WO2020238381A1 - 指纹检测装置和电子设备 - Google Patents

指纹检测装置和电子设备 Download PDF

Info

Publication number
WO2020238381A1
WO2020238381A1 PCT/CN2020/081867 CN2020081867W WO2020238381A1 WO 2020238381 A1 WO2020238381 A1 WO 2020238381A1 CN 2020081867 W CN2020081867 W CN 2020081867W WO 2020238381 A1 WO2020238381 A1 WO 2020238381A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fingerprint detection
detection device
sensor chip
fingerprint
Prior art date
Application number
PCT/CN2020/081867
Other languages
English (en)
French (fr)
Inventor
王景
刘凯
刘相英
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN202080001525.0A priority Critical patent/CN111801685B/zh
Publication of WO2020238381A1 publication Critical patent/WO2020238381A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the embodiments of the present application relate to the field of fingerprint identification, and more specifically, to fingerprint detection devices and electronic equipment.
  • the under-screen fingerprint recognition solution refers to attaching the optical or ultrasonic fingerprint recognition module to the bottom of the light-emitting layer of the organic light-emitting diode (Organic Light-Emitting Diode, OLED) screen, that is, regardless of the optical fingerprint recognition module or the ultrasonic fingerprint recognition module
  • OLED Organic Light-Emitting Diode
  • the under-screen optical fingerprint solution there is a fingerprint recognition module that includes a collimator for optical path adjustment.
  • the period of the collimator of the fingerprint recognition module needs to be the same as the period formed by the panel wiring of the screen display, so as to ensure that the captured image does not have moiré fringes and does not affect the normal use of the fingerprint function.
  • the optical filter used is usually filled with optical glue and attached to the surface of the sensor. Once the thickness of the glue covering the sensor surface is uneven, there will be a Newton ring phenomenon, which will affect the normal use of the fingerprint function.
  • the embodiments of the present application provide a fingerprint detection device and electronic equipment, which can avoid the Newton ring problem.
  • a fingerprint detection device which is suitable for electronic equipment with a display screen.
  • the fingerprint detection device is arranged under the display screen, and the fingerprint detection device includes: a filter layer, the filter The lower surface of the layer is provided with a silk-screened supporting ink; the optical path layer is provided below the filter layer, and there is a gap between the upper surface of the optical path layer and the lower surface of the supporting ink, and the supporting ink is used to support the
  • the filter layer is such that a gap is maintained between the upper surface of the optical path layer and the lower surface of the filter layer;
  • the first sensor chip is arranged under the optical path layer;
  • a bracket is disposed on the substrate around the first sensor chip Above, for supporting the filter layer; wherein, the first sensor chip is used for receiving fingerprint detection signals passing through the filter layer and the optical path layer after returning through the human finger
  • the filter layer is arranged above the optical path layer.
  • This external filter layer can effectively block the influence of ambient light on the fingerprint recognition process, and prevent the user from unlocking the fingerprint due to strong
  • the contrast of the image is reduced due to light intervention, thereby preventing abnormal unlocking problems; and
  • a support ink is silk-printed on the sensing area of the fingerprint chip in the middle of the lower surface of the filter layer. The support ink supports the middle position of the filter layer to prevent Newton ring problem caused by deformation of the optical layer.
  • the optical path layer of the fingerprint detection device of the embodiment of the present application is directly arranged on the upper surface of the first sensor chip, and the lower surface of the first sensor chip is fixed on the substrate, which can avoid carrying the optical path layer alone.
  • the first sensor chip is provided with a casing, which reduces the size (for example, thickness) of the fingerprint detection device; and arranging the fingerprint detection device in the groove of the substrate can reduce the thickness of the fingerprint detection device.
  • the tight fit between the various layers in the thickness direction ensures that the thickness of the fingerprint detection device is reduced to the greatest extent.
  • the optical path layer is directly arranged on the upper surface of the first sensor chip, the image collection field of view of the fingerprint detection device is only affected by the area of the optical path layer and the corresponding area of the first sensor chip, Based on this, the area of the optical path layer and the area of the corresponding first sensor chip can be reasonably designed according to actual needs to meet the needs of different users and different customers (for example, it can meet the needs of a large-area image acquisition field of view).
  • the gap between the side wall of the first sensor chip and the side wall of the first groove can be used not only as a dimensional tolerance of the first sensor chip and/or as a dimensional tolerance of the first groove , Can also be used as the mounting tolerance of the first sensor chip; correspondingly, the gap between the side wall of the support and the side wall of the first sensor chip can not only be used as the dimensional tolerance and /Or as the dimensional tolerance of the bracket, it can also be used as the installation tolerance of the first sensor chip, so as to improve the yield of the fingerprint detection device.
  • the fingerprint detection device further includes: a first gold wire for electrically connecting the first sensor chip and the conductive layer of the substrate, and is located on the sidewall of the first sensor chip and Between the side walls of the first groove and in the gap between the side walls of the bracket close to the first sensor chip and the side walls of the first sensor chip.
  • the width of the gap between the sidewall of the first sensor chip and the sidewall of the bracket close to the first sensor chip is greater than or equal to the sidewall of the first sensor chip And the width of the gap between the side wall of the first groove.
  • the width of the gap between the sidewall of the first sensor not close to the first gold wire and the sidewall of the first groove ranges from 100-400um, For example, it can be set to 200um, and the value range of the gap between the side wall of the first sensor not close to the first gold wire and the side wall bracket of the bracket close to the first sensor chip is 100-400um, for example It can be set to 270um.
  • the side of the lower surface of the filter layer that is close to the first gold wire is fixed to the upper surface of the first sensor chip, and the other side of the lower surface of the filter layer Fixed on the upper surface of the bracket.
  • the lower surface of the filter layer can be rectangular, and one side of the lower surface of the filter layer is close to the gold wire, and the other three sides are not close to the gold wire.
  • the three-side area not close to the gold wire can be fixed on the upper surface of the bracket, and The side close to the gold wire is fixed on the upper surface of the first sensor chip, so as to avoid affecting the installation of the gold wire.
  • the side of the lower surface of the filter layer close to the first gold wire is fixed to the upper surface of the first sensor chip by a first adhesive, and the lower surface of the filter layer The other sides of the surface are fixed on the upper surface of the bracket through the second adhesive.
  • the side of the lower surface of the filter layer close to the first gold wire is fixed on the upper surface of the first sensor chip by the first adhesive, which can prevent the gold wire protective glue used for fixing the gold wire from flowing into the optical path layer.
  • the thickness of the filter layer is less than or equal to 220 um.
  • the thickness of the filter layer is usually 110um.
  • the center of the supporting ink and the center of the sensing area of the first sensor chip coincide in a vertical direction.
  • the position of the supporting ink of the silk screen is usually set to coincide with the center of the sensing area of the first sensor chip below.
  • the thickness of the supporting ink is less than or equal to 30 um.
  • the thickness of the supporting ink increases, the contrast of the Newton conversion gradually decreases.
  • the distance is 25um, the Newton ring basically disappears. Therefore, the thickness of the supporting ink is usually set to 25um.
  • the area of the supporting ink is less than or equal to 40*40um, for example, it can be set to 30um*30um.
  • the reflectivity of the light entering surface of the filter layer is less than or equal to 1%.
  • the value range of the total thickness of the fingerprint detection device is 0.15-0.6 mm.
  • the substrate includes a first covering layer, a first conductive layer, a base layer, a second conductive layer, and a second covering layer in order from top to bottom.
  • a region extends downward and penetrates the first covering layer and the first conductive layer to form the first groove, and the upper surface of the substrate extends downward in a second region connected to the first region And pass through the first covering layer to form a pad of the substrate; the first sensor chip is connected to the pad of the substrate through the first gold wire.
  • a substrate pad for electrically connecting the first sensor chip is formed, which can be used to electrically connect the first sensor chip and the first sensor chip.
  • the first gold wire of the substrate provides an accommodating space, and accordingly, the occupied space of the first gold wire above the substrate is reduced, thereby reducing the thickness of the fingerprint detection device.
  • the fingerprint detection device further includes: a first fixing glue, and the lower surface of the first sensor chip is fixed into the first groove by the first fixing glue.
  • the thickness of the first covering layer is equal to the thickness of the second covering layer, and the thickness of the first conductive layer is the same as the thickness of the second conductive layer.
  • the total thickness of the substrate is less than or equal to 150um
  • the thickness of the first covering layer and the thickness of the second covering layer are both less than or equal to 30um
  • the thickness of the second conductive layer is less than or equal to 20um
  • the thickness of the substrate is 80um.
  • the thickness of the first sensor chip is less than or equal to 150um
  • the maximum arc height of the first gold wire is less than or equal to 60um
  • the thickness of the first fixing glue is less than or equal to 30um.
  • the outer side of the bracket is shortened by a predetermined distance in a direction approaching the first sensor chip relative to the outer side of the first cover film.
  • the value range of the preset distance is 100-400um, for example, it can be set to 200um.
  • the preset distance can be used not only as a dimensional tolerance of the bracket, but also as an installation tolerance of the bracket, and accordingly, can improve the yield of the fingerprint detection device.
  • the fingerprint detection device further includes: a second sensor chip, a second fixing glue, and a second gold wire; wherein the upper surface of the substrate is connected to the second area on the third The area extends downward and penetrates the first covering layer and the first conductive layer to form a second groove, the second sensor chip is fixed in the second groove by the second fixing glue, so The second sensor chip is connected to the pad of the substrate through the second gold wire, so that the second sensor chip is connected to the first sensor chip, and the second sensor chip is used to cooperate with the first sensor chip.
  • a sensor chip performs fingerprint recognition under the screen.
  • the processing tasks of the first sensor chip can be shared, which is equivalent to replacing a fully functional and thicker sensor chip with a first sensor chip and a thinner sensor chip arranged in parallel.
  • the second sensor chip correspondingly, can reduce the thickness of the fingerprint detection device without affecting the fingerprint recognition performance.
  • the gap between the side wall of the second sensor chip and the side wall of the second groove may not only be used as the dimensional tolerance of the second sensor chip and/or as the dimensional tolerance of the second groove , Can also be used as the installation tolerance of the second sensor chip, and accordingly, the yield of the fingerprint detection device can be improved.
  • the width of the gap between the sidewall of the second sensor chip that is not close to the first gold wire and the sidewall of the second groove ranges from 100-400um , For example, can take 200um.
  • the thickness of the first sensor chip is equal to the thickness of the second sensor chip
  • the thickness of the first fixing glue is equal to the thickness of the second fixing glue
  • the maximum thickness of the first gold wire is The arc height is equal to the maximum arc height of the second gold wire.
  • the fingerprint detection device further includes a gold wire protective glue for encapsulating the first gold wire and the second gold wire.
  • the stability of the electrical connection between the substrate and the first sensor chip can be guaranteed, and accordingly, the performance of the fingerprint detection device can be guaranteed.
  • the height of the gold wire protective glue is less than or equal to 200um.
  • the thickness of the gold wire protective glue is less than or equal to the sum of the thickness of the optical path layer, the thickness of the first sensor chip, and the thickness of the first fixing glue.
  • the thickness of the gold wire protective glue is configured to be less than or equal to the sum of the thickness of the optical path layer, the thickness of the first sensor chip, and the thickness of the first fixing glue, which can effectively encapsulate the first gold wire. At the same time, reduce the thickness of the fingerprint detection device as much as possible.
  • the fingerprint detection device further includes: a foam layer disposed above the support around the filter layer, the foam layer is provided with an opening penetrating the foam layer, The first sensor chip receives the fingerprint detection signal through the opening of the foam layer; the upper surface of the foam layer is flush with the upper surface of the filter layer.
  • the height of the upper surface of the support may be smaller than the height of the upper surface of the filter layer, resulting in inconsistent height of the upper surface of the entire fingerprint detection device.
  • the fingerprint can be made by setting foam
  • the upper surface of the detection device is flat, so that it is convenient to install the fingerprint detection device under the display screen.
  • the bracket is a polyethylene terephthalate PET adhesive layer for connecting the substrate and the foam layer; or, the lower surface of the bracket is fixed by a bracket fixing glue It is fixed on the upper surface of the substrate, and the upper surface of the bracket is fixed with the foam layer by bracket fixing glue.
  • the thickness of the bracket is less than or equal to 150um.
  • the display screen includes a transparent cover, a display panel, a buffer layer, and a copper layer in order from top to bottom, and the display screen is provided with a window penetrating the buffer layer and the copper layer.
  • the upper surface of the foam is fixed on the lower surface of the copper layer by the first pressure-sensitive adhesive (PSA) in the surrounding area of the window, so that the fingerprint recognition module is fixed on Below the display screen, the sensing area of the first sensor chip is aligned with the window setting, so that the first sensor chip receives the fingerprint detection signal.
  • PSA first pressure-sensitive adhesive
  • an ultraviolet (UV) curing glue is provided on the outside of the fingerprint detection device and the outside of the first PSA to fix the relative position of the fingerprint detection device with respect to the display screen.
  • the display screen includes a transparent cover, a display panel, a buffer layer, and a copper layer in order from top to bottom, and the display screen is provided with a window penetrating the buffer layer and the copper layer.
  • the size of the opening window of the buffer layer is smaller than the size of the opening window of the copper layer; the fingerprint detection device is located in the groove of the middle frame of the electronic device, and the upper surface of the foam is on the copper layer.
  • the area around the window opening of the layer is fixed on the lower surface of the buffer layer by foam glue, so that the fingerprint recognition module is fixed under the display screen, and the sensing of the first sensor chip The area is aligned with the window setting of the buffer layer, so that the first sensor chip receives the fingerprint detection signal.
  • the bottom of the fingerprint detection device is arranged in the groove of the middle frame through the second PSA.
  • the optical path layer includes a lens layer and an optical path guiding layer
  • the microlens is used to converge the optical signal returned via a human finger above the display screen to the optical path guiding layer
  • the optical path guiding layer guides the optical signal condensed by the microlens to the first sensor chip.
  • the thickness of the optical path layer is less than or equal to 30 um.
  • the fingerprint detection device further includes: a flexible circuit board formed with gold fingers of the flexible circuit board; an anisotropic conductive adhesive film, the gold of the flexible circuit board The finger is electrically connected to the gold finger of the substrate through the anisotropic conductive adhesive film.
  • the gold fingers of the flexible circuit board are pressed to the gold fingers of the substrate, which is equivalent to that the fingerprint detection device can be equipped with flexible circuit boards of different specifications, so that the The fingerprint detection device is more versatile, and accordingly, it can meet the needs of different users or customers.
  • the finger is electrically connected to the substrate and the flexible circuit board, which can not only ensure the insulation between the contact pieces, but also ensure the conductivity between the substrate and the flexible circuit board, especially the fingerprint sensor
  • the chip includes multiple chips
  • the multiple chips on the substrate can be quickly and electrically connected to the flexible circuit board through gold fingers, thereby reducing the complexity of installation and the complexity of disassembly.
  • an electronic device including: a display screen; a fingerprint detection device arranged below the display screen, and the fingerprint detection device is in the first aspect or any one of the possible implementation modes of the first aspect
  • the fingerprint collection area is at least partially located in the display area of the display screen.
  • the display screen includes a transparent cover, a display panel, a buffer layer, and a copper layer from top to bottom, wherein the display screen is provided with a transparent cover plate, a display panel, a buffer layer, and a copper layer. Opening a window, the optical path layer of the fingerprint detection device is aligned with the opening setting so that the fingerprint detection device receives the fingerprint detection signal returned via the human finger above the display screen through the opening, and the fingerprint detection The signal is used to detect the fingerprint information of the finger.
  • the edge area of the upper surface of the fingerprint detection device fixes the area around the window on the lower surface of the copper layer through the first PSA, so that the optical path layer of the fingerprint detection device Align the window setting.
  • the electronic device further includes a middle frame, the upper surface of the middle frame extends downward to form a third groove, and the bottom of the fingerprint detection device is arranged on the first PSA through a second PSA. Three grooves.
  • Figure 1 is a schematic plan view of an electronic device to which this application can be applied.
  • Fig. 2 is a schematic side sectional view of the electronic device shown in Fig. 1.
  • 3 to 6, and 8 to 9 are schematic structural diagrams of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of Newton's ring phenomenon when the distance between the filter layer and the sensor chip of the embodiment of the present application is different.
  • FIGS. 10 and 11 are schematic structural diagrams of electronic equipment including a fingerprint identification device according to an embodiment of the present application.
  • portable or mobile computing devices such as smartphones, notebook computers, tablet computers, and gaming devices, as well as other electronic devices such as electronic databases, automobiles, and bank automated teller machines (ATM).
  • ATM bank automated teller machines
  • the embodiments of the present application are not limited thereto.
  • biometric recognition technology includes but is not limited to fingerprint recognition, palmprint recognition, iris recognition, face recognition, and living body recognition.
  • fingerprint recognition technology includes but is not limited to fingerprint recognition, palmprint recognition, iris recognition, face recognition, and living body recognition.
  • fingerprint recognition technology uses fingerprint recognition technology as an example.
  • the under-screen fingerprint recognition technology refers to the installation of the fingerprint recognition module below the display screen, so as to realize the fingerprint recognition operation in the display area of the display screen. There is no need to set a fingerprint collection area on the front of the electronic device except for the display area.
  • the fingerprint recognition module uses the light returned from the top surface of the display assembly of the electronic device to perform fingerprint sensing and other sensing operations. This returned light carries information about objects (such as fingers) that are in contact with or close to the top surface of the display assembly.
  • the fingerprint recognition module located under the display assembly collects and detects this returned light to realize fingerprint recognition under the screen.
  • the design of the fingerprint identification module may be to implement the desired optical imaging by appropriately configuring optical elements for collecting and detecting the returned light, so as to detect the fingerprint information of the finger.
  • in-display fingerprint recognition technology refers to the installation of fingerprint recognition modules or part of fingerprint recognition modules inside the display screen, so as to realize fingerprint recognition operations in the display area of the display screen without the need for electronic
  • the fingerprint collection area is set on the front of the device except the display area.
  • FIG. 1 and 2 show schematic diagrams of an electronic device 100 to which under-screen fingerprint recognition technology can be applied.
  • FIG. 1 is a front schematic diagram of the electronic device 100
  • FIG. 2 is a partial cross-sectional structure diagram of the electronic device 100 shown in FIG.
  • the electronic device 100 may include a display screen 120 and a fingerprint recognition module 140.
  • the display screen 120 may be a self-luminous display, which uses a self-luminous display unit as display pixels.
  • the display screen 120 may be an Organic Light-Emitting Diode (OLED) display screen or a Micro-LED (Micro-LED) display screen.
  • the display screen 120 may also be a liquid crystal display (LCD) or other passive light-emitting display, which is not limited in the embodiment of the present application.
  • the display screen 120 may also be specifically a touch display screen, which can not only perform screen display, but also detect a user's touch or pressing operation, thereby providing a user with a human-computer interaction interface.
  • the electronic device 100 may include a touch sensor, and the touch sensor may specifically be a touch panel (TP), which may be provided on the surface of the display screen 120, or may be partially integrated or The whole is integrated into the display screen 120 to form the touch display screen.
  • TP touch panel
  • the fingerprint recognition module 140 may be an optical fingerprint recognition module, such as an optical fingerprint sensor.
  • the fingerprint identification module 140 may include a sensor chip with an optical sensing array (hereinafter also referred to as an optical fingerprint sensor).
  • the optical sensing array includes multiple optical sensing units, and each optical sensing unit may specifically include a photodetector or a photoelectric sensor.
  • the fingerprint identification module 140 may include a photodetector array (or called a photodetector array or a photodetector array), which includes a plurality of photodetectors distributed in an array.
  • the fingerprint recognition module 140 may be arranged in a partial area below the display screen 120, so that the fingerprint collection area (or detection area) 130 of the fingerprint recognition module 140 is at least partially located on the display screen 120. ⁇ display area 102.
  • the fingerprint identification module 140 can also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the electronic device 100.
  • the optical signal of at least part of the display area of the display screen 120 can be guided to the fingerprint recognition module 140 through the optical path design, so that the fingerprint collection area 130 is actually located in the display area of the display screen 120 .
  • the fingerprint recognition module 140 may include only one sensor chip. At this time, the fingerprint collection area 130 of the fingerprint recognition module 140 has a small area and a fixed position. Therefore, the user needs to input the fingerprint The finger is pressed to a specific position of the fingerprint collection area 130, otherwise the fingerprint recognition module 140 may not be able to collect the fingerprint image, resulting in poor user experience.
  • the fingerprint identification module 140 may specifically include a plurality of sensor chips; the plurality of sensor chips may be arranged side by side under the display screen 120 in a splicing manner, and the plurality of sensors The sensing area of the chip together constitutes the fingerprint collection area 130 of the fingerprint identification module 140.
  • the fingerprint collection area 130 of the fingerprint identification module 140 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the sensor chips, so that the fingerprint collection area of the optical fingerprint module 130 130 can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the multiple sensor chips may be individually packaged sensor chips, or multiple chips (Die) packaged in the same chip package.
  • the multiple sensor chips can also be fabricated on different regions of the same chip by a semiconductor process.
  • the area or light sensing range of the optical sensing array of the fingerprint identification module 140 corresponds to the fingerprint collection area 130 of the fingerprint identification module 140.
  • the fingerprint collection area 130 of the fingerprint recognition module 140 may be equal to or not equal to the area or the light sensing range of the optical sensing array of the fingerprint recognition module 140, which is not specifically limited in the embodiment of the present application.
  • the fingerprint collection area 130 of the fingerprint identification module 140 can be designed to be substantially the same as the area of the sensing array of the fingerprint identification module 140.
  • the design of the light path for converging light or the design of the light path for reflecting light through a macro lens can make the fingerprint collection area 130 of the fingerprint recognition module 140 larger than the area of the fingerprint recognition module 140 sensing array.
  • the optical path design of the fingerprint identification module 140 is exemplified below.
  • the optical collimator may be specifically a collimator layer made on a semiconductor silicon wafer. , It has a plurality of collimating units or micro-holes.
  • the collimating unit may be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be
