JP2021169972A - パターン検査装置及びパターン検査方法 - Google Patents

パターン検査装置及びパターン検査方法 Download PDF

Info

Publication number
JP2021169972A
JP2021169972A JP2020073481A JP2020073481A JP2021169972A JP 2021169972 A JP2021169972 A JP 2021169972A JP 2020073481 A JP2020073481 A JP 2020073481A JP 2020073481 A JP2020073481 A JP 2020073481A JP 2021169972 A JP2021169972 A JP 2021169972A
Authority
JP
Japan
Prior art keywords
electron beam
primary electron
image
scanning
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020073481A
Other languages
English (en)
Inventor
和彦 井上
Kazuhiko Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2020073481A priority Critical patent/JP2021169972A/ja
Publication of JP2021169972A publication Critical patent/JP2021169972A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【目的】検査時間の増加を抑制しながら、画像取得動作途中でのマルチビームの各ビームの電流量の変動を測定可能な装置を提供する。【構成】本発明の一態様の検査装置100は、マルチ1次電子ビームを形成する成形アパーチャアレイ基板203と、マルチ1次電子ビームを偏向することにより、パターンが形成された試料面上をマルチ1次電子ビームで走査する主偏向器208及び副偏向器219と、マルチ1次電子ビームで試料面上を走査することに起因して放出されるマルチ2次電子ビームを検出するマルチ検出器222と、試料面上の走査を待機する走査待機時間に同期して、マルチ1次電子ビームを一括して偏向する一括偏向器212と、走査待機時間に同期して、偏向された前記マルチ1次電子ビームの電流値を検出するマルチ電流検出器215と、検出されたマルチ2次電子ビームに基づくパターンの第1の画像と、第1の画像に対応する第2の画像とを比較する比較回路108と、を備えたことを特徴とする。【選択図】図1

