WO2021205728A1 - マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法 - Google Patents

マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法 Download PDF

Info

Publication number
WO2021205728A1
WO2021205728A1 PCT/JP2021/003884 JP2021003884W WO2021205728A1 WO 2021205728 A1 WO2021205728 A1 WO 2021205728A1 JP 2021003884 W JP2021003884 W JP 2021003884W WO 2021205728 A1 WO2021205728 A1 WO 2021205728A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
image
primary electron
primary
gain
Prior art date
Application number
PCT/JP2021/003884
Other languages
English (en)
French (fr)
Inventor
小川 力
亮一 平野
杉原 真児
井上 広
Original Assignee
株式会社ニューフレアテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニューフレアテクノロジー filed Critical 株式会社ニューフレアテクノロジー
Publication of WO2021205728A1 publication Critical patent/WO2021205728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/29Reflection microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • JP2020-068595 application number
  • JP2020-068595 application number
  • the present invention relates to a multi-electron beam inspection device and a multi-electron beam inspection method.
  • the present invention relates to an inspection device that inspects using a secondary electron image of a pattern emitted by irradiating a multi-beam with an electron beam.
  • one of the major factors for reducing the yield is a pattern defect of a mask used when exposing and transferring an ultrafine pattern on a semiconductor wafer by photolithography technology. Therefore, it is required to improve the accuracy of the pattern inspection apparatus for inspecting defects of the transfer mask used in LSI manufacturing.
  • an inspection method a method of inspecting by comparing a measurement image obtained by imaging a pattern formed on a substrate such as a semiconductor wafer or a lithography mask with design data or a measurement image obtained by imaging the same pattern on the substrate.
  • a pattern inspection method "die to die inspection” in which measurement image data obtained by imaging the same pattern in different places on the same substrate are compared with each other, or a design image based on pattern-designed design data.
  • die to database (die database) inspection” that generates data (reference image) and compares this with the measurement image that is the measurement data obtained by imaging the pattern.
  • the captured image is sent to the comparison circuit as measurement data.
  • the comparison circuit after the images are aligned with each other, the measurement data and the reference data are compared according to an appropriate algorithm, and if they do not match, it is determined that there is a pattern defect.
  • the pattern inspection device described above includes a device that irradiates a substrate to be inspected with laser light to image a transmitted image or a reflected image, and scans the substrate to be inspected with a primary electron beam. Development of an inspection device that acquires a pattern image by detecting secondary electrons emitted from the substrate to be inspected with irradiation of the secondary electron beam is also in progress. As for the inspection device using the electron beam, the development of the device using the multi-electron beam is also in progress. In an inspection device using a multi-electron beam, a sensor for detecting secondary electrons caused by irradiation of each beam of the multi-primary electron beam is arranged to acquire an image for each beam.
  • one aspect of the present invention provides an inspection device and method capable of inspecting with high accuracy even when so-called crosstalk occurs in which secondary electrons of other beams are mixed in the sensor for each beam.
  • the multi-electron beam inspection apparatus is The sample in which the pattern is formed is irradiated with the multi-primary electron beam, and the multi-secondary electron beam emitted due to the multi-primary electron beam irradiating the sample is detected, and the crosstalk component is generated.
  • a secondary electron image acquisition mechanism that acquires the included secondary electron image
  • a correction circuit that generates a corrected secondary electronic image in which the crosstalk component is removed from the secondary electronic image by using preset gain information for removing the crosstalk component from the secondary electronic image.
  • a comparison circuit that compares the corrected secondary electronic image with a predetermined image, It is characterized by being equipped with.
  • the multi-electron beam inspection method is The sample in which the pattern is formed is irradiated with the multi-primary electron beam, the multi-secondary electron beam emitted due to the irradiation of the sample with the multi-primary electron beam is detected, and the crosstalk component is contained. Obtained the secondary electron image Using the preset gain information for removing the crosstalk component from the secondary electron image, a corrected secondary electronic image in which the crosstalk component is removed from the secondary electronic image is generated. The corrected secondary electronic image is compared with a predetermined image, and the result is output. It is characterized by that.
  • FIG. It is a block diagram which shows an example of the structure of the pattern inspection apparatus in Embodiment 1.
  • FIG. It is a conceptual diagram which shows the structure of the molded aperture array substrate in Embodiment 1.
  • FIG. It is a figure which shows an example of the plurality of chip regions formed on the semiconductor substrate in Embodiment 1.
  • FIG. It is a figure for demonstrating the scanning operation of the multi-beam in Embodiment 1.
  • FIG. It is a figure which shows an example of the spread of the secondary electron beam per primary electron beam in Embodiment 1.
  • FIG. It is a flowchart which shows the main part process of the inspection method in Embodiment 1.
  • FIG. It is a figure for demonstrating the scanning of the sub-irradiation region and the measured secondary electron intensity in Embodiment 1.
  • FIG. It is a figure which shows an example of the secondary electron intensity map in Embodiment 1.
  • FIG. It is a figure which shows an example of the gain matrix in Embodiment 1.
  • FIG. It is a figure which shows an example of the structure of each gain value in Embodiment 1.
  • FIG. It is a figure which shows the relational expression of the secondary electron image P'which contains the crosstalk image component, the gain matrix G, and the secondary electron image P which does not contain a crosstalk image component in Embodiment 1.
  • FIG. It is a figure which shows an example of the gain inverse matrix in Embodiment 1.
  • FIG. 1 It is a figure which shows the relational expression of the secondary electron image P'which contains the crosstalk image component, the gain inverse matrix G-1, and the secondary electron image P which removed the crosstalk image component in Embodiment 1.
  • FIG. It is a block diagram which shows an example of the structure in the comparison circuit in Embodiment 1.
  • FIG. 1 is a configuration diagram showing an example of the configuration of the pattern inspection device according to the first embodiment.
  • the inspection device 100 for inspecting a pattern formed on a substrate is an example of a multi-electron beam inspection device.
  • the inspection device 100 includes an image acquisition mechanism 150 (secondary electronic image acquisition mechanism) and a control system circuit 160.
  • the image acquisition mechanism 150 includes an electron beam column 102 (electron lens barrel) and an examination room 103.
  • an electron gun 201 In the electron beam column 102, an electron gun 201, an electromagnetic lens 202, a molded aperture array substrate 203, a beam selection aperture substrate 219, an electromagnetic lens 205, a batch blanking deflector 212, a limiting aperture substrate 213, an electromagnetic lens 206, and an electromagnetic lens.
  • 207 objective lens
  • main deflector 208 sub-deflector 209
  • beam separator 214 deflector 218, electromagnetic lens 224, electromagnetic lens 226, and multi-detector 222 are arranged.
  • electromagnetic lens 224 In the example of FIG.
  • an electron gun 201, an electromagnetic lens 202, a molded aperture array substrate 203, a beam selection aperture substrate 219, an electromagnetic lens 205, a batch blanking deflector 212, a limiting aperture substrate 213, an electromagnetic lens 206, and an electromagnetic lens 207 (The objective lens), the main deflector 208, and the sub-deflector 209 constitute a primary electron optics system that irradiates the substrate 101 with a multi-primary electron beam.
  • the beam separator 214, the deflector 218, the electromagnetic lens 224, and the electromagnetic lens 226 constitute a secondary electron optical system that irradiates the multi-detector 222 with a multi-secondary electron beam.
  • a stage 105 that can move at least in the XYZ direction is arranged in the inspection room 103.
  • a substrate 101 (sample) to be inspected is arranged on the stage 105.
  • the substrate 101 includes an exposure mask substrate and a semiconductor substrate such as a silicon wafer.
  • a plurality of chip patterns are formed on the semiconductor substrate.
  • a chip pattern is formed on the exposure mask substrate.
  • the chip pattern is composed of a plurality of graphic patterns.
  • the substrate 101 is a semiconductor substrate, for example, with the pattern forming surface facing upward. Further, on the stage 105, a mirror 216 that reflects the laser beam for laser length measurement emitted from the laser length measuring system 122 arranged outside the examination room 103 is arranged. The multi-detector 222 is connected to the detection circuit 106 outside the electron beam column 102.
  • control computer 110 that controls the entire inspection device 100 uses the position circuit 107, the comparison circuit 108, the reference image creation circuit 112, the stage control circuit 114, the lens control circuit 124, and the blanking via the bus 120.
  • the deflection control circuit 128 is connected to a DAC (digital-to-analog conversion) amplifier 144, 146, 148.
  • the DAC amplifier 146 is connected to the main deflector 208, and the DAC amplifier 144 is connected to the sub-deflector 209.
  • the DAC amplifier 148 is connected to the deflector 218.
  • the detection circuit 106 is connected to the chip pattern memory 123 and the secondary electron intensity measurement circuit 129.
  • the chip pattern memory 123 is connected to the comparison circuit 108.
  • the stage 105 is driven by the drive mechanism 142 under the control of the stage control circuit 114.
  • a drive system such as a three-axis (XY ⁇ ) motor that drives in the X direction, the Y direction, and the ⁇ direction in the stage coordinate system is configured, and the stage 105 can move in the XY ⁇ direction. It has become.
  • X motors, Y motors, and ⁇ motors (not shown), for example, step motors can be used.
  • the stage 105 can be moved in the horizontal direction and the rotational direction by a motor of each axis of XY ⁇ . Further, in the drive mechanism 142, for example, a piezo element or the like is used to control the stage 105 so as to be movable in the Z direction (height direction). Then, the moving position of the stage 105 is measured by the laser length measuring system 122 and supplied to the position circuit 107. The laser length measuring system 122 measures the position of the stage 105 by the principle of the laser interferometry method by receiving the reflected light from the mirror 216. In the stage coordinate system, for example, the X direction, the Y direction, and the ⁇ direction are set with respect to the plane orthogonal to the optical axis (electron orbit center axis) of the multi-primary electron beam.
  • the electromagnetic lens 202, the electromagnetic lens 205, the electromagnetic lens 206, the electromagnetic lens 207 (objective lens), the electromagnetic lens 224, the electromagnetic lens 226, and the beam separator 214 are controlled by the lens control circuit 124.
  • the batch blanking deflector 212 is composed of electrodes having two or more poles, and each electrode is controlled by a blanking control circuit 126 via a DAC amplifier (not shown).
  • the sub-deflector 209 is composed of electrodes having four or more poles, and each electrode is controlled by the deflection control circuit 128 via the DAC amplifier 144.
  • the main deflector 208 is composed of electrodes having four or more poles, and each electrode is controlled by a deflection control circuit 128 via a DAC amplifier 146.
  • the deflector 218 is composed of electrodes having four or more poles, and each electrode is controlled by a deflection control circuit 128 via a DAC amplifier 148.
  • a passage hole through which one beam can pass is formed in the central portion, and a direction orthogonal to the orbital central axis (optical axis) of the multi-primary electron beam is provided by a drive mechanism (not shown). It is configured to be movable in the (two-dimensional direction).
  • a high-voltage power supply circuit (not shown) is connected to the electron gun 201, and an acceleration voltage from the high-voltage power supply circuit is applied between the filament (cathode) and the extraction electrode (anode) in the electron gun 201 (not shown), and another extraction electrode is used.
  • a voltage of (Wenert) and heating the cathode at a predetermined temperature a group of electrons emitted from the cathode is accelerated and emitted as an electron beam 200.
  • FIG. 1 describes a configuration necessary for explaining the first embodiment.
  • the inspection apparatus 100 may usually have other necessary configurations.
  • FIG. 2 is a conceptual diagram showing the configuration of the molded aperture array substrate according to the first embodiment.
  • one of the two-dimensional horizontal (x direction) m 1 row ⁇ vertical (y direction) n 1 step (m 1 , n 1 is an integer of 2 or more, and the other is Holes (openings) 22 (an integer of 1 or more) are formed at a predetermined arrangement pitch in the x and y directions.
  • Holes (openings) 22 an integer of 1 or more
  • a predetermined arrangement pitch in the x and y directions In the example of FIG. 2, a case where a 23 ⁇ 23 hole (opening) 22 is formed is shown.
  • each hole 22 is formed by a rectangle having the same dimensions and shape. Alternatively, ideally, it may be a circle having the same outer diameter.
  • the electron beam 200 emitted from the electron gun 201 is refracted by the electromagnetic lens 202 to illuminate the entire molded aperture array substrate 203.
