor deposition method (PVD method) such as sputtering, or a chemical vapor deposition method. (CVD method) and the like.
  • each of the high refractive index material layer and the low refractive index material layer is preferably 0.1 ⁇ to 0.5 ⁇ when the wavelength of the light to be blocked is ⁇ (nm).
  • the dielectric multilayer film for example, the films described in JP-A-2014-130344 and JP-A-2018-010296 can be used.
  • the dielectric multilayer film preferably has a transmission wavelength band in the infrared region (preferably a wavelength region having a wavelength of more than 700 nm, more preferably a wavelength region having a wavelength of more than 800 nm, and more preferably a wavelength region having a wavelength of more than 900 nm).
  • the maximum transmittance in the transmission wavelength band is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the maximum transmittance in the light-shielding wavelength band is preferably 20% or less, more preferably 10% or less, and further preferably 5% or less.
  • the average transmittance in the transmission wavelength band is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more.
  • the wavelength range of the transmission wavelength band, when the center wavelength lambda t1 wavelengths showing a maximum transmittance is preferably the central wavelength lambda t1 ⁇ 100 nm, more preferably the central wavelength lambda t1 ⁇ 75 nm, It is more preferable that the center wavelength is ⁇ t1 ⁇ 50 nm.
  • the dielectric multilayer film may have only one transmission wavelength band (preferably, a transmission wavelength band having a maximum transmittance of 90% or more), or may have a plurality of transmission wavelength bands.
  • the image sensor of the present invention may include a color separation filter layer.
  • the color separation filter layer include a filter layer including colored pixels.
  • Examples of the types of colored pixels include red pixels, green pixels, blue pixels, yellow pixels, cyan pixels, magenta pixels, and the like.
  • the color separation filter layer may include two or more colored pixels, or may have only one color. It can be appropriately selected according to the application and purpose. For example, the filter described in International Publication No. 2019/039172 can be used.
  • the colored pixels of each color may be adjacent to each other, and a partition wall may be provided between the colored pixels.
  • the material of the partition wall is not particularly limited. Examples thereof include organic materials such as siloxane resin and fluororesin, and inorganic particles such as silica particles.
  • the partition wall may be made of a metal such as tungsten or aluminum.
  • the image sensor of the present invention includes an infrared transmission filter layer and a color separation layer
  • the color separation layer is provided on an optical path different from the infrared transmission filter layer. It is also preferable that the infrared transmission filter layer and the color separation layer are arranged two-dimensionally. The fact that the infrared transmission filter layer and the color separation layer are two-dimensionally arranged means that at least a part of both is present on the same plane.
  • the image sensor of the present invention may include an intermediate layer such as a flattening layer, a base layer, and an adhesion layer, an antireflection film, and a lens.
  • an antireflection film for example, a film prepared from the composition described in International Publication No. 2019/017280 can be used.
  • the lens for example, the structure described in International Publication No. 2018/092600 can be used.
  • the image sensor of the present invention can be preferably used as an infrared image sensor. Further, the image sensor of the present invention can be preferably used as a sensor for sensing light having a wavelength of 900 to 2000 nm, and more preferably as a sensor for sensing light having a wavelength of 900 to 1600 nm.
  • Dispersion of dodecanethiol and oleylamine coordinated as ligands on the surface of quantum dots of an AgBise compound semiconductor whose atomic ratio estimated from the analytical method is Ag: Bi: Se 1.4: 1.0: 1.9.
  • a liquid (quantity of quantum dots 20 mg / mL) was obtained (quantum dot dispersion liquid of Production Example 1).
  • the band gap of the quantum dots estimated from the light absorption measurement in the visible to infrared region using an ultraviolet visible near infrared spectrophotometer (V-670 manufactured by JASCO Corporation) was about 0.81 eV.
  • the crystal structure of the compound semiconductor constituting the quantum dots was measured by an X-ray diffraction method.
  • a dispersion liquid in which dodecanethiol and oleylamine are coordinated as ligands on the surface of quantum dots of an AgSbSe compound semiconductor in which the atomic ratio estimated from the analytical method is Ag: Sb: Se 1.5: 1.0: 1.9.
  • Quantum dot concentration 20 mg / mL was obtained (quantum dot dispersion liquid of Production Example 2).
  • the band gap of the quantum dots estimated from the light absorption measurement in the visible to infrared region using an ultraviolet visible near infrared spectrophotometer (V-670 manufactured by JASCO Corporation) was about 0.76 eV.
  • the temperature of the liquid in the flask was then cooled to room temperature. Next, an excess amount of acetone was added to the solution in the flask, and centrifugation was performed at 10000 rpm for 10 minutes to remove the supernatant, and then the precipitate was dispersed in toluene.
  • the crystal structure was cubic and energy dispersive X-ray.
  • Oleic acid acts as a ligand on the surface of the quantum dots of the AgBiSTe compound semiconductor.
  • a coordinated dispersion quantitative dot concentration 20 mg / mL
  • Example 1 An ITO (Indium Tin Oxide) film was continuously formed on quartz glass to a thickness of 100 nm and a titanium oxide film to a thickness of 20 nm by sputtering. Next, the quantum dot dispersion liquid of Production Example 1 was dropped onto the titanium oxide film and then spin-coated at 2500 rpm to obtain a quantum dot aggregate film (step 1). Next, an acetonitrile solution of ethanedithiol (concentration 0.2 v / v%) was added dropwise onto the quantum dot aggregate film as a ligand solution, and then allowed to stand for 20 seconds and spin-dried at 2500 rpm for 10 seconds.
  • ITO Indium Tin Oxide
  • step 2 The operation of setting step 1 and step 2 as one cycle was repeated for 4 cycles to form a photoelectric conversion film having a thickness of 50 nm in which ethanedithiol was coordinated as a ligand to the quantum dots.
  • the photoelectric conversion film was dried in the glove box for 10 hours.
  • PTB7 poly ( ⁇ 4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b'] dithiophene-2,6-diyl ⁇ ) ⁇ 3-Fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophendiyl ⁇ )
  • dichlorobenzene solution concentration 5 mg / mL
  • a photodiode-type photodetector was manufactured by forming MoO 3 at a thickness of 5 nm and Ag at a thickness of 100 nm by continuous vapor deposition using a vacuum vapor deposition method via a metal mask on a PTB7 film.
  • Examples 2 to 8 In the step of forming the photoelectric conversion film, the same method as in Example 1 was adopted except that the types of the quantum dot dispersion liquid, the type of the ligand solution, and the type of the rinse liquid were changed to those described in the table below. The light detection elements of Examples 2 to 8 were manufactured.
  • a dispersion liquid in which oleic acid is coordinated as a ligand on the surface of quantum dots of a compound semiconductor (quantum dot concentration 20 mg / mL).
  • the band gap of AgBiS 2 quantum dots estimated from the light absorption measurement in the visible to infrared region using an ultraviolet-visible near-infrared spectrophotometer (V-670, manufactured by JASCO Corporation) was about 1.05 eV. ..
  • the external quantum efficiency (EQE) of the manufactured photodetector was evaluated using a semiconductor parameter analyzer (C4156, manufactured by Agilent).
  • the current-voltage characteristic (IV characteristic) was measured while sweeping the voltage from 0 V to -2 V without irradiating light, and the dark current value was evaluated.
  • the dark current value the value at -1V was taken as the dark current value.
  • the IV characteristics were measured while sweeping the voltage from 0 V to -2 V in a state of irradiating with monochrome light of 1200 nm.
  • the value obtained by subtracting the above dark current value from the current value when -1V was applied was taken as the photocurrent value, and the external quantum efficiency (EQE) was calculated from that value.
  • an image sensor was prepared by a known method together with an optical filter prepared according to the methods described in International Publication No. 2016/186050 and International Publication No. 2016/190162, and solidified. By incorporating it into an image sensor, an image sensor having good visibility-infrared imaging performance can be obtained.
  • Photodetection element 11 Upper electrode 12: Lower electrode 13: Photoelectric conversion film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Light Receiving Elements (AREA)

Abstract

Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットを含む光電変換膜、光電変換膜の形成に用いる分散液、光電変換膜を含む光検出素子、および、光検出素子を含むイメージセンサ。