Description

本発明は、パターン検査装置及びパターン検査方法に関する。例えば、電子ビームを用いて撮像された図形パターンの画像を検査する手法に関する。
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。これらの半導体素子は、回路パターンが形成された原画パターン(マスク或いはレチクルともいう。以下、マスクと総称する)を用いて、いわゆるステッパと呼ばれる縮小投影露光装置でウェハ上にパターンを露光転写して回路形成することにより製造される。
そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、1ギガビット級のDRAM(ランダムアクセスメモリ)に代表されるように、LSIを構成するパターンは、サブミクロンからナノメータのオーダーになっている。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。よって、半導体ウェハ上に転写された超微細パターンの欠陥を検査するパターン検査装置の高精度化が必要とされている。その他、歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
検査装置では、例えば、電子ビームを使ったマルチビームを検査対象基板に照射して、検査対象基板から放出される各ビームに対応する2次電子を検出して、パターン画像を撮像する。そして撮像された測定画像と、設計データ、あるいは基板上の同一パターンを撮像した測定画像と比較することにより検査を行う方法が知られている。例えば、同一基板上の異なる場所の同一パターンを撮像した測定画像データ同士を比較する「die to die(ダイ−ダイ)検査」や、パターン設計された設計データをベースに設計画像データ(参照画像)を生成して、それとパターンを撮像した測定データとなる測定画像とを比較する「die to database(ダイ−データベース)検査」がある。撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
ここで、電子ビームを使ったマルチビームでは、一部のビームに電流値の低下等の異常が生じる可能性がある。マルチビームの各ビームの電流量が検査途中、特に画像取得動作途中で変動した場合、検査画像上での階調値が変動する要因になる。その結果、パターンの検査において、誤検出が生じることにつながる。しかしながら、従来、検査途中での異常を知らせる機能が無いため、疑似欠陥が発生し得る。例えば、ストライプ領域のスキャン動作が終わった後に、マルチビームの照射位置にステージ上のファラディーカップが位置するようにステージを移動させて、ファラディーカップでビーム電流量を測定することも考えられる。しかしながら、かかる手法では、電流検出のための時間が余分に必要となり、検査時間の増加につながってしまう。
ここで、検査画像を生成する検査装置ではないが、マルチビーム描画装置において、ストライプ領域毎に、一部の参照ビームの電流値をステージ上のファラディーカップで測定して、電子銃の電流調整を行う技術が開示されている(例えば特許文献1参照)。
特開2014−179383号公報
そこで、本発明の一態様は、検査時間の増加を抑制しながら、画像取得動作途中でのマルチビームの各ビームの電流量の変動を測定可能な装置及び方法を提供する。
本発明の一態様のパターン検査装置は、
マルチ1次電子ビームを形成するマルチビーム形成機構と、
マルチ1次電子ビームを偏向することにより、パターンが形成された試料面上をマルチ1次電子ビームで走査する第1の偏向器と、
マルチ1次電子ビームで試料面上を走査することに起因して放出されるマルチ2次電子ビームを検出するマルチ2次電子ビーム検出器と、
試料面上の走査を待機する走査待機時間に同期して、マルチ1次電子ビームを一括して偏向する第2の偏向器と、
走査待機時間に同期して、偏向された前記マルチ1次電子ビームの電流値を検出する電流検出器と、
検出されたマルチ2次電子ビームに基づくパターンの第1の画像と、第1の画像に対応する第2の画像とを比較する比較部と、
を備えたことを特徴とする。
走査待機時間として、第1の偏向器による走査用のビーム偏向の振り戻し時間を用いると好適である。
また、試料を載置するステージをさらに備え、
試料の検査領域は、複数のストライプ領域に分割され、
走査待機時間として、複数のストライプ領域のストライプ領域間のステージの移動時間を用いても好適である。
また、試料面から放出されるマルチ2次電子ビームをマルチ1次電子ビームから分離するビームセパレーターをさらに備え、
電流検出器は、ビームセパレーターよりもマルチ1次電子ビームの進行方向の上流側に配置されると好適である。
また、検出されたマルチ1次電子ビームの電流値の変動量に応じて第1の画像を補正する補正処理部をさらに備え、
比較部は、補正された第1の画像を用いて比較すると好適である。
本発明の一態様のパターン検査方法は、
マルチ1次電子ビームを形成する工程と、
第1の偏向器を用いてマルチ1次電子ビームを偏向することにより、パターンが形成された試料面上をマルチ1次電子ビームで走査する工程と、
マルチ1次電子ビームで試料面上を走査することに起因して放出されるマルチ2次電子ビームを検出する工程と、
試料面上の走査を待機する走査待機時間に同期して、第2の偏向器を用いてマルチ1次電子ビームを一括して偏向する工程と、
走査待機時間に同期して、偏向されたマルチ1次電子ビームの電流値を電流検出器で検出する工程と、
検出されたマルチ2次電子ビームに基づくパターンの第1の画像と、第1の画像に対応する第2の画像とを比較する工程と、
を備えたことを特徴とする。
本発明の一態様によれば、検査時間の増加を抑制しながら、画像取得動作途中でのマルチビームの各ビームの電流量の変動を測定できる。そのため、リアルタイムでの画像補正ができ、高精度なパターン検査ができる。
実施の形態1におけるパターン検査装置の構成を示す構成図である。 実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。 実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。 実施の形態1における画像取得処理を説明するための図である。 実施の形態1におけるマルチ電流検出器の構成を説明するための図である。 実施の形態1におけるビーム偏向と電流検出タイミングとの関係の一例を示す図である。 実施の形態1における比較回路内の構成を示す内部構成図の一例である。 実施の形態2におけるパターン検査装置の構成を示す構成図である。 実施の形態2における収差補正器の構成を示す図である。
実施の形態1.
図1は、実施の形態1におけるパターン検査装置の構成を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、電子ビーム検査装置の一例である。検査装置100は、画像取得機構150、及び制御系回路160(制御部)を備えている。画像取得機構150は、電子ビームカラム102(電子鏡筒)、検査室103、検出回路106、チップパターンメモリ123、ステージ駆動機構142、及びレーザ測長システム122を備えている。電子ビームカラム102内には、電子銃201、照明レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括偏向器212、制限アパーチャ基板213、マルチ電流検出器215、電磁レンズ206,207、主偏向器208、副偏向器209、ビームセパレーター214、偏向器218、投影レンズ224,226、及びマルチ検出器222が配置されている。
電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、及び副偏向器209によって1次電子光学系を構成する。また、電磁レンズ207、ビームセパレーター214、偏向器218、及び電磁レンズ224,226によって2次電子光学系を構成する。