  • a plurality of holes 22 are formed in the molded aperture array substrate 203, and the electron beam 200 illuminates an area including all the plurality of holes 22.
  • the multi-primary electron beam 20 is formed by each part of the electron beam 200 irradiated to the positions of the plurality of holes 22 passing through the plurality of holes 22 of the molded aperture array substrate 203.
  • the beam selection aperture substrate 219 is retracted to a position where it does not interfere with the multi-primary electron beam 20.
  • the formed multi-primary electron beam 20 is refracted by the electromagnetic lens 205 and the electromagnetic lens 206, respectively, and is arranged at the crossover position of each beam of the multi-primary electron beam 20 while repeating the intermediate image and the crossover. It passes through the beam separator 214 and proceeds to the electromagnetic lens 207 (objective lens). Then, the electromagnetic lens 207 focuses (focuses) the multi-primary electron beam 20 on the substrate 101.
  • the multi-primary electron beam 20 focused (focused) on the surface of the substrate 101 (sample) by the electromagnetic lens 207 (objective lens) is collectively deflected by the main deflector 208 and the sub-deflector 209. Each beam is irradiated to each irradiation position on the substrate 101.
  • the limiting aperture substrate 213 shields the multi-primary electron beam 20 deflected so that the beam is turned off by the batch blanking deflector 212.
  • the multi-primary electron beam 20 for inspection is formed by the beam group that has passed through the limiting aperture substrate 213 formed from the time when the beam is turned on to the time when the beam is turned off.
  • the multi-primary electron beam 20 When the multi-primary electron beam 20 is irradiated to a desired position of the substrate 101, it corresponds to each beam of the multi-primary electron beam 20 from the substrate 101 due to the irradiation of the multi-primary electron beam 20. , A bundle of secondary electrons including backscattered electrons (multi-secondary electron beam 300) is emitted.
  • the multi-secondary electron beam 300 emitted from the substrate 101 passes through the electromagnetic lens 207 and proceeds to the beam separator 214.
  • the beam separator 214 generates an electric field and a magnetic field in a direction orthogonal to each other on a plane orthogonal to the direction in which the central beam of the multi-primary electron beam 20 travels (the central axis of the electron orbit).
  • the electric field exerts a force in the same direction regardless of the traveling direction of the electron.
  • the magnetic field exerts a force according to Fleming's left-hand rule. Therefore, the direction of the force acting on the electron can be changed depending on the invasion direction of the electron.
  • the force due to the electric field and the force due to the magnetic field cancel each other out to the multi-primary electron beam 20 that invades the beam separator 214 from above, and the multi-primary electron beam 20 travels straight downward.
  • the multi-secondary electron beam 300 which is bent diagonally upward and separated from the multi-primary electron beam 20, is further bent by the deflector 218 and projected onto the multi-detector 222 while being refracted by the electromagnetic lenses 224 and 226. NS.
  • the multi-detector 222 detects the projected multi-secondary electron beam 300. Backscattered electrons and secondary electrons may be projected onto the multi-detector 222, or the backscattered electrons may be diverged on the way and the remaining secondary electrons may be projected.
  • the multi-detector 222 has a two-dimensional sensor described later.
  • each secondary electron of the multi-secondary electron beam 300 collides with the corresponding region of the two-dimensional sensor to generate electrons, and secondary electron image data is generated for each pixel.
  • each detection sensor of the plurality of detection sensors of the multi-detector 222 detects the intensity signal of the secondary electron beam for the image caused by the irradiation of the primary electron beam 10i in charge of each.
  • the intensity signal detected by the multi-detector 222 is output to the detection circuit 106.
  • FIG. 3 is a diagram showing an example of a plurality of chip regions formed on the semiconductor substrate according to the first embodiment.
  • the substrate 101 is a semiconductor substrate (wafer)
  • a plurality of chips (wafer dies) 332 are formed in a two-dimensional array in the inspection region 330 of the semiconductor substrate (wafer).
  • a mask pattern for one chip formed on an exposure mask substrate is transferred to each chip 332 by being reduced to, for example, 1/4 by an exposure device (stepper) (not shown).
  • the region of each chip 332 is divided into a plurality of stripe regions 32 with a predetermined width, for example, in the y direction.
  • the scanning operation by the image acquisition mechanism 150 is performed, for example, for each stripe region 32.
  • each stripe region 32 is divided into a plurality of frame regions 33 in the longitudinal direction.
  • the movement of the beam to the target frame region 33 is performed by the collective deflection of the entire multi-primary electron beam 20 by the main deflector 208.
  • FIG. 4 is a diagram for explaining a multi-beam scanning operation according to the first embodiment.
  • the irradiation region 34 that can be irradiated by one irradiation of the multi-primary electron beam 20 is (the x-direction obtained by multiplying the x-direction beam-to-beam pitch of the multi-primary electron beam 20 on the substrate 101 surface by the number of beams in the x-direction. Size) ⁇ (size in the y direction obtained by multiplying the pitch between beams in the y direction of the multi-primary electron beam 20 on the surface of the substrate 101 by the number of beams in the y direction).
  • each stripe region 32 is set to a size similar to the y-direction size of the irradiation region 34 or narrowed by the scan margin.
  • the irradiation region 34 has the same size as the frame region 33 is shown.
  • the irradiation area 34 may be smaller than the frame area 33. Alternatively, it may be large.
  • each beam of the multi-primary electron beam 20 is irradiated in the sub-irradiation region 29 surrounded by the inter-beam pitch in the x direction and the inter-beam pitch in the y direction in which the own beam is located, and the sub-irradiation region 29 is irradiated.
  • Scan inside Scan operation.
  • Each of the primary electron beams 10 constituting the multi-primary electron beam 20 is in charge of any of the sub-irradiation regions 29 different from each other. Then, at each shot, each primary electron beam 10 irradiates the same position in the responsible sub-irradiation region 29.
  • the movement of the primary electron beam 10 in the sub-irradiation region 29 is performed by batch deflection of the entire multi-primary electron beam 20 by the sub-deflector 209. This operation is repeated to sequentially irradiate the inside of one sub-irradiation region 29 with one primary electron beam 10. Then, when the scanning of one sub-irradiation region 29 is completed, the main deflector 208 moves to the adjacent frame region 33 in the stripe region 32 having the same irradiation position by the collective deflection of the entire multi-primary electron beam 20. This operation is repeated to irradiate the inside of the stripe region 32 in order.
  • the irradiation position is moved to the next striped region 32 by moving the stage 105 and / or batch deflection of the entire multi-primary electron beam 20 by the main deflector 208.
  • the secondary electron images for each sub-irradiation region 29 are acquired by irradiating each of the primary electron beams 10i.
  • a secondary electron image of the frame region 33 By combining the secondary electron images for each of the sub-irradiation regions 29, a secondary electron image of the frame region 33, a secondary electron image of the stripe region 32, or a secondary electron image of the chip 332 is formed.
  • a plurality of chips 332 arranged in the x direction are grouped into the same group, and each group is divided into a plurality of stripe regions 32 with a predetermined width in the y direction, for example.
  • the movement between the stripe regions 32 is not limited to each chip 332, and may be performed for each group.
  • the main deflector 208 collectively deflects the irradiation position of the multi-primary electron beam 20 so as to follow the movement of the stage 105. Tracking operation is performed by. Therefore, the emission position of the multi-secondary electron beam 300 changes every moment with respect to the orbital central axis of the multi-primary electron beam 20. Similarly, when scanning the inside of the sub-irradiation region 29, the emission position of each secondary electron beam changes every moment in the sub-irradiation region 29. The deflector 218 collectively deflects the multi-secondary electron beam 300 so that each secondary electron beam whose emission position has changed is irradiated into the corresponding detection region of the multi-detector 222.
  • FIG. 5 is a diagram showing an example of the spread of the secondary electron beam per primary electron beam in the first embodiment.
  • the case of the multi-primary electron beam 20 in a 5 ⁇ 5 row is shown.
  • a plurality of detection sensors 223 corresponding to the number of multi-primary electron beams 20 are arranged two-dimensionally.
  • each preset primary electron beam 10 is the substrate 101. It is a sensor for detecting the secondary electron beam 12 emitted due to being irradiated with.
  • the reference image to be compared used when inspecting the measurement image is created based on, for example, the design data that is the basis of the graphic pattern formed on the substrate 101. Therefore, when comparing the measurement image containing the crosstalk image (image to be inspected: secondary electron image) with the reference image created based on the design data, there is a difference in the image even though it is not a defect. Therefore, a so-called pseudo-defect, which is determined as a defect, may occur. In this way, crosstalk deteriorates the inspection accuracy. In order to avoid crosstalk, it is necessary to reduce the electron energy of the primary electron beam 10 on the surface of the substrate 101, but this reduces the number of secondary electrons generated.
  • the gain matrix of the crosstalk component is obtained, and the inverse matrix of the gain is calculated in advance to correct the scanned image with the inverse matrix and remove the crosstalk component.
  • FIG. 6 is a flowchart showing a main process of the inspection method according to the first embodiment.
  • the inspection method according to the first embodiment is a secondary electron intensity measurement step (S102), a gain calculation step (S104), an inverse matrix calculation step (S108), and a secondary electronic image acquisition step (S110).
  • the secondary electron intensity measuring circuit 129 is a secondary electron intensity measuring circuit 129 detected by each detection sensor 223 in the multi-detector 222 for each primary electron beam 10 of the multi-primary electron beam 20. Measure the electron strength. Specifically, it operates as follows. First, the beam selection aperture substrate 219 is moved to select one primary electron beam 10 that passes through the passage hole of the beam selection aperture substrate 219 from among the multi-primary electron beams 20. The other primary electron beam 10 is shielded by the beam selection aperture substrate 219. Then, the inside of the sub-irradiation region 29 of the evaluation substrate is scanned using the single primary electron beam 10.
  • the irradiation positions (pixels) of the primary electron beam 10 are sequentially moved by the deflection by the sub-deflector 209.
  • the primary electron beam 10 is irradiated to the evaluation substrate 1 in which the pattern is not formed. do it.
  • the evaluation substrate 2 on which the evaluation pattern is formed may be used.
  • FIG. 7 is a diagram for explaining the scanning of the sub-irradiation region and the measured secondary electron intensity in the first embodiment.
  • FIG. 7 shows, for example, a case where the beam 1 scans the inside of the sub-irradiation region 29 among the N ⁇ N multi-primary electron beams 20.
  • the sub-irradiation region 29 is composed of, for example, a size of n ⁇ n pixels. For example, it is composed of 1000 ⁇ 1000 pixels. It is preferable that the pixel size is configured to be about the same size as the beam size of the primary electron beam 10, for example. However, it is not limited to this. The pixel size may be smaller than the beam size of the primary electron beam 10.
  • the resolution of the image is lowered, but the pixel size may be larger than the beam size of the primary electron beam 10.
  • the secondary electron beam caused by the irradiation of the beam 1 with the beam 1 is sequentially detected by the detection sensor 223 for the beam 1 of the multi-detector 222. If the distribution of the secondary electron beam is wider than the region of the detection sensor 223 for the target beam as shown in FIG. 5, it can be detected in order by the detection sensors 223 for other beams at the same time.
  • the intensity signals detected by the multi-detector 222 are output to the detection circuit 106 in the order of measurement.
  • analog detection data is converted into digital data by an A / D converter (not shown) and output to the secondary electron intensity measurement circuit 129.
  • the secondary electron intensity measurement circuit 129 uses the input intensity signal to form a secondary electron intensity map having secondary electron intensity i (1,1) to i (n, n) of each pixel as elements. I (1,1) is measured.
  • FIG. 8 is a diagram showing an example of a secondary electron intensity map according to the first embodiment.
  • the secondary electron intensities I (1,1) to I (1,N) can be measured by scanning the sub-irradiation region 29 for the beam 1 with the beam 1. By moving the beam selection aperture substrate 219 and selecting the target primary electron beams 10 in order, for example, the secondary electron intensities I (2,1) to I (2, N) can be obtained by using the beam 2. It can be measured, and the secondary electron intensities I (3,1) to I (3,N) can be measured using the beam 3.
  • the secondary electron intensity measuring circuit 129 has secondary electron intensity I (1,1) to I in the sub-irradiation region 29 units (primary electron beam unit). (N, N) can be measured.