Description

光電変換膜、分散液、光検出素子およびイメージセンサ
 本発明は、量子ドットを含む光電変換膜に関する。また、本発明は、量子ドットを含む分散液、光検出素子およびイメージセンサに関する。
 近年、スマートフォンや監視カメラ、車載カメラ等の領域において、赤外領域の光を検出可能な光検出素子に注目が集まっている。
 従来より、イメージセンサなどに用いられる光検出素子には、光電変換層の素材としてシリコンウエハを用いたシリコンフォトダイオードが使用されている。しかしながら、シリコンフォトダイオードでは、波長900nm以上の赤外領域では感度が低い。
 また、近赤外光の受光素子として知られるInGaAs系の半導体材料は、高い量子効率を実現するためにはエピタキシャル成長や基板の貼り合わせ工程が必要であるなど、非常に高コストなプロセスを必要としていることが課題であり、普及が進んでいない。
 また、近年では、量子ドットについての研究が進められている。非特許文献1には、AgBiSの量子ドットを含む光電変換膜を有する太陽電池セルについて記載されている。
Maria Bernechea,Nichole Cates Miller,Guillem Xercavins,David So,Alexandros Stavrinadis and Gerasimos Konstantatos,「Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals」,Nature Photonics,Vol 10,pp521-525 (2016)
 近年、イメージセンサなどの性能向上の要求に伴い、これらに使用される光検出素子に求められる諸特性に関しても更なる向上が求められている。例えば、光検出素子に求められる特性の一つとして、光検出素子にて検出する目的の波長の光に対して高い外部量子効率を有することなどがある。光検出素子の外部量子効率を高めることで、光検出素子での光の検出精度を高めることなどができる。
 本発明者が、非特許文献1に記載された太陽電池セルの光電変換層に用いられている半導体膜について鋭意検討したところ、AgBiSの量子ドットを含む光電変換膜では、赤外域の波長の光(特に波長900nm以上の光)に対する外部量子効率が低く、この光電変換膜を用いた光検出素子では、赤外域の波長の光に対する検出精度が不十分であることが分かった。
 よって、本発明の目的は、赤外域の波長の光に対して高い外部量子効率を有する新規な光電変換膜、分散液、光検出素子およびイメージセンサを提供することにある。
 本発明者が鋭意検討を行ったところ、Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットは、バンドギャップが小さく、この量子ドットを含む光電変換膜は、赤外域の波長の光に対して高い外部量子効率を有することを見出し、本発明を完成するに至った。よって、本発明は以下を提供する。
 <1> Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットを含む光電変換膜。
 <2> 上記化合物半導体は、Ag元素と、Bi元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む、<1>に記載の光電変換膜。
 <3> 上記化合物半導体は、Ag元素とBi元素とTe元素とを含む、<1>に記載の光電変換膜。
 <4> 上記化合物半導体は、更にS元素を含む、<1>~<3>のいずれか1つに記載の光電変換膜。
 <5> 上記化合物半導体は、Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Te元素と、S元素とを含み、Te元素の数を、Te元素の数とS元素の数の合計で割った値が0.05~0.5である、<1>に記載の光電変換膜。
 <6> 上記化合物半導体の結晶構造が、立方晶系または六方晶系である、<1>~<5>のいずれか1つに記載の光電変換膜。
 <7> 上記量子ドットのバンドギャップが1.2eV以下である、<1>~<6>のいずれか1つに記載の光電変換膜。
 <8> 上記量子ドットのバンドギャップが1.0eV以下である、<1>~<6>のいずれか1つに記載の光電変換膜。
 <9> 上記量子ドットの平均粒子径が3~20nmである、<1>~<8>のいずれか1つに記載の光電変換膜。
 <10> 上記量子ドットに配位する配位子を含む、<1>~<9>のいずれか1つに記載の光電変換膜。
 <11> 上記配位子は、ハロゲン原子を含む配位子、および、配位部を2以上含む多座配位子から選ばれる少なくとも1種を含む、<10>に記載の光電変換膜。
 <12> 上記ハロゲン原子を含む配位子が無機ハロゲン化物である、<11>に記載の光電変換膜。
 <13> Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットと、上記量子ドットに配位する配位子と、溶剤とを含む光電変換膜形成用の分散液。
 <14> <1>~<12>のいずれか1つに記載の光電変換膜を含む光検出素子。
 <15> <14>に記載の光検出素子を含むイメージセンサ。
 本発明によれば、赤外域の波長の光に対して高い外部量子効率を有する新規な光電変換膜、分散液、光検出素子およびイメージセンサを提供することができる。
光検出素子の一実施形態を示す図である。
 以下において、本発明の内容について詳細に説明する。
 本明細書において、「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において、「半導体」とは、比抵抗値が10-2Ωcm以上10Ωcm以下である物質を意味する。
<光電変換膜>
 本発明の光電変換膜は、Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットを含むことを特徴とする。
 本発明の光電変換膜は、赤外域の波長の光に対して高い外部量子効率を有している。このため、本発明の光電変換膜を光検出素子に用いることで、赤外域の波長の光に対して高い感度を有する光検出素子とすることができる。また、本発明の光電変換膜は、可視域の波長の光に対しても高い外部量子効率を有しているので、本発明の光電変換膜を用いた光検出素子は、赤外域の波長の光と可視域の波長の光(好ましくは波長400~700nmの範囲の光)とを同時に検出することができる。
 光電変換膜の厚みは、特に制限されないが、高い電気伝導性を得る観点から、10~1000nmであることが好ましい。厚みの下限は、20nm以上であることが好ましく、30nm以上であることがより好ましい。厚みの上限は、600nm以下であることが好ましく、550nm以下であることがより好ましく、500nm以下であることが更に好ましく、450nm以下であることが特に好ましい。
 以下、本発明の光電変換膜についての詳細を説明する。
 本発明の光電変換膜は、Ag(銀)元素と、Sb(アンチモン)元素およびBi(ビスマス)元素から選ばれる少なくとも1種の元素と、Se(セレン)元素およびTe(テルル)元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットを含む。なお、化合物半導体とは、2種以上の元素で構成される半導体のことである。したがって、本明細書において、「Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体」とは、化合物半導体を構成する元素として、Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体のことである。また、本明細書において、「半導体」とは、比抵抗値が10-2Ωcm以上10Ωcm以下である物質を意味する。
 上記量子ドットを構成する量子ドット材料である上記化合物半導体は、Ag元素と、Bi元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体であることが好ましく、Ag元素と、Bi元素と、Te元素とを含む化合物半導体であることがより好ましい。この態様によれば、赤外域の波長の光に対して高い外部量子効率を有する光電変換膜が得られやすい。
 化合物半導体は、更にS(硫黄)元素を含む化合物半導体であることが好ましい。この態様によれば、赤外域の波長の光に対して高い外部量子効率を有する光電変換膜が得られやすい。なかでも、化合物半導体は、Ag元素と、Bi元素と、Te元素とS元素とを含む化合物半導体(以下、Ag-Bi-Te-S系半導体ともいう)であることが好ましい。また、Ag-Bi-Te-S系半導体としては、Te元素の数を、Te元素の数とS元素の数の合計で割った値(Te元素の数/(Te元素の数+S元素の数))が0.05~0.5であることが好ましい。下限は、0.1以上であることが好ましく、0.15以上であることがより好ましく、0.2以上であることが更に好ましい。上限は、0.45以下であることが好ましく、0.4以下であることがより好ましい。本明細書において、化合物半導体を構成する各元素の種類および数については、ICP(Inductively Coupled Plasma)発光分光法や、エネルギー分散型X線分析法によって測定することができる。
 化合物半導体は、式(1)で表される化合物であることが好ましい。
 Agn1 n2 n3n4   ・・・(1)
 Xは、SbまたはBiを表し、Yは、TeまたはSeを表し、n1およびn2はそれぞれ独立して0を超え2以下の数を表し、n3は0を超え4以下の数を表し、n4は0以上4以下の数を表す。
 Xは、Biであることが好ましい。
 Yは、Teであることが好ましい。
 n1/n2の値は、0.2~3.0であることが好ましい。下限は、0.3以上であることが好ましく、0.5以上であることがより好ましく、0.6以上であることが更に好ましい。上限は、2.5以下であることが好ましく、2.0以下であることがより好ましく、1.8以下であることが更に好ましい。
 (n3+n4)/n2の値は、1.5~3.0であることが好ましい。下限は、1.6以上であることが好ましく、1.8以上であることがより好ましく、1.9以上であることが更に好ましい。上限は、2.5以下であることが好ましく、2.4以下であることがより好ましく、2.2以下であることが更に好ましい。
 n3/(n3+n4)の値は、0.05~0.5であることが好ましい。下限は、0.1以上であることが好ましく、0.15以上であることがより好ましく、0.2以上であることが更に好ましい。上限は、0.45以下であることが好ましく、0.4以下であることがより好ましい。n3/(n3+n4)の値は、1であってもよい(すなわち、n4がゼロであってもよい)
 化合物半導体の結晶構造については、特に限定はされない。化合物半導体を構成する元素の種類や元素の組成比により種々の結晶構造をとることができるが、半導体としてのバンドギャップを適切に制御しやすく、また高い結晶性を実現しやすいという理由から立方晶系または六方晶系の結晶構造であることが好ましい。本明細書において、化合物半導体の結晶構造は、X線回折法や電子線回折法によって測定することができる。
 上記化合物半導体の量子ドットのバンドギャップは、1.2eV以下であることが好ましく、1.0eV以下であることがより好ましい。上記化合物半導体の量子ドットのバンドギャップの下限値は、特に限定はないが、0.3eV以上であることが好ましく、0.5eV以上であることがより好ましい。
 上記化合物半導体の量子ドットの平均粒径は、3~20nmであることが好ましい。上記化合物半導体の量子ドットの平均粒径の下限値は、4nm以上であることが好ましく、5nm以上であることがより好ましい。また、上記化合物半導体の量子ドットの平均粒径の上限値は、15nm以下であることが好ましく、10nm以下であることがより好ましい。上記化合物半導体の量子ドットの平均粒径が上記範囲であれば、赤外域の波長の光に対して高い外部量子効率を有する光電変換膜が得られやすい。なお、本明細書において、量子ドットの平均粒径の値は、任意に選択された量子ドット10個の粒径の平均値である。量子ドットの粒径の測定には、透過型電子顕微鏡を用いればよい。
 本発明の光電変換膜は、上記化合物半導体の量子ドットに配位する配位子を含むことが好ましい。配位子としては、ハロゲン原子を含む配位子、および、配位部を2以上含む多座配位子が挙げられる。光電変換膜は、配位子を1種のみ含んでいてもよく、2種以上含んでいてもよい。なかでも、光電変換膜は、ハロゲン原子を含む配位子と多座配位子とを含むことが好ましい。ハロゲン原子を含む配位子を用いた場合は、量子ドットの配位子による表面被覆率を高めやすく、その結果より高い外部量子効率などが得られる。多座配位子を用いた場合は、多座配位子が量子ドットにキレート配位しやすく、量子ドットからの配位子の剥がれなどをより効果的に抑制でき、優れた耐久性が得られる。更には、キレート配位することで量子ドット同士の立体障害を抑制でき、高い電気伝導性が得られやすくなり、高い外部量子効率が得られる。そして、ハロゲン原子を含む配位子と多座配位子とを併用した場合は、より高い外部量子効率が得られやすい。上述したように、多座配位子は量子ドットに対してキレート配位すると推測される。そして、量子ドットに配位する配位子として、更に、ハロゲン原子を含む配位子を含む場合には、多座配位子が配位していない隙間にハロゲン原子を含む配位子が配位すると推測され、量子ドットの表面欠陥をより低減することができると推測される。このため、外部量子効率をより向上させることができると推測される。