  • the sensor chip receives the light whose incident angle is too large and is attenuated by multiple reflections inside the collimating unit. Therefore, each sensor chip can basically only receive the reflected light reflected by the fingerprint pattern directly above it, which can effectively Improve the image resolution, thereby improving the fingerprint recognition effect.
  • a collimating unit may be configured for one optical sensing unit in the optical sensing array of each sensor chip, and the collimating unit may be attached to the corresponding optical sensing unit.
  • the multiple optical sensing units can also share one collimating unit, that is, the one collimating unit has an aperture large enough to cover the multiple optical sensing units. Since one collimating unit can correspond to multiple optical sensing units, the correspondence between the spatial period of the display screen 120 and the spatial period of the sensor chip is destroyed.
  • the spatial structure of the light-emitting display array of the display screen 120 and the optical sensing of the sensor chip is similar, which can effectively prevent the fingerprint identification module 140 from using the light signal passing through the display screen 120 to perform fingerprint imaging to generate moiré fringes, which effectively improves the fingerprint identification effect of the fingerprint identification module 140.
  • the optical lens may include an optical lens (Lens) layer, which has one or more lens units, such as one or more aspheric lenses.
  • the lens group is used to converge the reflected light reflected from the finger to the sensing array of the sensor chip below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may also be formed with a pinhole or a micro-aperture in the optical path of the lens unit, for example, one or more light-shielding sheets may be formed in the light path of the lens unit, of which at least one light-shielding sheet A light-transmitting micro-hole may be formed in the optical axis or optical center area of the lens unit, and the light-transmitting micro-hole may be used as the aforementioned pinhole or micro-aperture.
  • the pinhole or micro-aperture diaphragm can cooperate with the optical lens layer and/or other optical film layers above the optical lens layer to expand the field of view of the fingerprint recognition module 140 to improve the fingerprint recognition module 140 Fingerprint imaging effect.
  • one optical lens can be configured for each sensor chip to perform fingerprint imaging, or multiple sensor chips can be configured with one optical lens to achieve light convergence and fingerprint imaging. Even when a sensor chip has two sensing arrays (Dual Array) or multiple sensing arrays (Multi-Array), the sensor chip can also be equipped with two or more optical lenses to cooperate with the two sensing arrays or Multiple sensing arrays perform optical imaging, thereby reducing the imaging distance and enhancing the imaging effect.
  • the micro-lens layer may have a micro-lens array formed by a plurality of micro-lenses, which may be obtained through a semiconductor growth process or other The process is formed above the sensing array of the sensor chip, and each microlens can correspond to one of the sensing units of the sensing array.
  • Other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer.
  • the microlens layer and the sensing unit may also include multiple The light-blocking layer of the micro-hole, wherein the micro-hole is formed between the corresponding micro-lens and the sensing unit, and the light-blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and allow light to pass through all
  • the micro-lens is converged into the micro-hole and is transmitted to the sensing unit corresponding to the micro-lens through the micro-hole to perform optical fingerprint imaging.
  • an optical filter may be provided above the microlens layer or in the optical path between the microlens layer and the sensor chip (hereinafter also referred to as an optical fingerprint sensor).
  • the filter may be disposed above the microlens layer.
  • the filter may be connected to the microlens layer through a buffer layer, and the buffer layer may be a transparent medium layer. , Can be used to fill the surface of the micro lens layer,
  • the filter may be fixed above the microlens layer by a fixing device, for example, a sealant or other support is provided in the non-photosensitive area around the microlens layer to support and fix the filter.
  • a fixing device for example, a sealant or other support is provided in the non-photosensitive area around the microlens layer to support and fix the filter.
  • the filter may also be arranged in the optical path between the microlens layer and the sensor chip, for example, the filter may be arranged above the sensor chip, Specifically, the filter can be fixed above the sensor chip by a fixing device, for example, a sealant or other support is provided in the non-photosensitive area of the sensor chip to support and fix the filter. In an evaporation process or a sputtering process, coating is performed on the sensor chip to form the filter, that is, the filter is integrated with the sensor chip. It can be understood that the filter can also be coated on other optical film layers, which is not limited here.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the micro lens layer, its specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the fingerprint identification module 140 can be used to collect user fingerprint information (such as fingerprint image information).
  • the display screen 120 can adopt a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
  • the fingerprint recognition module 140 can use the display unit (ie, the OLED light source) of the OLED display screen located in the fingerprint collection area 130 as the excitation light source for optical fingerprint detection.
  • the display screen 120 When a finger touches, presses, or approaches (for ease of description, collectively referred to as pressing in this application) in the fingerprint collection area 130, the display screen 120 emits a beam of light to the finger above the fingerprint collection area 130. The surface is reflected to form reflected light or is scattered inside the finger to form scattered light. In related patent applications, for ease of description, the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Because the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light from the fingerprint ridge and the fingerprint ridge have different light intensities. After the reflected light passes through the display screen 120, it is affected by the fingerprint.
  • the sensor chip in the identification module 140 receives and converts it into a corresponding electrical signal, that is, a fingerprint detection signal; fingerprint image data can be obtained based on the fingerprint detection signal, and fingerprint matching verification can be further performed, so that the electronic device 100 realizes the optical fingerprint recognition function.
  • the electronic device 100 adopting the above structure does not need to reserve a special space on the front of the fingerprint button (such as the Home button), so a full screen solution can be adopted. Therefore, the display area 102 of the display screen 120 can be substantially extended to the entire front surface of the electronic device 100.
  • the fingerprint identification module 140 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection and identification.
  • the fingerprint identification module 140 can be applied not only to self-luminous displays such as OLED displays, but also to non-self-luminous displays, such as liquid crystal displays or other passive light-emitting displays.
  • the optical fingerprint system of the electronic device 100 may also include an excitation light source for optical fingerprint detection.
  • the light source may specifically be an infrared light source or a light source of non-visible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display or in the edge area under the protective cover of the electronic device 100, and the fingerprint recognition module 140 may
  • the liquid crystal panel or the protective cover is arranged under the edge area and guided by the light path so that the fingerprint detection light can reach the fingerprint identification module 140; or, the fingerprint identification module 140 can also be arranged under the backlight module, and
  • the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the fingerprint recognition module 140 by opening holes or other optical designs on the film layers such as the diffusion sheet, the brightness enhancement sheet, and the reflection sheet.
  • the fingerprint identification module 140 adopts a built-in light source or
  • the electronic device 100 may further include a protective cover 110.
  • the cover 110 may be specifically a transparent cover, such as a glass cover or a sapphire cover, which is located above the display screen 120 and covers the front of the electronic device 100, and the surface of the cover 110 may also be provided with a protective layer. Therefore, in the embodiment of the present application, the so-called finger pressing the display screen 120 may actually refer to the finger pressing the cover 110 above the display 120 or covering the surface of the protective layer of the cover 110.
  • a circuit board 150 such as a flexible printed circuit (FPC) (Flexible Printed Circuit, FPC), may also be provided under the fingerprint identification module 140.
  • FPC Flexible Printed Circuit
  • the fingerprint recognition module 140 can be soldered to the circuit board 150 through pads, and realize electrical interconnection and signal transmission with other peripheral circuits or other components of the electronic device 100 through the circuit board 150.
  • the fingerprint recognition module 140 can receive the control signal of the processing unit of the electronic device 100 through the circuit board 150, and can also output the fingerprint detection signal from the fingerprint recognition module 140 to the processing unit of the electronic device 100 through the circuit board 150. Control unit, etc.
  • FIG. 3 to 6 are schematic structural diagrams of a fingerprint detection device 200 according to an embodiment of the present application.
  • the fingerprint detection device 200 is suitable for electronic equipment with a display screen.
  • the fingerprint detection device 200 may be suitable for the electronic device 100 shown in FIG. 1 or FIG. 2 and the fingerprint detection device 200 may be set on the display screen of the electronic device.
  • the fingerprint detection device 200 includes a substrate 210, an optical path layer 220, a first sensor chip 230, a bracket 251 and a filter layer 260.
  • the lower surface of the filter layer 260 is provided with a silk-screened support ink 261.
  • the support ink 261 can be located on the lower surface of the filter layer 260 at any position corresponding to the sensing area of the first sensor chip 230.
  • the optical path layer 220 is disposed below the filter layer 260, and there is a gap between the upper surface of the optical path layer 220 and the upper surface of the supporting ink 261.
  • the supporting ink 261 can also support the filter layer 260, So that a gap is maintained between the lower surface of the filter layer 260 and the upper surface of the optical path layer; the first sensor chip 230 is disposed under the optical path layer 220; the upper surface of the substrate 210 is formed with a first groove extending downward, and At least a part of the sensor chip 230 is disposed in the first groove and is electrically connected to the substrate 210; a bracket 251 is disposed above the substrate 210 around the first sensor chip 230 to support the filter layer 260.
  • the first sensor chip 230 is used to receive a fingerprint detection signal passing through the filter layer 260 and the optical path layer 220 after returning from a human finger above the display screen, and the fingerprint detection signal is used to detect fingerprint information of the finger.
  • the filter layer 260 is disposed above the optical path layer 220.
  • This external filter layer 260 can effectively block the influence of ambient light on the fingerprint recognition process and prevent users from fingerprinting When unlocking, the image contrast is reduced due to the intervention of strong light, thereby preventing unlocking abnormal problems; and in the lower surface of the filter layer 260 corresponding to the sensing area of the fingerprint chip, a silk-printed support ink 261 is provided, and the filter is supported by the support ink 261
  • the middle position of the optical layer 260 prevents the filter layer 260 from deforming and contacting the optical path layer 220 when the fingerprint recognition module 200 is in use, such as when fingerprint information is collected.
  • the optical path layer 220 of the fingerprint detection device 200 of the embodiment of the present application is directly disposed on the upper surface of the first sensor chip 230, and the lower surface of the first sensor chip 230 is fixed on the substrate 210, which can avoid being carried alone.
  • the optical path layer 220 and the first sensor chip 230 are provided with a housing, which reduces the size (for example, thickness) of the fingerprint detection device 200; and the fingerprint detection device 200 is arranged in the groove of the substrate, which can reduce The thickness of the fingerprint detection device 200 is described.
  • the tight fit between the various layers in the thickness direction ensures that the thickness of the fingerprint detection device is reduced to the greatest extent.
  • the optical path layer 220 is directly disposed on the upper surface of the first sensor chip 230, the image collection field of view of the fingerprint detection device 200 is only affected by the area of the optical path layer 220 and the corresponding first sensor chip 230. Based on this, the area of the optical path layer 220 and the area of the corresponding first sensor chip 230 can be reasonably designed according to actual needs to meet the needs of different users and different customers (for example, it can meet the large-area image acquisition field of view Demand).
  • the fingerprint recognition module 200 further includes a first gold wire 250 for electrically connecting the first sensor chip 230 and the substrate 210, and the first gold wire 250 is located on the In the gap between the side wall of the first sensor chip and the side wall of the first groove, and between the side wall of the bracket close to the first sensor chip and the side wall of the first sensor chip .
  • the substrate 210 of the embodiment of the present application may include a first cover layer 212, a first conductive layer 211 layer 212, a base layer 213, a second conductive layer 214, and a second cover layer 215 in order from top to bottom.
  • the upper surface of the substrate 210 extends downward in the first area and penetrates the first covering layer 212 and the first conductive layer 211 to form a first groove, and the upper surface of the substrate 210 is in contact with the
  • the second area connected to the first area extends downward and penetrates the first covering layer 212 to form the pad 2111 of the substrate 210.
  • the substrate 210 may include conductive layers other than the first conductive layer 211 and the second conductive layer 214.
  • the first conductive layer 211 or the second conductive layer 214 may be a copper layer or a copper foil layer.
  • the first covering layer 212 or the second covering layer 213 may be an insulating layer (for example, a resin layer).
  • the optical path layer 220 is disposed above the first sensor chip 230, and the lower surface of the first sensor chip 230 can be fixed into the first groove by a first fixing glue 240.
  • the first sensor chip 230 is connected to the pad 2111 of the substrate 210 through the first gold wire 250, and the first sensor chip 230 is used to receive the light path returned by the human finger above the display screen.
  • the fingerprint detection signal guided by the layer 220, and the fingerprint detection signal is used to detect the fingerprint information of the finger.
  • the lower surface of the first sensor chip 230 is pasted in the first groove by the first fixing glue 240, so that at least a part of the first sensor chip 230 is disposed in the first groove and passes through
  • the first gold wire 250 is electrically connected to the substrate 210; wherein, the first sensor chip 230 can be disposed under the display screen of an electronic device through the substrate 210, and the first sensor chip 230 is used for receiving The fingerprint detection signal returned by the reflection or scattering of the human finger above the display screen, and the fingerprint information of the finger is detected based on the fingerprint detection signal to perform fingerprint registration or identification.
  • the first sensor chip 230 may include multiple chips or one chip.
  • the first sensor chip 230 may include multiple optical fingerprint sensor chips, and the multiple optical fingerprint sensor chips are arranged side by side.
  • the first groove is spliced into an optical fingerprint sensor chip assembly.
  • the optical fingerprint sensor chip assembly can be used to obtain multiple fingerprint images at the same time, and the multiple fingerprint images can be used as one fingerprint image for fingerprint registration or identification after being spliced.
  • the optical path layer 220 is directly arranged on the upper surface of the first sensor chip 230, and the lower surface of the first sensor chip 230 is fixed on the substrate 210 by the first fixing glue 240, which can avoid separate
  • a housing is provided to carry the optical path layer 220 and the first sensor chip 230, which reduces the size (for example, the thickness) of the fingerprint detection device 200.
  • the first groove can reduce the thickness of the fingerprint detection device 200.
  • the substrate 210 pad 2111 for electrically connecting the first sensor chip 230 is formed, which can be used for electrically connecting the first sensor chip 230.
  • a sensor chip 230 and the first gold wire 250 of the substrate 210 provide accommodating space.
  • the space occupied by the first gold wire 250 above the substrate 210 is reduced, thereby reducing the fingerprint detection The thickness of the device 200.
  • the tight fit between the layers in the thickness direction ensures that the thickness of the fingerprint detection device 200 is reduced to the greatest extent.
  • the optical path layer 220 is directly arranged on the upper surface of the first sensor chip 230, the image collection field of view of the fingerprint detection device 200 is only affected by the area of the optical path layer 220 and the corresponding first sensor chip 230. Based on this, the area of the optical path layer 220 and the area of the corresponding first sensor chip 230 can be reasonably designed according to actual needs to meet the needs of different users and different customers (such as the needs of large-area image acquisition field of view) ).
  • the technical solution of the present application can not only reduce the thickness of the fingerprint detection device 200, but also can ensure a sufficiently large image acquisition field of view.
  • the gap d1 between the sidewall of the first sensor chip 230 and the sidewall of the first groove can not only be used as the dimensional tolerance of the first sensor chip 230 and/or as the first groove
  • the dimensional tolerance can also be used as the installation tolerance of the first sensor chip 230, and accordingly, the yield rate of the fingerprint detection device 200 can be improved.
  • the dimensional tolerance may be the absolute value of the difference between the maximum allowable limit size minus the minimum limit size, or the dimensional tolerance may be the difference between the allowable upper deviation and the lower deviation.
  • Limit deviation limit size-basic size
  • upper deviation maximum limit size-basic size
  • lower deviation minimum limit size-basic size.
  • the dimensional tolerance of the first sensor chip 230 may be an allowable amount of variation in the process of cutting the first sensor chip 230. In the case of the same basic size, the smaller the dimensional tolerance, the higher the dimensional accuracy.
  • the mounting tolerance of the first sensor chip 230 may refer to the allowable offset distance between the first limit mounting position and the second limit mounting position, and the first limit mounting position may be the closest allowed
  • the installation position of the first side wall of the first groove, the second limit installation position may be the allowable installation position closest to the second side wall of the first groove, and the first side wall The second side wall is opposite to the side wall.
  • the width of the gap d1 between the side wall of the first sensor chip 230 and the side wall of the first groove may also be other values, or fall within a range of other preset values. The application does not make specific restrictions on this.
  • the width of the gap d1 between the side wall of the first sensor chip 230 and the side wall of the first groove may also be 100 um or 300 um.
  • the side wall of the first sensor chip 230 and The width of the gap d1 between the side walls of the first groove may also be within 100um-300un.
  • this application does not specifically limit the thickness of each component or layer in the fingerprint detection device 200, as long as the structural relationship between the various components or layers adopts the design solution of this application, and is closely matched
  • the method to control the thickness of the fingerprint detection device falls within the protection scope of this application.
  • the thickness of the substrate 210 in the embodiment of the present application is less than or equal to 150um.
  • the thickness of the substrate 210 can be set to 130um.
  • the thickness of the first covering layer 212 and the thickness of the second covering layer may be set to be the same, and the thickness of the first conductive layer 211 and the thickness of the second conductive layer may be set to be the same.
  • the thickness of the first covering layer 212 and the thickness of the second covering layer may both be set to be less than or equal to 30um, for example, they may both be set to 20um.
  • the thickness of the first conductive layer 211 and the thickness of the The thickness of the second conductive layer can be set to be less than or equal to 20um, for example, can be set to 13um, and the thickness of the substrate can be set to be less than or equal to 80um, for example, can be set to 64um.
  • the thickness of the first sensor chip 230 can be set to be less than or equal to 150um, for example, can be specifically set to 60um; the thickness of the optical path layer 220 is less than or equal to 30um, for example, can be set to 16um or 15.7um;
  • the maximum arc height d6 of the first gold wire 250 can be set to be less than or equal to 60um, for example, can be set to 40um, and the thickness of the first fixing glue 240 can be set to be less than or equal to 30um, for example, can be set to 15um .
  • the thickness of, the thickness of the first fixing glue 240, or the maximum arc height d6 of the first gold wire 250 may also be other values or within a preset value range, which is not specifically limited in this application.
  • bracket 251 in the embodiment of the present application is provided on the upper surface of the first covering layer 212 and located outside the first sensor chip 230, and may also be used to fix the filter layer 260.
  • the bracket 251 is fixed on the upper surface of the first covering layer 212 by a bracket fixing glue 253 and is located outside the first sensor chip 230.
  • the material of the bracket 251 includes but is not limited to metal, resin, glass fiber composite board, glue layer, and the like.
  • the bracket 251 is a polyethylene glycol terephthalate (PET) glue layer.
  • PET polyethylene glycol terephthalate
  • the bracket 251 may be a bracket formed of foam material.
  • the bracket fixing glue may be a double-sided glue.
  • the bracket 251 may be disposed above the substrate 210 and located at the outer side or the surrounding area of the first groove and the pad of the substrate 210 (for electrically connecting the first sensor chip 230).
  • the thickness of the bracket 251 (including the bracket fixing glue 253) can be set according to actual applications, for example, it can be set to be less than or equal to 150um, for example, the thickness of the bracket 251 can be set It is 70um, that is, the thickness at C in FIGS.
  • 3 to 6 from top to bottom may include: the thickness (for example, 70um) of the bracket 251 (including the bracket fixing glue 253) and the thickness of the substrate 210, wherein the thickness of the substrate 210 includes The thickness of the first covering layer 212 (for example, 20um), the thickness of the first conductive layer 211 (for example, 13um), the thickness of the substrate (for example, 64um), the thickness of the second conductive layer (For example, 13um) and the thickness of the second cover layer (for example, 20um).
  • the width of the gap d2 formed by the first sensor chip 230 and the bracket 251 is greater than or equal to the sidewall of the first sensor chip 230 and the first sensor chip 230.
  • the width of the gap d1 formed between the side walls of a groove, the outside of the bracket 251 is shortened by a predetermined distance d3 in a direction approaching the first sensor chip 230 relative to the outside of the first covering layer 212.
  • the width of the gap d2 formed by the first sensor chip 230 and the bracket 251 may be set to 100-400um, for example, d2 may be 270um, and the preset distance d3 may be set to 100-400um. 400um, for example, d3 can be 200um.
  • the gap d2 formed by the first sensor chip 230 and the bracket 251 can be used not only as a dimensional tolerance of the bracket 251, but also as an installation tolerance of the bracket 251. Accordingly, the fingerprint detection device can be improved 200's yield.
  • the preset distance d3 can be used not only as a dimensional tolerance of the bracket 251, but also as an installation tolerance of the bracket 251, and accordingly, the yield rate of the fingerprint detection device 200 can be improved.
  • the gap d2 formed by the first sensor chip 230 and the bracket 251, the preset distance d3, or the thickness of the bracket 251 may be other specific values, or may Within the preset value range.
  • the thickness of the bracket 251 may also be 80um.
  • the fingerprint detection device 200 may further include a gold wire protective glue 252; wherein the gold wire protective glue 252 is used to encapsulate the first gold wire 250.
  • the gold wire protective glue 252 is used to encapsulate the first gold wire 250.
  • the thickness of the gold wire protective glue 252 may be greater than or less than or equal to the thickness of the optical path layer 220, the thickness of the first sensor chip 230, and the thickness of the first fixing glue 240.
  • the sum of thickness may be equal to the maximum arc height of the first gold wire 250, the thickness of the first sensor chip 230, and the thickness of the first fixing glue 240 Sum.
  • the thickness of the gold wire protective glue 252 can be set according to actual applications, for example, it can be set to be less than or equal to 200 um, or other values.
  • the thickness at B may include: the maximum arc height of the first gold wire 250 (for example, 40um), the thickness of the first sensor chip 230 (for example, 60um) from top to bottom. ), the thickness of the first chip fixing glue 230 (for example, 15um), the thickness of the substrate (for example, 64um), the thickness of the second conductive layer (for example, 13um), and the thickness of the second covering layer (For example, 20um).
  • bracket 251 other parameters can also be designed to guide the preparation and installation of the bracket 251.
  • the pad 2111 of the first sensor chip 230 close to the substrate 210 used to electrically connect the first sensor chip 230
  • the width of the gap d4 between one side and the bracket 251 is greater than that of the pad 2111 (used to electrically connect the first sensor chip 230) of the first sensor chip 230 away from the substrate 210 and the side
  • the gap d2 between the brackets 251 is to reserve enough space for the bracket fixing glue 252.
  • the width of the gap d4 between the side of the pad 2111 of the first sensor chip 230 close to the substrate 210 and the bracket 251 may be 300um or other values.
  • the fingerprint detection device 200 may further include a second sensor chip 280, a second fixing glue 281 and a second gold wire 282.
  • the upper surface of the substrate 210 extends downward in a third area connected to the second area and penetrates the first covering layer 212 and the first conductive layer 211 to form a second groove
