JP2019536744A - 有機半導体化合物 - Google Patents

有機半導体化合物 Download PDF

Info

Publication number
JP2019536744A
JP2019536744A JP2019517421A JP2019517421A JP2019536744A JP 2019536744 A JP2019536744 A JP 2019536744A JP 2019517421 A JP2019517421 A JP 2019517421A JP 2019517421 A JP2019517421 A JP 2019517421A JP 2019536744 A JP2019536744 A JP 2019536744A
Authority
JP
Japan
Prior art keywords
formula
group
atoms
compounds
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019517421A
Other languages
English (en)
Inventor
モーゼ、グラハム
ナンソン、ラナ
ミッチェル、ウィリアム
クロムピーク、マイケル
ドゥラバリ、マンスール
プロン、アグニエシュカ
Original Assignee
メルク パテント ゲーエムベーハー
メルク パテント ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メルク パテント ゲーエムベーハー, メルク パテント ゲーエムベーハー filed Critical メルク パテント ゲーエムベーハー
Publication of JP2019536744A publication Critical patent/JP2019536744A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/22Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本発明は、多環式単位を含有する新規な有機半導体化合物、それらの調製方法およびそれに使用される遊離体または中間体、それらを含有する組成物、ポリマーブレンドおよび配合物、有機電子(OE)デバイス、特に、有機光起電(OPV)デバイス、ペロブスカイト系太陽電池(PSC)デバイス、有機光検出器(OPD)、有機電界効果トランジスタ(OFET)および有機発光ダイオード(OLED)の作製における、またはそのような作製のための、有機半導体としての化合物、組成物およびポリマーブレンドの使用、ならびにこれらの化合物、組成物またはポリマーブレンドを含むOE、OPV、PSC、OPD、OFETおよびOLEDデバイスに関する。