  • the measured secondary electron intensity I (1,1) to I (N, N) information is output to the gain calculation circuit 130.
  • the gain calculation circuit 130 calculates a gain value for each detection sensor 223 and for each primary electron beam 10. Specifically, the gain calculation circuit 130 determines the gain value of the primary electron beam 10 detected by the detection sensor 223 for detecting the secondary electron beam 12 caused by the irradiation of the primary electron beam 10. The ratio of the intensity value of the secondary electron beam 12 due to another primary electron beam 10 detected by the same detection sensor 223 to the intensity value of the secondary electron beam 12 due to irradiation is calculated.
  • FIG. 9 is a diagram showing an example of the gain matrix according to the first embodiment.
  • a of the gain value G (A, B), which is each element of the gain matrix G, indicates a beam number.
  • the gain value G (m, k) of the beam m (primary electron beam) in the detection sensor k for the beam k (primary electron beam) is defined by the following equation (1).
  • G (m, k) I (m, k) / I (k, k)
  • gain values G (1,1) to G (N, N) can be obtained as shown in FIG. Then, a gain matrix having such gain values G (1,1) to G (N, N) as elements can be created. It should be noted that the gain values G (1,1), G (2,2), ..., G (N, N) having the same beam number and detection sensor number are any of them, as is clear from the equation (1). Is also 1, so the calculation may be omitted.
  • FIG. 10 is a diagram showing an example of the configuration of each gain value in the first embodiment.
  • the secondary electron intensities I (1,1) to I (N, N) are the secondary electron intensities i (1,1) to i (n, n) of each pixel, respectively.
  • the map is composed of elements, as shown in FIG. 10, the gain values g (1,1) to g (1) to g (for each gain value G (1,1) to G (N, N)) of each pixel are also formed. It is composed of maps having n, n) as elements. In other words, the gain value may differ from pixel to pixel.
  • the information of the created gain matrix G is stored in the storage device 109.
  • FIG. 11 is a diagram showing the relational expressions of the secondary electron image P'including the crosstalk image component, the gain matrix G, and the secondary electron image P not including the crosstalk image component according to the first embodiment. ..
  • the relationship between the secondary electron image P'containing the crosstalk image component, the gain matrix G, and the secondary electron image P not including the crosstalk image component is defined by the following determinant (2). can.
  • P' GP
  • the crosstalk image is taken from the secondary electron image P'containing the crosstalk image component as shown in the following equation (3).
  • a secondary electron image P that does not contain a component can be obtained.
  • the inverse matrix calculation circuit 134 (inverse matrix calculation unit) provides gain information for each sensor of the plurality of sensors and for each primary electron beam of the multi-primary electron beam. From the gain matrix G shown in FIG. 9 having the above as an element, the gain inverse matrix G -1 (gain information), which is the inverse matrix of the gain matrix G, is calculated.
  • the method of inverse matrix operation a conventional method may be used.
  • FIG. 12 is a diagram showing an example of the gain inverse matrix G- 1 in the first embodiment.
  • the matrix G- 1 can be obtained.
  • the gain information of the calculated gain inverse matrix G- 1 is stored in the memory 118 or the storage device 109.
  • the substrate 101 to be inspected is placed on the stage 105, and the actual inspection process is performed.
  • the image acquisition mechanism 150 (secondary electronic image acquisition mechanism) irradiates the substrate 101 on which a plurality of graphic patterns are formed with the multi-primary electron beam 20 to perform multi-primary.
  • the multi-secondary electron beam 300 emitted due to the electron beam 20 irradiating the substrate 101 is detected, and a secondary electron image including a crosstalk component for each sub-irradiation region 29 is acquired.
  • backscattered electrons and secondary electrons may be projected onto the multi-detector 222, or the backscattered electrons may be diverged in the middle and the remaining secondary electrons may be projected.
  • the multi-primary electron beam 20 is irradiated, and the multi-secondary electron beam 300 containing backscattered electrons emitted from the substrate 101 due to the irradiation of the multi-primary electron beam 20 is used. It is detected by the multi-detector 222.
  • the secondary electron detection data (measured image data: secondary electron image data: inspected image data) for each pixel in each sub-irradiation region 29 detected by the multi-detector 222 is output to the detection circuit 106 in the order of measurement. NS.
  • analog detection data is converted into digital data by an A / D converter (not shown) and stored in the chip pattern memory 123.
  • the obtained measurement image data is transferred to the correction circuit 132 together with the information indicating each position from the position circuit 107.
  • the secondary electron image data for each pixel obtained here still contains the crosstalk image component.
  • the correction circuit 132 uses the gain information (gain inverse matrix G- 1 ) stored in the memory 118 and the storage device 109 in advance in the inverse matrix calculation step (S108).
  • a corrected secondary electronic image in which the crosstalk component is removed from the secondary electronic image is generated.
  • the correction circuit 132 multiplies the acquired secondary electron image including the crosstalk image component for each sub-irradiation region 29 by the gain inverse matrix G- 1 read from the memory 118 or the storage device 109.
  • a corrected secondary electron image for each sub-irradiation region 29 from which the crosstalk component is removed is generated.
  • FIG. 13 shows the relational expressions of the secondary electron image P'including the crosstalk image component, the gain inverse matrix G- 1 , and the secondary electron image P from which the crosstalk image component is removed according to the first embodiment. It is a figure.
  • the corrected secondary electron image P from which the crosstalk image component has been removed is obtained from the gain inverse matrix G -1 and the secondary electron image P'containing the crosstalk image component according to the equation (3). Can be sought.
  • the image data of the corrected secondary electron image P is transferred to the comparison circuit 108 together with the information indicating each position from the position circuit 107.
  • the reference image creation circuit 112 creates a reference image corresponding to the mask die image based on the design data that is the source of the plurality of graphic patterns formed on the substrate 101. Specifically, it operates as follows. First, the design pattern data is read from the storage device 109 through the control computer 110, and each graphic pattern defined in the read design pattern data is converted into binary or multi-valued image data.
  • the figure defined in the design pattern data is, for example, a basic figure of a rectangle or a triangle.
  • Graphical data that defines the shape, size, position, etc. of each pattern graphic is stored with information such as a graphic code that serves as an identifier that distinguishes the graphic types of.
  • the design pattern data to be the graphic data is input to the reference image creation circuit 112, it is expanded to the data for each graphic, and the graphic code, the graphic dimension, etc. indicating the graphic shape of the graphic data are interpreted. Then, it is developed into binary or multi-valued design pattern image data as a pattern arranged in a grid having a grid of predetermined quantization dimensions as a unit and output.
  • the design data is read, the inspection area is virtually divided into squares with a predetermined dimension as a unit, the occupancy rate of the figure in the design pattern is calculated for each square, and the n-bit occupancy rate data is obtained. Output. For example, it is preferable to set one square as one pixel.
  • the occupancy rate of the pixel allocated the small area region amount corresponding 1/256 of figures are arranged in a pixel Calculate. Then, it becomes 8-bit occupancy rate data.
  • Such squares may be matched with the pixels of the measurement data.
  • the reference image creation circuit 112 filters the design image data of the design pattern, which is the image data of the figure, by using a predetermined filter function. Thereby, the design image data in which the image intensity (shade value) is the image data on the design side of the digital value can be matched with the image generation characteristics obtained by the irradiation of the multi-primary electron beam 20.
  • the image data for each pixel of the created reference image is output to the comparison circuit 108.
  • FIG. 14 is a configuration diagram showing an example of the configuration in the comparison circuit according to the first embodiment.
  • storage devices 52 and 56 such as a magnetic disk device, an alignment unit 57, and a comparison unit 58 are arranged in the comparison circuit 108.
  • Each "-unit" such as the alignment unit 57 and the comparison unit 58 includes a processing circuit, and the processing circuit includes an electric circuit, a computer, a processor, a circuit board, a quantum circuit, a semiconductor device, or the like. Further, a common processing circuit (same processing circuit) may be used for each "-part". Alternatively, different processing circuits (separate processing circuits) may be used.
  • the necessary input data or the calculated result in the alignment unit 57 and the comparison unit 58 is stored in a memory (not shown) or a memory 118 each time.
  • the sub-irradiation region 29 acquired by the scanning operation of one primary electron beam 10i is further divided into a plurality of mask die regions, and the mask die region is used as a unit region of the image to be inspected. It is preferable that the mask die regions are configured so that the margin regions overlap each other so that the image is not omitted.
  • the transferred corrected secondary electronic image data is temporarily stored in the storage device 56 as a mask die image (image to be inspected) for each mask die area.
  • the transferred reference image data is temporarily stored in the storage device 52 as a reference image for each mask die area.
  • the alignment unit 57 reads out a mask die image to be an image to be inspected and a reference image corresponding to the mask die image, and aligns both images in sub-pixel units smaller than pixels.
  • the alignment may be performed by the method of least squares.
  • the comparison unit 58 compares the mask die image (corrected secondary electronic image) with the reference image (an example of a predetermined image). In other words, the comparison unit 58 compares the reference image data with the corrected secondary electronic image data from which the crosstalk image component has been removed, pixel by pixel. The comparison unit 58 compares the two for each pixel according to a predetermined determination condition, and determines the presence or absence of a defect such as a shape defect. For example, if the difference in gradation value for each pixel is larger than the determination threshold value Th, it is determined to be a defect. Then, the comparison result is output. The comparison result may be output to the storage device 109, the monitor 117, or the memory 118, or may be output from the printer 119.
  • the alignment unit 57 reads out the mask die image of the die 1 (corrected inspected image) and the mask die image of the die 2 in which the same pattern is formed (corrected inspected image) from the pixels. Align both images in small sub-pixel units. For example, the alignment may be performed by the method of least squares.
  • the comparison unit 58 compares the mask die image of the die 1 (corrected inspected image) with the mask die image of the die 2 (corrected inspected image).
  • the comparison unit 58 compares the two for each pixel according to a predetermined determination condition, and determines the presence or absence of a defect such as a shape defect. For example, if the difference in gradation value for each pixel is larger than the determination threshold value Th, it is determined to be a defect. Then, the comparison result is output.
  • the comparison result is output to the storage device 109, the monitor 117, or the memory 118.
  • the series of "-circuits” includes a processing circuit, and the processing circuit includes an electric circuit, a computer, a processor, a circuit board, a quantum circuit, a semiconductor device, and the like. Further, a common processing circuit (same processing circuit) may be used for each "-circuit". Alternatively, different processing circuits (separate processing circuits) may be used.
  • the program for executing the processor or the like may be recorded on a recording medium such as a magnetic disk device, a magnetic tape device, an FD, or a ROM (read-only memory).
  • position circuit 107 comparison circuit 108, reference image creation circuit 112, stage control circuit 114, lens control circuit 124, blanking control circuit 126, deflection control circuit 128, secondary electron intensity measurement circuit 129, gain calculation circuit 130,
  • the correction circuit 132 and the inverse matrix calculation circuit 134 may be composed of at least one processing circuit described above.
  • a multi-primary electron beam 20 is formed by a molded aperture array substrate 203 from one beam emitted from an electron gun 201 as one irradiation source, but the present invention is limited to this. is not it.
  • the multi-primary electron beam 20 may be formed by irradiating the primary electron beams from a plurality of irradiation sources.
  • multi-electron beam inspection equipment and multi-electron beam inspection method.
  • it can be used as an inspection device that inspects using a secondary electron image of a pattern emitted by irradiating a multi-beam with an electron beam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明の一態様のマルチ電子ビーム検査装置(100)は、パターンが形成された試料(101)にマルチ1次電子ビーム(20)を照射して、マルチ1次電子ビームが前記試料に照射されたことに起因して放出されるマルチ2次電子ビーム(300)を検出し、クロストーク成分が含まれた2次電子画像を取得する2次電子画像取得機構(150)と、2次電子画像からクロストーク成分を除去するための予め設定されたゲイン情報を用いて、2次電子画像から前記クロストーク成分を除去した補正2次電子画像を生成する補正回路(132)と、補正2次電子画像と所定の画像(123)とを比較する比較回路(108)と、を備えたことを特徴とする。