  • the The second sensor chip 280 is fixed in the second groove by a second fixing glue 281
  • the second sensor chip 280 is connected to the pad 2111 of the substrate 210 by the second gold wire 282, so that the The second sensor chip 280 is connected to the first sensor chip 230, and the second sensor chip 280 is used to cooperate with the first sensor chip 230 to perform under-screen fingerprint recognition.
  • the processing tasks of the first sensor chip 230 can be shared, which is equivalent to replacing a fully functional and thicker sensor chip with a thinner first sensor arranged side by side
  • the chip 230 and the second sensor chip 280 correspondingly, can reduce the thickness of the fingerprint detection device 200 without affecting the fingerprint recognition performance.
  • the width of the gap d7 between the sidewall of the second sensor chip 280 and the sidewall of the second groove is in the range of 100-400um, for example, it can be set to 200um.
  • the thickness of the second sensor chip 280 may be in the range of 100-400um, and may be set equal to that of the first sensor chip 230, for example, both may be set to 60um; similarly, the second sensor chip
  • the maximum arc height of the wire 282 can be set to be less than or equal to 60um, or it can be set to be the same as the arc height of the first gold wire 250, for example, both can be set to 40um;
  • the thickness of the second fixing glue 281 can be set to be less than Or equal to 30um, it can also be set to be the same as the first fixing glue 240, for example, both are set to 15um.
  • the maximum arc height of 282 or the thickness of the second fixing glue 281 may also be other specific values or within a preset value range, which is not specifically limited in the embodiment of the present application.
  • the gap between the sidewall of the second sensor chip 280 and the sidewall of the second groove can not only serve as the dimensional tolerance of the second sensor chip 280 and/or serve as the size tolerance of the second groove
  • the dimensional tolerance can also be used as the installation tolerance of the second sensor chip 280, and accordingly, the yield rate of the fingerprint detection device 200 can be improved.
  • the filter layer 260 is provided Above the optical path layer 220.
  • the filter layer 260 of the embodiment of the present application is used to reduce undesired ambient light in fingerprint sensing, so as to improve the optical sensing of the first sensor chip 230 to the received light.
  • the filter layer 260 can be used to filter out light of a specific wavelength, for example, near-infrared light and part of red light.
  • a human finger absorbs most of the energy of light with a wavelength below 580nm.
  • the filter can be designed to filter light with a wavelength from 580nm to infrared to reduce the impact of ambient light on optical detection in fingerprint sensing. influences.
  • the filter layer 260 may include one or more optical filters, and the one or more optical filters may be configured as, for example, band-pass filters to allow the transmission of light emitted by the OLED screen while blocking Other light components such as infrared light in sunlight.
  • the filter layer 260 of the embodiment of the present application may be fixed above the bracket 251. Specifically, for the side of the lower surface of the filter layer 260 close to the first gold wire 250, it can be fixed on the upper surface of the first sensor chip 230, and the other side of the lower surface of the filter layer 260 The edge is fixed on the upper surface of the bracket 251.
  • the side of the lower surface of the filter layer 260 that is close to the first gold wire can be fixed on the upper surface of the first sensor chip 230 by the first adhesive 262, and the filter layer 260 The other sides of the lower surface can be fixed on the upper surface of the bracket 251 through the second adhesive 263.
  • the thickness of the first adhesive and the second adhesive can be set according to actual applications to ensure that the filter layer 260 is parallel to the optical path layer 220, or the filter layer 260 and the sensing area of the upper surface of the first sensor chip 230 The plane is parallel.
  • the thickness of the first adhesive 262 may be set to be less than or equal to 60, for example, 48um
  • the thickness of the second adhesive may be set to be less than or equal to 60, for example, 20um.
  • the lower surface of the filter layer 260 is rectangular, one side of the lower surface of the filter layer 260 is close to the first gold wire 250, and the other three sides are not close to the first gold wire 250, and are not close to three sides of the gold wire.
  • the area can be fixed on the upper surface of the bracket 251, and the side close to the first gold wire 250 is fixed on the upper surface of the first sensor chip 230, so as to avoid affecting the installation of the first gold wire 250; at the same time, the lower part of the filter layer 260
  • the side of the surface close to the first gold wire 250 is fixed on the upper surface of the first sensor chip 230 by the first adhesive 262, which can also prevent the gold wire protective glue used to fix the gold wire from flowing into the light path Floor.
  • the thickness of the filter layer 260 can be set according to actual applications.
  • the thickness of the filter layer 260 can be set to be less than or equal to 220um; for example, considering the existing technology and mass production, the thickness of the filter layer Usually 110um is selected.
  • the supporting ink 261 may be located at any position on the lower surface of the filter layer 260 corresponding to the position of the sensing area of the first sensor chip 230.
  • the position of the supporting ink 261 of the screen printing is usually set to coincide with the center of the sensing area of the first sensor chip 230 below, which means that The center of the supporting ink 261 is set to coincide with the center of the sensing area of the first sensor chip 230 in the vertical direction.
  • the supporting ink 261 is located between the filter layer 260 and the optical path layer 220 for supporting the filter layer 200 so that a gap is maintained between the filter layer 260 and the optical path layer 220, and at the same time, the lower surface of the supporting ink 261 is There may also be gaps between the upper surfaces of the optical path layer 220.
  • the thickness of the supporting ink 261 increases, that is, the greater the distance between the upper surface of the optical path layer 220 and the lower surface of the filter layer 260, the contrast of Newtonian conversion gradually decreases.
  • Figure 7 shows several Newton ring effect diagrams. As shown in Figure 7, h represents the distance between the filter layer and the upper surface of the optical path layer above the sensor chip.
  • the thickness of the supporting ink is usually set to be less than or equal to 30um, for example, it can be set to 25um, that is, the distance between the filter layer 260 and the upper surface of the lower optical path layer 220 is 25um to avoid the appearance of Newton's rings. It can be understood that the distance h is not limited to 25um, and it can be adjusted according to actual conditions.
  • the area of the supporting ink can be set according to the actual application.
  • the larger the size of the supporting ink 261 of the screen printing the better the supporting effect on the filter layer 260, that is to say The less the optical layer is deformed, the less likely it is to produce Newton's rings.
  • the area of the supporting ink should not be too large.
  • the area of the supporting ink 261 can usually be set to be less than or equal to 40*40um, for example, it can be set to 30um* 30um square.
  • the material of the filter layer 260 may be glass, crystal, resin film, etc., or other materials.
  • the light entrance surface of the filter layer 260 is optically inorganic coating or organic black coating to achieve ultra-low reflection of light, for example, the reflectivity is usually set to ⁇ 1%.
  • the thickness at A may include the thickness of the filter layer 260 (for example, 110um), the thickness of the supporting ink 261 (for example, 25um), and the lower surface of the supporting ink 261 from top to bottom.
  • the gap d5 (for example, 7.3um) between the upper surface of the optical path layer 220, the thickness of the optical path layer 220 (for example, 15.7), the thickness of the first sensor chip 230 (for example, 60um), the thickness of the first chip fixing glue 230 (For example, 15um), the thickness of the base material (for example, 64um), the thickness of the second conductive layer (for example, 13um), and the thickness of the second covering layer (for example, 20um).
  • the total thickness at A is the total thickness of the fingerprint detection device 200.
  • the total thickness of the fingerprint detection device 200 can be set at 0.15-0.6 mm. Within range.
  • the light path layer 220 of the embodiment of the present application may include a lens layer 221 and a light path guide layer 222.
  • the lens layer 221 is used to converge the light signal returned by the human finger above the display screen to the light path guide layer 222.
  • the light path guiding layer 222 guides the light signal condensed by the lens layer 221 to the first sensor chip 230.
  • the filter layer 260 of the fingerprint detection device 200 is disposed above the optical path layer 220, there may be a case where the height of the upper surface of the holder 251 is smaller than the height of the upper surface of the filter layer 260, for example, as shown in FIGS. 3 to 6, As a result, the height of the upper surface of the entire fingerprint detection device is inconsistent.
  • foam can be provided to make the upper surface of the fingerprint detection device 200 flat, so as to facilitate the installation of the fingerprint detection device 200 under the display screen.
  • the fingerprint detection device may further include: a foam layer arranged above the support 251 around the filter layer 260, the foam layer is provided with an opening penetrating the foam layer, the The first sensor chip 230 receives the fingerprint detection signal through the opening of the foam layer; the upper surface of the foam layer is flush with the upper surface of the filter layer 260, so that the upper surface of the fingerprint detection device 200 smooth.
  • the arc height position of the first gold wire 250 can be designed to be embedded in the foam layer; or, according to the arc height position of the first gold wire 250, a foam layer can be arranged above it.
  • the fingerprint detection device 200 when installed in an electronic device, it can be connected to the main board of the electronic device through an additional flexible circuit board.
  • the substrate 210 may further include a gold finger 2122 of the substrate 210.
  • the gold finger 2122 of the substrate 210 is used to connect to a flexible circuit board. Accordingly, the substrate 210 passes through the flexible circuit.
  • the board is connected to the main board of the electronic device.
  • the fingerprint detection device 200 may further include a flexible circuit
  • the flexible circuit board 290 is formed with gold fingers 291 of the flexible circuit board 290; the gold fingers 291 of the flexible circuit board 290 pass through the anisotropic conductive film 292 is electrically connected to the golden finger 2122 of the substrate 210.
  • the gold finger 291 of the flexible circuit board 290 can be pressed to the gold finger 2122 of the substrate 210, which is equivalent to that the fingerprint detection device 200 can be configured with different specifications
  • the flexible circuit board makes the fingerprint detection device 200 more versatile, and accordingly, can meet the needs of different users or customers.
  • the fingerprint detection device 200 may further include a protective adhesive 293 of an anisotropic conductive adhesive film 292, and the protective adhesive 293 may be located on the anisotropic conductive adhesive. Both ends of the film 292 are used to protect the anisotropic conductive adhesive film 292, and further protect the gold fingers 291 of the flexible circuit board 290 and the gold fingers 2122 of the substrate 210. As shown in FIG. 9, in some embodiments of the present application, the fingerprint detection device 200 may further include an image processor 296, and the image processor 296 is provided at one end of the flexible circuit board 290.
  • the image processor 296 may be a microprocessor (Micro Processing Unit, MCU) for receiving fingerprint detection signals (for example, fingerprint images) sent from the first sensor chip 230 through the flexible circuit board 290, and correcting The fingerprint detection signal is simply processed.
  • the fingerprint detection device 200 may further include at least one capacitor 295 disposed at one end of the flexible circuit board 290, and the at least one capacitor 295 is used for optimization ( For example, filter processing) the fingerprint detection signal collected by the first sensor chip 230.
  • each chip in the first sensor chip 230 corresponds to one or more capacitors. As shown in FIG.
  • the fingerprint detection device 200 may further include a connector 294 provided at one end of the flexible circuit board 290, and the connector 294 may be used to communicate with an external device. Or other components of the electronic device (such as a main board) are connected to realize communication with the external device or communication with other components of the electronic device.
  • the connector 294 may be used to connect the processor of the electronic device, so that the processor of the electronic device receives the fingerprint detection signal processed by the image processor 296, and based on the processed fingerprint detection signal Fingerprint detection signal for fingerprint identification.
  • FIGS. 3 to 9 are only examples of embodiments of the present application, and should not be construed as limiting the present application.
  • the lens layer 221 is used as a device for condensing optical signals in the optical path layer 220.
  • the lens layer 221 may also use an optical collimator.
  • the optical collimator refer to the related description of the optical path design of the fingerprint detection device 130 in the foregoing content.
  • the lens layer 221 may have a micro lens array formed by a plurality of micro lenses
  • the light path guiding layer 222 may be a light blocking layer
  • the light blocking layer has a plurality of micro holes and is disposed on the micro lens layer 221
  • the micro holes correspond to the micro lenses one-to-one
  • one or more optical sensing units in the first sensor chip 230 correspond to one micro lens in the lens layer 221.
  • the optical path layer 220 may also include other optical film layers, such as a dielectric layer or a passivation layer.
  • the fingerprint detection device 200 according to the embodiment of the present application is described above with reference to FIGS. 3 to 9, and the electronic equipment installed with the fingerprint detection device 200 is described below.
  • FIG. 10 is a schematic structural diagram of an electronic device 300 equipped with the fingerprint detection device 200 shown in FIG. 4 according to an embodiment of the present application.
  • the electronic device 300 includes a display screen, a middle frame 360 located below the display screen, a battery 370 located below the middle frame 360, and a battery easy pull glue 380 located below the battery.
  • the display screen includes a transparent cover 310, a display panel 320, a cushion layer 330, and a copper layer 340 from top to bottom.
  • the display screen is provided with a transparent cover plate 310, a display panel 320, a cushion layer 330, and a copper layer 340. Open the window.
  • the buffer layer 330 may be provided with a first window 331 penetrating through the buffer layer 330
  • the copper layer 340 may be provided with a second window 341 penetrating the copper layer 340.
  • the display screen may be an OLED organic light-emitting panel made of low temperature polysilicon (LTPS) technology, which has ultra-thin thickness, light weight, and low power consumption, and can be used to provide clearer image.
  • the middle frame 360 may be used to carry or support various devices or components in the electronic device 300.
  • the devices or components include, but are not limited to, batteries, cameras, antennas, motherboards, and the display screen.
  • the buffer layer 330 may also be referred to as a screen print layer or an embossing layer.
  • the screen print layer may have graphics and text, and the graphics and text can be used as logos such as trademark patterns.
  • the buffer layer 330 may be a black flake layer or a printed layer for shielding light.
  • the buffer layer 330 may be a layer structure formed of foam material.
  • the copper layer 340 may also be called a heat dissipation layer (used to reduce the temperature of the display screen) or a radiation prevention layer.
  • the buffer layer 330 and the copper layer 340 can be combined into the rear panel of the display screen, or the copper layer 340 is called the rear panel of the display screen.
  • the fingerprint detection device 200 includes a substrate 210, an optical path layer 220, a filter layer 260, a first sensor chip 230, a first fixing glue 240, a bracket 251, and a first gold wire 250.
  • the substrate 210 includes a first covering layer 212, a first conductive layer 211 layer 212, a base layer 213, a second conductive layer 214, and a second covering layer 215 in order from top to bottom.
  • the optical path layer 220 includes a lens layer 221 and an optical path guiding layer 222 thereunder.
  • the fingerprint detection device 200 may further include a gold wire protective glue 252.
  • the fingerprint detection device 200 may further include a foam layer 270 to make the surface of the fingerprint detection device 200 flush.
  • the fingerprint detection device 200 may further include a second sensor chip 280, a second fixing glue 281, and a second gold wire 282.
  • the foam 270 on the upper surface of the fingerprint detection device 200 is fixed to the window on the lower surface of the copper layer 340 through the first PSA 391 (that is, the first window 331 and the The surrounding area of the second window 341) so that the first sensor chip 230 is aligned with the window setting, and the first sensor chip is used to receive the human finger passing through the upper part of the display screen through the window A fingerprint detection signal returned and guided through the optical path layer, where the fingerprint detection signal is used to detect fingerprint information of the finger.
  • the display screen may be a soft screen or a hard screen.
  • the finger When a finger is placed above the bright OLED screen, the finger will reflect the light emitted by the OLED screen, and this reflected light will penetrate the OLED screen to the bottom of the OLED screen.
  • the optical path layer located under the OLED screen can be used to filter out the infrared signal components in the leaked light. Since the fingerprint is a diffuse reflector, the light signal formed by the reflection or diffusion of the finger will exist in all directions.
  • the fingerprint detection device 200 collects the light signal leaking from the upper side of the OLED screen, and performs imaging of the fingerprint image based on the received light signal.
  • the optical path layer 220 is directly arranged on the upper surface of the first sensor chip 230, and the lower surface of the first sensor chip 230 is fixed on the substrate 210 by the first fixing glue 240, which can avoid separate
  • a housing is provided to carry the optical path layer 220 and the first sensor chip 230, which reduces the size (for example, the thickness) of the fingerprint detection device 200.
  • the first PSA uses the foam on the upper surface of the substrate 210 to paste the fingerprint detection device 200 to the copper layer 340 of the display screen, compared to directly pasting the fingerprint detection device 200
  • the display panel (ie, OLED layer) integrated to the display screen can not only prevent the fingerprint detection device 200 from being attached to the display screen and affect the performance of the display screen, but also can reduce the installation of the fingerprint detection device
  • the degree of difficulty of 200 correspondingly, can reduce the installation complexity of the fingerprint detection device 200 and improve the yield of the electronic device 300.
  • pasting the fingerprint detection device 200 to the copper layer 340 of the display screen can also prevent damage to the display screen during the process of disassembling the fingerprint detection device 200. Accordingly, the fingerprint detection device 200 can be reduced in size.
  • Disassembly complexity is improved and the yield rate of the electronic device 300 is improved.
  • the buffer layer 330 and the copper layer 340 between the display panel 320 and the fingerprint detection device 200 can be avoided.
  • the display panel 320 and the fingerprint detection device 200 are squeezed to affect the performance of the display panel 320 and the fingerprint detection device 200.
  • sticking the fingerprint detection device 200 to the copper layer 340 of the display screen can avoid the opening of the window compared to directly sticking the fingerprint detection device 200 to the display panel 320 of the display screen.
  • the size of is too large, correspondingly, the visibility of the fingerprint detection device 200 when the user views the fingerprint detection device 200 from the front of the display screen can be reduced, and further, the appearance of the electronic device 300 can be beautified.
  • the outer side of the foam layer 270, part of the outer side of the bracket 251, and the outer side of the first PSA 391 are provided with UV curing glue 392 to fix the display screen.
  • the fingerprint detection device 200 In some embodiments of the present application, the outer side of the foam layer 270, part of the outer side of the bracket 251, and the outer side of the first PSA 391 are provided with UV curing glue 392 to fix the display screen.
  • the fingerprint detection device 200 is provided with UV curing glue 392 to fix the display screen.
  • the UV curing adhesive 392 can not only fix the fingerprint detection device 200 relative to the display screen, but also utilize the characteristics of the UV curing adhesive 392 to reduce the difficulty of installing the fingerprint detection device 200.
  • FIG. 10 is only an example of pasting the fingerprint detection device 200 to the display screen of an electronic device, and should not be construed as a limitation of the present application.
  • the middle frame 360 is formed with a third opening under the fingerprint detection device 200.
  • the fingerprint detection device 200 is attached to the copper layer 340 of the display screen in a hanging manner.
  • a third groove is formed extending downward on the upper surface of the middle frame, and the bottom of the fingerprint detection device 200 contacts the middle frame.
  • the fingerprint detection device 200 is still attached to the copper layer 340 of the display screen by hanging, but there is no gap between the fingerprint detection device 200 and the display screen.
  • the third groove is only used to provide a accommodating position for the fingerprint detection device 200, and is not used to fix the fingerprint detection device 200.
  • the fingerprint detection device 200 is designed through a laminated structure, so that the components are closely matched in the thickness direction (that is, the components are closely matched in the thickness direction without leaving a gap). Based on the current thickness of the middle frame, even if all components are kept
  • the buffer layer 330 and the copper layer 340 in the display screen can also leave a gap of at least 200um between the bottom of the fingerprint detection device 200 and the battery 370, which is sufficient to place the fingerprint detection device 200 on the display. Between the screen and the battery 370.
  • the original internal structure of the electronic device 300 can also improve the utilization of the internal space of the electronic device 300.
  • the volume of the battery 370 can be increased, and the saved space can be used to accommodate the increased volume of the battery 370. Accordingly, the electronic device 300 can be added without increasing the volume of the electronic device 300. The longevity and user experience.
  • the solution of installing the fingerprint detection module 200 on the copper layer 340 of the display screen is described above in conjunction with FIG. 10, but the embodiment of the present application is not limited to this.
  • the fingerprint detection device 200 can also be used to be installed and fixed on the middle frame 380.
  • FIG. 11 is another schematic structural diagram of an electronic device 300 installed with the fingerprint detection device 200 shown in FIGS. 5 and 6 according to an embodiment of the present application.
  • the specific functions and structure of the fingerprint detection device 200 can be understood with reference to the reference numerals in FIGS. 5 and 6, and the functions and structures of various components in the electronic device 300 can be understood with reference to FIG. 10. In order to avoid repetition, here It will not be repeated here.
  • a third groove is formed on the upper surface of the middle frame 380 extending downward, and the bottom of the fingerprint detection device 200 is arranged in the third groove through a second PSA 393.
  • the third groove is only used to provide a receiving position for the fingerprint detection device 200, and is also used to fix the fingerprint detection device 200.
  • the gap formed between the walls can be used as a dimensional tolerance or installation tolerance of the fingerprint detection device 200, and can also be used as a dimensional tolerance of the third groove.
  • the buffer layer 330 may be provided with a first opening 331 penetrating through the buffer layer 330, and the copper layer 340 may be provided with penetrating through the copper layer 340.
  • the size of the second opening 341 of the first opening 331 is smaller than the size of the second opening 341, so that the buffer layer 220 and the fingerprint detection device 200 form a buffer space.
  • the buffer space may be provided with a buffer material 396, and the buffer material 396 includes but is not limited to foam.
  • the upper surface of the fingerprint detection device 200 abuts against the buffer layer 330 through the buffer material 396, for example, the foam 270 on the upper surface of the fingerprint detection device 200 abuts against the buffer layer through the buffer material 396 330.
  • the buffer material 396 can not only be used to prevent the fingerprint detection device 200 from touching the display screen and affect the detection performance of the fingerprint detection device 200, but it can also be sealed from dust to ensure the fingerprint detection.
  • the detection performance of the device 200 increases the service life of the fingerprint detection device 200.
  • the buffer material 396 can also reduce the visibility of the fingerprint detection device 200 when the user views the fingerprint detection device 200 from the front of the display screen, thereby beautifying the appearance of the electronic device 300.
  • the internal space of the electronic device 300 can be reasonably utilized, thereby reducing the thickness of the electronic device and improving user experience.
  • FIG. 10 and FIG. 11 are only examples of the present application, and should not be construed as limiting the present application.
  • the fingerprint detection device may also be attached to the display screen and the middle frame at the same time.
  • the fingerprint detection device 300 can also be glued to the side surface of the groove of the middle frame 380.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the elements is only a logical function division, and there may be other divisions in actual implementation, for example, multiple elements or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or elements, and may also be electrical, mechanical or other forms of connection.
  • the functional elements mentioned above may be integrated and arranged, or each element may exist separately and physically.
  • Each functional element can be implemented in the form of hardware or software functional unit. If implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a
  • the storage medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请提供了一种指纹检测装置和电子设备,能够避免牛顿环问题。该指纹检测装置设置在电子设备的该显示屏的下方,该指纹检测装置包括:滤光层,该滤光层下表面丝印有支撑油墨,该支撑油墨用于支撑滤光层与光路层的上表面之间保持有空隙;光路层,设置在该滤光层下方;第一传感器芯片,设置在该光路层下方;基板,该基板的上表面向下延伸形成有第一凹槽,该第一传感器芯片的至少一部分设置在该第一凹槽内,并电连接至该基板;支架,围绕该第一传感器芯片设置在该基板的上方,用于支撑该滤光层;其中,该第一传感器芯片用于接收经由该显示屏上方的人体手指返回后经过该滤光层和该光路层的指纹检测信号,以用于检测该手指的指纹信息。