Description

本発明は、多環式単位を含有する新規な有機半導体化合物、それらの調製方法およびそれに使用される遊離体(educt)または中間体、それらを含有する組成物、ポリマーブレンドおよび配合物、有機電子(OE:organic electronic)デバイス、特に、有機光起電(OPV:organic photovoltaic)デバイス、ペロブスカイト系太陽電池(PSC:perovskite−based solar cell)デバイス、有機光検出器(OPD:organic photodetector)、有機電界効果トランジスタ(OFET:organic field effect transistor)および有機発光ダイオード(OLED:organic light emitting diode)の作製における、またはそのような作製のための、有機半導体としての化合物、組成物およびポリマーブレンドの使用、ならびにこれらの化合物、組成物またはポリマーブレンドを含むOE、OPV、PSC、OPD、OFETおよびOLEDデバイスに関する。
近年、より汎用的で、より低コストの電子デバイスを製造するために、有機半導体(OSC:organic semiconducting)材料の開発があった。このような材料は、広範囲のデバイスまたは装置(ほんの数例を挙げると、有機電界効果トランジスタ(OFET:organic field effect transistor)、有機発光ダイオード(OLED)、有機光検出器(OPD)、有機光起電(OPV)電池、ペロブスカイト系太陽電池(PSC)デバイス、センサー、記憶素子および論理回路を含む)に利用される。有機半導体材料は、典型的に、例えば50〜300nmの厚さの薄層の形態で、電子デバイス中に存在する。
重要な1つの具体的な分野は、有機光起電装置(OPV)である。共役ポリマーが、デバイスを、スピンキャスティング、ディップコーティングまたはインクジェット印刷などの溶液処理技術によって製造可能にするため、OPVに使用されている。溶液処理は、無機薄膜デバイスを作製するのに使用される蒸着技術と比較して、より安価にかつより大規模に行われ得る。現在、ポリマー系光起電デバイスは、10%を超える効率を達成している。
重要な別の具体的な分野は、OFETである。OFETデバイスの性能は、主に、半導体材料の電荷担体移動度および電流オン/オフ比に基づいているため、理想的な半導体は、高い電荷担体移動度(>1×10−3cm−1−1)と併せて、オフ状態における低い導電性を有するべきである。さらに、酸化がデバイス性能の低下をもたらすため、半導体材料が、酸化に対して安定していること、すなわち、半導体材料が、高いイオン化ポテンシャルを有することが重要である。半導体材料のためのさらなる要件は、特に、薄層および所望のパターンの大規模生産のための良好な加工性、ならびに有機半導体層の高い安定性、フィルムの均一性および完全性である。
有機光検出器(OPD)は、共役光吸収性ポリマーが、効率的なデバイスを、溶液処理技術(ほんの数例を挙げると、スピンキャスティング、ディップコーティングまたはインクジェット印刷など)によって製造可能にするという希望を与える、重要なさらなる具体的な分野である。
OPVまたはOPDデバイス中の感光層は、通常、少なくとも2つの材料、p型半導体(典型的に、共役ポリマー、オリゴマーまたは定義された分子単位である)、およびn型半導体(典型的に、フラーレンもしくは置換フラーレン、グラフェン、金属酸化物、または量子ドットである)から構成される。
しかしながら、OEデバイスに使用するための先行技術において開示されるOSC材料は、いくつかの欠点を有する。それらは、多くの場合、合成または精製するのが難しく(フラーレン)、および/または700nmを超える近IRスペクトル中で光を強く吸収しない。さらに、他のOSC材料は、多くの場合、有機光起電装置または有機光検出器に使用するための好ましいモルホロジーおよび/または供与体相混和性を形成しない。
したがって、有利な特性、特に、良好な加工性、有機溶媒への高い溶解性、良好な構造機構および膜形成特性を有する、OPV、PSC、OPDおよびOFETのようなOEデバイスに使用するためのOSC材料が依然として必要とされている。さらに、OSC材料は、特に、大量生産に好適な方法によって合成するのが容易であるべきである。OPV電池およびOPDデバイスに使用するために、OSC材料は、特に、低いバンドギャップを有するべきであり、これは、光活性層による向上した集光を可能にし、より高い電池効率、高い安定性および長い寿命につながり得る。OFETに使用するために、OSC材料は、特に、高い電荷担体移動度、トランジスタデバイスにおける高いオン/オフ比、高い酸化安定性および長い寿命を有するべきである。
本発明の目的は、先行技術からのOSCの欠点を克服することができ、上記の有利な特性、特に、大量生産に好適な方法による容易な合成、良好な加工性、高い安定性、OEデバイスにおける長い寿命、有機溶媒への良好な溶解性、高い電荷担体移動度、および低いバンドギャップのうちの1つ以上を提供する、新規なOSC化合物、特に、n型OSCを提供することであった。本発明の別の目的は、専門家が利用できるOSC材料およびn型OSCのプールを拡大することであった。本発明の他の目的は、以下の詳細な説明から、専門家に直ちに明らかになる。
本発明の発明者らは、以下に開示および権利請求される化合物を提供することによって、上記の目的の1つ以上が達成され得ることを見出した。これらの化合物は、式Iに示されるインダセノ型の多環式中心単位を含む。
このような中心多環式単位を含み、2つの末端電子求引基をさらに含む化合物が、上述される有利な特性を示すn型OSCとして使用され得ることが分かった。
例えば特許文献1および特許文献2に開示されるインダセノジチオフェン(IDT:indacenodithiophene)、または例えば特許文献3に開示されるインダセノジチエノチオフェン(IDTT:indacenodithienothiophene)などの、直鎖状に縮合された多環式芳香族単位に基づいた共役ポリマーが、p型OSCとしての使用について、先行技術において開示されている。
IDTコアを有するOSC小分子が、非特許文献1によってOLEDにおける発色団としての使用について提案されている。
より最近では、2−(3−オキソ−2,3−ジヒドロインデン−1−イリデン)マロノニトリルでエンドキャッピングされたIDTまたはIDTTコアを含むOSC小分子が、例えば、非特許文献2によって、および非特許文献3によって、特許文献4および特許文献5において、OPVデバイスにおける非フラーレンn型OSCとしての使用について報告されている。
国際公開第2010/020329 A1号パンフレット 欧州特許出願公開第2075274 A1号明細書 国際公開第2015/154845 A1号パンフレット 中国特許出願104557968A号明細書 中国特許出願105315298 A号明細書
K−T.ウォン(K−T.Wong)、T−C.チャオ(T−C.Chao)、L−C.チー(L−C.Chi)、Y−Y.チュー(Y−Y.Chu)、A.バライア(A.Balaiah)、S−F.チウ(S−F.Chiu)、Y−H.リウ(Y−H.Liu)、およびY.ワン(Y.Wang)著、オーガニック・レターズ(Org.Lett.)、2006、8、5033 Y.リン(Y.Lin)、W.ワン(J.Wang)、Z.−G.チャン(Z.−G.Zhang)、H.ベイ(H.Bai)、Y.リー(Y.Li)、D.チュー(D.Zhu)およびX.チャン(X.Zhan)著、アドバンスド・マテリアルズ(Adv.Mater.)、2015、27、1170 H.リン(H.Lin)、S.チェン(S.Chen)、Z.リー(Z.Li)、J.Y.L.ライ(J.Y.L.Lai)、G.ヤン(G.Yang)、T.マカフィー(T.McAfee)、K.チャン(K.Jiang)、Y.リー(Y.Li)、Y.リウ(Y.Liu)、H.フー(H.Hu)、J.チャオ(J.Zhao)、W.マー(W.Ma)、H.エイデ(H.Ade)およびH.ヤン(H.Yan)、チャン(Zhan)著、アドバンスド・マテリアルズ(Adv.Mater.)、2015、27、7299
しかしながら、以下に開示および権利請求される化合物は、先行技術においてこれまでに開示されていない。
本発明は、式Iの化合物
に関し、式中、個々のラジカルが、互いに独立して、出現するごとに同一にまたは異なって、以下の意味
Ar2,3 5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の同一または異なる基Lで置換されるアリーレンまたはヘテロアリーレン、
Ar4,5 5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の同一または異なる基L、またはCY=CYまたは−C≡C−で置換されるアリーレンまたはヘテロアリーレン、
、Y H、F、ClまたはCN、
1,2 S、OまたはSe、
CR、SiR、GeR、NRまたはC=O、
CR、SiR、GeR、NRまたはC=O、
1〜4 H、F、Clまたは1〜30個、好ましくは、1〜20個のC原子を有する直鎖状、分枝鎖状もしくは環状アルキル(ここで、1つ以上のCH基は、Oおよび/またはS原子が互いに直接結合されないように、−O−、−S−、−C(=O)−、−C(=S)−、−C(=O)−O−、−O−C(=O)−、−NR−、−SiR00−、−CF−、−CR=CR00−、−CY=CY−または−C≡C−で任意選択的に置換され、1つ以上のH原子が、F、Cl、Br、IまたはCNで任意選択的に置換され、1つ以上のCHまたはCH基が、カチオン性またはアニオン性基で任意選択的に置換される)、またはアリール、ヘテロアリール、アリールアルキル、ヘテロアリールアルキル、アリールオキシまたはヘテロアリールオキシ(ここで、上記の環式基のそれぞれが、5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の同一または異なる基Lで置換される)、
およびRの対および/またはRおよびRの対はまた、それらが結合されるC、SiまたはGe原子と一緒に、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の同一または異なる基Lで置換される、5〜20個の環原子を有するスピロ基を形成してもよく、
T1、RT2 1つ以上の基Lで任意選択的に置換され、任意選択的に、1つ以上のヘテロ原子を含む、1〜30個のC原子を有するカルビルもしくはヒドロカルビル基、
ここで、RT1およびRT2の少なくとも1つが電子求引基であり、
L F、Cl、−NO、−CN、−NC、−NCO、−NCS、−OCN、−SCN、R、OR、SR、−C(=O)X、−C(=O)R、−C(=O)−OR、−O−C(=O)−R、−NH、−NHR、−NR00、−C(=O)NHR、−C(=O)NR00、−SO、−SO、−OH、−NO、−CF、−SF、または任意選択的に置換されるシリル、または1〜30個、好ましくは、1〜20個のC原子を有するカルビルもしくはヒドロカルビル(これは、任意選択的に置換され、任意選択的に、1つ以上のヘテロ原子を含む)、好ましくは、F、−CN、R、−OR、−SR、−C(=O)−R、−C(=O)−OR、−O−C(=O)−R、−O−C(=O)−OR、−C(=O)−NHR、または−C(=O)−NR00
、R00 Hまたは任意選択的にフッ素化される、1〜20個、好ましくは、1〜12個のC原子を有する直鎖状もしくは分枝鎖状アルキル、
ハロゲン、好ましくは、FまたはCl、
a、b 0、1、2または3、
m 1、2または3
を有する。
本発明は、式Iの化合物、およびそれに使用される新規な中間体を調製するための新規な合成方法にさらに関する。
本発明は、好ましくは、半導体材料、電子もしくは光電子デバイス、または電子もしくは光電子デバイスの構成要素における、半導体としての、好ましくは、電子受容体またはn型半導体としての式Iの化合物の使用にさらに関する。
本発明は、色素もしくは顔料としての式Iの化合物の使用にさらに関する。
本発明は、式Iの1つ以上の化合物を含み、半導体、正孔もしくは電子輸送、正孔もしくは電子ブロッキング、絶縁、結合、導電性、光伝導、光活性または発光特性の1つ以上を有する1つ以上の化合物をさらに含む組成物にさらに関する。
本発明は、式Iの1つ以上の化合物を含み、バインダ、好ましくは、電気的に不活性なバインダ、非常に好ましくは、電気的に不活性なポリマーバインダをさらに含む組成物にさらに関する。
本発明は、式Iの化合物を含み、好ましくは共役ポリマーから選択される、1つ以上の電子供与体またはp型半導体をさらに含む組成物にさらに関する。
本発明は、1つ以上のn型半導体(そのうちの少なくとも1つが、式Iの化合物である)を含み、1つ以上のp型半導体をさらに含む組成物にさらに関する。
本発明は、1つ以上のn型半導体(そのうちの少なくとも1つが、式Iの化合物であり、そのうちの少なくとももう1つが、フラーレンまたはフラーレン誘導体である)を含み、好ましくは共役ポリマーから選択される1つ以上のp型半導体をさらに含む組成物にさらに関する。
本発明は、電子受容体またはn型半導体としての式Iの化合物、および好ましくは共役ポリマーから選択される、電子供与体またはp型半導体である1つ以上の化合物を含む組成物から形成されるバルクへテロ接合(BHJ:bulk heterojunction)にさらに関する。
本発明は、半導体、電荷輸送、導電性、光伝導、光活性または発光材料としての、上記および以下に記載される式Iの化合物または組成物の使用にさらに関する。
本発明は、電子もしくは光電子デバイス、またはこのようなデバイスの構成要素またはこのようなデバイスを含むアセンブリにおける、上記および以下に記載される式Iの化合物または組成物の使用にさらに関する。
本発明は、上記および以下に記載される式Iの化合物または組成物を含む、半導体、電荷輸送、導電性、光伝導、光活性または発光材料にさらに関する。
本発明は、上記および以下に記載される式Iの化合物または組成物を含む、電子もしくは光電子デバイス、またはその構成要素、またはそれを含むアセンブリにさらに関する。
本発明は、上記および以下に記載される、半導体、電荷輸送、導電性、光伝導または発光材料を含む、電子もしくは光電子デバイス、またはその構成要素、またはそれを含むアセンブリにさらに関する。
本発明は、上記および以下に記載される、式Iの1つ以上の化合物を含むか、または組成物もしくは半導体材料を含み、好ましくは、有機溶媒から選択される1つ以上の溶媒をさらに含む配合物にさらに関する。
本発明は、電子もしくは光電子デバイスまたはその構成要素の作製のための、上記および以下に記載される配合物の使用にさらに関する。
本発明は、上記および以下に記載される配合物の使用によって得られる、電子もしくは光電子デバイスまたはその構成要素にさらに関する。
電子もしくは光電子デバイスとしては、限定はされないが、有機電界効果トランジスタ(OFET)、有機薄膜トランジスタ(OTFT:organic thin film transistor)、有機発光ダイオード(OLED)、有機発光トランジスタ(OLET:organic light emitting transistor)、有機発光電気化学電池(OLEC:organic light emitting electrochemical cell)、有機光起電デバイス(OPV)、有機光検出器(OPD)、有機太陽電池、色素増感太陽電池(DSSC:dye−sensitized solar cell)、有機光電気化学電池(OPEC:organic photoelectrochemical cell)、ペロブスカイト系太陽電池(PSC)、レーザーダイオード、ショットキーダイオード、光伝導体、光検出器および熱電デバイスが挙げられる。
好ましいデバイスは、OFET、OTFT、OPV、PSC、OPDおよびOLED、特に、OPDおよびBHJ OPVまたは逆BHJ OPVである。
電子もしくは光電子デバイスの構成要素としては、限定はされないが、電荷注入層、電荷輸送層、中間層、平坦化層、帯電防止フィルム、ポリマー電解質膜(PEM:polymer electrolyte membrane)、導電性基板および導電性パターンが挙げられる。
電子もしくは光電子デバイスを含むアセンブリとしては、限定はされないが、集積回路(IC:integrated circuit)、無線自動識別(RFID:radio frequency identification)タグ、安全保障マーク、セキュリティーデバイス、フラットパネルディスプレイ、フラットパネルディスプレイのバックライト、電子写真デバイス、電子写真記録デバイス、有機メモリデバイス、センサーデバイス、バイオセンサーおよびバイオチップが挙げられる。
さらに、上記および以下に記載される式Iおよび組成物の化合物は、電池中の電極材料として、またはDNA配列を検出および識別するための構成要素もしくはデバイスに使用され得る。
用語および定義
本明細書において使用される際、「ポリマー」という用語は、高い相対分子量の分子を意味することが理解され、その構造は、低い相対分子量の分子から実際にまたは概念的に誘導される単位の複数の繰返しを本質的に含む(ピュア・アンド・アプライド・ケミストリー(Pure Appl.Chem.)、1996、68、2291)。「オリゴマー」という用語は、中間の相対分子量の分子を意味することが理解され、その構造は、より低い相対分子量の分子から実際にまたは概念的に誘導される小さい複数の単位を本質的に含む(ピュア・アンド・アプライド・ケミストリー(Pure Appl.Chem.)、1996、68、2291)。本発明の明細書において使用される際の好ましい意味において、ポリマーは、1つを超える、すなわち、少なくとも2つの繰返し単位、好ましくは、5つ以上、非常に好ましくは、10つ以上の繰返し単位を有する化合物を意味することが理解され、オリゴマーは、1つを超えかつ10個未満、好ましくは、5つ未満の繰返し単位を有する化合物を意味することが理解されるであろう。
さらに、本明細書において使用される際、「ポリマー」という用語は、1つ以上の異なるタイプの繰返し単位(分子の最小構成単位)の骨格(「主鎖」とも呼ばれる)を包含する分子を意味することが理解され、「オリゴマー」、「コポリマー」、「ホモポリマー」、「ランダムポリマー」などの一般的に知られている用語を含む。さらに、ポリマーという用語は、ポリマー自体に加えて、開始剤、触媒およびこのようなポリマーの合成に伴う他の要素からの残渣を含むことが理解され、ここで、このような残渣は、ポリマーに共有結合的に組み込まれていないことが理解される。さらに、このような残渣および他の要素は、重合後の精製プロセス中に通常除去されるが、それらは、ポリマーが容器間または溶媒間または分散媒間で移動されるときにポリマーとともに残るように、典型的にポリマーと混合または混じり合わされる。
本明細書において使用される際、例えば、式Iの単位または式IIIもしくはIVまたはそれらの部分式のポリマーのような、ポリマーまたは繰返し単位を示す式において、星印()は、ポリマー主鎖中の隣接する単位または末端基への化学結合を意味することが理解されるであろう。例えば、ベンゼン環またはチオフェン環のような環において、星印()は、隣接する環に縮合されたC原子を意味することが理解されるであろう。
本明細書において使用される際、「繰返し単位(repeat unit)」、「繰返し単位(repeating unit)」および「モノマー単位」という用語は、同義的に使用され、その繰返しが規則性高分子、規則性オリゴマー分子、規則性ブロックまたは規則性鎖を構成する最小構成単位である構成繰返し単位(CRU)を意味することが理解されるであろう((ピュア・アンド・アプライド・ケミストリー(Pure Appl.Chem.)、1996、68、2291)。本明細書においてさらに使用される際、「単位」という用語は、それ自体で繰返し単位であり得るか、または他の単位と一緒に構成繰返し単位を形成し得る構造単位を意味することが理解されるであろう。
本明細書において使用される際、「末端基」は、ポリマー主鎖を終端させる基を意味することが理解されるであろう。「骨格の末端位置において」という表現は、1つの側がこのような末端基に連結され、他の側が別の繰返し単位に連結された、二価単位または繰返し単位を意味することが理解されるであろう。このような末端基は、例えば、以下に定義されるR31またはR32の意味を有する基のような、エンドキャップ基、または重合反応に関与しない、ポリマー主鎖を形成するモノマーに結合された反応性基を含む。
本明細書において使用される際、「エンドキャップ基」という用語は、ポリマー主鎖の末端基に結合されるか、またはそれを置換する基を意味することが理解されるであろう。エンドキャップ基は、エンドキャッピングプロセスによって、ポリマー中に導入され得る。エンドキャッピングは、例えば、ポリマー主鎖の末端基を、単官能性化合物(「エンドキャッパー」)(例えば、アルキル−もしくはアリールハロゲン化物、アルキル−もしくはアリールスタンナンまたはアルキル−もしくはアリールボロネートのような)と反応させることによって行われ得る。エンドキャッパーは、例えば、重合反応後に加えられ得る。あるいは、エンドキャッパーは、重合反応の前またはその間に、反応混合物にインサイチュで加えられ得る。エンドキャッパーのインサイチュ添加を用いて、重合反応を停止させ、それによって、形成されるポリマーの分子量を制御することもできる。典型的なエンドキャップ基は、例えば、H、フェニルおよび低級アルキルである。
本明細書において使用される際、「小分子」という用語は、それを反応させてポリマーを形成することができる反応性基を典型的に含有せず、モノマー形態で使用されるように示されるモノマー化合物を意味することが理解されるであろう。それと対照的に、「モノマー」という用語は、特に記載されない限り、それを反応させてポリマーを形成することができる1つ以上の反応性官能基を保有するモノマー化合物を意味することが理解されるであろう。
本明細書において使用される際、「供与体」または「供与性」および「受容体」または「受容性」という用語はそれぞれ、電子供与体または電子受容体を意味することが理解されるであろう。「電子供与体」は、電子を別の化合物または化合物の別の原子団に供与する化学物質を意味することが理解されるであろう。「電子受容体」は、別の化合物または化合物の別の原子団からそれに移動された電子を受容する化学物質を意味することが理解されるであろう。国際純正・応用化学連合(International Union of Pure and Applied Chemistry)、コンペンディウム・オブ・ケミカル・テクノロジー(Compendium of Chemical Technology)、ゴールド・ブック(Gold Book)、第2.3.2版、2012年8月19日、p.477および480も参照されたい。
本明細書において使用される際、「n型」または「n型半導体」という用語は、伝導電子密度が可動正孔密度を超える外因性半導体を意味することが理解され、「p型」または「p型半導体」という用語は、可動正孔密度が伝導電子密度を超える外因性半導体を意味することが理解されるであろう(J.シューリス(J.Thewlis)著、コンサイス・ディクショナリー・オブ・フィジックス(Concise Dictionary of Physics)、ペルガモン・プレス(Pergamon Press)、オックスフォード(Oxford)、1973も参照されたい)。
本明細書において使用される際、「脱離基」という用語は、特定の反応に関与する分子の残基または主要部分であると考えられる原子から切り離される原子または基(帯電または非帯電であり得る)を意味することが理解されるであろう((ピュア・アンド・アプライド・ケミストリー(Pure Appl.Chem.)、1994、66、1134も参照されたい)。
本明細書において使用される際、「共役」という用語は、主に、sp混成を(または任意選択的にsp混成も)有するC原子を含有する化合物(例えばポリマー)を意味することが理解され、これらのC原子はまた、ヘテロ原子で置換され得る。最も単純な場合、これは、例えば、交互のC−C単結合および二重(または三重)結合を有する化合物であるが、例えば1,4−フェニレンのような芳香族単位を有する化合物も含む。これに関連する「主に」という用語は、共役の中断をもたらし得る、自然に(自発的に)発生する欠陥、または設計によって含まれる欠陥を有する化合物が、やはり共役化合物と見なされることを意味することが理解されるであろう。
本明細書において使用される際、特に記載されない限り、分子量は、数平均分子量Mまたは重量平均分子量Mとして示され、これは、テトラヒドロフラン、トリクロロメタン(TCM:trichloromethane、クロロホルム)、クロロベンゼンまたは1、2,4−トリクロロ−ベンゼンなどの溶離剤溶媒中のポリスチレン標準に対するゲル浸透クロマトグラフィー(GPC:gel permeation chromatography)によって決定される。特に記載されない限り、クロロベンゼンが溶媒として使用される。繰返し単位の総数とも呼ばれる重合度、nは、n=M/M(式中、Mが数平均分子量であり、Mが、単一の繰返し単位の分子量である)として与えられる数平均重合度を意味することが理解されるであろう(J.M.G.コウィー(J.M.G.Cowie)著、ポリマー:最新の材料の化学および物理学(Polymers:Chemistry & Physics of Modern Materials)、ブラッキー(Blackie)、グラスゴー(Glasgow)、1991を参照されたい)。
本明細書において使用される際、「カルビル基」という用語は、任意の非炭素原子を有さずに(例えば−C≡C−のような)、または任意選択的に、B、N、O、S、P、Si、Se、As、TeもしくはGeなどの少なくとも1つの非炭素原子と組み合わせて(例えばカルボニルなど)、少なくとも1つの炭素原子を含む任意の一価または多価の有機部分を意味することが理解されるであろう。
本明細書において使用される際、「ヒドロカルビル基」という用語は、1つ以上のH原子をさらに含有し、例えば、B、N、O、S、P、Si、Se、As、TeまたはGeのような1つ以上のヘテロ原子を任意選択的に含有するカルビル基を意味することが理解されるであろう。
本明細書において使用される際、「ヘテロ原子」という用語は、H原子またはC原子でない有機化合物中の原子を意味することが理解され、好ましくは、B、N、O、S、P、Si、Se、Sn、As、TeまたはGeを意味することが理解されるであろう。
3つ以上のC原子の鎖を含むカルビルまたはヒドロカルビル基は、直鎖状、分枝鎖状および/または環状であってもよく、スピロ結合環および/または縮合環を含み得る。
好ましいカルビルおよびヒドロカルビル基としては、アルキル、アルコキシ、チオアルキル、アルキルカルボニル、アルコキシカルボニル、アルキルカルボニルオキシおよびアルコキシカルボニルオキシ(これらのそれぞれが、任意選択的に置換され、1〜40個、好ましくは、1〜25個、非常に好ましくは、1〜18個のC原子を有する)、さらに、6〜40個、好ましくは、6〜25個の原子を有する任意選択的に置換されるアリールまたはアリールオキシ、さらに、アルキルアリールオキシ、アリールカルボニル、アリールオキシカルボニル、アリールカルボニルオキシおよびアリールオキシカルボニルオキシ(これらのそれぞれが、任意選択的に置換され、6〜40個、好ましくは、7〜40個のC原子を有する)が挙げられ、ここで、全てのこれらの基は、任意選択的に、好ましくは、B、N、O、S、P、Si、Se、As、TeおよびGeから選択される1つ以上のヘテロ原子を含有する。
さらなる好ましいカルビルおよびヒドロカルビル基としては、例えば:C〜C40アルキル基、C〜C40フルオロアルキル基、C〜C40アルコキシまたはオキサアルキル基、C〜C40アルケニル基、C〜C40アルキニル基、C〜C40アリル基、C〜C40アルキルジエニル基、C〜C40ポリエニル基、C〜C40ケトン基、C〜C40エステル基、C〜C18アリール基、C〜C40アルキルアリール基、C〜C40アリールアルキル基、C〜C40シクロアルキル基、C〜C40シクロアルケニル基などが挙げられる。上記の基の中で好ましいのは、それぞれ、C〜C20アルキル基、C〜C20フルオロアルキル基、C〜C20アルケニル基、C〜C20アルキニル基、C〜C20アリル基、C〜C20アルキルジエニル基、C〜C20ケトン基、C〜C20エステル基、C〜C12アリール基、およびC〜C20ポリエニル基である。
例えば、シリル基、好ましくは、トリアルキルシリル基で置換されるアルキニル基、好ましくは、エチニルのような、炭素原子を有する基と、ヘテロ原子を有する基との組合せも含まれる。
カルビルまたはヒドロカルビル基は、非環式基または環式基であり得る。カルビルまたはヒドロカルビル基が、非環式基である場合、それは、直鎖状または分枝鎖状であり得る。カルビルまたはヒドロカルビル基が、環式基である場合、それは、非芳香族炭素環式または複素環式基、またはアリールもしくはヘテロアリール基であり得る。
上記および以下で言及される非芳香族炭素環式基は、飽和または不飽和であり、好ましくは、4〜30個の環C原子を有する。上記および以下で言及される非芳香族複素環式基は、好ましくは、4〜30個の環C原子を有し、ここで、C環原子の1つ以上が、好ましくは、N、O、P、S、SiおよびSeから選択されるヘテロ原子で、または−S(O)−もしくは−S(O)−基で任意選択的に置換される。非芳香族炭素環式および複素環式基は、単環式または多環式であり、縮合環も含有していてもよく、好ましくは、1、2、3または4つの縮合環または非縮合環を含有し、1つ以上の基Lで任意選択的に置換され、ここで、
Lが、F、Cl、−CN、−NC、−NCO、−NCS、−OCN、−SCN、−R、−OR、−SR、−C(=O)X、−C(=O)R、−C(=O)−OR、−O−C(=O)−R、−NH、−NHR、−NR00、−C(=O)NHR、−C(=O)NR00、−SO、−SO、−OH、−NO、−CF、−SF、または任意選択的に置換されるシリル、または1〜30個、好ましくは、1〜20個のC原子を有するカルビルもしくはヒドロカルビル(これは、任意選択的に置換され、任意選択的に、1つ以上のヘテロ原子を含む)から選択され、ここで、Xが、ハロゲン、好ましくは、FまたはClであり、R、R00が、Hまたは任意選択的にフッ素化される、1〜20個、好ましくは、1〜12個の原子を有する直鎖状もしくは分枝鎖状アルキルを示す。
好ましくは、Lが、F、−CN、R、−OR、−SR、−C(=O)−R、−C(=O)−OR、−O−C(=O)−R、−O−C(=O)−OR、−C(=O)−NHRおよび−C(=O)−NR00から選択される。
さらに好ましくは、Lが、Fまたは1〜12個のC原子を有するアルキル、アルコキシ、オキサアルキル、チオアルキル、フルオロアルキル、フルオロアルコキシ、アルキルカルボニル、アルコキシカルボニル、または2〜12個のC原子を有するアルケニルもしくはアルキニルから選択される。
好ましい非芳香族炭素環式または複素環式基は、テトラヒドロフラン、インダン、ピラン、ピロリジン、ピペリジン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロペンタノン、シクロヘキサノン、ジヒドロ−フラン−2−オン、テトラヒドロ−ピラン−2−オンおよびオキセパン−2−オンである。
上記および以下で言及されるアリール基は、好ましくは、4〜30個の環C原子を有し、単環式または多環式であり、縮合環も含有していてもよく、好ましくは、1、2、3または4つの縮合環または非縮合環を含有し、上記に定義される1つ以上の基Lで任意選択的に置換される。
上記および以下で言及されるヘテロアリール基は、好ましくは、4〜30個の環C原子を有し、ここで、C環原子の1つ以上が、好ましくは、N、O、S、SiおよびSeから選択されるヘテロ原子で置換され、単環式または多環式であり、縮合環も含有していてもよく、好ましくは、1、2、3または4つの縮合環または非縮合環を含有し、上記に定義される1つ以上の基Lで任意選択的に置換される。
上記および以下で言及されるアリールアルキルまたはヘテロアリールアルキル基は、好ましくは、−(CH−アリールまたは−(CH−ヘテロアリールを示し、ここで、aが、1〜6の整数、好ましくは、1であり、「アリール」および「ヘテロアリール」が、上記および以下に示される意味を有する。好ましいアリールアルキル基は、Lで任意選択的に置換されるベンジルである。
本明細書において使用される際、「アリーレン」は、二価アリール基を意味することが理解され、「ヘテロアリーレン」は、二価ヘテロアリール基を意味することが理解され、これらは、上記および以下に示されるアリールおよびヘテロアリールの全ての好ましい意味を含む。
好ましいアリールおよびヘテロアリール基は、フェニル(さらに、1つ以上のCH基がNで置換され得る)、ナフタレン、チオフェン、セレノフェン、チエノチオフェン、ジチエノチオフェン、フルオレンおよびオキサゾールであり、これらは全て、非置換であるか、上記に定義されるLで一置換または多置換され得る。非常に好ましいアリールおよびヘテロアリール基は、ピロール、好ましくは、N−ピロール、フラン、ピリジン、好ましくは、2−または3−ピリジン、ピリミジン、ピリダジン、ピラジン、トリアゾール、テトラゾール、ピラゾール、イミダゾール、イソチアゾール、チアゾール、チアジアゾール、イソオキサゾール、オキサゾール、オキサジアゾール、チオフェン、好ましくは、2−チオフェン、セレノフェン、好ましくは、2−セレノフェン、2,5−ジチオフェン−2’,5’−ジイル、チエノ[3,2−b]チオフェン、チエノ[2,3−b]チオフェン、フロ[3,2−b]フラン、フロ[2,3−b]フラン、セレノ[3,2−b]セレノフェン、セレノ[2,3−b]セレノフェン、チエノ[3,2−b]セレノフェン、チエノ[3,2−b]フラン、インドール、イソインドール、ベンゾ[b]フラン、ベンゾ[b]チオフェン、ベンゾ[1,2−b;4,5−b’]ジチオフェン、ベンゾ[2,1−b;3,4−b’]ジチオフェン、キノール、2−メチルキノール、イソキノール、キノキサリン、キナゾリン、ベンゾトリアゾール、ベンゾイミダゾール、ベンゾチアゾール、ベンゾイソチアゾール、ベンゾイソオキサゾール、ベンゾオキサジアゾール、ベンゾオキサゾール、ベンゾチアジアゾール、4H−シクロペンタ[2,1−b;3,4−b’]ジチオフェン、7H−3,4−ジチア−7−シラ−シクロペンタ[a]ペンタレンから選択され、これらは全て、非置換であるか、上記に定義されるLで一置換または多置換され得る。アリールおよびヘテロアリール基のさらなる例は、以下に示される基から選択されるものである。
アルキル基またはアルコキシ基(すなわち、末端CH基が−O−で置換される)は、直鎖状または分枝鎖状であり得る。特に好ましい直鎖は、2、3、4、5、6、7、8、12または16個の炭素原子を有し、したがって、好ましくは、例えば、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ドデシルまたはヘキサデシル、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ドデコキシまたはヘキサデコキシ、さらに、メチル、ノニル、デシル、ウンデシル、トリデシル、テトラデシル、ペンタデシル、ノノキシ、デコキシ、ウンデコキシ、トリデコキシまたはテトラデコキシを示す。
アルケニル基(すなわち、1つ以上のCH基が−CH=CH−で置換される)は、直鎖状または分枝鎖状であり得る。それは、好ましくは、直鎖状であり、2〜10個のC原子を有し、したがって、好ましくは、ビニル、プロパ−1−、またはプロパ−2−エニル、ブタ−1−、2−またはブタ−3−エニル、ペンタ−1−、2−、3−またはペンタ−4−エニル、ヘキサ−1−、2−、3−、4−またはヘキサ−5−エニル、ヘプタ−1−、2−、3−、4−、5−またはヘプタ−6−エニル、オクタ−1−、2−、3−、4−、5−、6−またはオクタ−7−エニル、ノナ−1−、2−、3−、4−、5−、6−、7−またはノナ−8−エニル、デカ−1−、2−、3−、4−、5−、6−、7−、8−またはデカ−9−エニルである。
特に好ましいアルケニル基は、C〜C−1E−アルケニル、C〜C−3E−アルケニル、C〜C−4−アルケニル、C〜C−5−アルケニルおよびC−6−アルケニル、特に、C〜C−1E−アルケニル、C〜C−3E−アルケニルおよびC〜C−4−アルケニルである。特に好ましいアルケニル基の例は、ビニル、1E−プロペニル、1E−ブテニル、1E−ペンテニル、1E−ヘキセニル、1E−ヘプテニル、3−ブテニル、3E−ペンテニル、3E−ヘキセニル、3E−ヘプテニル、4−ペンテニル、4Z−ヘキセニル、4E−ヘキセニル、4Z−ヘプテニル、5−ヘキセニル、6−ヘプテニルなどである。5個以下のC原子を有する基が一般に好ましい。
オキサアルキル基(すなわち、1つのCH基が−O−で置換される)は、直鎖状であり得る。特に好ましい直鎖は、例えば、2−オキサプロピル(=メトキシメチル)、2−(=エトキシメチル)もしくは3−オキサブチル(=2−メトキシエチル)、2−、3−、もしくは4−オキサペンチル、2−、3−、4−、もしくは5−オキサヘキシル、2−、3−、4−、5−、もしくは6−オキサヘプチル、2−、3−、4−、5−、6−もしくは7−オキサオクチル、2−、3−、4−、5−、6−、7−もしくは8−オキサノニルまたは2−、3−、4−、5−、6−,7−、8−もしくは9−オキサデシルである。
1つのCH基が−O−で置換され、1つのCH基が−C(O)−で置換されたアルキル基において、これらのラジカルは、好ましくは隣接している。したがって、これらのラジカルは一緒に、カルボニルオキシ基−C(O)−O−またはオキシカルボニル基−O−C(O)−を形成する。好ましくは、この基は、直鎖状であり、2〜6個のC原子を有する。したがって、それは、好ましくは、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、ペンタノイルオキシ、ヘキサノイルオキシ、アセチルオキシメチル、プロピオニルオキシメチル、ブチリルオキシメチル、ペンタノイルオキシメチル、2−アセチルオキシエチル、2−プロピオニルオキシエチル、2−ブチリルオキシエチル、3−アセチルオキシプロピル、3−プロピオニルオキシプロピル、4−アセチルオキシブチル、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペントキシカルボニル、メトキシカルボニルメチル、エトキシカルボニルメチル、プロポキシカルボニルメチル、ブトキシカルボニルメチル、2−(メトキシカルボニル)エチル、2−(エトキシカルボニル)エチル、2−(プロポキシカルボニル)エチル、3−(メトキシカルボニル)プロピル、3−(エトキシカルボニル)プロピル、4−(メトキシカルボニル)−ブチルである。
2つ以上のCH基が−O−および/または−C(O)O−で置換されたアルキル基は、直鎖状または分枝鎖状であり得る。それは、好ましくは、直鎖状であり、3〜12個のC原子を有する。したがって、それは、好ましくは、ビス−カルボキシ−メチル、2,2−ビス−カルボキシ−エチル、3,3−ビス−カルボキシ−プロピル、4,4−ビス−カルボキシ−ブチル、5,5−ビス−カルボキシ−ペンチル、6,6−ビス−カルボキシ−ヘキシル、7,7−ビス−カルボキシ−ヘプチル、8,8−ビス−カルボキシ−オクチル、9,9−ビス−カルボキシ−ノニル、10,10−ビス−カルボキシ−デシル、ビス−(メトキシカルボニル)−メチル、2,2−ビス−(メトキシカルボニル)−エチル、3,3−ビス−(メトキシカルボニル)−プロピル、4,4−ビス−(メトキシカルボニル)−ブチル、5,5−ビス−(メトキシカルボニル)−ペンチル、6,6−ビス−(メトキシカルボニル)−ヘキシル、7,7−ビス−(メトキシカルボニル)−ヘプチル、8,8−ビス−(メトキシカルボニル)−オクチル、ビス−(エトキシカルボニル)−メチル、2,2−ビス−(エトキシカルボニル)−エチル、3,3−ビス−(エトキシカルボニル)−プロピル、4,4−ビス−(エトキシカルボニル)−ブチル、5,5−ビス−(エトキシカルボニル)−ヘキシルである。
チオアルキル基、すなわち、1つのCH基が−S−で置換される)は、好ましくは、直鎖状チオメチル(−SCH)、1−チオエチル(−SCHCH)、1−チオプロピル(=−SCHCHCH)、1−(チオブチル)、1−(チオペンチル)、1−(チオヘキシル)、1−(チオへプチル)、1−(チオオクチル)、1−(チオノニル)、1−(チオデシル)、1−(チオウンデシル)または1−(チオドデシル)であり、ここで、好ましくは、sp混成ビニル炭素原子に隣接するCH基が置換される。
フルオロアルキル基は、パーフルオロアルキルC2i+1(式中、iが、1〜15の整数である)、特に、CF、C、C、C、C11、C13、C15またはC17、非常に好ましくは、C13であるか、または好ましくは、1〜15個のC原子を有する部分フッ素化アルキル、特に、1,1−ジフルオロアルキルのいずれかであり得、上記は全て、直鎖状または分枝鎖状である。
好ましくは、「フルオロアルキル」は、部分フッ素化(すなわち、非過フッ素化)アルキル基を意味する。
アルキル、アルコキシ、アルケニル、オキサアルキル、チオアルキル、カルボニルおよびカルボニルオキシ基は、アキラルまたはキラル基であり得る。特に好ましいキラル基は、例えば、2−ブチル(=1−メチルプロピル)、2−メチルブチル、2−メチルペンチル、3−メチルペンチル、2−エチルヘキシル、2−ブチルオクチル、2−ヘキシルデシル、2−オクチルドデシル、3,7−ジメチルオクチル、3,7,11−トリメチルドデシル、2−プロピルペンチル、特に、2−メチルブチル、2−メチルブトキシ、2−メチルペントキシ、3−メチル−ペントキシ、2−エチル−ヘキソキシ、2−ブチルオクトキシ、2−ヘキシルデコキシ、2−オクチルドデコキシ、3,7−ジメチルオクトキシ、3,7,11−トリメチルドデコキシ、1−メチルヘキソキシ、2−オクチルオキシ、2−オキサ−3−メチルブチル、3−オキサ−4−メチル−ペンチル、4−メチルヘキシル、2−ヘキシル、2−オクチル、2−ノニル、2−デシル、2−ドデシル、6−メトキシ−オクトキシ、6−メチルオクトキシ、6−メチルオクタノイルオキシ、5−メチルへプチルオキシ−カルボニル、2−メチルブチリルオキシ、3−メチルバレロイルオキシ、4−メチルヘキサノイルオキシ、2−クロロ−プロピオニルオキシ、2−クロロ−3−メチルブチリルオキシ、2−クロロ−4−メチル−バレリル−オキシ、2−クロロ−3−メチルバレリルオキシ、2−メチル−3−オキサペンチル、2−メチル−3−オキサ−ヘキシル,1−メトキシプロピル−2−オキシ、1−エトキシプロピル−2−オキシ、1−プロポキシプロピル−2−オキシ、1−ブトキシプロピル−2−オキシ、2−フルオロオクチルオキシ、2−フルオロデシルオキシ、1,1,1−トリフルオロ−2−オクチルオキシ、1,1,1−トリフルオロ−2−オクチル、2−フルオロメチルオクチルオキシである。非常に好ましいのは、2−メチルブチル、2−エチルヘキシル、2−ブチルオクチル、2−ヘキシルデシル、2−オクチルドデシル、3,7−ジメチルオクチル、3,7,11−トリメチルドデシル、2−ヘキシル、2−オクチル、2−オクチルオキシ、1,1,1−トリフルオロ−2−ヘキシル、1,1,1−トリフルオロ−2−オクチルおよび1,1,1−トリフルオロ−2−オクチルオキシである。
好ましいアキラル分枝鎖状基は、イソプロピル、イソブチル(=メチルプロピル)、イソペンチル(=3−メチルブチル)、tert.ブチル、イソプロポキシ、2−メチル−プロポキシおよび3−メチルブトキシである。
好ましい実施形態において、アリールまたはヘテロアリール環上の置換基は、互いに独立して、1〜30個のC原子を有する第一級、第二級もしくは第三級アルキル、アルコキシ、オキサアルキル、チオアルキル、アルキルカルボニルまたはアルコキシカルボニル(ここで、1つ以上のH原子が、Fで任意選択的に置換される)、またはアリール、アリールオキシ、ヘテロアリールもしくはヘテロアリールオキシ(これは、任意選択的に、アルキル化、アルコキシ化、アルキルチオール化またはエステル化され、4〜30個の環原子を有する)から選択される。さらなる好ましい置換基は、以下の式
からなる群から選択され、式中、RSub1〜3が、上記および以下に定義されるLを示し、少なくとも基RSub1〜3の好ましくは全てが、1〜24個のC原子、好ましくは、1〜20個のC原子を有する、アルキル、アルコキシ、オキサアルキル、チオアルキル、アルキルカルボニルまたはアルコキシカルボニル(これは、任意選択的にフッ素化される)であり、破線が、これらの基が結合される環への結合を示す。これらの置換基の中で非常に好ましいのは、全てのRSub1〜3部分基が同一であるものである。
本明細書において使用される際、アリール(オキシ)またはヘテロアリール(オキシ)基が、「アルキル化またはアルコキシ化」されている場合、これは、それが、1〜24個のC原子を有し、かつ直鎖状または分枝鎖状である1つ以上のアルキルまたはアルコキシ基で置換されることを意味し、ここで、1つ以上のH原子が、F原子で任意選択的に置換される。
上記および以下において、YおよびYが、互いに独立して、H、F、ClまたはCNである。
本明細書において使用される際、−CO−、−C(=O)−および−C(O)−は、カルボニル基、すなわち、構造
を有する基を意味することが理解されるであろう。
本明細書において使用される際、C=CRは、構造
を有する基を意味することが理解されるであろう。
本明細書において使用される際、「ハロゲン」は、F、Cl、BrまたはI、好ましくは、F、ClまたはBrを含む。環または鎖上の置換基を表すハロゲン原子は、好ましくは、FまたはCl、非常に好ましくは、Fである。モノマーまたは中間体中の反応性基を表すハロゲン原子は、好ましくは、BrまたはIである。
上記および以下において、「鏡像」という用語は、ある部分を、外部の対称面またはこの部分を通って延びる対称面にわたって垂直にまたは水平に反転させることによって、この部分から得られる別の部分を意味する。例えば、部分
は、鏡像
も含む。
本発明の化合物は、合成するのが容易であり、有利な特性を示す。それらは、デバイス製造プロセスのための良好な加工性、有機溶媒への高い溶解性を示し、溶液処理方法を用いた大量生産に特に好適である。
式Iの化合物は、(電子)受容体またはn型半導体として、ならびにOPDまたはBHJ OPVデバイスに使用するのに好適なn型およびp型半導体のブレンドの作製に特に好適である。
式Iの化合物はさらに、OPVまたはOPDデバイスにおいてn型半導体としてこれまで使用されてきたフラーレン化合物の代わりを果たすのに好適である。
それに加えて、式Iの化合物は、以下の有利な特性を示す:
i)例えば、可溶化基による、位置R1〜4および/またはAr2〜5における置換が、バルクへテロ接合のより高い光安定性を可能にする。
ii)例えば、可溶化基による、位置R1〜4および/またはAr2〜5における置換が、結晶化および/または相分離動力学の仲介によって、バルクへテロ接合の光照射に対するより高い安定性を可能にし、したがって、BHJにおける初期平衡熱力学が安定化される。
iii)例えば、可溶化基による、位置R1〜4および/またはAr2〜5における置換が、結晶化および/または相分離動力学の仲介によって、バルクへテロ接合のより高い熱安定性を可能にし、したがって、BHJにおける初期平衡熱力学が安定化される。
iv)OPV/OPD用途のための以前に開示されたn型OSCと比較して、式Iの化合物は、それらが、置換による多環式単位のHOMOおよびLUMOレベルのさらなる最適化を可能にするという利点を提供し、Ar2〜5単位の慎重な選択により、向上した光吸収が得られる。
v)Ar2〜5単位の置換および/または慎重な選択による式I中の多環式単位のHOMOおよびLUMOレベルのさらなる最適化により、開回路電位(Voc)が増加され得る。
vi)OPVまたはOPDの光活性層におけるp型OSCとともに、組成物におけるn型OSCとして化合物を使用する場合、例えば、Ar2〜5単位の置換および/または慎重な選択による、式I中の多環式単位のHOMOおよびLUMOレベルのさらなる微調整により、光活性層におけるn型受容体とp型供与体材料との間の電子移動プロセスにおけるエネルギー損失が減少され得る。
vii)位置R1〜4および/またはAr2〜5における置換が、増加した数の可溶化基により、非ハロゲン化溶媒へのより高い溶解性を可能にし得る。
式Iの化合物の合成は、本明細書にさらに示されるように、当業者に公知の、文献に記載されている方法に基づいて行われ得る。
式Iの好ましい化合物は、WおよびWが、SまたはSe、非常に好ましくは、Sを示すものである。
式Iのさらなる好ましい化合物は、WおよびWが、同じ意味を有し、好ましくは、両方とも、SまたはSe、非常に好ましくは、Sを示すものである。
式Iのさらなる好ましい化合物は、WおよびWが、異なる意味を有し、好ましくは、一方がSを示し、他方がSeを示すものである。
式Iの化合物において、ArおよびArが、好ましくは、上記に定義されるアリーレンまたはヘテロアリーレンである。
式I中の好ましい基Ar2〜5は、以下の式およびそれらの鏡像:
から選択され、式中、個々のラジカルが、互いに独立して、出現するごとに同一にまたは異なって、以下の意味を有し、
1,2 S、OまたはSe、
NR、S、OまたはSe、
CRまたはN、
CRまたはN、
5〜10 H、F、Cl、CNまたは1〜30個、好ましくは、1〜20個のC原子を有する直鎖状、分枝鎖状もしくは環状アルキル(ここで、1つ以上のCH基は、Oおよび/またはS原子が互いに直接結合されないように、−O−、−S−、−C(=O)−、−C(=S)−、−C(=O)−O−、−O−C(=O)−、−NR−、−SiR00−、−CF−、−CR=CR00−、−CY=CY−または−C≡C−で任意選択的に置換され、1つ以上のH原子が、F、Cl、Br、IまたはCNで任意選択的に置換され、1つ以上のCHまたはCH基が、カチオン性またはアニオン性基で任意選択的に置換される)、またはアリール、ヘテロアリール、アリールアルキル、ヘテロアリールアルキル、アリールオキシまたはヘテロアリールオキシ(ここで、上記の環式基のそれぞれが、5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または上記および以下に定義される1つ以上の同一または異なる基Lで置換される)。
式I中の非常に好ましい基ArおよびArは、以下の式およびそれらの鏡像:
から選択され、R5〜10が、上記および以下に示される意味を有する。
式I中の非常に好ましい基ArおよびArは、以下の式およびそれらの鏡像
から選択され、式中、X、X、XおよびXが、上記および以下のRについて示される意味の1つを有し、好ましくは、H、F、Cl、−CN、R、ORまたはC(=O)ORを示す。
好ましい式AR1、AR2、AR5、AR6、AR7、AR8、AR9、AR10およびAR11は、FおよびCl、非常に好ましくは、Fから選択される少なくとも1つ、好ましくは、1つ、2つまたは4つの置換基X1〜4を含有するものである。
好ましくは、式I中の基RT1およびRT2は、H、F、Cl、Br、−NO、−CN、−CF、R、−CF−R、−O−R、−S−R、−SO−R、−SO−R、−C(=O)−H、−C(=O)−R、−C(=S)−R、−C(=O)−CF−R、−C(=O)−OR、−C(=S)−OR、−O−C(=O)−R、−O−C(=S)−R、−C(=O)−SR、−S−C(=O)−R、−C(=O)NR**、−NR−C(=O)−R、−NHR、−NR**、−CR=CR**、−C≡C−R、−C≡C−SiR*****、−SiR*****、−CH=CH(CN)、−CH=C(CN)、−C(CN)=C(CN)、−CH=C(CN)(R)、CH=C(CN)−C(=O)−OR、−CH=C(CO−OR、−CH=C(CO−NR**から、および以下の式
からなる群から選択され、式中、個々のラジカルが、互いに独立して、出現するごとに同一にまたは異なって、以下の意味を有し、
、R 4〜30個の環原子をそれぞれ有し、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の基Lで置換されるアリールまたはヘテロアリール、またはLについて示される意味の1つ、
、R**、R*** 直鎖状、分枝鎖状または環状であり、非置換であるか、または1つ以上のFまたはCl原子またはCN基で置換され、または過フッ素化される、1〜20個のC原子を有するアルキル(ここで、1つ以上のC原子は、O−および/またはS原子が互いに直接結合されないように、−O−、−S−、−C(=O)−、−C(=S)−、−SiR00−、−NR00−、−CHR=CR00−または−C≡C−で任意選択的に置換される)、
L F、Cl、−NO、−CN、−NC、−NCO、−NCS、−OCN、−SCN、R、OR、SR、−C(=O)X、−C(=O)R、−C(=O)−OR、−O−C(=O)−R、−NH、−NHR、−NR00、−C(=O)NHR、−C(=O)NR00、−SO、−SO、−OH、−NO、−CF、−SF、または任意選択的に置換されるシリル、または1〜30個、好ましくは、1〜20個のC原子を有するカルビルもしくはヒドロカルビル(これは、任意選択的に置換され、任意選択的に、1つ以上のヘテロ原子を含む)、好ましくは、F、−CN、R、−OR、−SR、−C(=O)−R、−C(=O)−OR、−O−C(=O)−R、−O−C(=O)−OR、−C(=O)−NHR、−C(=O)−NR00
L’ HまたはLの意味の1つ、
、R00 Hまたは任意選択的にフッ素化される、1〜20個、好ましくは、1〜12個のC原子を有する直鎖状もしくは分枝鎖状アルキル、
、Y H、F、ClまたはCN、
ハロゲン、好ましくは、FまたはCl、
r 0、1、2、3または4、
s 0、1、2、3、4または5、
t 0、1、2または3、
u 0、1または2、
ここで、RT1およびRT2の少なくとも1つが、電子求引基を示す。
式Iの好ましい化合物は、RT1およびRT2の両方が電子求引基を示すものである。
好ましい電子求引基RT1およびRT2は、−CN、−C(=O)−OR、−C(=S)−OR、−CH=CH(CN)、−CH=C(CN)、−C(CN)=C(CN)、−CH=C(CN)(R)、CH=C(CN)−C(=O)−OR、−CH=C(CO−OR、および式T1−T53から選択される。
非常に好ましい基RT1およびRT2は、以下の式
から選択され、式中、L、L’、R、rおよびsが、上記および以下に示される意味を有し、L’が、Hであるか、またはLについて示される意味の1つを有する。好ましくは、これらの式中、L’がHである。さらに好ましくは、これらの式中、rが0である。
上記の式T1〜T53は、隣接する基ArまたはArに対してα位でC=C結合に対してそれらのそれぞれのE−またはZ−立体異性体も含むことを意味し、したがって、例えば、基
は、
も示し得る。
式Iの好ましい化合物は、式Ia
から選択され、式中、Uが、CR、SiRまたはGeR、好ましくは、CRまたはSiR、非常に好ましくは、CRを示し、Uが、CR、SiRまたはGeR、好ましくは、CRまたはSiR、非常に好ましくは、CRを示し、R1〜4、Ar1〜5、RT1,T2、a、bおよびmが、上記および以下に示される意味または好ましい意味を有する。
式IおよびIaの化合物において、好ましくは、R1〜4が、Hと異なる。
本発明の好ましい実施形態において、式IおよびIa中のR1〜4は、F、Cl、または1〜20個のC原子をそれぞれ有し、非置換であるか、または1つ以上のF原子で置換される、直鎖状もしくは分枝鎖状アルキル、アルコキシ、スルファニルアルキル、スルホニルアルキル、アルキルカルボニル、アルコキシカルボニルおよびアルキルカルボニルオキシから選択される。
本発明の別の好ましい実施形態において、式IおよびIa中のR1〜4は、単環式または多環式アリールまたはヘテロアリール(これらはそれぞれ、式Iに定義される1つ以上の基Lで任意選択的に置換され、4〜30個の環原子を有する)から選択され、ここで、2つ以上の環が、互いに縮合されるか、または共有結合によって互いに結合され得る。
本発明の好ましい実施形態において、式IおよびIa中のR5〜10はHである。
本発明の別の好ましい実施形態において、式IおよびIa中のR5〜10の少なくとも1つが、Hと異なる。