検査室103内には、少なくともXY方向に移動可能なステージ105が配置される。ステージ105上には、検査対象となる基板101(試料)が配置される。基板101には、露光用マスク基板、及びシリコンウェハ等の半導体基板が含まれる。基板101が半導体基板である場合、半導体基板には複数のチップパターン(ウェハダイ)が形成されている。基板101が露光用マスク基板である場合、露光用マスク基板には、チップパターンが形成されている。チップパターンは、複数の図形パターンによって構成される。かかる露光用マスク基板に形成されたチップパターンが半導体基板上に複数回露光転写されることで、半導体基板には複数のチップパターン(ウェハダイ)が形成されることになる。以下、基板101が半導体基板である場合を主として説明する。基板101は、例えば、パターン形成面を上側に向けてステージ105に配置される。また、ステージ105上には、検査室103の外部に配置されたレーザ測長システム122から照射されるレーザ測長用のレーザ光を反射するミラー216が配置されている。
また、マルチ検出器222は、電子ビームカラム102の外部で検出回路106に接続される。検出回路106は、チップパターンメモリ123に接続される。
また、マルチ電流検出器215は、電子ビームカラム102内で、ビームセパレーター214よりもマルチ1次電子ビーム20の進行方向の上流側に配置される。マルチ電流検出器215は、電子ビームカラム102の外部で検出回路130に接続される。
制御系回路160では、検査装置100全体を制御する制御計算機110が、バス120を介して、位置回路107、比較回路108、参照画像作成回路112、ステージ制御回路114、レンズ制御回路124、電流検出偏向制御回路126、偏向制御回路128、補正回路132、磁気ディスク装置等の記憶装置109、モニタ117、メモリ118、及びプリンタ119に接続されている。また、偏向制御回路128は、DAC(デジタルアナログ変換)アンプ144,146,148に接続される。DACアンプ146は、主偏向器208に接続され、DACアンプ144は、副偏向器209に接続される。DACアンプ148は、偏向器218に接続される。検出回路130は、補正回路132に接続される。
また、チップパターンメモリ123は、補正回路132に接続されている。また、ステージ105は、ステージ制御回路114の制御の下に駆動機構142により駆動される。駆動機構142では、例えば、ステージ座標系におけるX方向、Y方向、θ方向に駆動する3軸(X−Y−θ)モータの様な駆動系が構成され、XYθ方向にステージ105が移動可能となっている。これらの、図示しないXモータ、Yモータ、θモータは、例えばステップモータを用いることができる。ステージ105は、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。そして、ステージ105の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。レーザ測長システム122は、ミラー216からの反射光を受光することによって、レーザ干渉法の原理でステージ105の位置を測長する。ステージ座標系は、例えば、マルチ1次電子ビーム20の光軸に直交する面に対して、1次座標系のX方向、Y方向、θ方向が設定される。
電磁レンズ202、電磁レンズ205、電磁レンズ206、電磁レンズ207、電磁レンズ224,226、及びビームセパレーター214は、レンズ制御回路124により制御される。また、一括偏向器212は、2極以上の電極により構成され、電極毎に図示しないDACアンプを介して電流検出偏向制御回路126により制御される。副偏向器209は、4極以上の電極により構成され、電極毎にDACアンプ144を介して偏向制御回路128により制御される。主偏向器208は、4極以上の電極により構成され、電極毎にDACアンプ146を介して偏向制御回路128により制御される。偏向器218は、4極以上の電極により構成され、電極毎にDACアンプ148を介して偏向制御回路128により制御される。
電子銃201には、図示しない高圧電源回路が接続され、電子銃201内の図示しないフィラメントと引出電極間への高圧電源回路からの加速電圧の印加と共に、所定の引出電極(ウェネルト)の電圧の印加と所定の温度のカソードの加熱によって、カソードから放出された電子群が加速させられ、電子ビーム200となって放出される。
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。検査装置100にとって、通常、必要なその他の構成を備えていても構わない。
図2は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図2において、成形アパーチャアレイ基板203には、2次元状の横(x方向)m列×縦(y方向)n段(m,nは2以上の整数)の穴(開口部)22がx,y方向に所定の配列ピッチで形成されている。図2の例では、23×23の穴(開口部)22が形成されている場合を示している。各穴22は、共に同じ寸法形状の矩形で形成される。或いは、同じ外径の円形であっても構わない。これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、マルチ1次電子ビーム20が形成されることになる。成形アパーチャアレイ基板203には、マルチ1次電子ビームを形成するマルチビーム形成機構の一例となる。次に、2次電子画像を取得する場合における画像取得機構150の動作について説明する。
画像取得機構150は、電子ビームによるマルチビーム20を用いて、図形パターンが形成された基板101から図形パターンの被検査画像を取得する。以下、検査装置100における画像取得機構150の動作について説明する。
電子銃201(放出源)から放出された電子ビーム200は、電磁レンズ202によって屈折させられ、成形アパーチャアレイ基板203全体を照明する。成形アパーチャアレイ基板203には、図2に示すように、複数の穴22(開口部)が形成され、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の穴22をそれぞれ通過することによって、マルチ1次電子ビーム20が形成される。
形成されたマルチ1次電子ビーム20は、電磁レンズ205、及び電磁レンズ206によってそれぞれ屈折させられ、中間像およびクロスオーバーを繰り返しながら、マルチ1次電子ビーム20の各ビームの中間像面(像面共役位置:I.I.P.)に配置されたビームセパレーター214を通過して電磁レンズ207に進む。また、マルチ1次電子ビーム20のクロスオーバー位置付近に、通過孔が制限された制限アパーチャ基板213を配置することで、散乱ビームを遮蔽できる。
マルチ1次電子ビーム20が電磁レンズ207(対物レンズ)に入射すると、電磁レンズ207は、マルチ1次電子ビーム20を基板101にフォーカスする。対物レンズ207により基板101(試料)面上に焦点が合わされ(合焦され)たマルチ1次電子ビーム20は、主偏向器208及び副偏向器209によって一括して偏向され、各ビームの基板101上のそれぞれの照射位置に照射される。
基板101の所望する位置にマルチ1次電子ビーム20が照射されると、かかるマルチ1次電子ビーム20が照射されたことに起因して基板101からマルチ1次電子ビーム20の各ビームに対応する、反射電子を含む2次電子の束(マルチ2次電子ビーム300)が放出される。
基板101から放出されたマルチ2次電子ビーム300は、電磁レンズ207を通って、ビームセパレーター214に進む。
ここで、ビームセパレーター214はマルチ1次電子ビーム20の中心ビームが進む方向(軌道中心軸)に直交する面上において電界と磁界を直交する方向に発生させる。電界は電子の進行方向に関わりなく同じ方向に力を及ぼす。これに対して、磁界はフレミング左手の法則に従って力を及ぼす。そのため電子の侵入方向によって電子に作用する力の向きを変化させることができる。ビームセパレーター214に上側から侵入してくるマルチ1次電子ビーム20には、電界による力と磁界による力が打ち消し合い、マルチ1次電子ビーム20は下方に直進する。これに対して、ビームセパレーター214に下側から侵入してくるマルチ2次電子ビーム300には、電界による力と磁界による力がどちらも同じ方向に働き、マルチ2次電子ビーム300は斜め上方に曲げられ、マルチ1次電子ビーム20から分離する。