 まず、ハロゲン原子を含む配位子について説明する。配位子に含まれるハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、配位力の観点からヨウ素原子であることが好ましい。
 ハロゲン原子を含む配位子は、有機ハロゲン化物であってもよく、無機ハロゲン化物であってもよい。なかでも、量子ドットの陽イオンサイト及び陰イオンサイトの両方に配位しやすいという理由から無機ハロゲン化物であることが好ましい。また、無機ハロゲン化物は、Zn(亜鉛)原子、In(インジウム)原子およびCd(カドミウム)原子から選ばれる金属元素を含む化合物であることが好ましく、Zn原子を含む化合物であることがより好ましい。無機ハロゲン化物としては、容易にイオン化して、量子ドットに配位しやすいという理由から金属原子とハロゲン原子との塩であることが好ましい。
 ハロゲン原子を含む配位子の具体例としては、ヨウ化亜鉛、臭化亜鉛、塩化亜鉛、ヨウ化インジウム、臭化インジウム、塩化インジウム、ヨウ化カドミウム、臭化カドミウム、塩化カドミウム、ヨウ化ガリウム、臭化ガリウム、塩化ガリウム、テトラブチルアンモニウムヨージド、テトラメチルアンモニウムヨージドなどが挙げられ、ヨウ化亜鉛が特に好ましい。
 なお、ハロゲン原子を含む配位子では、前述の配位子からハロゲンイオンが解離して量子ドットの表面にハロゲンイオンが配位していることもある。また、前述の配位子のハロゲン原子以外の部位についても、量子ドットの表面に配位している場合もある。具体例を挙げて説明すると、ヨウ化亜鉛の場合は、ヨウ化亜鉛が量子ドットの表面に配位していることもあれば、ヨウ素イオンや亜鉛イオンが量子ドットの表面に配位していることもある。
 次に、多座配位子について説明する。多座配位子に含まれる配位部としては、チオール基、アミノ基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基、ホスホン酸基が挙げられる。
 多座配位子としては、式(A)~(C)のいずれかで表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(A)中、XA1及びXA2はそれぞれ独立して、チオール基、アミノ基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基又はホスホン酸基を表し、
 LA1は炭化水素基を表す。
 式(B)中、XB1及びXB2はそれぞれ独立して、チオール基、アミノ基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基又はホスホン酸基を表し、
 XB3は、S、O又はNHを表し、
 LB1及びLB2は、それぞれ独立して炭化水素基を表す。
 式(C)中、XC1~XC3はそれぞれ独立して、チオール基、アミノ基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基又はホスホン酸基を表し、
 XC4は、Nを表し、
 LC1~LC3は、それぞれ独立して炭化水素基を表す。
 XA1、XA2、XB1、XB2、XC1、XC2およびXC3が表すアミノ基には、-NHに限定されず、置換アミノ基および環状アミノ基も含まれる。置換アミノ基としては、モノアルキルアミノ基、ジアルキルアミノ基、モノアリールアミノ基、ジアリールアミノ基、アルキルアリールアミノ基などが挙げられる。これらの基が表すアミノ基としては、-NH、モノアルキルアミノ基、ジアルキルアミノ基が好ましく、-NHであることがより好ましい。
 LA1、LB1、LB2、LC1、LC2およびLC3が表す炭化水素基としては、脂肪族炭化水素基であることが好ましい。脂肪族炭化水素基は、飽和脂肪族炭化水素基であってもよく、不飽和脂肪族炭化水素基であってもよい。炭化水素基の炭素数は、1~20が好ましい。炭素数の上限は、10以下が好ましく、6以下がより好ましく、3以下が更に好ましい。炭化水素基の具体例としては、アルキレン基、アルケニレン基、アルキニレン基が挙げられる。
 アルキレン基は、直鎖アルキレン基、分岐アルキレン基および環状アルキレン基が挙げられ、直鎖アルキレン基または分岐アルキレン基であることが好ましく、直鎖アルキレン基であることがより好ましい。アルケニレン基は、直鎖アルケニレン基、分岐アルケニレン基および環状アルケニレン基が挙げられ、直鎖アルケニレン基または分岐アルケニレン基であることが好ましく、直鎖アルケニレン基であることがより好ましい。アルキニレン基は、直鎖アルキニレン基および分岐アルキニレン基が挙げられ、直鎖アルキニレン基であることが好ましい。アルキレン基、アルケニレン基およびアルキニレン基は更に置換基を有していてもよい。置換基は、原子数1以上10以下の基であることが好ましい。原子数1以上10以下の基の好ましい具体例としては、炭素数1~3のアルキル基〔メチル基、エチル基、プロピル基、及びイソプロピル基〕、炭素数2~3のアルケニル基〔エテニル基およびプロペニル基〕、炭素数2~4のアルキニル基〔エチニル基、プロピニル基等〕、シクロプロピル基、炭素数1~2のアルコキシ基〔メトキシ基およびエトキシ基〕、炭素数2~3のアシル基〔アセチル基、及びプロピオニル基〕、炭素数2~3のアルコキシカルボニル基〔メトキシカルボニル基およびエトキシカルボニル基〕、炭素数2のアシルオキシ基〔アセチルオキシ基〕、炭素数2のアシルアミノ基〔アセチルアミノ基〕、炭素数1~3のヒドロキシアルキル基〔ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基〕、アルデヒド基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基、カルバモイル基、シアノ基、イソシアネート基、チオール基、ニトロ基、ニトロキシ基、イソチオシアネート基、シアネート基、チオシアネート基、アセトキシ基、アセトアミド基、ホルミル基、ホルミルオキシ基、ホルムアミド基、スルファミノ基、スルフィノ基、スルファモイル基、ホスホノ基、アセチル基、ハロゲン原子、アルカリ金属原子等が挙げられる。
 式(A)において、XA1とXA2はLA1によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。
 式(B)において、XB1とXB3はLB1によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。また、XB2とXB3はLB2によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。
 式(C)において、XC1とXC4はLC1によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。また、XC2とXC4はLC2によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。また、XC3とXC4はLC3によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。
 なお、XA1とXA2はLA1によって、1~10原子隔てられているとは、XA1とXA2とをつなぐ最短距離の分子鎖を構成する原子の数が1~10個であることを意味する。例えば、下記式(A1)の場合は、XA1とXA2とが2原子隔てられており、下記式(A2)および式(A3)の場合は、XA1とXA2とが3原子隔てられている。以下の構造式に付記した数字は、XA1とXA2とをつなぐ最短距離の分子鎖を構成する原子の配列の順番を表している。
Figure JPOXMLDOC01-appb-C000002
 具体的化合物を挙げて説明すると、3-メルカプトプロピオン酸は、XA1に相当する部位がカルボキシ基で、XA2に相当する部位がチオール基で、LA1に相当する部位がエチレン基である構造の化合物である(下記構造の化合物)。3-メルカプトプロピオン酸においては、XA1(カルボキシ基)とXA2(チオール基)とがLA1(エチレン基)によって2原子隔てられている。
Figure JPOXMLDOC01-appb-C000003
 XB1とXB3はLB1によって、1~10原子隔てられていること、XB2とXB3はLB2によって、1~10原子隔てられていること、XC1とXC4はLC1によって、1~10原子隔てられていること、XC2とXC4はLC2によって、1~10原子隔てられていること、XC3とXC4はLC3によって、1~10原子隔てられていることの意味についても上記と同様である。
 多座配位子の具体例としては、3-メルカプトプロピオン酸、チオグリコール酸、2-アミノエタノール、2-アミノエタンチオール、2-メルカプトエタノール、グリコール酸、エチレングリコール、エチレンジアミン、アミノスルホン酸、グリシン、アミノメチルリン酸、グアニジン、ジエチレントリアミン、トリス(2-アミノエチル)アミン、4-メルカプトブタン酸、3-アミノプロパノール、3-メルカプトプロパノール、N-(3-アミノプロピル)-1,3-プロパンジアミン、3-(ビス(3-アミノプロピル)アミノ)プロパン-1-オール、1-チオグリセロール、ジメルカプロール、1-メルカプト-2-ブタノール、1-メルカプト-2-ペンタノール、3-メルカプト-1-プロパノール、2,3-ジメルカプト-1-プロパノール、ジエタノールアミン、2-(2-アミノエチル)アミノエタノール、ジメチレントリアミン、1,1-オキシビスメチルアミン、1,1-チオビスメチルアミン、2-[(2-アミノエチル)アミノ]エタンチオール、ビス(2-メルカプトエチル)アミン、2-アミノエタン-1-チオール、1-アミノ-2-ブタノール、1-アミノ-2-ペンタノール、L-システイン、D-システイン、3-アミノ-1-プロパノール、L-ホモセリン、D-ホモセリン、アミノヒドロキシ酢酸、L-乳酸、D-乳酸、L-リンゴ酸、D-リンゴ酸、グリセリン酸、2-ヒドロキシ酪酸、L-酒石酸、D-酒石酸、タルトロン酸およびこれらの誘導体が挙げられ、暗電流が低く、外部量子効率の高い半導体膜が得られやすいという理由から、チオグリコール酸、2-アミノエタノール、2-アミノエタンチオール、2-メルカプトエタノール、グリコール酸、ジエチレントリアミン、トリス(2-アミノエチル)アミン、1-チオグリセロール、ジメルカプロール、エチレンジアミン、エチレングリコール、アミノスルホン酸、グリシン、(アミノメチル)ホスホン酸、グアニジン、ジエタノールアミン、2-(2-アミノエチル)アミノエタノール、ホモセリン、システイン、チオリンゴ酸、リンゴ酸および酒石酸が好ましく、チオグリコール酸、2-アミノエタノール、2-メルカプトエタノールおよび2-アミノエタンチオールがより好ましく、チオグリコール酸が更に好ましい。
<分散液>
 本発明の分散液は、光電変換膜形成用の分散液であって、Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットと、量子ドットに配位する配位子と、溶剤と、を含む。
 量子ドットの詳細は上述のとおりであり、好ましい態様も同様である。分散液中の量子ドットの含有量は、1~500mg/mLであることが好ましく、10~200mg/mLであることがより好ましく、20~100mg/mLであることが更に好ましい。
 量子ドット分散液に含まれる配位子は、量子ドットに配位する配位子として働くと共に、立体障害となり易い分子構造を有しており、溶剤中に量子ドットを分散させる分散剤としての役割も果たすものが好ましい。
 配位子は、量子ドットの分散性を向上する観点から、主鎖の炭素数が少なくとも6以上の配位子であることが好ましく、主鎖の炭素数が10以上の配位子であることがより好ましい。配位子は、飽和化合物でも、不飽和化合物のいずれでもよい。配位子の具体例としては、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、エルカ酸、オレイルアミン、ステアリルアミン、1-アミノデカン、ドデシルアミン、アニリン、ドデカンチオール、1,2-ヘキサデカンチオール、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン、トリブチルホスフィンオキシド、トリオクチルホスフィンオキシド、臭化セトリモニウム等が挙げられ、オレイン酸、オレイルアミン、ドデカンチオール、トリオクチルホスフィンから選ばれる少なくとも1種であることが好ましい。