Description

マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
 本出願は、2020年4月6日に日本国に出願されたJP2020-068595(出願番号)を基礎出願とする優先権を主張する出願である。JP2020-068595に記載された内容は、本出願にインコーポレートされる。
 本発明は、マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法に関する。例えば、電子線によるマルチビームを照射して放出されるパターンの2次電子画像を用いて検査する検査装置に関する。
 近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、1ギガビット級のDRAM(ランダムアクセスメモリ)に代表されるように、LSIを構成するパターンは、サブミクロンからナノメータのオーダーになっている。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。よって、半導体ウェハ上に転写された超微細パターンの欠陥を検査するパターン検査装置の高精度化が必要とされている。その他、歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
 検査手法としては、半導体ウェハやリソグラフィマスク等の基板上に形成されているパターンを撮像した測定画像と、設計データ、あるいは基板上の同一パターンを撮像した測定画像と比較することにより検査を行う方法が知られている。例えば、パターン検査方法として、同一基板上の異なる場所の同一パターンを撮像した測定画像データ同士を比較する「die to die(ダイ-ダイ)検査」や、パターン設計された設計データをベースに設計画像データ(参照画像)を生成して、これとパターンを撮像した測定データとなる測定画像とを比較する「die to database(ダイ-データベース)検査」がある。撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
 上述したパターン検査装置には、レーザ光を検査対象基板に照射して、この透過像或いは反射像を撮像する装置の他、検査対象基板上を1次電子ビームで走査(スキャン)して、1次電子ビームの照射に伴い検査対象基板から放出される2次電子を検出して、パターン像を取得する検査装置の開発も進んでいる。電子ビームを用いた検査装置では、さらに、マルチ電子ビームを用いた装置の開発も進んでいる。マルチ電子ビームを用いた検査装置では、マルチ1次電子ビームの各ビームの照射に起因する2次電子を検出するセンサを配置して、ビーム毎の画像を取得する。しかしながら、マルチ1次電子ビームを同時に照射するために、ビーム毎のセンサに他のビームの2次電子が混入する、いわゆるクロストークが発生してしまうといった問題があった。クロストークはノイズ要因となり、測定画像の画像精度を劣化させてしまい、ひいては検査精度を劣化させてしまう。クロストークを回避するためには、試料面上での1次電子ビームの電子エネルギーを小さくする等が必要となるが、これにより発生する2次電子数が減少してしまう。このため、所望の画像精度に必要な2次電子数を得るために照射時間を長くすることが必要となりスループットが劣化してしまう。
 ここで、複数の2次電子ビーム間のクロストークを無くすために1次電子ビーム間の間隔を2次光学系の収差よりも大きくするといった手法が開示されている(例えば、特許文献1参照)。
特開2002-260571号公報
 そこで、本発明の一態様は、ビーム毎のセンサに他のビームの2次電子が混入する、いわゆるクロストークが発生する場合でも高精度に検査可能な検査装置および方法を提供する。
 本発明の一態様のマルチ電子ビーム検査装置は、
 パターンが形成された試料にマルチ1次電子ビームを照射して、マルチ1次電子ビームが前記試料に照射されたことに起因して放出されるマルチ2次電子ビームを検出し、クロストーク成分が含まれた2次電子画像を取得する2次電子画像取得機構と、
 2次電子画像からクロストーク成分を除去するための予め設定されたゲイン情報を用いて、2次電子画像から前記クロストーク成分を除去した補正2次電子画像を生成する補正回路と、
 補正2次電子画像と所定の画像とを比較する比較回路と、
 を備えたことを特徴とする。
 本発明の一態様のマルチ電子ビーム検査方法は、
 パターンが形成された試料にマルチ1次電子ビームを照射して、マルチ1次電子ビームが試料に照射されたことに起因して放出されるマルチ2次電子ビームを検出し、クロストーク成分が含まれた2次電子画像を取得し、
 2次電子画像からクロストーク成分を除去するための予め設定されたゲイン情報を用いて、2次電子画像からクロストーク成分を除去した補正2次電子画像を生成し、
 前記補正2次電子画像と所定の画像とを比較し、結果を出力する、
 ことを特徴とする。
 本発明の一態様によれば、ビーム毎のセンサに他のビームの2次電子が混入する、いわゆるクロストークが発生する場合でも高精度に検査ができる。
実施の形態1におけるパターン検査装置の構成の一例を示す構成図である。 実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。 実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。 実施の形態1におけるマルチビームのスキャン動作を説明するための図である。 実施の形態1における1次電子ビーム1本あたりの2次電子ビームの広がりの一例を示す図である。 実施の形態1における検査方法の要部工程を示すフローチャート図である。 実施の形態1におけるサブ照射領域の走査と、測定される2次電子強度を説明するための図である。 実施の形態1における2次電子強度マップの一例を示す図である。 実施の形態1におけるゲイン行列の一例を示す図である。 実施の形態1における各ゲイン値の構成の一例を示す図である。 実施の形態1におけるクロストーク像成分が含まれた2次電子画像P’、ゲイン行列G、及びクロストーク像成分が含まれない2次電子画像Pの関係式を示す図である。 実施の形態1におけるゲイン逆行列の一例を示す図である。 実施の形態1におけるクロストーク像成分が含まれた2次電子画像P’、ゲイン逆行列G-1、及びクロストーク像成分が除去された2次電子画像Pの関係式を示す図である。 実施の形態1における比較回路内の構成の一例を示す構成図である。
[実施の形態1]
 図1は、実施の形態1におけるパターン検査装置の構成の一例を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、マルチ電子ビーム検査装置の一例である。検査装置100は、画像取得機構150(2次電子画像取得機構)、及び制御系回路160を備えている。画像取得機構150は、電子ビームカラム102(電子鏡筒)及び検査室103を備えている。電子ビームカラム102内には、電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、ビーム選択アパーチャ基板219、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、副偏向器209、ビームセパレーター214、偏向器218、電磁レンズ224、電磁レンズ226、及びマルチ検出器222が配置されている。図1の例において、電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、ビーム選択アパーチャ基板219、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、及び副偏向器209は、マルチ1次電子ビームを基板101に照射する1次電子光学系を構成する。ビームセパレーター214、偏向器218、電磁レンズ224、及び電磁レンズ226は、マルチ2次電子ビームをマルチ検出器222に照射する2次電子光学系を構成する。
 検査室103内には、少なくともXYZ方向に移動可能なステージ105が配置される。ステージ105上には、検査対象となる基板101(試料)が配置される。基板101には、露光用マスク基板、及びシリコンウェハ等の半導体基板が含まれる。基板101が半導体基板である場合、半導体基板には複数のチップパターン(ウェハダイ)が形成されている。基板101が露光用マスク基板である場合、露光用マスク基板には、チップパターンが形成されている。チップパターンは、複数の図形パターンによって構成される。かかる露光用マスク基板に形成されたチップパターンが半導体基板上に複数回露光転写されることで、半導体基板には複数のチップパターン(ウェハダイ)が形成されることになる。以下、基板101が半導体基板である場合を主として説明する。基板101は、例えば、パターン形成面を上側に向けてステージ105に配置される。また、ステージ105上には、検査室103の外部に配置されたレーザ測長システム122から照射されるレーザ測長用のレーザ光を反射するミラー216が配置されている。マルチ検出器222は、電子ビームカラム102の外部で検出回路106に接続される。
 制御系回路160では、検査装置100全体を制御する制御計算機110が、バス120を介して、位置回路107、比較回路108、参照画像作成回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、2次電子強度測定回路129、ゲイン演算回路130、補正回路132、逆行列演算回路134、磁気ディスク装置等の記憶装置109、モニタ117、メモリ118、及びプリンタ119に接続されている。また、偏向制御回路128は、DAC(デジタルアナログ変換)アンプ144,146,148に接続される。DACアンプ146は、主偏向器208に接続され、DACアンプ144は、副偏向器209に接続される。DACアンプ148は、偏向器218に接続される。
 また、検出回路106は、チップパターンメモリ123及び2次電子強度測定回路129に接続される。チップパターンメモリ123は、比較回路108に接続されている。また、ステージ105は、ステージ制御回路114の制御の下に駆動機構142により駆動される。駆動機構142では、例えば、ステージ座標系におけるX方向、Y方向、θ方向に駆動する3軸(X-Y-θ)モータの様な駆動系が構成され、XYθ方向にステージ105が移動可能となっている。これらの、図示しないXモータ、Yモータ、θモータは、例えばステップモータを用いることができる。ステージ105は、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。さらに、駆動機構142では、例えば、ピエゾ素子等を用いて、Z方向(高さ方向)にステージ105を移動可能に制御している。そして、ステージ105の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。レーザ測長システム122は、ミラー216からの反射光を受光することによって、レーザ干渉法の原理でステージ105の位置を測長する。ステージ座標系は、例えば、マルチ1次電子ビームの光軸(電子軌道中心軸)に直交する面に対して、X方向、Y方向、θ方向が設定される。