斜め上方に曲げられ、マルチ1次電子ビーム20から分離したマルチ2次電子ビーム300は、偏向器218によって、さらに曲げられ、電磁レンズ224,226によって、屈折させられながらマルチ検出器222に投影される。マルチ検出器222(マルチ2次電子ビーム検出器)は、投影されたマルチ2次電子ビーム300を検出する。マルチ検出器222は、複数の検出エレメント(例えば図示しないダイオード型の2次元センサ)を有する。そして、マルチ1次電子ビーム20の各ビームは、マルチ検出器222の検出面において、マルチ2次電子ビーム300の各2次電子ビームに対応する検出エレメントに衝突して、電子を発生し、2次電子画像データを画素毎に生成する。マルチ検出器222にて検出された強度信号は、検出回路106に出力される。各1次電子ビームは、基板101上における自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域内に照射され、当該サブ照射領域内を走査(スキャン動作)する。
図3は、実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。図3において、半導体基板(ウェハ)101の検査領域330には、複数のチップ(ウェハダイ)332が2次元のアレイ状に形成されている。各チップ332には、露光用マスク基板に形成された1チップ分のマスクパターンが図示しない露光装置(ステッパ)によって例えば1/4に縮小されて転写されている。
図4は、実施の形態1における画像取得処理を説明するための図である。図4に示すように、各チップ332の領域は、例えばy方向に向かって所定の幅で複数のストライプ領域32に分割される。画像取得機構150によるスキャン動作は、例えば、ストライプ領域32毎に実施される。例えば、−x方向にステージ105を移動させながら、相対的にx方向にストライプ領域32のスキャン動作を進めていく。各ストライプ領域32は、長手方向に向かって複数の矩形領域33に分割される。対象となる矩形領域33へのビームの移動は、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって行われる。
図4の例では、例えば、5×5列のマルチ1次電子ビーム20の場合を示している。1回のマルチ1次電子ビーム20の照射で照射可能な照射領域34は、(基板101面上におけるマルチ1次電子ビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じたx方向サイズ)×(基板101面上におけるマルチ1次電子ビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じたy方向サイズ)で定義される。照射領域34が、マルチ1次電子ビーム20の視野となる。そして、マルチ1次電子ビーム20を構成する各1次電子ビーム10は、自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。各1次電子ビーム10は、互いに異なるいずれかのサブ照射領域29を担当することになる。そして、各1次電子ビーム10は、担当サブ照射領域29内の同じ位置を照射することになる。副偏向器209(第1の偏向器)は、マルチ1次電子ビーム20を一括して偏向することにより、パターンが形成された基板101面上をマルチ1次電子ビームで走査する。言い換えれば、サブ照射領域29内の1次電子ビーム10の移動は、副偏向器209によるマルチ1次電子ビーム20全体での一括偏向によって行われる。かかる動作を繰り返し、1つの1次電子ビーム10で1つのサブ照射領域29内を順に照射していく。
各ストライプ領域32の幅は、照射領域34のy方向サイズと同様、或いはスキャンマージン分狭くしたサイズに設定すると好適である。図4の例では、照射領域34が矩形領域33と同じサイズの場合を示している。但し、これに限るものではない。照射領域34が矩形領域33よりも小さくても良い。或いは大きくても構わない。そして、マルチ1次電子ビーム20を構成する各1次電子ビーム10は、自身のビームが位置するサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。そして、1つのサブ照射領域29のスキャンが終了したら、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が同じストライプ領域32内の隣接する矩形領域33へと移動する。かかる動作を繰り返し、ストライプ領域32内を順に照射していく。1つのストライプ領域32のスキャンが終了したら、ステージ105の移動或いは/及び主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射領域34が次のストライプ領域32へと移動する。以上のように各1次電子ビーム10の照射によってサブ照射領域29毎のスキャン動作および2次電子画像の取得が行われる。これらのサブ照射領域29毎の2次電子画像を組み合わせることで、矩形領域33の2次電子画像、ストライプ領域32の2次電子画像、或いはチップ332の2次電子画像が構成される。また、実際に画像比較を行う場合には、各矩形領域33内のサブ照射領域29をさらに複数のフレーム領域30に分割して、フレーム領域30毎のフレーム画像31について比較することになる。図4の例では、1つの1次電子ビーム10によってスキャンされるサブ照射領域29を例えばx,y方向にそれぞれ2分割することによって形成される4つのフレーム領域30に分割する場合を示している。
ここで、ステージ105が連続移動しながらマルチ1次電子ビーム20を基板101に照射する場合、マルチ1次電子ビーム20の照射位置がステージ105の移動に追従するように主偏向器208によって一括偏向によるトラッキング動作が行われる。そのため、マルチ2次電子ビーム300の放出位置がマルチ1次電子ビーム20の軌道中心軸に対して刻々と変化する。同様に、サブ照射領域29内をスキャンする場合に、各2次電子ビームの放出位置は、サブ照射領域29内で刻々と変化する。このように放出位置が変化した各2次電子ビームをマルチ検出器222の対応する検出領域内に照射させるように、偏向器218は、マルチ2次電子ビーム300を一括偏向する。
以上のように、画像取得機構150は、ストライプ領域32毎に、スキャン動作をすすめていく。上述したように、マルチ1次電子ビーム20を照射して、マルチ1次電子ビーム20の照射に起因して基板101から放出されるマルチ2次電子ビーム300は、マルチ検出器222で検出される。検出されるマルチ2次電子ビーム300には、反射電子が含まれていても構わない。或いは、反射電子は、2次電子光学系を移動中に発散し、マルチ検出器222まで到達しない場合であっても構わない。マルチ検出器222によって検出された各サブ照射領域29内の画素毎の2次電子の検出データ(測定画像データ:2次電子画像データ:被検査画像データ)は、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、チップパターンメモリ123に格納される。そして、得られた測定画像データは、位置回路107からの各位置を示す情報と共に、補正回路132を経由して比較回路108に転送される。
一方、参照画像作成回路112は、基板101に形成された複数の図形パターンの元になる設計データに基づいて、フレーム領域30毎に、フレーム画像31に対応する参照画像を作成する。具体的には、以下のように動作する。まず、記憶装置109から制御計算機110を通して設計パターンデータを読み出し、この読み出された設計パターンデータに定義された各図形パターンを2値ないしは多値のイメージデータに変換する。
上述したように、設計パターンデータに定義される図形は、例えば長方形や三角形を基本図形としたもので、例えば、図形の基準位置における座標(x、y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。