 分散液中の配位子の含有量は、分散液の全体積に対し、0.1mmol/L~500mmol/Lであることが好ましく、0.5mmol/L~100mmol/Lであることがより好ましい。
 分散液に含まれる溶剤は、特に制限されないが、量子ドットを溶解し難く、かつ、配位子を溶解し易い溶剤であることが好ましい。溶剤としては、有機溶剤が好ましい。具体例としては、アルカン類(n-ヘキサン、n-オクタン等)、アルケン類(オクタデセンなど)、ベンゼン、トルエン等が挙げられる。分散液に含まれる溶剤は、1種のみであってもよいし、2種以上を混合した混合溶剤であってもよい。
 分散液中の溶剤の含有量は、50~99質量%であることが好ましく、70~99質量%であることがより好ましく、90~98質量%であることが更に好ましい。
 本発明の分散液は、本発明の効果を損なわない限度において、更に他の成分を含有していてもよい。
<光電変換膜の製造方法>
 本発明の光電変換膜は、Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットと、量子ドットに配位する配位子と、溶剤と、を含む分散液を基板上に付与して、量子ドットの集合体の膜を形成する工程(量子ドット集合体形成工程)を経て形成することができる。
 分散液が付与される基板の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができる。基板の構造は単層構造であってもよいし、積層構造であってもよい。基板としては、例えば、シリコン、ガラス、YSZ(Yttria-Stabilized Zirconia;イットリウム安定化ジルコニア)等の無機材料、樹脂、樹脂複合材料等で構成された基板を用いることができる。また基板上には、電極、絶縁膜等が形成されていてもよい。その場合には基板上の電極や絶縁膜上にも量子ドット分散液が付与される。
 量子ドット分散液を基板上に付与する手法は、特に限定はない。スピンコート法、ディップ法、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、凹版印刷法、スプレーコート法等の塗布方法が挙げられる。
 量子ドット集合体形成工程によって形成される量子ドットの集合体の膜の膜厚は、3nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることがより好ましい。上限は、200nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることが更に好ましい。
 量子ドットの集合体の膜を形成した後、更に配位子交換工程を行って量子ドットに配位している配位子を他の配位子に交換してもよい。配位子交換工程では、量子ドット集合体形成工程によって形成された量子ドットの集合体の膜に対して、上記分散液に含まれる配位子とは異なる配位子(以下、配位子Aともいう)および溶剤を含む配位子溶液を付与して、量子ドットに配位する配位子を配位子溶液に含まれる配位子Aと交換する。また、量子ドット集合体形成工程と配位子交換工程を交互に複数回繰り返し行ってもよい。
 配位子Aとしては、ハロゲン原子を含む配位子、および、配位部を2以上含む多座配位子などが挙げられる。これらの詳細については、上述した光電変換膜の項で説明したものが挙げられ、好ましい範囲も同様である。
 配位子交換工程で用いられる配位子溶液には、配位子Aを1種のみ含んでいてもよく、2種以上含んでいてもよい。また、2種以上の配位子溶液を用いてもよい。
 配位子溶液に含まれる溶剤は、各配位子溶液に含まれる配位子の種類に応じて適宜選択することが好ましく、各配位子を溶解しやすい溶剤であることが好ましい。また、配位子溶液に含まれる溶剤は、誘電率が高い有機溶剤が好ましい。具体例としては、エタノール、アセトン、メタノール、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ブタノール、プロパノール等が挙げられる。また、配位子溶液に含まれる溶剤は、形成される光電変換膜中に残存し難い溶剤が好ましい。乾燥し易く、洗浄により除去し易いとの観点から、低沸点のアルコール、または、ケトン、ニトリルが好ましく、メタノール、エタノール、アセトン、またはアセトニトリルがより好ましい。配位子溶液に含まれる溶剤は量子ドット分散液に含まれる溶剤とは交じり合わないものが好ましい。好ましい溶剤の組み合わせとしては、量子ドット分散液に含まれる溶剤が、ヘキサン、オクタン等のアルカンや、トルエンの場合は、配位子溶液に含まれる溶剤は、メタノール、アセトン等の極性溶剤を用いることが好ましい。
 配位子溶液を、量子ドットの集合体の膜に付与する方法は、量子ドット分散液を基板上に付与する手法と同様であり、好ましい態様も同様である。
 配位子交換工程の後の膜にリンス液を接触させてリンスする工程(リンス工程)を行ってもよい。リンス工程を行うことで、膜中に含まれる過剰な配位子や量子ドットから脱離した配位子を除去することができる。また、残存した溶剤、その他不純物を除去することができる。リンス液としては、膜中に含まれる過剰な配位子や量子ドットから脱離した配位子をより効果的に除去しやすく、量子ドット表面を再配列させる事で膜面状を均一に保ちやすいという理由から非プロトン性溶剤であることが好ましい。非プロトン性溶剤の具体例としては、アセトニトリル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、ジエチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテル、ジオキサン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ヘキサン、オクタン、シクロヘキサン、ベンゼン、トルエン、クロロホルム、四塩化炭素、ジメチルホルムアミドが挙げられ、アセトニトリル、テトラヒドロフランが好ましく、アセトニトリルがより好ましい。
 また、リンス工程は、極性(比誘電率)の異なるリンス液を2種以上用いて複数回行ってもよい。例えば、最初に比誘電率の高いリンス液(第1のリンス液ともいう)を用いてリンスを行ったのち、第1のリンス液よりも比誘電率の低いリンス液(第2のリンス液ともいう)を用いてリンスを行うことが好ましい。このようにしてリンスを行うことで、配位子交換に用いる配位子Aの余剰成分を先に除去し、その後配位子交換過程で生じた脱離した配位子成分(元々粒子に配位していた成分)を除去する事ができ、余剰あるいは脱離した配位子成分の両方をより効率的に除去する事が出来る。
 第1のリンス液の比誘電率は、15~50であることが好ましく、20~45であることがより好ましく、25~40であることが更に好ましい。第2のリンス液の比誘電率は、1~15であることが好ましく、1~10であることがより好ましく、1~5であることが更に好ましい。
 光電変換膜の製造方法は、乾燥工程を有していてもよい。乾燥工程を行うことで光電変換膜に残存する溶剤を除去することができる。乾燥時間は、1~100時間であることが好ましく、1~50時間であることがより好ましく、5~30時間であることが更に好ましい。乾燥温度は10~100℃であることが好ましく、20~90℃であることがより好ましく、20~50℃であることが更に好ましい。
<光検出素子>
 本発明の光検出素子は、上述した本発明の光電変換膜を含む。
 光検出素子における本発明の光電変換膜の厚みは、10~1000nmであることが好ましい。厚みの下限は、20nm以上であることが好ましく、30nm以上であることがより好ましい。厚みの上限は、600nm以下であることが好ましく、550nm以下であることがより好ましく、500nm以下であることが更に好ましく、450nm以下であることが特に好ましい。
 光検出素子の種類としては、フォトコンダクタ型の光検出素子、フォトダイオード型の光検出素子が挙げられる。なかでも、高い信号ノイズ比(SN比)が得られやすいという理由からフォトダイオード型の光検出素子であることが好ましい。
 また、本発明の光電変換膜は、赤外域の波長の光に対して優れた感度を有しているので、本発明の光検出素子は、赤外域の波長の光を検出する光検出素子として好ましく用いられる。すなわち、本発明の光検出素子は、赤外光検出素子として好ましく用いられる。
 上記赤外域の波長の光は、波長700nmを超える波長の光であることが好ましく、波長800nm以上の光であることがより好ましく、波長900nm以上の光であることが更に好ましく、波長1000nm以上の光であることがより一層好ましい。また、赤外域の波長の光は、波長2000nm以下の光であることが好ましく、波長1800nm以下の光であることがより好ましく、波長1600nm以下の光であることが更に好ましい。
 光検出素子は、赤外域の波長の光と、可視域の波長の光(好ましくは波長400~700nmの範囲の光)とを同時に検出する光検出素子であってもよい。
 図1に、フォトダイオード型の光検出素子の一実施形態を示す。なお、図中の矢印は光検出素子への入射光を表す。図1に示す光検出素子1は、下部電極12と、下部電極12に対向する上部電極11と、下部電極12と上部電極11との間に設けられた光電変換膜13とを含んでいる。図1に示す光検出素子1は、上部電極11の上方から光を入射して用いられる。
 光電変換膜13は上述した本発明の光電変換膜で構成されている。
 光検出素子で検出する目的の波長の光に対する光電変換膜13の屈折率は1.5~5.0とすることができる。
 光電変換膜13の厚みは、10~1000nmであることが好ましい。厚みの下限は、20nm以上であることが好ましく、30nm以上であることがより好ましい。厚みの上限は、600nm以下であることが好ましく、550nm以下であることがより好ましく、500nm以下であることが更に好ましく、450nm以下であることが特に好ましい。
 光検出素子で検出する目的の光の波長λと、下部電極12の光電変換膜13側の表面12aから、光電変換膜13の上部電極側の表面13aまでの上記波長λの光の光路長Lλとが下記式(1-1)の関係を満していることが好ましく、下記式(1-2)の関係を満していることがより好ましい。波長λと光路長Lλとがこのような関係を満たしている場合には、光電変換膜13において、上部電極11側から入射された光(入射光)と、下部電極12の表面で反射された光(反射光)との位相を揃えることができ、その結果、光学干渉効果によって光が強め合い、より高い外部量子効率を得ることができる。
 0.05+m/2≦Lλ/λ≦0.35+m/2   ・・・(1-1)
 0.10+m/2≦Lλ/λ≦0.30+m/2   ・・・(1-2)
 上記式中、λは、光検出素子で検出する目的の光の波長であり、
 Lλは、下部電極12の光電変換膜13側の表面12aから、光電変換膜13の上部電極側の表面13aまでの波長λの光の光路長であり、
 mは0以上の整数である。
 mは0~4の整数であることが好ましく、0~3の整数であることがより好ましく、0~2の整数であることが更に好ましく、0または1であることが特に好ましい。
 ここで、光路長とは、光が透過する物質の物理的な厚みと屈折率を乗じたものを意味する。光電変換膜13を例に挙げて説明すると、光電変換膜の厚さをd、光電変換膜の波長λに対する屈折率をNとしたとき、光電変換膜13を透過する波長λの光の光路長はN×dである。光電変換膜13が2層以上の積層膜で構成されている場合や、光電変換膜13と下部電極12との間に後述する中間層が存在する場合には、各層の光路長の積算値が上記光路長Lλである。
 上部電極11は、光検出素子で検出する目的の光の波長に対して実質的に透明な導電材料で形成された透明電極であることが好ましい。なお、本発明において、「実質的に透明である」とは、光の透過率が50%以上であることを意味し、60%以上が好ましく、80%以上が特に好ましい。上部電極11の材料としては、導電性金属酸化物などが挙げられる。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウムタングステン、酸化インジウム亜鉛(indium zinc oxide:IZO)、酸化インジウム錫(indium tin oxide:ITO)、フッ素をドープした酸化錫(fluorine-doped tin oxide:FTO)等が挙げられる。
 上部電極11の膜厚は、特に限定されず、0.01~100μmが好ましく、0.01~10μmが更に好ましく、0.01~1μmが特に好ましい。なお、本発明において、各層の膜厚は、走査型電子顕微鏡(scanning electron microscope:SEM)等を用いて光検出素子1の断面を観察することにより、測定できる。