本発明の好ましい実施形態において、式IおよびIa中のR5〜10は、Hと異なる場合、F、Cl、または1〜20個のC原子をそれぞれ有し、非置換であるか、または1つ以上のF原子で置換され、過フッ素化されない、直鎖状もしくは分枝鎖状アルキル、アルコキシ、スルファニルアルキル、スルホニルアルキル、アルキルカルボニル、アルコキシカルボニルおよびアルキルカルボニルオキシから選択される。
本発明の別の好ましい実施形態において、式IおよびIa中のR5〜10は、Hと異なる場合、アリールまたはヘテロアリール(これらはそれぞれ、任意選択的に、式Iに定義される1つ以上の基Lで置換され、4〜30個の環原子を有する)から選択される。
好ましいアリールおよびヘテロアリール基R1〜10は、以下の式
から選択され、式中、R11〜17が、互いに独立して、出現するごとに同一にまたは異なって、Hを示し、または式I中のLについて示される意味の1つもしくは上記および以下に示されるその好ましい意味の1つを有する。
非常に好ましいアリールおよびヘテロアリール基R1〜10は、以下の式
から選択され、式中、R11〜15が、上記に定義されるとおりである。最も好ましいアリール基R〜R10が、上記に定義される式SUB7〜SUB14から選択される。
別の好ましい実施形態において、R1〜10の1つ以上が、1〜50個、好ましくは、2〜50個、非常に好ましくは、2〜30個、より好ましくは、2〜24個、最も好ましくは、2〜16個のC原子を有する直鎖状、分枝鎖状もしくは環状アルキル基を示し、ここで、1つ以上のCHまたはCH基が、カチオン性またはアニオン性基で置換される。
カチオン性基は、好ましくは、ホスホニウム、スルホニウム、アンモニウム、ウロニウム、チオウロニウム、グアニジウムまたは複素環式カチオン、例えば、イミダゾリウム、ピリジニウム、ピロリジニウム、トリアゾリウム、モルホリニウムまたはピペリジニウムカチオンからなる群から選択される。
好ましいカチオン性基は、テトラアルキルアンモニウム、テトラアルキルホスホニウム、N−アルキルピリジニウム、N,N−ジアルキルピロリジニウム、1,3−ジアルキルイミダゾリウムからなる群から選択され、ここで、「アルキル」は、好ましくは、1〜12個のC原子を有する直鎖状もしくは分枝鎖状アルキル基を示し、非常に好ましくは、式SUB1〜6から選択される。
さらなる好ましいカチオン性基は、以下の式
からなる群から選択され、式中、R’、R’、R’およびR’が、互いに独立して、H、1〜12個のC原子を有する直鎖状もしくは分枝鎖状アルキル基または非芳香族炭素環式もしくは複素環式基またはアリールもしくはヘテロアリール基(上記の基はそれぞれ、3〜20個、好ましくは、5〜15個の環原子を有し、単環式または多環式であり、上記に定義される1つ以上の同一または異なる置換基Lで任意選択的に置換される)を示し、またはそれぞれの基R1〜10への結合を示す。
上記の式の上記のカチオン性基において、基R’、R’、R’およびR’(それらがCH基を置換する場合)のいずれか1つは、それぞれの基R1〜10への結合を示すことができ、または2つの隣接する基R’、R’、R’またはR’(それらがCH基を置換する場合)は、それぞれの基Rへの結合を示すことができる。
アニオン性基は、好ましくは、ボレート、イミド、ホスフェート、スルホネート、スルフェート、スクシネート、ナフテネートまたはカルボキシレート、非常に好ましくは、ホスフェート、スルホネートまたはカルボキシレートからなる群から選択される。
本発明の好ましい実施形態において、式I中の基RT1およびRT2は、直鎖状、分枝鎖状または環状であり、非置換であるか、1つ以上のFまたはCl原子またはCN基で置換されるか、または過フッ素化される、1〜16個のC原子を有するアルキル(ここで、1つ以上のC原子は、O−および/またはS原子が互いに直接結合されないように、−O−、−S−、−C(O)−、−C(S)−、−SiR00−、−NR00−、−CHR=CR00−または−C≡C−で任意選択的に置換される)から選択される。
式Iのさらなる好ましい化合物は、以下の好ましい実施形態またはそれらの任意の組合せから選択され:
−WおよびWが、SまたはSe、好ましくは、Sであり、
−Uが、CRまたはSiRであり、Uが、CRまたはSiRであり、
−UがCRであり、UがCRであり、
−VがCRであり、VがCRであり、
−VがCRであり、VがNであり、
−VおよびVがNであり、
−m=1であり、
−a=b=1または2、好ましくは、1であり、
−a=b=0であり、
−ArおよびArの一方または両方において、全ての置換基R5〜7がHであり、
−ArおよびArの一方または両方において、R5〜7の少なくとも1つ、好ましくは、1つまたは2つが、Hと異なり、非常に好ましくは、Fを示し、
−ArおよびArの一方または両方において、全ての置換基R5〜8がHであり、
−ArおよびArの一方または両方において、R5〜8の少なくとも1つ、好ましくは、1つまたは2つが、Hと異なり、
−ArおよびArが、チオフェン、チアゾール、チエノ[3,2−b]チオフェン、チアゾロ[5,4−d]チアゾール、ベンゼン、2,1,3−ベンゾチアジアゾール、1,2,3−ベンゾチアジアゾール、チエノ[3,4−b]チオフェン、ベンゾトリアゾールまたはチアジアゾール[3,4−c]ピリジンを示し、これらは、上記に定義されるX、X、XおよびXで置換され、
−ArおよびArが、チオフェン、チアゾール、チエノ[3,2−b]チオフェン、チアゾロ[5,4−d]チアゾール、ベンゼン、2,1,3−ベンゾチアジアゾール、1,2,3−ベンゾチアジアゾール、チエノ[3,4−b]チオフェン、ベンゾトリアゾールまたはチアジアゾール[3,4−c]ピリジンを示し、ここで、X、X、XおよびXがHであり、
−ArおよびArが、チオフェン、チアゾール、チエノ[3,2−b]チオフェン、チアゾロチアゾール、ベンゼン、2,1,3−ベンゾチアジアゾール、1,2,3−ベンゾチアジアゾール、チエノ[3,4−b]チオフェン、ベンゾトリアゾールまたはチアジアゾール[3,4−c]ピリジンを示し、ここで、X、X、XおよびXの1つ以上が、Hと異なり、
−R、R、RおよびRが、Hと異なり、
−R、R、RおよびRが、H、F、Cl、または1〜20個のC原子をそれぞれ有し、非置換であるか、または1つ以上のF原子で置換され、過フッ素化されない、直鎖状もしくは分枝鎖状アルキル、アルコキシ、スルファニルアルキル、スルホニルアルキル、アルキルカルボニル、アルコキシカルボニルおよびアルキルカルボニルオキシ、または任意選択的にフッ素化される、1〜12個のC原子を有するアルキルもしくはアルコキシから選択され、
−R、R、RおよびRが、アリールまたはヘテロアリール(これらはそれぞれ、任意選択的に、式Iに定義される1つ以上の基Lで置換され、4〜30個の環原子を有する)から、好ましくは、1〜20個のC原子、好ましくは、1〜16個のC原子を有するアルキルまたはアルコキシで、好ましくは、4位または3,5位において任意選択的に置換されるフェニル、非常に好ましくは、4−アルキルフェニル(ここで、アルキルがC1〜16アルキルである)、最も好ましくは、4−メチルフェニル、4−ヘキシルフェニル、4−オクチルフェニルまたは4−ドデシルフェニル、または4−アルコキシフェニル(ここで、アルコキシがC1〜16アルコキシである)、最も好ましくは、4−ヘキシルオキシフェニル、4−オクチルオキシフェニルまたは4−ドデシルオキシフェニルまたは3,5−ジアルキルフェニル(ここで、アルキルがC1〜16アルキルである)、最も好ましくは、3,5−ジヘキシルフェニルまたは3,5−ジオクチルフェニルまたは3,5−ジアルコキシフェニル(ここで、アルコキシがC1〜16アルコキシである)、最も好ましくは、3,5−ジヘキシルオキシフェニルまたは3,5−ジオクチルオキシフェニル、または4−チオアルキルフェニル(ここで、チオアルキルがC1〜16チオアルキルである)、最も好ましくは、4−チオヘキシルフェニル、4−チオオクチルフェニルまたは4−チオドデシルフェニルまたは3,5−ジチオアルキルフェニル(ここで、チオアルキルがC1〜16チオアルキルである)、最も好ましくは、3,5−ジチオヘキシルフェニルまたは3,5−ジチオオクチルフェニルから選択され、
−L’がHであり、
−L、L’が、F、Cl、CN、NO、または任意選択的にフッ素化される、1〜16個のC原子を有するアルキルもしくはアルコキシを示し、
−rが2であり、Lが、F、Cl、CN、NO、または任意選択的にフッ素化される、1〜16個のC原子を有するアルキルもしくはアルコキシであり、
−rが1であり、Lが、F、Cl、CN、NO、または任意選択的にフッ素化される、1〜16個のC原子を有するアルキルもしくはアルコキシであり、
−rが4であり、Lが、F、Cl、CN、NO、または任意選択的にフッ素化される、1〜16個のC原子を有するアルキルもしくはアルコキシであり、
−R5〜10が、Hと異なる場合、F、Cl、または1〜20個のC原子をそれぞれ有し、非置換であるか、または1つ以上のF原子で置換され、過フッ素化されない、直鎖状もしくは分枝鎖状アルキル、アルコキシ、スルファニルアルキル、スルホニルアルキル、アルキルカルボニル、アルコキシカルボニルおよびアルキルカルボニルオキシから、好ましくは、F、または任意選択的にフッ素化される、1〜16個のC原子を有するアルキルもしくはアルコキシから選択される。
式Iの好ましい化合物は、以下の部分式
から選択され、式中、R、R、R、R、RT1、RT2、Ar、Ar、aおよびbが、上記に示される意味を有する。
式Iの非常に好ましい化合物は、以下の群から選択される:
1a)式I1の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
1b)式I1の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
1c)式I1の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
1d)式I1の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
1e)式I1の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
1f)式I1の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
2a)式I2の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
2b)式I2の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
2c)式I2の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
2d)式I2の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
2e)式I2の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
2f)式I2の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
3a)式I3の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
3b)式I3の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
3c)式I3の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
3d)式I3の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
3e)式I3の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
3f)式I3の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
4a)式I4の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
4b)式I4の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
4c)式I4の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
4d)式I4の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
4e)式I4の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
4f)式I4の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
5a)式I5の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
5b)式I5の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
5c)式I5の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
5d)式I5の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
5e)式I5の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
5f)式I5の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
6a)式I6の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
6b)式I6の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
6c)式I6の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
6d)式I6の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
6e)式I6の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
6f)式I6の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
7a)式I7の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
7b)式I7の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
7c)式I7の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
7d)式I7の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
7e)式I7の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
7f)式I7の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
8a)式I8の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
8b)式I8の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
8c)式I8の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
8d)式I8の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
8e)式I8の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
8f)式I8の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
9a)式I9の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
9b)式I9の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
9c)式I9の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
9d)式I9の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
9e)式I9の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
9f)式I9の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
10a)式I10の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T10から選択される。
10b)式I10の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
10c)式I10の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
10d)式I10の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
10e)式I10の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
10f)式I10の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
11a)式I11の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T11から選択される。
11b)式I11の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
11c)式I11の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
11d)式I11の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
11e)式I11の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
11f)式I11の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
12a)式I12の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T12から選択される。
12b)式I12の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
12c)式I12の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
12d)式I12の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
12e)式I12の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
12f)式I12の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
13a)式I13の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T13から選択される。
13b)式I13の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
13c)式I13の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
13d)式I13の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
13e)式I13の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
13f)式I13の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
14a)式I14の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T14から選択される。
14b)式I14の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
14c)式I14の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
14d)式I14の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
14e)式I14の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
14f)式I14の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
15a)式I15の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T14から選択される。
15b)式I15の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
15c)式I15の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
15d)式I15の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
15e)式I15の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
15f)式I15の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
16a)式I16の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T14から選択される。
16b)式I16の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
16c)式I16の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
16d)式I16の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
16e)式I16の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
16f)式I16の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
17a)式I17の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T14から選択される。
17b)式I17の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
17c)式I17の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
17d)式I17の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
17e)式I17の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
17f)式I17の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
18a)式I18の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T14から選択される。
18b)式I18の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
18c)式I18の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
18d)式I18の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
18e)式I18の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
18f)式I18の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
19a)式I19の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T14から選択される。
19b)式I19の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T36から選択される。
19c)式I19の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T37から選択される。
19d)式I19の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T38から選択される。
19e)式I19の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T39から選択される。
19f)式I19の化合物からなる群、式中、ArおよびArが、式AR1〜AR11から選択され、aおよびbが、0、1または2であり、RT1およびRT2が、式T47から選択される。
本発明のさらなる好ましい実施形態は、以下に関する。
−上記の群1a〜1fから選択される化合物、
−上記の群2a〜2fから選択される化合物、
−上記の群3a〜3fから選択される化合物、
−上記の群4a〜4fから選択される化合物、
−上記の群5a〜5fから選択される化合物、
−上記の群6a〜6fから選択される化合物、
−上記の群7a〜7fから選択される化合物、
−上記の群8a〜8fから選択される化合物、
−上記の群9a〜9fから選択される化合物、
−上記の群10a〜10fから選択される化合物、
−上記の群11a〜11fから選択される化合物、
−上記の群12a〜12fから選択される化合物、
−上記の群13a〜13fから選択される化合物、
−上記の群14a〜14fから選択される化合物、
−上記の群15a〜15fから選択される化合物、
−上記の群16a〜16fから選択される化合物、
−上記の群17a〜17fから選択される化合物、
−上記の群18a〜18fから選択される化合物、
−上記の群19a〜19fから選択される化合物。
本発明のさらなる好ましい実施形態は、上記に定義される個々の群1a〜19fのそれぞれから選択される化合物に関する。
上記の群1a〜19fにおいて、R1〜4が、好ましくは、任意選択的にフッ素化される、1〜16個のC原子を有するアルキルもしくはアルコキシ、または単環式または多環式であり、任意選択的に、縮合環を含有し、4〜30個の環原子を有し、式Iに定義される1つ以上の基Lで任意選択的に置換されるアリールもしくはヘテロアリールから選択され、好ましくは、1〜16個のC原子を有する1つ以上の任意選択的にフッ素化されたアルキルまたはアルコキシ基で置換されるフェニルを示す。
式Iの非常に好ましい化合物は、以下の部分式:
から選択され、式中、R、R、R、R、X、X、R、R、L、L’およびrが、上記に示される意味を有し、aおよびbが、1または2である。
上記の式I1a〜I19mは、隣接する基Ar1〜5に対してα位で末端基のC=C二重結合に対してそれらのE−またはZ−立体異性体も含み、例えば、以下の基
は、出現するごとに同一にまたは異なって、
も示し得る。
好ましくは、式I1a〜I19m中、L’がHである。さらに好ましくは、式I1a〜I19m中、rが0である。
好ましくは、式I1a〜I19m中、R、R、RおよびRが、任意選択的にフッ素化される、1〜16個のC原子を有するアルキルまたはアルコキシから選択される。
さらに好ましくは、式I1a〜I19m中、R、R、RおよびRが、1〜16個のC原子を有するアルキル、アルコキシまたはチオアルキルで、好ましくは、4位または3,5位において任意選択的に置換されるフェニルから選択される。
本発明の別の実施形態は、式Iの化合物を含み、好ましくは共役ポリマーから選択される、1つ以上の電子供与体またはp型半導体をさらに含む組成物に関する。好ましくは、前記組成物に使用される共役ポリマーは、少なくとも1つの電子供与性単位(「供与体単位」)および少なくとも1つの電子受容性単位(「受容体単位」)、および任意選択的に、供与体単位を受容体単位と隔てる少なくとも1つのスペーサ単位を含み、ここで、各供与体および受容体単位は、別の供与体もしくは受容体単位またはスペーサ単位に直接結合され、供与体、受容体およびスペーサ単位の全てが、5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、上記に定義される1つ以上の同一または異なる基Lで置換されるアリーレンまたはヘテロアリーレンから選択される。
好ましくは、スペーサ単位は、存在する場合、供与体単位および受容体単位が互いに直接結合されないように、供与体および受容体単位の間に位置する。
好ましい共役ポリマーは、式U1、U2およびU3から選択される1つ以上の単位、および/または式U3およびU4から選択される1つ以上の単位
−(D−Sp)− U1
−(A−Sp)− U2
−(A−D)− U3
−(D)− U4
−(Sp−A−Sp)− U5
を含み、非常に好ましくは、それらからなり、ここで、Dが供与体単位を示し、Aが受容体単位を示し、Spがスペーサ単位を示し、これらは全て、5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、上記に定義される1つ以上の同一または異なる基Lで置換されるアリーレンまたはヘテロアリーレンから選択される。
非常に好ましいのは、式PiおよびPiiのポリマー
−[(D−Sp)−(A−Sp)− Pi
−[(A−D)−(A−Sp)− Pii
−[(D)−(Sp−A−Sp)− Piii
であり、ここで、A、DおよびSpが、式U1〜U5に定義されるとおりであり、xおよびyが、対応する単位のモル分率を示し、xおよびyがそれぞれ、互いに独立して、0超かつ1未満であり、ここで、x+y=1であり、nが、1を超える整数である。
好ましい供与体単位または単位Dは、以下の式
から選択され、式中、R11、R12、R13、R14が、互いに独立して、Hを示し、または上記に定義されるLの意味の1つを有する。
好ましい受容体単位または単位Aは、以下の式
から選択され、式中、R11、R12、R13、R14が、互いに独立して、Hを示し、または上記に定義されるLの意味の1つを有する。
好ましいスペーサ単位または単位Spは、以下の式
から選択され、式中、R11、R12、R13、R14が、互いに独立して、Hを示し、または上記に定義されるLの意味の1つを有する。
式Sp1〜Sp17中、好ましくは、R11およびR12がHである。式Sp18中、好ましくは、R11〜14が、HまたはFである。
好ましくは、共役ポリマーは、
a)式D1、D7、D10、D11、D19、D22、D29、D30、D35、D36、D37、D44、D55、D84、D87、D88、D89、D93、D106、D111、D119、D140、D141、D146、およびD147からなる群から選択される1つ以上の供与体単位および/または
b)式A1、A5、A7、A15、A16、A20、A74、A88、A92、A94およびA98、A99、A100からなる群から選択される1つ以上の受容体単位
および
c)任意選択的に、式Sp1〜Sp18、非常に好ましくは、式Sp1、Sp6、Sp11およびSp14からなる群から選択される1つ以上のスペーサ単位
を含有し、好ましくは、それらからなり、式中、スペーサ単位は、存在する場合、好ましくは、供与体単位および受容体単位が互いに直接結合されないように、供与体および受容体単位の間に位置する。
第2の好ましい実施形態において、式Iの化合物は、
1つ以上、好ましくは、1つ、2つ、3つまたは4つの異なる繰返し単位D、および
1つ以上、好ましくは、1つ、2つまたは3つの異なる繰返し単位A
を含み、好ましくは、それらからなる共役ポリマーである。
好ましくは、この第2の好ましい実施形態に係る共役ポリマーは、1〜6つ、非常に好ましくは、1つ、2つ、3つまたは4つの異なる単位Dおよび1〜6つ、非常に好ましくは、1つ、2つ、3つまたは4つの異なる単位Aを含有し、ここで、d1、d2、d3、d4、d5およびd6が、各異なる単位Dのモル比を示し、a1、a2、a3、a4、a5およびa6が、各異なる単位Aのモル比を示し、
d1、d2、d3、d4、d5およびd6のそれぞれが、0〜0.6であり、d1+d2+d3+d4+d5+d6が、0.2〜0.8、好ましくは、0.3〜0.7であり、
a1、a2、a3、a4、a5およびa6のそれぞれが、0〜0.6であり、a1+a2+a3+a4+a5+d6が、0.2〜0.8、好ましくは、0.3〜0.7であり、
d1+d2+d3+d4+d5+d6+a1+a2+a3+a4+a5+a6が、0.8〜1、好ましくは、1である。
好ましくは、この第2の好ましい実施形態に係る共役ポリマーは、
a)式D1、D7、D10、D11、D19、D22、D29、D30、D35、D36、D37、D44、D55、D84、D87、D88、D89、D93、D106、D111、D119、D140、D141、D146およびD147からなる群から選択される1つ以上の供与体単位、および/または
b)式A1、A5、A7、A15、A16、A20、A74、A88、A92、A94、A98、A99およびA100からなる群から選択される1つ以上の受容体単位
を含有し、好ましくは、それらからなる。
式Pおよびその部分式のもののような上記の共役ポリマーにおいて、繰返し単位の総数nは、好ましくは、2〜10,000である。繰返し単位の総数nは、好ましくは、5以上、非常に好ましくは、10以上、最も好ましくは、50以上、好ましくは、500以下、非常に好ましくは、1,000以下、最も好ましくは、2,000以下であり、nの上記の下限および上限の任意の組合せを含む。
共役ポリマーは、好ましくは、統計またはランダムコポリマーである。
非常に好ましい共役ポリマーは、以下の式
から選択され、式中、R11〜17、x、yおよびnが、上記に定義されるとおりであり、wおよびzが、yについて示される意味の1つを有し、x+y+w+z=1であり、R18およびR19が、R11について示される意味の1つを有し、X、X、XおよびXが、H、FまたはClを示す。
さらなる好ましいものは、1つ以上の繰返し単位として式P1〜P53の1つを含むポリマーである。
2つの構成単位[ ]および[ ]から構成される式Pi、Pii、PiiiおよびP1〜P53のポリマーにおいて、xおよびyが、好ましくは、0.1〜0.9、非常に好ましくは、0.25〜0.75、最も好ましくは、0.4〜0.6である。
3つの構成単位[ ]、[ ]、および[ ]から構成される式Pi、Pii、PiiiおよびP1〜P53のポリマーにおいて、x、yおよびzが、好ましくは、0.1〜0.8、非常に好ましくは、0.2〜0.6、最も好ましくは、0.25〜0.4である。
式P1〜P53中、好ましくは、X、X、XおよびXの1つ以上が、Fを示し、非常に好ましくは、X、X、XおよびXの全てが、Fを示すか、またはXおよびXがHを示し、XおよびXがFを示す。
式P1〜P53中、好ましくは、R11およびR12がHである。さらに好ましくは、R11およびR12が、Hと異なる場合、任意選択的にフッ素化される、1〜30個、好ましくは、1〜20個のC原子を有する直鎖状もしくは分枝鎖状アルキルを示す。
式P1〜P53中、好ましくは、R15およびR16がHであり、R13およびR14が、Hと異なる。
式P1〜P53中、好ましくは、R13、R14、R15およびR16が、Hと異なる場合、以下の群:
−任意選択的にフッ素化される、1〜30個、好ましくは、1〜20個のC原子を有する、直鎖状もしくは分枝鎖状アルキル、アルコキシまたはスルファニルアルキルからなる群、
−任意選択的にフッ素化される、2〜30個、好ましくは、2〜20個のC原子を有する、直鎖状もしくは分枝鎖状アルキルカルボニルまたはアルキルカルボニルオキシからなる群
から選択される。
式P1〜P53中、好ましくは、R17およびR18が、Hと異なる場合、以下の群:
−任意選択的にフッ素化される、1〜30個、好ましくは、1〜20個のC原子を有する、直鎖状もしくは分枝鎖状アルキル、アルコキシまたはスルファニルアルキルからなる群、
−任意選択的にフッ素化される、2〜30個、好ましくは、2〜20個のC原子を有する、直鎖状もしくは分枝鎖状アルキルカルボニルまたはアルキルカルボニルオキシからなる群、
−FおよびClからなる群
から選択される。
さらなる好ましいものは、式PT
31−鎖−R32 PT
から選択される共役ポリマーであり、式中、「鎖」が、式Pi、PiiまたはP1〜P53から選択されるポリマー鎖を示し、R31およびR32が、互いに独立して、上記に定義されるR11の意味の1つを有するか、または互いに独立して、H、F、Br、Cl、I、−CHCl、−CHO、−CR’=CR”、−SiR’R”R”’、−SiR’X’X”、−SiR’R”X’、−SnR’R”R”’、−BR’R”、−B(OR’)(OR”)、−B(OH)、−O−SO−R’、−C≡CH、−C≡C−SiR’、−ZnX’またはエンドキャップ基を示し、X’およびX”がハロゲンを示し、R’、R”およびR’”が、互いに独立して、式1に示されるRの意味の1つを有し、好ましくは、1〜12個のC原子を有するアルキルを示し、R’、R”およびR’”のうちの2つはまた、それらが結合されるそれぞれのヘテロ原子と一緒に、2〜20個のC原子を有する、シクロシリル、シクロスタンニル、シクロボランまたはシクロボロネート基を形成し得る。
好ましいエンドキャップ基R31およびR32は、H、C1〜20アルキル、または任意選択的に置換されるC6〜12アリールもしくはC2〜10ヘテロアリール、非常に好ましくは、H、フェニルまたはチオフェンである。
式Pi、Pii、Pii、P1〜P53およびPTの式Iの化合物および共役ポリマーは、当業者に公知の、文献に記載されている方法にしたがって、またはそれに類似して合成され得る。他の調製方法は、実施例から得られる。
例えば、本発明の化合物は、山本カップリング、鈴木カップリング、スティルカップリング、薗頭カップリング、ヘックカップリングまたはバックワルドカップリングなどのアリール−アリールカップリング反応によって好適に調製され得る。遊離体(educt)は、当業者に公知の方法にしたがって調製され得る。
上記および以下に記載される合成方法に使用される好ましいアリール−アリールカップリング方法は、山本カップリング、熊田カップリング、根岸カップリング、鈴木カップリング、スティルカップリング、薗頭カップリング、ヘックカップリング、C−H活性化カップリング、ウルマンカップリングまたはバックワルドカップリングである。特に好ましいのは、鈴木カップリング、根岸カップリング、スティルカップリングおよび山本カップリングである。鈴木カップリングは、例えば、国際公開第00/53656 A1号パンフレットに記載されている。根岸カップリングは、例えば、ジャーナル・オブ・ケミカル・ソサイエティ・ケミカル・コミュニケーションズ(J.Chem.Soc.,Chem.Commun.)、1977、683〜684に記載されている。山本カップリングは、例えば、T.山本ら著、プログレス・イン・ポリマー・サイエンス(Prog.Polym.Sci.)、1993、17、1153〜1205、または国際公開第2004/022626 A1号パンフレットに記載されている。スティルカップリングは、例えば、Z.バオ(Z.Bao)ら著、米国化学会誌(J.Am.Chem.Soc.)、1995、117、12426〜12435に記載され、C−H活性化は、例えば、M.ルクレール(M.Leclerc)ら著、アンゲヴァンテ・ケミー・インターナショナル・エディション(Angew.Chem.Int.Ed.)、2012、51、2068〜2071に記載されている。例えば、山本カップリングを使用する場合、2つの反応性ハライド基を有する遊離体が、好ましくは使用される。鈴木カップリングを使用する場合、2つの反応性ボロン酸またはボロン酸エステル基または2つの反応性ハライド基を有する遊離体が、好ましくは使用される。スティルカップリングを使用する場合、2つの反応性スタンナン基または2つの反応性ハライド基を有する遊離体が、好ましくは使用される。根岸カップリングを使用する場合、2つの反応性有機亜鉛基または2つの反応性ハライド基を有する遊離体が、好ましくは使用される。
特に、鈴木、根岸またはスティルカップリングに好ましい触媒は、Pd(0)錯体またはPd(II)塩から選択される。好ましいPd(0)錯体は、Pd(PhP)などの少なくとも1つのホスフィンリガンドを有するものである。別の好ましいホスフィンリガンドは、トリス(オルト−トリル)ホスフィン、すなわち、Pd(o−TolP)である。好ましいPd(II)塩としては、酢酸パラジウム、すなわち、Pd(OAc)が挙げられる。あるいは、Pd(0)錯体は、Pd(0)ジベンジリデンアセトン錯体、例えばトリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(ジベンジリデンアセトン)パラジウム(0)、またはPd(II)塩、例えば、酢酸パラジウムを、ホスフィンリガンド、例えば、トリフェニルホスフィン、トリス(オルト−トリル)ホスフィンまたはトリ(tert−ブチル)ホスフィンと混合することによって調製され得る。鈴木カップリングは、塩基、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、水酸化リチウム、リン酸カリウムまたは有機塩基、例えば、炭酸テトラエチルアンモニウムもしくは水酸化テトラエチルアンモニウムの存在下で行われる。山本カップリングは、Ni(0)錯体、例えばビス(1,5−シクロオクタジエニル)ニッケル(0)を用いる。
上述されるハロゲンの代替として、式−O−SOの脱離基が、使用され得、ここで、Zが、アルキルまたはアリール基、好ましくは、C1〜10アルキルまたはC6〜12アリールである。このような脱離基の特定の例は、トシレート、メシレートおよびトリフレートである。
式Iおよびその部分式の化合物の特に好適なおよび好ましい合成方法は、以下に示される合成スキームに示される。
環式単位の合成は、スキーム1〜4に例示的に示される。
スキーム1a
スキーム1b
スキーム2
スキーム3
スキーム4
上記および以下に記載される式Iの化合物を調製する新規な方法は、本発明の別の態様である。
式Iの化合物はまた、例えば、電荷輸送、半導体、導電性、光伝導および/または発光半導体特性を有するモノマーもしくはポリマー化合物と一緒に、または例えば、PSCまたはOLED中の中間層または電荷ブロッキング層として使用するための正孔ブロッキングまたは電子ブロッキング特性を有する化合物と一緒に、組成物中で使用され得る。
したがって、本発明の別の態様は、式Iの1つ以上の化合物および1つ以上の小分子化合物および/または電荷輸送、半導体、導電性、光伝導、正孔ブロッキングおよび電子ブロッキング特性の1つ以上を有するポリマーを含む組成物に関する。
これらの組成物ブレンドは、先行技術において記載される、当業者に公知である従来の方法によって調製され得る。典型的に、化合物および/またはポリマーは、互いに混合され、または好適な溶媒に溶解され、溶液が組み合わされる。
本発明の別の態様は、上記および以下に記載される式Iの1つ以上の化合物または組成物および1つ以上の有機溶媒を含む配合物に関する。
好ましい溶媒は、脂肪族炭化水素、塩素化炭化水素、芳香族炭化水素、ケトン、エーテルおよびそれらの混合物である。使用され得るさらなる溶媒としては、1,2,4−トリメチルベンゼン、1,2,3,4−テトラ−メチルベンゼン、ペンチルベンゼン、メシチレン、クメン、シメン、シクロヘキシルベンゼン、ジエチルベンゼン、テトラリン、デカリン、2,6−ルチジン、2−フルオロ−m−キシレン、3−フルオロ−o−キシレン、2−クロロベンゾトリフルオリド、N,N−ジメチルホルムアミド、2−クロロ−6−フルオロトルエン、2−フルオロアニソール、アニソール、2,3−ジメチルピラジン、4−フルオロアニソール、3−フルオロアニソール、3−トリフルオロ−メチルアニソール、2−メチルアニソール、フェネトール、4−メチルアニソール、3−メチルアニソール、4−フルオロ−3−メチルアニソール、2−フルオロベンゾニトリル、4−フルオロベラトロール、2,6−ジメチルアニソール、3−フルオロベンゾ−ニトリル、2,5−ジメチルアニソール、2,4−ジメチルアニソール、ベンゾニトリル、3,5−ジメチル−アニソール、N,N−ジメチルアニリン、安息香酸エチル、1−フルオロ−3,5−ジメトキシ−ベンゼン、1−メチルナフタレン、N−メチルピロリジノン、3−フルオロベンゾ−トリフルオリド、ベンゾトリフルオリド、ジオキサン、トリフルオロメトキシ−ベンゼン、4−フルオロベンゾトリフルオリド、3−フルオロピリジン、トルエン、2−フルオロ−トルエン、2−フルオロベンゾトリフルオリド、3−フルオロトルエン、4−イソプロピルビフェニル、フェニルエーテル、ピリジン、4−フルオロトルエン、2,5−ジフルオロトルエン、1−クロロ−2,4−ジフルオロベンゼン、2−フルオロピリジン、3−クロロフルオロ−ベンゼン、1−クロロ−2,5−ジフルオロベンゼン、4−クロロフルオロベンゼン、クロロ−ベンゼン、o−ジクロロベンゼン、2−クロロフルオロベンゼン、p−キシレン、m−キシレン、o−キシレンまたはo−、m−、およびp−異性体の混合物が挙げられる。比較的低い極性を有する溶媒が、一般に好ましい。インクジェット印刷では、高い沸点を有する溶媒および溶媒混合物が好ましい。スピンコーティングでは、キシレンおよびトルエンのようなアルキル化ベンゼンが好ましい。
特に好ましい溶媒の例としては、限定はされないが、ジクロロメタン、トリクロロメタン、クロロベンゼン、o−ジクロロベンゼン、テトラヒドロフラン、アニソール、2,4−ジメチルアニソール、1−メチルナフタレン、モルホリン、トルエン、o−キシレン、m−キシレン、p−キシレン、1,4−ジオキサン、アセトン、メチルエチルケトン、1,2−ジクロロエタン、1,1,1−トリクロロエタン、1,1,2,2−テトラクロロエタン、酢酸エチル、酢酸n−ブチル、N,N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,5−ジメチルテトラリン、プロピオフェノン、アセトフェノン、テトラリン、2−メチルチオフェン、3−メチルチオフェン、デカリン、インダン、安息香酸メチル、安息香酸エチル、メシチレンおよび/またはそれらの混合物が挙げられる。
溶液中の化合物またはポリマーの濃度は、好ましくは、0.1〜10重量%、より好ましくは、0.5〜5重量%である。任意選択的に、溶液は、例えば、国際公開第2005/055248 A号パンフレット1に記載されるように、レオロジー特性を調整するために、1つ以上のバインダも含む。
適切な混合およびエージングの後、溶液は、以下のカテゴリー:完全な溶液、境界線上の溶液または不溶性の1つとして評価される。溶解性と不溶性とを分ける溶解性パラメータ−水素結合限界値の概略を示すために、等高線が引かれる。溶解性領域内に入る「完全な」溶媒は、“クロウリーJ.D.(Crowley,J.D.)、ティーグG.S.Jr(Teague,G.S.Jr)およびロウJ.W.Jr.(Lowe,J.W.Jr.)著、ジャーナル・オブ・ペイント・テクノロジー(Journal of Paint Technology)、1966、38(496)、296”に公開されるような文献値から選択され得る。溶媒ブレンドも使用されてもよく、“溶媒(Solvents)、W.H.エリス(W.H.Ellis)著、フェデレーション・オブ・ソサイエティ・フォー・コーティング・テクノロジー(Federation of Societies for Coatings Technology)、p9〜10、1986”に記載されるように同定され得る。このような手順は、本発明の両方のポリマーを溶解させる「非」溶媒のブレンドをもたらし得るが、ブレンド中に少なくとも1つの真溶媒を有することが望ましい。
式Iの化合物はまた、上記および以下に記載されるデバイスにおいてパターン化OSC層に使用され得る。最近のマイクロエレクトロニクスにおける適用では、コスト(単位面積当たりより多いデバイス)、および電力消費を低減するために、小さい構造またはパターンを製造するのが一般に望ましい。本発明に係る化合物を含む薄層のパターニングは、例えば、フォトリソグラフィー、電子線リソグラフィーまたはレーザーパターニングによって行われ得る。
電子または電気光学デバイスにおける薄層として使用するために、本発明の化合物、組成物または配合物は、任意の好適な方法によって堆積され得る。デバイスの液体コーティングは、真空蒸着技術より望ましい。溶液堆積法が特に好ましい。本発明の配合物は、多くの液体コーティング技術の使用を可能にする。好ましい堆積技術としては、限定はされないが、ディップコーティング、スピンコーティング、インクジェット印刷、ノズル印刷、レタープレス印刷、スクリーン印刷、グラビア印刷、ドクターブレードコーティング、ローラ印刷、逆ローラ印刷、オフセットリソグラフィー印刷、ドライオフセットリソグラフィー印刷、フレキソ印刷、ウェブ印刷、スプレーコーティング、カーテンコーティング、ブラシコーティング、スロットダイコーティングまたはパッド印刷が挙げられる。
インクジェット印刷は、高解像度の層およびデバイスが作製される必要がある場合、特に好ましい。本発明の選択された配合物は、インクジェット印刷またはマイクロディスペンシング(microdispensing)によって、予め組み立てられたデバイス基板に適用され得る。好ましくは、限定はされないが、アプリオン(Aprion)、日立工機(Hitachi−Koki)、インクジェット・テクノロジー(InkJet Technology)、オン・ターゲット・テクノロジー(On Target Technology)、ピコジェット(Picojet)、スペクトラ(Spectra)、トリデント(Trident)、ザール(Xaar)によって供給されるものなどの工業用圧電プリントヘッドが、有機半導体層を基板に適用するのに使用され得る。さらに、ブラザー(Brother)、エプソン(Epson)、コニカ(Konica)、セイコーインスツル(Seiko Instruments)、東芝TEC(Toshiba TEC)によって製造されるものなどの半工業用のヘッドまたはマイクロドロップ(Microdrop)およびマイクロファブ(Microfab)によって製造されるものなどのシングルノズルマイクロディスペンサーが使用され得る。
インクジェット印刷またはマイクロディスペンシングによって適用されるために、化合物またはポリマーは、まず、好適な溶媒に溶解されるべきである。溶媒は、上述される要件を満たさなければならず、選択されたプリントヘッドに対する悪影響を与えてはならない。さらに、溶媒は、プリントヘッドの内部での溶液の乾燥によって引き起こされる操作性の問題を防ぐためえに、100℃を超える、好ましくは、140℃を超える、より好ましくは、150℃を超える沸点を有するべきである。上述される溶媒のほか、好適な溶媒としては、置換および非置換キシレン誘導体、ジ−C1〜2−アルキルホルムアミド、置換および非置換アニソールおよび他のフェノール−エーテル誘導体、置換複素環、例えば、置換ピリジン、ピラジン、ピリミジン、ピロリジノン、置換および非置換N,N−ジ−C1〜2−アルキルアニリンおよび他のフッ素化または塩素化芳香族化合物が挙げられる。
インクジェット印刷によって、式Iの化合物を堆積するための好ましい溶媒は、1つ以上の置換基で置換されるベンゼン環を有するベンゼン誘導体(ここで、1つ以上の置換基の中の炭素原子の総数は、少なくとも3である)を含む。例えば、ベンゼン誘導体は、プロピル基または3つのメチル基で置換されてもよく、ここで、いずれの場合も、合計で少なくとも3個の炭素原子が存在する。このような溶媒は、化合物またはポリマーを含む溶媒を含むインクジェット流体が形成されるのを可能にし、それにより、噴霧中のジェットの詰まりおよび成分の分離を低減または防止する。溶媒としては、例の以下のリスト:ドデシルベンゼン、1−メチル−4−tert−ブチルベンゼン、テルピネオール、リモネン、イソデュレン、テルピノレン、シメン、ジエチルベンゼンから選択されるものが挙げられる。溶媒は、2種以上の溶媒の組合せである溶媒混合物であってもよく、各溶媒は、好ましくは、100℃を超える、より好ましくは、140℃を超える沸点を有する。このような溶媒はまた、堆積される層中での膜形成を促進し、層中の欠陥を減少させる。
インクジェット流体(すなわち、溶媒、バインダおよび半導体化合物の混合物)は、好ましくは、20℃で、1〜100mPa・s、より好ましくは、1〜50mPa・s、最も好ましくは、1〜30mPa・sの粘度を有する。
本発明に係る組成物および配合物は、例えば、表面活性化合物、潤滑剤、湿潤剤、分散剤、疎水化剤、接着剤、流動性向上剤、消泡剤、脱気剤(deaerator)、反応性もしくは非反応性であり得る希釈剤、助剤、着色剤、色素もしくは顔料、増感剤、安定剤、ナノ粒子または阻害剤から選択される、1つ以上のさらなる成分または添加剤をさらに含み得る。
本発明に係る組成物は、光学、電気光学、電子、エレクトロルミネセンスもしくは光ルミネセンス構成要素またはデバイスにおける電荷輸送、半導体、導電性、光伝導または発光材料として有用である。これらのデバイスにおいて、本発明の化合物は、典型的に、薄層またはフィルムとして適用される。
したがって、本発明は、電子デバイスにおける半導体化合物または組成物または層の使用も提供する。化合物または組成物は、様々なデバイスおよび装置における高移動度半導体材料として使用され得る。化合物または組成物は、例えば、半導体層またはフィルムの形態で使用され得る。したがって、別の態様において、本発明は、電子デバイスに使用するための半導体層を提供し、この層は、本発明に係る化合物または組成物を含む。層またはフィルムは、約30μm未満であり得る。様々な電子デバイス用途では、厚さは、約1μm未満の厚さであり得る。層は、例えば、上記の溶液コーティングまたは印刷技術のいずれかによって、電子デバイスの部品上に堆積され得る。
本発明は、本発明に係る化合物または組成物または有機半導体層を含む電子デバイスをさらに提供する。特に好ましいデバイスは、OFET、TFT、IC、論理回路、コンデンサ、RFIDタグ、OLED、OLET、OPED、OPV、PSC、OPD、太陽電池、レーザーダイオード、光伝導体、光検出器、電子写真デバイス、電子写真記録デバイス、有機メモリデバイス、センサーデバイス、電荷注入層、ショットキーダイオード、平坦化層、帯電防止フィルム、導電性基板および導電性パターンである。
特に好ましい電子デバイスは、OFET、OLED、OPV、PSCおよびOPDデバイス、特に、OPD、PSCおよびバルクへテロ接合(BHJ)OPVデバイスである。OFETにおいて、例えば、ドレインとソースとの間の活性半導体チャネルが、本発明の化合物または組成物を含み得る。別の例として、OLEDデバイスにおいて、電荷(正孔または電子)注入または輸送層は、本発明の化合物または組成物を含み得る。
OPVまたはOPDデバイスの光活性層に使用するために、本発明に係る化合物は、1つ以上のp型(電子供与体)半導体および1つ以上のn型(電子受容体)半導体を含むかまたは含有し、より好ましくは、それらからなる組成物に好ましくは使用される。
n型半導体は、例えば、式Iの化合物によって構成される。
p型半導体は、好ましくは、上記に定義される共役ポリマーである。
組成物は、n型半導体としての式Iの化合物、共役ポリマーのようなp型半導体、および好ましくは、フラーレンまたは置換フラーレンである第2のn型半導体も含み得る。