かかる図形データとなる設計パターンデータが参照画像作成回路112に入力されると図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の設計パターン画像データに展開し、出力する。言い換えれば、設計データを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできたマス目毎に設計パターンにおける図形が占める占有率を演算し、nビットの占有率データを出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとなる。かかるマス目(検査画素)は、測定データの画素に合わせればよい。
次に、参照画像作成回路112は、図形のイメージデータである設計パターンの設計画像データに、所定のフィルタ関数を使ってフィルタ処理を施す。これにより、画像強度(濃淡値)がデジタル値の設計側のイメージデータである設計画像データをマルチ1次電子ビーム20の照射によって得られる像生成特性に合わせることができる。作成された参照画像の画素毎の画像データは比較回路108に出力される。
そして、フレーム領域30毎に、フレーム画像と参照画像とが比較されることになるが、ここで、上述したように、マルチ1次電子ビーム20の各1次電子ビーム10の電流量が検査途中、特に画像取得動作途中で変動した場合、検査画像上での階調値が変動する要因になる。その結果、パターンの検査において、誤検出が生じることにつながる。また、例えば、ストライプ領域32のスキャン動作が終わった後に、マルチ1次電子ビーム20の照射位置にステージ105上のファラディーカップが位置するようにステージ105を移動させて、ファラディーカップでビーム電流量を測定することも考えられる。しかしながら、かかる手法では、電流検出のための時間が余分に必要となり、検査時間の増加につながってしまう。そこで、実施の形態1では、基板101上のマルチ1次電子ビーム20での走査を待機する走査待機時間に同期して、マルチ1次電子ビーム20の各1次電子ビーム10の電流値を測定する。具体的には、以下のように動作する。
図5は、実施の形態1におけるマルチ電流検出器の構成を説明するための図である。図5において、マルチ電流検出器215の検出面には、マルチ1次電子ビーム20と同様に複数の検出素子11がアレイ配置される。ここでは画像を生成することを目的とするものではないため、単に、各検出素子11に突入した1次電子ビーム10の電流値が測定できれば良い。よって、2次電子画像を生成するためのマルチ検出器222よりも簡易な構造のもので構わない。
図6は、実施の形態1におけるビーム偏向と電流検出タイミングとの関係の一例を示す図である。図6に示すように、ステージ105が連続移動しながらマルチ1次電子ビーム20を基板101に照射する場合、マルチ1次電子ビーム20の照射位置がステージ105の移動に追従するように主偏向器208によって一括偏向によるトラッキング動作が行われる。1回のトラッキング動作にかかる時間がスキャン時間となる。そして、スキャン時間内に、副偏向器209による、x、y方向への一括偏向により、各1次電子ビーム10は、自身のビームが位置するサブ照射領域29内を走査する。図6の例では、サブ照射領域29内でのx方向の位置が固定された状態でy方向へのラインスキャンが実施され、y方向の終端までラインスキャンが進んだ後に、x方向の位置が隣の画素へと移動し、また、同様に、x方向の位置が固定された状態でy方向へのラインスキャンが実施される。かかる動作を繰り返すことでサブ照射領域29内の全体がスキャンされる。そして、1つのサブ照射領域29のスキャンが終了したら、トラッキング動作がリセットされ、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が、元のトラッキング動作の開始位置に振り戻される。同様に、副偏向器209によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が、元のスキャン開始位置に振り戻される。ステージ105は例えば連続移動により移動しているので、かかるビーム偏向の振り戻しにより、マルチ1次電子ビーム20の照射位置が同じストライプ領域32内の隣接する矩形領域33へと移動する。
かかるマルチ1次電子ビーム20の照射位置の振り戻しの期間は、基板101上のスキャンを待機するスキャン待機時間(走査待機時間)となる。そこで、実施の形態1では、主偏向器208および副偏向器209(第1の偏向器)による走査用のビーム偏向の振り戻し時間であるスキャン待機時間を利用して、マルチ1次電子ビーム20の各1次電子ビーム10の電流値を検出する。具体的には、画像取得用のビーム偏向を担う主偏向器208及び副偏向器209よりも上流側に配置される一括偏向器212(第2の偏向器)でスキャン待機時間と同期してマルチ1次電子ビーム20全体を一括して偏向する。ここでは、マルチ電流検出器215に向けてマルチ1次電子ビーム20を一括偏向する。マルチ電流検出器215の検出面は、一括偏向器212により偏向されるマルチ1次電子ビーム20の中心軸軌道に直交する向きになるように斜めに配置される。
ここで、図1の例では、主偏向器208および副偏向器209の2段偏向によりスキャン動作を行う構成について説明しているが、これに限るものではない。1段の偏向器、例えば、主偏向器208でトラッキング動作を行いながらサブ照射領域29内のスキャン動作を行っても構わない。或いは3段以上の偏向器でスキャン動作を行っても構わない。
マルチ電流検出器215は、スキャン待機時間に同期して、一括偏向器212により偏向されたマルチ1次電子ビーム20の電流値を検出する。具体的には、マルチ電流検出器215では、各検出素子11が、マルチ1次電子ビーム20のうち、担当1次電子ビーム10の電流値を測定する。一括偏向器212及びマルチ電流検出器215は、主偏向器208及び副偏向器209よりもマルチ1次電子ビーム20の進行方向の上流側に配置される。主偏向器208及び副偏向器209よりも上流側でビーム偏向されたマルチ1次電子ビーム20の電流値をマルチ電流検出器215で検出することにより、主偏向器208及び副偏向器209によるビームの振り戻しの影響を排除できる。また、一括偏向器212及びマルチ電流検出器215は、ビームセパレーター214よりもマルチ1次電子ビーム20の進行方向の上流側に配置される。ビームセパレーター214よりも上流側でビーム偏向されたマルチ1次電子ビーム20の電流値をマルチ電流検出器215で検出することにより、2次電子ビームの影響を排除できる。
また、制限アパーチャ基板213には、通常のスキャン動作時にマルチ1次電子ビーム20全体が通過する通過孔の他に、一括偏向器212で偏向されたマルチ1次電子ビーム20を通過させる通過孔が形成される。通過孔のサイズを調整することで、マルチ電流検出器215の各検出素子11が誤って他のビームの電流値を測定しないように制御できる。
マルチ電流検出器215で測定された各1次電子ビーム10の電流値データは、測定順に検出回路130に出力される。検出回路130内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、補正回路132に出力される。サブ照射領域29のスキャン動作毎に各1次電子ビーム10の電流値が測定されるので、検査途中、特に画像取得動作途中のリアルタイムの電流値データを得ることができる。
補正回路132(補正処理部)は、転送された被検査画像データ(フレーム画像データ)(第1の画像)を入力する。そして、補正回路132は、検出されたマルチ1次電子ビーム20の各1次電子ビーム10の電流値の変動量に応じて被検査画像データを補正する。具体的には、電流値の変動に応じてゲインを変動させる。電流値が小さくなった1次電子ビーム10で撮像された画素データについては、ゲインを大きくすることで階調値を補正する。逆に、電流値が大きくなった1次電子ビーム10で撮像された画素データについては、ゲインを小さくすることで階調値を補正する。補正回路132は、マルチ1次電子ビーム20の各1次電子ビーム10の電流値を測定する毎に、各ビームで撮像された画像のゲイン値を調整する。これにより、リアルタイムで画像補正ができる。補正された被検査画像データ(フレーム画像データ)(第1の画像)は、比較回路108に転送される。