 電磁レンズ202、電磁レンズ205、電磁レンズ206、電磁レンズ207(対物レンズ)、電磁レンズ224、電磁レンズ226、及びビームセパレーター214は、レンズ制御回路124により制御される。また、一括ブランキング偏向器212は、2極以上の電極により構成され、電極毎に図示しないDACアンプを介してブランキング制御回路126により制御される。副偏向器209は、4極以上の電極により構成され、電極毎にDACアンプ144を介して偏向制御回路128により制御される。主偏向器208は、4極以上の電極により構成され、電極毎にDACアンプ146を介して偏向制御回路128により制御される。偏向器218は、4極以上の電極により構成され、電極毎にDACアンプ148を介して偏向制御回路128により制御される。
 また、ビーム選択アパーチャ基板219は、例えば、中心部にビーム1本分が通過可能な通過孔が形成され、図示しない駆動機構によりマルチ1次電子ビームの軌道中心軸(光軸)に直交する方向(2次元方向)に移動可能に構成される。
 電子銃201には、図示しない高圧電源回路が接続され、電子銃201内の図示しないフィラメント(カソード)と引出電極(アノード)間への高圧電源回路からの加速電圧の印加と共に、別の引出電極(ウェネルト)の電圧の印加と所定の温度のカソードの加熱によって、カソードから放出された電子群が加速させられ、電子ビーム200となって放出される。
 ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。検査装置100にとって、通常、必要なその他の構成を備えていても構わない。
 図2は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図2において、成形アパーチャアレイ基板203には、2次元状の横(x方向)m列×縦(y方向)n段(m,nは、一方が2以上の整数、他方が1以上の整数)の穴(開口部)22がx,y方向に所定の配列ピッチで形成されている。図2の例では、23×23の穴(開口部)22が形成されている場合を示している。各穴22は、理想的には共に同じ寸法形状の矩形で形成される。或いは、理想的には同じ外径の円形であっても構わない。これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、m×n本(=N本)のマルチ1次電子ビーム20が形成されることになる。
 次に、検査装置100における画像取得機構150の動作について説明する。
 電子銃201(放出源)から放出された電子ビーム200は、電磁レンズ202によって屈折させられ、成形アパーチャアレイ基板203全体を照明する。成形アパーチャアレイ基板203には、図2に示すように、複数の穴22(開口部)が形成され、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の穴22をそれぞれ通過することによって、マルチ1次電子ビーム20が形成される。通常の画像取得時において、ビーム選択アパーチャ基板219は、マルチ1次電子ビーム20に干渉しない位置に退避している。
 形成されたマルチ1次電子ビーム20は、電磁レンズ205、及び電磁レンズ206によってそれぞれ屈折させられ、中間像およびクロスオーバーを繰り返しながら、マルチ1次電子ビーム20の各ビームのクロスオーバー位置に配置されたビームセパレーター214を通過して電磁レンズ207(対物レンズ)に進む。そして、電磁レンズ207は、マルチ1次電子ビーム20を基板101にフォーカス(合焦)する。電磁レンズ207(対物レンズ)により基板101(試料)面上に焦点が合わされた(合焦された)マルチ1次電子ビーム20は、主偏向器208及び副偏向器209によって一括して偏向され、各ビームの基板101上のそれぞれの照射位置に照射される。なお、一括ブランキング偏向器212によって、マルチ1次電子ビーム20全体が一括して偏向された場合には、制限アパーチャ基板213の中心の穴から位置が外れ、制限アパーチャ基板213によって遮蔽される。一方、一括ブランキング偏向器212によって偏向されなかったマルチ1次電子ビーム20は、図1に示すように制限アパーチャ基板213の中心の穴を通過する。かかる一括ブランキング偏向器212のON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが一括制御される。このように、制限アパーチャ基板213は、一括ブランキング偏向器212によってビームOFFの状態になるように偏向されたマルチ1次電子ビーム20を遮蔽する。そして、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板213を通過したビーム群により、検査用(画像取得用)のマルチ1次電子ビーム20が形成される。
 基板101の所望する位置にマルチ1次電子ビーム20が照射されると、かかるマルチ1次電子ビーム20が照射されたことに起因して基板101からマルチ1次電子ビーム20の各ビームに対応する、反射電子を含む2次電子の束(マルチ2次電子ビーム300)が放出される。
 基板101から放出されたマルチ2次電子ビーム300は、電磁レンズ207を通って、ビームセパレーター214に進む。
 ここで、ビームセパレーター214はマルチ1次電子ビーム20の中心ビームが進む方向(電子軌道中心軸)に直交する面上において電界と磁界を直交する方向に発生させる。電界は電子の進行方向に関わりなく同じ方向に力を及ぼす。これに対して、磁界はフレミング左手の法則に従って力を及ぼす。このため電子の侵入方向によって電子に作用する力の向きを変化させることができる。ビームセパレーター214に上側から侵入してくるマルチ1次電子ビーム20には、電界による力と磁界による力が打ち消し合い、マルチ1次電子ビーム20は下方に直進する。これに対して、ビームセパレーター214に下側から侵入してくるマルチ2次電子ビーム300には、電界による力と磁界による力がどちらも同じ方向に働き、マルチ2次電子ビーム300は斜め上方に曲げられ、マルチ1次電子ビーム20から分離する。
 斜め上方に曲げられ、マルチ1次電子ビーム20から分離したマルチ2次電子ビーム300は、偏向器218によって、さらに曲げられ、電磁レンズ224,226によって、屈折させられながらマルチ検出器222に投影される。マルチ検出器222は、投影されたマルチ2次電子ビーム300を検出する。マルチ検出器222には、反射電子及び2次電子が投影されても良いし、反射電子は途中で発散してしまい残った2次電子が投影されても良い。マルチ検出器222は、後述する2次元センサを有する。そして、マルチ2次電子ビーム300の各2次電子が2次元センサのそれぞれ対応する領域に衝突して、電子を発生し、2次電子画像データを画素毎に生成する。言い換えれば、マルチ検出器222には、マルチ1次電子ビーム20の1次電子ビーム10i(iは、インデックスを示す。23×23本のマルチ1次電子ビーム20であれば、i=1~529)毎に、検出センサが配置される。そして、各1次電子ビーム10iの照射によって放出された対応する2次電子ビームを検出する。よって、マルチ検出器222の複数の検出センサの各検出センサは、それぞれ担当する1次電子ビーム10iの照射に起因する画像用の2次電子ビームの強度信号を検出することになる。マルチ検出器222にて検出された強度信号は、検出回路106に出力される。
 図3は、実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。図3において、基板101が半導体基板(ウェハ)である場合、半導体基板(ウェハ)の検査領域330には、複数のチップ(ウェハダイ)332が2次元のアレイ状に形成されている。各チップ332には、露光用マスク基板に形成された1チップ分のマスクパターンが図示しない露光装置(ステッパ)によって例えば1/4に縮小されて転写されている。各チップ332の領域は、例えばy方向に向かって所定の幅で複数のストライプ領域32に分割される。画像取得機構150によるスキャン動作は、例えば、ストライプ領域32毎に実施される。例えば、-x方向にステージ105を移動させながら、相対的にx方向にストライプ領域32のスキャン動作を進めていく。各ストライプ領域32は、長手方向に向かって複数のフレーム領域33に分割される。対象となるフレーム領域33へのビームの移動は、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって行われる。
 図4は、実施の形態1におけるマルチビームのスキャン動作を説明するための図である。図4の例では、5×5列のマルチ1次電子ビーム20の場合を示している。1回のマルチ1次電子ビーム20の照射で照射可能な照射領域34は、(基板101面上におけるマルチ1次電子ビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じたx方向サイズ)×(基板101面上におけるマルチ1次電子ビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じたy方向サイズ)で定義される。各ストライプ領域32の幅は、照射領域34のy方向サイズと同様、或いはスキャンマージン分狭くしたサイズに設定すると好適である。図3及び図4の例では、照射領域34がフレーム領域33と同じサイズの場合を示している。但し、これに限るものではない。照射領域34がフレーム領域33よりも小さくても良い。或いは大きくても構わない。そして、マルチ1次電子ビーム20の各ビームは、自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。マルチ1次電子ビーム20を構成する各1次電子ビーム10は、互いに異なるいずれかのサブ照射領域29を担当することになる。そして、各ショット時に、各1次電子ビーム10は、担当サブ照射領域29内の同じ位置を照射することになる。サブ照射領域29内の1次電子ビーム10の移動は、副偏向器209によるマルチ1次電子ビーム20全体での一括偏向によって行われる。かかる動作を繰り返し、1つの1次電子ビーム10で1つのサブ照射領域29内を順に照射していく。そして、1つのサブ照射領域29のスキャンが終了したら、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が同じストライプ領域32内の隣接するフレーム領域33へと移動する。かかる動作を繰り返し、ストライプ領域32内を順に照射していく。1つのストライプ領域32のスキャンが終了したら、ステージ105の移動或いは/及び主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が次のストライプ領域32へと移動する。以上のように各1次電子ビーム10iの照射によってサブ照射領域29毎の2次電子画像が取得される。これらのサブ照射領域29毎の2次電子画像を組み合わせることで、フレーム領域33の2次電子画像、ストライプ領域32の2次電子画像、或いはチップ332の2次電子画像が構成される。
 なお、例えばx方向に並ぶ複数のチップ332を同じグループとして、グループ毎に例えばy方向に向かって所定の幅で複数のストライプ領域32に分割されるようにしても好適である。そして、ストライプ領域32間の移動は、チップ332毎に限るものではなく、グループ毎に行っても好適である。