 下部電極12を形成する材料としては、例えば、白金、金、ニッケル、銅、銀、インジウム、ルテニウム、パラジウム、ロジウム、イリジウム、オスニウム、アルミニウム等の金属、上述の導電性金属酸化物、炭素材料および導電性高分子等が挙げられる。炭素材料としては、導電性を有する材料であればよく、例えば、フラーレン、カーボンナノチューブ、グラファイト、グラフェン等が挙げられる。
 下部電極12の膜厚は、特に限定されず、0.01~100μmが好ましく、0.01~10μmが更に好ましく、0.01~1μmが特に好ましい。
 なお、図示しないが、上部電極11の光入射側の表面(光電変換膜13側とは反対の表面)には透明基板が配置されていてもよい。透明基板の種類としては、ガラス基板、樹脂基板、セラミック基板等が挙げられる。
 また、図示しないが、光電変換膜13と下部電極12との間、および/または、光電変換膜13と上部電極11との間には中間層が設けられていてもよい。中間層としては、ブロッキング層、電子輸送層、正孔輸送層などが挙げられる。好ましい形態としては、光電変換膜13と下部電極12との間、および、光電変換膜13と上部電極11との間のいずれか一方に正孔輸送層を有する態様が挙げられる。光電変換膜13と下部電極12との間、および、光電変換膜13と上部電極11との間のいずれか一方には電子輸送層を有し、他方には正孔輸送層を有することがより好ましい。正孔輸送層および電子輸送層は単層膜であってもよく、2層以上の積層膜であってもよい。
 ブロッキング層は逆電流を防止する機能を有する層である。ブロッキング層は短絡防止層ともいう。ブロッキング層を形成する材料は、例えば、酸化ケイ素、酸化マグネシウム、酸化アルミニウム、炭酸カルシウム、炭酸セシウム、ポリビニルアルコール、ポリウレタン、酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ、酸化タングステン等が挙げられる。ブロッキング層は単層膜であってもよく、2層以上の積層膜であってもよい。
 電子輸送層は、光電変換膜13で発生した電子を上部電極11または下部電極12へと輸送する機能を有する層である。電子輸送層は正孔ブロック層ともいわれている。電子輸送層は、この機能を発揮することができる電子輸送材料で形成される。電子輸送材料としては、[6,6]-Phenyl-C61-Butyric Acid Methyl Ester(PC61BM)等のフラーレン化合物、ペリレンテトラカルボキシジイミド等のペリレン化合物、テトラシアノキノジメタン、酸化チタン、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウムタングステン、酸化インジウム亜鉛、酸化インジウム錫、フッ素をドープした酸化錫等が挙げられる。電子輸送層は単層膜であってもよく、2層以上の積層膜であってもよい。
 正孔輸送層は、光電変換膜13で発生した正孔を上部電極11または下部電極12へと輸送する機能を有する層である。正孔輸送層は電子ブロック層ともいわれている。正孔輸送層は、この機能を発揮することができる正孔輸送材料で形成されている。例えば、PTB7(ポリ({4,8-ビス[(2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4,5-b’]ジチオフェン-2,6-ジイル}{3-フルオロ-2-[(2-エチルヘキシル)カルボニル]チエノ[3,4-b]チオフェンジイル}))、PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸))、MoOなどが挙げられる。また、特開2001-291534号公報の段落番号0209~0212に記載の有機正孔輸送材料等を用いることもできる。また、正孔輸送材料には量子ドットを用いることもできる。量子ドットの平均粒子径は、0.5~100nmであることが好ましい。量子ドットの材料としては、例えば、a)IV族半導体、b)IV-IV族、III-V族、またはII-VI族の化合物半導体、c)II族、III族、IV族、V族、および、VI族元素の内3つ以上の組み合わせからなる化合物半導体などが挙げられる。具体例としては、PbS、PbSe、PbTe、PbSeS、InN、InAs、Ge、InGaAs、CuInS、CuInSe、CuInGaSe、InSb、HgTe、HgCdTe、AgS、AgSe、AgTe、SnS、SnSe、SnTe、Si、InP等の比較的バンドギャップの狭い半導体が挙げられる。また、正孔輸送材料には、上述した光電変換膜の項で説明したAg元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体を用いることもできる。また、量子ドットの表面には配位子が配位していてもよい。配位子としては、上述した光電変換膜の項で説明した配位子が挙げられる。
<イメージセンサ>
 本発明のイメージセンサは、上述した本発明の光検出素子を含む。本発明の光検出素子は、赤外域の波長の光に対して優れた感度を有しているので、赤外線イメージセンサとして特に好ましく用いることができる。
 イメージセンサの構成としては、本発明の光検出素子を備え、イメージセンサとして機能する構成であれば特に限定はない。
 イメージセンサは、赤外線透過フィルタ層を含んでいてもよい。赤外線透過フィルタ層としては、可視域の波長帯域の光の透過性が低いものであることが好ましく、波長400~650nmの範囲の光の平均透過率が10%以下であることがより好ましく、7.5%以下であることが更に好ましく、5%以下であることが特に好ましい。
 赤外線透過フィルタ層としては、色材を含む樹脂膜で構成されたものなどが挙げられる。色材としては、赤色色材、緑色色材、青色色材、黄色色材、紫色色材、オレンジ色色材などの有彩色色材、黒色色材が挙げられる。赤外線透過フィルタ層に含まれる色材は、2種以上の有彩色色材の組み合わせで黒色を形成しているか、黒色色材を含むものであることが好ましい。2種以上の有彩色色材の組み合わせで黒色を形成する場合の、有彩色色材の組み合わせとしては、例えば、以下の(C1)~(C7)の態様が挙げられる。
 (C1)赤色色材と青色色材とを含有する態様。
 (C2)赤色色材と青色色材と黄色色材とを含有する態様。
 (C3)赤色色材と青色色材と黄色色材と紫色色材とを含有する態様。
 (C4)赤色色材と青色色材と黄色色材と紫色色材と緑色色材とを含有する態様。
 (C5)赤色色材と青色色材と黄色色材と緑色色材とを含有する態様。
 (C6)赤色色材と青色色材と緑色色材とを含有する態様。
 (C7)黄色色材と紫色色材とを含有する態様。
 上記有彩色色材は、顔料であってもよく、染料であってもよい。顔料と染料とを含んでいてもよい。黒色色材は、有機黒色色材であることが好ましい。例えば、有機黒色色材としては、ビスベンゾフラノン化合物、アゾメチン化合物、ペリレン化合物、アゾ化合物などが挙げられる。
 赤外線透過フィルタ層は更に赤外線吸収剤を含有していてもよい。赤外線透過フィルタ層に赤外線吸収剤を含有させることで透過させる光の波長をより長波長側にシフトさせることができる。赤外線吸収剤としては、ピロロピロール化合物、シアニン化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、クアテリレン化合物、メロシアニン化合物、クロコニウム化合物、オキソノール化合物、イミニウム化合物、ジチオール化合物、トリアリールメタン化合物、ピロメテン化合物、アゾメチン化合物、アントラキノン化合物、ジベンゾフラノン化合物、ジチオレン金属錯体、金属酸化物、金属ホウ化物等が挙げられる。
 赤外線透過フィルタ層の分光特性については、イメージセンサの用途に応じて適宜選択することができる。例えば、以下の(1)~(5)のいずれかの分光特性を満たしているフィルタ層などが挙げられる。
 (1):膜の厚み方向における光の透過率の、波長400~750nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、膜の厚み方向における光の透過率の、波長900~1500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
 (2):膜の厚み方向における光の透過率の、波長400~830nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、膜の厚み方向における光の透過率の、波長1000~1500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
 (3):膜の厚み方向における光の透過率の、波長400~950nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、膜の厚み方向における光の透過率の、波長1100~1500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
 (4):膜の厚み方向における光の透過率の、波長400~1100nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、波長1400~1500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
 (5):膜の厚み方向における光の透過率の、波長400~1300nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、波長1600~2000nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
 また、赤外線透過フィルタには、特開2013-077009号公報、特開2014-130173号公報、特開2014-130338号公報、国際公開第2015/166779号、国際公開第2016/178346号、国際公開第2016/190162号、国際公開第2018/016232号、特開2016-177079号公報、特開2014-130332号公報、国際公開第2016/027798号に記載の膜を用いることができる。赤外線透過フィルタは2つ以上のフィルタを組み合わせて用いてもよく、1つのフィルタで特定の2つ以上の波長領域を透過するデュアルバンドパスフィルタを用いてもよい。
 本発明のイメージセンサは、ノイズ低減などの各種性能を向上させる目的で赤外線遮蔽フィルタを含んでいてもよい。赤外線遮蔽フィルタの具体例としては、例えば、国際公開第2016/186050号、国際公開第2016/035695号、特許第6248945号公報、国際公開第2019/021767号、特開2017-067963号公報、特許第6506529号公報に記載されたフィルタなどが挙げられる。
 本発明のイメージセンサは誘電体多層膜を含んでいてもよい。誘電体多層膜としては、高屈折率の誘電体薄膜(高屈折率材料層)と低屈折率の誘電体薄膜(低屈折率材料層)とを交互に複数層積層したものが挙げられる。誘電体多層膜における誘電体薄膜の積層数は、特に限定はないが、2~100層が好ましく、4~60層がより好ましく、6~40層が更に好ましい。高屈折率材料層の形成に用いられる材料としては、屈折率が1.7~2.5の材料が好ましい。具体例としては、Sb、Sb、Bi、CeO、CeF、HfO、La、Nd、Pr11、Sc、SiO、Ta、TiO、TlCl、Y、ZnSe、ZnS、ZrOなどが挙げられる。低屈折率材料層の形成に用いられる材料としては、屈折率が1.2~1.6の材料が好ましい。具体例としては、Al、BiF、CaF、LaF、PbCl、PbF、LiF、MgF、MgO、NdF、SiO、Si、NaF、ThO、ThF、NaAlFなどが挙げられる。誘電体多層膜の形成方法としては、特に制限はないが、例えば、イオンプレーティング、イオンビーム等の真空蒸着法、スパッタリング等の物理的気相成長法(PVD法)、化学的気相成長法(CVD法)などが挙げられる。高屈折率材料層および低屈折率材料層の各層の厚みは、遮断しようとする光の波長がλ(nm)であるとき、0.1λ~0.5λの厚みであることが好ましい。誘電体多層膜の具体例としては、例えば、特開2014-130344号公報、特開2018-010296号公報に記載の膜を用いることができる。
 誘電体多層膜は、赤外域(好ましくは波長700nmを超える波長領域、より好ましくは波長800nmを超える波長領域、更に好ましくは波長900nmを超える波長領域)に透過波長帯域が存在することが好ましい。透過波長帯域における最大透過率は70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。また、遮光波長帯域における最大透過率は20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。また、透過波長帯域における平均透過率は60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましい。また、透過波長帯域の波長範囲は、最大透過率を示す波長を中心波長λt1とした場合、中心波長λt1±100nmであることが好ましく、中心波長λt1±75nmであることがより好ましく、中心波長λt1±50nmであることが更に好ましい。