上述した例では、サブ照射領域29のスキャン動作を行うごとに、ビーム偏向の振り戻し時間に同期して、マルチ1次電子ビーム20の各1次電子ビーム10の電流値を測定する場合について説明したが、これに限るものではない。例えば、図4に示すように、ストライプ領域32間のステージの移動時間もスキャン待機時間となる。そこで、マルチ1次電子ビーム20の各1次電子ビーム10の電流値を測定するスキャン待機時間として、複数のストライプ領域32のストライプ領域間のステージ105の移動時間を用いても好適である。電流値を測定する動作の内容は上述した内容と同様である。
図7は、実施の形態1における比較回路内の構成を示す内部構成図の一例である。図7において、比較回路108内には、磁気ディスク装置等の記憶装置50,52、位置合わせ部57、及び比較処理部58が配置される。位置合わせ部57、及び比較処理部58といった各「〜部」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「〜部」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。位置合わせ部57、及び比較処理部58内に必要な入力データ或いは演算された結果はその都度図示しないメモリに記憶される。
比較回路108内では、転送された被検査画像データ(フレーム画像データ)が、位置回路107からの各位置を示す情報と共に、記憶装置50に一時的に格納される。また、転送された参照画像データが、記憶装置52に一時的に格納される。
そして、位置合わせ部57は、フレーム領域30毎に、被検査画像となるフレーム画像(第1の画像)と、当該フレーム画像に対応する参照画像(第2の画像)とを読み出し、画素36より小さいサブ画素単位で、両画像を位置合わせする。例えば、最小2乗法で位置合わせを行えばよい。
そして、比較部58は、フレーム画像(第1の画像)と、参照画像(第2の画像)とを比較する。比較部58は、所定の判定条件に従って画素36毎に両者を比較し、例えば形状欠陥といった欠陥の有無を判定する。例えば、画素36毎の階調値差が判定閾値Thよりも大きければ欠陥と判定する。そして、比較結果が出力される。比較結果は、記憶装置109、モニタ117、若しくはメモリ118に出力される、或いはプリンタ119より出力されればよい。
なお、上述したダイ−データベース検査の他、同一基板上の異なる場所の同一パターンを撮像した測定画像データ同士を比較するダイ−ダイ検査を行っても好適である。或いは、自己の測定画像だけを用いて検査しても構わない。
以上のようにして、スキャン動作の途中で測定された各1次電子ビーム10の電流値の変動に応じてリアルタイムに補正されたフレーム画像を使って、欠陥の有無及び欠陥の位置が検出される。
以上のように、実施の形態1によれば、各1次電子ビーム10の電流値の測定タイミングをスキャン待機時間に同期させるので、検査時間の増加を抑制しながら、画像取得動作途中でのマルチビームの各ビームの電流量の変動を測定できる。そのため、リアルタイムでの画像補正ができ、高精度なパターン検査ができる。
実施の形態2.
実施の形態2では、さらに、多極子電極アレイが搭載された収差補正器を配置すると共に、収差補正器に各1次電子ビーム10の電流検出機能を追加した構成を説明する。以下、特に説明する点以外の内容は実施の形態1と同様である。
図8は、実施の形態2におけるパターン検査装置の構成を示す構成図である。図8において、電子ビームカラム102内に、収差補正器220が追加された点以外は、図1と同様である。図8において、収差補正器220は、電磁レンズ205の磁場内に配置されると好適である。一括偏向器212は、収差補正器220よりも上流側に配置される。
図9は、実施の形態2における収差補正器の構成を示す図である。収差補正器220は、互いに所定の隙間を開けて配置される、3段以上の電極基板により構成される。図9では、中段電極基板12が示されている。中段電極基板12を挟む上下の電極基板の図示は省略している。中段電極基板12には、マルチ1次電子ビーム20が通過する位置に複数の通過孔13(開口部)が形成される。通過孔13毎に通過するビームを挟むようにそれぞれ例えば8極の電極16で構成される複数の電極セットが配置される場合を示している。各電極16は、導電性材料で形成される。また、電極基板12は、例えば、シリコン材で形成され、例えば、MEMS(Micro Electro Mechanical Systems:微小電気機械システム)技術を用いて、電極基板12上に配線層を形成して、それぞれ対応する配線上に、各電極16が形成される。各電極16が互いに導通しないように電極基板12上に形成される。
また、図9に示すように、例えば、中段電極基板12には、複数の通過孔13の形成領域の隣の領域に、マルチ電流検出器215が配置される。マルチ電流検出器215には、マルチ1次電子ビーム20が衝突する位置に複数の検出素子11が配置される。図9の例では、3×3本のマルチ1次電子ビーム10を用いる場合について示している。
また、図示しない上下の電極基板にも、それぞれマルチ1次電子ビーム20が通過する位置に複数の通過孔(開口部)が形成される。図示しない上下の電極基板には、グランド電位がそれぞれ印加される。図示しない上下の電極基板におけるマルチ電流検出器215に対応する開口部は、マルチ1次電子ビーム20全体が通過可能なサイズに形成されると好適である。
マルチ1次電子ビーム20の1次電子ビーム10毎に、それぞれ個別に8極の電極16の電位を制御することで、像面湾曲、非点、及び/或いはディストーション等の収差を個別に補正できる。
そして、上述したスキャン待機時間に、一括偏向器212によりマルチ1次電子ビーム20全体をマルチ電流検出器215に向けて一括して偏向する。これにより、マルチ電流検出器215は、スキャン待機時間に同期して、一括偏向器212により偏向されたマルチ1次電子ビーム20の各1次電子ビーム10の電流値を検出する。
以上のように、収差補正器220を配置する場合には、収差補正器220にマルチ電流検出器215を搭載できる。
以上の説明において、一連の「〜回路」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「〜回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置、磁気テープ装置、FD、或いはROM(リードオンリメモリ)等の記録媒体に記録されればよい。例えば、位置回路107、比較回路108、及び参照画像作成回路112等は、上述した少なくとも1つの処理回路で構成されても良い。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのパターン検査装置及びパターン検査方法は、本発明の範囲に包含される。
10 1次電子ビーム
11 検出素子
12 中段電極基板
13 通過孔
16 電極
20 マルチ1次電子ビーム
22 穴
29 サブ照射領域
30 フレーム領域
31 フレーム画像
32 ストライプ領域
33 矩形領域
34 照射領域
50,52 記憶装置
57 位置合わせ部
58 比較処理部
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
112 参照画像作成回路
114 ステージ制御回路
117 モニタ
118 メモリ
119 プリンタ
120 バス
122 レーザ測長システム
123 チップパターンメモリ
124 レンズ制御回路
126 電流検出偏向制御回路
128 偏向制御回路
130 検出回路
132 補正回路
142 ステージ駆動機構
150 画像取得機構
160 制御系回路
200 電子ビーム
201 電子銃
202 照明レンズ
203 成形アパーチャアレイ基板
205 縮小レンズ
207 対物レンズ
208 主偏向器
209 副偏向器
212 一括偏向器
213 制限アパーチャ基板
214 ビームセパレーター
215 マルチ電流検出器
216 ミラー
218 偏向器
220 収差補正器
222 マルチ検出器
224,226 投影レンズ
300 マルチ2次電子ビーム
330 検査領域
332 チップ