 ここで、ステージ105が連続移動しながらマルチ1次電子ビーム20を基板101に照射する場合、マルチ1次電子ビーム20の照射位置がステージ105の移動に追従するように主偏向器208によって一括偏向によるトラッキング動作が行われる。このため、マルチ2次電子ビーム300の放出位置がマルチ1次電子ビーム20の軌道中心軸に対して刻々と変化する。同様に、サブ照射領域29内をスキャンする場合に、各2次電子ビームの放出位置は、サブ照射領域29内で刻々と変化する。このように放出位置が変化した各2次電子ビームをマルチ検出器222の対応する検出領域内に照射させるように、偏向器218は、マルチ2次電子ビーム300を一括偏向する。
 図5は、実施の形態1における1次電子ビーム1本あたりの2次電子ビームの広がりの一例を示す図である。図5の例では、5×5列のマルチ1次電子ビーム20の場合を示している。マルチ検出器222には、マルチ1次電子ビーム20の数に応じた複数の検出センサ223が2次元状に配置される。複数の検出センサ223は、マルチ1次電子ビーム20が基板101に照射されたことに起因して放出されるマルチ2次電子ビーム300のうち、それぞれ予め設定された1次電子ビーム10が基板101に照射されたことに起因して放出される2次電子ビーム12を検出するためのセンサである。しかしながら、検査装置100を用いた検査処理に所望のスループットを得るためには、スループットに応じた電子エネルギーで基板101を照射する必要がある。この場合、1次電子ビーム10毎の検出センサ223に他の1次電子ビーム10の2次電子が混入する、いわゆるクロストークが発生してしまうといった問題があった。図5の例では、左から2列目、下から4段目の検出センサ223に入射予定の2次電子ビーム12が周囲の他の検出センサ223に一部の2次電子が混入してしまう状態を示している。当該1次電子ビーム10用に予め設定された検出センサ223に当該1次電子ビーム10の照射に起因する2次電子ビーム12の多くは入射するものの、一部の2次電子は周囲の他のビーム用の検出センサ223に入射する。マルチ1次電子ビーム20の基板101上での電子エネルギーが大きくなるほど、2次電子の分布は広がってしまう。マルチビームでのスキャン動作では、マルチ1次電子ビーム20を同時に照射するために、ビーム毎の検出センサ223で検出された2次電子データには、他の1次電子ビームの照射に起因する2次電子情報も含まれてしまう。このようなクロストークはノイズ要因となり、測定画像の画像精度を劣化させてしまう。
 一方、測定画像を検査する際に用いる比較対象となる参照画像は、例えば基板101に形成された図形パターンの基となる設計データに基づいて作成される。よって、クロストーク像が含まれた測定画像(被検査画像:2次電子画像)と、設計データに基づいて作成された参照画像とを比較すると、欠陥ではないにも関わらず、画像に違いがあるため欠陥として判定してしまう、いわゆる疑似欠陥が発生し得る。このように、クロストークは、検査精度を劣化させてしまう。クロストークを回避するためには、基板101面上での1次電子ビーム10の電子エネルギーを小さくする等が必要となるが、これにより発生する2次電子数が減少してしまう。そのため、所望の画像精度に必要な2次電子数を得るために照射時間を長くすることが必要となりスループットが劣化してしまう。そこで、実施の形態1では、クロストーク成分のゲイン行列を求め、かかるゲインの逆行列を予め演算しておくことで、スキャン画像を逆行列で補正して、クロストーク成分を除去する。以下、具体的に説明する。
 図6は、実施の形態1における検査方法の要部工程を示すフローチャート図である。図6において、実施の形態1における検査方法は、2次電子強度測定工程(S102)と、ゲイン演算工程(S104)と、逆行列演算工程(S108)と、2次電子画像取得工程(S110)と、画像補正工程(S112)と、参照画像作成工程(S114)と、位置合わせ工程(S120)と、比較工程(S122)と、いう一連の工程を実施する。
 2次電子強度測定工程(S102)として、2次電子強度測定回路129は、マルチ1次電子ビーム20の1次電子ビーム10毎に、マルチ検出器222における各検出センサ223で検出される2次電子強度を測定する。具体的には以下のように動作する。まずは、ビーム選択アパーチャ基板219を移動させて、マルチ1次電子ビーム20のうち、ビーム選択アパーチャ基板219の通過孔を通過する1本の1次電子ビーム10を選択する。他の1次電子ビーム10はビーム選択アパーチャ基板219によって遮蔽される。そして、かかる1本の1次電子ビーム10を使って、評価基板のサブ照射領域29内を走査する。走査の仕方は、上述したように、副偏向器209による偏向によって1次電子ビーム10の照射位置(画素)を順に移動させる。ここでは、同じ1次電子ビームの照射による各検出センサ223で検出される2次電子強度の違いが分かればよいので、例えば、パターンが形成されていない評価基板1に1次電子ビーム10を照射すればよい。このようにパターンが形成されていない評価基板とすることにより、サブ照射領域毎の特性が均一になるという効果が得られる。但し、評価パターンが形成された評価基板2を用いても構わない。
 図7は、実施の形態1におけるサブ照射領域の走査と、測定される2次電子強度を説明するための図である。図7では、例えば、N×N本のマルチ1次電子ビーム20のうち、ビーム1でサブ照射領域29内を走査する場合を示している。サブ照射領域29は、例えば、n×n画素のサイズで構成される。例えば、1000×1000画素で構成される。画素サイズとして、例えば、1次電子ビーム10のビームサイズと同サイズ程度に構成されると好適である。但し、これに限るものではない。画素サイズが1次電子ビーム10のビームサイズよりも小さくても構わない。或いは、画像の解像度が低くなるが、画素サイズが1次電子ビーム10のビームサイズよりも大きくても構わない。ビーム1で各画素を順に照射すると、各画素へのビーム1の照射に起因する2次電子ビームが、マルチ検出器222のビーム1用の検出センサ223で順に検出される。2次電子ビームの分布が図5に示すように対象ビーム用の検出センサ223の領域よりも広がっていれば、同時に、他のビーム用の検出センサ223でも順に検出され得る。マルチ検出器222にて検出された強度信号は、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、2次電子強度測定回路129に出力される。2次電子強度測定回路129は、入力した強度信号を使って、各画素の2次電子強度i(1,1)~i(n,n)を要素とするマップで構成される2次電子強度I(1,1)を測定する。各画素の2次電子強度i(a,b)の(a,b)は各画素の座標を示す。a=1~n、b=1~nのいずれかの値になる。
 図8は、実施の形態1における2次電子強度マップの一例を示す図である。図8において、2次電子強度マップの要素となる2次電子強度I(A,B)のAはビーム番号、Bは検出センサ番号を示す。A=1~N、B=1~Nのいずれかの値になる。ビーム1を用いてビーム1用のサブ照射領域29内を走査することで、2次電子強度I(1,1)~I(1,N)を測定できる。ビーム選択アパーチャ基板219を移動させて、対象の1次電子ビーム10を順に選択することで、例えば、ビーム2を用いて、2次電子強度I(2,1)~I(2,N)を測定でき、ビーム3を用いて、2次電子強度I(3,1)~I(3,N)を測定できる。同様に各1次電子ビーム10を用いて測定することで、2次電子強度測定回路129は、サブ照射領域29単位(1次電子ビーム単位)の2次電子強度I(1,1)~I(N,N)を測定できる。測定された2次電子強度I(1,1)~I(N,N)の情報は、ゲイン演算回路130に出力される。
 ゲイン演算工程(S104)として、ゲイン演算回路130は、検出センサ223毎、かつ1次電子ビーム10毎に、ゲイン値を演算する。具体的には、ゲイン演算回路130は、ゲイン値として、当該1次電子ビーム10の照射に起因する2次電子ビーム12を検出するための検出センサ223で検出される当該1次電子ビーム10の照射に起因する2次電子ビーム12の強度値に対する同じ検出センサ223で検出される別の1次電子ビーム10に起因する2次電子ビーム12の強度値の割合を演算する。
 図9は、実施の形態1におけるゲイン行列の一例を示す図である。図9において、ゲイン行列Gの各要素となるゲイン値G(A,B)のAは、ビーム番号を示す。Bは、検出センサ番号を示す。A=1~N、B=1~Nのいずれかの値になる。ビームk(1次電子ビーム)用の検出センサkでのビームm(1次電子ビーム)のゲイン値G(m,k)は、以下の式(1)で定義される。
(1) G(m,k)=I(m,k)/I(k,k)
 検出センサ223毎、かつ1次電子ビーム10毎に、ゲイン値を演算することで、図9に示すように、ゲイン値G(1,1)~G(N,N)を取得できる。そして、かかるゲイン値G(1,1)~G(N,N)を要素とするゲイン行列を作成できる。なお、ビーム番号と検出センサ番号が同じゲイン値G(1,1),G(2,2),・・・,G(N,N)は、式(1)からも明らかなように、いずれも1になるため、演算を省略しても構わない。
 図10は、実施の形態1における各ゲイン値の構成の一例を示す図である。各2次電子強度I(1,1)~I(N,N)は、図7に示したように、それぞれ各画素の2次電子強度i(1,1)~i(n,n)を要素とするマップで構成されるため、図10に示すように、各ゲイン値G(1,1)~G(N,N)についてもそれぞれ各画素のゲイン値g(1,1)~g(n,n)を要素とするマップで構成される。言い換えれば、画素毎にゲイン値が異なり得る。作成されたゲイン行列Gの情報は、記憶装置109に格納される。
 図11は、実施の形態1におけるクロストーク像成分が含まれた2次電子画像P’、ゲイン行列G、及びクロストーク像成分が含まれない2次電子画像Pの関係式を示す図である。図11において、各1次電子ビーム10のサブ照射領域29毎のクロストーク像成分が含まれた2次電子画像の集合P’=(P1’,P2’,・・・,PN’)は、ゲイン行列Gと、各1次電子ビーム10のサブ照射領域29毎のクロストーク像成分が含まれていない2次電子画像の集合P=(P1,P2,・・・,PN)との積で定義できる。簡単に記載すると、クロストーク像成分が含まれた2次電子画像P’、ゲイン行列G、及びクロストーク像成分が含まれない2次電子画像Pの関係は以下の行列式(2)で定義できる。
(2) P’=G・P
 よって、ゲイン行列Gの逆行列であるゲイン逆行列G-1を求めることで、以下の式(3)に示すように、クロストーク像成分が含まれた2次電子画像P’からクロストーク像成分が含まれない2次電子画像Pを求めることができる。
(3) P=G-1・P’
 逆行列演算工程(S108)として、逆行列演算回路134(逆行列演算部)は、ゲイン情報として、前記複数のセンサのセンサ毎、かつ前記マルチ1次電子ビームの1次電子ビーム毎のゲイン値を要素とする図9に示したゲイン行列Gから、このゲイン行列Gの逆行列であるゲイン逆行列G-1(ゲイン情報)を演算する。逆行列演算の手法は、従来の手法を用いればよい。
 図12は、実施の形態1におけるゲイン逆行列G-1の一例を示す図である。図12において、ゲイン逆行列G-1の各要素となる逆ゲイン値G-1(A,B)のAは、ビーム番号を示す。Bは、検出センサ番号を示す。A=1~N、B=1~Nのいずれかの値になる。かかる演算により、図12に示すように、検出センサ223毎、かつ1次電子ビーム10毎の逆ゲイン値G-1(1,1)~G-1(N,N)を要素とするゲイン逆行列G-1を取得できる。この演算されたゲイン逆行列G-1のゲイン情報は、メモリ118や記憶装置109に記憶される。
 以上の工程を前処理として実施した後、被検査対象の基板101をステージ105上に配置して、実際の検査処理を行う。