Description

指纹检测装置和电子设备 技术领域
本申请实施例涉及指纹识别领域,并且更具体地,涉及指纹检测装置和电子设备。
背景技术
屏下指纹识别方案是指将光学或超声波指纹识别模组贴合在有机发光二极管(Organic Light-Emitting Diode,OLED)屏幕的发光层的底部,也就是不管光学指纹识别模组还是超声波指纹识别模组都需要和发光层的底部发光层紧密粘结在一起。
针对屏下光学指纹方案,有一种是指纹识别模组包含用于光路调整的准直器。这种指纹识别模组的准直器的周期需与屏幕显示器的面板走线形成的周期保持相同,才能确保采集的图像没有摩尔条纹,才能不影响指纹功能的正常使用。另一方面,其所采用的滤光片通常是采用光学胶填充贴合在传感器表面,一旦覆盖传感器表面的胶厚不均,就会存在牛顿环现象,从而影响指纹功能的正常使用。
发明内容
本申请实施例提供一种指纹检测装置和电子设备,能够避免牛顿环问题。
第一方面,提供了一种指纹检测装置,适用于具有显示屏的电子设备,所述指纹检测装置设置在所述显示屏的下方,所述指纹检测装置包括:滤光层,所述滤光层下表面设置有丝印的支撑油墨;光路层,设置在所述滤光层下方,所述光路层的上表面与所述支撑油墨的下表面之间具有空隙,所述支撑油墨用于支撑所述滤光层,使得所述光路层的上表面与所述滤光层的下表面之间保持有空隙;第一传感器芯片,设置在所述光路层下方;基板,所述基板的上表面向下延伸形成有第一凹槽,所述第一传感器芯片的至少一部分设置在所述第一凹槽内,并电连接至所述基板;支架,围绕所述第一传感器芯片设置在所述基板的上方,用于支撑所述滤光层;其中,所述第一传感器芯片用于接收经由所述显示屏上方的人体手指返回后经过所述滤光层和所述光路层的指纹检测信号,所述指纹检测信号用于检测所述手指的指纹信息。
本申请实施例的指纹识别模组将滤光层设置在光路层的上方,这种外置滤光层的方式可以有效阻隔环境光对指纹识别过程的影响,避免用户在进行指纹解锁时由于强光介入而造成的图像对比度下降,进而防止解锁异常问题;并且在滤光层的下表面中间对应指纹芯片的感应区域丝印有支撑油墨,通过该支撑油墨支撑滤光层的中间位置,防止由于滤光层变形而导致的牛顿环问题。
另外,本申请实施例的所述指纹检测装置的光路层直接设置在第一传感器芯片的上表面,所述第一传感器芯片的下表面固定在基板上,能够避免单独为携带有所述光路层以及所述第一传感器芯片设置外壳,降低了所述指纹检测装置的尺寸(例如厚度);并且,将指纹检测装置设置在基板的凹槽内,能够降低所述指纹检测装置的厚度。
再次,在厚度方向上通过各个层之间的紧密配合,保证最大程度的降低所述指纹检测装置的厚度。
最后,由于所述光路层直接设置在所述第一传感器芯片的上表面,所述指纹检测装置的图像采集视场仅受到所述光路层的面积以及对应的第一传感器芯片的面积的影响,基于此,可以根据实际需求合理设计光路层的面积及其对应的第一传感器芯片的面积,以满足不同用户以及不同客户的需求(例如可以满足大面积图像采集视场的需求)。
在一些可能的实现方式中,所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间、以及所述支架的靠近所述第一传感器芯片的侧壁和所述第一传感器芯片的侧壁之间均存在间隙。
通过在所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间设计一定的间隙,以及在支架侧壁和第一传感器芯片侧壁之间设置间隙,即使所述第一传感器芯片的制备产品的尺寸与所述第一传感器芯片设计尺寸之间存在差异,或者即使所述第一凹槽的实际尺寸和所述第一凹槽的设计尺寸之间存在差异,支架的实际尺寸和设计尺寸之间存在差异,也不影响所述将所述第一指纹传感器芯片安装在所述第一凹槽内。
换言之,所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间的间隙不仅可以作为所述第一传感器芯片的尺寸公差和/或作为所述第一凹槽的尺寸公差,也可以作为所述第一传感器芯片的安装公差;相应的,所述支架的侧壁和所述第一传感器芯片的侧壁之间的间隙不仅可以作为所述第一传感 器芯片的尺寸公差和/或作为所述支架的尺寸公差,也可以作为所述第一传感器芯片的安装公差,从而能够提升所述指纹检测装置的良率。
在一些可能的实现方式中,所述指纹检测装置还包括:第一金线,用于电连接所述第一传感器芯片和所述基板的导电层,位于所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间、以及所述支架的靠近所述第一传感器芯片的侧壁和所述第一传感器芯片的侧壁之间的间隙内。
在一些可能的实现方式中,所述第一传感器芯片的侧壁和所述支架的靠近所述第一传感器芯片的侧壁之间的间隙的宽度大于或等于所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间的间隙的宽度。
在一些可能的实现方式中,所述第一传感器的不靠近所述第一金线的侧壁和所述第一凹槽的侧壁之间的间隙的宽度的取值范围为100-400um,例如可以设置为200um,所述第一传感器的不靠近所述第一金线的侧壁和所述支架靠近所述第一传感器芯片的侧壁支架的间隙的取值范围为100-400um,例如可以设置为270um。
在一些可能的实现方式中,所述滤光层的下表面中靠近所述第一金线的一边固定在所述第一传感器芯片的上表面,所述滤光层的下表面中的其他边固定在所述支架的上表面。
例如,滤光层的下表面可以为矩形,则该滤光层下表面的一边靠近金线,另外三边不靠近金线,不靠近金线的三边区域可以固定在支架的上表面,而靠近金线的一边固定在第一传感器芯片的上表面,这样可以避免影响金线的安装。
在一些可能的实现方式中,所述滤光层的下表面中靠近所述第一金线的一边通过第一背胶固定在所述第一传感器芯片的上表面,所述滤光层的下表面中的其他边通过第二背胶固定在所述支架的上表面。
滤光层的下表面中靠近所述第一金线的一边通过第一背胶固定在所述第一传感器芯片的上表面,可以防止用于固定金线的金线保护胶流入光路层。
在一些可能的实现方式中,所述滤光层的厚度小于或者等于220um。
厚度考虑到现有工艺以及可量产性,滤光层的厚度通常会选择110um。
在一些可能的实现方式中,所述支撑油墨的中心与所述第一传感器芯片的感应区域的中心在竖直方向上重合。
由于中心位置对于整片的滤光层的支撑力更均衡,因此丝印的支撑油墨 的位置通常设置为与下方的第一传感芯片的感应区域的中心重合。
在一些可能的实现方式中,所述支撑油墨的厚度小于或者等于30um。
随着支撑油墨的厚度的增大,牛顿换的对比度逐渐下降,当距离在25um时,牛顿环基本消失,因此,通常将支持油墨的厚度设置为25um。
在一些可能的实现方式中,所述支撑油墨的面积小于或者等于40*40um,例如,可以设置为30um*30um。
在不影响指纹识别的前提下,丝印的支撑油墨的尺寸越大,对滤光层的支撑效果越好,也就是说滤光层越不易变形,也就越不易产生牛顿环。
在一些可能的实现方式中,所述滤光层的进光面对光的反射率小于或者等于1%。
在一些可能的实现方式中,所述指纹检测装置的总厚度的取值范围为0.15-0.6mm。
在一些可能的实现方式中,所述基板由上至下依次包括第一覆盖层、第一导电层层、基材层、第二导电层以及第二覆盖层,所述基板的上表面在第一区域向下延伸并贯通所述第一覆盖层和所述第一导电层以形成所述第一凹槽,所述基板的上表面在与所述第一区域相连的第二区域向下延伸并贯通所述第一覆盖层以形成所述基板的焊盘;所述第一传感器芯片通过所述第一金线连接至所述基板的焊盘。
通过去除所述基板在所述第一区域处的第一覆盖层和所述第一导电层,形成用于容纳所述第一固定胶和所述第一传感器芯片的第一凹槽,能够降低所述指纹检测装置的厚度。
其次,通过去除所述基板的所述第二区域处的第一覆盖层,形成用于电连接所述第一传感器芯片的基板焊盘,能够为用于电连接所述第一传感器芯片和所述基板的所述第一金线提供容纳空间,相应的,降低了所述第一金线在所述基板上方的占用空间,进而能够降低所述指纹检测装置的厚度。
在一些可能的实现方式中,所述指纹检测装置还包括:第一固定胶,所述第一传感器芯片的下表面通过所述第一固定胶固定至所述第一凹槽内。
在一些可能的实现方式中,所述第一覆盖层的厚度等于所述第二覆盖层的厚度,所述第一导电层的厚度与所述第二导电层的厚度相同。
在一些可能的实现方式中,所述基板的总厚度小于或者等于150um,所述第一覆盖层的厚度和所述第二覆盖层的厚度均小于或者等于30um,所述 第一导电层的厚度和所述第二导电层的厚度均小于或者等于20um,所述基材的厚度为80um。
在一些可能的实现方式中,所述第一传感器芯片的厚度小于或者等于150um,所述第一金线的最大弧高小于或者等于60um,所述第一固定胶的厚度小于或者等于30um。
在一些可能的实现方式中,所述支架的外侧相对所述第一覆盖膜的外侧向靠近所述第一传感器芯片的方向缩短预设距离。
在一些可能的实现方式中,所述预设距离的取值范围为100-400um,例如,可以设置为200um。
所述预设距离不仅可以作为所述支架的尺寸公差,也可以作为所述支架的安装公差,相应的,能够提升所述指纹检测装置的良率。
在一些可能的实现方式中,所述指纹检测装置还包括:第二传感器芯片、第二固定胶以及第二金线;其中,所述基板的上表面在与所述第二区域相连的第三区域向下延伸并贯通所述第一覆盖层和所述第一导电层以形成第二凹槽,所述第二传感器芯片通过所述第二固定胶固定在所述第二凹槽内,所述第二传感器芯片通过所述第二金线连接至所述基板的焊盘,以使得所述第二传感器芯片连接至所述第一传感器芯片,所述第二传感器芯片用于配合所述第一传感器芯片进行屏下指纹识别。
通过设置的所述第二传感器芯片,可以分担所述第一传感器芯片的处理任务,相当于,将功能完整的且较厚的一个传感器芯片替换为并列设置的厚度较薄的第一传感器芯片和第二传感器芯片,相应的,能够在不影响指纹识别性能的基础上降低所述指纹检测装置的厚度。
在一些可能的实现方式中,所述第二传感器芯片的侧壁和所述第二凹槽的侧壁之间存在间隙。
通过在所述第二传感器芯片的侧壁和所述第二凹槽的侧壁之间设计一定的间隙,即使所述第二传感器芯片的制备产品的尺寸与所述第二传感器芯片的设计尺寸之间存在差异,或者即使所述第二凹槽的实际尺寸和所述第二凹槽的设计尺寸之间存在差异,也不影响所述将所述第二指纹传感器芯片安装在所述第二凹槽内。
换言之,所述第二传感器芯片的侧壁和所述第二凹槽的侧壁之间的间隙不仅可以作为所述第二传感器芯片的尺寸公差和/或作为所述第二凹槽的尺 寸公差,也可以作为所述第二传感器芯片的安装公差,相应的,能够提升所述指纹检测装置的良率。
在一些可能的实现方式中,所述第二传感器芯片的不靠近所述第一金线的侧壁和所述第二凹槽的侧壁之间的间隙的宽度的取值范围为100-400um,例如,可以取200um。
在一些可能的实现方式中,所述第一传感器芯片的厚度等于所述第二传感器芯片的厚度,所述第一固定胶的厚度等于第二固定胶的厚度,所述第一金线的最大弧高等于所述第二金线的最大弧高。
在一些可能的实现方式中,所述指纹检测装置还包括:金线保护胶,用于封装所述第一金线和所述第二金线。
通过所述金线保护胶,能够保证所述基板和所述第一传感器芯片之间的电连接的稳定性,相应的,能够保证所述指纹检测装置的性能。
在一些可能的实现方式中,所述金线保护胶的高度小于或者等于200um。
在一些可能的实现方式中,所述金线保护胶的厚度小于或等于所述光路层的厚度、所述第一传感器芯片的厚度以及所述第一固定胶的厚度之和。
将所述金线保护胶的厚度构造为小于或等于所述光路层的厚度、所述第一传感器芯片的厚度以及所述第一固定胶的厚度之和,能够在有效封装所述第一金线的同时尽可能的降低所述指纹检测装置的厚度。
在一些可能的实现方式中,所述指纹检测装置还包括:泡棉层,围绕所述滤光层设置在所述支架的上方,所述泡棉层设置有贯通所述泡棉层的开口,所述第一传感器芯片通过所述泡棉层的开口接收所述指纹检测信号;所述泡棉层的上表面与所述滤光层的上表面齐平。
由于滤光层设置在光路层上方,可能会存在支架的上表面的高度小于滤光层的上表面的高度,导致整个指纹检测装置的上表面高度不一致,此时可以通过设置泡棉,使得指纹检测装置的上表面平整,进而方便将将该指纹检测装置安装在显示屏的下方。
在一些可能的实现方式中,所述支架为聚对苯二甲酸乙二醇酯PET胶层,用于连接所述基板和所述泡棉层;或者,所述支架的下表面通过支架固定胶固定在所述基板的上表面,所述支架上表面通过支架固定胶固定所述泡棉层。
在一些可能的实现方式中,所述支架的厚度小于或者等于150um。
在一些可能的实现方式中,所述显示屏由上至下依次包括透明盖板、显 示面板、缓冲层和铜层,所述显示屏设置有贯通所述缓冲层和所述铜层的开窗;所述泡棉的上表面通过第一压敏胶(pressure-sensitive adhesive,PSA)固定在所述铜层的下表面的所述开窗的周围区域,以使得所述指纹识别模组固定在所述显示屏的下方,所述第一传感器芯片的感应区域对准所述开窗设置,以使得所述第一传感器芯片接收所述指纹检测信号。
在一些可能的实现方式中,所述指纹检测装置的外侧和所述第一PSA的外侧设置有紫外(ultraviolet,UV)固化胶,以固定所述指纹检测装置相对所述显示屏的相对位置。
在一些可能的实现方式中,所述显示屏由上至下依次包括透明盖板、显示面板、缓冲层和铜层,所述显示屏设置有贯通所述缓冲层和所述铜层的开窗,所述缓冲层的开窗的尺寸小于所述铜层的开窗的尺寸;所述指纹检测装置位于所述电子设备的中框的凹槽内,所述泡棉的上表面在所述铜层的开窗范围内通过泡沫胶固定在所述缓冲层的下表面的开窗的周围区域,以使得所述指纹识别模组固定在所述显示屏的下方,所述第一传感器芯片的感应区域对准所述缓冲层的开窗设置,以使得所述第一传感器芯片接收所述指纹检测信号。
在一些可能的实现方式中,所述指纹检测装置的底部通过第二PSA设置在所述中框的凹槽内。
在一些可能的实现方式中,所述光路层包括透镜层和光路引导层,所述微透镜用于将经由所述显示屏上方的人体手指返回的光信号会聚至所述光路引导层,所述光路引导层将所述微透镜会聚的光信号引导至所述第一传感器芯片。
在一些可能的实现方式中,所述光路层的厚度小于或者等于30um。
在一些可能的实现方式中,所述指纹检测装置还包括:柔性电路板,所述柔性电路板形成有所述柔性电路板的金手指;各向异性导电胶膜,所述柔性电路板的金手指通过所述各向异性导电胶膜电连接至所述基板的金手指。
通过所述各向异性导电胶膜,将所述柔性电路板的金手指压合至所述基板的金手指,相当于,可以为所述指纹检测装置配置不同规格的柔性电路板,使得所述指纹检测装置更具有通用性,相应的,能够满足不同用户或客户的需求。
另外,手指电连接所述基板和所述柔性电路板,不仅能够保证触片之间 的绝缘性,还能够保证所述基板和所述柔性电路板之间的导电性,特别是所述指纹传感器芯片包括多个芯片的情况下,可以通过金手指将所述基板上的多个芯片快速电连接至所述柔性电路板,进而能够降低安装复杂度以及拆卸复杂度。
第二方面,提供了一种电子设备,包括:显示屏;指纹检测装置,设置在所述显示屏下方,所述指纹检测装置为第一方面或第一方面中的任一可能实现的方式中所述的指纹检测装置,且其指纹采集区域至少部分位于所述显示屏的显示区域之中。
在一些可能的实现方式中,所述显示屏由上至下依次包括透明盖板、显示面板、缓冲层和铜层,其中,所述显示屏设置有贯通所述缓冲层和所述铜层的开窗,所述指纹检测装置的光路层对准所述开窗设置,以便所述指纹检测装置通过所述开窗接收经由所述显示屏上方的人体手指返回的指纹检测信号,所述指纹检测信号用于检测所述手指的指纹信息。
在一些可能的实现方式中,所述指纹检测装置的上表面的边沿区域通过第一PSA固定所述铜层的下表面的所述开窗的周围区域,以使得所述指纹检测装置的光路层对准所述开窗设置。
在一些可能的实现方式中,所述电子设备还包括中框,所述中框的上表面向下延伸形成有第三凹槽,所述指纹检测装置的底部通过第二PSA设置在所述第三凹槽内。
附图说明
图1是本申请可以适用的电子设备的平面示意图。
图2是图1所示的电子设备的侧剖面示意图。
图3至图6、图8至图9是本申请实施例的指纹识别装置的示意性结构图。
图7是本申请实施例的滤光层与传感器芯片之间不同距离时牛顿环现象的示意图。
图10和图11是本申请实施例的包括指纹识别装置的电子设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种电子设备。
例如,智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。但本申请实施例对此并不限定。
本申请实施例的技术方案可以用于生物特征识别技术。其中,生物特征识别技术包括但不限于指纹识别、掌纹识别、虹膜识别、人脸识别以及活体识别等识别技术。为了便于说明,下文以指纹识别技术为例进行说明。
本申请实施例的技术方案可以用于屏下指纹识别技术和屏内指纹识别技术。
屏下指纹识别技术是指将指纹识别模组安装在显示屏下方,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。具体地,指纹识别模组使用从电子设备的显示组件的顶面返回的光来进行指纹感应和其他感应操作。这种返回的光携带与显示组件的顶面接触或者接近的物体(例如手指)的信息,位于显示组件下方的指纹识别模组通过采集和检测这种返回的光以实现屏下指纹识别。其中,指纹识别模组的设计可以为通过恰当地配置用于采集和检测返回的光的光学元件来实现期望的光学成像,从而检测出所述手指的指纹信息。
相应的,屏内(In-display)指纹识别技术是指将指纹识别模组或者部分指纹识别模组安装在显示屏内部,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。
图1和图2示出了屏下指纹识别技术可以适用的电子设备100的示意图,其中图1为电子设备100的正面示意图,图2为图1所示的电子设备100的部分剖面结构示意图。
如图1和图2所示,电子设备100可以包括显示屏120和指纹识别模组140。
显示屏120可以为自发光显示屏,其采用具有自发光的显示单元作为显示像素。比如显示屏120可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。在其他可替代实施例中,显示屏120也可以为液晶显示屏(Liquid Crystal Display,LCD)或者其他被动发光显示屏,本申请实施例对此不做限制。
此外,显示屏120还可以具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,电子设备100可以包括触摸传感器,所述触摸传感器可以具体为触控面板(Touch Panel,TP),其可以设置在所述显示屏120表面,也可以部分集成或者整体集成到所述显示屏120内部,从而形成所述触控显示屏。
指纹识别模组140可以为光学指纹识别模组,比如包括光学指纹传感器。
具体来说,指纹识别模组140可以包括具有光学感应阵列的传感器芯片(后面也称为光学指纹传感器)。其中,光学感应阵列包括多个光学感应单元,每个光学感应单元可以具体包括光探测器或者光电传感器。或者说,指纹识别模组140可以包括光探测器(Photo detector)阵列(或称为光电探测器阵列、光电传感器阵列),其包括多个呈阵列式分布的光探测器。
如图1所示,指纹识别模组140可以设置在所述显示屏120的下方的局部区域,从而使得指纹识别模组140的指纹采集区域(或检测区域)130至少部分位于所述显示屏120的显示区域102内。
当然,在其他可替代实施例中,指纹识别模组140也可以设置在其他位置,比如显示屏120的侧面或者电子设备100的边缘非透光区域。这种情况下,可以通过光路设计将显示屏120的至少部分显示区域的光信号导引到指纹识别模组140,从而使得所述指纹采集区域130实际上位于所述显示屏120的显示区域内。
在本申请的一些实施例中,指纹识别模组140可以仅包括一个传感器芯片,此时指纹识别模组140的指纹采集区域130的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹采集区域130的特定位置,否则指纹识别模组140可能无法采集到指纹图像而造成用户体验不佳。
在本申请的另一些实施例中,指纹识别模组140可以具体包括多个传感器芯片;所述多个传感器芯片可以通过拼接方式并排设置在所述显示屏120的下方,且所述多个传感器芯片的感应区域共同构成所述指纹识别模组140的指纹采集区域130。也即是说,所述指纹识别模组140的指纹采集区域130可以包括多个子区域,每个子区域分别对应于其中一个传感器芯片的感应区域,从而将所述光学指纹模组130的指纹采集区域130可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指 纹输入操作。可替代地,当所述传感器芯片数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
应理解,本申请实施例对所述多个传感器芯片的具体形式不做限定。
例如,所述多个传感器芯片可以分别是独立封装的传感器芯片,也可以是封装在同一个芯片封装体内的多个芯片(Die)。
又例如,还可以通过半导体工艺在同一个芯片的不同区域上制作形成所述多个传感器芯片。
如图2所示,指纹识别模组140的光学感应阵列的所在区域或者光感应范围对应所述指纹识别模组140的指纹采集区域130。其中,指纹识别模组140的指纹采集区域130可以等于或不等于指纹识别模组140的光学感应阵列的所在区域的面积或者光感应范围,本申请实施例对此不做具体限定。
例如,通过光线准直的光路设计,指纹识别模组140的指纹采集区域130可以设计成与所述指纹识别模组140的感应阵列的面积基本一致。
又例如,通过微距镜头进行汇聚光线的光路设计或者反射光线的光路设计,可以使得所述指纹识别模组140的指纹采集区域130的面积大于所述指纹识别模组140感应阵列的面积。
下面对指纹识别模组140的光路设计进行示例性说明。
以指纹识别模组140的光路设计采用具有高深宽比的通孔阵列的光学准直器为例,所述光学准直器可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔,所述准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到所述准直单元的光线可以穿过并被其下方的传感器芯片接收,而入射角度过大的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个传感器芯片基本只能接收到其正上方的指纹纹路反射回来的反射光,能够有效提高图像分辨率,进而提高指纹识别效果。
进一步地,当指纹识别模组140包括多个传感器芯片时,可以为每个传感器芯片的光学感应阵列中的一个光学感应单元配置一个准直单元,并贴合设置在其对应的光学感应单元的上方。当然,所述多个光学感应单元也可以共享一个准直单元,即所述一个准直单元具有足够大的孔径以覆盖多个光学感应单元。由于一个准直单元可以对应多个光学感应单元,破坏了显示屏120 的空间周期和传感器芯片的空间周期的对应性,因此,即使显示屏120的发光显示阵列的空间结构和传感器芯片的光学感应阵列的空间结构类似,也能够有效避免指纹识别模组140利用经过显示屏120的光信号进行指纹成像生成莫尔条纹,有效提高了指纹识别模组140的指纹识别效果。