Claims (10)

  1. マルチ1次電子ビームを形成するマルチビーム形成機構と、
    前記マルチ1次電子ビームを偏向することにより、パターンが形成された試料面上を前記マルチ1次電子ビームで走査する第1の偏向器と、
    前記マルチ1次電子ビームで前記試料面上を走査することに起因して放出されるマルチ2次電子ビームを検出するマルチ2次電子ビーム検出器と、
    前記試料面上の走査を待機する走査待機時間に同期して、前記マルチ1次電子ビームを一括して偏向する第2の偏向器と、
    前記走査待機時間に同期して、偏向された前記マルチ1次電子ビームの電流値を検出する電流検出器と、
    検出された前記マルチ2次電子ビームに基づく前記パターンの第1の画像と、前記第1の画像に対応する第2の画像とを比較する比較部と、
    を備えたことを特徴とするパターン検査装置。
  2. 前記走査待機時間として、前記第1の偏向器による走査用のビーム偏向の振り戻し時間を用いることを特徴とする請求項1記載のパターン検査装置。
  3. 前記試料を載置するステージをさらに備え、
    前記試料の検査領域は、複数のストライプ領域に分割され、
    前記走査待機時間として、前記複数のストライプ領域のストライプ領域間の前記ステージの移動時間を用いることを特徴とする請求項1記載のパターン検査装置。
  4. 前記試料面から放出される前記マルチ2次電子ビームを前記マルチ1次電子ビームから分離するビームセパレーターをさらに備え、
    前記電流検出器は、前記ビームセパレーターよりも前記マルチ1次電子ビームの進行方向の上流側に配置されることを特徴とする請求項1〜3いずれかに記載のパターン検査装置。
  5. 検出された前記マルチ1次電子ビームの電流値の変動量に応じて前記第1の画像を補正する補正処理部をさらに備え、
    前記比較部は、補正された第1の画像を用いて比較することを特徴とする請求項1〜4いずれかに記載のパターン検査装置。
  6. マルチ1次電子ビームを形成する工程と、
    第1の偏向器を用いて前記マルチ1次電子ビームを偏向することにより、パターンが形成された試料面上を前記マルチ1次電子ビームで走査する工程と、
    前記マルチ1次電子ビームで前記試料面上を走査することに起因して放出されるマルチ2次電子ビームを検出する工程と、
    前記試料面上の走査を待機する走査待機時間に同期して、第2の偏向器を用いて前記マルチ1次電子ビームを一括して偏向する工程と、
    前記走査待機時間に同期して、偏向された前記マルチ1次電子ビームの電流値を電流検出器で検出する工程と、
    検出された前記マルチ2次電子ビームに基づく前記パターンの第1の画像と、前記第1の画像に対応する第2の画像とを比較する工程と、
    を備えたことを特徴とするパターン検査方法。
  7. 前記走査待機時間として、前記第1の偏向器による走査用のビーム偏向の振り戻し時間を用いることを特徴とする請求項6記載のパターン検査方法。
  8. 前記試料の検査領域は、複数のストライプ領域に分割され、
    前記走査待機時間として、前記複数のストライプ領域のストライプ領域間の前記試料を載置するステージの移動時間を用いることを特徴とする請求項6記載のパターン検査方法。
  9. 前記試料面から放出される前記マルチ2次電子ビームは、ビームセパレーターにより前記マルチ1次電子ビームから分離され、
    前記電流検出器は、前記ビームセパレーターよりも前記マルチ1次電子ビームの進行方向の上流側に配置されることを特徴とする請求項6〜8いずれかに記載のパターン検査方法。
  10. 検出された前記マルチ1次電子ビームの電流値の変動量に応じて前記第1の画像を補正する工程をさらに備え、
    補正された第1の画像と前記第2の画像とが比較されることを特徴とする請求項6〜9いずれかに記載のパターン検査方法。
JP2020073481A 2020-04-16 2020-04-16 パターン検査装置及びパターン検査方法 Pending JP2021169972A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020073481A JP2021169972A (ja) 2020-04-16 2020-04-16 パターン検査装置及びパターン検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020073481A JP2021169972A (ja) 2020-04-16 2020-04-16 パターン検査装置及びパターン検査方法