フラーレンは、例えば、ICBAのようなインデン−C60−フラーレンビス付加体、または例えば、G.ユー(G.Yu)、J.ガオ(J.Gao)、J.C.フムレン(J.C.Hummelen)、F.ウドゥル(F.Wudl)、A.J.ヒーガー(A.J.Heeger)著、サイエンス(Science)1995、第270巻、p.1789以降に開示され、以下に示される構造を有する、「PCBM−C60」または「C60PCBM」としても知られている(6,6)−フェニル−酪酸メチルエステル誘導体化メタノC60フラーレン、または例えば、C61フラーレン基、C70フラーレン基、もしくはC71フラーレン基を有する構造的に類似した化合物、または有機ポリマー(例えば、コークレーK.M.(Coakley,K.M.)およびマーギーM.D.(McGehee,M.D.)著、ケミストリー・オブ・マテリアルズ(Chem.Mater.)2004、16、4533を参照)である。
好ましくは、本発明に係るポリマーは、式Full−Iのフラーレンまたは置換フラーレンなどのn型半導体と混合されて、OPVまたはOPDデバイス中の活性層を形成し、ここで、
が、任意選択的に、1つ以上の原子が中に閉じ込められた、n個の炭素原子から構成されるフラーレンを示し、
付加物が、任意の結合性でフラーレンCに付加された第1の付加物であり、
付加物が、任意の結合性でフラーレンCに付加された、第2の付加物、または第2の付加物の組合せであり、
kが、1以上の整数であり、
lが、0、1以上の整数、または0を超える非整数である。
式Full−Iおよびその部分式において、kが、好ましくは、1、2、3または4、非常に好ましくは、1または2を示す。
式Full−Iおよびその部分式中のフラーレンCは、任意の数n個の炭素原子から構成され得る。好ましくは、式XIIおよびその部分式の化合物において、フラーレンCを構成する炭素原子の数nは、60、70、76、78、82、84、90、94または96、非常に好ましくは、60または70である。
式Full−Iおよびその部分式中のフラーレンCは、好ましくは、炭素系フラーレン、内包フラーレン、またはそれらの混合物、非常に好ましくは、炭素系フラーレンから選択される。
好適なおよび好ましい炭素系フラーレンとしては、限定はされないが、(C60−Ih)[5,6]フラーレン、(C70−D5h)[5,6]フラーレン、(C76−D2 )[5,6]フラーレン、(C84−D2 )[5,6]フラーレン、(C84−D2d)[5,6]フラーレン、または上記の炭素系フラーレンの2つ以上の混合物が挙げられる。
内包フラーレンは、好ましくは、金属フラーレンである。好適なおよび好ましい金属フラーレンとしては、限定はされないが、La@C60、La@C82、Y@C82、ScN@C80、YN@C80、Sc@C80または上記の金属フラーレンの2つ以上の混合物が挙げられる。
好ましくは、フラーレンCは、[6,6]および/または[5,6]結合において置換され、好ましくは、少なくとも1つの[6,6]結合において置換される。
式Full−Iおよびその部分式中で「付加物」と示される第1および第2の付加物は、好ましくは、以下の式
から選択され、式中、
ArS1、ArS2が、互いに独立して、単環式または多環式であり、上記および以下に定義されるLの意味の1つを有する1つ以上の同一または異なる置換基で任意選択的に置換される、5〜20個、好ましくは、5〜15個の環原子を有するアリールまたはヘテロアリール基を示し、
S1、RS2、RS3、RS4およびRS5が、互いに独立して、H、CNを示し、または上記および以下に定義されるRの意味の1つを有する。
式Full−Iの好ましい化合物は、以下の部分式:
から選択され、式中、
S1、RS2、RS3、RS4S5およびRS6が、互いに独立して、Hを示し、または上記および以下に定義されるRの意味の1つを有する。
最も好ましくは、フラーレンは、PCBM−C60、PCBM−C70、ビス−PCBM−C60、ビス−PCBM−C70、ICMA−c60(1’,4’−ジヒドロ−ナフト[2’,3’:1,2][5,6]フラーレン−C60)、ICBA、oQDM−C60(1’,4’−ジヒドロ−ナフト[2’,3’:1,9][5,6]フラーレン−C60−Ih)、またはビス−oQDM−C60である。
OPVまたはOPDデバイスは、好ましくは、光活性層の一方の側に、透明または半透明基板上の第1の透明または半透明電極、および光活性層の他方の側に、第2の金属製または半透明電極をさらに含む。
さらに好ましくは、OPVまたはOPDデバイスは、光活性層と第1または第2の電極との間に、例えば、ZTO、MoO、NiOのような金属酸化物、例えばPEDOT:PSSのような共役ポリマー電解質、例えばポリトリアリールアミン(PTAA:polytriarylamine)のような共役ポリマー、例えばナフィオン(nafion)のような絶縁ポリマー、ポリエチレンイミンまたはポリスチレンスルホネート、例えばN,N’−ジフェニル−N,N’−ビス(1−ナフチル)(1,1’−ビフェニル)−4,4’ジアミン(NPB:N,N’−diphenyl−N,N’−bis(1−naphthyl)(1,1’−biphenyl)−4,4’diamine)、N,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD:N,N’−diphenyl−N,N’−(3−methylphenyl)−1,1’−biphenyl−4,4’−diamine)のような有機化合物などの材料を含む正孔輸送層および/または電子ブロッキング層として、あるいは例えば、ZnO、TiOのような金属酸化物、例えばLiF、NaF、CsFのような塩、例えばポリ[3−(6−トリメチルアンモニウムヘキシル)チオフェン]、ポリ(9,9−ビス(2−エチルヘキシル)−フルオレン]−b−ポリ[3−(6−トリメチルアンモニウムヘキシル)チオフェン]、またはポリ[(9,9−ビス(3’−(N,N−ジメチルアミノ)プロピル)−2,7−フルオレン)−alt−2,7−(9,9−ジオクチルフルオレン)]のような共役ポリマー電解質、または例えばトリス(8−キノリノラト)−アルミニウム(III)(Alq)、4,7−ジフェニル−1,10−フェナントロリンのような有機化合物などの材料を含む正孔ブロッキング層および/または電子輸送層として働く1つ以上のさらなるバッファ層を含む。
式Iの化合物および共役ポリマーを含む本発明に係る組成物において、ポリマー:式Iの化合物の比率は、好ましくは、重量基準で5:1〜1:5、より好ましくは、重量基準で3:1〜1:3、最も好ましくは、重量基準で2:1〜1:2である。
本発明に係る組成物は、ポリマーバインダ、好ましくは、0.001〜95重量%も含み得る。バインダの例としては、ポリスチレン(PS:polystyrene)、ポリジメチルシラン(PDMS:polydimethylsilane)、ポリプロピレン(PP:polypropylene)およびポリメチルメタクリレート(PMMA:polymethylmethacrylate)が挙げられる。
好ましくはポリマーである、上述される配合物に使用されるバインダは、絶縁バインダもしくは半導体バインダ、またはそれらの混合物のいずれかを含んでいてもよく、本明細書において、有機バインダ、ポリマーバインダまたは単にバインダと呼ばれ得る。
好ましくは、ポリマーバインダは、1000〜5,000,000g/mol、特に、1500〜1,000,000g/mol、より好ましくは、2000〜500,000g/molの範囲の重量平均分子量を含む。少なくとも10000g/mol、より好ましくは、少なくとも100000g/molの重量平均分子量を有するポリマーで、驚くべき効果が得られる。
特に、ポリマーは、1.0〜10.0の範囲、より好ましくは、1.1〜5.0の範囲、最も好ましくは、1.2〜3の範囲の多分散指数M/Mを有し得る。
好ましくは、不活性バインダは、−70〜160℃、好ましくは、0〜150℃、より好ましくは、50〜140℃および最も好ましくは、70〜130℃の範囲のガラス転移温度を有するポリマーである。ガラス転移温度は、ポリマーのDSC(DIN EN ISO 11357、加熱速度10℃/分)を測定することによって決定され得る。
ポリマーバインダ対OSC化合物の重量比は、式Iのものと同様に、好ましくは、30:1〜1:30の範囲、特に、5:1〜1:20の範囲、より好ましくは、1:2〜1:10の範囲である。
好ましい実施形態によれば、バインダは、好ましくは、スチレンモノマーおよび/またはオレフィンモノマーに由来する繰返し単位を含む。好ましいポリマーバインダは、少なくとも80%、好ましくは、90%、より好ましくは、99重量%の、スチレンモノマーおよび/またはオレフィンに由来する繰返し単位を含み得る。
スチレンモノマーは、当該技術分野において周知である。これらのモノマーとしては、スチレン、側鎖中にアルキル置換基を有する置換スチレン、例えば、α−メチルスチレンおよびα−エチルスチレン、環上にアルキル置換基を有する置換スチレン、例えば、ビニルトルエンおよびp−メチルスチレン、ハロゲン化スチレン、例えば、モノクロロスチレン、ジクロロスチレン、トリブロモスチレンおよびテトラブロモスチレンが挙げられる。
オレフィンモノマーは、水素および炭素原子からなる。これらのモノマーとしては、エチレン、プロピレン、ブチレン、イソプレンおよび1,3−ブタジエンが挙げられる。
本発明の好ましい実施形態によれば、ポリマーバインダは、50,000〜2,000,000g/mol、好ましくは、100,000〜750,000g/molの範囲、より好ましくは、150,000〜600,000g/molの範囲、最も好ましくは、200,000〜500,000g/molの範囲の重量平均分子量を有するポリスチレンである。
好適なバインダのさらなる例は、例えば、米国特許出願公開第2007/0102696 A1号明細書に開示されている。特に好適なおよび好ましいバインダは、以下に記載されている。
バインダは、好ましくは、フィルム、より好ましくは、可撓性フィルムを形成することが可能である。
バインダとして好適なポリマーとしては、ポリ(1,3−ブタジエン)、ポリフェニレン、ポリスチレン、ポリ(α−メチルスチレン)、ポリ(α−ビニルナフタレン)、ポリ(ビニルトルエン)、ポリエチレン、シス−ポリブタジエン、ポリプロピレン、ポリイソプレン、ポリ(4−メチル−1−ペンテン)、ポリ(4−メチルスチレン)、ポリ(クロロトリフルオロエチレン)、ポリ(2−メチル−1,3−ブタジエン)、ポリ(p−キシリレン)、ポリ(α−α−α’−α’テトラフルオロ−p−キシリレン)、ポリ[1,1−(2−メチルプロパン)ビス(4−フェニル)カーボネート]、ポリ(シクロヘキシルメタクリレート)、ポリ(クロロスチレン)、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、ポリイソブチレン、ポリ(ビニルシクロヘキサン)、ポリ(ケイ皮酸ビニル)、ポリ(4−ビニルビフェニル)、1,4−ポリイソプレン、ポリノルボルネン、ポリ(スチレン−ブロック−ブタジエン);31重量%のスチレン、ポリ(スチレン−ブロック−ブタジエン−ブロック−スチレン);
30重量%のスチレン、ポリ(スチレン−コ−無水マレイン酸)(およびエチレン/ブチレン)1〜1.7%の無水マレイン酸、ポリ(スチレン−ブロック−エチレン/ブチレン−ブロック−スチレン)トリブロックポリマー13%のスチレン、ポリ(スチレン−ブロック−エチレン−プロピレン−ブロック−スチレン)トリブロックポリマー37重量%のスチレン、ポリ(スチレン−ブロック−エチレン/ブチレン−ブロック−スチレン)トリブロックポリマー29重量%のスチレン、ポリ(1−ビニルナフタレン)、ポリ(1−ビニルピロリドン−コ−スチレン)64%のスチレン、ポリ(1−ビニルピロリドン−コ−酢酸ビニル)1.3:1、ポリ(2−クロロスチレン)、ポリ(2−ビニルナフタレン)、ポリ(2−ビニルピリジン−コ−スチレン)1:1、ポリ(4,5−ジフルオロ−2,2−ビス(CF3)−1,3−ジオキソール−コ−テトラフルオロエチレン)テフロン(登録商標)(Teflon)、ポリ(4−クロロスチレン)、ポリ(4−メチル−1−ペンテン)、ポリ(4−メチルスチレン)、ポリ(4−ビニルピリジン−コ−スチレン)1:1、ポリ(α−メチルスチレン)、ポリ(ブタジエン−グラフト−ポリ(メチルアクリレート−コ−アクリロニトリル))1:1:1、ポリ(ブチルメタクリレート−コ−イソブチルメタクリレート)1:1、ポリ(ブチルメタクリレート−コ−メチルメタクリレート)1:1、ポリ(シクロヘキシルメタクリレート)、ポリ(エチレン−コ−1−ブテン−コ−1−ヘキセン)1:1:1、ポリ(エチレン−コ−エチルアクリレート−コ−無水マレイン酸);2%の無水物、32%のエチルアクリレート、ポリ(エチレン−コ−グリシジルメタクリレート)8%のグリシジルメタクリレート、ポリ(エチレン−コ−メチルアクリレート−コ−グリシジルメタクリレート)8%のグリシジルメタクリレート25%のメチルアクリレート、
ポリ(エチレン−コ−オクテン)1:1、ポリ(エチレン−コ−プロピレン−コ−5−メチレン−2−ノルボルネン)50%のエチレン、ポリ(エチレン−コ−テトラフルオロエチレン)1:1、
ポリ(イソブチルメタクリレート)、ポリ(イソブチレン)、ポリ(メチルメタクリレート)−コ−(フルオレセインO−メタクリレート)80%のメチルメタクリレート、ポリ(メチルメタクリレート−コ−ブチルメタクリレート)85%のメチルメタクリレート、ポリ(メチルメタクリレート−コ−エチルアクリレート)5%のエチルアクリレート、ポリ(プロピレン−コ−ブテン)12%の1−ブテン、ポリ(スチレン−コ−アリルアルコール)40%のアリルアルコール、ポリ(スチレン−コ−無水マレイン酸)7%の無水マレイン酸、クメン末端ポリ(スチレン−コ−無水マレイン酸)(1.3:1)、ポリ(スチレン−コ−メチルメタクリレート)40%のスチレン、ポリ(ビニルトルエン−コ−α−メチルスチレン)1:1、ポリ−2−ビニルピリジン、ポリ−4−ビニルピリジン、ポリ−α−ピネン、ポリメチルメタクリレート、ポリベンジルメタクリレート、ポリエチルメタクリレート、ポリエチレン、ポリエチレンテレフタレート、ポリエチレン−コ−エチルアクリレート18%のエチルアクリレート、ポリエチレン−コ−酢酸ビニル12%の酢酸ビニル、ポリエチレン−グラフト−無水マレイン酸0.5%の無水マレイン酸、ポリプロピレン、ポリプロピレン−グラフト−無水マレイン酸8〜10%の無水マレイン酸、ポリスチレンポリ(スチレン−ブロック−エチレン/ブチレン−ブロック−スチレン)グラフト無水マレイン酸2%の無水マレイン酸1:1:1その他、分枝鎖状ポリ(スチレン−ブロック−ブタジエン)1:1、ポリ(スチレン−ブロック−ブタジエン−ブロック−スチレン)、30%のスチレン、ポリ(スチレン−ブロック−イソプレン)10重量%のスチレン、ポリ(スチレン−ブロック−イソプレン−ブロック−スチレン)17重量%のスチレン、ポリ(スチレン−コ−4−クロロメチルスチレン−コ−4−メトキシメチルスチレン2:1:1、ポリスチレン−コ−アクリロニトリル25%のアクリロニトリル、ポリスチレン−コ−α−メチルスチレン1:1、
ポリスチレン−コ−ブタジエン4%のブタジエン、ポリスチレン−コ−ブタジエン
45%のスチレン、ポリスチレン−コ−クロロメチルスチレン1:1、ポリ塩化ビニル、
ポリケイ皮酸ビニル、ポリビニルシクロヘキサン、ポリフッ化ビニリデン、
ポリフッ化ビニリデン−コ−ヘキサフルオロプロピレン推定1:1、ポリ(スチレン−ブロック−エチレン/プロピレン−ブロック−スチレン)30%のスチレン、ポリ(スチレン−ブロック−エチレン/プロピレン−ブロック−スチレン)18%のスチレン、ポリ(スチレン−ブロック−エチレン/プロピレン−ブロック−スチレン)13%のスチレン、ポリ(スチレン−ブロックエチレンブロック−エチレン/プロピレン−ブロックスチレン)32%のスチレン、ポリ(スチレン−ブロックエチレンブロック−エチレン/プロピレン−ブロックスチレン)30%のスチレン、ポリ(スチレン−ブロック−エチレン/ブチレン−ブロック−スチレン)31%のスチレン、ポリ(スチレン−ブロック−エチレン/ブチレン−ブロック−スチレン)34%のスチレン、ポリ(スチレン−ブロック−エチレン/ブチレン−ブロック−スチレン)30%のスチレン、ポリ(スチレン−ブロック−エチレン/ブチレン−ブロック−スチレン)60%、スチレン、分枝鎖状または非分枝鎖状ポリスチレン−ブロック−ポリブタジエン、ポリスチレン−ブロック(ポリエチレン−ran−ブチレン)−ブロック−ポリスチレン、ポリスチレン−ブロック−ポリブタジエン−ブロック−ポリスチレン、ポリスチレン−(エチレン−プロピレン)−ジブロック−コポリマー(例えばクラトン(KRATON)(登録商標)−G1701E、シェル(Shell))、ポリ(プロピレン−コ−エチレン)およびポリ(スチレン−コ−メチルメタクリレート)が挙げられる。
上述される配合物に使用される好ましい絶縁バインダは、ポリスチレン、ポリ(α−メチルスチレン)、ポリケイ皮酸ビニル、ポリ(4−ビニルビフェニル)、ポリ(4−メチルスチレン)、およびポリメチルメタクリレートである。最も好ましい絶縁バインダは、ポリスチレンおよびポリメチルメタクリレートである。
バインダはまた、例えばアクリレート、エポキシ、ビニルエーテル、チオレンなどのような架橋性バインダから選択され得る。バインダはまた、メソゲンまたは液晶性であり得る。
有機バインダは、それ自体が半導体であってもよく、その場合、それは、本明細書において、半導体バインダと呼ばれる。半導体バインダは、さらに好ましくは、本明細書に定義される低誘電率のバインダである。本発明に使用するための半導体バインダは、好ましくは、少なくとも1500〜2000、より好ましくは、少なくとも3000、さらにより好ましくは、少なくとも4000、最も好ましくは、少なくとも5000の数平均分子量(M)を有する。半導体バインダは、好ましくは、少なくとも10−5cm−1−1、より好ましくは、少なくとも10−4cm−1−1の電荷担体移動度を有する。
好ましい半導体バインダは、アリールアミン(好ましくは、トリアリールアミン)を含有するホモポリマーまたはコポリマー(ブロック−コポリマーを含む)を含む。
BHJ OPVデバイスにおける薄層を製造するために、本発明の化合物、組成物および配合物は、任意の好適な方法によって堆積され得る。デバイスの液体コーティングは、真空蒸着技術より望ましい。溶液堆積法が特に好ましい。本発明の配合物は、多くの液体コーティング技術の使用を可能にする。好ましい堆積技術としては、限定はされないが、ディップコーティング、スピンコーティング、インクジェット印刷、ノズル印刷、レタープレス印刷、スクリーン印刷、グラビア印刷、ドクターブレードコーティング、ローラ印刷、逆ローラ印刷、オフセットリソグラフィー印刷、ドライオフセットリソグラフィー印刷、フレキソ印刷、ウェブ印刷、スプレーコーティング、カーテンコーティング、ブラシコーティング、スロットダイコーティングまたはパッド印刷が挙げられる。OPVデバイスおよびモジュールの作製では、例えばスロットダイコーティング、スプレーコーティングなどの、可撓性基板と適合する領域印刷方法が好ましい。
式Iの化合物およびポリマーの混合物を含有する好適な溶液または配合物が調製されなければならない。配合物の調製において、好適な溶媒は、両方の構成要素、p型およびn型の完全な溶解を確実にし、選択された印刷方法によって導入される境界条件(例えばレオロジー特性)を考慮に入れるように選択されなければならない。
有機溶媒は、一般に、この目的のために使用される。典型的な溶媒は、芳香族溶媒、ハロゲン化溶媒または塩素化溶媒(塩素化芳香族溶媒を含む)であり得る。例としては、限定はされないが、クロロベンゼン、1,2−ジクロロベンゼン、クロロホルム、1,2−ジクロロエタン、ジクロロメタン、四塩化炭素、トルエン、シクロヘキサノン、酢酸エチル、テトラヒドロフラン、アニソール、2,4−ジメチルアニソール、1−メチルナフタレン、モルホリン、トルエン、o−キシレン、m−キシレン、p−キシレン、1,4−ジオキサン、アセトン、メチルエチルケトン、1,2−ジクロロエタン、1,1,1−トリクロロエタン、1,1,2,2−テトラクロロエタン、酢酸エチル、酢酸n−ブチル、N,N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,5−ジメチルテトラリン、プロピオフェノン、アセトフェノン、テトラリン、2−メチルチオフェン、3−メチルチオフェン、デカリン、インダン、安息香酸メチル、安息香酸エチル、メシチレンおよびそれらの組合せが挙げられる。
OPVデバイスは、例えば、文献から公知の任意のタイプのものであり得る(例えば、ウォルドーフ(Waldauf)ら著、アプライド・フィジックス・レターズ(Appl.Phys.Lett.)、2006、89、233517を参照されたい)。
本発明に係る第1の好ましいOPVデバイスは、(下から上への順序で)以下の層:
−任意選択的に、基板、
−好ましくは、アノードとして働く、例えばITOのような金属酸化物を含む高仕事関数電極、
−好ましくは、例えば、PEDOT:PSS(ポリ(3,4−エチレンジオキシチオフェン):ポリ(スチレン−スルホネート)、またはTBD(N,N’−ジフェニル−N−N’−ビス(3−メチルフェニル)−1,1’ビフェニル−4,4’−ジアミン)もしくはNBD(N,N’−ジフェニル−N−N’−ビス(1−ナフチルフェニル)−1,1’ビフェニル−4,4’−ジアミン)の有機ポリマーまたはポリマーブレンドを含む、任意選択的な伝導性ポリマー層または正孔輸送層、
−例えば、p型/n型二重層または異なるp型およびn型層として、またはブレンドもしくはp型およびn型半導体として存在することができ、BHJを形成する、p型およびn型有機半導体を含む、「光活性層」とも呼ばれる層、
−任意選択的に、例えば、LiFまたはPFNを含む、電子輸送特性を有する層、
−好ましくは、カソードとして働く、例えば、アルミニウムのような金属を含む低仕事関数電極、
を含み、ここで、電極、好ましくは、アノードの少なくとも1つが、可視光に対して透過性であり、
n型半導体が、式Iの化合物である。
本発明に係る第2の好ましいOPVデバイスは、逆型OPVデバイスであり、(下から上への順序で)以下の層:
−任意選択的に、基板、
−カソードとして働く、例えば、ITOを含む、高仕事関数の金属または金属酸化物電極、
−好ましくは、TiO、ZnO、Ca、Mg、ポリ(エチレンイミン)、エトキシ化ポリ(エチレンイミン)またはポリ[(9,9−ビス(3’−(N,N−ジメチルアミノ)プロピル)−2,7−フルオレン)−alt−2,7−(9,9−ジオクチルフルオレン)]のような、有機ポリマー、ポリマーブレンド、金属または金属酸化物を含む、正孔ブロッキング特性を有する層、
−例えば、p型/n型二重層または異なるp型およびn型層として、またはブレンドもしくはp型およびn型半導体として存在することができ、BHJを形成する、電極間に位置する、p型およびn型有機半導体を含む光活性層、
−好ましくは、有機ポリマーまたはポリマーブレンド、金属または金属酸化物、例えばPEDOT:PSS、ナフィオン(nafion)、例えばTBDもしくはNBDのような置換トリアリールアミン誘導体、またはWO、MoO、NiO、PdまたはAuを含む、任意選択的な伝導性ポリマー層または正孔輸送層、
−アノードとして働く、例えば銀のような高仕事関数の金属を含む電極
を含み、ここで、電極、好ましくは、カソードの少なくとも1つが、可視光に対して透過性であり、
n型半導体が、式Iの化合物である。
本発明のOPVデバイスにおいて、p型およびn型半導体材料は、好ましくは、上述されるように、化合物/ポリマー/フラーレン系のような材料から選択される。
光活性層が、基板上に堆積される場合、それは、ナノスケールレベルで相分離するBHJを形成する。ナノスケール相分離の説明については、デンラー(Dennler)ら著、IEEE予稿集(Proceedings of the IEEE)、2005、93(8)、1429またはホップ(Hoppe)ら著、アドバンスト・ファンクショナル・マテリアルズ(Adv.Func.Mater)、2004、14(10)、1005を参照されたい。その際、ブレンドモルホロジー、ひいてはOPVデバイス性能を最適化するために、任意選択的なアニール工程が必要であり得る。
デバイス性能を最適化するための別の方法は、相分離を適切な方法で促進するために高沸点添加剤を含み得るOPV(BHJ)デバイスの作製のための配合物を調製することである。1,8−オクタンジチオール、1,8−ジヨードオクタン、ニトロベンゼン、クロロナフタレン、および他の添加剤が、高効率の太陽電池を得るために使用されている。例が、J.ピート(J.Peet)ら著、ネイチャー・マテリアルズ(Nat.Mater.)、2007、6、497またはフレチェット(Frechet)ら著、米国化学会誌(J.Am.Chem.Soc.)、2010、132、7595〜7597に開示されている。
本発明の別の好ましい実施形態は、DSSCまたはPSCにおける色素、正孔輸送層、正孔ブロッキング層、電子輸送層および/または電子ブロッキング層としての本発明に係る化合物または組成物の使用、ならびに本発明に係る化合物または組成物を含むDSSCまたはペロブスカイト系太陽電池(PSC)に関する。
DSSCおよびPSCは、文献、例えば、ケミカル・レビューズ(Chem.Rev.)2010、110、6595−6663、アンゲヴァンテ・ケミー・インターナショナル・エディション(Angew.Chem.Int.Ed.)2014、53、2−15または国際公開第2013171520A1号パンフレットに記載されるように製造され得る。
本発明に係る好ましいOEデバイスは、太陽電池、好ましくは、後述されるように、少なくとも部分的に無機である光吸収体を含むPSCである。
本発明に係る光吸収体を含む太陽電池において、少なくとも部分的に無機である光吸収体材料の選択に関して、それ自体制限はない。
「少なくとも部分的に無機である」という用語は、光吸収体材料が、実質的に無機である金属有機錯体または材料から選択されてもよく、好ましくは、結晶構造中の単一の位置に有機イオンが割り当てられ得る結晶構造を有することを意味する。
好ましくは、本発明に係る太陽電池に含まれる光吸収体は、2.8eV以下かつ0.8eV以上の光学的バンドギャップを有する。
非常に好ましくは、本発明に係る太陽電池中の光吸収体は、2.2eV以下かつ1.0eV以上の光学的バンドギャップを有する。
本発明に係る太陽電池に使用される光吸収体は、好ましくは、フラーレンを含有しない。フラーレンの化学は、有機化学の分野に属する。したがって、フラーレンは、本発明に係る「少なくとも部分的に無機である」の定義を満たさない。
好ましくは、少なくとも部分的に無機である光吸収体は、ペロブスカイト構造を有する材料または2D結晶ペロブスカイト構造を有する材料である。
上記および以下で使用される際の「ペロブスカイト」という用語は、一般に、ペロブスカイト結晶構造または2D結晶ペロブスカイト構造を有する材料を示す。
ペロブスカイト太陽電池(PSC)という用語は、ペロブスカイト構造を有する材料または2D結晶ペロブスカイト構造を有する材料である光吸収体を含む太陽電池を意味する。
少なくとも部分的に無機である光吸収体は、限定はされないが、ペロブスカイト結晶構造を有する材料、2D結晶ペロブスカイト構造を有する材料(例えばCrystEngComm、2010、12、2646〜2662)、Sb(輝安鉱)、Sb(SSe(x−1)3、PbSSe(x−1)、CdSSe(x−1)、ZnTe、CdTe、ZnSSe(x−1)、InP、FeS、FeS、Fe、FeSiS、FeGeS、CuS、CuInGa、CuIn(Se(1−x)、CuSbBi(x−1)、(SSe(y−1)、CuSnS、SnSSe(x−1)、AgS、AgBiS、BiSI、BiSeI、Bi(SSe(x−1)、BiS(1−x)SeI、WSe、AlSb、金属ハロゲン化物(例えばBiI、CsSnI)、黄銅鉱(例えばCuInGa(1−x)(SSe(1−y))、ケステライト(例えばCuZnSnS、CuZnSn(Se(1−x)4、CuZn(Sn1−xGe)S)および金属酸化物(例えばCuO、CuO)またはそれらの混合物から構成される。
好ましくは、少なくとも部分的に無機である光吸収体は、ペロブスカイトである。
光吸収体についての上記の定義において、xおよびyがそれぞれ、独立して、以下のように定義される:(0≦x≦1)かつ(0≦y≦1)。
非常に好ましくは、光吸収体は、特殊なペロブスカイト、すなわち、上記および以下に詳細に記載される金属ハロゲン化物ペロブスカイトである。最も好ましくは、光吸収体は、ペロブスカイト太陽電池(PSC)に含まれる有機−無機ハイブリッド金属ハロゲン化物ペロブスカイトである。
本発明の特に好ましい一実施形態において、ペロブスカイトは、式ABXで表される金属ハロゲン化物ペロブスカイトを示し、式中、
Aが、一価有機カチオン、金属カチオンまたはこれらのカチオンの2つ以上の混合物であり、
Bが、二価カチオンであり、
Xが、F、Cl、Br、I、BFまたはそれらの組合せである。
好ましくは、ペロブスカイトの一価有機カチオンは、アルキルアンモニウム(ここで、アルキル基が、1〜6個のC原子を有し、直鎖状または分枝鎖状である)、ホルムアミジニウムまたはグアニジウムから選択され、またはここで、金属カチオンは、K、CsまたはRbから選択される。
好適なおよび好ましい二価カチオンBは、Ge2+、Sn2+またはPb2+である。
好適なおよび好ましいペロブスカイト材料は、CsSnI、CHNHPb(I1−xCl、CHNHPbI3、CHNHPb(I1−xBr、CHNHPb(I1−x(BF、CHNHSn(I1−xCl、CHNHSnIまたはCHNHSn(I1−xBrであり、ここで、xがそれぞれ、独立して、以下のように定義される:(0<x≦1)。
さらなる好適なおよび好ましいペロブスカイトは、式Xa(3−x)Xb(x)に対応する2つのハロゲン化物を含んでもよく、式中、XaおよびXbがそれぞれ、独立して、Cl、Br、またはIから選択され、xが、0超かつ3未満である。
好適なおよび好ましいペロブスカイトはまた、全体が参照により本明細書に援用される国際公開第2013/171517号パンフレット、請求項52〜71および請求項72〜79に開示されている。材料は、ハロゲン化物アニオンおよびカルコゲニドアニオンから選択される2つ以上の異なるアニオンを含む混合アニオンペロブスカイトとして定義される。好ましいペロブスカイトは、p.18、5〜17行に開示されている。記載されているように、ペロブスカイトは、通常、CHNHPbBrI、CHNHPbBrCl、CHNHPbIBr、CHNHPbICl、CHNHSnFBr、CHNHSnFIおよび(HN=CH−NH)PbI3zBr3(1−z)から選択され、ここで、zが、0超かつ1未満である。
本発明は、上記および以下に記載される、光吸収体、好ましくは、PSCを含む太陽電池にさらに関し、ここで、式Iの化合物が、1つの電極と光吸収体層との間の層として用いられる。
本発明は、上記および以下に記載される、光吸収体、好ましくは、PSCを含む太陽電池にさらに関し、ここで、式Iの化合物が、電子選択層に含まれる。
電子選択層は、電子−電荷輸送に有利に働くよう、高い電子伝導性および低い正孔伝導性を提供する層として定義される。
本発明は、上記および以下に記載される、光吸収体、好ましくは、PSCを含む太陽電池にさらに関し、ここで、式Iの化合物が、電子選択層の一部として、電子輸送材料(ETM)として、または正孔ブロッキング材料として用いられる。
好ましくは、式Iの化合物は、電子輸送材料(ETM)として用いられる。
代替的な好ましい実施形態において、式Iの化合物は、正孔ブロッキング材料として用いられる。
本発明に係るPSCデバイスのデバイス構造は、文献から公知の任意のタイプのものであり得る。
本発明に係るPSCデバイスの第1の好ましいデバイス構造は、(下から上への順序で)以下の層:
−任意選択的に、任意の組合せで、可撓性もしくは剛性および透明、半透明もしくは不透明および導電性もしくは非導電性であり得る基板;
−好ましくは、ドープされた金属酸化物、例えばフッ素がドープされた酸化スズ(FTO)、スズがドープされた酸化インジウム(ITO)、またはアルミニウムがドープされた酸化亜鉛を含む、高仕事関数電極;
−1つ以上の電子輸送材料を含む電子選択層であって、電子輸送材料の少なくとも1つが、式Iの化合物であり、場合によっては、緻密層でもあり得、および/またはナノ粒子から構成され得、好ましくは、TiO、ZnO、SnO、Y、Ga、SrTiO、BaTiOまたはそれらの組合せなどの金属酸化物を含む電子選択層;
−任意選択的に、導電性、半導電性または絶縁性であり得、好ましくは、TiO、ZnO、SnO、Y、Ga、SrTiO、BaTiO、Al、ZrO、SiOまたはそれらの組合せなどの金属酸化物を含み、好ましくは、ナノ粒子、ナノロッド、ナノフレーク、ナノチューブまたはナノカラムから構成される多孔性骨格;
−少なくとも部分的に無機である光吸収体、特に好ましくは、上述される金属ハロゲン化物ペロブスカイトを含む層であって、場合によっては、緻密層または多孔性層でもあり得、任意選択的に、部分的または完全に下層に浸透する層;
−任意選択的に、正孔選択層であって、1つ以上の正孔輸送材料を含み、場合によっては、リチウム塩、例えばLiY(ここで、Yが一価有機アニオンである)、好ましくは、ビス(トリフルオロメチルスルホニル)イミド、第三級アミン、例えば4−tert−ブチルピリジン、または任意の他の共有結合もしくはイオン性化合物、例えばトリス(2−(1H−ピラゾール−1−イル)−4−tert−ブチルピリジン)−コバルト(III)トリス(ビス(トリフルオロメチルスルホニル)イミド))などの添加剤も含むことができ、正孔選択層の特性、例えば導電性を促進することができ、および/またはその加工を容易にする正孔選択層;
および金属製、例えばAu、Ag、Al、Cu、Ca、Niまたはそれらの組合せで作製され、もしくは非金属製であり、透明、半透明もしくは不透明であり得る裏面電極
を含む。
本発明に係るPSCデバイスの第2の好ましいデバイス構造は、(下から上への順序で)以下の層:
−任意選択的に、任意の組合せで、可撓性もしくは剛性および透明、半透明もしくは不透明および導電性もしくは非導電性であり得る基板;
−好ましくは、ドープされた金属酸化物、例えばフッ素がドープされた酸化スズ(FTO)、スズがドープされた酸化インジウム(ITO)、またはアルミニウムがドープされた酸化亜鉛を含む、高仕事関数電極;
−任意選択的に、例えば、下層電極の仕事関数を変化させ、および/または下層の表面を改質し、および/または下層の粗面を平坦化するのを助け、場合によっては、単層でもあり得る正孔注入層;
−任意選択的に、正孔選択層であって、1つ以上の正孔輸送材料を含み、場合によっては、リチウム塩、例えばLiY(ここで、Yが一価有機アニオンである)、好ましくは、ビス(トリフルオロメチルスルホニル)イミド、第三級アミン、例えば4−tert−ブチルピリジン、または任意の他の共有結合もしくはイオン性化合物、例えばトリス(2−(1H−ピラゾール−1−イル)−4−tert−ブチルピリジン)−コバルト(III)トリス(ビス(トリフルオロメチルスルホニル)イミド))などの添加剤も含むことができ、正孔選択層の特性、例えば導電性を促進することができ、および/またはその加工を容易にする正孔選択層;
−少なくとも部分的に無機である光吸収体、特に好ましくは、記載されるもしくは好ましくは上述される金属ハロゲン化物ペロブスカイトを含む層;
−1つ以上の電子輸送材料を含む電子選択層であって、電子輸送材料の少なくとも1つが、式Iの化合物であり、場合によっては、緻密層でもあり得、および/またはナノ粒子から構成され得、例えば、TiO、ZnO、SnO、Y、Ga、SrTiO、BaTiOまたはそれらの組合せなどの金属酸化物を含むことができ、および/または置換フラーレン、例えば[6,6]−フェニルC61−酪酸メチルエステルを含むことができ、および/または分子、オリゴマーまたはポリマー電子輸送材料、例えば2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、またはそれらの混合物を含むことができる電子選択層;
および金属製、例えばAu、Ag、Al、Cu、Ca、Niまたはそれらの組合せで作製され、もしくは非金属製であり、透明、半透明もしくは不透明であり得る裏面電極
を含む。
本発明に係るPSCデバイス中の電子選択層を製造するために、式Iの化合物は、任意選択的に、ブレンドまたは混合物の形態で、他の化合物または添加剤と一緒に、任意の好適な方法によって堆積され得る。デバイスの液体コーティングは、真空蒸着技術より望ましい。溶液堆積法が特に好ましい。式Iの化合物を含む配合物は、多くの液体コーティング技術の使用を可能にする。好ましい堆積技術としては、限定はされないが、ディップコーティング、スピンコーティング、インクジェット印刷、ノズル印刷、レタープレス印刷、スクリーン印刷、グラビア印刷、ドクターブレードコーティング、ローラ印刷、逆ローラ印刷、オフセットリソグラフィー印刷、ドライオフセットリソグラフィー印刷、フレキソ印刷、ウェブ印刷、スプレーコーティング、カーテンコーティング、ブラシコーティング、スロットダイコーティングまたはパッド印刷が挙げられる。PSCデバイスおよびモジュールの作製では、広い面積のコーティングのための堆積技術、例えばスロットダイコーティングまたはスプレーコーティングが好ましい。
本発明に係る光電子デバイス中、好ましくは、PSCデバイス中の電子選択層を製造するのに使用され得る配合物は、式Iの1つ以上の化合物、または任意選択的に、1つ以上のさらなる電子輸送材料および/または正孔ブロッキング材料および/またはバインダおよび/または上記および以下に記載される他の添加剤、および1つ以上の溶媒と一緒に、ブレンドまたは混合物の形態で上述される好ましい実施形態を含む。
配合物は、上記または以下に記載される前記必要なまたは任意選択的な成分を包含する、または含む、それから本質的になる、またはそれからなり得る。配合物に使用され得る全ての化合物または構成要素は、公知であるかまたは市販されており、または公知の方法によって合成され得る。
上述される配合物は、
(i)まず、式Iの化合物、任意選択的に、バインダまたは上述されるバインダの前駆体、任意選択的に、さらなる電子輸送材料、任意選択的に、上記および以下に記載される1つ以上のさらなる添加剤および上記および以下に記載される溶媒または溶媒混合物を混合し、
(ii)このような混合物を、基板に適用し;任意選択的に、溶媒を蒸発させて、本発明に係る電子選択層を形成すること
を含む方法によって調製され得る。
工程(i)において、溶媒は、式Iの化合物用の単一の溶媒であり得、有機バインダおよび/またはさらなる電子輸送材料がそれぞれ、別個の溶媒に溶解された後、得られる溶液を混合して、化合物を混合し得る。
あるいは、バインダは、任意選択的に、溶媒の存在下で、式Iの化合物を、バインダの前駆体、例えば液体モノマー、オリゴマーまたは架橋性ポリマー中で混合するかまたは溶解させ、混合物または溶液を、例えばそれを浸漬、噴霧、塗布または印刷することによって、基板上に堆積して、液体層を形成し、次に、液体モノマー、オリゴマーまたは架橋性ポリマーを、例えば放射線、熱または電子線によって硬化して、固体層を生成することによって、インサイチュで形成され得る。予め形成されたバインダが使用される場合、それは、上述される好適な溶媒中で、化合物式Iと一緒に溶解され、溶液は、例えばそれを浸漬、噴霧、塗布または印刷することによって、基板上に堆積されて、液体層を形成し、次に、溶媒を除去して、固体層を残し得る。配合物の全ての成分を溶解させることが可能であり、溶液ブレンドからの蒸発により、一貫した欠陥のない層を生じる溶媒が選択されることが理解されるであろう。
前記構成要素に加えて、上述される配合物は、さらなる添加剤および加工助剤を含み得る。これらとしては、特に、表面活性物質(界面活性剤)、潤滑剤およびグリース、粘度を調節する添加剤、導電性を高める添加剤、分散剤、疎水化剤、接着促進剤、流動性向上剤、消泡剤、脱気剤、反応性もしくは非反応性であり得る希釈剤、充填剤、助剤、加工助剤、色素、顔料、安定剤、増感剤、ナノ粒子および阻害剤が挙げられる。
添加剤は、電子選択層の特性および/または隣接する層のいずれかの特性および/または本発明に係る光電子デバイスの性能を高めるのに使用され得る。添加剤はまた、電子選択層の堆積、加工または形成および/または隣接する層のいずれかの堆積、加工または形成を容易にするのに使用され得る。好ましくは、電子選択層の導電性を高め、および/または隣接する層のいずれかの表面を不動態化する1つ以上の添加剤が使用される。
1つ以上の添加剤を組み込むための好適な方法は、例えば、大気圧もしくは減圧での添加剤の蒸気への曝露、1つ以上の添加剤および記載されるもしくは好ましくは上述される材料もしくは配合物を含有する溶液もしくは固体を混合すること、上述される材料もしくは配合物への1つ以上の添加剤の熱拡散によって、または上述される材料もしくは配合物への1つ以上の添加剤のイオン注入によって、1つ以上の添加剤を、上述される材料もしくは配合物と接触させることを含む。
この目的のために使用される添加剤は、有機、無機、金属またはハイブリッド材料であり得る。添加剤は、分子化合物、例えば有機分子、塩、イオン性液体、配位錯体または有機金属化合物、ポリマーまたはそれらの混合物であり得る。添加剤はまた、粒子、例えばハイブリッドまたは無機粒子、好ましくは、ナノ粒子、またはフラーレン、カーボンナノチューブもしくはグラフェンフレークなどの炭素系材料であり得る。
導電性を高め得る添加剤の例は、例えばハロゲン(例えばI、Cl、Br、ICl、ICl、IBrおよびIF)、ルイス酸(例えばPF、AsF、SbF、BF、BCl、SbCl、BBrおよびSO)、プロトン酸、有機酸、またはアミノ酸(例えばHF、HCl、HNO、HSO、HClO、FSOHおよびClSOH)、遷移金属化合物(例えばFeCl、FeOCl、Fe(ClO、Fe(4−CHSO、TiCl、ZrCl、HfCl、NbF、NbCl、TaCl、MoF、MoCl、WF、WCl、UFおよびLnCl(ここで、Lnがランタノイドである))、アニオン(例えばCl、Br、I、I 、HSO 、SO 2−、NO 、ClO 、BF 、PF 、AsF 、SbF 、FeCl 、Fe(CN) 3−、およびアリール−SO などの様々なスルホン酸のアニオン)、カチオン(例えばH、Li、Na、K、Rb、Cs、Co3+およびFe3+)、O、酸化還元活性塩(例えばXeOF、(NO )(SbF )、(NO )(SbCl )、(NO )(BF )、NOBF、NOPF、AgClO、HIrClおよびLa(NO 6HO)、強電子受容性有機分子(例えば2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(F4−TCNQ:2,3,5,6−tetrafluoro−7,7,8,8−tetracyanoquinodimethane))、遷移金属酸化物(例えばWO、ReおよびMoO)、コバルト、鉄、ビスマスおよびモリブデンの金属−有機錯体、(p−BrCNSbCl、ビスマス(III)トリス(トリフルオロアセテート)、FSOOOSOF、アセチルコリン、R、(Rがアルキル基である)、R(Rが、直鎖状もしくは分枝鎖状アルキル基1〜20である)、RAs(Rがアルキル基である)、R(Rがアルキル基である)およびイオン性液体(例えば1−エチル−3−メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド)である。好適なコバルト錯体は、トリス(2−(1H−ピラゾール−1−イル)−4−tert−ブチルピリジン)−コバルト(III)トリス(ビス(トリフルオロメチルスルホニル)イミド))のほか、国際公開第2012/114315号パンフレット、国際公開第2012/114316号パンフレット、国際公開第2014/082706号パンフレット、国際公開第2014/082704号パンフレット、欧州特許第2883881号明細書または特開2013−131477号公報に記載されるコバルト錯体塩である。
好適なリチウム塩は、リチウムビス(トリフルオロメチルスルホニル)イミドのほか、リチウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、リチウムジシアナミド、硫酸リチウムメチル、リチウムトリフルオロメタンスルホネート、リチウムテトラシアノボレート、リチウムジシアナミド、リチウムトリシアノメチド、リチウムチオシアネート、塩化リチウム、臭化リチウム、ヨウ化リチウム、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、過塩素酸リチウム、ヘキサフルオロアンチモン酸リチウム、ヘキサフルオロヒ酸リチウムまたは2つ以上の組合せである。好ましいリチウム塩は、リチウムビス(トリフルオロメチルスルホニル)イミドである。
好ましくは、配合物は、0.1mM〜50mM、好ましくは、5〜20mMのリチウム塩を含む。
化合物式NIまたはIおよび混合ハロゲン化物ペロブスカイトを含むPSCのための好適なデバイス構造は、全体が参照により本明細書に援用される国際公開第2013/171517号パンフレット、請求項52〜71および請求項72〜79に記載されている。
化合物式および誘電体骨格を、ペロブスカイトと一緒に含むPSCのための好適なデバイス構造は、全体が参照により本明細書に援用される国際公開第2013/171518号パンフレット、請求項1〜90または国際公開第2013/171520号パンフレット、請求項1〜94に記載されている。
式Iの化合物、半導体およびペロブスカイトを含むPSCのための好適なデバイス構造は、全体が参照により本明細書に援用される国際公開第2014/020499号パンフレット、請求項1および3〜14に記載されている。そこに記載される表面を増大させる骨格構造は、支持層に適用および/または固定されるナノ粒子、例えば多孔性TiOを含む。
式Iの化合物を含み、かつ平面ヘテロ接合を含むPSCのための好適なデバイス構造は、全体が参照により本明細書に援用される国際公開第2014/045021号パンフレット、請求項1〜39に記載されている。このようなデバイスは、n型(電子伝導性)およびp型(正孔伝導性)層の間に配置される光吸収または発光ペロブスカイトの薄膜を有することを特徴とする。好ましくは、薄膜は、緻密な(compact)薄膜である。
本発明は、上記または以下に記載されるPSCを調製する方法であって、
−第1および第2の電極を提供する工程と;
−式Iの化合物を含む電子選択層を提供する工程と
を含む方法にさらに関する。
本発明は、上記および以下に記載される本発明に係る少なくとも1つのデバイスを含むタンデムデバイスにさらに関する。好ましくは、タンデムデバイスは、タンデム太陽電池である。
本発明に係るタンデムデバイスまたはタンデム太陽電池は、2つのセミセル(semi−cell)を有してもよく、ここで、セミセルの1つが、記載されるもしくは好ましくは上述される活性層中に化合物、オリゴマーまたはポリマーを含む。当該技術分野において公知の任意の他のタイプのデバイスまたは太陽電池であり得る他のタイプのセミセルの選択について制限は存在しない。
当該技術分野において公知の2つの異なるタイプのタンデム太陽電池がある。いわゆる2末端またはモノリシックタンデム太陽電池は、2つのみの接続を有する。2つのサブセル(subcell)(または同意語としてセミセル)は、直列に接続される。したがって、両方のサブセルにおいて生成される電流は同一である(電流整合)。電力変換効率の増加は、2つのサブセルの電圧が上昇するにつれて電圧が上昇することによる。他のタイプのタンデム太陽電池は、いわゆる4末端または積層タンデム太陽電池である。この場合、両方のサブセルは、独立して動作される。したがって、両方のサブセルは、異なる電圧で動作され得、異なる電流も生成し得る。タンデム太陽電池の電力変換効率は、2つのサブセルの電力変換効率の合計である。
本発明は、上述されるもしくは好ましくは上述される本発明に係るデバイスを含むモジュールにさらに関する。
本発明の化合物および組成物はまた、他の用途における色素または顔料として、例えば、着色塗料、インク、プラスチック、布帛、化粧品、食品および他の材料における、インク色素、レーザー色素、蛍光マーカ、溶媒色素、食品色素、造影剤または顔料として使用され得る。
本発明の化合物および組成物はまた、OFETの半導体チャネルに使用するのに好適である。したがって、本発明は、ゲート電極、絶縁(またはゲート絶縁体)層、ソース電極、ドレイン電極およびソースおよびドレイン電極を接続する有機半導体チャネルを含むOFETも提供し、ここで、有機半導体チャネルは、本発明に係る化合物および組成物を含む。OFETの他の特徴は、当業者に周知である。
ゲート誘電体と、ドレインおよびソース電極との間の薄膜としてOSC材料が配置されたOFETは、一般に知られており、例えば、米国特許第5,892,244号明細書、米国特許第5,998,804号明細書、米国特許第6,723,394号明細書および背景技術セクションに引用される参考文献に記載されている。本発明に係る化合物の溶解特性、ひいてはより大きい表面の加工性を用いる低コストの製造のような利点のため、これらのOFETの好ましい用途は、集積回路、TFTディスプレイおよびセキュリティ用途などである。
OFETデバイスにおけるゲート、ソースおよびドレイン電極ならびに絶縁および半導体層は、任意の順序で配置され得るが、ただし、ソースおよびドレイン電極は、絶縁層によってゲート電極と隔てられ、ゲート電極および半導体層は両方とも、絶縁層に接触し、ソース電極およびドレイン電極は両方とも、半導体層に接触する。
本発明に係るOFETデバイスは、好ましくは、
−ソース電極、
−ドレイン電極、
−ゲート電極、
−半導体層、
−1つ以上のゲート絶縁体層、
−任意選択的に、基板
を含む。
ここで、半導体層は、好ましくは、式Iの化合物を含む。
OFETデバイスは、トップゲート型デバイスまたはボトムゲート型デバイスであり得る。OFETデバイスの好適な構造および製造方法は、当業者に公知であり、文献、例えば、米国特許出願公開第2007/0102696 A1号明細書に記載されている。
ゲート絶縁体層は、好ましくは、例えば、市販のサイトップ(Cytop)809M(登録商標)またはサイトップ(Cytop)107M(登録商標)(旭硝子(Asahi Glass)製)のようなフルオロポリマーを含む。好ましくは、ゲート絶縁体層は、例えば、スピンコーティング、ドクターブレーディング、ワイヤバーコーティング、スプレーもしくはディップコーティングまたは他の公知の方法によって、絶縁体材料と、1つ以上のフルオロ原子を含む1つ以上の溶媒(フルオロ溶媒)、好ましくは、パーフルオロ溶媒とを含む配合物から堆積される。好適なパーフルオロ溶媒は、例えば、FC75(登録商標)(アクロス(Acros)から入手可能、カタログ番号12380)である。例えば、パーフルオロポリマーテフロン(登録商標)(Teflon)AF(登録商標)1600または2400(デュポン(DuPont)製)またはフルオロペル(Fluoropel)(登録商標)(サイトニクス(Cytonix)製)またはパーフルオロ溶媒FC 43(登録商標)(アクロス(Acros)、No.12377)のような他の好適なフルオロポリマーおよびフルオロ溶媒が先行技術において知られている。特に好ましいのは、例えば、米国特許出願公開第2007/0102696 A1号明細書または米国特許第7,095,044号明細書に開示されるように、1.0〜5.0、非常に好ましくは、1.8〜4.0の低い誘電性(または誘電率)を有する有機誘電材料(「低k材料」)である。
セキュリティ用途では、トランジスタまたはダイオードのような、本発明に係る半導体材料を有するOFETおよび他のデバイスは、紙幣のような有価証券、クレジットカードもしくはIDカード、国家身分証明書、免許証または切手、チケット、株式、小切手などのような金銭的価値を有する任意の製品を証明し、その偽造を防止するために、RFIDタグまたは安全保障マークに使用され得る。
あるいは、本発明に係る化合物および組成物(以後、「材料」と呼ばれる)は、例えばフラットパネルディスプレイ用途におけるアクティブディスプレイ材料として、または例えば液晶ディスプレイのようなフラットパネルディスプレイのバックライトとして、OLEDに使用され得る。一般的なOLEDは、多層構造を用いて実現される。発光層が、一般に、1つ以上の電子輸送層および/または正孔輸送層の間に挿入される。電圧を印加することによって、電荷担体としての電子および正孔が、発光層に向かって移動し、そこでそれらの再結合が、励起、ひいては、発光層に含まれるルモフォア(lumophor)単位のルミネセンスを引き起こす。本発明に係る材料は、それらの電気的および/または光学的特性に応じて、電荷輸送層の1つ以上および/または発光層に用いられ得る。さらに、本発明に係る材料が、それ自体でエレクトロルミネセント特性を示すか、またはエレクトロルミネセント基または化合物を含む場合、発光層内でのそれらの使用が、特に有利である。OLEDに使用するための好適なモノマー、オリゴマーおよびポリマー化合物または材料の選択、特性評価ならびに加工は、一般に、当業者に公知であり、例えば、ミューラー(Mueller)ら著、シンセティック・メタルズ(Synth.Metals)、2000、111〜112、31〜34、アルカラ(Alcala)、応用物理学会誌(J.Appl.Phys.)、2000、88、7124〜7128およびそれらの中に引用される文献を参照されたい。
別の使用によれば、本発明に係る材料、特に、フォトルミネセント特性を示すものは、欧州特許出願公開第0 889 350 A1号明細書において、またはC.ウェダー(C.Weder)ら著、サイエンス(Science)、1998、279、835〜837によって記載されるように、例えば、ディスプレイデバイスにおける光源の材料として用いられ得る。
本発明のさらなる態様は、本発明に係る材料の酸化型および還元型の両方に関する。電子の損失または獲得は、高伝導性を有する高度に非局在化されたイオン形態の形成をもたらす。これは、一般的なドーパントへの曝露の際に起こり得る。好適なドーパントおよびドーピング方法は、例えば、欧州特許第0 528 662号明細書、米国特許第5,198,153号明細書または国際公開第96/21659号パンフレットから、当業者に公知である。
ドーピングプロセスは、典型的に、酸化還元反応において、半導体材料を、酸化剤または還元剤で処理して、材料中に非局在化されたイオン中心を形成することを意味し、対応する対イオンは、適用されたドーパントから得られる。好適なドーピング方法は、例えば、大気圧もしくは減圧でのドーピング蒸気への曝露、ドーパントを含有する溶液中での電気化学的ドーピング、ドーパントを半導体材料と接触させて、熱的に拡散させること、および半導体材料中へのドーパントのイオン注入を含む。
電子が担体として使用される場合、好適なドーパントは、例えばハロゲン(例えば、I、Cl、Br、ICl、ICl、IBrおよびIF)、ルイス酸(例えば、PF、AsF、SbF、BF、BCl、SbCl、BBrおよびSO)、プロトン酸、有機酸、またはアミノ酸(例えば、HF、HCl、HNO、HSO、HClO、FSOHおよびClSOH)、遷移金属化合物(例えば、FeCl、FeOCl、Fe(ClO、Fe(4−CHSO、TiCl、ZrCl、HfCl、NbF、NbCl、TaCl、MoF、MoCl、WF、WCl、UFおよびLnCl(ここで、Lnがランタノイドである)、アニオン(例えば、Cl、Br、I、I 、HSO 、SO 2−、NO 、ClO 、BF 、PF 、AsF 、SbF 、FeCl 、Fe(CN) 3−、およびアリール−SO などの様々なスルホン酸のアニオン)である。正孔が担体として使用される場合、ドーパントの例は、カチオン(例えば、H、Li、Na、K、RbおよびCs)、アルカリ金属(例えば、Li、Na、K、Rb、およびCs)、アルカリ土類金属(例えば、Ca、Sr、およびBa)、O、XeOF、(NO )(SbF )、(NO )(SbCl )、(NO )(BF )、AgClO、HIrCl、La(NO 6HO、FSOOOSOF、Eu、アセチルコリン、R、(Rがアルキル基である)、R(Rがアルキル基である)、RAs(Rがアルキル基である)、およびR(Rがアルキル基である)である。
