WO2020228786A1 - 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法 - Google Patents

一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法 Download PDF

Info

Publication number
WO2020228786A1
WO2020228786A1 PCT/CN2020/090320 CN2020090320W WO2020228786A1 WO 2020228786 A1 WO2020228786 A1 WO 2020228786A1 CN 2020090320 W CN2020090320 W CN 2020090320W WO 2020228786 A1 WO2020228786 A1 WO 2020228786A1
Authority
WO
WIPO (PCT)
Prior art keywords
marigold
hexane
quercetin
extraction
volume ratio
Prior art date
Application number
PCT/CN2020/090320
Other languages
English (en)
French (fr)
Inventor
卢庆国
连运河
吴迪
王欢欢
吴娟娟
Original Assignee
晨光生物科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨光生物科技集团股份有限公司 filed Critical 晨光生物科技集团股份有限公司
Publication of WO2020228786A1 publication Critical patent/WO2020228786A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/24Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by six-membered non-aromatic rings, e.g. beta-carotene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/40Separation, e.g. from natural material; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention belongs to the field of extraction of natural effective ingredients, and specifically relates to a method for extracting lutein and quercetin marigold from marigold flowers.
  • Marigold is rich in functional ingredients, among which flavonoids contain a variety of flavonoids, such as quercetin marigold, 6-hydroxykaempferol, and marigold, as well as some amino acids.
  • marigold is also rich in lutein and so on.
  • the extraction method of lutein and flavonoids mainly adopts a stepwise extraction method, that is, first extract lutein with n-hexane, and then use solvent to treat marigold flower meal to obtain flavonoid products.
  • Chinese patent 201410104645.X uses two-phase aqueous solvent for extraction; mainly extracting a mixture of lutein and flavonoids.
  • Chinese patent 201811188771.2 uses a mixed solvent of petroleum ether and acetone for extraction.
  • the separation method selected in this patent is to separate after adding water. The operation is more complicated, and it is also impossible to separate high-purity quercetin marigold. Only longevity can be obtained. Chrysanthemum flavonoid mixture.
  • the method for preparing high-purity quercetin marigold in the prior art mainly uses chromatographic separation.
  • Chinese patent CN201410708334.4 discloses that high-purity quercetin marigold can be extracted by one-dimensional liquid chromatography and two-dimensional liquid chromatography.
  • Chinese patent 201610108596.6 is to prepare quercetin marigold with a content of more than 85% through repeated centrifugation, filtration, washing and other methods. There is no report about obtaining high content of quercetin marigold through simple separation and purification.
  • the invention relates to an industrialized method for extracting lutein and quercetin marigold with simple steps and quickly and efficiently.
  • the main improvement is that a mixture of n-hexane and acetone solution is used as an extractant to extract marigold flower particles.
  • the volume fraction of acetone in the acetone solution is 80-100%.
  • the marigold flower particles are extracted with the above-mentioned mixed solution of n-hexane and 80-100% acetone.
  • the main components obtained by extraction are lutein and quercetin marigold.
  • Other impurity components are very high at the acetone concentration in this range.
  • Rarely proposed, high purity quercetin marigold and lutein can be obtained through simple subsequent separation and purification.
  • the volume ratio of the n-hexane to the acetone solution is less than 1:3.
  • the dosage ratio of n-hexane and acetone has an important influence on the extraction of quercetin marigold, and this ratio is more conducive to the complete extraction of quercetin marigold in marigold flower particles.
  • the volume ratio of the n-hexane to the acetone solution is 1:3-5. Under this preferred ratio, it can not only ensure that the quercetin marigold in the marigold flower particles is nearly completely extracted, but also can effectively save solvent consumption and production costs.
  • the mass-volume ratio of the marigold flower particles to the extractant is less than 1:4, and this ratio is more conducive to the complete extraction of lutein and quercetin marigold in the marigold flower particles.
  • the mass-to-volume ratio is 1:4-7. Under this optimal ratio, it can not only ensure that the lutein and quercetin marigold in the marigold flower particles are extracted as completely as possible, but also can effectively save solvent consumption and production costs.
  • the extraction temperature is 20-55°C, and the extraction time is 2-8h.
  • the specific extraction operation may be extraction methods commonly used in the art such as leaching and countercurrent extraction.
  • the extraction liquid in which the mixture is dissolved is evaporated before extraction, until the extractant therein is completely volatilized to obtain a mixture.
  • it further includes the operation of separating the extracted lutein and quercetin marigold, and the specific operation is to extract the extracted mixture with n-hexane.