Publications (1)

Publication Number Publication Date
JP2021169972A true JP2021169972A (ja) 2021-10-28

Family

ID=78150191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073481A Pending JP2021169972A (ja) 2020-04-16 2020-04-16 パターン検査装置及びパターン検査方法

Country Status (1)

Country Link
JP (1) JP2021169972A (ja)

Similar Documents

Publication Publication Date Title
TWI745687B (zh) 多電子束影像取得裝置以及多電子束光學系統的定位方法
JP2019200983A (ja) マルチ電子ビーム照射装置、マルチ電子ビーム検査装置及びマルチ電子ビーム照射方法
US20190355546A1 (en) Multiple electron beam image acquisition apparatus and multiple electron beam image acquisition method
JP2020053380A (ja) マルチ電子ビーム画像取得装置及びマルチ電子ビーム画像取得方法
JP2021009829A (ja) マルチ荷電粒子ビーム画像取得装置およびマルチ荷電粒子ビーム画像取得方法
KR102469012B1 (ko) 수치 보정기 및 다중 전자 빔 조사 장치
JP7429128B2 (ja) マルチ電子ビーム照射装置及びマルチ電子ビーム照射方法
KR20210127094A (ko) 멀티 하전 입자 빔 조사 장치 및 멀티 하전 입자 빔 검사 장치
US10984525B2 (en) Pattern inspection method and pattern inspection apparatus
JP6966319B2 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
WO2022130838A1 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
WO2021250997A1 (ja) マルチ電子ビーム画像取得装置及びマルチ電子ビーム画像取得方法
JP7344725B2 (ja) アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置
JP2021077492A (ja) 電子ビーム検査装置及び電子ビーム検査方法
JP2021169972A (ja) パターン検査装置及びパターン検査方法
TWI818407B (zh) 多射束圖像取得裝置及多射束圖像取得方法
WO2021039419A1 (ja) 電子銃及び電子ビーム照射装置
JP7326480B2 (ja) パターン検査装置及びパターン検査方法
WO2021205728A1 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP2022094682A (ja) 収差補正器
JP2022126438A (ja) 線分画像作成方法及び線分画像作成装置
TW202314768A (zh) 多電子束檢查裝置、多極子陣列的控制方法以及多電子束檢查方法
JP2021077458A (ja) ステージ機構