 誘電体多層膜は、透過波長帯域(好ましくは、最大透過率が90%以上の透過波長帯域)を1つのみ有していてもよく、複数有していてもよい。
 本発明のイメージセンサは、色分離フィルタ層を含んでいてもよい。色分離フィルタ層としては着色画素を含むフィルタ層が挙げられる。着色画素の種類としては、赤色画素、緑色画素、青色画素、黄色画素、シアン色画素およびマゼンタ色画素などが挙げられる。色分離フィルタ層は2色以上の着色画素を含んでいてもよく、1色のみであってもよい。用途や目的に応じて適宜選択することができる。例えば、国際公開第2019/039172号に記載のフィルタを用いることができる。
 また、色分離層が2色以上の着色画素を含む場合、各色の着色画素同士は隣接していてもよく、各着色画素間に隔壁が設けられていてもよい。隔壁の材質としては、特に限定はない。例えば、シロキサン樹脂、フッ素樹脂などの有機材料や、シリカ粒子などの無機粒子が挙げられる。また、隔壁は、タングステン、アルミニウムなどの金属で構成されていてもよい。
 なお、本発明のイメージセンサが赤外線透過フィルタ層と色分離層とを含む場合は、色分離層は赤外線透過フィルタ層とは別の光路上に設けられていることが好ましい。また、赤外線透過フィルタ層と色分離層は二次元配置されていることも好ましい。なお、赤外線透過フィルタ層と色分離層とが二次元配置されているとは、両者の少なくとも一部が同一平面上に存在していることを意味する。
 本発明のイメージセンサは、平坦化層、下地層、密着層などの中間層、反射防止膜、レンズを含んでいてもよい。反射防止膜としては、例えば、国際公開第2019/017280号に記載の組成物から作製した膜を用いることができる。レンズとしては、例えば、国際公開第2018/092600号に記載の構造体を用いることができる。
 本発明のイメージセンサは、赤外線イメージセンサとして好ましく用いることができる。また、本発明のイメージセンサは、波長900~2000nmの光をセンシングするものとして好ましく用いることができ、波長900~1600nmの光をセンシングするものとしてより好ましく用いることができる。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
[量子ドット分散液の製造]
(製造例1)
 フラスコ中に20mlのオレイルアミンと、1mmolの硝酸銀と、10mLのオクタデセンを測りとり、減圧下(数~数十Pa)にて100℃で180分加熱した。フラスコ内の液体の温度を30℃に冷却し、フラスコ内を窒素フロー状態にした。次いで、1mmolのBi[N(SiCHを1mLのトルエンに溶解させた溶液をフラスコ内の液体に添加した。次いで、フラスコ内の液体の温度を100℃まで昇温した後、2mmolのSeを1mLのオレイルアミンと1mLのドデカンチオールとの混合液に溶解させた溶液をフラスコ内の液体に添加した。フラスコ内の液体の温度を200℃まで昇温し、この温度で15分間保持したのち、室温まで冷却した。次いで、フラスコ内の液体に過剰量のエタノールを加え、10000rpmで10分間遠心分離を行い、上澄みを除去したのち、沈殿物をトルエンに分散させ、結晶構造が六方晶であり、エネルギー分散型X線分析法から見積もった原子比率がAg:Bi:Se=1.4:1.0:1.9であるAgBiSe化合物半導体の量子ドットの表面に、ドデカンチオールとオレイルアミンが配位子として配位した分散液(量子ドットの濃度20mg/mL)を得た(製造例1の量子ドット分散液)。紫外可視近赤外分光光度計(日本分光(株)製、V-670)を用いた可視~赤外領域の光吸収測定から見積もった量子ドットのバンドギャップはおよそ0.81eVであった。なお、量子ドットを構成する化合物半導体の結晶構造はX線回折法によって測定した。
(製造例2)
 フラスコ中に20mlのオレイルアミンと、1mmolの硝酸銀と、10mLのオクタデセンを測りとり、減圧下(数~数十Pa)にて100℃で180分加熱した。フラスコ内の液体の温度を30℃に冷却し、フラスコ内を窒素フロー状態にした。次いで、0.9mmolの水素化トリエチルホウ素リチウム及び1mmolのSb[N(SiCHを1mLのトルエンに溶解させた溶液をフラスコ内の液体に添加した。続いて、2.5mmolのSeを1mLのオレイルアミンと1mLのドデカンチオールとの混合液に溶解させた溶液をフラスコ内の液体に添加した。フラスコ内の液体の温度を180℃まで昇温し、この温度で15分間保持したのち、室温まで冷却した。次いで、フラスコ内の液体に過剰量のエタノールを加え、10000rpmで10分間遠心分離を行い、上澄みを除去したのち、沈殿物をトルエンに分散させ、結晶構造が立方晶であり、エネルギー分散型X線分析法から見積もった原子比率がAg:Sb:Se=1.5:1.0:1.9であるAgSbSe化合物半導体の量子ドットの表面にドデカンチオールとオレイルアミンが配位子として配位した分散液(量子ドットの濃度20mg/mL)を得た(製造例2の量子ドット分散液)。紫外可視近赤外分光光度計(日本分光(株)製、V-670)を用いた可視~赤外領域の光吸収測定から見積もった量子ドットのバンドギャップはおよそ0.76eVであった。
(製造例3)
 フラスコ中に、1mmolの酢酸ビスマスと、0.8mmolの酢酸銀と、5.4mLのオレイン酸と、30mLのオクタデセンを測りとり、減圧下(数~数十Pa)にて100℃で5時間加熱した。次いで、フラスコ内を窒素フロー状態にした後、0.9mmolのヘキサメチルジシラチアン及び、0.1mmolのビストリメチルシリルテルリドを5mLのオクタデセンに混合した溶液をフラスコ内の液体に添加した。次いで、フラスコ内の液体の温度を室温まで冷却した。次いで、フラスコ内の溶液に過剰量のアセトンを加え、10000rpmで10分間遠心分離を行い、上澄みを除去したのち、沈殿物をトルエンに分散させ、結晶構造が立方晶であり、エネルギー分散型X線分析法から見積もった原子比率が、Ag:Bi:S:Te=1.4:1.0:1.8:0.2であるAgBiSTe化合物半導体の量子ドットの表面にオレイン酸が配位子として配位した分散液(量子ドットの濃度20mg/mL)を得た(製造例3の量子ドット分散液)。紫外可視近赤外分光光度計(日本分光(株)製、V-670)を用いた可視~赤外領域の光吸収測定から見積もった量子ドットのバンドギャップはおよそ0.95eVであった。
(製造例4)
 製造例3において、ヘキサメチルジシラチアンとビストリメチルシリルテルリドの比率を変更する以外は、製造例3と同様の手法にて調整することで、結晶構造が立方晶であり、エネルギー分散型X線分析法から見積もった原子比率が、Ag:Bi:S:Te=1.5:1.0:1.6:0.4であるAgBiSTe化合物半導体の量子ドットの表面にオレイン酸が配位子として配位した分散液(量子ドットの濃度20mg/mL)を得た(製造例4の量子ドット分散液)。紫外可視近赤外分光光度計(日本分光(株)製、V-670)を用いた可視~赤外領域の光吸収測定から見積もった量子ドットのバンドギャップはおよそ0.91eVであった。
(製造例5)
 製造例3において、ヘキサメチルジシラチアンとビストリメチルシリルテルリドの比率を変更する以外は、製造例3と同様の手法にて調整することで、結晶構造が立方晶であり、エネルギー分散型X線分析法から見積もった原子比率が、Ag:Bi:S:Te=1.5:1.0:1.4:0.6であるAgBiSTe化合物半導体の量子ドットの表面にオレイン酸が配位子として配位した分散液(量子ドットの濃度20mg/mL)を得た(製造例5の量子ドット分散液)。紫外可視近赤外分光光度計(日本分光(株)製、V-670)を用いた可視~赤外領域の光吸収測定から見積もった量子ドットのバンドギャップはおよそ0.82eVであった。
(製造例6)
 製造例3において、ヘキサメチルジシラチアンとビストリメチルシリルテルリドの比率を変更する以外は、製造例3と同様の手法にて調整することで、結晶構造が立方晶であり、エネルギー分散型X線分析法から見積もった原子比率が、Ag:Bi:S:Te=1.4:1.0:1.2:0.8であるAgBiSTe化合物半導体の量子ドットの表面にオレイン酸が配位子として配位した分散液(量子ドットの濃度20mg/mL)を得た(製造例6の量子ドット分散液)。紫外可視近赤外分光光度計(日本分光(株)製、V-670)を用いた可視~赤外領域の光吸収測定から見積もった量子ドットのバンドギャップはおよそ0.78eVであった。
Figure JPOXMLDOC01-appb-T000004
[光検出素子の製造]
(実施例1)
 石英ガラス上にITO(Indium Tin Oxide)膜を100nmの厚さ及び、酸化チタン膜を20nmの厚さでスパッタリングにより連続して成膜した。
 次いで、酸化チタン膜上に製造例1の量子ドット分散液を滴下した後、2500rpmでスピンコートし、量子ドット集合体膜を得た(工程1)。
 次いで、量子ドット集合体膜の上に、配位子溶液として、エタンジチオールのアセトニトリル溶液(濃度0.2v/v%)を滴下した後、20秒間静置し、2500rpmで10秒間スピンドライして量子ドットに配位している配位子を、エタンジチオールに配位子交換した。次いで、リンス液としてアセトニトリルを量子ドット集合体膜上に滴下し、2500rpmで20秒間スピンドライした。次いで、トルエンを量子ドット集合体膜上に滴下し、2500rpmで20秒間スピンドライした(工程2)。
 工程1と工程2とを1サイクルとする操作を4サイクル繰り返して、量子ドットに配位子としてエタンジチオールが配位した光電変換膜を50nmの厚さで形成した。
 次いで、光電変換膜をグローブボックス内で10時間乾燥した。
 次に、光電変換膜上に、PTB7(ポリ({4,8-ビス[(2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4,5-b’]ジチオフェン-2,6-ジイル}{3-フルオロ-2-[(2-エチルヘキシル)カルボニル]チエノ[3,4-b]チオフェンジイル}))のジクロロベンゼン溶液(濃度5mg/mL)を2000rpmでスピンコートしたのち、グローブボックス中で10時間乾燥させてPTB7膜を形成した。
 次いで、PTB7膜上にメタルマスクを介した真空蒸着法を用い、MoOを5nm、及びAgを100nmの厚さで連続蒸着により形成し、フォトダイオード型の光検出素子を製造した。
(実施例2~8)
 光電変換膜の形成工程において、量子ドット分散液の種類、配位子溶液の種類、および、リンス液の種類をそれぞれ下記表に記載したものに変更した以外は、実施例1と同様の手法にて実施例2~8の光検出素子を製造した。
(比較例1)
 製造例1の量子ドット分散液のかわりに、以下に示す比較例用量子ドット分散液を用いた以外は、実施例1と同様の手法にて光検出素子を製造した。
 比較例用量子ドット分散液:結晶構造が立方晶であり、エネルギー分散型X線分析法から見積もった原子比率が、Ag:Bi:S=1.5:1.0:1.6であるAgBiS化合物半導体の量子ドットの表面にオレイン酸が配位子として配位した分散液(量子ドットの濃度20mg/mL)。紫外可視近赤外分光光度計(日本分光(株)製、V-670)を用いた可視~赤外領域の光吸収測定から見積もったAgBiS量子ドットのバンドギャップはおよそ1.05eVであった。
Figure JPOXMLDOC01-appb-T000005
<評価>
 製造した光検出素子について半導体パラメータアナライザー(C4156、Agilent製)を用いて、外部量子効率(EQE)の評価を行った。
 まず、光を照射しない状態において0Vから-2Vまで電圧を掃引しながら電流-電圧特性(I-V特性)を測定し、暗電流値の評価を行った。ここで暗電流値は-1Vでの値を暗電流値とした。続いて、1200nmのモノクロ光を照射した状態で、0Vから-2Vまで電圧を掃引しながらI-V特性を測定した。-1Vを印加した状態での電流値から上記暗電流値を差し引いたものを光電流値とし、その値から外部量子効率(EQE)を算出した。
Figure JPOXMLDOC01-appb-T000006
 上記表に示すように、実施例の光検出素子の外部量子効率(EQE)は、比較例1の外部量子効率(EQE)よりも顕著に高いことが確認された。
 上記実施例で得られた光検出素子を用い、国際公開第2016/186050号および国際公開第2016/190162号に記載の方法に従い作製した光学フィルタと共に公知の方法にてイメージセンサを作製し、固体撮像素子に組み込むことで、良好な可視能-赤外撮像性能を有するイメージセンサを得ることができる。
1:光検出素子
11:上部電極
12:下部電極
13:光電変換膜