本発明に係る材料の伝導性形態は、OLED用途における電荷注入層およびITO平坦化層、フラットパネルディスプレイおよびタッチスクリーン用のフィルム、帯電防止フィルム、印刷された伝導性基板、プリント回路基板およびコンデンサなどなどの電子用途におけるパターンまたはトラクトを含むがこれらに限定されない用途において、有機「金属」として使用され得る。
本発明に係る材料はまた、例えば、コラー(Koller)ら著、ネイチャーフォトニクス(Nat.Photonics)、2008、2、684に記載されるように、有機プラズモン発光ダイオード(OPED:organic plasmon−emitting diode)に使用するのに好適であり得る。
別の使用によれば、本発明に係る材料は、例えば、米国特許出願公開第2003/0021913号明細書に記載されるように、LCDまたはOLEDデバイス中の配向層においてまたはそのような配向層として、単独でまたは他の材料と一緒に使用され得る。本発明に係る電荷輸送化合物の使用は、配向層の導電性を増大することができる。LCDにおいて使用される場合、この導電性の増大は、切り替え可能なLCDセルにおける有害な残留dc効果を低減し、画像の固着を抑制し、または例えば強誘電体LCDにおいて、強誘電体LCの自発分極電荷の切替えによって生じる残留電荷を低減することができる。配向層上に設けられた発光材料を含むOLEDデバイスに使用される場合、この導電性の増大は、発光材料のエレクトロルミネセンスを促進することができる。
メソゲンまたは液晶特性を有する本発明に係る材料は、上述されるように配向された異方性フィルムを形成することができ、これは、前記異方性フィルム上に設けられた液晶媒体における配向を誘導または促進するための配向層として特に有用である。
別の使用によれば、本発明に係る材料は、スマートウィンドウとしても知られている液晶(LC:liquid crystal)ウィンドウに使用するのに好適である。
本発明に係る材料はまた、米国特許出願公開第2003/0021913 A1号明細書に記載されるように、光配向層においてまたは光配向層として使用するために、光異性化可能な化合物および/または発色団と組み合わされ得る。
別の使用によれば、本発明に係る材料、特に、それらの水溶性誘導体(例えば、極性またはイオン性側基を有する)またはイオン的にドープされた形態は、DNA配列を検出および識別するための化学センサーまたは材料として用いられ得る。このような使用は、例えば、L.チェン(L.Chen)、D.W.マクブランチ(D.W.McBranch)、H.ワン(H.Wang)、R.ヘルゲソン(R.Helgeson)、F.ウドゥル(F.Wudl)およびD.G.ホイッテン(D.G.Whitten)著、米国科学アカデミー紀要(Proc.Natl.Acad.Sci.U.S.A.)、1999、96、12287;D.ワン(D.Wang)、X.ゴン(X.Gong)、P.S.ヒーガー(P.S.Heeger)、F.リニンスランド(F.Rininsland)、G.C.バザン(G.C.Bazan)およびA.J.ヒーガー(A.J.Heeger)著、米国科学アカデミー紀要(Proc.Natl.Acad.Sci.U.S.A.)、2002、99、49;N.ディチェザレ(N.DiCesare)、M.R.ピノ(M.R.Pinot)、K.S.シャンツェ(K.S.Schanze)およびJ.R.ラコウィッツ(J.R.Lakowicz)著、ラングミュア(Langmuir)、2002、18、7785;D.T.マクウェイド(D.T.McQuade)、A.E.プレン(A.E.Pullen)、T.M.スワガー(T.M.Swager)著、ケミカル・レビューズ(Chem.Rev.)、2000、100、2537に記載されている。
文脈上明白に他の意味を示さない限り、本明細書において使用される際、本明細書の用語の複数形は、単数形を含むものと解釈されるべきであり、逆もまた同様である。
本明細書の説明および特許請求の範囲の全体を通して、「含む(comprise」および「含有する(contain)」という用語ならびにこれらの用語の変化形、例えば「含む(comprising)」および「含む(comprises)」は、「含むがこれらに限定されない(including but not limited to)」を意味し、他の構成要素を除外することは意図されていない(除外しない)。
本発明の上記の実施形態に対する変形が、本発明の範囲内に依然として含まれながら行われ得ることが理解されるであろう。本明細書に開示される各特徴は、特に記載されない限り、同一、均等または同様の目的を果たす代替的な特徴によって置き換えられ得る。したがって、特に記載されない限り、開示される各特徴は、一般的な一連の均等または同様の特徴の一例に過ぎない。
本明細書に開示される特徴の全ては、このような特徴および/または工程の少なくともいくつかが互いに排他的である組合せを除いて、任意の組合せで組み合わせられ得る。特に、本発明の好ましい特徴は、本発明の全ての態様に適用可能であり、任意の組合せで使用され得る。同様に、非本質的な組合せで記載される特徴は、別々に(組み合わせずに)使用され得る。
上記および以下において、特に記載されない限り、パーセンテージは、重量パーセントであり、温度は、℃で示される。
ここで、本発明は、以下の実施例を参照してより詳細に説明され、実施例は、例示であるに過ぎず、本発明の範囲を限定しない。
(実施例)
実施例1
分子構造は、ゲームス(GAMESS)(US)ソースコード(M.W.シュミット(M.W.Schmidt)、K.K.ボールドリッジ(K.K.Baldridge)、J.A.ボーツ(J.A.Boatz)、S.T.エルバート(S.T.Elbert)、M.S.ゴードン(M.S.Gordon)、J.H.ジェンセン(J.H.Jensen)、S.コセキ(S.Koseki)、N.マツナガ(N.Matsunaga)、K.A.グエン(K.A.Nguyen)、S.スー(S.Su)、T.L.ウィンダス(T.L.Windus)、M.デュピュイ(M.Dupuis)、J.A.モンゴメリー(J.A.Montgomery)著、ジャーナル・オブ・コンピュータ・ケミストリー(J.Comput.Chem.)14、1347〜1363(1993)を参照)に部分的に基づく、ファイアフライ(Firefly)QCパッケージ(アレックスA.グラノフスキー(Alex A.Granovsky)、ファイアフライ(Firefly)ヴァージョン8、www http://classic.chem.msu.su/gran/firefly/index.htmlを参照)を用いて、B3LYP/6−31Gレベルで最適化した。計算時間を短縮するために、アルキル鎖は、計算されたエネルギーレベルを劇的に変化させないメチル基によって表され、メチル基が好ましいと示唆せず、
HOMOおよびELUMOは、最高被占および最低空コーン−シャム子軌道それぞれの固有値として定義され、イオン化ポテンシャル(IP:ionisation potential)および電子親和力(EA:electron affinity)それぞれの近似値として使用される。Eは、|ELUMO−EHOMO|として定義され、材料の輸送バンドギャップである。S−Sは、基底状態Sから最初の一重項励起状態Sまでの垂直励起エネルギーであり、光学バンドギャップE(opt)の尺度として使用される。
バルクへテロ接合およびデバイス性能における供与体および受容体材料のEHOMO、ELUMOおよびEの間の近似的関係は、スキャーバ(Scharber)モデルとして知られている[M.C.スキャーバ(M.C.Scharber)、D.ミュールバッカー(D.Muehlbacher)、M.コッペ(M.Koppe)、P.デンク(P.Denk)、C.ウォルドーフ(C.Waldauf)、A.J.ヒーガー(A.J.Heeger)、C.J.ブラベック(C.J.Brabec)著、アドバンスド・マテリアルズ(Adv.Mater.)2006、18、789〜794]。供与体−受容体ブレンドの供与体材料が光を吸収し、励起状態を形成する場合、励起された電子は、自由担体が形成されるために隣接する受容体部位へと飛び移らなければならないことが広く受け入れられている。このプロセスの駆動力は、供与体材料の励起状態と、受容体材料の電子親和力(ELUMOによって概算される)とのエネルギー差であり、電荷生成が効率的であるために少なくとも約0.35eVであることが実験的に判明した[D.ヴェルドマン(D.Veldman)、S.C.J.メスカーズ(S.C.J.Meskers)、R.A.J.ジャンセン(R.A.J.Janssen)著、アドバンスト・ファンクショナル・マテリアルズ(Adv.Funct.Mater.)2009、19、1939〜1948;M.C.スキャーバ(M.C.Scharber)、N.S.サリシチ(N.S.Sariciftci)著、プログレス・イン・ポリマー・サイエンス(Progr.Polym.Sci.)38(2013)1929〜1940]。したがって、受容体のELUMOの調整は、最も重要であり、その値を低下させることは、電荷生成の駆動力を増大させることになり、より低いバンドギャップの供与体材料の使用を可能にし得る一方、ELUMOを増加させることは、電荷生成を妨げ得る。本発明のOSC材料では、それらの小さい光学バンドギャップのため、別の機構も可能である:受容体による光吸収、続いて、供与体および受容体それぞれのEHOMOの間のエネルギー差によって駆動される、供与体材料への正孔注入[W.チャオ(W.Zhao)、D.チェン(D.Qian)、S.チャン(S.Zhang)、S.リー(S.Li)、O.インガナス(O.Inganas)、F.ガオ(F.Gao)、J.ホウ(J.Hou)著、アドバンスド・マテリアルズ(Adv.Mater.)2016、DOI:10.1002/adma.201600281]。この機構は、供与体材料の吸収端を超える無視できない外部量子効率に関与し、受容体材料のこの利点の保持は、HOMOエネルギーの慎重な調整を必要とする。
比較例C1
以下に示される化合物C1は、対照として計算される。
実施例1〜74
化合物C1のEHOMO、ELUMO、EおよびS−Sの計算値(実験的に決定されたIP、EAおよびEとは異なる)は、式Iの化合物1〜3の計算値と比較される。
実施例75
中間体1
−78℃で無水テトラヒドロフラン(20cm)中の2,7−ジブロモ−4,4,9,9−テトラキス(4−オクチルフェニル)−4,9−ジヒドロ−チエノ[3’,2’:4,5]シクロペンタ[1,2−b]チエノ[2’’,3’’:3’,4’]シクロペンタ[1’,2’:4,5]チエノ[2,3−d]チオフェン(0.5g、0.40mmol)の溶液に、15分間にわたってn−ブチルリチウム(0.50cm、1.3mmol、ヘキサン中2.5M)を滴下して加える。添加の後、反応混合物は、−78℃で60分間撹拌してから、無水ジエチルエーテル(20cm)中のN,N−ジメチルホルムアミド(0.8cm、10mmol)の溶液を一度に加える。次に、混合物は、17時間にわたって23℃に温める。ジクロロメタン(60cm)および水(250cm)を加え、混合物は、23℃で30分間撹拌する。生成物は、ジクロロメタン(3×60cm)で抽出する。組み合わされた有機物は、塩水(30cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去した。粗生成物は、カラムクロマトグラフィー(40〜60石油:ジエチルエーテル;9.5:0.5)によって精製して、中間体1(0.13g、27%)を橙黄色の結晶性固体として得る。H NMR(400MHz、CDCl)9.81(2H,s)、7.69(2H,s)、7.12(16H,m)、2.52−2.61(8H,m)、1.30(48H,bs)、0.79−0.92(12H,m).
化合物75
クロロホルム(12cm)中の中間体1(0.13g、0.11mmol)および3−(ジシアノメチリデン)インダン−1−オン(1.5g、0.77mmol)の脱気した溶液に、ピリジン(0.6cm、8mmol)を加える。次に、混合物は、30分間にわたって窒素で脱気し、次に、70℃で15時間加熱する。反応混合物は、23℃に冷却させ、溶媒は減圧下で除去する。粗生成物は、カラムクロマトグラフィー(40〜60石油:クロロホルム;1:1)によって精製して、化合物75(1.1g、65%)を濃い青色の結晶性固体として得る。H NMR(400MHz、CDCl)8.87(2H,s)、8.69(2H,d,J 7.6)、7.91(2H,d,J 7.1)、7.68−7.79(6H,m)、7.08−7.18(16H,m)、2.60(8H,t,J 7.7)、1.62(8H,q,J 7.1Hz)、1.21−1.39(40H,m)、0.88(12H,t,J 6.5).
実施例76
中間体2
−78℃で無水テトラヒドロフラン(100cm)中の2,7−ジブロモ−4,4,9,9−テトラキス(4−オクチルフェニル)−4,9−ジヒドロ−チエノ[3’,2’:4,5]シクロペンタ[1,2−b]チエノ[2’’,3’’:3’,4’]シクロペンタ[1’,2’:4,5]チエノ[2,3−d]チオフェン(2.00g、1.61mmol)の溶液に、10分間にわたってn−ブチルリチウム(2.6cm、6.5mmol、ヘキサン中2.5M)を加える。混合物は、−78℃で1時間撹拌してから、塩化トリブチルスズ(2.0cm、7.4mmol)を加え、混合物は、23℃で一晩撹拌する。メタノール(10cm)を加え、材料は、減圧下で濃縮する。次に、粗生成物は、ペンタン(20cm)に取り込み、無水硫酸マグネシウムを加え、ろ過し、固体は、さらなるペンタン(3×10cm)で洗浄する。次に、ろ液は、減圧下で濃縮し、固体は、メタノール(3×20cm)で研和し、生成物はろ過によって収集して、中間体2(2.57g、96%)を黄色のろう状の固体として得る。H NMR(400MHz、CDCl、45℃)7.16(8H,d,J 8.2)、7.06(10H,d,J 7.8)、2.55(8H,t,J 7.8)、1.53−1.67(20H,m)、1.22−1.41(56H,m)、1.07−1.14(8H,m)、0.84−0.97(30H,m).
中間体3
無水トルエン(36cm)中の中間体2(500mg、0.30mmol)および7−ブロモ−ベンゾ[1,2,5]チアジアゾール−4−カルバルデヒド(161mg、0.66mmol)の脱気した溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(22mg、0.02mmol)およびトリス(o−トリル)ホスフィン(28mg、0.09mmol)を加える。反応混合物を30分間にわたって脱気した後、それを80℃で1.5時間加熱する。23℃に冷却した後、混合物は、減圧下で濃縮する。次に、粗生成物は、メタノール(3×25cm)で研和し、固体はろ過して、中間体3(357mg、84%)を青色の結晶性固体として得る。H NMR(400MHz、CDCl)10.69(2H,s)、8.33(2H,s)、8.19(2H,d,J 7.8)、7.95(2H,d,J 7.6)、7.25(8H,d,J 8.3)、7.14(8H,d,J 8.3)、2.58(8H,t,J 7.8)、1.58−1.64(8H,m)、1.20−1.38(40H,m)、0.86(12H,t,J 6.8).
化合物76
無水クロロホルム(27cm)中の中間体3(357mg、0.25mmol)の溶液に、ピリジン(1.4cm、17mmol)を加える。混合物は、窒素で脱気した後、3−エチル−2−チオキソ−チアゾリジン−4−オン(286mg、1.77mmol)を加える。さらなる脱気の後、反応混合物は、2日間にわたって還流状態で加熱する。さらなる脱気された無水クロロホルム(20cm)を加え、反応物は、さらに24時間にわたって還流状態で加熱する。さらなる3−エチル−2−チオキソ−チアゾリジン−4−オン(286mg、1.77mmol)を加え、反応物は、24時間にわたって還流状態で加熱してから、反応物は、23℃に冷却し、減圧下で濃縮し、メタノール(4×20cm)、続いてジエチルエーテル(3×20cm)で研和する。次に、研和された材料は、30分間にわたって2−ブタノン/水(4:1)(70cm)中で、90℃で加熱し、0℃に冷却し、固体はろ過によって収集し、さらなる低温2−ブタノン(4×10cm)で洗浄して、化合物76(233mg、54%)を緑色/黒色の粉末として得る。H NMR(400MHz、CDCl)8.50(2H,s)、8.27(2H,s)、7.89(2H,d,J 7.8)、7.66(2H,d,J 7.8)、7.24(8H,d,J 8.1)、7.13(8H,d,J 8.3)、4.25(4H,q,J 6.9)、2.57(8H,t,J 7.7)、1.58−1.63(8H,m)、1.20−1.37(46H,m)、0.86(12H,t,J 6.7).
実施例77
化合物77
無水クロロホルム(13cm)中の中間体3(170mg、0.12mmol)の溶液に、ピリジン(0.7cm、8.7mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(164mg、0.84mmol)を加える。次に、溶液は、さらに脱気してから、40分間にわたって還流状態で加熱する。次に、反応物は、メタノール(150cm)に加え、沈殿した生成物は、ろ過によって収集し、メタノール(5cm)で洗浄する。次に、固体は、シリカプラグ(ジクロロメタン)に通して、化合物77(36mg、17%)を黒色の固体として得る。H NMR(400MHz、CDCl)9.56(2H,s)、9.26(2H,d,J 8.1)、8.72(2H,d,J 7.8)、8.36(2H,s)、7.93(4H,d,J 7.8)、7.73−7.84(4H,m)、7.22−7.25(8H,m)、7.14(8H,d,J 8.1)、2.57(8H,t,J 7.7)、1.57−1.64(8H,m)、1.24(40H,m)、0.85(12H,t,J 6.5).
実施例78
中間体4
無水トルエン(41cm)中の2,8−ジブロモ−6,12−ジヒドロ−6,6,12,12−テトラキス(4−ドデシルフェニル)インデノ[1,2−b]インデノ[2’,1’:4,5]チエノ[2,3−d]チオフェン(500mg、0.34mmol)の溶液に、トリブチル−(5−[1,3]ジオキソラン−2−イル−チオフェン−2−イル)−スタンナン(0.4cm、0.9mmol)を加えてから、溶液は、窒素で脱気する。次に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(25mg、0.03mmol)およびトリス(o−トリル)ホスフィン(31mg、0.10mmol)を加え、さらなる脱気の後、反応混合物は、80℃で24時間加熱する。次に、反応混合物は、減圧下で濃縮し、メタノール(3×50cm)で研和する。次に、固体は、シリカプラグ(40〜60石油:ジクロロメタン;4:1〜0:1)に通して溶離し、80℃で、2−プロパノール(100cm)で研和し、0℃に冷却し、ろ過によって収集して、中間体4(454mg、82%)を粘着性の黄色の固体として得る。H NMR(400MHz、CHCl)7.61(2H,s)、7.52(2H,d,J 8.1)、7.35(2H,d,J 8.1)、7.18(8H,d,J 7.9)、7.14(2H,d,J 3.7)、7.09(10H,d,J 8.1)、6.09(2H,s)、4.10−4.19(4H,m)、4.00−4.09(4H,m)、2.55(8H,t,J 7.8)、1.57−1.63(8H,m)、1.21−1.36(72H,m)、0.87(12H,t,J 6.7).
中間体5
濃塩酸(0.2cm、1.8mmol、32%)は、23℃でテトラヒドロフラン(20cm)中の中間体4(454mg、0.28mmol)の溶液に滴下して加え、反応混合物は、2時間撹拌する。次に、水(0.5cm)を加え、反応混合物は、さらに1時間撹拌する。次に、さらなる水(50cm)を加え、溶液は、酢酸エチル(50cm、次に25cm)で抽出する。次に、組み合わされた有機抽出物は、水(50cm)および塩水(50cm)で洗浄し、水層を毎回さらなる酢酸エチル(25cm)で抽出する。次に、組み合わされた有機抽出物は、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。次に、粗生成物は、70℃で40〜60石油(125cm)とアセトン(10cm)との混合物中で撹拌する。次に、混合物は、0℃に冷却し、ろ過し、固体は、40〜60石油(3×10cm)で洗浄して、中間体5(191mg、45%)を黄色の固体として得る。H NMR(400MHz、CDCl)9.86(2H,s)、7.68−7.72(4H,m)、7.63(2H,d,J 8.1)、7.41(2H,d,J 7.8)、7.36(2H,d,J 3.9)、7.18(8H,d,J 8.1)、7.11(8H,d,J 8.1)、2.56(8H,t,J 7.8)、1.58−1.64(8H,m)、1.19−1.37(72H,m)、0.87(12H,t,J 6.6).
化合物78
無水クロロホルム(13cm)中の中間体5(191mg、0.13mmol)の溶液に、ピリジン(0.7cm、8.7mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(172mg、0.89mmol)を加える。次に、溶液はさらに脱気し、23℃で200分間撹拌する。次に、反応混合物は、メタノール(200cm)に加え、得られた沈殿物は、ろ過によって収集し、メタノール(3×10cm)で洗浄する。次に、固体は、ジエチルエーテル(4×10cm)で研和し、固体はろ過によって収集して、化合物78(158mg、67%)を黒色の固体として得る。H NMR(400MHz、CDCl)8.86(2H,s)、8.67−8.72(2H,m)、7.92−7.97(2H,m)、7.83(2H,d,J 4.4)、7.71−7.81(8H,m)、7.42−7.47(4H,m)、7.22(8H,d,J 8.2)、7.13(8H,d,J 8.3)、2.58(8H,t,J 7.7)、1.59−1.65(8H,m)、1.18−1.39(72H,m)、0.87(12H,t,J 6.9).
実施例79
中間体6
無水トルエン(150cm)中の2,7−ジブロモ−4,4,9,9−テトラキス(4−オクチルフェニル)−4,9−ジヒドロ−チエノ[3’,2’:4,5]シクロペンタ[1,2−b]チエノ[2’’,3’’:3’,4’]シクロペンタ[1’,2’:4,5]チエノ[2,3−d]チオフェン(500mg、0.34mmol)の溶液に、トリブチル−(5−[1,3]ジオキソラン−2−イル−チオフェン−2−イル)−スタンナン(0.88cm、1.94mmol)を加えてから、溶液は窒素で脱気する。次に、トリス(ジベンジリデンアセトン)ジパラジウム(59mg、0.03mmol)およびトリス(o−トリル)ホスフィン(74mg、0.24mmol)を加え、さらなる脱気の後、反応混合物は、80℃で17時間加熱する。次に、反応混合物は、減圧下で濃縮し、メタノール(5×20cm)で研和して、固体をろ過によって収集して、中間体6(1.1g、99%)をオレンジ色の固体として得る。H NMR(400MHz、CDCl)7.12−7.19(10H,m)、7.09(8H,d,J 7.8)、7.00−7.05(4H,m)、6.08(2H,s)、4.08−4.17(4H,m)、3.99−4.08(4H,m)、2.56(8H,t,J 7.8)、1.52−1.63(8H,m)、1.22−1.35(40H,m)、0.87(12H,t,J 6.5).
中間体7
濃塩酸(0.5cm、4.07mmol、32%)は、23℃でテトラヒドロフラン(57cm)中の中間体6(1.1g、0.81mmol)の溶液に滴下して加え、反応混合物は、1時間撹拌する。次に、水(0.5cm)を加え、反応混合物は、さらに17時間撹拌する。次に、さらなる水(100cm)を加え、溶液は、酢酸エチル(50cm、次に25cm)で抽出する。次に、組み合わされた有機抽出物は、水(50cm)および塩水(50cm)で洗浄し、水層を毎回さらなる酢酸エチル(20cm)で抽出する。次に、組み合わされた有機抽出物は、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。次に、粗生成物は、メタノール(3×15cm)で研和し、ろ過によって収集し、固体は、40〜60石油(3×15cm)で洗浄して、中間体7(291mg、28%)をオレンジ色の固体として得た。H NMR(400MHz、CDCl)9.83(2H,s)、7.64(2H,d,J 3.9)、7.32(2H,s)、7.20(2H,d,J 3.9)、7.16(8H,d,J 8.1)、7.11(8H,d,J 8.0)、2.57(8H,t,J 7.6)、1.54−1.64(8H,m)、1.20−1.38(40H,m)、0.82−0.92(12H,m).
化合物79
無水クロロホルム(23cm)中の中間体7(287mg、0.22mmol)の溶液に、ピリジン(1.3cm、16mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(300mg、1.54mmol)を加える。次に、溶液はさらに脱気し、23℃で3.25時間撹拌する。次に、反応混合物は、メタノール(300cm)に加え、混合物は、減圧下で濃縮し、得られた固体は、メタノール(3×25cm)で研和し、ろ過によって収集する。次に、ろ過された固体は、ジエチルエーテル(2×10cm)およびアセトン(3×10cm)で洗浄する。次に、部分的に精製された生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;9.5:0.5〜2:3)で溶離するカラムクロマトグラフィーに供して、化合物79(86mg、24%)を緑色/黒色の固体として得る。H NMR(400MHz、CDCl)8.83(2H,s)、8.69(2H,d,J 7.6)、7.92(2H,d,J 6.6)、7.69−7.79(6H,m)、7.54(2H,s)、7.29(2H,d,J 4.4)、7.11−7.20(16H,m)、2.59(8H,t,J 7.7)、1.58−1.64(8H,m)、1.21−1.38(40H,m)、0.87(12H,t,J 6.5).
実施例80
中間体8
−78℃に冷却されたテトラヒドロフラン(25cm)中の2,7−ジブロモ−4,4,9,9−テトラキス(3−オクチルフェニル)−4,9−ジヒドロ−チエノ[3’,2’:4,5]シクロペンタ[1,2−b]チエノ[2’’,3’’:3’,4’]シクロペンタ[1’,2’:4,5]チエノ[2,3−d]チオフェン(1.00g、0.77mmol)の溶液に、n−ブチルリチウム(0.92cm、2.30mmol、ヘキサン中2.5M)を滴下して加える。反応物は、1時間撹拌し、N,N−ジメチルホルムアミド(1.13cm、23.0mmol)で一度にクエンチする。反応物は、23℃に温め、18時間撹拌する。混合物は、水(50cm)でクエンチし、ジクロロメタン(3×30cm)で抽出する。得られた組み合わされた有機相は、水(2×20cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;6:4〜4:6)で溶離するフラッシュクロマトグラフィーによって精製して、中間体8(330mg、36%)をオレンジ色の油として得る。H NMR(400MHz、CDCl)9.73(2H,s)、7.62(2H,s)、7.14(4H,t,J 8.0)、6.65−6.77(m、12H)、3.80(8H,t,J 6.6)、1.58−1.69(8H,m)、1.27−1.38(8H,m)、1.01−1.30(32H,m)、0.71−0.87(12H,m).
化合物80
クロロホルム(8.25cm)中の中間体8(330mg、0.27mmol)および3−(ジシアノメチリデン)インダン−1−オン(373mg、1.92mmol)の脱気した溶液に、ピリジン(0.55cm、6.86mmol)を加え、混合物は、23℃で2時間撹拌する。メタノール(50cm)を加え、得られた懸濁液は、ろ過し、メタノール(3×20cm)で洗浄する。得られた固体は、勾配溶媒系(40〜60石油:ジクロロメタン;1:1〜3:7)で溶離するカラムクロマトグラフィーによって精製して、化合物80(321mg、75%)を青色の固体として得る。H NMR(400MHz、CDCl)8.79(2H,s)、8.53−8.67(2H,m)、7.83(2H,m)、7.61−7.73(6H,m)、7.18(4H,m)、6.67−6.81(12H,m)、3.83(8H,t,J 6.7)、1.68(8H,m)、1.33(8H,m)、1.12−1.29(32H,m)、0.78(12H,t,J 6.7).
実施例81
中間体9
5℃で無水テトラヒドロフラン(173cm)中の2,5−ジクロロ−チエノ[3,2−b]チオフェン(17.3g、82.7mmol)の溶液に、クロロギ酸エチル(23.7cm、248mmol)を加える。次に、2,2,6,6−テトラメチルピペリジニルマグネシウムクロリドリチウムクロリド錯体(207cm;207mmol、テトラヒドロフラン中1.0M)の溶液は、1時間にわたって滴下して加える。反応物は、ゆっくりと23℃に温め、42時間撹拌する。水(200cm)を加え、混合物は、10分間撹拌し、固体はろ過によって収集し、水(2×100cm)で洗浄する。固体は、アセトン(200cm)中で研和し、固体はろ過によって収集し、アセトン(2×100cm)で洗浄して、中間体(26.6g、91%)を白色の固体として得る。H NMR(400MHz、CDCl)4.46(4H,q,J 7.1)、1.47(6H,t,J 7.1).
中間体10
トリメチル−(5−トリブチルスタンナニル−チオフェン−2−イル)−シラン(30.5g、61.7mmol)、中間体9(10.0g、28.3mmol)およびテトラキス(トリフェニルホスフィン)パラジウム(0)(657mg、0.57mmol)は、無水トルエン(100cm)中で懸濁させ、100℃で18時間加熱する。反応物は、23℃に冷却し、メタノール(250cm)を加える。懸濁液は、氷浴中で冷却し、固体はろ過によって収集し、メタノール(200cm)で洗浄する。粗生成物は、シリカパッド(ジクロロメタン)、続いて、40〜60石油:ジクロロメタン;60:40で溶離するフラッシュクロマトグラフィーによって精製して、中間体10(7.68g、46%)を黄色の固体として得た。H NMR(400MHz、CDCl)7.42(2H,d,J 3.5)、7.02(2H,d,J 3.5)、4.19(4H,q,J 7.1)、1.19(6H,t,J 7.1)、0.15(18H,s).
中間体11
−78℃で無水テトラヒドロ−フラン(73cm)中の1−ブロモ−4−オクチルオキシ−ベンゼン(14.1g、49.5mmol)の溶液に、20分間にわたってt−ブチルリチウム(58.2cm、99.0mmol、ペンタン中1.7M)を滴下して加える。反応物は、30分間にわたって−28℃〜−35℃に温める。第2の分量の1−ブロモ−4−オクチルオキシ−ベンゼン(3.0g、11mmol)を加え、反応混合物は、30分間撹拌する。反応物は、−78℃に冷却し、無水テトラヒドロフラン(30cm)中の中間体10(4.89g、8.25mmol)の溶液を迅速に加える。反応物は、23℃に温め、60時間撹拌する。水(50cm)を加え、有機物は、エーテル(300cm)で抽出する。有機相は、水(3×100cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;9:1〜8:2)を用いたカラムクロマトグラフィーによって精製して、中間体11(3.17g、29%)を淡褐色の固体として得る。H NMR(400MHz、CDCl)7.16−7.23(8H,m)、6.88(2H,d,J 3.4)、6.78−6.85(8H,m)、6.51(2H,d,J 3.4)、3.97(8H,t,J 6.6)、3.37(2H,s)、1.75−1.84(8H,m)、1.27−1.52(40H,m)、0.82−0.95(12H,m)、0.25(18H,s).
中間体12−経路A
−78℃に冷却されたテトラヒドロフラン(25cm)中の2,7−ジブロモ−4,4,9,9−テトラキス(4−(オクチルオキシ)フェニル)−4,9−ジヒドロ−チエノ[3’,2’:4,5]シクロペンタ[1,2−b]チエノ[2’’,3’’:3’,4’]シクロペンタ[1’,2’:4,5]チエノ[2,3−d]チオフェン(1.00g、0.77mmol)の溶液に、n−ブチルリチウム(0.92cm、2.30mmol、ヘキサン中2.5M)を滴下して加える。反応物は、さらに1時間撹拌し、N,N−ジメチルホルムアミド(1.13cm、23.0mmol)で一度にクエンチする。反応物は、23℃に温め、18時間撹拌する。反応物は、水(50cm)でクエンチし、ジクロロメタン(3×30cm)で抽出する。得られた有機相は、水(2×20cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;6:4〜4:6)で溶離するフラッシュクロマトグラフィーによって精製して、中間体12(330mg、36%)をオレンジ色の油として得る。H NMR(400MHz、CDCl)9.72(2H,s)、7.58(2H,s)、7.00−7.08(8H,m)、6.69−6.82(8H,m)、3.83(8H,t,J 6.5)、1.61−1.71(8H,m)、1.34(8H,m)、1.11−1.33(32H,m)、0.72−0.90(12H,m).
中間体12−経路B
トルエン(240cm)中の中間体11(6.00g、4.52mmol)の脱気した溶液に、アンバーリスト(amberlyst)15強酸(24g)を加え、混合物をさらに脱気し、パージし、次に、75℃で18時間加熱する。溶液は、約50℃に冷却し、ろ過し、固体は、トルエン(200cm)で洗浄する。ろ液は、濃縮し、80〜100石油(3×30cm)で研和し、固体はろ過によって収集する。固体は、クロロホルム(120cm)に溶解させ、N,N−ジメチルホルムアミド(5.3g、72mmol)を加え、溶液は0℃に冷却する。オキシ塩化リン(V)(10.4g、67.9mmol)を10分間にわたって加える。次に、反応混合物は、65℃で18時間加熱する。酢酸ナトリウム水溶液(150cm、2M)を65℃で加え、反応混合物は、1時間撹拌する。混合物がpH6になるまで、飽和酢酸ナトリウム水溶液を加え、反応物は、さらに30分間撹拌する。水相は、クロロホルム(2×25cm)で抽出し、組み合わされた有機層は、水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。固体は、80〜100石油中で研和し、固体はろ過によって収集して、中間体12(3.06g、56%)をオレンジ色の油として得た。H NMR(400MHz、CDCl)9.72(2H,s)、7.58(2H,s)、7.00−7.08(8H,m)、6.69−6.82(8H,m)、3.83(8H,t,J 6.5)、1.61−1.71(8H,m)、1.34(8H,m)、1.11−1.33(32H,m)、0.72−0.90(12H,m).
化合物81
クロロホルム(8.25cm)中の中間体12(330mg、0.27mmol)および3−(ジシアノメチリデン)インダン−1−オン(373mg、1.92mmol)の脱気した溶液に、ピリジン(0.55cm、6.86mmol)を加え、混合物は、23℃で4時間撹拌する。メタノール(50cm)を加え、得られた懸濁液は、ろ過し、メタノール(3×20cm)で洗浄する。粗生成物は、カラムクロマトグラフィー(40〜60石油:ジクロロメタン;1:1)によって精製して、化合物81(141mg、33%)を青色の固体として得る。H NMR(400MHz、CDCl)8.79(2H,s)、8.60(2H,m)、7.75−7.91(2H,m)、7.67(4H,m)、7.61(s、2H)、7.04−7.12(8H,m)、6.74−6.81(8H,m)、3.85(8H,t,J 6.5)、1.68(8H,m)、1.11−1.43(40H,m)、0.72−0.84(12H,m).
実施例82
中間体13
−78℃に冷却された無水テトラヒドロフラン(135cm)中の1−ブロモ−3,5−ジヘキシル−ベンゼン(9.00g、27.7mmol)の溶液に、10分間にわたってn−ブチルリチウム(11.1cm、27.7mmol、ヘキサン中2.5M)の溶液を滴下して加える。反応物は、1時間撹拌し、メチル5−ブロモ−2−[5−(4−ブロモ−2−メトキシカルボニル−フェニル)チエノ[3,2−b]チオフェン−2−イル]ベンゾエート(3.13g、5.53mmol)を一度に加える。反応物は、23℃に温め、18時間撹拌する。反応物は、ジエチルエーテル(50cm)と水(100cm)とに分離させる。有機相は、水(30cm)、塩水(30cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。粗生成物は、40〜60石油で研和し、固体は、トルエン(50cm)中で懸濁させる。p−トルエンスルホン酸(2.5g)を加え、反応混合物は、17時間撹拌する。懸濁液はろ過し、減圧下で濃縮し、DCM石油エーテル40:60の混合物で溶離するフラッシュクロマトグラフィーによって精製する。得られた材料は、アセトン中で研和し、固体を収集して、中間体12(2.71g、34%)を黄色の固体として得る。H NMR(400MHz、CDCl)7.42(2H,d,J 1.7)、7.32(2H,dd,J 8.1、1.8)、7.11(2H,d,J 8.1)、6.80(4H,t,J 1.5)、6.71(8H,d,J 1.5)、2.40(16H,t,J 7.7)、1.38−1.48(16H,m)、1.11−1.24(48H,m)、0.70−0.79(24H,m).
中間体14
トルエン(12.5cm)中の中間体13(250mg、0.17mmol)、トリブチル−(5−[1,3]ジオキソラン−2−イル−チオフェン−2−イル)−スタンナン(0.18cm、0.40mmol)およびトリス(o−トリル)ホスフィン(16mg、0.05mmol)の脱気した溶液に、ビス(ジベンジリデンアセトン)パラジウム(0)(16mg、0.02mmol)を加え、混合物はさらに脱気する。次に、反応物は、6時間にわたって140℃の外部温度に加熱する。反応混合物は、冷却させ、減圧下で濃縮する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:9〜3:10)で溶離するフラッシュクロマトグラフィーによって精製する。得られた油は、クロロホルム(30cm)に溶解させ、18時間にわたって2.5Nの塩酸溶液(10cm)とともに撹拌する。有機相は減圧下で濃縮し、残渣は、勾配溶媒系(40〜60石油:ジクロロメタン;1:4〜1:4)で溶離するフラッシュクロマトグラフィーによって精製する。得られた固体は、アセトン中で研和し、固体はろ過によって収集して、中間体14(170mg、65%)を黄色の固体として得る。H NMR(400MHz、CDCl)9.78(2H,s)、7.59−7.65(4H,m)、7.55(2H,dd,J 8.0、1.6)、7.31(2H,d,J 8.0)、7.24(2H,d,J 3.9)、6.82(4H,s)、6.78(8H,s)、2.41(16H,t,J 7.6)、1.39−1.49(16H,m)、1.17(48H,m)、0.69−0.85(24H,m).
化合物82
クロロホルム(4.25cm)中の中間体14(170mg、0.11mmol)および3−(ジシアノメチリデン)インダン−1−オン(153mg、0.79mmol)の脱気した溶液に、ピリジン(0.63cm、7.86mmol)を加え、混合物は、23℃で18時間撹拌する。メタノール(75cm)を加え、得られた懸濁液は、ろ過し、メタノール(3×10cm)で洗浄する。得られた固体は、勾配溶媒系(40〜60石油:ジクロロメタン;1:1〜2:3)で溶離するカラムクロマトグラフィーによって精製して、化合物82(32mg、15%)を青色の固体として得る。H NMR(400MHz、CDCl)8.75(2H,s)、8.55−8.64(2H,m)、7.82−7.87(2H,m)、7.64−7.80(10H,m)、7.25−7.49(4H,m)、6.80−6.87(12H,m)、2.42(16H,t,J 7.6)、1.47(16H,m)、1.11−1.23(48H,m)、0.67−0.75(m、24H).
実施例83
中間体15
−78℃で1−ブロモ−3−ヘキシル−ベンゼン(6.39g、26.5mmol)および無水テトラヒドロフラン(45cm)の溶液に、10分間にわたってn−ブチルリチウム(10.6cm、26.5mmol、ヘキサン中2.5M)の溶液を滴下して加える。反応混合物は、1時間撹拌し、メチル5−ブロモ−2−[5−(4−ブロモ−2−メトキシカルボニル−フェニル)チエノ[3,2−b]チオフェン−2−イル]ベンゾエート(3.00g、5.3mmol)を一度に加える。反応物は、23℃に温め、17時間撹拌する。反応物は、ジエチルエーテル(100cm)と水(100cm)とに分離させる。有機相は、水(2×50cm)、塩水(20cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。得られた油は、40〜60石油で研和し、固体は、トルエン(40cm)中で懸濁させる。p−トルエンスルホン酸(2.0g)を加え、反応混合物は、17時間撹拌する。懸濁液はろ過し、減圧下で濃縮する。得られた材料は、50℃で、アセトン中で研和し、次に、0℃でろ過して、中間体15(1.28g、22%)を黄色の固体として得る。H NMR(400MHz、CDCl)7.51(2H,d,J 1.7)、7.41(2H,dd,J 8.1、1.8)、7.13−7.25(6H,m)、7.04−7.12(8H,m)、6.92−6.98(4H,m)、2.50−2.59(m、8H)、1.54(8H,m)、1.18−1.24(m、24H)、0.79−0.88(m、12H).
中間体16
トルエン(12.5cm)中の中間体15(250mg、0.22mmol)、トリブチル−(5−[1,3]ジオキソラン−2−イル−チオフェン−2−イル)−スタンナン(277mg、0.52mmol)およびトリス(o−トリル)ホスフィン(21mg、0.07mmol)の脱気した溶液に、ビス(ジベンジリデンアセトン)パラジウム(0)(21mg、0.02mmol)を加える。次に、溶液はさらに脱気し、6時間にわたって140℃の外部温度に加熱する。反応混合物は、減圧下で濃縮し、勾配溶媒系(40〜60石油:ジクロロメタン;1:1〜1:3)で溶離するフラッシュクロマトグラフィーによって精製する。得られた油は、クロロホルム(10cm)に溶解させ、18時間にわたって2.5Nの塩酸(10cm)とともに撹拌する。有機相は、水(10cm)および塩水(20cm)で洗浄してから、減圧下で濃縮する。得られた固体は、アセトン中で研和して、中間体1638(75mg、28%)を黄色の固体として得る。H NMR(400MHz、CDCl)9.86(2H,s)、7.67−7.74(4H,m)、7.63(2H,m)、7.41(2H,d,J 8.0)、7.34(2H,d,J 3.9)、7.06−7.23(12H,m)、6.98−7.06(4H,m)、2.56(8H,t,J 7.6)、1.55(8H,m)、1.19−1.33(m、24H)、0.82(12H,m).
化合物83
クロロホルム(1.9cm)中の中間体16(75mg、0.06mmol)および3−(ジシアノメチリデン)インダン−1−オン(87mg、0.45mmol)の脱気した溶液に、ピリジン(0.36cm、4.46mmol)を加え、反応混合物は、23℃で18時間撹拌する。メタノール(40cm)を加え、得られた懸濁液は、ろ過し、メタノール(3×10cm)で洗浄する。得られた固体は、勾配溶媒系(40〜60石油:ジクロロメタン;1:1〜2:3)で溶離するカラムクロマトグラフィーによって精製して、化合物83(63mg、65%)を青色の固体として得る。H NMR(400MHz CDCl)8.75(2H,s)、8.60(2H,dd,J 7.1、11.4)、7.84(2H,dd,J 6.9、1.8)、7.63−7.80(8H,m)、7.44(2H,d,J 8.4)、7.39(2H,d,J 4.2)、7.08−7.15(8H,m)、7.04(4H,d,J 7.6)、6.96(4H,m)、2.49(8H,t,J 7.6)、1.49(8H,t,J 4.2)、1.09−1.26(24H,m)、0.68−0.76(12H,m).
実施例84
化合物84
無水クロロホルム(34cm)中の中間体3(450mg、0.32mmol)の溶液に、ピリジン(1.8cm、22mmol)を加える。次に、混合物は、窒素で脱気してから、マロノニトリル(148mg、2.24mmol)を加える。次に、溶液はさらに脱気し、23℃で41時間撹拌する。次に、反応混合物は、メタノール(350cm)に加え、さらなるメタノール(2×10cm)およびジクロロメタン(2×5cm)で洗浄する。次に、さらなるメタノール(35cm)を加え、混合物は、23℃で50分間撹拌してから、ろ過し、固体を、メタノール(3×20cm)、40〜60石油(3×20cm)、80〜100石油(3×20cm)、シクロヘキサン(3×20cm)、ジエチルエーテル(4×20cm)およびアセトン(4×20cm)で洗浄して、化合物84(429mg、89%)を黒色の固体として得る。H NMR(400MHz、CDCl)8.75(2H,s)、8.68(2H,d,J 8.1)、8.29(2H,s)、7.78(2H,d,J 7.8)、7.24(8H,d,J 8.4)、7.14(8H,d,J 8.3)、2.58(8H,t,J 7.7)、1.56−1.65(8H,m)、1.20−1.37(40H,m)、0.85(12H,t,J 6.9).
実施例85
化合物85
クロロホルム(5cm)中の中間体12(200mg、0.17mmol)および2−(3−エチル−4−オキソ−チアゾリジン−2−イリデン)−マロノニトリル(225mg、1.16mmol)の脱気した溶液に、ピリジン(0.94cm、12mmol)、続いてピペリジン(992mg、11.7mmol)を加える。反応物は、23℃で18時間撹拌し、次に、メタノール(50cm)で沈殿させ、ろ過し、勾配溶媒系(40〜60石油:ジクロロメタン;3:2〜2:3)で溶離するフラッシュクロマトグラフィーによって精製する。次に、単離された材料は、アセトン(10cm)中で研和し、固体はろ過によって収集して、化合物85(48mg、19%)を青色の固体として得る。H NMR(400MHz、CDCl)7.97(2H,s)、7.30(2H,s)、7.01−7.08(8H,m)、6.72−6.79(8H,m)、4.24(4H,q,J 7.1)、3.84(8H,t,J 6.5)、1.67(8H,q,J 6.8)、1.30−1.40(14H,m)、1.11−1.28(32H,m)、0.76−0.84(12H,m).
実施例86
中間体17
0℃で無水N,N−ジメチルホルムアミド(100cm)中の3−メトキシ−チオフェン(25.0g、219mmol)の溶液に、20分間にわたって、無水N,N−ジメチルホルムアミド(150cm)中の1−ブロモ−ピロリジン−2,5−ジオン(39.0g、219mmol)の溶液を滴下して加え、反応物は、65時間にわたって23℃になるまで撹拌する。次に、反応混合物は、ジエチルエーテル(100cm)で希釈し、塩水(250cm)で洗浄し、水(250cm)で希釈し、有機層を分離させる。次に、水層は、ジエチルエーテル(2×100cm、次に50cm)で抽出し、組み合わされた有機抽出物は、塩水(3×100cm)で洗浄し、水層を毎回ジエチルエーテル(50cm)で抽出する。次に、組み合わされた有機抽出物は、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜4:1)で溶離するシリカプラグによって精製する。生成物を含有する画分は、23℃で、減圧下で濃縮し、氷水浴に迅速に入れる。次に、無水テトラヒドロフラン(150cm)を加え、フラスコは、窒素雰囲気下に置く。0℃で撹拌しながら、さらなる無水テトラヒドロフラン(150cm)を加えてから、溶液は、−78℃に冷却し、リチウムジイソプロピルアミド(120cm、240mmol、テトラヒドロフラン/ヘプタン/エチルベンゼン中2.0M)を40分間にわたって滴下して加える。反応混合物は、−78℃で2時間撹拌してから、反応物は、反応温度を−78℃に維持しながら、無水N,N−ジメチルホルムアミド(202cm、2630mmol)の滴下添加によってクエンチする。次に、反応物は、17時間にわたって撹拌しながら23℃に温めてから、氷(600cm)に加え、続いてペンタン(400cm)を加え、17時間撹拌する。ペンタン層は単離し、水層は、ペンタン(2×100cm)で抽出する。次に、組み合わされたペンタン抽出物は、20重量%のクエン酸溶液(2×150cm)、水(150cm)および塩水(150cm)で洗浄し、水層を毎回ペンタン(50cm)で抽出する。次に、組み合わされたペンタン抽出物は、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。次に、粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜3:2)で溶離するカラムクロマトグラフィーによって精製して、中間体17(1.96g、4%)を黄色の固体として得る。H NMR(400MHz、CDCl)9.84(1H,s)、6.90(1H,s)、3.96(3H,s).
中間体18
無水トルエン(45cm)中の中間体2(700mg、0.42mmol)および2−ブロモ−3−メトキシチオフェン−5−カルボキシアルデヒド(205mg、0.93mmol)の脱気した溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(31mg、0.03mmol)およびトリス(o−トリル)ホスフィン(39mg、0.13mmol)を加える。次に、反応物は、20分間にわたってさらに脱気してから、17時間にわたって80℃に加熱する。次に、反応混合物は、減圧下で濃縮し、メタノール(5×20cm)で研和し、固体はろ過する。次に、粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:1〜1:4、次に、ジクロロメタン:メタノール;1:0〜9.5:0.5)で溶離するシリカプラグによって精製する。最終的な精製は、勾配溶媒系(40〜60石油:ジクロロメタン;2:3〜1:4、次に、ジクロロメタン:メタノール;1:0〜9:1)で溶離するカラムクロマトグラフィーによって行って、中間体18(134mg、23%)を暗褐色の固体として得る。H NMR(400MHz、CDCl)9.92(2H,s)、7.31(2H,s)、7.12−7.17(8H,m)、7.08−7.12(8H,m)、6.84(2H,s)、4.01(6H,s)、2.53−2.60(8H,m)、1.54−1.64(8H,m)、1.20−1.37(40H,m)、0.87(12H,t,J 6.9).
化合物86
無水クロロホルム(10cm)中の中間体18(134mg、0.10mmol)の溶液に、ピリジン(0.6cm、6.9mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(134mg、0.69mmol)を加える。次に、溶液はさらに脱気し、23℃で20分間撹拌してから、さらなる無水脱気クロロホルム(5cm)を加え、反応物は、さらに3時間20分撹拌する。次に、反応混合物は、メタノール(250cm)に加え、メタノール(2×10cm)およびジクロロメタン(2×5cm)で洗浄する。次に、さらなるメタノール(50cm)を加えてから、固体はろ過し、次に、さらなるメタノール(10×10cm)で洗浄する。次に、粗生成物は、勾配溶媒系(クロロホルム、次にジクロロメタン:メタノール;9.5:0.5)を用いたカラムクロマトグラフィー、およびメタノール(3×10cm)での研和によって行われる最終的な精製によって部分的に精製し、ろ過された固体を、40〜60石油(3×10cm)、シクロヘキサン(3×10cm)およびジエチルエーテル(3×10cm)で洗浄して、化合物86(58mg、34%)を黒色の固体として得る。H NMR(400MHz、CDCl)9.16(2H,s)、8.62−8.67(2H,m)、7.82−7.87(2H,m)、7.63−7.72(4H,m)、7.58(2H,s)、7.12−7.19(16H,m)、6.89(2H,s)、4.13(6H,s)、2.59(8H,t,J 7.7)、1.57−1.65(8H,m)、1.22−1.36(40H,m)、0.87(12H,t,J 6.8).
実施例87
中間体19
−78℃で無水テトラヒドロフラン(70cm)中の1−ブロモ−4−ヘキシル−ベンゼン(10.0g、41.5mmol)の溶液に、10分間にわたってn−ブチルリチウム(16.6cm、41.5mmol、ヘキサン中2.5M)を少しずつ加える。反応物は、1時間撹拌し、メチル5−ブロモ−2−[5−(4−ブロモ−2−メトキシカルボニル−フェニル)チエノ[3,2−b]チオフェン−2−イル]ベンゾエート(4.70g、8.29mmol)を一度に加える。反応物は、23℃に温め、17時間撹拌する。反応物は、ジエチルエーテル(100cm)と水(100cm)とに分離させる。有機相は、水(2×50cm)、塩水(20cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。得られた油は、40〜60石油で研和し、固体は、トルエン(40cm)中で懸濁させ、p−トルエンスルホン酸(2.0g)を加え、反応混合物は、23℃で17時間撹拌する。懸濁液はろ過し、減圧下で濃縮する。得られた材料は、50℃で、アセトン中で研和し、次に、0℃でろ過して、中間体19(3.4g、37%)を黄色の固体として得る。H NMR(400MHz、CDCl)7.52(2H,d,J 1.7)、7.40(2H,dd,J 8.1、1.8)、7.21(2H,d,J 8.1)、7.06−7.15(m、16H)、2.52−2.61(m、8H)、1.58(8H,m)、1.22−1.40(24H,m)、0.83−0.92(12H,m).
中間体20
トルエン(12.5cm)中の中間体19(250mg、0.22mmol)、トリブチル−(5−[1,3]ジオキソラン−2−イル−チオフェン−2−イル)−スタンナン(273mg、0.51mmol)およびトリス(o−トリル)ホスフィン(2mg、0.01mmol)の脱気した溶液に、ビス(ジベンジリデンアセトン)パラジウム(0)(20mg、0.02mmol)を加える。溶液はさらに脱気し、18時間にわたって140℃の外部温度に加熱する。メタノール(20cm)を加え、懸濁液は30分間撹拌し、ろ過し、固体は、メタノール(20cm)で洗浄する。得られた固体は、40:60石油、続いてジクロロメタンで溶離するフラッシュクロマトグラフィーによって精製する。得られた固体は、クロロホルム(30cm)に溶解させ、4時間にわたって塩酸(10cm、3N)とともに撹拌する。有機相は、水(10cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過してから、減圧下で濃縮し、次に、アセトン中で研和して、中間体20(160mg、61%)を黄色の固体として得る。H NMR(400MHz、CDCl)9.78(2H,s)、7.59−7.66(4H,m)、7.55(2H,dd,J 8.0、1.5)、7.33(2H,d,J 7.9)、7.28(2H,d,J 3.9)、7.11(8H,d,J 8.0)、7.03(8H,d,J 8.0)、2.49(8H,t,J 7.9)、1.51(8H,m)、1.23(24H,m)、0.71−0.83(12H,m).
化合物87
クロロホルム(12.3cm)中の中間体20(170mg、0.14mmol)および3−(ジシアノメチリデン)インダン−1−オン(196mg、01.01mmol)の脱気した溶液に、ピリジン(799mg、10mmol)を加え、23℃で18時間撹拌する。メタノール(30cm)を加え、得られた懸濁液は、ろ過し、固体は、メタノール(30cm)で洗浄する。固体は、アセトン(10cm)中で研和し、ろ過し、アセトン(30cm)で洗浄して、化合物87(214mg、97%)を青色の固体として得る。H NMR(400MHz、CDCl)8.87(2H,s)、8.69−8.74(2H,m)、7.92−8.00(2H,m)、7.85(2H,d,J 4.3)、7.72−7.82(8H,m)、7.41−7.50(m、4H)、7.22(8H,d,J 8.2)、7.14(8H,d,J 8.1)、2.58(8H,t,J 7.9)、1.57(8H,m)、1.24−1.40(24H,m)、0.82−0.91(12H,m).