 2次電子画像取得工程(S110)として、画像取得機構150(2次電子画像取得機構)は、複数の図形パターンが形成された基板101にマルチ1次電子ビーム20を照射して、マルチ1次電子ビーム20が基板101に照射されたことに起因して放出されるマルチ2次電子ビーム300を検出し、サブ照射領域29毎のクロストーク成分が含まれた2次電子画像を取得する。上述したように、マルチ検出器222には、反射電子及び2次電子が投影されても良いし、反射電子は途中で発散してしまい残った2次電子が投影されても良い。
 画像の取得は、上述したように、マルチ1次電子ビーム20を照射して、マルチ1次電子ビーム20の照射に起因して基板101から放出される反射電子を含むマルチ2次電子ビーム300をマルチ検出器222で検出する。マルチ検出器222によって検出された各サブ照射領域29内の画素毎の2次電子の検出データ(測定画像データ:2次電子画像データ:被検査画像データ)は、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、チップパターンメモリ123に格納される。そして、得られた測定画像データは、位置回路107からの各位置を示す情報と共に、補正回路132に転送される。ここで得られた画素毎の2次電子画像データには、クロストーク像成分が含まれたままであることは言うまでもない。
 画像補正工程(S112)として、補正回路132(補正部)は、予め逆行列演算工程(S108)にてメモリ118や記憶装置109に記憶されたゲイン情報(ゲイン逆行列G-1)を用いて、2次電子画像からクロストーク成分を除去した補正2次電子画像を生成する。具体的には、補正回路132は、取得されたサブ照射領域29毎のクロストーク像成分が含まれた2次電子画像に、メモリ118や記憶装置109から読出したゲイン逆行列G-1を乗じることによりクロストーク成分を除去したサブ照射領域29毎の補正2次電子画像を生成する。
 図13は、実施の形態1におけるクロストーク像成分が含まれた2次電子画像P’、ゲイン逆行列G-1、及びクロストーク像成分が除去された2次電子画像Pの関係式を示す図である。図13において、各1次電子ビーム10のサブ照射領域29毎のクロストーク像成分が除去された2次電子画像の集合P=(P1,P2,・・・,PN)は、ゲイン逆行列G-1と、各1次電子ビーム10のサブ照射領域29毎のクロストーク像成分が含まれた2次電子画像の集合P’=(P1’,P2’,・・・,PN’)との積で定義できる。簡単に記載すると、クロストーク像成分が除去された補正2次電子画像Pは、式(3)に従って、ゲイン逆行列G-1、及びクロストーク像成分が含まれた2次電子画像P’から求めることができる。補正された補正2次電子画像Pの画像データは、位置回路107からの各位置を示す情報と共に、比較回路108に転送される。
 参照画像作成工程(S114)として、参照画像作成回路112は、基板101に形成された複数の図形パターンの元になる設計データに基づいて、マスクダイ画像に対応する参照画像を作成する。具体的には、以下のように動作する。まず、記憶装置109から制御計算機110を通して設計パターンデータを読み出し、この読み出された設計パターンデータに定義された各図形パターンを2値ないしは多値のイメージデータに変換する。
 上述したように、設計パターンデータに定義される図形は、例えば長方形や三角形を基本図形としたもので、例えば、図形の基準位置における座標(x、y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。
 かかる図形データとなる設計パターンデータが参照画像作成回路112に入力されると図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の設計パターン画像データに展開し、出力する。言い換えれば、設計データを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできたマス目毎に設計パターンにおける図形が占める占有率を演算し、nビットの占有率データを出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとなる。かかるマス目(検査画素)は、測定データの画素に合わせればよい。
 次に、参照画像作成回路112は、図形のイメージデータである設計パターンの設計画像データに、所定のフィルタ関数を使ってフィルタ処理を施す。これにより、画像強度(濃淡値)がデジタル値の設計側のイメージデータである設計画像データをマルチ1次電子ビーム20の照射によって得られる像生成特性に合わせることができる。作成された参照画像の画素毎の画像データは比較回路108に出力される。
 図14は、実施の形態1における比較回路内の構成の一例を示す構成図である。図14において、比較回路108内には、磁気ディスク装置等の記憶装置52,56、位置合わせ部57、及び比較部58が配置される。位置合わせ部57、及び比較部58といった各「~部」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~部」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。位置合わせ部57、及び比較部58内に必要な入力データ或いは演算された結果はその都度図示しないメモリ、或いはメモリ118に記憶される。
 実施の形態1では、1つの1次電子ビーム10iのスキャン動作によって取得されるサブ照射領域29をさらに複数のマスクダイ領域に分割して、マスクダイ領域を被検査画像の単位領域として使用する。なお、各マスクダイ領域は、画像の抜けが無いように、互いにマージン領域が重なり合うように構成されると好適である。
 比較回路108内では、転送された補正2次電子画像データが、マスクダイ領域毎のマスクダイ画像(被検査画像)として記憶装置56に一時的に格納される。同様に転送された参照画像データが、マスクダイ領域毎の参照画像として記憶装置52に一時的に格納される。
 位置合わせ工程(S120)として、位置合わせ部57は、被検査画像となるマスクダイ画像と、当該マスクダイ画像に対応する参照画像とを読み出し、画素より小さいサブ画素単位で、両画像を位置合わせする。例えば、最小2乗法で位置合わせを行えばよい。
 比較工程(S122)として、比較部58は、マスクダイ画像(補正2次電子画像)と参照画像(所定の画像の一例)とを比較する。言い換えれば、比較部58は、参照画像データと、クロストーク像成分が除去された補正2次電子画像データと、画素毎に比較する。比較部58は、所定の判定条件に従って画素毎に両者を比較し、例えば形状欠陥といった欠陥の有無を判定する。例えば、画素毎の階調値差が判定閾値Thよりも大きければ欠陥と判定する。そして、比較結果が出力される。比較結果は、記憶装置109、モニタ117、若しくはメモリ118に出力される、或いはプリンタ119より出力されればよい。
 上述した例では、ダイ-データベース検査を行う場合を説明したが、これに限るものではない。被検査画像は、クロストーク像成分が除去されているので、ダイ-ダイ検査を行う場合であっても構わない。ダイ-ダイ検査を行う場合について説明する。
 位置合わせ工程(S120)として、位置合わせ部57は、ダイ1のマスクダイ画像(補正被検査画像)と、同じパターンが形成されたダイ2のマスクダイ画像(補正被検査画像)とを読み出し、画素より小さいサブ画素単位で、両画像を位置合わせする。例えば、最小2乗法で位置合わせを行えばよい。
 比較工程(S122)として、比較部58は、ダイ1のマスクダイ画像(補正被検査画像)と、ダイ2のマスクダイ画像(補正被検査画像)とを比較する。比較部58は、所定の判定条件に従って画素毎に両者を比較し、例えば形状欠陥といった欠陥の有無を判定する。例えば、画素毎の階調値差が判定閾値Thよりも大きければ欠陥と判定する。そして、比較結果が出力される。比較結果は、記憶装置109、モニタ117、若しくはメモリ118に出力される。
 以上のように、実施の形態1によれば、ビーム毎のセンサに他のビームの2次電子が混入する、いわゆるクロストークが発生する場合でも高精度に検査ができる。
 以上の説明において、一連の「~回路」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置、磁気テープ装置、FD、或いはROM(リードオンリメモリ)等の記録媒体に記録されればよい。例えば、位置回路107、比較回路108、参照画像作成回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、2次電子強度測定回路129、ゲイン演算回路130、補正回路132、及び逆行列演算回路134は、上述した少なくとも1つの処理回路で構成されても良い。
 以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。図1の例では、1つの照射源となる電子銃201から照射された1本のビームから成形アパーチャアレイ基板203によりマルチ1次電子ビーム20を形成する場合を示しているが、これに限るものではない。複数の照射源からそれぞれ1次電子ビームを照射することによってマルチ1次電子ビーム20を形成する態様であっても構わない。
 また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
 その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのマルチ電子ビーム検査装置及びマルチ電子ビーム検査方法は、本発明の範囲に包含される。
 マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法に関する。例えば、電子線によるマルチビームを照射して放出されるパターンの2次電子画像を用いて検査する検査装置に利用できる。
10 1次電子ビーム
12 2次電子ビーム
20 マルチ1次電子ビーム
22 穴
29 サブ照射領域
32 ストライプ領域
33 フレーム領域
34 照射領域
52,56 記憶装置
57 位置合わせ部
58 比較部
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
105 ステージ
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
112 参照画像作成回路
114 ステージ制御回路
117 モニタ
118 メモリ
119 プリンタ
120 バス
122 レーザ測長システム
123 チップパターンメモリ
124 レンズ制御回路
126 ブランキング制御回路
128 偏向制御回路
129 2次電子強度測定回路
130 ゲイン演算回路
132 補正回路
134 逆行列演算回路
142 駆動機構
144,146,148 DACアンプ
150 画像取得機構
160 制御系回路
200 電子ビーム
201 電子銃
202 電磁レンズ
203 成形アパーチャアレイ基板
205,206,207,224,226 電磁レンズ
208 主偏向器
209 副偏向器
212 一括ブランキング偏向器
213 制限アパーチャ基板
214 ビームセパレーター
216 ミラー
218 偏向器
219 ビーム選択アパーチャ基板
222 マルチ検出器
223 検出センサ
300 マルチ2次電子ビーム
330 検査領域
332 チップ