以指纹识别模组140的光路设计采用光学镜头的光路设计为例,所述光学镜头可以包括光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的传感器芯片的感应阵列,以使得所述感应阵列可以基于所述反射光进行成像,从而得到所述手指的指纹图像。
所述光学透镜层在所述透镜单元的光路中还可以形成有针孔或者微孔光阑,比如,在所述透镜单元的光路中可以形成有一个或者多个遮光片,其中至少一个遮光片可以在所述透镜单元的光轴或者光学中心区域形成有透光微孔,所述透光微孔可以作为上述针孔或者微孔光阑。所述针孔或者微孔光阑可以配合所述光学透镜层和/或所述光学透镜层上方的其他光学膜层,扩大指纹识别模组140的视场,以提高所述指纹识别模组140的指纹成像效果。
进一步地,当指纹识别模组140包括多个传感器芯片时,可以为每一个传感器芯片配置一个光学镜头进行指纹成像,或者为多个传感器芯片配置一个光学镜头来实现光线汇聚和指纹成像。甚至于,当一个传感器芯片具有两个感应阵列(Dual Array)或多个感应阵列(Multi-Array)时,也可以为这个传感器芯片配置两个或多个光学镜头配合所述两个感应阵列或多个感应阵列进行光学成像,从而减小成像距离并增强成像效果。
以指纹识别模组140的光路设计采用微透镜(Micro-Lens)层的光路设计为例,所述微透镜层可以具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述传感器芯片的感应阵列上方,并且每一个微透镜可以分别对应于所述感应阵列的其中一个感应单元。所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,所述微透镜层和所述感应单元之间还可以包括具有多个微孔的挡光层,其中所述微孔形成在其对应的微透镜和感应单元之间,所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使光线通过所述微透镜汇聚到所述微孔内部并经由所述微孔传输到所述微透镜对应的感应单元,以进行光学指纹成像。
可选地,所述微透镜层上方或者所述微透镜层和所述传感器芯片(后面也称为光学指纹传感器)之间的光路中还可以设置滤光片。
作为一种可选的实施例,所述滤光片可以设置于所述微透镜层上方,例如,所述滤光片可以通过缓冲层与微透镜层连接,所述缓冲层可以为透明介质层,可以用于填平所述微透镜层的表面,
或者所述滤光片可以通过固定装置固定到所述微透镜层的上方,例如在所述微透镜层四周的非感光区域设置框胶或者其它支撑件,以支撑并固定所述滤波片。
作为一种可选的实施例,所述滤光片还可以设置于所述微透镜层和所述传感器芯片之间的光路中,例如,所述滤光片可以设置在所述传感器芯片上方,具体的,所述滤光片可以通过固定装置固定到传感器芯片的上方,例如,在所述传感器芯片的非感光区域设置框胶或者其它支撑件,以支撑并固定所述滤波片,还可以采用蒸镀工艺或溅射工艺,在所述传感器芯片上进行镀膜,形成所述滤波片,即所述滤波片与所述传感器芯片集成为一体。可以理解的是,所述滤波片还可以为在其他光学膜层的镀膜,此处不做限定。
应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在所述准直器层或者所述光学透镜层下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
指纹识别模组140可以用于采集用户的指纹信息(比如指纹图像信息)。
以显示屏120采用OLED显示屏为例,显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。指纹识别模组140可以利用OLED显示屏的位于指纹采集区域130的显示单元(即OLED光源)来作为光学指纹检测的激励光源。
当手指触摸、按压或者接近(为便于描述,在本申请中统称为按压)在指纹采集区域130时,显示屏120向指纹采集区域130上方的手指发出一束光,这一束光在手指的表面发生反射形成反射光或者经过手指的内部散射后而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(vally)对于光的反射能力不同,因此,来自指纹嵴的反射光和来自指纹峪的发生过具有不同的光强,反射光经 过显示屏120后,被指纹识别模组140中的传感器芯片所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述电子设备100实现光学指纹识别功能。
由此可见,用户需要对电子设备100进行指纹解锁或者其他指纹验证的时候,只需要将手指按压在位于显示屏120的指纹采集区域130,便可以实现指纹特征的输入操作。由于指纹特征的采集可以在显示屏120的显示区域102的内部实现,采用上述结构的电子设备100无需其正面专门预留空间来设置指纹按键(比如Home键),因而可以采用全面屏方案。因此,所述显示屏120的显示区域102可以基本扩展到所述电子设备100的整个正面。
当然,在其他替代方案中,指纹识别模组140也可以采用内置光源或者外置光源来提供用于进行指纹检测识别的光信号。在这种情况下,指纹识别模组140不仅可以适用于如OLED显示屏等自发光显示屏,还可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。
以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,电子设备100的光学指纹***还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在电子设备100的保护盖板下方的边缘区域,而指纹识别模组140可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述指纹识别模组140;或者,指纹识别模组140也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达指纹识别模组140。当采用所述指纹识别模组140采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理可以相同。
如图1所示,电子设备100还可以包括保护盖板110。
盖板110可以具体为透明盖板,比如玻璃盖板或者蓝宝石盖板,其位于显示屏120的上方并覆盖所述电子设备100的正面,且盖板110表面还可以设置有保护层。因此,本申请实施例中,所谓的手指按压显示屏120实际上可以是指手指按压在显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。
如图1所示,指纹识别模组140的下方还可以设置有电路板150,比如软性电路板(Flexible Printed Circuit,FPC)。
指纹识别模组140可以通过焊盘焊接到电路板150,并通过电路板150实现与其他***电路或者电子设备100的其他元件的电性互连和信号传输。比如,指纹识别模组140可以通过电路板150接收电子设备100的处理单元的控制信号,并且还可以通过电路板150将来自指纹识别模组140的指纹检测信号输出给电子设备100的处理单元或者控制单元等。
图3至图6是本申请实施例的指纹检测装置200的示意性结构图。该指纹检测装置200适用于具有显示屏的电子设备中,例如所述指纹检测装置200可以适用于如图1或图2所示的电子设备100,指纹检测装置200可以设置在电子设备的显示屏的下方。
需要说明的是,为便于说明,在本申请实施例中,相同的附图标记用于表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。
如图3所示,该指纹检测装置200包括:基板210、光路层220、第一传感器芯片230、支架251以及滤光层260。具体地,滤光层260的下表面设置有丝印的支撑油墨261,例如,该支撑油墨261可以位于滤光层260的下表面中与第一传感芯片230的感应区域相对应的位置中任意的一个区域;光路层220设置在该滤光层260的下方,该光路层220的上表面与该支撑油墨261的上表面之间具有空隙,同时,支撑油墨261还可以支撑滤光层260,以使得滤光层260下表面与光路层上表面之间保持有空隙;第一传感器芯片230设置在该光路层220下方;基板210的上表面向下延伸形成有第一凹槽,该第一传感器芯片230的至少一部分设置在该第一凹槽内,并电连接至该基板210;支架251围绕该第一传感器芯片230设置在该基板210的上方,用于支撑该滤光层260。其中,该第一传感器芯片230用于接收经由显示屏上方的人体手指返回后经过该滤光层260和该光路层220的指纹检测信号,该指纹检测信号用于检测该手指的指纹信息。
本申请实施例的指纹识别模组200将滤光层260设置在光路层220的上方,这种外置滤光层260的方式可以有效阻隔环境光对指纹识别过程的影响,避免用户在进行指纹解锁时由于强光介入而造成的图像对比度下降,进而防止解锁异常问题;并且在滤光层260的下表面中对应指纹芯片的感应区域内 设置丝印的支撑油墨261,通过该支撑油墨261支撑滤光层260的中间位置,防止所述指纹识别模组200在使用过程中,如采集指纹信息时,所述滤光层260变形接触到所述光路层220而产生牛顿环问题。
另外,本申请实施例的所述指纹检测装置200的光路层220直接设置在第一传感器芯片230的上表面,所述第一传感器芯片230的下表面固定在基板210上,能够避免单独为携带有所述光路层220以及所述第一传感器芯片230设置外壳,降低了所述指纹检测装置200的尺寸(例如厚度);并且,将指纹检测装置200设置在基板的凹槽内,能够降低所述指纹检测装置200的厚度。
再次,在厚度方向上通过各个层之间的紧密配合,保证最大程度的降低所述指纹检测装置的厚度。
最后,由于所述光路层220直接设置在所述第一传感器芯片230的上表面,所述指纹检测装置200的图像采集视场仅受到所述光路层220的面积以及对应的第一传感器芯片230的面积的影响,基于此,可以根据实际需求合理设计光路层220的面积及其对应的第一传感器芯片230的面积,以满足不同用户以及不同客户的需求(例如可以满足大面积图像采集视场的需求)。
可选地,如图3所示,该指纹识别模组200还包括第一金线250,用于电连接所述第一传感器芯片230和所述基板210,该第一金线250位于所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间、以及所述支架的靠近所述第一传感器芯片的侧壁和所述第一传感器芯片的侧壁之间的间隙内。
如图4所示,本申请实施例的基板210由上至下依次可以包括第一覆盖层212、第一导电层211层212、基材层213、第二导电层214以及第二覆盖层215,所述基板210的上表面在第一区域向下延伸并贯通所述第一覆盖层212和所述第一导电层211以形成第一凹槽,所述基板210的上表面在与所述第一区域相连的第二区域向下延伸并贯通所述第一覆盖层212以形成所述基板210的焊盘2111。
可选地,在其他可替代实施例中,所述基板210可以包括除所述第一导电层211和所述第二导电层214之外的导电层。可选地,所述第一导电层211或所述第二导电层214可以是铜层或铜箔层。可选地,所述第一覆盖层212或所述第二覆盖层213可以是绝缘层(例如树脂层)。
如图3所示,光路层220设置在所述第一传感器芯片230的上方,所述 第一传感器芯片230的下表面可以通过第一固定胶240固定至所述第一凹槽内,所述第一传感器芯片230通过所述第一金线250连接至所述基板210的焊盘2111,所述第一传感器芯片230用于接收经由所述显示屏上方的人体手指返回的并通过所述光路层220引导的指纹检测信号,所述指纹检测信号用于检测所述手指的指纹信息。
换言之,所述第一传感器芯片230下表面通过第一固定胶240粘贴在所述第一凹槽内,使得所述第一传感器芯片230的至少一部分设置在所述第一凹槽内,并通过所述第一金线250电连接至所述基板210;其中,所述第一传感器芯片230可以通过所述基板210设置在电子设备的显示屏的下方,所述第一传感器芯片230用于接收经由所述显示屏上方的人体手指反射或散射而返回的指纹检测信号,并基于所述指纹检测信号检测所述手指的指纹信息,以进行指纹注册或识别。
应理解,所述第一传感器芯片230可以包括多个芯片也可以包括一个芯片,例如所述第一传感器芯片230可以包括多个光学指纹传感器芯片,所述多个光学指纹传感器芯片并排设置在所述第一凹槽内,以拼接成一个光学指纹传感器芯片组件。所述光学指纹传感器芯片组件可以用于同时获取多张指纹图像,所述多张指纹图像拼接后可以作为一个指纹图像进行指纹注册或识别。
针对所述指纹检测装置200,光路层220直接设置在第一传感器芯片230的上表面,所述第一传感器芯片230的下表面通过所述第一固定胶240固定在基板210上,能够避免单独为携带有所述光路层220以及所述第一传感器芯片230设置外壳,降低了所述指纹检测装置200的尺寸(例如厚度)。
此外,通过去除所述基板210在所述第一区域处的第一覆盖层212和所述第一导电层211,形成用于容纳所述第一固定胶240和所述第一传感器芯片230的第一凹槽,能够降低所述指纹检测装置200的厚度。
其次,通过去除所述基板210的所述第二区域处的第一覆盖层212,形成用于电连接所述第一传感器芯片230的基板210焊盘2111,能够为用于电连接所述第一传感器芯片230和所述基板210的所述第一金线250提供容纳空间,相应的,降低了所述第一金线250在所述基板210上方的占用空间,进而能够降低所述指纹检测装置200的厚度。
再次,在厚度方向上通过各个层之间的紧密配合,保证最大程度的降低 所述指纹检测装置200的厚度。
最后,由于所述光路层220直接设置在所述第一传感器芯片230的上表面,所述指纹检测装置200的图像采集视场仅受到所述光路层220的面积以及对应的第一传感器芯片230的面积的影响,基于此,可以根据实际需求合理设计光路层220的面积及其对应的第一传感器芯片230的面积,以满足不同用户以及不同客户的需求(例如大面积图像采集视场的需求)。
综上所述,本申请的技术方案不仅能够降低所述指纹检测装置200的厚度,还能够保证具有足够大的图像采集视场。
如图3和图4所示,在本申请的一些实施例中,所述第一传感器芯片230的侧壁和所述第一凹槽的侧壁之间存在间隙d1。
通过在所述第一传感器芯片230的侧壁和所述第一凹槽的侧壁之间设计一定的间隙d1,即使所述第一传感器芯片230的制备产品的尺寸与所述第一传感器芯片230设计尺寸之间存在差异,或者即使所述第一凹槽的实际尺寸和所述第一凹槽的设计尺寸之间存在差异,也不影响所述将所述第一传感器芯片230安装在所述第一凹槽内。
换言之,所述第一传感器芯片230的侧壁和所述第一凹槽的侧壁之间的间隙d1不仅可以作为所述第一传感器芯片230的尺寸公差和/或作为所述第一凹槽的尺寸公差,也可以作为所述第一传感器芯片230的安装公差,相应的,能够提升所述指纹检测装置200的良率。所述尺寸公差可以是允许的最大极限尺寸减最小极限尺寸之差的绝对值的大小,或所述尺寸公差可以是允许的上偏差减下偏差之差大小。极限偏差=极限尺寸-基本尺寸,上偏差=最大极限尺寸-基本尺寸,下偏差=最小极限尺寸-基本尺寸。所述第一传感器芯片230的尺寸公差可以是在切削加工所述第一传感器芯片230的过程中允许的变动量。在基本尺寸相同的情况下,尺寸公差愈小,则尺寸精度愈高。类似地,所述第一传感器芯片230的安装公差可以指允许的第一极限安装位置与第二极限安装位置之间的偏移距离,所述第一极限安装位置可以是允许的最靠近所述第一凹槽的第一侧壁的安装位置,所述第二极限安装位置可以是允许的最靠近所述第一凹槽的第二侧壁的安装位置,所述第一侧壁为与所述第二侧壁相对的侧壁。
例如,所述第一传感器芯片230的侧壁和所述第一凹槽的侧壁之间的间隙的宽度d1的取值范围为100-400um,例如可以取d1=200um。当然可替代 地,所述第一传感器芯片230的侧壁和所述第一凹槽的侧壁之间的间隙d1的宽度也可以为其他数值,或者属于一个其他的预设数值范围内,本申请对此不做具体限定。例如,所述第一传感器芯片230的侧壁和所述第一凹槽的侧壁之间的间隙d1的宽度也可以是100um或300um,再如,所述第一传感器芯片230的侧壁和所述第一凹槽的侧壁之间的间隙d1的宽度还可以在100um~300un内。
需要说明的是,本申请对所述指纹检测装置200中各个部件或层的厚度不做具体限定,只要所述各个部件或层之间的结构关系采用本申请的设计方案,且通过紧密配合的方式控制指纹检测装置的厚度,其均属于本申请保护的范围。
例如,本申请实施例中的基板210的厚度小于或者等于150um,例如,可以将基板210的厚度设置为130um。其中,第一覆盖层212的厚度和所述第二覆盖层的厚度可以设置为相同,所述第一导电层211的厚度和所述第二导电层的厚度可以设置为相同。
作为示例,所述第一覆盖层212的厚度和所述第二覆盖层的厚度可以设置为均小于或者等于30um,例如,可以均设置为20um,所述第一导电层211的厚度和所述第二导电层的厚度可以设置为均小于或者等于20um,例如,可以均设置为13um,所述基材的厚度可以设置为小于或者等于80um,例如,可以设置为64um。
再例如,所述第一传感器芯片230的厚度可以设置为小于或者等于150um,例如,可以具体设置为60um;所述光路层220的厚度小于或者等于30um,例如,可以设置为16um或者15.7um;所述第一金线250的最大弧高d6可以设置为小于或者等于60um,例如,可以设置为40um,所述第一固定胶240的厚度可以设置为小于或者等于30um,例如,可以设置为15um。
当然,所述第一覆盖层212的厚度、第一导电层211的厚度、基材层213的厚度、第二导电层214的厚度、第二覆盖层215的厚度、所述第一传感器芯片230的厚度、所述第一固定胶240的厚度、或所述第一金线250的最大弧高d6也可以是其它数值或在一个预设数值范围内,本申请对此不做具体限定。
应理解,本申请实施例中的支架251设置在所述第一覆盖层212的上表面并位于所述第一传感器芯片230的外侧,还可以用于固定滤光层260。
可选地,所述支架251通过支架固定胶253固定在所述第一覆盖层212的上表面并位于所述第一传感器芯片230的外侧。例如,所述支架251的材料包括但不限于金属、树脂、玻纤复合板以及胶层等。例如,所述支架251为聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)胶层。再如,所述支架251可以是由泡棉材料形成的支架。可选地,所述支架固定胶可以为双面胶。
换言之,所述支架251可以设置在所述基板210的上方且位于所述第一凹槽和所述基板210的焊盘(用于电连接所述第一传感器芯片230)的外侧或周围区域。
可选地,如图3或者图4所示,所述支架251的厚度(包括支架固定胶253)可以根据实际应用进行设置,例如,可以设置小于或者等于150um,例如,可以设置支架251的厚度为70um,即图3至图6中C处的厚度自上至下依次可以包括:支架251(包括支架固定胶253)的厚度(例如70um)与基板210的厚度,其中,基板210的厚度包括所述第一覆盖层212的厚度(例如,20um)、所述第一导电层211的厚度(例如,13um)、所述基材的厚度(例如,64um)、所述第二导电层的厚度(例如,13um)和所述第二覆盖层的厚度(例如,20um)。
如图3所示,在本申请的一些实施例中,所述第一传感器芯片230和所述支架251形成的间隙d2的宽度大于或等于所述第一传感器芯片230的侧壁和所述第一凹槽的侧壁之间形成的间隙d1的宽度,所述支架251的外侧相对所述第一覆盖层212的外侧向靠近所述第一传感器芯片230的方向缩短预设距离d3。作为示例,所述第一传感器芯片230和所述支架251形成的间隙d2的宽度的取值范围可以设置为100-400um,例如,d2可以为270um,所述预设距离d3可以设置为100-400um,例如,d3可以为200um。
此外,所述第一传感器芯片230和所述支架251形成的间隙d2不仅可以作为所述支架251的尺寸公差,也可以作为所述支架251的安装公差,相应的,能够提升所述指纹检测装置200的良率。类似地,所述预设距离d3不仅可以作为所述支架251的尺寸公差,也可以作为所述支架251的安装公差,相应的,能够提升所述指纹检测装置200的良率。
当然,在其他可替代实施例中,所述第一传感器芯片230和所述支架251形成的间隙d2、所述预设距离d3或所述支架251的厚度可以为其他具体数 值,也可以在一个预设数值范围内。例如,所述支架251的厚度还可以是80um。
如图3所示,在本申请的一些实施例中,所述指纹检测装置200还可包括金线保护胶252;其中,所述金线保护胶252用于封装所述第一金线250。通过所述金线保护胶252,能够保证所述基板210和所述第一传感器芯片230之间的电连接的稳定性,相应的,能够保证所述指纹检测装置200的性能。
在本申请的一些实施例中,所述金线保护胶252的厚度可以大于或者小于或等于所述光路层220的厚度、所述第一传感器芯片230的厚度以及所述第一固定胶240的厚度之和。例如,如图3所示,所述金线保护胶252的厚度可以等于所述第一金线250的最大弧高、所述第一传感器芯片230的厚度以及所述第一固定胶240的厚度之和。可选地,该金线保护胶252的厚度可以根据实际应用进行设置,例如,可以设置为小于或者等于200um,或者其他数值。
例如,如图3至图6所示,B处的厚度自上至下依次可以包括:所述第一金线250的最大弧高(例如40um)、第一传感器芯片230的厚度(例如,60um)、第一芯片固定胶230的厚度(例如,15um)、所述基材的厚度(例如,64um)、所述第二导电层的厚度(例如,13um)和所述第二覆盖层的厚度(例如,20um)。
当然,针对所述支架251,还可以设计出其它参数,用来指导所述支架251的制备以及安装。例如,如图3和图4所示,在本申请的一些实施例中,所述第一传感器芯片230的靠近所述基板210的焊盘2111(用于电连接所述第一传感器芯片230)一侧和所述支架251之间的间隙d4的宽度大于所述第一传感器芯片230的背离所述基板210的焊盘2111(用于电连接所述第一传感器芯片230)一侧和所述支架251之间的间隙d2,以为所述支架固定胶252预留足够的容纳空间。可选地,所述第一传感器芯片230的靠近所述基板210的焊盘2111一侧和所述支架251之间的间隙d4的宽度可以是300um或其他数值。
如图5和图6所示,在本申请的一些实施例中,所述指纹检测装置200还可包括第二传感器芯片280、第二固定胶281以及第二金线282。
其中,所述基板210的上表面在与所述第二区域相连的第三区域向下延伸并贯通所述第一覆盖层212和所述第一导电层211以形成第二凹槽,所述第二传感器芯片280通过第二固定胶281固定在所述第二凹槽内,所述第二 传感器芯片280通过所述第二金线282连接至所述基板210的焊盘2111,以使得所述第二传感器芯片280连接至所述第一传感器芯片230,所述第二传感器芯片280用于配合所述第一传感器芯片230进行屏下指纹识别。