実施例88
化合物88
無水クロロホルム(28cm)中の中間体1(303mg、0.27mmol)の溶液に、ピペリジン(0.1cm、1.0mmol)を加える。次に、混合物は、窒素で脱気してから、2−(3−エチル−4−オキソチアゾリジン−2−イリデン)マロノニトリル(134mg、0.69mmol)を加える。次に、溶液はさらに脱気し、23℃で17時間撹拌する。次に、反応混合物は、メタノール(300cm)に加え、メタノール(3×5cm)およびジクロロメタン(5cm)で洗浄してから、沈殿物をろ過し、メタノール(2×10cm)で洗浄する。ろ過された固体は、さらなるメタノール(3×10cm)で洗浄し、粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:1〜2:3)で溶離するカラムクロマトグラフィーによって精製する。最終的な精製は、メタノール(3×10cm)による研和によって行われ、ろ過された固体を、40〜60石油(3×10cm)、ジエチルエーテル(10cm)およびアセトン(10cm)で洗浄して、化合物88(144mg、36%)を濃い青色/黒色の固体として得る。H NMR(400MHz、CDCl)8.05(2H,s)、7.41(2H,s)、7.10−7.16(16H,m)、4.32(4H,q,J 7.1)、2.58(8H,t,J 7.8)、1.56−1.64(8H,m)、1.40(6H,t,J 7.1)、1.22−1.36(40H,m)、0.87(12H,t,J 6.9).
実施例89
中間体21
−78℃で無水テトラヒドロフラン(60cm)中の1−ブロモ−3,5−ジヘキシル−ベンゼン(14.5g、44.6mmol)の溶液に、10分間にわたってn−ブチルリチウム(17.8cm、44.6mmol、ヘキサン中2.5M)を滴下して加える。反応物は、2時間撹拌し、エチル2−[5−(3−エトキシカルボニル−2−チエニル)チエノ[3,2−b]チオフェン−2−イル]チオフェン−3−カルボキシレート(4.00g、8.92mmol)を加える。反応物は、23℃に温め、17時間撹拌する。水(100cm)を加え、生成物は、エーテル(100cm)で抽出する。有機相は、水(2×50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、40〜60石油、次にジクロロメタンで溶離するフラッシュクロマトグラフィーによって精製する。固体は、トルエン(40cm)中で懸濁させ、p−トルエンスルホン酸(2.0g)を加え、反応混合物は、60℃で4時間加熱する。固体はろ過によって収集し、トルエン(50cm)で洗浄し、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜95:5)を用いたフラッシュクロマトグラフィーによって精製して、中間体21(2.5g、21%)を淡褐色の油として得る。H NMR(400MHz、CDCl)7.07(2H,d,J 4.9)、6.96(2H,d,J 4.9)、6.78(4H,d,J 1.6)、6.74(8H,d,J 1.5)、2.40(16H,t,J 8.0)、1.40−1.48(16H,m)、1.10−1.26(48H,m)、0.69−0.82(24H,m).
中間体22
0℃で中間体21(0.50g、0.38mmol)、無水N,N−ジメチルホルムアミド(0.40cm、5.2mmol)クロロホルム(20cm)に、オキシ塩化リン(0.47cm、5.0mmol)を滴下して加える。反応物は、70℃で18時間加熱してから、60℃に冷却し、飽和酢酸ナトリウム水溶液(7cm)を加え、混合物は、1時間撹拌する。有機相は分離させ、水(20cm)で洗浄し、無水硫酸ナトリウムで乾燥させ、ろ過し、溶媒は減圧下で除去する。固体は、アセトン(3×5cm)中で研和して、中間体22(400mg、76%)を明るいオレンジ色の固体として得る。H NMR(400MHz、CDCl)9.78(2H,s)、7.64(2H,s)、6.90(4H,d,J 1.6)、6.78(8H,d,J 1.6)、2.46(16H,d,J 7.9)、1.42−1.51(16H,m)、1.17−1.28(48H,m)、0.76−0.85(24H,m).
化合物89
2−(3−オキソ−インダン−1−イリデン)−マロノニトリル(100mg、0.5mmol)、中間体22(100mg、0.07mmol)およびクロロホルム(10cm)の脱気した混合物に、ピリジン(0.41cm、5.1mmol)を加え、混合物はさらに脱気する。反応混合物は、4時間撹拌し、メタノール(40cm)を加え、懸濁液はろ過する。次に、固体は、メタノール(40cm)で洗浄して、化合物89(101mg、84%)を濃い青色の固体として得る。H NMR(400MHz、CDCl)8.87(2H,s)、8.64−8.71(2H,m)、7.84−7.96(2H,m)、7.67−7.79(6H,m)、6.93−6.98(4H,m)、6.77−6.83(8H,m)、2.52(16H,t,J 7.8)、1.53(16H,d,J 7.9)、1.21−1.35(46H,m)、0.80−0.88(24H,m).
実施例90
中間体23
−78℃で無水テトラヒドロフラン(100cm)中のトリイソプロピル−チエノ[3,2−b]チオフェン−2−イル−シラン(11.86g、40.0mmol)の溶液に、20分間にわたってn−ブチルリチウム(20.8cm、52.0mmol、ヘキサン中2.5M)を滴下して加える。添加の後、反応混合物は、−78℃で120分間撹拌し、次に、塩化トリブチルスズ(15.8cm、56.0mmol)を一度に加える。次に、混合物は、17時間にわたって23℃に温め、溶媒は減圧下で除去する。粗生成物は、40〜60石油(250cm)中で希釈し、ゼオライトプラグ(50g)に通してろ過する。プラグは、さらなる40〜60石油(250cm)で洗浄する。溶媒は減圧下で除去して、中間体23(23.1g、99%)を透明の油として得る。H−NMR(400MHz、CDCl)7.27(1H,d J 0.7)、7.1(1H,s)、1.35−1.63(9H,m)、1.17−1.34(12H,m)、0.98−1.13(18H,m)、0.65−0.91(12H,m).
中間体24
中間体9(7.5g、21mmol)、中間体23(17.8g、30.4mm)および無水トルエン(300cm)の混合物は、25分間にわたって窒素によって脱気する。混合物に、テトラキス(トリフェニルホスフィン)パラジウム(0)(500mg、0.43mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、85℃で17時間撹拌する。反応混合物は、セライトプラグ(50g)に通して高温でろ過し、高温トルエン(100cm)で十分に洗浄する。溶媒を減圧下で、100cmまで減少させ、氷浴中で冷却して、懸濁液を形成する。生成物はろ過し、水(100cm)およびメタノール(100cm)で洗浄し、収集し、減圧下で乾燥させて、中間体24(9.5g、71%)を黄色の結晶性固体として得る。H−NMR(400MHz、CDCl)7.75(2H,d,J 0.7)、7.30(2H,d,J 0.7)、4.36(4H,q,J 7.2)、1.23−1.43(12H,m)、1.07(36H,d,J 7.3).
中間体25
−78℃で無水テトラヒドロフラン(167cm)中の1−ブロモ−4−ドデシルオキシ−ベンゼン(10.6g、30.9mmol)の懸濁液に、60分間にわたってtert−ブチルリチウム(36.4cm、61.8mmol、ペンタン中1.7M)を滴下して加える。添加の後、反応混合物は、−78℃で120分間撹拌する。中間体24(6.0g、6.9mmol)を一度に加える。次に、混合物は、17時間にわたって23℃に温める。ジエチルエーテル(200cm)および水(200cm)を加え、混合物は、23℃で30分間撹拌する。生成物は、ジエチルエーテル(3×200cm)で抽出する。組み合わされた有機物は、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、シリカゲルカラムクロマトグラフィー(40〜60石油:ジエチルエーテル;7:3)を用いて精製する。固体は、メタノール(200cm)で研和し、ろ過によって収集して、中間体25(10.3g、82%)をクリーム色の固体として得る。H NMR(400MHz、CDCl)7.15−7.23(10H,m)、6.77−6.85(8H,m)、6.65(2H,d,J 0.7)、3.45(2H,s)、3.95(8H,s)、1.71−1.85(8H,m)、1.20−1.52(72H,m)、1.11(36H,d,J 7.3)、0.82−0.95(12H,m).
中間体26
60分間にわたって0℃で無水トルエン(250cm)中の中間体25の溶液に通して窒素ガスをバブリングする。アンバーリスト(Amberlyst)15強酸(50g)を加え、混合物は、さらに30分間にわたって脱気する。得られた懸濁液は、70℃で2時間撹拌する。反応混合物は、23℃に冷却させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、アセトン(200cm)で研和する。固体はろ過して、中間体26(4.2g、89%)を濃いオレンジ色の固体として得る。H NMR(400MHz、CDCl)7.28(4H,m)、7.16−7.24(8H,m)、6.75−6.93(8H,m)、3.91(8H,t,J 6.5)、1.67−1.82(8H,m)、1.37−1.48(8H,m)、1.19−1.37(64H,m)、0.80−1.00(12H,m).
中間体27
−78℃で無水テトラヒドロフラン(24cm)中の中間体26(0.6g、0.41mmol)の溶液に、10分間にわたってn−ブチルリチウム(0.7cm、1.6mmol、ヘキサン中2.5M)を滴下して加える。添加の後、反応混合物は、−78℃で60分間撹拌する。N,N−ジメチルホルムアミド(0.16cm、2.4mmol)を一度に加え、混合物は、2時間にわたって23℃に温める。ジエチルエーテル(50cm)および水(50cm)を加え、混合物は、23℃で30分間撹拌する。生成物は、ジエチルエーテル(3×100cm)で抽出する。組み合わされた有機物は、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、シリカゲルカラムクロマトグラフィー(40〜60石油:ジクロロメタン;8:2)を用いて精製して、中間体27(380mg、61%)を暗赤色の油として得る。H NMR(400MHz、CDCl)9.90(2H,s)、7.94(2H,s)、7.08−7.23(8H,m)、6.78−6.93(8H,m)、3.91(8H,t,J 6.5)、1.65−1.85(8H,m)、1.17−1.51(72H,m)、0.82−0.96(12H,m).
化合物90
無水クロロホルム(26cm)中の中間体27(370mg、0.24mmol)の溶液に、ピリジン(1.4cm、17mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(280mg、1.4mmol)を加える。次に、溶液はさらに脱気し、23℃で20分間撹拌する。混合物は、40℃で2時間撹拌し、次に、溶媒は減圧下で除去する。粗生成物は、エタノール(200cm)で研和して、重質の懸濁液を生成し、これはろ過によって収集し、固体は、アセトン(50cm)で洗浄する。粗生成物は、ジクロロメタン(20cm)に溶解させ、アセトン(250cm)中に沈殿させて、懸濁液を形成する。固体はろ過によって収集して、化合物90(437mg、96%)を灰色の固体として得る。H NMR(400MHz、CDCl)8.87(2H,s)、8.63−8.74(2H,m)、8.13(2H,s)、7.87−7.97(2H,m)、7.68−7.82(4H,m)、7.23(8H,d,J 8.8)、6.90(8H,d,J 9.0)、3.92(8H,t,J 6.5)、1.69−1.84(8H,m)、1.16−1.52(72H,m)、0.80−0.97(12H,m).
実施例91
中間体28
−78℃で無水テトラヒドロフラン(47cm)中の中間体26(1.6g、1.1mmol)の溶液に、20分間にわたってn−ブチルリチウム(1.7cm、4.3mmol、ヘキサン中2.5M)を滴下して加える。添加の後、反応混合物は、−78℃で60分間撹拌する。塩化トリブチルスズ(1.3cm、4.9mmol)を一度に加え、次に、混合物は、72時間にわたって23℃に温める。溶媒は減圧下で除去する。粗生成物は、ゼオライトプラグ(40〜60石油)に通すことによって精製した後、エタノール(2×100cm)中で研和して、中間体28(2.0g、88%)を暗赤色の油として得る。H NMR(400MHz、CDCl)7.28(2H,s)、7.18−7.24(8H,m)、6.79−6.87(8H,m)、3.91(8H,t,J 6.6)、1.51−1.83(32H,m)、1.20−1.48(114H,m)、1.07−1.18(15H,m)、0.76−1.03(69H,m).
化合物91
中間体28(700mg、0.34mmol)、2−(7−ブロモ−ベンゾ[1,2,5]チアジアゾール−4−イルメチレン)−マロノニトリル(218mg、0.75mmol)、トリ−o−トリル−ホスフィン(31mg、0.75mmol)および無水トルエン(41cm)の混合物は、10分間にわたって窒素によって脱気する。混合物に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(25mg、0.03mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、80℃で17時間撹拌し、溶媒は減圧下で除去する。ジクロロメタン(200cm)および水(200cm)を加え、混合物は、23℃で30分間撹拌する。生成物は、ジクロロメタン(3×100cm)で抽出する。組み合わされた有機物は、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、ジクロロメタンに溶解させ、アセトン中に沈殿させる。固体はろ過によって収集して、化合物91(451mg、70%)を灰色の固体として得る。H NMR(400MHz、CDCl)8.55−8.74(6H,m)、7.83(2H,d,J 7.8)、7.14(8H,d,J 8.8)、6.77(8H,d,J 8.8)、3.82(8H,t,J 6.6)、1.58−1.69(8H,m)、1.07−1.40(72H,m)、0.68−0.85(12H,m).
実施例92
中間体29
無水クロロホルム(875cm)中の7−ブロモ−ベンゾ[1,2,5]チアジアゾール−4−カルバルデヒド(2.0g、8.2mmol)の溶液に、ピリジン(46.5cm、576mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(4.0g、21mmol)を加える。次に、溶液はさらに脱気し、20分間撹拌する。混合物は、40℃で17時間撹拌する。固体はろ過によって収集し、アセトン(200cm)、水(200cm)、ジエチルエーテル(200cm)およびジクロロメタン(200cm)で洗浄して、中間体29(3.0g、86%)を、非常に限られた溶解性を有する淡黄色の固体として得る。
化合物92および93
中間体28(700mg、0.34mmol)、中間体29(356mg、0.85mmol)、トリ−o−トリル−ホスフィン(31mg、0.10mmol)および無水トルエン(36cm)の混合物は、10分間にわたって窒素によって脱気する。混合物に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(25mg、0.03mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、80℃で17時間撹拌し、溶媒は減圧下で除去する。粗生成物は、アセトン(200cm)中で撹拌して、懸濁液を形成し、固体はろ過によって収集する。粗生成物は、40〜60石油:ジクロロメタン;8:2で溶離するシリカゲルカラムクロマトグラフィーを用いて精製して、化合物92(217mg、30%)および化合物93(136mg、22%)を濃い灰色の固体として得る。化合物92:H NMR(400MHz、CDCl)9.32−9.52(2H,m)、9.15(2H,d,J 8.1)、8.52−8.75(4H,m)、7.61−7.98(8H,m)、7.16(8H,d,J 8.8)、6.79(8H,d,J 8.8)、3.83(8H,t,J 6.5)、1.56−1.73(8H,m)、0.94−1.38(72H,m)、0.77(12H,t,J 6.6).化合物93:H NMR(400MHz、CDCl)9.41(1H,s)、9.14(1H,d,J 8.0)、8.56−8.71(2H,m)、7.57−7.97(4H,m)、7.02−7.30(10H,m)、6.74(8H,dd,J 9.0 18.1)、3.70−3.91(8H,m)、1.54−1.72(8H,m)、1.06−1.72(72H,m)、0.70−0.84(12H,m).
実施例94
中間体30
−78℃で無水テトラヒドロフラン(50cm)中の1−ブロモ−3,5−ビス−ヘキシルオキシ−ベンゼン(8.96g、25.1mmol)の溶液に、n−ブチルリチウム(10.0cm、25.1mmol)を滴下して加える。混合物は、−78℃で2時間撹拌してから、メチル5−ブロモ−2−[5−(4−ブロモ−2−メトキシカルボニル−フェニル)−3a,6a−ジヒドロチエノ[3,2−b]チオフェン−2−イル]ベンゾエート(2.85g、5.0mmol)を一度に加える。混合物は、23℃に温め、17時間撹拌する。反応物は、水(100cm)に注意深く注ぎ、ジクロロメタン(2×100cm)で抽出された有機物を加える。組み合わされた有機層は、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、カラムクロマトグラフィー(40〜60石油:ジクロロメタン;6:4)によって精製する。中間体ジオール(3.42g、3.65mmol)は、トルエン(200cm)に取り込み、p−トルエンスルホン酸一水和物(1.39g、7.30mmol)を加える。混合物は、50℃で90分間撹拌し、混合物は、23℃に冷却させる。水(100cm)を加え、有機層は、水(100cm)および塩水(100cm)で洗浄する。有機層は、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、氷冷アセトン中で研和し、固体はろ過によって収集して、中間体30(3.08g、87%)を黄色の固体として得る。H NMR(400MHz、CDCl)7.54(2H,d,J 1.8)、7.39(2H,dd,J 8.1、1.8)、7.17(2H,d,J 8.1)、6.32(12H,bs)、3.83(16H,td,J 6.6、1.6)、1.69(16H,p、J 6.8)、1.37(16H,tq,J 9.2、4.9、2.9)、1.29(32H,dp、J 7.4、4.6、3.8)、0.80−0.91(24H,m).
中間体31
トルエン(50cm)およびN,N−ジメチルホルムアミド(10cm)中の中間体30(1.04g、0.66mmol)、2−トリブチルスタンナニル−チアゾール(0.62cm、1.97mmol)の脱気した溶液に、(テトラキス(トリフェニルホスフィン))パラジウム(0)(76.1mg、0.07mmol)を加え、混合物は、110℃で5日間撹拌する。混合物は、23℃に冷却させ、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン:6.5:4.5〜3:7)を用いたカラムクロマトグラフィーによって精製して、中間体31(973mg、93%)を黄色の油として得る。H NMR(400MHz、CDCl)8.07(2H,d,J 1.5)、7.94(2H,dd,J 8.0、1.5)、7.82(2H,d,J 3.3)、7.40(2H,d,J 7.9)、7.27(2H,d,J 3.2)、6.43(8H,d,J 2.2)、6.34(4H,t,J 2.2)、3.86(16H,td,J 6.6、1.8)、1.65−1.73(16H,m)、1.25−1.42(48H,m)、0.81−0.89(24H,m).
中間体32
−78℃で無水テトラヒドロフラン(100cm)中の中間体31(973mg、0.61mmol)の撹拌溶液に、n−ブチルリチウム(0.98cm、2.5mmol、ヘキサン中2.5M)を滴下して加える。反応混合物は、2時間撹拌してから、無水N,N−ジメチルホルムアミド(0.21cm、2.8mmol)を加える。混合物は、23℃に温め、4時間撹拌し、メタノール(3cm)を加える。混合物は、EtO(100cm)で希釈し、水(2×100cm)で洗浄する。有機層は、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン:4:6〜1:9)を用いたカラムクロマトグラフィーによって精製して、中間体32(680mg、67%)を赤色の油として得る。H NMR(400MHz、CDCl)10.01(2H,s)、8.37(2H,s)、8.12(2H,d,J 1.5)、7.99(2H,dd,J 8.0、1.6)、7.42(2H,d,J 8.0)、6.40(8H,d,J 2.2)、6.34(4H,t,J 2.2)、3.85(16H,td,J 6.6、1.7)、1.64−1.73(16H,m)、1.22−1.47(48H,m)、0.80−0.89(24H,m).
化合物94
中間体32(200mg、0.12mmol)、3−エチル−2−チオキソ−チアゾリジン−4−オン(59mg、0.36mmol)無水N,N−ジメチルホルムアミド(10cm)の脱気した溶液に、炭酸カリウム(50mg、0.36mmol)を加え、混合物は、16時間撹拌する。ジクロロメタンを加え、有機層は、水(2×100cm)、塩水(100cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、アセトン中で研和し、固体はろ過によって収集して、化合物94(69mg、29%)を光沢のある赤色の固体として得る。H NMR(400MHz、CDCl)8.11(2H,d,J 1.7)、8.05(2H,s)、7.96(2H,dd,J 8.0、1.7)、7.89(2H,s)、7.42(2H,d,J 8.0)、6.41(8H,d,J 2.2)、6.35(4H,t,J 2.2)、4.19(4H,q,J 7.1)、3.82−3.90(16H,m)、1.33−1.42(16H,m)、1.38(16H,dq,J 14.2、6.6)、1.20−1.32(38H,m)、0.85(24H,t,J 6.8).
実施例95
化合物95
中間体28(500mg、0.24mmol)、5−[1−(7−ブロモ−ベンゾ[1,2,5]チアジアゾール−4−イル)−メタ−(E)−イリデン]−3−エチル−2−チオキソ−チアゾリジン−4−オン(197mg、0.51mmol)、トリ−o−トリル−ホスフィン(22mg、0.07mmol)および無水トルエン(26cm)の混合物は、10分間にわたって窒素によって脱気する。混合物に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(18mg、0.02mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、90℃で17時間撹拌し、溶媒は減圧下で除去する。粗生成物は、アセトン(200cm)中で撹拌して、懸濁液を形成し、固体はろ過によって収集する。粗生成物は、40〜60石油:ジクロロメタン;1:1で溶離するシリカゲルカラムクロマトグラフィーを用いて精製して、化合物95(193mg、38%)を暗緑色の固体として得る。H NMR(400MHz、CDCl)8.57(2H,s)、8.34(2H,s)、7.79(2H,d,J 7.8)、7.58(2H,d,J 7.8)、7.15(8H,d,J 8.8)、6.77(8H,d,J 8.6)、4.13(4H,q,J 7.3)、3.81(8H,t,J 6.5)、1.63(8H,quin,J 6.9)、0.96−1.38(78H,m)、0.77(12H,t,J 6.6).
実施例96
化合物96
クロロホルム(19cm)およびピリジン(1cm)中の中間体32(192mg、0.12mmol)の脱気した溶液に、2−(3−オキソ−インダン−1−イリデン)−マロノニトリル(68mg、0.35mmol)を加え、混合物は2時間撹拌する。塩酸水溶液(10cm、2M)を加え、混合物は、ジクロロメタン(50cm)で希釈する。有機層は、水(50cm)および塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、アセトン中で研和し、固体はろ過によって収集して、化合物96(182mg、78%)を青色の粉末として得る。H NMR(400MHz、CDCl)8.90(2H,s)、8.74(2H,d,J 7.2)、8.41(2H,s)、8.28(2H,d,J 1.6)、8.14(2H,dd,J 8.0、1.6)、7.95(2H,d,J 7.2)、7.76−7.86(4H,m)、7.45(2H,d,J 8.1)、6.43(8H,d,J 2.2)、6.36(4H,t,J 2.2)、3.88(16H,td,J 6.6、1.7)、1.67−1.74(16H,m)、1.35−1.42(16H,m)、1.23−1.31(32H,m)、0.84(24H,t,J 7.0).
実施例97
中間体33
中間体28(400mg、0.19mmol)、2−ブロモ−チアゾール−5−カルバルデヒド(112mg、0.58mmol)、トリ−o−トリル−ホスフィン(18mg、0.06mmol)および無水トルエン(40cm)の混合物は、10分間にわたって窒素によって脱気する。混合物に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(14mg、0.02mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、90℃で17時間撹拌し、溶媒は減圧下で除去する。粗生成物は、アセトン(200cm)中で撹拌し、固体はろ過によって収集して、中間体33(158mg、48%)を濃い紫色の固体として得る。H−NMR(400MHz、CDCl)9.89(2H,s)、8.21(2H,s)、7.82(2H,s)、7.08(8H,d,J 8.6)、6.68−6.81(8H,m)、3.81(8H,t,J 6.4)、1.64(8H,brs)、1.10−1.36(72H,m)、0.78(12H,t,J 6.5).
化合物97
無水クロロホルム(9cm)中の中間体32(150mg、0.09mmol)の溶液に、ピリジン(0.5cm、6.2mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(120mg、0.62mmol)を加える。次に、溶液はさらに脱気し、23℃で20分間撹拌してから、溶媒は減圧下で除去する。粗生成物は、エタノール(200cm)で研和し、固体はろ過によって収集する。粗生成物は、40〜60石油:ジクロロメタン;6:4で溶離するシリカゲルカラムクロマトグラフィーを用いて精製して、化合物97(17mg、9%)を緑色の固体として得る。H NMR(400MHz、CDCl)8.75(2H,s)、8.61(2H,d,J 7.3)、8.25(2H,s)、7.94(2H,s)、7.85(2H,d,J7.3)、7.70(4H,quin,J 7.5)、7.02−7.16(8H,d,J 8.8)、6.77(8H,d,J 9.0)、3.82(8H,t,J 6.4)、1.58−1.66(8H,m)、1.07−1.39(72H,m)、0.70−0.84(12H,m).
実施例98
化合物98
中間体32(169mg、0.10mmol)、ピリジン(2cm)およびクロロホルム(10cm)の脱気した溶液に、1−エチル−4−メチル−2,6−ジオキソ−1,2,5,6−テトラヒドロ−ピリジン−3−カルボニトリル(55mg、0.31mmol)を加え、混合物は20時間撹拌する。塩酸水溶液(10cm、2M)を加え、混合物は、ジクロロメタン(50cm)で希釈する。有機層は、水(50cm)および塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン:2:8〜0:1)を用いたカラムクロマトグラフィー、続いて再結晶化(エタノール/ジクロロメタン)によって精製して、化合物98(69mg、34%)を、光沢のある青色の固体として得る。H NMR(400MHz、CDCl)8.39(2H,s)、8.24(2H,d,J 1.5)、8.14(2H,dd,J 8.1、1.5)、7.90(2H,s)、7.43(2H,d,J 8.0)、6.42(8H,d,J 2.1)、6.35(4H,t,J 2.1)、4.07(4H,q,J 7.1)、3.87(16H,t,J 6.8)、2.65(6H,s)、1.66−1.73(16H,m)、1.32−1.43(16H,m)、1.23−1.30(38H,m)、0.85(24H,t,J 6.9).
実施例99
中間体34
−78℃で無水テトラヒドロフラン(47cm)中の中間体21(1.60g、1.2mmol)の溶液に、20分間にわたってn−ブチルリチウム(1.96cm、4.9mmol、ヘキサン中2.5M)を滴下して加える。添加の後、反応混合物は、−78℃で60分間撹拌し、次に、塩化トリブチルスズ(1.5cm、5.5mmol)を一度に加える。次に、混合物は、72時間にわたって23℃に温め、溶媒は減圧下で除去する。粗生成物は、ゼオライトプラグ(40〜60石油)に通すことによって精製した後、エタノール(2×100cm)中で研和して、中間体34および塩化トリブチルスズの混合物(2.7g)を暗褐色の油として得る。H NMR(400MHz、CDCl)6.99(2H,s)、6.64−6.85(12H,m)、2.38(16H,t,J 7.7)、0.57−1.69(98H,m).
中間体35
中間体34(1.5g、0.48mmol)、7−ブロモ−ベンゾ[1,2,5]チアジアゾール−4−カルバルデヒド(232mg、0.96mmol)、トリ−o−トリル−ホスフィン(44mg、0.14mmol)および無水トルエン(51cm)の混合物は、10分間にわたって窒素によって脱気する。混合物に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(35mg、0.04mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、100℃で17時間撹拌し、溶媒は減圧下で除去する。粗生成物は、40〜60石油:ジクロロメタン;7:3で溶離するシリカゲルカラムクロマトグラフィーを用いて精製して、中間体35(650mg、84%)を濃い青色の固体として得る。H NMR(400MHz、CDCl)10.67−10.73(2H,m)、8.34(2H,s)、8.20(2H,d,J 7.6)、7.93(2H,d,J 7.6)、6.94(12H,s)、2.54(16H,t,J 7.7)、1.51−1.64(16H,m)、1.20−1.36(48H,m)、0.77−0.88(24H,m).
化合物99
−30℃で無水クロロホルム(33cm)中の中間体35(500mg、0.31mmol)の溶液に、ピリジン(1.7cm、22mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(417mg、2.15mmol)を加える。次に、溶液はさらに脱気し、−30℃で30分間撹拌する。氷浴は除去し、反応物は、60分間にわたって20℃に温め、溶媒は減圧下で除去する。粗生成物は、エタノールで研和し、固体はろ過によって収集する。粗生成物は、40〜60石油:ジクロロメタン;1:1で溶離するシリカゲルカラムクロマトグラフィーを用いて精製して、化合物99(205mg、34%)を緑色の固体として得る。H NMR(400MHz、CDCl)9.61(2H,s)、9.32(2H,d,J 8.1)、8.75(2H,d,J 7.8)、8.39(2H,s)、7.94−8.03(4H,m)、7.76−7.91(4H,m)、6.95(12H,s)、2.56(16H,t,J 7.7)、1.48−1.68(m、16H)、1.20−1.40(48H,m)、0.76−0.95(24H,m).
実施例100
中間体36
中間体13(350mg;0.22mmol)、トリブチル−チオフェン−2−イル−スタンナン(248mg、0.66mmol)および無水トルエン(20cm)の脱気した溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(10mg、0.01mmol)および2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル(42mg、0.09mmol)を加え、混合物は、80℃で17時間撹拌する。混合物は、23℃に冷却させ、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン:9:1〜1:1)を用いたカラムクロマトグラフィー、続いて氷冷したアセトン中での研和によって精製する。固体はろ過によって収集して、中間体36(216mg、61%)を黄色の粉末として得る。H NMR(400MHz、CDCl)7.68(2H,d,J 1.6)、7.53(2H,dd,J 7.9、1.6)、7.32(2H,d,J 7.9)、7.20−7.26(4H,m)、7.04(2H,dd,J 5.1、3.6)、6.41(8H,d,J 2.2)、6.32(4H,t,J 2.2)、3.84(16H,td,J 6.6、2.2)、1.62−1.73(16H,m)、1.32−1.42(16H,m)、1.27(32H,dq,J 7.3、3.7、3.0)、0.82−0.88(24H,m).
中間体37
0℃で無水N,N−ジメチルホルムアミド(1cm)および無水クロロホルム(10cm)の混合物に、ホスホルオキシクロリド(phosphoroxychloride)(0.04cm、0.41mmol)を加える。混合物は23℃まで温め、1時間撹拌してから、0℃に冷却し、ここで、中間体36(216mg、0.14mmol)を加える。次に、混合物は、60℃で17時間撹拌する。混合物は、23℃に冷却させ、飽和炭酸水素ナトリウム水溶液(50cm)に注ぎ、23℃で30分間撹拌する。水層は、ジクロロメタン(100cm)で抽出する。有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン:1:1〜0:1)を用いたカラムクロマトグラフィーによって精製して、中間体37(49mg、22%)を赤色の固体として得る。H NMR(400MHz、CDCl)9.86(2H,s)、7.73(2H,d,J 1.7)、7.70(2H,d,J 4.0)、7.61(2H,dd,J 8.0、1.7)、7.37(2H,d,J 8.0)、7.34(2H,d,J 4.0)、6.39(8H d,J 2.2)、6.34(4H,t,J 2.2)、3.85(16H,m)、1.69(16H,p、J 6.8)、1.23−1.45(48H,m)、0.76−0.92(24H,m).
化合物100
0℃で中間体37(59mg、0.04mmol)、無水クロロホルム(10cm)および無水ピリジン(2cm)の脱気した溶液に、2−(3−オキソ−インダン−1−イリデン)−マロノニトリル(21mg、0.11mmol)を加え、反応混合物は、0℃で2時間撹拌する。反応物は、塩酸水溶液(5cm、2M)の添加によってクエンチする。ジクロロメタン(50cm)を加え、有機層は、水(2×50cm)および塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、アセトン中で研和し、固体はろ過によって収集して、化合物100(18mg、25%)を黒色の粉末として得る。H NMR(400MHz、CDCl)8.86(2H,s)、8.69−8.73(2H,m)、7.91−7.94(2H,m)、7.88(2H,d,J 1.6)、7.84(2H,d,J 4.3)、7.73−7.81(6H,m)、7.46(2H,d,J 4.2)、7.40(2H,d,J 8.0)、6.42(8H,d,J 2.2)、6.36(4H,t,J 2.2)、3.88(16H,td,J 6.5、1.8)、1.71(16H,p、J 6.7)、1.31−1.47(16H,m)、1.22−1.32(32H,m)、0.79−0.88(24H,m).
実施例101
中間体38
−78℃で無水テトラヒドロフラン(48cm)中の1−ブロモ−4−ドデシルベンゼン(3.626g、11.15mmol)の懸濁液に、30分間にわたってtert−ブチルリチウム(13cm、22mmol、ペンタン中1.7M)を滴下して加える。40分後、反応物は、−30℃に温めてから、次に、反応混合物は、−78℃に再度冷却する。さらなる1−ブロモ−4−ドデシルベンゼン(362mg、1.11mmol)を加え、15分後、エチル2−[5−(3−エトキシカルボニル−2−チエニル)チエノ[3,2−b]チオフェン−2−イル]チオフェン−3−カルボキシレート(1.00g、2.23mmol)を、反応混合物に一度に加える。次に、この混合物は、−78℃で20分間撹拌させてから、除去し、混合物を23℃に温める。水(100cm)を加え、混合物は5分間撹拌する。次に、ジエチルエーテル(50cm)を加え、有機層は抽出する。次に、有機抽出物は、飽和塩化アンモニウム溶液(100cm)、水(100cm)および塩水(100cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜3:2)で溶離するカラムクロマトグラフィー、およびメタノール(3×10cm)での研和によって行われる最終的な精製によって精製し、ろ過された固体を、40〜60石油(2×10cm)、ジエチルエーテル(10cm)およびアセトン(10cm)で洗浄して、中間体38(2.09g、70%)を黄色の固体として得る。H NMR(400MHz、CDCl)7.12−7.17(10H,m)、7.07−7.12(8H,m)、6.64(2H,s)、6.45(2H,d,J 5.2)、3.24(2H,s)、2.60(8H,t,J 7.7)、1.57−1.65(8H,m)、1.25−1.35(72H,m)、0.89(12H,t,J 6.8).
中間体39
無水トルエン(17cm)中の中間体38l(1.00g、0.75mmol)の脱気した溶液は、トルエン(18cm)中のアンバーリスト(Amberlist)15強酸(4.00g)の脱気した懸濁液に加え、反応物は、50℃で80分間撹拌する。混合物を23℃に冷却した後、固体は、ろ過によって除去し、トルエン(3×50cm)およびジエチルエーテル(3×50cm)で洗浄し、ろ液は減圧下で濃縮する。精製は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜4:1)で溶離するカラムクロマトグラフィーによって行って、中間体39(582mg、60%)を褐色の油として得る。H NMR(400MHz、CDCl)7.23(2H,d,J 4.9)、7.11−7.16(8H,m)、7.05−7.10(10H,m)、2.54(8H,t,J 7.8)、1.53−1.61(8H,m)、1.22−1.33(72H,m)、0.87(12H,t,J 6.9).
中間体40
−78℃で無水テトラヒドロフラン(27cm)中の中間体39(582mg、0.45mmol)の溶液に、5分間にわたってn−ブチルリチウム(0.43cm、1.1mmol、ヘキサン中2.5M)を加える。混合物は、−78℃で45分間撹拌してから、さらなるn−ブチルリチウム(0.10cm、0.25mmol)を加える。混合物は、さらに5分間撹拌してから、塩化トリブチルスズ(0.42cm、1.56mmol)を加え、混合物は、17時間にわたって23℃になるまで撹拌する。メタノール(15cm)を加え、材料は減圧下で濃縮する。次に、粗生成物は、ペンタンに取り込み、懸濁液は、さらなるペンタンで十分に洗浄しながら、セライトに通してろ過する。次に、ろ液は減圧下で濃縮し、固体は、メタノール(3×10cm)で研和し、生成物はろ過によって収集して、中間体40(790mg、94%)を褐色の粘着性の固体として得る。H NMR(400MHz、CDCl)7.13−7.18(8H,m)、7.03−7.09(10H,m)、2.54(8H,t,J 7.8)、1.51−1.60(20H,m)、1.21−1.38(84H,m)、1.06−1.13(12H,m)、0.85−0.91(30H,m).
中間体41
無水トルエン(28cm)中の中間体40(438mg、0.23mmol)および7−ブロモ−ベンゾ[1,2,5]チアジアゾール−4−カルバルデヒド(124mg、0.51mmol)の脱気した溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(17mg、0.02mmol)およびトリス(o−トリル)ホスフィン(21mg、0.07mmol)を加える。反応混合物をさらに20分間にわたって脱気した後、それを80℃で17時間加熱する。23℃に冷却した後、混合物は、減圧下で濃縮する。次に、粗生成物は、メタノール(3×10cm)で研和し、固体は、アセトン(3×10cm)で洗浄しながらろ過して、中間体41(320mg、84%)を青色/黒色の固体として得る。H NMR(400MHz、CDCl)10.69(2H,s)、8.33(2H,s)、8.19(2H,d,J 7.6)、7.94(2H,d,J 7.8)、7.22−7.27(8H,m)、7.11−7.17(8H,m)、2.58(8H,t,J 7.9)、1.51−1.65(8H,m)、1.18−1.38(72H,m)、0.86(12H,t,J 6.9).
化合物101
無水クロロホルム(21cm)中の中間体41(319mg、0.20mmol)の溶液に、無水ピリジン(1.1cm、14mmol)を加える。次に、混合物は、窒素で脱気してから、3−(ジシアノメチリデン)インダン−1−オン(266mg、1.37mmol)を加え、反応物は、−40℃に冷却する。溶液は、10分間にわたって、撹拌しながら、さらに脱気し、温めてから、−15〜−20℃に保持する。5時間後、次に、反応混合物は、ジクロロメタン(10cm)およびメタノール(2×10cm)で洗浄しながら、メタノール(100cm)に加える。さらなるメタノール(50cm)を加えてから、懸濁液はろ過する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜1:1)で溶離するカラムクロマトグラフィーによって精製して、化合物101(24mg、6%)を黒色の固体として得る。H NMR(400MHz、CDCl)9.58(2H,s)、9.28(2H,d,J 8.1)、8.73(2H,d,J 7.8)、8.37(2H,s)、7.94(4H,d,J 7.6)、7.74−7.85(4H,m)、7.23−7.27(8H,m)、7.15(8H,d,J 8.3)、2.58(8H,t,J 7.8)、1.53−1.65(8H,m)、1.18−1.38(72H,m)、0.83−0.90(12H,m).
実施例102
化合物102
中間体12(100mg、0.08mmol)および2−(5−メチル−3−オキソ−インダン−1−イリデン)−マロノニトリルおよび2−(6−メチル−3−オキソ−インダン−1−イリデン)−マロノニトリル(121mg、0.58mmol)の2:3位置異性体(regiomeric)混合物およびクロロホルム(2.5cm)の脱気した混合物に、ピリジン(0.47cm、5.8mmol)を加える。溶液は、10分間にわたって窒素でバブリングし、次に、23℃で3時間撹拌する。メタノール(20cm)を加え、懸濁液はろ過し、メタノール(20cm)で洗浄する。得られた固体は、2時間にわたって95℃で、メチルエチルケトン(5cm)中で撹拌し、23℃に冷却し、固体はろ過によって収集する。固体は、メチルエチルケトン(5cm)で洗浄して、化合物102(107mg、81%)を濃い青色の固体として得る。H NMR(400MHz、CDCl)8.85(2H,m)、8.40−8.66(2H,m)、7.49−7.93(6H,m)、7.20(8H,d,J 8.6)、6.87(8H,d,J 8.5)、3.95(8H,t,J 6.5)、2.54−2.61(6H,m)、1.73−1.82(8H,m)、1.41−1.52(8H,m)、1.24−1.40(32H,m)、0.90(12H,t,J 6.6).
実施例103
中間体42
−78℃で無水テトラヒドロフラン(91cm)中の1−ブロモ−4−ドデシルオキシベンゼン(7.25g、21.2mmol)の懸濁液に、30分間にわたってtert−ブチルリチウム(25cm、42mmol、ペンタン中1.7M)を滴下して加える。2時間後、反応混合物は、−30℃に温めてから、−78℃に再度冷却する。さらなる1−ブロモ−4−ドデシルオキシベンゼン(720mg、2.11mmol)および10分後にエチル2−[5−(3−エトキシカルボニル−2−チエニル)チエノ[3,2−b]チオフェン−2−イル]チオフェン−3−カルボキシレート(1.91g、4.25mmol)を、反応混合物に一度に加える。次に、この混合物は、17時間にわたって23℃になるまで撹拌させる。次に、水(50cm)およびジエチルエーテル(25cm)を加え、有機層は抽出する。次に、残りの水層は、ジエチルエーテル(50cm)でさらに抽出し、組み合わされた有機抽出物は、塩水(75cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜3:7)で溶離するカラムクロマトグラフィーによって精製して、中間体42(4.10g、69%)を褐色の油として得て、これは、静置すると固化して黄色/褐色の固体になる。H NMR(400MHz、CDCl)7.09−7.17(10H,m)、6.79−6.85(8H,m)、6.76(2H,s)、6.43(2H,d,J 5.1)、3.95(8H,t,J 6.6)、3.25(2H,s)、1.73−1.83(8H,m)、1.41−1.50(8H,m)、1.24−1.39(64H,m)、0.89(12H,t,J 6.9).
中間体43
無水トルエン(20cm)中の中間体42(1.20g、0.85mmol)の脱気した溶液に、トルエン(20cm)中のアンバーリスト(Amberlist)15強酸(5.00g)の脱気した懸濁液を加え、反応混合物は、100℃で3時間撹拌する。固体は、ろ過によって除去し、トルエン(3×50cm)およびジエチルエーテル(3×50cm)で洗浄してから、ろ液は減圧下で濃縮する。精製は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜3:7)で溶離するカラムクロマトグラフィーによって行って、中間体43(221mg、19%)を褐色の油として得る。H NMR(400MHz、CDCl)7.12−7.19(10H,m)、7.04(2H,d,J 4.9)、6.75−6.82(8H,m)、3.89(8H,t,J 6.48)、1.74(8H,quin,J 7.1)、1.37−1.46(8H,m)、1.19−1.36(64H,m)、0.88(12H,t,J 6.9).
中間体44
−78℃で無水テトラヒドロフラン(22cm)中の中間体43(493mg、0.36mmol)の溶液に、5分間にわたってn−ブチルリチウム(0.43cm、1.1mmol、ヘキサン中2.5M)を加える。混合物は、−78℃で1時間撹拌する。塩化トリブチルスズ(0.34cm、1.3mmol)を加え、混合物は、17時間にわたって23℃になるまで撹拌する。メタノール(15cm)を加え、材料は減圧下で濃縮する。次に、粗生成物は、ペンタンに取り込み、懸濁液は、さらなるペンタンで十分に洗浄しながら、セライトに通してろ過する。次に、ろ液は減圧下で濃縮して、粗生成物2,7−ビス(トリブチルスタンニル)−4,4,9,9−テトラキス(4−ドデシルオキシフェニル)−4,9−ジヒドロ−チエノ[3’,2’:4,5]シクロペンタ[1,2−b]チエノ[2’’,3’’:3’,4’]シクロペンタ[1’,2’:4,5]チエノ[2,3−d]チオフェン(948mg、0.49mmol)を暗褐色の油として得て、それはさらに精製せずに使用する。無水トルエン(43cm)中の2,7−ビス(トリブチルスタンニル)−4,4,9,9−テトラキス(4−ドデシルオキシフェニル)−4,9−ジヒドロ−チエノ[3’,2’:4,5]シクロペンタ[1,2−b]チエノ[2’’,3’’:3’,4’]シクロペンタ[1’,2’:4,5]チエノ[2,3−d]チオフェン(701mg、0.36mmol)および7−ブロモ−ベンゾ[1,2,5]チアジアゾール−4−カルバルデヒド(192mg、0.79mmol)の脱気した溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(26mg、0.03mmol)およびトリス(o−トリル)ホスフィン(33mg、0.11mmol)を加える。反応混合物をさらに20分間にわたって脱気した後、それを80℃で17時間加熱する。23℃に冷却した後、混合物は減圧下で濃縮する。粗生成物は、メタノール(4×10cm)で研和し、固体はろ過する。次に、粗生成物は、2つの勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜1:4)(40〜60石油:ジエチルエーテル;1:0〜9:1)で溶離するカラムクロマトグラフィーによって、2回部分的に精製して、部分的に純粋な画分を単離する。次に、最終的な精製は、温かいアセトンおよび温かいジエチルエーテルによる研和によって行って、中間体44(255mg、42%)を青色/黒色の固体として得る。H NMR(400MHz、CDCl)10.69(2H,s)、8.31(2H,s)、8.19(2H,d,J 7.8)、7.94(2H,d,J 7.6)、7.22−7.27(8H,m)、6.82−6.88(8H,m)、3.91(8H,t,J 6.5)、1.75(8H,quin,J 7.2)、1.37−1.46(8H,m)、1.20−1.35(64H,m)、0.87(12H,t,J 6.9).
化合物103
無水クロロホルム(16cm)中の中間体44(255mg、0.15mmol)の溶液に、ピリジン(0.85cm、11mmol)を加える。次に、混合物は、窒素で脱気してから、−40℃に冷却する。3−(ジシアノメチリデン)インダン−1−オン(205mg、1.05mmol)を加え、溶液は、10分間にわたって、撹拌しながら、さらに脱気し、温めてから、−15〜−20℃に保持する。4時間後、次に、反応混合物は、メタノール(2×10cm)およびジクロロメタン(10cm)で洗浄しながら、メタノール(100cm)に加える。さらなるメタノール(50cm)を加え、懸濁液は、10分間撹拌してから、固体は、真空ろ過によって収集し、固体をさらなるメタノール(3×10cm)で洗浄する。粗生成物は、シリカプラグ(40〜60石油:ジクロロメタン;1:4)によって精製し、生成物は減圧下で濃縮する。次に、固体は、メタノール(3×10cm)で研和し、ろ過によって収集してから、シクロヘキサン(3×10cm)、ジエチルエーテル(3×10cm)、アセトン(3×10cm)、メチルエチルケトン(10cm)および酢酸エチル(3×10cm)でさらに洗浄して、化合物103(203mg、66%)を部分的に純粋な黒色の固体として得る。H NMR(400MHz、CDCl)9.58(2H,s)、9.28(2H,d,J 8.6)、8.74(2H,d,J 7.8)、8.36(2H,s)、7.93−8.00(4H,m)、7.75−7.86(4H,m)、7.23−7.27(8H,m)、6.83−6.89(8H,m)、3.92(8H,t,J 6.5)、1.70−1.80(8H,m)、1.38−1.46(8H,m)、1.18−1.37(64H,m)、0.87(12H,t,J 6.9).
実施例104
中間体45
−30℃で無水テトラヒドロフラン(150cm)中の6−ブロモ−ベンゾ[b]チオフェン(9.09g、42.6mmol)の溶液に、リチウムジイソプロピルアミド(23.5cm、46.9mmol、テトラヒドロフラン/ヘプタン/エチルベンゼン中2.0M)を滴下して加える。混合物は、−30℃で1時間撹拌してから、トリイソプロピルシリルトリフルオロメタンスルホネート(14.4g、46.9mmol)を一度に加える。混合物は、23℃に温め、15時間撹拌する。水(150cm)を加え、混合物は、ジエチルエーテル(100cm)で希釈する。水層は、ジエチルエーテル(2×50cm)で抽出する。組み合わされた有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣はゆっくりと結晶化し、それはエタノール(150cm)中で研和して、中間体45(11.5g、72%)をオフホワイトの固体として得る。H NMR(400MHz、CDCl)8.04(1H,d,J 1.8)、7.69(1H,d,J 8.5)、7.46(1H,s)、7.46(1H,dd,J 8.6、1.9)、1.37−1.47(3H,m)、1.16(18H,d,J 7.5).
中間体46
−78℃で無水テトラヒドロフラン(100cm)中の中間体45(5.00g、13.5mmol)の溶液に、n−ブチルリチウム(6.0cm、14.9mmol;ヘキサン中2.5M)を滴下して加える。混合物は、−78℃で2時間撹拌してから、トリブチル(クロロ)スタンナン(4.0cm、15mmol)を加える。混合物は、−78℃で30分間撹拌してから、それは23℃に温め、20時間撹拌する。水(100cm)を加え、混合物は、ジエチルエーテル(100cm)で希釈する。水層は、ジエチルエーテル(2×50cm)で抽出する。組み合わされた有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去して、8.90gの粗中間体46を黄色の油として得る。残渣は、さらに精製せずに次の工程に使用する。H NMR(400MHz、CDCl)8.01(1H,d,J 0.9)、7.82(1H,dd,J 7.7、0.7)、7.49(1H,d,J 0.9)、7.43(1H,dd,J 7.7、0.7)、1.54−1.67(9H,m)、1.33−1.44(12H,m)、1.17(18H,d,J 7.3)、0.92(12H,t,J 7.3).
中間体47
無水トルエン(60cm)および無水N,N−ジメチルホルムアミド(10cm)中の中間体9(1.80g、5.10mmol)および中間体46(7.8g、12mmol、90%の純度)の脱気した溶液に、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル(850mg、1.78mmol)およびトリス(ジベンジリデンアセトン)ジパラジウム(0)(187mg、0.20mmol)を加え、混合物は、80℃で20時間撹拌する。反応混合物は、23℃に冷却させ、溶媒は減圧下で除去する。残渣は、氷冷ジエチルエーテル(50cm)中で研和し、ろ過して取り除き、固体は、40〜60石油(2×20cm)で洗浄して、中間体47(3.01g、68%)を黄色の固体として得る。H NMR(400MHz、CDCl)8.15(2H,d,J 1.6)、7.90(2H,d,J 8.2)、7.62(2H,dd,J 8.2、1.6)、7.57(2H,s)、4.34(4H,q,J 7.1)、1.40−1.49(6H,m)、1.32(6H,t,J 7.1)、1.19(36H,d,J 7.5).
中間体48