Claims (10)

  1.  パターンが形成された試料にマルチ1次電子ビームを照射して、前記マルチ1次電子ビームが前記試料に照射されたことに起因して放出されるマルチ2次電子ビームを検出し、クロストーク成分が含まれた2次電子画像を取得する2次電子画像取得機構と、
     前記2次電子画像から前記クロストーク成分を除去するための予め設定されたゲイン情報を用いて、前記2次電子画像から前記クロストーク成分を除去した補正2次電子画像を生成する補正回路と、
     前記補正2次電子画像と所定の画像とを比較する比較回路と、
     を備えたことを特徴とするマルチ電子ビーム検査装置。
  2.  前記2次電子画像取得機構は、前記マルチ1次電子ビームが前記試料に照射されたことに起因して放出されるマルチ2次電子ビームのうち、それぞれ予め設定された1次電子ビームが前記試料に照射されたことに起因して放出される2次電子ビームを検出するための複数のセンサを配置したマルチ検出器を有し、
     前記複数のセンサのセンサ毎、かつ前記マルチ1次電子ビームの1次電子ビーム毎に、当該1次電子ビームの照射に起因する2次電子ビームを検出するための前記センサで検出される当該1次電子ビームの照射に起因する2次電子ビームの強度値に対する同じセンサで検出される別の1次電子ビームに起因する2次電子ビームの強度値の割合をゲイン値として演算するゲイン演算回路をさらに備えたことを特徴とする請求項1記載のマルチ電子ビーム検査装置。
  3.  前記ゲイン情報として、前記複数のセンサのセンサ毎、かつ前記マルチ1次電子ビームの1次電子ビーム毎のゲイン値を要素とするゲイン行列の逆行列を演算する逆行列演算回路をさらに備え、
     前記補正回路は、取得された2次電子画像に前記逆行列を乗じることにより前記クロストーク成分を除去した補正2次電子画像を生成することを特徴とする請求項2記載のマルチ電子ビーム検査装置。
  4.  前記マルチ1次電子ビームから1本の1次電子ビームを選択するビーム選択アパーチャ基板をさらに備えたことを特徴とする請求項1記載のマルチ電子ビーム検査装置。
  5.  前記ゲイン行列には、ゲイン値が1となる複数の要素が含まれることを特徴とする請求項3記載のマルチ電子ビーム検査装置。
  6.  パターンが形成された試料にマルチ1次電子ビームを照射して、前記マルチ1次電子ビームが前記試料に照射されたことに起因して放出されるマルチ2次電子ビームを検出し、クロストーク成分が含まれた2次電子画像を取得し、
     前記2次電子画像から前記クロストーク成分を除去するための予め設定されたゲイン情報を用いて、前記2次電子画像から前記クロストーク成分を除去した補正2次電子画像を生成し、
     前記補正2次電子画像と所定の画像とを比較し、結果を出力する、
     ことを特徴とするマルチ電子ビーム検査方法。
  7.  前記マルチ1次電子ビームが前記試料に照射されたことに起因して放出されるマルチ2次電子ビームのうち、それぞれ予め設定された1次電子ビームが前記試料に照射されたことに起因して放出される2次電子ビームを検出するための複数のセンサのセンサ毎、かつ前記マルチ1次電子ビームの1次電子ビーム毎に、当該1次電子ビームの照射に起因する2次電子ビームを検出するための前記センサで検出される当該1次電子ビームの照射に起因する2次電子ビームの強度値に対する同じセンサで検出される別の1次電子ビームに起因する2次電子ビームの強度値の割合をゲイン値として演算する、ことを特徴とする請求項6記載のマルチ電子ビーム検査方法。
  8.  前記ゲイン情報として、前記複数のセンサのセンサ毎、かつ前記マルチ1次電子ビームの1次電子ビーム毎のゲイン値を要素とするゲイン行列の逆行列を演算し、
     取得された2次電子画像に前記逆行列を乗じることにより前記クロストーク成分を除去した前記補正2次電子画像が生成される、ことを特徴とする請求項7記載のマルチ電子ビーム検査方法。
  9.  ビーム選択アパーチャ基板を用いて、前記マルチ1次電子ビームから1本の1次電子ビームを選択する、ことを特徴とする請求項6記載のマルチ電子ビーム検査方法。
  10.  前記ゲイン行列には、ゲイン値が1となる複数の要素が含まれることを特徴とする請求項8記載のマルチ電子ビーム検査方法。
     
PCT/JP2021/003884 2020-04-06 2021-02-03 マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法 WO2021205728A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020068595A JP7442376B2 (ja) 2020-04-06 2020-04-06 マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP2020-068595 2020-04-06

Publications (1)

Publication Number Publication Date
WO2021205728A1 true WO2021205728A1 (ja) 2021-10-14

Family

ID=78022036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003884 WO2021205728A1 (ja) 2020-04-06 2021-02-03 マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法

Country Status (3)

Country Link
JP (1) JP7442376B2 (ja)
TW (1) TWI796636B (ja)
WO (1) WO2021205728A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147883A (ja) * 1988-11-29 1990-06-06 Hitachi Ltd 多チャンネル放射線検出装置
JP2003132834A (ja) * 2001-10-26 2003-05-09 Ebara Corp 電子線装置及びこの装置を用いたデバイス製造方法
JP2018513543A (ja) * 2016-04-13 2018-05-24 エルメス マイクロビジョン, インコーポレーテッドHermes Microvision Inc. 複数荷電粒子ビームの装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI288424B (en) * 2000-06-27 2007-10-11 Ebara Corp Inspection apparatus and inspection method
WO2006075546A1 (ja) * 2005-01-11 2006-07-20 Hitachi Medical Corporation X線撮影装置
JP4871108B2 (ja) * 2006-12-07 2012-02-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー クロストーク補正方法およびx線ct装置
CN102798849B (zh) * 2012-08-14 2014-03-26 中国科学院光电技术研究所 一种消除由于串扰引起光斑质心偏移的方法
EP3580773B1 (en) * 2017-02-07 2023-05-31 ASML Netherlands B.V. Apparatus for charged particle detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147883A (ja) * 1988-11-29 1990-06-06 Hitachi Ltd 多チャンネル放射線検出装置
JP2003132834A (ja) * 2001-10-26 2003-05-09 Ebara Corp 電子線装置及びこの装置を用いたデバイス製造方法
JP2018513543A (ja) * 2016-04-13 2018-05-24 エルメス マイクロビジョン, インコーポレーテッドHermes Microvision Inc. 複数荷電粒子ビームの装置

Also Published As

Publication number Publication date
JP7442376B2 (ja) 2024-03-04
JP2021165661A (ja) 2021-10-14
TW202139241A (zh) 2021-10-16
TWI796636B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
JP7057220B2 (ja) マルチ電子ビーム画像取得装置及びマルチ電子ビーム光学系の位置決め方法
JP6546509B2 (ja) パターン検査方法及びパターン検査装置
KR20180011735A (ko) 전자빔 검사 장치 및 전자빔 검사 방법
JP7074479B2 (ja) マルチビーム検査装置
JP7026469B2 (ja) 電子ビーム画像取得装置および電子ビーム画像取得方法
KR20200005443A (ko) 멀티 전자 빔 조사 장치, 멀티 전자 빔 조사 방법, 및 멀티 전자 빔 검사 장치
US20200168430A1 (en) Electron beam image acquisition apparatus and electron beam image acquisition method
KR20200036768A (ko) 멀티 전자 빔 화상 취득 장치 및 멀티 전자 빔 화상 취득 방법
JP2021009829A (ja) マルチ荷電粒子ビーム画像取得装置およびマルチ荷電粒子ビーム画像取得方法
KR102469012B1 (ko) 수치 보정기 및 다중 전자 빔 조사 장치
JP2020119682A (ja) マルチ電子ビーム照射装置、マルチ電子ビーム検査装置、及びマルチ電子ビーム照射方法
WO2022130838A1 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
WO2021250997A1 (ja) マルチ電子ビーム画像取得装置及びマルチ電子ビーム画像取得方法
JP7385493B2 (ja) マルチ荷電粒子ビーム位置合わせ方法及びマルチ荷電粒子ビーム検査装置
JP7344725B2 (ja) アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置
WO2021235076A1 (ja) パターン検査装置及びパターン検査方法
JP7409988B2 (ja) パターン検査装置及び輪郭線同士のアライメント量取得方法
JP2022163680A (ja) マルチ電子ビーム画像取得方法、マルチ電子ビーム画像取得装置、及びマルチ電子ビーム検査装置
JP6966319B2 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
WO2021205728A1 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
WO2021205729A1 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP2021077492A (ja) 電子ビーム検査装置及び電子ビーム検査方法
JP2020087507A (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
WO2021140866A1 (ja) パターン検査装置及びパターン検査方法
JP2021169972A (ja) パターン検査装置及びパターン検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784513

Country of ref document: EP

Kind code of ref document: A1