通过设置的所述第二传感器芯片280,可以分担所述第一传感器芯片230的处理任务,相当于,将功能完整的且较厚的一个传感器芯片替换为并列设置的厚度较薄的第一传感器芯片230和第二传感器芯片280,相应的,能够在不影响指纹识别性能的基础上降低所述指纹检测装置200的厚度。
在本申请的一些实施例中,所述第二传感器芯片280的侧壁和所述第二凹槽的侧壁之间存在间隙d7。可选地,所述第二传感器芯片280的侧壁和所述第二凹槽的侧壁之间的间隙d7的宽度的取值范围为100-400um,例如,可以设置为200um。
可选地,所述第二传感器芯片280的厚度的取值范围可以为100-400um,可以设置为与第一传感器芯片230相等,例如,可以均设置为60um;类似的,所述第二金线282的最大弧高可以设置为小于或者等于60um,也可以设置为与第一金线250的弧高相同,例如,可以均设置为40um;所述第二固定胶281的厚度可以设置为小于或者等于30um,也可以设置为与第一固定胶240相同,例如,均设置为15um。
当然,可替代地,所述第二传感器芯片280的侧壁和所述第二凹槽的侧壁之间的间隙d7的宽度、所述第二传感器芯片280的厚度、所述第二金线282的最大弧高、或所述第二固定胶281的厚度也可以为其它具体数值或在一个预设数值范围内,本申请实施例对此不做具体限定。
通过在所述第二传感器芯片280的侧壁和所述第二凹槽的侧壁之间设计一定的间隙d7,即使所述第二传感器芯片280的制备产品的尺寸与所述第二传感器芯片280的设计尺寸之间存在差异,或者即使所述第二凹槽的实际尺寸和所述第二凹槽的设计尺寸之间存在差异,也不影响所述将所述第二传感器芯片280安装在所述第二凹槽内。
换言之,所述第二传感器芯片280的侧壁和所述第二凹槽的侧壁之间的间隙不仅可以作为所述第二传感器芯片280的尺寸公差和/或作为所述第二凹槽的尺寸公差,也可以作为所述第二传感器芯片280的安装公差,相应的,能够提升所述指纹检测装置200的良率。
应理解,无论是上述如图3和图4所示的包括一个传感器芯片的指纹检 测装置,还是如图5和图6所示的包括两个传感器芯片的指纹检测装置,滤光层260均设置在光路层220的上方。
应理解,本申请实施例的滤光层260用于来减少指纹感应中的不期望的环境光,以提高所述第一传感器芯片230对接收到的光的光学感应。例如,可以通过该滤光层260具体可以用于过滤掉特定波长的光,例如,近红外光和部分的红光等。例如,人类手指吸收波长低于580nm的光的能量中的大部分,基于此,所述滤光片可以设计为过滤波长从580nm至红外的光,以减少环境光对指纹感应中的光学检测的影响。
在具体实现中,所述滤光层260可以包括一个或多个光学过滤器,所述一个或多个光学过滤器可以配置为例如带通过滤器,以允许OLED屏发射的光的传输,同时阻挡太阳光中的红外光等其他光组分。
具体地,如图3至图6所示,本申请实施例的滤光层260可以固定在支架251的上方。具体地,对于该滤光层260的下表面中靠近该第一金线250的一边,可以将其固定在该第一传感器芯片230的上表面,而该滤光层260的下表面中的其他边固定在该支架251的上表面。
例如,如图3所示,该滤光层260的下表面中靠近该第一金线的一边可以通过第一背胶262固定在该第一传感器芯片230的上表面,该滤光层260的下表面中的其他边可以通过第二背胶263固定在该支架251的上表面。其中,第一背胶和第二背胶的厚度可以根据实际应用进行设置,以保证滤光层260与光路层220平行,或者,滤光层260与第一传感器芯片230的上表面的感应区域所在平面平行。例如,根据其他部分的尺寸,可以将第一背胶262的厚度设置为小于或者等于60,例如可以设置为48um,将第二背胶的厚度设置小于或者等于60,例如可以设置为20um。
具体地,假设滤光层260的下表面为矩形,则该滤光层260下表面的一边靠近第一金线250,另外三边不靠近该第一金线250,不靠近金线的三边区域可以固定在支架251的上表面,而靠近第一金线250的一边固定在第一传感器芯片230的上表面,这样可以避免影响第一金线250的安装;同时,滤光层260的下表面中靠近该第一金线250的一边通过第一背胶262固定在该第一传感器芯片230的上表面,该第一背胶262还可以防止用于固定金线的金线保护胶流入光路层。
该滤光层260的厚度可以根据实际应用进行设置,例如,可以将该滤光 层260的厚度设置为小于或者等于220um;例如,考虑到现有工艺以及可量产性,滤光层的厚度通常会选择110um。
可选地,该支撑油墨261可以位于滤光层260的下表面中与该第一传感器芯片230的感应区域的位置相对应的任意位置上。例如,由于中心位置对于整片的滤光层260的支撑力更均衡,因此丝印的支撑油墨261的位置通常设置为与下方的第一传感芯片230的感应区域的中心重合,也就是说将该支撑油墨261的中心设置与该第一传感器芯片230的感应区域的中心在竖直方向上重合。
应理解,支撑油墨261位于滤光层260和光路层220之间,用于支撑滤光层200,使得滤光层260与光路层220之间保持有空隙,同时,支撑油墨261的下表面与光路层220的上表面之间也可以保持有空隙。随着支撑油墨261的厚度的增大,也就是光路层220上表面与滤光层260的下表面之间的距离越大,牛顿换的对比度逐渐下降。图7示出了几种牛顿环效果图,如图7所示,h表示滤光层与传感器芯片上方的光路层的上表面之间的距离,在本实施例中,基于上述尺寸的设定,当距离在25um时,牛顿环基本消失,因此,通常将支持油墨的厚度设置小于或者等于30um,例如可以设置为25um,即滤光层260与下方的光路层220上表面之间的距离为25um,以避免出现牛顿环。可以理解的是,所述距离h不限于25um,其可以根据实际情况进行调整。
可选地,该支撑油墨的面积可以根据实际应用进行设置,在不影响指纹识别的前提下,丝印的支撑油墨261的尺寸越大,对滤光层260的支撑效果越好,也就是说滤光层越不易变形,也就越不易产生牛顿环。但是由于支撑油墨261会遮挡返回的指纹检测信号,因此,支撑油墨的面积也不宜过大,例如,通常可以将支撑油墨261的面积设置为小于或者等于40*40um,例如,可以设置为30um*30um的正方形。
在本申请实施例中,该滤光层260的材质可以为玻璃、水晶、树脂薄膜等,或者也可以为其他材料。为了保证该滤光层260可以将经过手指返回的指纹检测信号传输至下方的第一传感器芯片230,保证所述第一传感器芯片230能够接收到足够的光信号,从而保证提升指纹识别效果,需要将滤光层260的进光面通过光学无机镀膜或有机黑化涂层实现对光的超低反射,例如,通常设置为反射率<1%。
可选地,本申请实施例中支撑油墨261的下表面与光路层220的上表面之间具有间隙,间隙大小d5可以根据实际应用进行设置,并且可以根据其他部件的尺寸进行调整。例如,如图3至图6所示,A处的厚度自上至下依次可以包括:滤光层260的厚度(例如,110um)、支撑油墨261的厚度(例如25um)、支撑油墨261下表面与光路层220的上表面之间间隙d5(例如,7.3um)、光路层220的厚度(例如,15.7)、第一传感器芯片230的厚度(例如,60um)、第一芯片固定胶230的厚度(例如,15um)、所述基材的厚度(例如,64um)、所述第二导电层的厚度(例如,13um)和所述第二覆盖层的厚度(例如,20um)。
应理解,如图3至图6可知,A处的总厚度为指纹检测装置200的总厚度,根据上述各个实施例的描述,所述指纹检测装置200的总厚度可以设置在0.15-0.6mm的范围内。
本申请实施例的光路层220可以包括透镜层221和光路引导层222,所述透镜层221用于将经由所述显示屏上方的人体手指返回的光信号会聚至所述光路引导层222,所述光路引导层222将所述透镜层221会聚的光信号引导至所述第一传感器芯片230。
考虑到指纹检测装置200的滤光层260设置在光路层220上方,可能会存在支架251的上表面的高度小于滤光层260的上表面的高度,例如,如图3至图6所示,导致整个指纹检测装置的上表面高度不一致,此时可以通过设置泡棉,使得指纹检测装置200的上表面平整,进而方便将将该指纹检测装置200安装在显示屏的下方。具体地,所述指纹检测装置还可以包括:泡棉层,围绕所述滤光层260设置在所述支架251的上方,所述泡棉层设置有贯通所述泡棉层的开口,所述第一传感器芯片230通过所述泡棉层的开口接收所述指纹检测信号;所述泡棉层的上表面与所述滤光层260的上表面齐平,从而使得指纹检测装置200的上表面平整。
可选地,可以将所述第一金线250的弧高位置设计为嵌入至所述泡棉层内;或者,可以按照第一金线250的弧高位置,在其上方设置泡棉层。
需要说明的是,所述指纹检测装置200安装至电子设备时,可以通过额外的柔性电路板连接至所述电子设备的主板上。例如,如图8所示,所述基板210还可以包括基板210的金手指2122,所述基板210的金手指2122用于连接至柔性电路板,相应的,所述基板210通过所述柔性电路板连接至电 子设备的主板。
图9是本申请实施例的设置有柔性电路板的指纹检测装置200的示意性结构图,如图9所示,在本申请的一些实施例中,所述指纹检测装置200还可包括柔性电路板290和(Anisotropic Conductive Film,ACF)292,所述柔性电路板290形成有所述柔性电路板290的金手指291;所述柔性电路板290的金手指291通过所述各向异性导电胶膜292电连接至所述基板210的金手指2122。
通过所述各向异性导电胶膜292,能够将所述柔性电路板290的金手指291压合至所述基板210的金手指2122,相当于,可以为所述指纹检测装置200配置不同规格的柔性电路板,使得所述指纹检测装置200更具有通用性,相应的,能够满足不同用户或客户的需求。
如图9所示,在本申请的一些实施例中,所述指纹检测装置200还可包括各向异性导电胶膜292的保护胶293,所述保护胶293可以位于所述各向异性导电胶膜292的两端,以保护所述各向异性导电胶膜292,进而保护所述柔性电路板290的金手指291和所述基板210的金手指2122。如图9所示,在本申请的一些实施例中,所述指纹检测装置200还可以包括图像处理器296,所述图像处理器296设置在所述柔性电路板290的一端。例如,图像处理器296可以为微处理器(Micro Processing Unit,MCU),用于接收来自所述第一传感器芯片230通过所述柔性电路板290发送的指纹检测信号(例如指纹图像),并对所述指纹检测信号进行简单的处理。如图9所示,在本申请的一些实施例中,所述指纹检测装置200还可以包括设置在所述柔性电路板290的一端的至少一个电容器295,所述至少一个电容器295用于优化(例如滤波处理)所述第一传感器芯片230采集的指纹检测信号。可选地,所述第一传感器芯片230中的每个芯片对应一个或者多个电容器。如图9所示,在本申请的一些实施例中,所述指纹检测装置200还可以包括设置在所述柔性电路板290的一端的连接器294,所述连接器294可以用于与外部装置或者所述电子设备的其它部件(例如主板)进行连接,进而实现与所述外部装置的通信或者所述电子设备的其它部件的通信。例如,所述连接器294可以用于连接所述电子设备的处理器,以便于所述电子设备的处理器接收经过所述图像处理器296处理过的指纹检测信号,并基于所述处理过的指纹检测信号进行指纹识别。
应当理解,图3至图9仅为本申请实施例的示例,不应理解为对本申请的限制。
例如,在图3至图6中,以透镜层221作为光路层220中用于会聚光信号的器件,可替代地,所述透镜层221也可以利用光学准直器。所述光学准直器的相关描述可以参照前述内容中对所述指纹检测装置130的光路设计的相关描述。
再如,所述透镜层221可以具有由多个微透镜形成的微透镜阵列,所述光路引导层222可以为挡光层,所述挡光层具有多个微孔并设置在微透镜层221的下方,并且所述微孔与所述微透镜一一对应,所述第一传感器芯片230中的一个或多个光学感应单元对应所述透镜层221中的一个微透镜。可选地,所述光路层220还可以包括其他光学膜层,比如介质层或者钝化层。
上文结合图3至图9对本申请实施例的指纹检测装置200进行了介绍,下面对安装有所述指纹检测装置200的电子设备进行说明。
图10是本申请实施例的安装有图4所示的指纹检测装置200的电子设备300的示意性结构图。
如图10所示,所述电子设备300包括显示屏、位于所述显示屏下方的中框360、位于所述中框360下方的电池370以及位于所述电池下方的电池易拉胶380,其中,所述显示屏由上至下依次包括透明盖板310、显示面板320、缓冲(cushion)层330和铜层340,所述显示屏设置有贯通所述缓冲层330和所述铜层340的开窗。换言之,所述缓冲层330可以设置有贯通所述缓冲层330的第一开窗331,所述铜层340可以设置有贯通所述铜层340的第二开窗341。可选地,所述显示屏可以是采用低温多晶硅技术(Low Temperature Poly-silicon,LTPS)制成的OLED有机发光面板,其厚度超薄、重量轻、低耗电,可以用于提供较为清晰的影像。所述中框360可以用于承载或支撑所述电子设备300中的各个器件或部件。所述器件或部件包括但不限于电池、摄像头、天线、主板以及所述显示屏。
缓冲层330也可以称为屏幕印刷(screen print)层或压花层,所述屏幕印刷层可以带有图文,所述图文可以用作商标图案等标识。所述缓冲层330可以是用于遮蔽光的黑色片状层或者印刷层。例如,所述缓冲层330可以是由泡棉材料形成层结构。铜层340也可以称为散热层(用作降低所述显示屏的温度)或者防辐射层。所述缓冲层330和所述铜层340可以合成为所述显 示屏的后面板,或者所述铜层340称为所述显示屏的后面板。
其中,可以参考图5和图6的附图标记理解所述指纹检测装置200的具体功能和结构。
换言之,所述指纹检测装置200包括基板210、光路层220、滤光层260、第一传感器芯片230、第一固定胶240、支架251和以及第一金线250。其中,所述基板210由上至下依次包括第一覆盖层212、第一导电层211层212、基材层213、第二导电层214以及第二覆盖层215。可选地,所述光路层220包括透镜层221以及其下方的光路引导层222。可选地,所述指纹检测装置200还可以包括金线保护胶252。所述指纹检测装置200还可以包括泡棉层270,以使得指纹检测装置200的表面齐平。可选地,所述指纹检测装置200还可以包括第二传感器芯片280、第二固定胶281以及第二金线282。
基于上述结构,此处重点针对所述指纹检测装置200的安装方案进行详细说明。如图10所示,所述指纹检测装置200的上表面的泡棉270通过第一PSA391固定至所述铜层340的下表面的所述开窗(即所述第一开窗331和所述第二开窗341)的周围区域,以使得所述第一传感器芯片230对准所述开窗设置,所述第一传感器芯片用于通过所述开窗接收经由所述显示屏上方的人体手指返回的并通过所述光路层引导的指纹检测信号,所述指纹检测信号用于检测所述手指的指纹信息。
以所述显示屏为OLED屏为例,所述显示屏可以是软屏也可以是硬屏。当手指放于亮屏的OLED屏上方,手指就会反射OLED屏发出的光,此反射光会穿透OLED屏直到OLED屏下方。位于OLED屏下方的光路层能够用于将漏光中的红外信号成分滤除。由于指纹是一个漫反射体,因此,经由手指反射或漫射形成的光信号在各方向都会存在。所述指纹检测装置200收集OLED屏上方漏下来的光信号,并基于接收到的光信号进行指纹图像的成像。
针对所述指纹检测装置200,光路层220直接设置在第一传感器芯片230的上表面,所述第一传感器芯片230的下表面通过所述第一固定胶240固定在基板210上,能够避免单独为携带有所述光路层220以及所述第一传感器芯片230设置外壳,降低了所述指纹检测装置200的尺寸(例如厚度)。
此外,通过所述第一PSA利用所述基板210的上表面的泡棉,将所述指纹检测装置200粘贴至所述显示屏的铜层340,相较于将所述指纹检测装 置200直接贴合至所述显示屏的显示面板(即OLED层),不仅能够避免将所述指纹检测装置200贴合至所述显示屏后影响所述显示屏的性能,还能够降低安装所述指纹检测装置200的困难程度,相应的,能够降低所述指纹检测装置200的安装复杂度并提升所述电子设备300的良率。此外,将所述指纹检测装置200粘贴至所述显示屏的铜层340,还能够避免在拆卸所述指纹检测装置200的过程中损坏显示屏,相应的,能够降低所述指纹检测装置200的拆卸复杂度并提升所述电子设备300的良率。另外,当所述显示屏受到按压或者所述电子设备出现跌落或碰撞时,由于所述显示面板320和所述指纹检测装置200之间存在所述缓冲层330和所述铜层340,能够避免所述显示面板320和所述指纹检测装置200发生挤压而影响所述显示面板320和所述指纹检测装置200的性能。
另外,将所述指纹检测装置200粘贴至所述显示屏的铜层340,相较于将所述指纹检测装置200直接贴合至所述显示屏的显示面板320,还能够避免所述开窗的尺寸过大,相应的,能够降低用户从所述显示屏的正面观看所述指纹检测装置200时的可视程度,进而,能够美化所述电子设备300的外观。
如图10所示,在本申请的一些实施例中,泡棉层270的外侧、支架251的部分外侧和所述第一PSA 391的外侧设置有UV固化胶392,以相对所述显示屏固定所述指纹检测装置200。
通过所述UV固化胶392不仅可以将所述指纹检测装置200相对所述显示屏固定,还可以利用所述UV固化胶392的特性,降低安装所述指纹检测装置200的困难程度。
应理解,图10仅为将指纹检测装置200粘贴至电子设备的显示屏的示例,不应理解为对本申请的限制。
例如,在图10中,所述中框360在所述指纹检测装置200的下方形成有第三开窗。换言之,所述指纹检测装置200通过悬挂的方式贴合至所述显示屏的铜层340。例如,所述指纹检测装置200和所述显示屏之间存在间隙。但上述方案仅为一种实现方式,在另一种实现方式中,所述中框的上表面向下延伸形成有第三凹槽,所述指纹检测装置200的底部接触所述中框。换言之,所述指纹检测装置200还是通过悬挂的方式贴合至所述显示屏的铜层340,但所述指纹检测装置200和所述显示屏之间不存在间隙。换言之,所 述第三凹槽仅用于为所述指纹检测装置200提供容纳位置,而不用于固定所述指纹检测装置200。
通过层叠结构设计所述指纹检测装置200,使得各部件在厚度方向上紧密配合配合(即各部件在厚度方向上紧密配合配合不预留间隙),基于目前所述中框的厚度,即使保留所述显示屏中的缓冲层330和铜层340,也可以使得所述指纹检测装置200的底部与电池370之间预留至少200um左右的间隙,足以将所述指纹检测装置200设置在所述显示屏和所述电池370之间。
相应的,相对于将所述指纹识别装置200设置在所述电池370之外的其它位置,将所述指纹检测装置200设置在所述显示屏和所述电池370之间,不仅不需要调整所述电子设备300的原有内部结构,还能够提升所述电子设备300的内部空间的利用率。例如,可以增大电池370的体积,并将节省出来的空间用来容纳增大体积后的电池370,相应的,能够在不增加所述电子设备300的体积的情况下增加所述电子设备300的使用寿命和用户体验。
上文结合图10对将指纹检测模组200安装在显示屏的铜层340的方案进行了说明,但本申请实施例不限于此。例如,在其他可替代实施例中,所述指纹检测装置200还可以用于安装并固定在所述中框380上。
图11是本申请实施例的安装有图5和图6所示的指纹检测装置200的电子设备300的另一示意性结构图。其中,可以参考图5和图6的附图标记理解所述指纹检测装置200的具体功能和结构,以及参考图10理解所述电子设备300中各个部件的功能和结构,为避免重复,此处不再对其进行赘述。
如图11所示,所述中框380的上表面向下延伸形成有第三凹槽,所述指纹检测装置200的底部通过第二PSA 393设置在所述第三凹槽内。换言之,所述第三凹槽仅用于为所述指纹检测装置200提供容纳位置,还用于固定所述指纹检测装置200。
如图11所示,在本申请的一些实施例中,所述指纹检测装置200和所述第三凹槽的侧壁之间存在间隙,所述指纹检测装置和所述第三凹槽的侧壁之间形成的间隙可以用作所述指纹检测装置200的尺寸公差或安装公差,还可以用作所述第三凹槽的尺寸公差。
如图11所示,在本申请的一些实施例中,所述缓冲层330可以设置有贯通所述缓冲层330的第一开窗331,所述铜层340可以设置有贯通所述铜层340的第二开窗341,其中,所述第一开窗331的尺寸小于所述第二开窗 341的尺寸,使得所述缓冲层220和所述指纹检测装置200形成缓冲空间。可选地,如图11所示,所述缓冲空间可以设置有缓冲材料396,所述缓冲材料396包括但不限于泡棉。换言之,所述指纹检测装置200的上表面通过所述缓冲材料396抵靠至所述缓冲层330,例如,指纹检测装置200的上表面的泡棉270通过所述缓冲材料396抵靠至缓冲层330,所述缓冲材料396不仅可以用于避免由于所述指纹检测装置200触碰到所述显示屏而影响所述指纹检测装置200的检测性能,还能够密封绝尘,以保证所述指纹检测装置200的检测性能并提高所述指纹检测装置200的使用寿命。此外,通过所述缓冲材料396还可以降低用户从所述显示屏的正面观看所述指纹检测装置200时的可视程度,进而能够美化所述电子设备300的外观。另外,通过将所述缓冲材料396设置在所述缓冲空间内,能够合理利用电子设备300的内部空间,进而降低所述电子设备的厚度,提高用户体验。
应理解,图10和图11仅为本申请的示例,不应理解为对本申请的限制。
例如,在其他可替代实施例中,所述指纹检测装置还可以同时粘贴至所述显示屏和所述中框。再如,为最大程度利用电子设备的内部空间,所述指纹检测装置300还可以粘贴固定至所述中框380的凹槽的侧面。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“所述”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的元件,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应所述理解到,所揭露的***、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的, 例如,所述元件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个元件或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或元件的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
上文涉及的各功能元件可以集成设置,也可以是各个元件单独物理存在。各功能元件既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者所述技术方案的全部或部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (39)