−78℃で無水テトラヒドロフラン(60cm)中の1−ブロモ−4−オクチルオキシ−ベンゼン(2.48g、8.71mmol)の溶液に、n−ブチルリチウム(3.48cm、8.71mmol、ヘキサン中2.5M)を滴下して加える。混合物は、2時間撹拌してから、中間体47(1.50g、1.74mmol)を加える。冷却浴は除去し、混合物は、17時間にわたって23℃まで温める。反応混合物は水(100cm)に注ぎ、ジクロロメタン(150cm)で希釈する。水層は、ジクロロメタン(2×50cm)で2回抽出する。組み合わされた有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、無水トルエン(300cm)に取り込み、4−メチルベンゼンスルホン酸水和物(662mg、3.48mmol)を加える。混合物は、80℃で4時間撹拌する。23℃に冷却した後、反応物は、飽和炭酸水素ナトリウム水溶液(50cm)の添加によってクエンチし、水(50cm)およびジクロロメタン(150cm)で希釈する。水層は、ジクロロメタン(50cm)で抽出する。組み合わされた有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、無水テトラヒドロフラン(40cm)に取り込み、フッ化テトラブチルアンモニウム(2,73g、10.4mmol)を加える。混合物は、2時間撹拌し、次に、水(50cm)およびジクロロメタン(100cm)で希釈する。水層は、ジクロロメタン(50cm)で抽出する。組み合わされた有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、勾配溶媒系(40〜60石油:ジクロロメタン;19:1〜7:3)を用いたカラムクロマトグラフィーによって精製して、中間体48(990mg、45%)を黄色の粘着性の固体として得る。H NMR(400MHz、CDCl)7.80(2H,d,J 8.1)、7.47(2H,d,J 8.0)、7.36(2H,d,J 5.5)、7.28(2H,d,J 7.27)、7.16−7.23(8H,m)、6.77−6.84(8H,m)、3.90(8H,t,J 6.5)、1.69−1.78(8H,m)、1.37−1.46(8H,m)、1.22−1.36(32H,m)、0.88(12H,t,J 7.0).
中間体49
−78℃で無水テトラヒドロフラン(20cm)中の中間体48(574mg、0.46mmol)の撹拌溶液に、n−ブチルリチウム(0.74cm、1.8mmol、ヘキサン中2.5M)を滴下して加える。混合物は、1時間撹拌してから、無水N,N−ジメチルホルムアミド(0.14cm、1.8mmol)を加える。混合物は23℃まで温め、3時間撹拌する。反応混合物は、飽和塩化アンモニウム水溶液(20cm)に注ぎ、ジクロロメタン(100cm)で希釈する。水層は、ジクロロメタン(20cm)で抽出する。組み合わされた有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、勾配溶媒系(シクロヘキサン:ジクロロメタン;3:7〜2:3)を用いたカラムクロマトグラフィーによって精製して、中間体49(280mg;46%)をオレンジ色の固体として得る。H NMR(400MHz、CDCl)10.02(2H,s)、8.03(2H,s)、7.94(2H,d,J 8.2)、7.54(2H,d,J 8.1)、7.14−7.24(8H,m)、6.79−6.85(8H,m)、3.90(8H,t,J 6.5)、1.67−1.79(8H,m)、1.39−1.44(8H,m)、1.20−1.36(32H,m)、0.88(12H,t,J 7.1).
化合物104
0℃でピリジン(2cm)およびクロロホルム(18cm)の混合物中の中間体49(250mg、0.19mmol)の脱気した溶液に、2−(3−オキソ−インダン−1−イリデン)−マロノニトリル(112mg、0.58mmol)を加え、混合物は、0℃で3時間撹拌する。反応物は、塩酸水溶液(10cm、2M)の添加によってクエンチし、水層は、ジクロロメタン(20cm)で抽出する。組み合わされた有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。この残渣は、勾配溶媒系(40〜60石油:ジクロロメタン;3:2〜3:7)を用いたカラムクロマトグラフィーによって精製する。固体は、氷冷アセトン(30cm)中およびジエチルエーテル(20cm)で研和して、化合物104(135mg、42%)を青色の固体として得る。H NMR(400MHz、CDCl)8.85(2H,s)、8.67(2H,d,J 7.5)、8.24(2H,s)、7.95(4H,t,J 9.2)、7.75−7.83(4H,m)、7.59(2H,d,J 8.3)、7.23(8H,d,J 8.4)、6.83(8H,d,J 8.4)、3.87(8H,t,J 6.6)、1.63−1.74(8H,m)、1.31−1.39(8H,m)、1.18−1.31(32H,m)、0.82(12H,t,J 7.0).
実施例105
中間体50
7−ブロモ−ベンゾ[1,2,5]チアジアゾール−4−カルバルデヒド(500mg、2.0mmol)および3−エチル−2−チオキソ−チアゾリジン−4−オン(2.32g、14.4mmol)およびクロロホルム(220cm)の脱気した混合物に、ピリジン(5.8cm、72mmol)を加え、反応混合物は、30分間にわたってさらに脱気する。次に、反応物は、60℃で7時間加熱する。反応物は、23℃に冷却し、ろ過し、固体は、ジクロロメタン(100cm)で洗浄して、中間体50(534mg、67%)を緑色/褐色の固体として得る。H NMR(400MHz、CDCl)8.44(1H,s)、7.98(1H,d,J 7.7)、7.55(1H,d,J 7.7)、4.25(2H,q,J 7.2)、1.33(3H,t,J 7.1).
中間体51
−78℃で無水テトラヒドロフラン(200cm)中の中間体13(3.09g、1.96mmol)の溶液に、n−ブチルリチウム(3.1cm、7.8mmol、ヘキサン中2.5M)を滴下して加え、混合物は90分間撹拌する。塩化トリブチルスズ(2.4cm、8.8mmol)を加え、反応混合物は、23℃に温め、15時間撹拌する。メタノール(2cm)を加えた後、水(50cm)およびジエチルエーテル(100cm)を加える。水層は、ジエチルエーテル(2×20cm)で抽出し、組み合わされた有機層は、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。固体は、40〜60石油(2×10cm)で洗浄し、ジクロロメタンに取り込む。減圧下での溶媒の蒸発により、黄色の油を得て、それは、23℃でゆっくりと結晶化する。氷冷アセトン(20cm)中での研和により、中間体51(2.95g、75%)を黄色の固体として得る。H NMR(400MHz、CDCl)7.57(s、2H)、7.36(2H,d,J 7.4)、7.32(2H,d,J 7.4)、6.39(8H,d,J 2.2)、6.32(4H,d,J 2.2)、3.73−3.91(16H,m)、1.60−1.74(16H,m)、1.43−1.55(12H,m)、1.34−1.42(16H,m)、1.20−1.34(44H,m)、0.92−1.12(12H,m)、0.84−0.89(30H,m).
化合物105
無水トルエン(18cm)および無水N,N−ジメチルホルムアミド(2cm)の混合物中の中間体51(300mg、0.15mmol)および中間体50(174mg、0.45mmol)の脱気した溶液に、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル(57mg、0.12mmol)およびトリス(ジベンジリデンアセトン)ジパラジウム(0)(13mg、0.01mmol)を加え、反応混合物は、80℃で5日間加熱する。反応混合物は、23℃に冷却し、溶媒は減圧下で除去する。残渣は、勾配溶媒系(40〜60石油:ジクロロメタン;7:3〜1:4)を用いたカラムクロマトグラフィーによって精製する。この固体は再結晶化して(エタノール/ジクロロメタン)、化合物105(20mg、6%)を濃い赤色の固体として得る。H NMR(400MHz、CDCl)8.55(2H,s)、8.20(2H,d,J 1.6)、8.02(2H,dd,J 8.0、1.6)、7.83(2H,d,J 7.6)、7.76(2H,d,J 7.6)、7.54(2H,d,J 7.9)、6.50(8H,d,J 2.2)、6.37(4H,t,J 2.2)、4.27(4H,q,J 7.1)、3.78−3.97(16H,m)、1.64−1.77(16H,m)、1.33−1.43(22H,m)、1.26−1.31(32H,m)、0.83−0.89(24H,m).
実施例106
化合物106
中間体12(100mg、0.08mmol)および2−(5,6−ジフルオロ−3−オキソ−インダン−1−イリデン)−マロノニトリル(96mg、0.42mmol)の脱気した混合物に、クロロホルム(2.5cm)に溶解させ、ピリジン(0.47cm、5.8mmol)を加える。溶液は、23℃で6時間撹拌する。メタノール(35cm)を加え、固体はろ過によって収集し、メタノール(20cm)で洗浄する。固体は、アセトン(2cm)中で研和し、ろ過し、アセトン(2×1cm)で洗浄して、化合物106(133mg、98%)を濃い青色の固体として得る。H NMR(400MHz、CDCl)8.77(2H,s)、8.46(2H,dd,J 9.5、6.5)、7.55−7.65(4H,m)、7.02−7.11(8H,m)、6.71−6.81(8H,m)、3.85(8H,t,J 6.5)、1.62−1.74(8H,m)、1.35(8H,p、J 7.3、6.8)、1.13−1.31(32H,m)、0.73−0.84(12H,m).
実施例107
化合物107
ピリジン(1cm)およびクロロホルム(10cm)の混合物中の中間体49(215mg;0.17mmol;1.00当量)の脱気した溶液に、2−(5−メチル−3−オキソ−インダン−1−イリデン)−マロノニトリルおよび2−(6−メチル−3−オキソ−インダン−1−イリデン)−マロノニトリル(103mg、0.50mmol)の等モル混合物を加え、混合物は4時間撹拌する。反応物は、塩酸水溶液(10cm、2M)の添加によってクエンチし、水層は、ジクロロメタン(20cm)で抽出する。組み合わされた有機層は、塩水(50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。残渣は、勾配溶媒系(シクロヘキサン:ジクロロメタン;3:7〜1:4)を用いたカラムクロマトグラフィーによって精製する。固体は、アセトン(30cm)中で研和し、ろ過して取り除いて、化合物107(73mg、23%)を青色の粉末として得る。H NMR(400MHz、CDCl)8.84(2H,d,J 2.5)、8.59(1H,d,J 8.1)、8.50(1H,s)、8.29(2H,s)、7.94(2H,d,J 8.2)、7.86(1H,d,J 7.8)、7.77(1H,d,J 1.6)、7.55(2H,d,J 8.2)、7.28(8H,d,J 8.7)、6.87(8H,d,J 8.7)、3.91 8H,(t,J 6.5)、1.67−1.80(8H,m)、1.35−1.47(8H,m)、1.18−1.35(32H,m)、0.87(12H,t,J 6.6).
実施例108
中間体52
中間体9(7.1g、20mmol)、トリメチル−(5−トリブチルスタンナニル−チオフェン−2−イル)−シラン(10g、23mmol)および無水トルエン(300cm)の混合物は、25分間にわたって窒素によって脱気する。混合物に、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.5g、0.4mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、85℃で17時間撹拌する。反応混合物は、セライトプラグに通して高温でろ過し、高温のトルエンで十分に洗浄する。粗生成物は、シリカゲルカラムクロマトグラフィー(40〜60石油:ジクロロメタン:4:1)を用いて精製して、中間体52(2.3g、21%)を淡黄色の固体として得る。H−NMR(400MHz、CDCl)7.40(1H,d,J 3.7)、6.99−7.03(1H,m)、4.13−4.29(4H,m)、1.15−1.28(6H,m)、0.10−0.37(9H,s).
中間体53
中間体52(2.2g、4.6mmol)、中間体23(3.4g、5.8mmol)および無水トルエン(300cm)の混合物は、25分間にわたって窒素によって脱気する。混合物に、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.5g、0.4mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、85℃で17時間撹拌する。反応混合物は、セライトプラグに通して高温でろ過し、高温のトルエンで十分に洗浄する。粗生成物は、1時間にわたってアセトン(100cm)中で撹拌して、重質の懸濁液を形成する。固体はろ過によって収集して、中間体53(3.2g、75%)を淡褐色の固体として得る。H NMR(400MHz、CDCl)7.80−7.86(1H,s)、7.65(1H,d,J 3.4)、7.38(1H,s)、7.24(1H,d,J 3.4)、4.43(4H,m)、1.31−1.51(10H,m)、1.15(18H,d,J 7.3)、0.38(9H,s).
中間体54
−78℃で無水テトラヒドロフラン(100cm)中の1−ブロモ−3,5−ジヘキシル−ベンゼン(4.9g、15mmol)の溶液に、30分間にわたってn−ブチルリチウム(6.0cm、15.0mmol、ヘキサン中2.5M)を滴下して加える。添加の後、反応混合物は、−78℃で120分間撹拌する。中間体53(2.2g、3.0mmol)を加え、混合物は、17時間にわたって23℃に温める。ジエチルエーテル(100cm)および水(100cm)を加え、混合物は、23℃で30分間撹拌する。生成物は、ジエチルエーテル(3×100cm)で抽出する。有機物は組み合わせて、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去して、中間体54(2.30g、47%)を褐色の油として得る。H NMR(400MHz、CDCl)7.21(1H,s)、7.06(1H,s)、6.80−7.03(12H,m)、6.42−6.55(2H,m)、3.36(2H,d,J 4.4)、2.44−2.62(16H,m)、1.48−1.65(16H,m)、1.24−1.35(49H,m)、1.11−1.17(18H,m)、0.83−0.94(24H,m)、0.26(9H,s).
中間体55
60分間にわたって0℃で無水ジエチルエーテル(100cm)中のアンバーリスト(amberlyst)15強酸(8.8g)の懸濁液に通して窒素ガスをバブリングする。混合物をさらに30分間にわたって脱気しながら、中間体54(2.2g、1.4mmol)を加える。得られた懸濁液は、23℃で2時間撹拌する。反応混合物はろ過し、溶媒は減圧下で除去する。粗生成物は、無水テトラヒドロフラン(50cm)に取り込み、フッ化テトラブチルアンモニウム(2.7cm、2.7mmol、テトラヒドロフラン中1M)を加える。混合物は1時間撹拌する。ジエチルエーテル(100cm)および水(200cm)を加え、混合物を30分間撹拌する。生成物は、ジエチルエーテル(3×100cm)で抽出する。有機物は組み合わせて、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、シリカゲルカラムクロマトグラフィー(40〜60石油:ジクロロメタン;9:1)を用いて精製して、中間体55(1.0g、54%)を濃いオレンジ色の固体として得る。H NMR(400MHz、CDCl)7.25−7.31(1H,m)、7.21−7.25(1H,m)、7.17(1H,d,J 4.9)、7.05(1H,d,J 4.9)、6.81−6.91(12H,m)、2.40−2.57(16H,m)、1.54(16H,d,J 6.8)、1.25(48H,d,J 7.3)、0.85(24H,q,J 6.2).
中間体56
−78℃で無水テトラヒドロフラン(22cm)中の中間体55(500mg、0.37mmol)の溶液に、10分間にわたってn−ブチルリチウム(0.6cm、1.5mmol、ヘキサン中2.5M)を滴下して加える。添加の後、反応混合物は、−78℃で60分間撹拌する。N,N−ジメチルホルムアミド(0.15cm、2.2mmol)を加え、混合物は、17時間にわたって23℃に温める。ジエチルエーテル(50cm)および水(50cm)を加え、混合物は、23℃で30分間撹拌する。生成物は、ジエチルエーテル(3×100cm)で抽出する。組み合わされた有機物は、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、シリカゲルカラムクロマトグラフィー(40〜60石油:ジクロロメタン;8:2)を用いて精製して、中間体56(95mg、18%)を暗赤色の油として得る。H NMR(400MHz、CDCl)9.70−9.85(1H,s)、9.69−9.75(1H,s)、7.83−7.87(1H,s)、7.56(1H,s)、6.83(4H,s)、6.71(8H,dd,J 12.8、1.3)、2.29−2.53(16H,m)、1.36−1.55(16H,m)、1.05−1.27(48H,m)、0.76(24H,q,J 6.8).
化合物108
0℃で無水クロロホルム(40cm)中の中間体56(100mg、0.07mmol)の溶液に、ピリジン(0.4cm、4.5mmol)を加える。次に、混合物は、窒素で脱気してから、2−(5,6−ジフルオロ−3−オキソ−インダン−1−イリデン)−マロノニトリル(65mg、0.28mmol)を加える。次に、溶液はさらに脱気し、0℃で30分間撹拌する。氷浴は除去し、反応物は、120分間にわたって40℃に温める。混合物は、2−プロパノール(300cm)で希釈して、懸濁液を形成し、固体はろ過によって収集する。粗生成物は、ジクロロメタン(100cm)に溶解させ、次に、エタノール(300cm)で希釈して、重質の懸濁液を生成し、これはろ過によって収集して、化合物108(82mg、63%)を青色/緑色の固体として得る。H NMR(400MHz、CDCl)8.77(2H,s)、8.42(2H,dt,J 9.8、6.1)、8.06(1H,s)、7.67(1H,s)、7.56(2H,dt,J 11.4、7.6)、6.66−6.96(12H,m)、2.32−2.56(16H,m)、1.35−1.57(16H,m)、1.05−1.26(48H,m)、0.63−0.80(24H,m).
実施例109
中間体57
−78℃で無水テトラヒドロフラン(22cm)中の中間体55(500mg、0.37mmol)の溶液に、10分間にわたってn−ブチルリチウム(0.6cm、1.5mmol、ヘキサン中2.5M)を滴下して加える。添加の後、反応混合物は、−78℃で60分間撹拌してから、塩化トリブチルスズ(0.4cm、1.6mmol)を加える。次に、混合物は、72時間にわたって23℃に温める。溶媒は減圧下で除去し、残渣は、ゼオライトプラグ(40〜60石油)に通す。粗生成物は、エタノール(100cm)中で懸濁させ、30分間撹拌し、溶媒はデカントする。この手順は2回繰り返して、部分的に精製された中間体57(860mg)を暗赤色の油として得る。H NMR(400MHz、CDCl)7.02−7.16(1H,m)、6.82−6.93(1H,m)、6.57−6.72(12H,m)、2.20−2.32(16H,m)、0.96−1.53(48H,m)、0.54−0.78(24H,m).
中間体58
中間体57(712mg、0.37mmol)、2−ブロモ−チアゾール−5−カルバルデヒド(178mg、0.73mmol)、トリ−o−トリル−ホスフィン(34mg、0.11mmol)および無水トルエン(39cm)の混合物は、10分間にわたって窒素によって脱気する。混合物に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(27mg、0.03mmol)を加え、混合物は、15分間にわたってさらに脱気する。混合物は、80℃で17時間撹拌し、23℃に冷却した後、溶媒は減圧下で除去する。粗生成物は、2−プロパノール(100cm)中で撹拌して、懸濁液を形成し、固体はろ過によって収集する。粗生成物は、シリカゲルカラムクロマトグラフィー(40〜60石油:ジクロロメタン;8:2)を用いて精製して、中間体58(545mg、88%)を濃い青色の固体として得る。H NMR(400MHz、CDCl)10.61(2H,s)、8.67(1H,s)、8.27(1H,s)、8.10(2H,d,J 7.6)、7.86(2H,dd,J 11.9、7.7)、6.84(12H,d,J 12.0)、2.43(16H,m)、1.43−1.57(16H,m)、1.03−1.29(48H,m)、0.63−0.80(24H,m).
化合物109
0℃で無水クロロホルム(48cm)中の中間体58(120mg、0.07mmol)の溶液に、ピリジン(0.2cm)を加える。次に、混合物は、窒素で脱気してから、2−(5,6−ジフルオロ−3−オキソ−インダン−1−イリデン)−マロノニトリル(66mg、0.29mmol)を加える。次に、溶液はさらに脱気し、0℃で20分間および23℃で3時間撹拌する。混合物は、エタノール(200cm)で希釈して、重質の懸濁液を生成する。固体はろ過によって収集し、メタノール(50cm)で洗浄する。粗生成物は、アセトン:ジエチルエーテルの1:1混合物(200cm)中で懸濁させて、懸濁液を形成し、30分間撹拌する。固体はろ過によって収集して、化合物109110mg、73%)を黒色の固体として得る。H NMR(400MHz、CDCl)9.60(2H,s)、9.31(2H,t,J 8.4)、8.84(1H,s)、8.57−8.65(2H,m)、8.45(1H,s)、8.04(2H,dd,J 12.0、8.1)、7.78(2H,t,J 7.7)、6.93−7.03(12H,m)、2.51−2.63(16H,m)、1.57−1.66(16H,m)、1.23−1.36(48H,m)、0.79−0.90(24H,m).
実施例110
化合物110
0℃で無水クロロホルム(48cm)中の中間体58(150mg、0.09mmol)の溶液に、ピリジン(0.3cm)を加える。次に、混合物は、窒素で脱気してから、クロロホルム(10cm)中の3−(ジシアノメチリデン)インダン−1−オン(69mg、0.36mmol)の溶液を加える。次に、溶液はさらに脱気し、23℃で4時間撹拌する。混合物は、エタノール(500cm)で希釈して、重質の懸濁液を生成する。固体はろ過によって収集し、アセトン(50cm)で洗浄して、化合物110(98mg、54%)を黒色の固体として得る。H NMR(400MHz、CDCl)9.57(2H,s)、9.33(2H,t,J 7.9)、8.82(1H,s)、8.76(2H,d,J 7.3)、8.44(1H,s)、8.01−8.07(2H,m)、7.99(2H,d,J 7.1)、7.78−7.90(4H,m)、6.98(12H,d,J 11.7)、2.48−2.62(16H,m)、1.50−1.65(24H,m)、1.20−1.41(48H,m)、0.78−0.92(24H,m).
実施例111
中間体59
3−メトキシ−チオフェン(25.0g、219mmol)および2−エチル−ヘキサン−1−オール(51.4cm、329mmol)は、無水トルエン(500cm)に溶解させる。撹拌しながら、4−メチルベンゼンスルホン酸水和物(4.17g、21.9mmol)を加え、23℃で35分後、反応物は、20時間にわたって還流状態で加熱する。次に、反応物は、23℃に冷却してから、さらなるトルエン(50cm)を加える。溶液は、水(2×250cm)および塩水(250cm)で洗浄してから、硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。粗生成物は、シリカプラグ(40〜60石油)、続いてカラムクロマトグラフィー(40〜60石油)によって精製して、中間体59(23.4g、50%の収率)を、黄色を帯びた油として得る。H NMR(400MHz、CDCl)7.18(1H,dd,J 5.3、3.1)、6.77(1H,dd,J 5.3、1.6)、6.24(1H,dd,J 3.2、1.5)、3.84(2H,dd,J 5.8、0.9)、1.72(1H,spt,J 6.1)、1.26−1.56(8H,m)、0.88−0.97(6H,m).
中間体60
0℃で無水N,N−ジメチルホルムアミド(330cm)中の中間体59(23.1g、109mmol)の溶液に、無水N,N−ジメチルホルムアミド(110cm)中の1−ブロモ−ピロリジン−2,5−ジオン(19.4g、109mmol)の溶液を加える。次に、反応混合物は、23℃で41時間撹拌してから、撹拌しながら氷(2000cm)に加える。溶解したら、水性懸濁液の半分は、40〜60石油(300cm)で抽出する。水層は除去し、水性懸濁液のもう半分を抽出する。水層は、40〜60石油(200cm)の第2の洗浄でこのようにさらに抽出する。次に、有機抽出物は組み合わせて、塩水(2×200cm)で洗浄し、硫酸マグネシウム上で乾燥させ、ろ過する。安定性の懸念により、バルクのサンプルは減圧下で濃縮せず、使用の直前まで溶液中にあるようにする。サンプルのH NMRは、黄色の油としての中間体60の定量的収率を示唆する。1H NMR(400MHz、CDCl)7.19(1H,d,J 5.9)、6.75(1H,d,J 5.9)、3.93(2H,d,J 5.9)、1.71(1H,sept,J 6.1)、1.24−1.60(8H,m)、0.88−0.98(6H,m).
中間体61
−78℃で無水テトラヒドロフラン(180cm)中の1−ブロモ−4−ヘキシルベンゼン(10.3g、42.5mmol)の懸濁液に、30分間にわたってtert−ブチルリチウム(50cm、85mmol、ペンタン中1.7M)を加える。次に、反応物は、−30℃に温めてから、−78℃に再度冷却する。次に、さらなる1−ブロモ−4−ヘキシルベンゼン(1.00g、4.15mmol)を加えて、残りのtert−ブチルリチウムの消費を確実にする。次に、エチル2−[5−(3−エトキシカルボニル−2−チエニル)チエノ[3,2−b]チオフェン−2−イル]チオフェン−3−カルボキシレート(3.81g、8.50mmol)は、反応混合物に一度に加え、混合物は、23℃で17時間撹拌させる。反応物は、ジエチルエーテル(100cm)で希釈し、水(200cm)で洗浄する。有機層は、ジエチルエーテル(100cm)で希釈し、水(200cm)および塩水(100cm)でさらに洗浄する。次に、有機層は、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。次に、粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜2:3)を用いたカラムクロマトグラフィーによって精製して、中間体61(5.61g、66%の収率)を淡黄色の油として得る。H NMR(400MHz、CDCl)7.07−7.18(18H,m)、6.65(2H,s)、6.45(2H,d,J 5.4)、3.25(2H,s)、2.60(8H,t,J 7.7)、1.58−1.66(8H,m)、1.24−1.39(24H,m)、0.87−0.92(12H,m).
中間体62
無水トルエン(65cm)中のアンバーリスト(amberlyst)15強酸(10.8g)の脱気した懸濁液に、無水トルエン(64cm)中の中間体61(2.69g、2.68mmol)の脱気した溶液を加え、反応混合物は、23℃で15分間撹拌する。次に、反応混合物は、40℃で70分間および50℃でさらに45分間加熱する。次に、反応物は、トルエン(3×40cm)およびジエチルエーテル(5×50cm)で洗浄しながら、セライト:硫酸マグネシウム:セライトの層状の床に通してろ過する。次に、混合物は減圧下で濃縮し、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜1:9)で溶離するカラムクロマトグラフィーによって精製して、中間体62(540mg、21%)を黄色の固体として得る。H NMR(400MHz、CDCl)7.12−7.18(10H,m)、7.05−7.10(10H,m)、2.55(8H,t,J 7.8)、1.51−1.63(8H,m)、1.23−1.37(24H,m)、0.84−0.90(12H,m).
中間体63
無水テトラヒドロフラン(70cm)中の中間体62(1.15g、1.19mmol)の溶液は、−78℃に冷却してから、n−ブチルリチウム(1.4cm、3.6mmol、ヘキサン中2.5M)を、シリンジによって加える。次に、混合物は、−78℃で1時間撹拌してから、塩化トリブチルスズ(1.1cm、4.2mmol)を加える。混合物は、23℃で17時間撹拌し、メタノール(20cm)を加え、6時間撹拌した後、反応混合物は、減圧下で濃縮する。粗生成物は、メタノール(3×10cm)で研和し、次に、無水トルエン(150cm)中の中間体61(785mg、2.69mmol)の溶液(減圧下で新たに濃縮した)に加える。次に、溶液は、窒素で脱気してから、トリス(ジベンジリデンアセトン)ジパラジウム(90mg、0.10mmol)およびトリス(o−トリル)ホスフィン(112mg、0.368mmol)を加える。次に、反応混合物は、さらに脱気してから、19時間にわたって脱気を続けながら、80℃で加熱する。次に、反応物は、23℃で4日間撹拌し、その後、それは減圧下で濃縮する。次に、粗材料は、勾配溶媒系(石油40〜60:ジクロロメタン;1:0〜2:3)を用いたシリカプラグによって部分的に精製する。次に、部分的に精製された材料は、メタノール(6×10cm)で研和し、無水テトラヒドロフラン(58cm)に取り込み、−78℃に冷却する。この混合物に、n−ブチルリチウム(1.4cm、3.5mmol、ヘキサン中2.5M)を滴下して加え、反応混合物は、1時間撹拌する。次に、反応物は、N,N−ジメチルホルムアミド(2.3cm、30mmol)の添加によってクエンチし、−78℃で1時間後、反応物は、23℃で15時間撹拌させる。反応物は、ジエチルエーテル(150cm)で希釈し、塩水(20cm)を加えた水(150cm)で洗浄する。次に、有機層は単離し、水層は、ジエチルエーテル(50cm)でさらに抽出する。次に、組み合わされた有機層は、塩水(20cm)を加えた水(100cm)および塩水(100cm)でさらに洗浄してから、それらは硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜2:3)を用いたカラムクロマトグラフィー、続いて、勾配溶媒系(80〜100石油:ジエチルエーテル;1:0〜6:3)を用いたカラムクロマトグラフィーによって精製して、中間体63(285mg、3工程で17%の収率)を黒色の固体として得る。H NMR(400MHz、CDCl)9.73(2H,s)、7.44(2H,s)、7.41(2H,s)、7.17(8H,d,J 8.2)、7.11(8H,d,J 8.2)、4.08(4H,d,J 5.1)、2.57(8H,t,J 7.8)、1.81(2H,spt,J 6.0)、1.43−1.66(16H,m)、1.22−1.40(32H,m)、0.82−1.00(24H,m).
化合物111
無水クロロホルム(11cm)中の中間体63(150mg、0.104mmol)の溶液に、ピリジン(0.59cm)を加え、溶液は、25分間にわたって脱気する。次に、反応混合物は、−20℃に冷却し、2−(5,6−ジフルオロ−3−オキソ−インダン−1−イリデン)−マロノニトリル(95mg、0.41mmol)を加える。次に、反応混合物は、さらに15分間にわたって脱気し、3時間にわたって23℃に温める。次に、冷却浴は除去し、反応物は、23℃でさらに2時間撹拌してから、反応物は、ジクロロメタン(10cm)で洗浄しながら、撹拌メタノール(200cm)に加える。30分後、沈殿物はろ過によって収集し、メタノール(3×10cm)で洗浄して、化合物45(132mg、68%の収率)を黒色の固体として得る。H NMR(400MHz、CDCl)8.67(2H,s)、8.52(2H,dd,J 10.2、6.5)、7.67(2H,s)、7.61−7.66(2H,m)、7.51(2H,s)、7.16−7.21(8H,m)、7.11−7.16(8H,m)、4.15(4H,d,J 5.4)、2.60(8H,t,J 7.7)、1.86(2H,spt,J 6.1)、1.50−1.69(16H,m)、1.25−1.43(32H,m)、1.01(6H,t,J 7.5)、0.92−0.97(6H,m)、0.85−0.92(12H,m).
実施例112
化合物112
中間体64
−78℃で無水テトラヒドロフラン(20cm)中の1−ブロモ−4−ヘキシルオキシ−ベンゼン(1.43g、5.57mmol)の溶液に、5分間にわたってtert−ブチルリチウム(6.55cm、11.1mmol、ペンタン中1.7M)を加える。次に、反応混合物は、45分間撹拌する。中間体10(550mg、0.93mmol)を一度に加え、冷却を除去し、反応混合物は、23℃で17時間撹拌する。水(50cm)およびジエチルエーテル(50cm)を加える。有機相は、水(2×30cm)で洗浄し、硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。得られた固体は、40〜60石油(10cm)中で撹拌し、ろ過し、40〜60石油(2×10cm)で洗浄して、中間体64(1.13g、76%)を薄い緑色の固体として得る。H NMR(400MHz、CDCl)7.11−7.22(8H,m)、6.85(2H,d,J 3.4)、6.75−6.82(7H,m)、6.49(2H,d,J 3.4)、3.94(8H,t,J 6.6)、3.34(2H,s)、1.67−1.84(8H,m)、1.39−1.52(8H,m)、1.25−1.38(16H,m)、0.86−0.95(12H,m)、0.22(s、18H).
中間体65
75℃でトルエン(34cm)に溶解された中間体64(850mg、0.70mmol)の溶液は、20分間にわたって窒素の流れで脱気する。アンバーリスト(Amberlyst)15強酸(4.0g)を加え、反応混合物は、さらに10分間にわたって脱気し、17時間撹拌する。反応物は、23℃に冷却させ、ろ過し、固体は、トルエン(50cm)で洗浄する。組み合わされた有機相は、減圧下で濃縮する。中間材料は、クロロホルム(17cm)に溶解させ、N,N−ジメチルホルムアミド(819mg、11.2mmol)を加え、溶液は0℃に冷却する。塩化ホスホリル(1.61g、10.5mmol)は、10分間にわたって加え、冷却を除去し、反応物は、65℃で17時間撹拌する。酢酸ナトリウムの水溶液(100cm、6M)を加え、二相溶液は、65℃で2時間撹拌する。混合物は、ジクロロメタン(15cm)で抽出し、組み合わされた有機相は、水(2×20cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮する。固体は、40〜60石油(10cm)中で研和し、ろ過によって収集して、中間体65(763mg、63%)をオレンジ色の固体として得る。H NMR(400MHz、CDCl)9.80(2H,s)、7.69(2H,s)、7.00−7.28(8H,m)、6.60−6.91(8H,m)、3.91(8H,t,J 6.6)、1.61−1.85(8H,m)、1.38−1.51(8H,m)、1.32(16H,m)、0.82−0.98(12H,m).
化合物112
中間体65(200mg、0.18mmol)および2−(3−オキソ−インダン−1−イリデン)−マロノニトリル(250mg、1.28mmol)は、クロロホルム(5cm)に溶解させ、20分間にわたって懸濁液に通して窒素をバブリングする。ピリジン(30.6cm;379mmol)を加え、さらに20分間にわたって溶液に窒素を通す。溶液は17時間撹拌する。メタノール(35cm)を加え、固体はろ過によって収集し、メタノール(3×10cm)で洗浄する。固体は、アセトン(5cm)中で研和し、ろ過し、アセトン(3×2cm)で洗浄する。材料は、勾配溶媒系(40〜60石油:ジクロロメタン;11:9〜2:3)で溶離するシリカゲル上で精製して、化合物66(66mg、25%)を青色の固体として得る。H NMR(400MHz、CDCl)8.86(2H,s)、8.68(2H,d,J 7.4)、7.86−7.95(2H,m)、7.70−7.78(4H,m)、7.68(2H,s)、7.14(8H,d,J 8.7)、6.84(8H,d,J 8.5)、3.92(8H,t,J 6.5)、1.75(8H,m)、1.39−1.47(8H,m)、1.27−1.35(16H,m)、0.88(12H,m).
実施例113
化合物113
中間体65(200mg、0.18mmol)および2−(5−メチル−3−オキソ−インダン−1−イリデン)−マロノニトリル(268mg、1.28mmol)は、クロロホルム(5cm)に溶解させ、20分間にわたって懸濁液に通して窒素をバブリングする。ピリジン(1.04cm、12.9mmol)を加え、さらに20分間にわたって溶液に窒素を通す。溶液は17時間撹拌する。メタノール(35cm)を加え、固体はろ過によって収集し、メタノール(3×10cm)で洗浄する。固体は、アセトン(5cm)中で研和し、ろ過し、アセトン(3×2cm)で洗浄する。材料は、勾配溶媒系(40〜60石油:ジクロロメタン;11:9〜2:3)で溶離するシリカゲル上で精製して、化合物113(69mg、26%)を青色の固体として得る。H NMR(400MHz、CDCl)8.82−8.88(2H,m)、8.48−8.59(2H,m)、7.55−7.86(6H,m)、7.16−7.25(8H,m)、6.82−6.91(8H,m)、3.95(8H,t,J 6.6)、2.55−2.59(6H,m)、1.71−1.83(8H,m)、1.42−1.52(8H,m)、1.31−1.40(16H,m)、0.88−0.95(12H,m).
実施例114
中間体66
−78℃で無水テトラヒドロフラン(20cm)中の1−ブロモ−4−((S)−2−メチル−ブトキシ)−ベンゼン(1.21g、4.98mmol)の溶液に、5分間にわたってtert−ブチルリチウム(5.9cm、10.0mmol、ペンタン中1.7M)を加え、反応混合物は、1時間撹拌する。中間体10(531mg、0.90mmol)を一度に加え、冷却を除去し、反応混合物は、65時間撹拌する。水(25cm)を加え、混合物は20分間撹拌し、エーテル(25cm)で抽出する。有機部分は、水(2×15cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、減圧下で濃縮し、40〜60石油(10cm)と共沸させる。固体はろ過によって収集し、40〜60石油(10cm)中で研和し、ろ過し、40〜60石油(2×10cm)で洗浄して、中間体66(785mg、68%)を白色の固体として得る。H NMR(400MHz、CDCl)7.15−7.23(m、8H)、6.92(4H,dd,J 3.4、1.94)、6.83(8H,dd,J 8.8、2.1)、6.56(2H,dd,J 3.5、1.9)、3.70−3.91(8H,m)、3.33(2H,d,J 2.0)、1.82−1.95(4H,m)、1.48−1.67(4H,m)、1.22−1.38(4H,m)、1.00−1.07(12H,m)、0.87−1.00(12H,m)、0.24−0.30(18H,m).
中間体67
75℃で中間体66(785mg、0.68mmol)およびトルエン(31cm)の脱気した混合物に、アンバーリスト(Amberlyst)15強酸(3.20g)を加え、混合物は、10分間にわたってさらに脱気する。次に、反応混合物は、17時間撹拌する。懸濁液はろ過し、トルエン(50cm)で洗浄し、溶媒は減圧下で除去する。固体は、クロロホルム(15.7cm)に溶解させ、N,N−ジメチルホルムアミド(793mg、10.9mmol)を加える。溶液は0℃に冷却し、オキシ塩化リン(1.56g、10.2mmol)を10分間にわたって加える。冷却は除去し、反応物は、65℃で17時間加熱する。酢酸ナトリウム水溶液(50cm、10M)を加え、混合物は3時間撹拌する。溶液は、クロロホルム(15cm)で抽出する。組み合わされた有機相は、水(2×20cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;2:3〜4:1)で溶離するフラッシュクロマトグラフィーによって精製して、中間体67(260mg、37%)をオレンジ色の固体として得る。H NMR(400MHz、CDCl)9.83(2H,d,J 0.9)、7.72(2H,s)、7.17(8H,d,J 8.6)、6.85(8H,d,J 8.7)、3.68−3.85(8H)、1.79−1.91(4H,m)、1.49−1.61(4H,m)、1.21−1.34(4H,m)、1.01(12H,d,J 6.7)、0.95(12H,t,J 7.5).
化合物114
中間体67(108mg、0.10mmol)、2−(5−メチル−3−オキソ−インダン−1−イリデン)−マロノニトリル(152mg、0.73mmol)およびクロロホルム(2.7cm)の脱気した混合物に、ピリジン(0.59cm、7.3mmol)を加え、混合物は、さらに10分間にわたって脱気する。反応混合物は、5時間撹拌し、メタノール(30cm)を加える。固体はろ過によって収集し、メタノール(2×10cm)で洗浄する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;9:11〜1:3)で溶離するフラッシュクロマトグラフィーによって精製して、化合物114(75mg、51%)を青色の固体として得る。H NMR(400MHz、CDCl)8.75(2H,s)、8.37−8.51(2H,s)、7.41−7.75(6H,s)、7.04−7.12(8H,s)、6.74−6.82(8H,m)、3.58−3.77(8H,m)、2.44−2.50(6H,m)、1.70−1.82(4H,m)、1.39−1.55(4H,m)、1.09−1.23(4H,m)、0.92(12H,d,J 6.7)、0.85(12H,t,J 7.5).
実施例115
化合物115
クロロホルム(10cm)およびピリジン(0.75cm)中の中間体67(135mg、0.130mmol)の溶液は、10分間にわたって窒素で脱気する。2−(3−オキソ−インダン−1−イリデン)−マロノニトリル(180mg、0.91mmol)を一度に加え、反応混合物は、23℃で150分間撹拌する。メタノール(15cm)を加え、得られた沈殿物は、ろ過によって収集し、メタノール(3×10cm)で洗浄する。固体は、シリカ(40〜60石油:ジクロロメタン;2:3)のパッドに通してろ過する。減圧下での濃縮、続いて、還流アセトン(20cm)中、次にアセトン:クロロホルムの3:1混合物(40cm)中での研和により、化合物115(144mg、79%)を濃い青色の粉末を得る。H NMR(400MHz、CDCl)8.84(2H,s)、8.61−8.67(2H,m)、7.84−7.90(2H,m)、7.63−7.72(6H,m)、7.13−7.21(8H,m)、6.83−6.90(8H,m)、3.81(4H,m)、3.72(4H,m)、1.78−1.92(4H,m、J 6.6)、1.56(4H,m)、1.26(4H,m)、1.00(12H,d,J 6.7)、0.94(12H,t,J 7.5).
実施例116
化合物116
−10℃で無水クロロホルム(40cm)中の中間体22(200mg、0.147mmol)およびピリジン(0.83cm、10mmol)の脱気した溶液に、10分間にわたって無水クロロホルム(8cm)中の2−(5,6−ジフルオロ−3−オキソ−インダン−1−イリデン)−マロノニトリル(135mg、0.587mmol)の脱気した溶液を加える。次に、得られた溶液は、さらに30分間にわたって脱気し、23℃に温め、4時間撹拌する。反応混合物は、2−プロパノール(300cm)で希釈し、1時間撹拌する。得られた固体は、ろ過によって収集し、2−プロパノール(100cm)およびエタノール(100cm)で洗浄する。次に、固体は、ジクロロメタン(50cm)中で懸濁させ、次に、メタノール(500cm)に注ぐ。固体はろ過によって収集し、メタノール(100cm)および氷冷アセトン(100cm)で洗浄して、化合物116(108mg、41%)を濃い青色の固体として得る。H NMR(400MHz、CDCl)8.77(2H,s)、8.45(2H,dd,J 9.9、6.5)、7.52−7.66(4H,m)、6.88(4H,s)、6.72(8H,d,J 1.5)、2.34−2.52(16H,m)、1.38−1.48(16H,m)、1.19(48H,d,J 2.0)、0.67−0.88(24H,m).
実施例117
中間体68
−78℃で無水テトラヒドロフラン(100cm)中の1−ブロモ−3,5−ジヘキシル−ベンゼン(5.21g、16.0mmol)の溶液に、30分間にわたってn−ブチルリチウム(6.4cm、16mmol、ヘキサン中2.5M)を滴下して加える。次に、反応混合物は、2時間撹拌する。次に、中間体24(2.80g、3.21mmol)を加え、反応混合物は、23℃に温め、17時間撹拌する。水(100cm)を加え、混合物は、さらに1時間撹拌する。ジエチルエーテル(100cm)を加え、有機層は、水(2×50cm)で洗浄し、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;19:1〜1:4)を用いたカラムクロマトグラフィーによって精製して、中間体68(3.54g、63%)を淡黄色の油として得る。H NMR(400MHz、CDCl)7.23(2H,s)、6.86−7.01(12H,m)、6.51(2H,s)、3.41(2H,s)、2.42−2.61(16H,m)、1.49−1.61(16H,m)、1.22−1.45(54H,m)、1.15(36H,d,J 7.3)、0.78−0.95(24H,m).
中間体69
0℃で無水ジエチルエーテル(100cm)中のアンバーリスト(amberlyst)15強酸(12g)の脱気した懸濁液に、中間体68(2.95g、1.67mmol)を加えた後、さらに30分間にわたって脱気する。得られた懸濁液は、23℃に温め、1時間撹拌する。反応混合物は、薄いセライトプラグに通してろ過し、ジエチルエーテル(200cm)で十分に洗浄する。次に、粗生成物は、カラムクロマトグラフィー(40〜60石油)によって精製し、次に、無水テトラヒドロフラン(50cm)に取り込み、0℃に冷却する。混合物に、フッ化テトラブチルアンモニウムの溶液(3.34cm、3.34mmol、テトラヒドロフラン中1M)を加え、得られた混合物は、23℃で30分間撹拌する。次に、溶媒は減圧下で除去し、残渣は、メタノール(200cm)中で懸濁させ、30分間撹拌する。固体はろ過によって収集して、中間体69(2.02g、85%)を濃いオレンジ色の固体として得る。H NMR(400MHz、CDCl)7.13−7.21(4H,m)、6.71−6.84(12H,m)、2.33−2.49(16H,m)、1.38−1.48(16H,m)、1.08−1.22(48H,m)、0.70−0.80(24H,m).
中間体70
−78℃で無水テトラヒドロフラン(25cm)中の中間体69(600mg、0.42mmol)の溶液に、10分間にわたってn−ブチルリチウム(0.68cm、1.7mmol、ヘキサン中2.5M)を滴下して加える。次に、混合物は、−78℃で1時間撹拌してから、無水N,N−ジメチルホルムアミド(0.17cm、2.5mmol)を加える。次に、冷却を除去し、反応混合物は、23℃で2時間撹拌する。水(50cm)を加え、混合物を30分間撹拌する。有機物は、ジエチルエーテル(3×50cm)で抽出し、組み合わせて、無水硫酸マグネシウム上で乾燥させ、ろ過し、溶媒は減圧下で除去する。粗生成物は、勾配溶媒系(40〜60石油:ジクロロメタン;1:0〜4:1)を用いたカラムクロマトグラフィーによって精製して、中間体70(450mg、72%)を暗赤色の粘着性の固体として得る。H NMR(400MHz、CDCl)9.79(2H,s)、7.85(2H,s)、6.83(4H,s)、6.71(8H,d,J 1.0)、2.41(16H,t,J 7.6)、1.39−1.50(16H,m)、1.15(48H,br.s)、0.70−0.80(24H,m).
化合物117
−10℃で無水クロロホルム(40cm)中の中間体70(300mg、0.20mmol)およびピリジン(1.15cm)の脱気した溶液に、10分間にわたって無水クロロホルム(8cm)中の2−(5,6−ジフルオロ−3−オキソ−インダン−1−イリデン)−マロノニトリル(187mg、0.814mmol)の脱気した溶液を加える。次に、反応混合物は、さらに30分間にわたって脱気し、23℃に温め、5時間撹拌する。反応混合物は、メタノール(300cm)で希釈し、65時間撹拌する。固体はろ過によって収集し、エタノール(100cm)およびメタノール(100cm)で洗浄して、化合物117(62mg、16%)を暗緑色の固体として得る。H NMR(400MHz、CDCl)8.90(2H,s)、8.55(2H,dd,J 10.1、6.5)、8.19(2H,s)、7.67(2H,t,J 7.5)、6.85−7.10(12H,m)、2.56(16H,t,J 7.6)、1.46−1.67(16H,m)、1.13−1.45(48H,m)、0.70−0.93(24H,m).
使用実施例A
電流−電圧特性は、太陽電池を100mW.cm−2白色光でニューポートソーラーシミュレータ(Newport Solar Simulator)によって照明しながら、ケースレー(Keithley)2400 SMUを用いて測定する。ソーラーシミュレータは、AM1.5Gフィルタを備えている。照度は、Siフォトダイオードを用いて校正する。全てのデバイスの作製および特性評価は、乾燥窒素雰囲気中で行う。
電力変換効率は、以下の式
を用いて計算され、式中、FFが、
として定義される。
OPVデバイス特性は、以下に示されるポリマー1および式Iの化合物または先行技術の化合物のいずれかである受容体を含有し、有機溶液からコーティングされる組成物について得られる。溶液組成物の詳細が、表1に示される。
P3HTは、メルクKGaA(Merck KGaA)から供給される。
ポリマー1(x=y=1)およびその調製が、国際公開第2011/131280 A1号パンフレットに開示されている。
ポリマー2(x=y=1)およびその調製が、国際公開第2014/202184 A1号パンフレットに開示されている。
ポリマー3(x=5;y=1)およびその調製が、米国特許第8455606 B2号明細書に開示されている。
PCBM−C60およびリシコン(Lisicon)(登録商標)PV−A630は、メルクKGaA(Merck KGaA)から供給されるフラーレン誘導体である。
A1:逆型バルクへテロ接合有機光起電デバイス
有機光起電(OPV)デバイスは、ラムテック・コーポレーション(LUMTEC Corporation)から購入されたプレパターン化ITO−ガラス基板(13Ω/スクエア)上で作製する。基板は、超音波浴中で一般的な溶媒(アセトン、イソ−プロパノール、脱イオン水)を用いて清浄化する。市販のアルミニウム酸化亜鉛(AlZnO、ナノグレード(Nanograde))の層は、40℃でドクターブレードによって均一なコーティングとして適用した。次に、AlZnOフィルムは、空気中で10分間にわたって100℃でアニールする。活性材料溶液(すなわち、ポリマー+受容体)は、25mg.cm−3の溶液濃度で溶質を完全に溶解させるように調製する。薄膜は、プロフィロメータを用いて測定した際に50〜800nmの活性層厚さを達成するように、空気雰囲気中でブレードコーティングする。確実に残留溶媒を除去するために、短い乾燥期間が後に続く。
典型的に、ブレードコーティングされたフィルムは、ホットプレート上で2分間にわたって70℃で乾燥させる。次に、デバイスは、空気雰囲気中に移す。活性層の上に、0.1mLの、ポリ(スチレンスルホン酸)がドープされた導電性ポリマーポリ(エチレンジオキシチオフェン)[PEDOT:PSSクレビオス(Clevios)HTLソーラー(Solar)SCA 434(ヘレウス(Heraeus))]を塗布し、70℃でドクターブレードによって均一にコーティングした。その後、Ag(100nm)カソードは、シャドーマスクを介して熱蒸着させて、セルを画定する。
表1は、個々の光活性配合物の特性を示す。溶媒は、o−ジクロロベンゼン(oDCB)、o−キシレン(oXyl)、クロロベンゼン(CB)、トルエンまたはメシチレン(mes)のいずれかである。
表1:調製の特性
A2:逆型デバイス特性
表2は、表1の光活性受容体/ポリマー配合物から形成されるBHJを含む光活性層を含む個々のOPVデバイスについてのデバイス特性を示す。
表2:1sun(AM1.5G)での太陽光照射をシミュレーションした条件での太陽電池特性
表3は、例の三成分系についての個々の光活性配合物の特性を示す。
表3:調製の特性
表4は、デバイスが表4に示される温度でアニールされた、表3の光活性受容体/ポリマー配合物から形成されるBHJを含む光活性層を含む個々のOPVデバイスについてのデバイス特性を示す。
表4:1sun(AM1.5G)での太陽光照射をシミュレーションした条件での太陽電池特性
表2および4から、本発明に係る化合物から作製されるBHJを含むOPVデバイスが、高いVocおよびJsc値を示し、機能的OPVデバイスをもたらすことが分かる。表4の実施例番号52〜54から、2つの受容体から構成される三成分ブレンド(No.53)からのOPVデバイスが、同じ溶媒系を用いた個々の実施例番号52および54と比較して、より高い性能を示すことが分かる。
使用実施例B
B1:バルクへテロ接合有機光検出器デバイス(OPD)
デバイスは、下部電極を提供するために、5mmの直径の6つのプレパターン化ITOドットを有するガラス基板上で作製する。ITO基板は、デコン(Decon)90溶液中での標準的な超音波処理プロセス(30分間)、続いて脱イオン水(×3)での洗浄および脱イオン水中での超音波処理(30分間)を用いて清浄化する。ZnO ETL層は、ZnOナノ粒子分散体を、基板上にスピンコーティングし、100〜140℃の温度で10分間にわたってホットプレート上で乾燥させることによって堆積させた。リシコン(Lisicon)PV−D4650(メルクKGaA(Merck KGaA)から供給される)および本明細書に開示される化合物の配合物は、18〜40mg/mlの濃度で、0〜10%の共溶媒を含むo−ジクロロベンゼンまたはo−キシレン中で、1:2〜2:1の比率で調製し、23℃〜60℃の温度で17時間撹拌した。活性層は、ブレードコーティング(RK製のK101コントロール・コータ・システム(Control Coater System))を用いて堆積させた。ステージ温度は30℃に設定し、ブレードギャップは2〜15μmに設定し、速度は2〜8m/分に設定して、500〜1000nmの最終的な乾燥フィルム厚さを目標とした。コーティングの後、活性層は、100℃で10分間アニールした。MoO HTL層は、15nmの厚さを目標として、1Å/秒の速度で、MoOペレットから電子線真空蒸着によって堆積させた。最後に、上部銀電極は、シャドーマスクを介した熱蒸着によって堆積させて、30〜80nmのAg厚さを得た。
J−V曲線は、+5〜−5Vのバイアスで、明および暗条件下で、ケースレー(Keithley)4200システムを用いて測定する。光源は、電力0.5mW/cmで、580nmのLEDであった。
OPDデバイスのEQEは、LOT−カンタム・デザイン・ヨーロッパ(LOT−QuantumDesign Europe)製の外部量子効率(EQE:External Quantum Efficiency)測定システム(Measurement System)を用いて、−2Vバイアス下で、400〜1100nmであると特性評価された。
表5は、個々の配合物の特性を示す。使用されるポリマーは、リシコン(Lisicon)PV−D4650である。溶媒は、0〜10%の共溶媒(oXyl)を含むo−ジクロロベンゼン(oDCB)またはo−キシレンのいずれかである。
表5:調製の特性
表6、7および8は、表5の光活性受容体/ポリマー配合物から形成されるBHJを含む光活性層を含む個々のOPDデバイスについてのEQE値を示す。