Claims (15)

  1.  Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットを含む光電変換膜。
  2.  前記化合物半導体は、Ag元素と、Bi元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む、請求項1に記載の光電変換膜。
  3.  前記化合物半導体は、Ag元素とBi元素とTe元素とを含む、請求項1に記載の光電変換膜。
  4.  前記化合物半導体は、更にS元素を含む、請求項1~3のいずれか1項に記載の光電変換膜。
  5.  前記化合物半導体は、Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Te元素と、S元素とを含み、Te元素の数を、Te元素の数とS元素の数の合計で割った値が0.05~0.5である、請求項1に記載の光電変換膜。
  6.  前記化合物半導体の結晶構造が、立方晶系または六方晶系である、請求項1~5のいずれか1項に記載の光電変換膜。
  7.  前記量子ドットのバンドギャップが1.2eV以下である、請求項1~6のいずれか1項に記載の光電変換膜。
  8.  前記量子ドットのバンドギャップが1.0eV以下である、請求項1~6のいずれか1項に記載の光電変換膜。
  9.  前記量子ドットの平均粒子径が3~20nmである、請求項1~8のいずれか1項に記載の光電変換膜。
  10.  前記量子ドットに配位する配位子を含む、請求項1~9のいずれか1項に記載の光電変換膜。
  11.  前記配位子は、ハロゲン原子を含む配位子、および、配位部を2以上含む多座配位子から選ばれる少なくとも1種を含む、請求項10に記載の光電変換膜。
  12.  前記ハロゲン原子を含む配位子が無機ハロゲン化物である、請求項11に記載の光電変換膜。
  13.  Ag元素と、Sb元素およびBi元素から選ばれる少なくとも1種の元素と、Se元素およびTe元素から選ばれる少なくとも1種の元素とを含む化合物半導体の量子ドットと、前記量子ドットに配位する配位子と、溶剤とを含む光電変換膜形成用の分散液。
  14.  請求項1~12のいずれか1項に記載の光電変換膜を含む光検出素子。
  15.  請求項14に記載の光検出素子を含むイメージセンサ。
PCT/JP2021/014425 2020-04-07 2021-04-05 光電変換膜、分散液、光検出素子およびイメージセンサ WO2021206032A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022514051A JP7372452B2 (ja) 2020-04-07 2021-04-05 光電変換膜、分散液、光検出素子およびイメージセンサ
CN202180024996.8A CN115461878A (zh) 2020-04-07 2021-04-05 光电转换膜、分散液、光检测元件及图像传感器
US17/937,461 US20230040906A1 (en) 2020-04-07 2022-10-03 Photoelectric conversion film, dispersion liquid, photodetector element, and image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-068717 2020-04-07
JP2020068717 2020-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/937,461 Continuation US20230040906A1 (en) 2020-04-07 2022-10-03 Photoelectric conversion film, dispersion liquid, photodetector element, and image sensor