  1. 一种指纹检测装置,其特征在于,适用于具有显示屏的电子设备,所述指纹检测装置设置在所述显示屏的下方,包括:
    滤光层,所述滤光层下表面设置有丝印的支撑油墨;
    光路层,设置在所述滤光层下方,所述光路层的上表面与所述支撑油墨的下表面之间具有空隙,所述支撑油墨用于支撑所述滤光层,使得所述光路层的上表面与所述滤光层的下表面之间保持有空隙;
    第一传感器芯片,设置在所述光路层下方;
    基板,所述基板的上表面向下延伸形成有第一凹槽,所述第一传感器芯片的至少一部分设置在所述第一凹槽内,并电连接至所述基板;
    支架,围绕所述第一传感器芯片设置在所述基板的上方,用于支撑所述滤光层;
    其中,所述第一传感器芯片用于接收经由所述显示屏上方的人体手指返回后经过所述滤光层和所述光路层的指纹检测信号,所述指纹检测信号用于检测所述手指的指纹信息。
  2. 根据权利要求1所述的指纹检测装置,其特征在于,所述支撑油墨的中心与所述第一传感器芯片的感应区域的中心在竖直方向上重合。
  3. 根据权利要求1或2所述的指纹检测装置,其特征在于,所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间、以及所述支架的靠近所述第一传感器芯片的侧壁和所述第一传感器芯片的侧壁之间均存在间隙,
    所述支架的靠近所述第一传感器芯片的侧壁和所述第一传感器芯片的侧壁之间的间隙的宽度大于或等于所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间的间隙的宽度。
  4. 根据权利要求3所述的指纹检测装置,其特征在于,所述指纹检测装置还包括:
    第一金线,用于电连接所述第一传感器芯片和所述基板的导电层,位于所述第一传感器芯片的侧壁和所述第一凹槽的侧壁之间、以及所述支架的靠近所述第一传感器芯片的侧壁和所述第一传感器芯片的侧壁之间的间隙内。
  5. 根据权利要求4所述的指纹检测装置,其特征在于,所述滤光层的下表面中靠近所述第一金线的一边固定在所述第一传感器芯片的上表面,所述 滤光层的下表面中的其他边固定在所述支架的上表面。
  6. 根据权利要求5所述的指纹检测装置,其特征在于,所述滤光层的下表面中靠近所述第一金线的一边通过第一背胶固定在所述第一传感器芯片的上表面,所述滤光层的下表面中的其他边通过第二背胶固定在所述支架的上表面。
  7. 根据权利要求4至6中任一项所述的指纹检测装置,其特征在于,所述第一传感器的不靠近所述第一金线的侧壁和所述第一凹槽的侧壁之间的间隙的宽度的取值范围为100-400um,所述第一传感器的不靠近所述第一金线的侧壁和所述支架靠近所述第一传感器芯片的侧壁支架的间隙为100-400um。
  8. 根据权利要求1至7中任一项所述的指纹检测装置,其特征在于,所述滤光层的厚度小于或者等于220um。
  9. 根据权利要求1至8中任一项所述的指纹检测装置,其特征在于,所述支撑油墨的厚度小于或者等于30um。
  10. 根据权利要求1至9中任一项所述的指纹检测装置,其特征在于,所述支撑油墨的面积小于或者等于40*40um。
  11. 根据权利要求1至10中任一项所述的指纹检测装置,其特征在于,所述滤光层的进光面对光的反射率小于或者等于1%。
  12. 根据权利要求1至11中任一项所述的指纹检测装置,其特征在于,所述指纹检测装置的总厚度的取值范围为0.15-0.6mm。
  13. 根据权利要求4至7中任一项所述的指纹检测装置,其特征在于,所述基板由上至下依次包括第一覆盖层、第一导电层层、基材层、第二导电层以及第二覆盖层,
    所述基板的上表面在第一区域向下延伸并贯通所述第一覆盖层和所述第一导电层以形成所述第一凹槽,
    所述基板的上表面在与所述第一区域相连的第二区域向下延伸并贯通所述第一覆盖层以形成所述基板的焊盘;所述第一传感器芯片通过所述第一金线连接至所述基板的焊盘。
  14. 根据权利要求13所述的指纹检测装置,其特征在于,还包括:
    第一固定胶,所述第一传感器芯片的下表面通过所述第一固定胶固定至所述第一凹槽内。
  15. 根据权利要求13或14所述的指纹检测装置,其特征在于,所述第一覆盖层的厚度等于所述第二覆盖层的厚度,所述第一导电层的厚度与所述第二导电层的厚度相同。
  16. 根据权利要求15所述的指纹检测装置,其特征在于,所述基板的总厚度小于或者等于150um,所述第一覆盖层的厚度和所述第二覆盖层的厚度均小于或者等于30um,
    所述第一导电层的厚度和所述第二导电层的厚度均小于或者等于20um,所述基材的厚度为小于等于80um。
  17. 根据权利要求14所述的指纹检测装置,其特征在于,所述第一传感器芯片的厚度小于或者等于150um,所述第一金线的最大弧高小于或者等于60um,所述第一固定胶的厚度小于或者等于30um。
  18. 根据权利要求13至17中任一项所述的指纹检测装置,其特征在于,所述支架的外侧相对所述第一覆盖膜的外侧向靠近所述第一传感器芯片的方向缩短预设距离。
  19. 根据权利要求18所述的指纹检测装置,其特征在于,所述预设距离的取值范围为100-400um。
  20. 根据权利要求13至19中任一项所述的指纹检测装置,其特征在于,还包括:第二传感器芯片、第二固定胶以及第二金线;
    其中,所述基板的上表面在与所述第二区域相连的第三区域向下延伸并贯通所述第一覆盖层和所述第一导电层以形成第二凹槽,
    所述第二传感器芯片通过所述第二固定胶固定在所述第二凹槽内,所述第二传感器芯片通过所述第二金线连接至所述基板的焊盘,以使得所述第二传感器芯片连接至所述第一传感器芯片,所述第二传感器芯片用于配合所述第一传感器芯片进行屏下指纹识别。
  21. 根据权利要求20所述的指纹检测装置,其特征在于,所述第二传感器芯片的侧壁和所述第二凹槽的侧壁之间存在间隙。
  22. 根据权利要求21所述的指纹检测装置,其特征在于,所述第二传感器芯片的不靠近所述第一金线的侧壁和所述第二凹槽的侧壁之间的间隙的宽度为100-400um。
  23. 根据权利要求20至22中任一项所述的指纹检测装置,其特征在于,所述第一传感器芯片的厚度等于所述第二传感器芯片的厚度,所述第一固定 胶的厚度等于第二固定胶的厚度,所述第一金线的最大弧高等于所述第二金线的最大弧高。
  24. 根据权利要求20至23中任一项所述的指纹检测装置,其特征在于,还包括:
    金线保护胶,用于封装所述第一金线和所述第二金线。
  25. 根据权利要求24所述的指纹检测装置,其特征在于,所述金线保护胶的高度小于或者等于200um。
  26. 根据权利要求1至25中任一项所述的指纹检测装置,其特征在于,还包括:
    泡棉层,围绕所述滤光层设置在所述支架的上方,所述泡棉层设置有贯通所述泡棉层的开口,所述第一传感器芯片通过所述泡棉层的开口接收所述指纹检测信号;
    所述泡棉层的上表面与所述滤光层的上表面齐平。
  27. 根据权利要求26所述的指纹检测装置,其特征在于,所述支架为聚对苯二甲酸乙二醇酯PET胶层,用于连接所述基板和所述泡棉层;或
    所述支架的下表面通过支架固定胶固定在所述基板的上表面,所述支架上表面通过支架固定胶固定所述泡棉层。
  28. 根据权利要求26或27所述的指纹检测装置,其特征在于,所述支架的厚度小于或者等于150um。
  29. 根据权利要求26至28中任一项所述的指纹检测装置,其特征在于,所述显示屏由上至下依次包括透明盖板、显示面板、缓冲层和铜层,所述显示屏设置有贯通所述缓冲层和所述铜层的开窗;
    所述泡棉的上表面通过第一压敏胶固定在所述铜层的下表面的所述开窗的周围区域,以使得所述指纹识别模组固定在所述显示屏的下方,
    所述第一传感器芯片的感应区域对准所述开窗设置,以使得所述第一传感器芯片接收所述指纹检测信号。
  30. 根据权利要求29所述的指纹检测装置,其特征在于,所述指纹检测装置的外侧和所述第一压敏胶的外侧设置有紫外固化胶,以固定所述指纹检测装置相对所述显示屏的相对位置。
  31. 根据权利要求26至28中任一项所述的指纹检测装置,其特征在于,所述显示屏由上至下依次包括透明盖板、显示面板、缓冲层和铜层,所述显 示屏设置有贯通所述缓冲层和所述铜层的开窗,所述缓冲层的开窗的尺寸小于所述铜层的开窗的尺寸;
    所述指纹检测装置位于所述电子设备的中框的凹槽内,
    所述泡棉的上表面在所述铜层的开窗范围内通过泡沫胶固定在所述缓冲层的下表面的开窗的周围区域,以使得所述指纹识别模组固定在所述显示屏的下方,
    所述第一传感器芯片的感应区域对准所述缓冲层的开窗设置,以使得所述第一传感器芯片接收所述指纹检测信号。
  32. 根据权利要求29所述的指纹检测装置,其特征在于,所述指纹检测装置的底部通过第二压敏胶设置在所述中框的凹槽内。
  33. 根据权利要求1至32中任一项所述的指纹检测装置,其特征在于,所述光路层包括透镜层和光路引导层,
    所述微透镜用于将经由所述显示屏上方的人体手指返回的光信号会聚至所述光路引导层,所述光路引导层将所述微透镜会聚的光信号引导至所述第一传感器芯片。
  34. 根据权利要求33所述的指纹检测装置,其特征在于,所述光路层的厚度小于或者等于30um。
  35. 根据权利要求1至34中任一项所述的指纹检测装置,其特征在于,还包括:
    柔性电路板,所述柔性电路板形成有所述柔性电路板的金手指;
    各向异性导电胶膜,所述柔性电路板的金手指通过所述各向异性导电胶膜电连接至所述基板的金手指。
  36. 一种电子设备,其特征在于,包括:
    显示屏;
    指纹检测装置,设置在所述显示屏下方,所述指纹检测装置为如权利要求1至35中任一项所述的指纹检测装置,且其指纹采集区域至少部分位于所述显示屏的显示区域之中。
  37. 根据权利要求36所述的电子设备,其特征在于,所述显示屏由上至下依次包括透明盖板、显示面板、缓冲层和铜层,其中,所述显示屏设置有贯通所述缓冲层和所述铜层的开窗,所述指纹检测装置的光路层对准所述开窗设置,以便所述指纹检测装置通过所述开窗接收经由所述显示屏上方的人 体手指返回的指纹检测信号,所述指纹检测信号用于检测所述手指的指纹信息。
  38. 根据权利要求37所述的电子设备,其特征在于,所述指纹检测装置的上表面的边沿区域通过第一压敏胶固定所述铜层的下表面的所述开窗的周围区域,以使得所述指纹检测装置的光路层对准所述开窗设置。
  39. 根据权利要求35所述的电子设备,其特征在于,所述电子设备还包括中框,所述中框的上表面向下延伸形成有第三凹槽,所述指纹检测装置的底部通过第二压敏胶设置在所述第三凹槽内。
PCT/CN2020/081867 2019-05-29 2020-03-27 指纹检测装置和电子设备 WO2020238381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080001525.0A CN111801685B (zh) 2019-05-29 2020-03-27 指纹检测装置和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/089123 WO2020237546A1 (zh) 2019-05-29 2019-05-29 指纹识别装置和电子设备
CNPCT/CN2019/089123 2019-05-29