Claims (22)

  1. 式Iの化合物において、

    式中、個々のラジカルが、互いに独立して、出現するごとに同一にまたは異なって、以下の意味
    Ar2,3 5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の同一または異なる基Lで置換されるアリーレンまたはヘテロアリーレン、
    Ar4,5 5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の同一または異なる基L、またはCY=CYまたは−C≡C−で置換されるアリーレンまたはヘテロアリーレン、
    、Y H、F、ClまたはCN、
    1,2 S、OまたはSe、
    CR、SiR、GeR、NRまたはC=O、
    CR、SiR、GeR、NRまたはC=O、
    1〜4 H、F、Clまたは1〜30個、好ましくは、1〜20個のC原子を有する直鎖状、分枝鎖状もしくは環状アルキル(ここで、1つ以上のCH基は、Oおよび/またはS原子が互いに直接結合されないように、−O−、−S−、−C(=O)−、−C(=S)−、−C(=O)−O−、−O−C(=O)−、−NR−、−SiR00−、−CF−、−CR=CR00−、−CY=CY−または−C≡C−で任意選択的に置換され、1つ以上のH原子が、F、Cl、Br、IまたはCNで任意選択的に置換され、1つ以上のCHまたはCH基が、カチオン性またはアニオン性基で任意選択的に置換される)、またはアリール、ヘテロアリール、アリールアルキル、ヘテロアリールアルキル、アリールオキシまたはヘテロアリールオキシ(ここで、上記の環式基のそれぞれが、5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の同一または異なる基Lで置換される)、
    およびRの対および/またはRおよびRの対はまた、それらが結合されるC、SiまたはGe原子と一緒に、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の同一または異なる基Lで置換される、5〜20個の環原子を有するスピロ基を形成してもよく、
    T1、RT2 1つ以上の基Lで任意選択的に置換され、任意選択的に、1つ以上のヘテロ原子を含む、1〜30個のC原子を有するカルビルもしくはヒドロカルビル基、
    ここで、RT1およびRT2の少なくとも1つが電子求引基であり、
    L F、Cl、−NO、−CN、−NC、−NCO、−NCS、−OCN、−SCN、R、OR、SR、−C(=O)X、−C(=O)R、−C(=O)−OR、−O−C(=O)−R、−NH、−NHR、−NR00、−C(=O)NHR、−C(=O)NR00、−SO、−SO、−OH、−NO、−CF、−SF、または任意選択的に置換されるシリル、または1〜30個、好ましくは、1〜20個のC原子を有するカルビルもしくはヒドロカルビル(これは、任意選択的に置換され、任意選択的に、1つ以上のヘテロ原子を含む)、好ましくは、F、−CN、R、−OR、−SR、−C(=O)−R、−C(=O)−OR、−O−C(=O)−R、−O−C(=O)−OR、−C(=O)−NHR、−C(=O)−NR00
    、R00 Hまたは任意選択的にフッ素化される、1〜20個、好ましくは、1〜16個のC原子を有する直鎖状もしくは分枝鎖状アルキル、
    ハロゲン、好ましくは、FまたはCl、
    a、b 0、1、2または3、
    m 1、2または3
    を有する、化合物。
  2. 式I中のAr2〜5が、以下の式およびそれらの鏡像

    から選択され、式中、個々のラジカルが、互いに独立して、出現するごとに同一にまたは異なって、以下の意味
    1,2 S、OまたはSe、
    NR、S、OまたはSe、
    CRまたはN、
    CRまたはN、
    5〜10 H、F、Cl、CNまたは1〜30個、好ましくは、1〜20個のC原子を有する直鎖状、分枝鎖状もしくは環状アルキル(ここで、1つ以上のCH基は、Oおよび/またはS原子が互いに直接結合されないように、−O−、−S−、−C(=O)−、−C(=S)−、−C(=O)−O−、−O−C(=O)−、−NR−、−SiR00−、−CF−、−CR=CR00−、−CY=CY−または−C≡C−で任意選択的に置換され、1つ以上のH原子が、F、Cl、Br、IまたはCNで任意選択的に置換され、1つ以上のCHまたはCH基が、カチオン性またはアニオン性基で任意選択的に置換される)、またはアリール、ヘテロアリール、アリールアルキル、ヘテロアリールアルキル、アリールオキシまたはヘテロアリールオキシ(ここで、上記の環式基のそれぞれが、5〜20個の環原子を有し、単環式または多環式であり、任意選択的に、縮合環を含有し、非置換であるか、または請求項1に定義される1つ以上の同一または異なる基Lで置換される)
    を有する、請求項1に記載の化合物。
  3. 式I中のArおよびArが、以下の式およびそれらの鏡像

    から選択され、式中、R5〜10が、請求項2に定義されるとおりである、請求項1または2に記載の化合物。
  4. 式I中のArおよびArが、以下の式およびそれらの鏡像

    から選択され、式中、X1〜4が、請求項1に記載のRについて示される意味の1つを有する、請求項1〜3のいずれか一項に記載の化合物。
  5. T1およびRT2が、H、F、Cl、Br、−NO、−CN、−CF、R、−CF−R、−O−R、−S−R、−SO−R、−SO−R、−C(=O)−H、−C(=O)−R、−C(=S)−R、−C(=O)−CF−R、−C(=O)−OR、−C(=S)−OR、−O−C(=O)−R、−O−C(=S)−R、−C(=O)−SR、−S−C(=O)−R、−C(=O)NR**、−NR−C(=O)−R、−NHR、−NR**、−CR=CR**、−C≡C−R、−C≡C−SiR*****、−SiR*****、−CH=CH(CN)、−CH=C(CN)、−C(CN)=C(CN)、−CH=C(CN)(R)、CH=C(CN)−C(=O)−OR、−CH=C(CO−OR、−CH=C(CO−NR**から、および以下の式




    からなる群から選択され、式中、個々のラジカルが、互いに独立して、出現するごとに同一にまたは異なって、以下の意味
    、R 4〜30個の環原子をそれぞれ有し、任意選択的に、縮合環を含有し、非置換であるか、または1つ以上の基Lで置換されるアリールまたはヘテロアリール、またはLについて示される意味の1つ、
    、R**、R*** 直鎖状、分枝鎖状または環状であり、非置換であるか、または1つ以上のFまたはCl原子またはCN基で置換され、または過フッ素化される、1〜20個のC原子を有するアルキル(ここで、1つ以上のC原子は、O−および/またはS原子が互いに直接結合されないように、−O−、−S−、−C(=O)−、−C(=S)−、−SiR00−、−NR00−、−CHR=CR00−または−C≡C−で任意選択的に置換される)、
    L F、Cl、−NO、−CN、−NC、−NCO、−NCS、−OCN、−SCN、R、OR、SR、−C(=O)X、−C(=O)R、−C(=O)−OR、−O−C(=O)−R、−NH、−NHR、−NR00、−C(=O)NHR、−C(=O)NR00、−SO、−SO、−OH、−NO、−CF、−SF、または任意選択的に置換されるシリル、または1〜30個、好ましくは、1〜20個のC原子を有するカルビルもしくはヒドロカルビル(これは、任意選択的に置換され、任意選択的に、1つ以上のヘテロ原子を含む)、好ましくは、F、−CN、R、−OR、−SR、−C(=O)−R、−C(=O)−OR、−O−C(=O)−R、−O−C(=O)−OR、−C(=O)−NHR、−C(=O)−NR00
    L’ HまたはLの意味の1つ、
    、R00 Hまたは任意選択的にフッ素化される、1〜12個のC原子を有する直鎖状もしくは分枝鎖状アルキル、
    、Y H、F、ClまたはCN、
    ハロゲン、
    r 0、1、2、3または4、
    s 0、1、2、3、4または5、
    t 0、1、2または3、
    u 0、1または2
    を有する、請求項1〜4のいずれか一項に記載の化合物。
  6. T1およびRT2が両方とも、電子求引基を示す、請求項1〜5のいずれか一項に記載の化合物。
  7. T1およびRT2が、以下の式

    から選択され、式中、L、L’、R、rおよびsが、請求項5に記載の意味を有する、請求項1〜6のいずれか一項に記載の化合物。
  8. 以下の式




    から選択され、式中、R、R、R、R、RT1、RT2、Ar、Ar、aおよびbが、請求項1〜7に示される意味を有する、請求項1〜7のいずれか一項に記載の化合物。
  9. 1〜4が、任意選択的にフッ素化される、1〜16個のC原子を有するアルキルもしくはアルコキシ、または単環式または多環式であり、任意選択的に、縮合環を含有し、4〜30個の環原子を有し、請求項1に定義される1つ以上の基Lで任意選択的に置換されるアリールもしくはヘテロアリールから選択される、請求項1〜8のいずれか一項に記載の化合物。
  10. 請求項1〜9のいずれか一項に記載の1つ以上の化合物を含み、半導体、正孔もしくは電子輸送、正孔もしくは電子ブロッキング、導電性、光伝導、光活性または発光特性の1つ以上を有する1つ以上の化合物、および/またはバインダをさらに含む組成物。
  11. 1つ以上のn型半導体(そのうちの少なくとも1つが、請求項1〜9のいずれか一項に記載の化合物である)を含み、1つ以上のp型半導体をさらに含む、請求項10に記載の組成物。
  12. 共役ポリマーから選択される1つ以上のp型半導体を含む、請求項10または11に記載の組成物。
  13. 前記共役ポリマーが、以下の式














    から選択され、式中、R11〜19が、互いに独立して、Hを示し、または請求項1に定義されるLの意味の1つを有し、X、X、XおよびXが、H、FまたはClを示し、xおよびyがそれぞれ、互いに独立して、0超かつ1未満であり、ここで、x+y=1であり、nが、1を超える整数である、請求項12に記載の組成物。
  14. 前記共役ポリマーが、以下の式
    31−鎖−R32 PT
    から選択され、式中、「鎖」が、式P1〜P53から選択されるポリマー鎖を示し、R31およびR32が、H、C1〜20アルキルまたは任意選択的に置換されるC6〜12アリールもしくはC2〜10ヘテロアリール、好ましくは、H、フェニルまたはチオフェンから選択されるエンドキャップ基を示す、請求項12または13に記載の組成物。
  15. フラーレンもしくはフラーレン誘導体から選択される1つ以上のn型半導体を含む、請求項10〜14のいずれか一項に記載の組成物。
  16. 請求項10〜15のいずれか一項に記載の組成物から形成されるバルクへテロ接合(BHJ)。
  17. 電子もしくは光電子デバイス、またはこのようなデバイスの構成要素またはこのようなデバイスを含むアセンブリにおける、請求項1〜9のいずれか一項に記載の化合物、または請求項10〜15のいずれか一項に記載の組成物の使用。
  18. 請求項1〜9のいずれか一項に記載の1つ以上の化合物、または請求項10〜15のいずれか一項に記載の組成物を含み、有機溶媒から選択される1つ以上の溶媒をさらに含む配合物。
  19. 請求項1〜9のいずれか一項に記載の化合物、または請求項10〜15のいずれか一項に記載の組成物を含む、電子もしくは光電子デバイス、またはその構成要素、またはそれを含むアセンブリ。
  20. 有機電界効果トランジスタ(OFET)、有機薄膜トランジスタ(OTFT)、有機発光ダイオード(OLED)、有機発光トランジスタ(OLET)、有機発光電気化学電池(OLEC)、有機光起電デバイス(OPV)、有機光検出器(OPD)、有機太陽電池、色素増感太陽電池(DSSC)、ペロブスカイト系太陽電池(PSC)、有機光電気化学電池(OPEC)、レーザーダイオード、ショットキーダイオード、光伝導体、光検出器、熱電デバイスおよびLCウィンドウから選択される、請求項19に記載の電子もしくは光電子デバイス。
  21. 電荷注入層、電荷輸送層、中間層、平坦化層、帯電防止フィルム、ポリマー電解質膜(PEM)、導電性基板および導電性パターンから選択される、請求項19に記載の構成要素。
  22. 集積回路(IC)、無線自動識別(RFID)タグ、安全保障マーク、セキュリティーデバイス、フラットパネルディスプレイ、フラットパネルディスプレイのバックライト、電子写真デバイス、電子写真記録デバイス、有機メモリデバイス、センサーデバイス、バイオセンサーおよびバイオチップから選択される、請求項19に記載のアセンブリ。
JP2019517421A 2016-10-05 2017-10-02 有機半導体化合物 Pending JP2019536744A (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP16192351 2016-10-05
EP16192351.1 2016-10-05
EP16200289 2016-11-23
EP16200289.3 2016-11-23
EP17175533.3 2017-06-12
EP17175533 2017-06-12
PCT/EP2017/074951 WO2018065350A1 (en) 2016-10-05 2017-10-02 Organic semiconducting compounds

Publications (1)

Publication Number Publication Date
JP2019536744A true JP2019536744A (ja) 2019-12-19

Family

ID=60001928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019517421A Pending JP2019536744A (ja) 2016-10-05 2017-10-02 有機半導体化合物

Country Status (8)

Country Link
US (1) US10991893B2 (ja)
EP (1) EP3523308B1 (ja)
JP (1) JP2019536744A (ja)
KR (1) KR102533066B1 (ja)
CN (1) CN109790176B (ja)
BR (1) BR112019004555B1 (ja)
TW (1) TWI812597B (ja)
WO (1) WO2018065350A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206032A1 (ja) * 2020-04-07 2021-10-14 富士フイルム株式会社 光電変換膜、分散液、光検出素子およびイメージセンサ
JP2023033222A (ja) * 2021-08-27 2023-03-09 レイナジー テック インコーポレイション 有機半導体化合物及びそれを用いた有機光電素子
US11925101B2 (en) 2021-09-15 2024-03-05 Raynergy Tek Incorporation Organic semiconducting compound and the organic photoelectric components using the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784990B (zh) 2016-12-06 2022-12-01 南韓商Clap股份有限公司 噻吩并-茚并-單體及聚合物
WO2019030382A1 (en) 2017-08-11 2019-02-14 Merck Patent Gmbh ORGANIC SEMICONDUCTOR POLYMER
EP3681889A1 (en) * 2017-09-13 2020-07-22 Merck Patent GmbH Organic semiconducting compounds
CN112368316A (zh) 2018-04-27 2021-02-12 天光材料科技股份有限公司 有机半导体聚合物
GB2579418A (en) * 2018-11-30 2020-06-24 Sumitomo Chemical Co Organic photodetector
US10727428B1 (en) * 2019-02-01 2020-07-28 Natioinal Technology & Engineering Solutions Of Sa Organic-semiconducting hybrid solar cell
US20220173321A1 (en) 2019-03-19 2022-06-02 Raynergy Tek Incorporation Organic semiconductors
US20220231233A1 (en) * 2019-04-18 2022-07-21 The University Of North Carolina At Chapel Hill Perovskite solar cells with near-infrared sensitive layers
WO2020225169A1 (en) 2019-05-06 2020-11-12 Merck Patent Gmbh Photoactive composition
CN110229313B (zh) * 2019-06-10 2021-11-19 华东师范大学 一种带吸电子基的可溶性噻吩共聚物及其制备方法和应用
KR20210000583A (ko) 2019-06-25 2021-01-05 삼성전자주식회사 화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
JPWO2021024675A1 (ja) * 2019-08-05 2021-02-11
CN110818723A (zh) * 2019-10-08 2020-02-21 合肥工业大学 一种通过一步合成基于稠环和苯并噻二唑的高性能共轭小分子半导体材料
CN110746440A (zh) * 2019-11-06 2020-02-04 厦门大学 一类以二茚并双噻吩为核的有机太阳能电池受体材料及其制备方法和应用
WO2022098917A1 (en) * 2020-11-04 2022-05-12 Ubiquitous Energy, Inc. Photoactive compounds for vapor deposited organic photovoltaic devices
TWI753657B (zh) * 2020-11-17 2022-01-21 位速科技股份有限公司 鈣鈦礦光電元件
CN112531118B (zh) * 2020-11-18 2023-11-07 位速科技股份有限公司 钙钛矿光电元件
GB2602025A (en) * 2020-12-15 2022-06-22 Sumitomo Chemical Co Compound
JP2024516759A (ja) * 2021-01-22 2024-04-17 ユビキタス エナジー, インコーポレイテッド 透明光起電装置用のヘテロ芳香族光活性化合物
CN114380843A (zh) * 2021-11-30 2022-04-22 西安石油大学 有机光电受体材料及其制备方法和应用
CN115636926A (zh) * 2022-09-19 2023-01-24 湖南松井新材料股份有限公司 一种稠环噻吩型紫色至透明电致变色聚合物及其制备方法及应用
GB2624717A (en) * 2022-11-28 2024-05-29 Sumitomo Chemical Co Formulation
GB2624714A (en) 2022-11-28 2024-05-29 Sumitomo Chemical Co Compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044377A1 (de) * 2013-09-27 2015-04-02 Heliatek Gmbh Photoaktives; organisches material für optoelektronische bauelemente

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US5198153A (en) 1989-05-26 1993-03-30 International Business Machines Corporation Electrically conductive polymeric
JP3224829B2 (ja) 1991-08-15 2001-11-05 株式会社東芝 有機電界効果型素子
WO1996021659A1 (en) 1995-01-10 1996-07-18 University Of Technology, Sydney Organic semiconductor
EP0889350A1 (en) 1997-07-03 1999-01-07 ETHZ Institut für Polymere Photoluminescent display devices (I)
US5998804A (en) 1997-07-03 1999-12-07 Hna Holdings, Inc. Transistors incorporating substrates comprising liquid crystal polymers
CA2362459C (en) 1999-03-05 2006-05-09 Cambridge Display Technology Limited Polymer preparation
EP1192676A1 (en) 1999-06-21 2002-04-03 Cambridge University Technical Services Limited Aligned polymers for an organic tft
GB0028867D0 (en) 2000-11-28 2001-01-10 Avecia Ltd Field effect translators,methods for the manufacture thereof and materials therefor
US20030021913A1 (en) 2001-07-03 2003-01-30 O'neill Mary Liquid crystal alignment layer
EP1275650A3 (en) * 2001-07-09 2003-05-02 MERCK PATENT GmbH Thienthiophenes with polymerisable group
DE10241814A1 (de) 2002-09-06 2004-03-25 Covion Organic Semiconductors Gmbh Prozeß zur Herstellung von Aryl-Aryl gekoppelten Verbindungen
WO2005055248A2 (en) 2003-11-28 2005-06-16 Merck Patent Gmbh Organic semiconducting layer formulations comprising polyacenes and organic binder polymers
ES2345739T3 (es) 2007-12-27 2010-09-30 Industrial Technology Research Institute Derivados de politiofeno solubles.
US8058387B2 (en) 2008-05-30 2011-11-15 Industrial Technology Research Institute Soluble polythiophene derivatives
US8455606B2 (en) 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers
WO2010020329A1 (en) 2008-08-18 2010-02-25 Merck Patent Gmbh, Indacenodithiophene and indacenodiselenophene polymers and their use as organic semiconductors
US10050201B2 (en) 2010-04-19 2018-08-14 Merck Patent Gmbh Polymers of benzodithiophene and their use as organic semiconductors
WO2012054910A1 (en) * 2010-10-22 2012-04-26 Polyera Corportion Conjugated polymers and their use in optoelectronic devices
WO2012114316A1 (en) 2011-02-25 2012-08-30 Ecole Polytechnique Federale De Lausanne (Epfl) Metal complexes for use as dopants and other uses
US9779879B2 (en) 2011-02-25 2017-10-03 Ecole Polytechnique Federale De Lausanne (Epfl) Redox couple for electrochemical and optoelectronic devices
JP6215192B2 (ja) * 2011-04-18 2017-10-18 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子用材料
EP2773721B1 (de) * 2011-11-01 2015-11-25 Merck Patent GmbH Organische elektrolumineszenzvorrichtung
JP2013131477A (ja) 2011-12-22 2013-07-04 Merck Ltd コバルト電解質、電解液、色素増感太陽電池およびコバルト電解質の製造方法
TWI438220B (zh) * 2012-03-08 2014-05-21 Univ Nat Chiao Tung 化合物及其合成方法
TWI635111B (zh) * 2012-03-16 2018-09-11 馬克專利公司 共軛聚合物
KR101722027B1 (ko) * 2012-05-03 2017-04-03 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
EP2850669B1 (en) 2012-05-18 2016-02-24 Isis Innovation Limited Photovoltaic device comprising perovskites
GB201208793D0 (en) 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
US10388897B2 (en) 2012-05-18 2019-08-20 Oxford University Innovation Limited Optoelectronic device comprising porous scaffold material and perovskites
CN104395372B (zh) * 2012-07-02 2017-04-05 默克专利股份有限公司 共轭聚合物
EP2693503A1 (en) 2012-08-03 2014-02-05 Ecole Polytechnique Fédérale de Lausanne (EPFL) Organo metal halide perovskite heterojunction solar cell and fabrication thereof
MY170170A (en) 2012-09-18 2019-07-09 Univ Oxford Innovation Ltd Optoelectonic device
JP6465801B2 (ja) 2012-10-05 2019-02-06 メルク パテント ゲーエムベーハー 有機半導体
WO2014082706A1 (en) 2012-11-30 2014-06-05 Merck Patent Gmbh Cobalt complexes with tricyanoborate or dicyanoborate counter-anions for electrochemical or optoelectronic devices
WO2014082704A1 (en) 2012-11-30 2014-06-05 Merck Patent Gmbh Cobaltcomplex salts
WO2014202184A1 (en) 2013-06-21 2014-12-24 Merck Patent Gmbh Conjugated polymers
CN105658761B (zh) * 2013-10-22 2018-04-24 默克专利股份有限公司 共轭聚合物
CN104557968B (zh) 2013-10-29 2017-04-05 中国科学院化学研究所 基于二噻吩并引达省的a‑d‑a共轭分子及其制备方法和应用
EP2883881A1 (en) 2013-12-12 2015-06-17 Merck Patent GmbH Cobaltcomplex salts and mixtures of Cobaltcomplex salts for use in DSSC
CN106164127B (zh) 2014-04-10 2020-10-16 默克专利股份有限公司 有机半导体化合物
CN105315298B (zh) 2014-08-04 2017-10-10 中国科学院化学研究所 基于七并稠环单元的a‑d‑a共轭分子及其制备方法和应用
KR20190059922A (ko) * 2016-10-05 2019-05-31 메르크 파텐트 게엠베하 유기 반도체성 화합물
CN108623614B (zh) * 2017-03-17 2020-04-21 北京大学 基于多并五元环共轭分子及其制备方法和应用
EP3681889A1 (en) * 2017-09-13 2020-07-22 Merck Patent GmbH Organic semiconducting compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044377A1 (de) * 2013-09-27 2015-04-02 Heliatek Gmbh Photoaktives; organisches material für optoelektronische bauelemente

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206032A1 (ja) * 2020-04-07 2021-10-14 富士フイルム株式会社 光電変換膜、分散液、光検出素子およびイメージセンサ
JP7372452B2 (ja) 2020-04-07 2023-10-31 富士フイルム株式会社 光電変換膜、分散液、光検出素子およびイメージセンサ
JP2023033222A (ja) * 2021-08-27 2023-03-09 レイナジー テック インコーポレイション 有機半導体化合物及びそれを用いた有機光電素子
US11925101B2 (en) 2021-09-15 2024-03-05 Raynergy Tek Incorporation Organic semiconducting compound and the organic photoelectric components using the same

Also Published As

Publication number Publication date
WO2018065350A1 (en) 2018-04-12
US20200052227A1 (en) 2020-02-13
US10991893B2 (en) 2021-04-27
TWI812597B (zh) 2023-08-21
KR20190056417A (ko) 2019-05-24
CN109790176B (zh) 2023-06-02
BR112019004555A2 (pt) 2019-05-28
EP3523308A1 (en) 2019-08-14
KR102533066B1 (ko) 2023-05-15
TW201829416A (zh) 2018-08-16
BR112019004555B1 (pt) 2023-04-18
CN109790176A (zh) 2019-05-21
EP3523308B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
KR102533066B1 (ko) 유기 반도체성 화합물
US11196005B2 (en) Organic semiconducting compounds
CN109891616B (zh) 有机半导体化合物
EP3333170B1 (en) Asymmetrical polycyclic compounds for use in organic semiconductors
EP3500577B1 (en) Organic semiconducting compounds
CN107915661B (zh) 有机半导体化合物
US20230287001A1 (en) Organic Semiconducting Compounds
EP3707191A1 (en) Organic semiconducting compounds
WO2019185578A1 (en) Organic semiconducting compounds
WO2019185580A1 (en) Organic semiconducting compounds
EP3704176B1 (en) Organic semiconducting compounds
WO2020048939A1 (en) Organic semiconducting compounds
JP2020510030A (ja) 有機半導体化合物
WO2020178298A1 (en) Organic semiconducting composition
WO2019161748A1 (en) Organic semiconducting compounds

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220920

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220927

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221202

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240607