Publications (1)

Publication Number Publication Date
WO2021206032A1 true WO2021206032A1 (ja) 2021-10-14

Family

ID=78023151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014425 WO2021206032A1 (ja) 2020-04-07 2021-04-05 光電変換膜、分散液、光検出素子およびイメージセンサ

Country Status (5)

Country Link
US (1) US20230040906A1 (ja)
JP (1) JP7372452B2 (ja)
CN (1) CN115461878A (ja)
TW (1) TW202204266A (ja)
WO (1) WO2021206032A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085180A1 (ja) * 2021-11-10 2023-05-19 富士フイルム株式会社 半導体膜、半導体膜の製造方法、光検出素子およびイメージセンサ
WO2024024298A1 (ja) * 2022-07-29 2024-02-01 昭栄化学工業株式会社 赤外線吸収量子ドットおよび赤外線吸収量子ドットの製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101153A (ja) * 2002-08-09 2003-04-04 Matsushita Electric Ind Co Ltd 発光素子及びその製造方法および光ディスク装置
JP2012109434A (ja) * 2010-11-18 2012-06-07 Technical Research & Development Institute Ministry Of Defence 量子ドット型赤外線検知器及び赤外線イメージセンサ
JP2013089690A (ja) * 2011-10-14 2013-05-13 Ulvac Japan Ltd 量子ドット増感型太陽電池の製造方法
JP2014093327A (ja) * 2012-10-31 2014-05-19 Fujifilm Corp 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタ、および、電子デバイス
US20140299772A1 (en) * 2011-05-20 2014-10-09 The University Of Chicago Mid-infrared photodetectors
JP2018529214A (ja) * 2015-06-11 2018-10-04 ユニバーシティー オブ フロリダ リサーチ ファウンデーション, インコーポレイテッドUniversity Of Florida Research Foundation, Inc. 単分散ir吸収ナノ粒子及び関連する方法及びデバイス
JP2018162378A (ja) * 2017-03-24 2018-10-18 国立大学法人名古屋大学 発光体組成物、及び、発光体樹脂成形物
WO2019058448A1 (ja) * 2017-09-20 2019-03-28 花王株式会社 光吸収層とその製造方法、分散液、光電変換素子、及び中間バンド型太陽電池
JP2019536744A (ja) * 2016-10-05 2019-12-19 メルク パテント ゲーエムベーハー 有機半導体化合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101153A (ja) * 2002-08-09 2003-04-04 Matsushita Electric Ind Co Ltd 発光素子及びその製造方法および光ディスク装置
JP2012109434A (ja) * 2010-11-18 2012-06-07 Technical Research & Development Institute Ministry Of Defence 量子ドット型赤外線検知器及び赤外線イメージセンサ
US20140299772A1 (en) * 2011-05-20 2014-10-09 The University Of Chicago Mid-infrared photodetectors
JP2013089690A (ja) * 2011-10-14 2013-05-13 Ulvac Japan Ltd 量子ドット増感型太陽電池の製造方法
JP2014093327A (ja) * 2012-10-31 2014-05-19 Fujifilm Corp 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタ、および、電子デバイス
JP2018529214A (ja) * 2015-06-11 2018-10-04 ユニバーシティー オブ フロリダ リサーチ ファウンデーション, インコーポレイテッドUniversity Of Florida Research Foundation, Inc. 単分散ir吸収ナノ粒子及び関連する方法及びデバイス
JP2019536744A (ja) * 2016-10-05 2019-12-19 メルク パテント ゲーエムベーハー 有機半導体化合物
JP2018162378A (ja) * 2017-03-24 2018-10-18 国立大学法人名古屋大学 発光体組成物、及び、発光体樹脂成形物
WO2019058448A1 (ja) * 2017-09-20 2019-03-28 花王株式会社 光吸収層とその製造方法、分散液、光電変換素子、及び中間バンド型太陽電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085180A1 (ja) * 2021-11-10 2023-05-19 富士フイルム株式会社 半導体膜、半導体膜の製造方法、光検出素子およびイメージセンサ
WO2024024298A1 (ja) * 2022-07-29 2024-02-01 昭栄化学工業株式会社 赤外線吸収量子ドットおよび赤外線吸収量子ドットの製造方法

Also Published As

Publication number Publication date
CN115461878A (zh) 2022-12-09
TW202204266A (zh) 2022-02-01
JP7372452B2 (ja) 2023-10-31
JPWO2021206032A1 (ja) 2021-10-14
US20230040906A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2021002104A1 (ja) 光検出素子、光検出素子の製造方法、イメージセンサ、分散液および半導体膜
WO2021002112A1 (ja) 光検出素子およびイメージセンサ
US20230040906A1 (en) Photoelectric conversion film, dispersion liquid, photodetector element, and image sensor
JP7352717B2 (ja) 光検出素子およびイメージセンサ
WO2021002106A1 (ja) 光検出素子、光検出素子の製造方法、イメージセンサ、分散液および半導体膜
JP7472258B2 (ja) 光検出素子およびイメージセンサ
WO2021002114A1 (ja) 光検出素子、光検出素子の製造方法およびイメージセンサ
WO2021251309A1 (ja) 半導体膜、半導体膜の製造方法、光検出素子およびイメージセンサ
WO2021161940A1 (ja) 半導体膜、光検出素子、イメージセンサおよび半導体膜の製造方法
WO2022264872A1 (ja) 光検出素子およびイメージセンサ
WO2023008353A1 (ja) 光検出素子およびイメージセンサ
WO2022158403A1 (ja) 半導体膜、半導体膜の製造方法、光検出素子およびイメージセンサ
WO2021002131A1 (ja) 半導体膜、光電変換素子、イメージセンサおよび半導体膜の製造方法
WO2023085180A1 (ja) 半導体膜、半導体膜の製造方法、光検出素子およびイメージセンサ
JP7454688B2 (ja) 光検出素子およびイメージセンサ
WO2023157742A1 (ja) 分散液、量子ドット膜の製造方法、光検出素子の製造方法およびイメージセンサの製造方法
WO2021002134A1 (ja) 半導体膜、光電変換素子、イメージセンサおよび半導体膜の製造方法
WO2023171404A1 (ja) 半導体膜、光検出素子、イメージセンサおよび半導体量子ドットの製造方法
WO2023171405A1 (ja) 半導体膜、光検出素子、イメージセンサ、分散液および半導体膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784011

Country of ref document: EP

Kind code of ref document: A1