Publications (1)

Publication Number Publication Date
WO2020238381A1 true WO2020238381A1 (zh) 2020-12-03

Family

ID=69341850

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2019/089123 WO2020237546A1 (zh) 2019-05-29 2019-05-29 指纹识别装置和电子设备
PCT/CN2020/081872 WO2020238382A1 (zh) 2019-05-29 2020-03-27 指纹检测装置和电子设备
PCT/CN2020/081867 WO2020238381A1 (zh) 2019-05-29 2020-03-27 指纹检测装置和电子设备
PCT/CN2020/081873 WO2020238383A1 (zh) 2019-05-29 2020-03-27 指纹检测装置和电子设备

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/089123 WO2020237546A1 (zh) 2019-05-29 2019-05-29 指纹识别装置和电子设备
PCT/CN2020/081872 WO2020238382A1 (zh) 2019-05-29 2020-03-27 指纹检测装置和电子设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081873 WO2020238383A1 (zh) 2019-05-29 2020-03-27 指纹检测装置和电子设备

Country Status (4)

Country Link
US (2) US11062117B2 (zh)
EP (1) EP3770802B1 (zh)
CN (5) CN110770746B (zh)
WO (4) WO2020237546A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11310402B2 (en) * 2015-08-25 2022-04-19 Gingy Technology Inc. Image capturing device and fingerprint image capturing device
KR102445512B1 (ko) * 2018-03-30 2022-09-21 삼성디스플레이 주식회사 지문 센서 패키지 및 이를 포함하는 표시 장치
CN111801686A (zh) * 2019-05-29 2020-10-20 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN110770746B (zh) * 2019-05-29 2021-06-11 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN111788576A (zh) * 2019-05-29 2020-10-16 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111801685B (zh) * 2019-05-29 2024-06-04 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN112434272B (zh) * 2019-08-26 2022-12-20 英业达科技有限公司 电子装置
CN110971804B (zh) * 2019-12-19 2022-05-10 京东方科技集团股份有限公司 一种光场信息采集结构、显示装置及其控制方法
KR20210086143A (ko) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 터치 디스플레이 장치
WO2021210710A1 (ko) * 2020-04-17 2021-10-21 엘지전자 주식회사 이동 단말기
CN113853611A (zh) * 2020-04-28 2021-12-28 北京小米移动软件有限公司南京分公司 终端设备
CN115104139A (zh) * 2020-06-12 2022-09-23 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
EP4315159A1 (en) * 2021-03-23 2024-02-07 Fingerprint Cards Anacatum IP AB Fingerprint sensor module and method for manufacturing a fingerprint sensor module
US20220345604A1 (en) * 2021-04-27 2022-10-27 Apple Inc. Camera integration for portable electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8243426B2 (en) * 2008-12-31 2012-08-14 Apple Inc. Reducing optical effects in a display
CN207867178U (zh) * 2018-03-08 2018-09-14 深圳秋田微电子股份有限公司 一种框贴显示隔离结构及其显示模组
CN109074477A (zh) * 2017-11-09 2018-12-21 深圳市汇顶科技股份有限公司 光学模组及其加工方法、及终端设备
CN109716351A (zh) * 2018-12-13 2019-05-03 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758234B2 (ja) * 1992-04-16 1995-06-21 株式会社エニックス 半導体マトリクス型微細面圧分布センサ
US20040252867A1 (en) * 2000-01-05 2004-12-16 Je-Hsiung Lan Biometric sensor
JP3766034B2 (ja) * 2002-02-20 2006-04-12 富士通株式会社 指紋センサ装置及びその製造方法
US20060102974A1 (en) * 2004-11-12 2006-05-18 Chen Neng C Contact image capturing structure
CN101478858B (zh) * 2009-01-21 2010-11-10 友达光电股份有限公司 电路板结构与其制造方法及液晶显示器
TW201103128A (en) * 2009-07-03 2011-01-16 Creative Sensor Inc Image sensor and the method for package of the same
US9030440B2 (en) * 2012-05-18 2015-05-12 Apple Inc. Capacitive sensor packaging
CN104517862B (zh) * 2013-09-29 2018-11-02 深南电路有限公司 一种指纹传感器封装方法和结构
TWI534962B (zh) * 2013-12-09 2016-05-21 茂丞科技股份有限公司 具有外觀隱藏的耦合電極之近接式感測器及其製造方法
US20150189204A1 (en) * 2013-12-27 2015-07-02 Optiz, Inc. Semiconductor Device On Cover Substrate And Method Of Making Same
CN105260043A (zh) * 2014-06-13 2016-01-20 宸鸿科技(厦门)有限公司 具有指纹识别功能的触控面板
CN104051366B (zh) * 2014-07-01 2017-06-20 苏州晶方半导体科技股份有限公司 指纹识别芯片封装结构和封装方法
US10235582B2 (en) * 2014-08-08 2019-03-19 Gemalto Sa Automated examination and processing of biometric data
US9666730B2 (en) * 2014-08-18 2017-05-30 Optiz, Inc. Wire bond sensor package
CN104156712A (zh) * 2014-08-26 2014-11-19 南昌欧菲生物识别技术有限公司 一种指纹识别检测组件及电子设备
CN104201116B (zh) * 2014-09-12 2018-04-20 苏州晶方半导体科技股份有限公司 指纹识别芯片封装方法和封装结构
US9576177B2 (en) * 2014-12-11 2017-02-21 Fingerprint Cards Ab Fingerprint sensing device
CN204808340U (zh) * 2015-03-06 2015-11-25 南昌欧菲生物识别技术有限公司 指纹识别装置、触摸屏及电子设备
CN104851813A (zh) * 2015-05-19 2015-08-19 苏州晶方半导体科技股份有限公司 指纹识别芯片的封装结构及封装方法
CN104851853A (zh) * 2015-05-19 2015-08-19 苏州晶方半导体科技股份有限公司 指纹识别芯片的封装结构及封装方法
CN106470527B (zh) * 2015-08-21 2018-12-14 旭景科技股份有限公司 用于形成增强型指纹辨识模块的印刷电路板结构
TWM523147U (zh) * 2015-09-10 2016-06-01 Metrics Technology Co Ltd J 指紋感測單元及指紋感測模組
CN106601629B (zh) * 2015-10-15 2018-11-30 力成科技股份有限公司 保护片服贴于芯片感应面的芯片封装构造
CN105678255B (zh) * 2016-01-04 2019-01-08 京东方科技集团股份有限公司 一种光学式指纹识别显示屏及显示装置
EP3236390B1 (en) * 2016-04-19 2021-11-24 Samsung Electronics Co., Ltd. Electronic device supporting fingerprint verification and method for operating the same
WO2018014629A1 (en) * 2016-07-18 2018-01-25 Shenzhen GOODIX Technology Co., Ltd. Optical fingerprint sensor with force sensing capability
KR20180042919A (ko) * 2016-10-19 2018-04-27 삼성전자주식회사 무선 충전 구조를 구비한 전자 장치
CN106971984A (zh) * 2016-11-23 2017-07-21 创智能科技股份有限公司 指纹感测辨识封装结构
WO2018227399A1 (zh) * 2017-06-13 2018-12-20 深圳市汇顶科技股份有限公司 光学生物识别模组、显示装置以及电子设备
CN107454963B (zh) * 2017-06-16 2021-11-30 深圳市汇顶科技股份有限公司 指纹图像处理方法及光学指纹辨识***
CN109117696A (zh) * 2017-06-26 2019-01-01 南昌欧菲生物识别技术有限公司 指纹模组及设有该指纹模组的电子设备
TWI642158B (zh) * 2017-07-21 2018-11-21 致伸科技股份有限公司 指紋感測晶片封裝結構
TWI627720B (zh) * 2017-08-25 2018-06-21 致伸科技股份有限公司 指紋感測晶片封裝結構
CN107563348A (zh) * 2017-09-15 2018-01-09 南昌欧菲生物识别技术有限公司 光学指纹识别组件和电子装置
CN109508607A (zh) * 2017-09-15 2019-03-22 南昌欧菲生物识别技术有限公司 光学指纹识别组件和电子装置
EP3690701B1 (en) 2017-09-30 2024-05-29 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition method, fingerprint recognition device and terminal equipment
CN207690104U (zh) * 2017-10-13 2018-08-03 南昌欧菲生物识别技术有限公司 指纹识别模组及设有该指纹识别模组的电子设备
EP3534292A4 (en) * 2017-11-09 2020-07-22 Shenzhen Goodix Technology Co., Ltd. OPTICAL MODULE AND PROCESSING METHOD THEREFOR AND TERMINAL DEVICE
CN207637122U (zh) * 2017-11-30 2018-07-20 维沃移动通信有限公司 一种具有指纹识别功能的移动终端
JP6770082B2 (ja) * 2018-02-06 2020-10-14 シェンチェン グディックス テクノロジー カンパニー,リミテッド アンダースクリーンバイオメトリクス認証装置、バイオメトリクス認証ユニット及び端末装置
CN108416319A (zh) * 2018-03-23 2018-08-17 京东方科技集团股份有限公司 指纹识别模组及其制备方法、显示面板以及显示装置
WO2020019263A1 (zh) * 2018-07-26 2020-01-30 深圳市汇顶科技股份有限公司 芯片封装结构、方法和终端设备
CN210041952U (zh) * 2018-09-25 2020-02-07 深圳市汇顶科技股份有限公司 光学图像采集装置和电子设备
CN208908034U (zh) * 2018-11-12 2019-05-28 南昌欧菲生物识别技术有限公司 光学指纹模组和电子装置
WO2020102949A1 (zh) * 2018-11-19 2020-05-28 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN109522848A (zh) * 2018-11-20 2019-03-26 维沃移动通信有限公司 一种指纹模组、指纹模组的控制方法及终端
CN113065472B (zh) * 2018-12-13 2024-04-30 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2020133344A1 (zh) * 2018-12-29 2020-07-02 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
EP3699809A4 (en) * 2018-12-29 2020-11-04 Shenzhen Goodix Technology Co., Ltd. FINGERPRINT IDENTIFICATION DEVICE AND ELECTRONIC DEVICE
CN109983471B (zh) * 2019-02-02 2020-09-18 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN110770749B (zh) * 2019-03-21 2021-09-03 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN110309705B (zh) * 2019-04-30 2022-04-19 厦门天马微电子有限公司 显示面板和显示装置
CN209911987U (zh) * 2019-05-29 2020-01-07 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN110770746B (zh) * 2019-05-29 2021-06-11 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2020248212A1 (zh) * 2019-06-14 2020-12-17 深圳市汇顶科技股份有限公司 芯片封装结构和电子设备
CN113035795B (zh) * 2019-06-14 2022-11-08 深圳市汇顶科技股份有限公司 芯片封装结构和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8243426B2 (en) * 2008-12-31 2012-08-14 Apple Inc. Reducing optical effects in a display
CN109074477A (zh) * 2017-11-09 2018-12-21 深圳市汇顶科技股份有限公司 光学模组及其加工方法、及终端设备
CN207867178U (zh) * 2018-03-08 2018-09-14 深圳秋田微电子股份有限公司 一种框贴显示隔离结构及其显示模组
CN109716351A (zh) * 2018-12-13 2019-05-03 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Also Published As

Publication number Publication date
CN212135453U (zh) 2020-12-11
US20210303820A1 (en) 2021-09-30
CN110770746A (zh) 2020-02-07
WO2020238382A1 (zh) 2020-12-03
CN113343829A (zh) 2021-09-03
EP3770802B1 (en) 2023-11-15
US11062117B2 (en) 2021-07-13
US11663846B2 (en) 2023-05-30
WO2020238383A1 (zh) 2020-12-03
CN211529176U (zh) 2020-09-18
EP3770802A1 (en) 2021-01-27
CN110770746B (zh) 2021-06-11
CN211529177U (zh) 2020-09-18
US20200380240A1 (en) 2020-12-03
WO2020237546A1 (zh) 2020-12-03
EP3770802A4 (en) 2021-01-27
CN113343829B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020238381A1 (zh) 指纹检测装置和电子设备
CN109791610B (zh) 指纹识别装置和电子设备
CN211349388U (zh) 指纹识别装置和电子设备
CN210605745U (zh) 指纹识别装置和电子设备
CN110036396B (zh) 指纹识别装置和电子设备
CN109863507B (zh) 指纹识别装置和电子设备
CN111133443B (zh) 指纹识别装置和电子设备
CN212135452U (zh) 指纹识别装置和电子设备
CN111801685B (zh) 指纹检测装置和电子设备
CN209911987U (zh) 指纹识别装置和电子设备
CN111801686A (zh) 指纹检测装置和电子设备
WO2021248496A1 (zh) 指纹检测装置和电子设备
CN111788576A (zh) 指纹检测装置和电子设备
WO2021248497A1 (zh) 指纹检测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814299

Country of ref document: EP

Kind code of ref document: A1