  • the mass-volume ratio of the mixture to the n-hexane is less than 1:3.
  • the mass-volume ratio of the mixture to the n-hexane is 1:3-5.
  • the extraction temperature is 20-55°C, and the extraction time is 2-8h.
  • the extraction can be performed by conventional operations in the art.
  • the method of the present invention includes the following steps:
  • the yield of quercetin marigold is more than 90%, and the purity is more than 95%, which can also ensure that the lutein also has a higher yield.
  • the volume ratio of the n-hexane to the acetone solution is 1:3 to 5; the mass to volume ratio of the marigold flower particles to the extractant is 1:4 to 7.
  • the production cost can be better reduced under the premise that the purity of quercetin marigold is more than 95% and the yield is more than 90%, which is more conducive to large-scale industrial application.
  • the acetone solution of the present invention is an aqueous solution of acetone, and the mass and volume in the mass-volume ratio are both standard units. In the process of the ratio, gram corresponds to milliliter and kilogram corresponds to liter.
  • Another object of the present invention is to protect the lutein products and quercetin marigold products prepared by the method of the present invention.
  • the method of the present invention can extract high-purity quercetin marigold through simple extraction steps, and the obtained product can be directly applied to industrial production. After further optimization, the purity of quercetin marigold is more than 95%, and the yield of quercetin marigold is more than 90%. Compared with the complicated methods such as chromatography in the prior art, it is a very The method for efficiently extracting quercetin marigold has low extraction cost and short time consumption, and is suitable for industrialized large-scale production.
  • the method of the present invention can also extract high-quality lutein while extracting quercetin marigold, its purity is greater than 18%, the yield is greater than 99%, and the separation method of the two is very simple, only through n-hexane Simple extraction is enough, and the operation is simple.
  • the method of the present invention does not add water during the extraction process, does not require distillation solvents, has low process cost, no waste water generation, and is environmentally friendly.
  • Figure 1 is a liquid chromatogram of the quercetin marigold product obtained in Example 1.
  • the marigold flower particles involved in the embodiments are marigold flower particles obtained by fermentation, pressing, drying, crushing, and granulation of marigold flowers.
  • This embodiment relates to the extraction method of the present invention, including the following steps:
  • This embodiment relates to the extraction method of the present invention, including the following steps:
  • This embodiment relates to the extraction method of the present invention, including the following steps:
  • Example 3 Compared with Example 3, the difference is that in the step 1), the volume ratio of n-hexane and acetone solution is 1:2.
  • the lutein in step (2) is concentrated in the liquid phase to obtain 17.54 kg of the lutein product. Analysis by liquid chromatography showed that its purity was 18.61%, and its content yield was 96.71%.
  • the quercetin marigold in (2) was dried in a solid phase to obtain 5.07 kg of the quercetin marigold product, which was analyzed by liquid chromatography, the purity was 95.76%, and the content yield was 78.24%.
  • Example 3 Compared with Example 3, the difference is that in the step 1), the volume fraction of acetone in the acetone solution is 70%.
  • step (2) The lutein in step (2) is concentrated in the liquid phase to obtain 16.56 kg of lutein product. Analysis by liquid chromatography showed that its purity was 18.79% and the content yield was 92.21%.
  • the quercetin marigold in (2) was dried in a solid phase to obtain 7.14 kg of the quercetin marigold product, which was analyzed by liquid chromatography and its purity was 79.16%, and the content yield was 91.22%.
  • Example 3 Compared with Example 3, the difference is that in the step 2), extraction is performed with ethyl acetate solvent, and the mass-volume ratio of the mixture to the extract is 1:4.
  • step (2) The lutein in step (2) is concentrated in the liquid phase to obtain 16.45 kg of lutein product. Analysis by liquid chromatography showed that its purity was 13.76%, and its content yield was 67.08%.
  • the quercetin marigold in (2) was dried in a solid phase to obtain 7.35 kg of the quercetin marigold product, which was analyzed by liquid chromatography, and its purity was 75.68% and the content yield was 89.77%.
  • the difference is that in the step 1), the ratio of marigold flower particles to extraction solvent is 1:2.
  • step (2) The lutein in step (2) is concentrated in the liquid phase to obtain 14.69 kg of lutein product. Analysis by liquid chromatography showed that its purity was 18.62%, and its content yield was 81.03%.
  • the quercetin marigold in (2) is solid-phase dried to obtain 4.51 kg of the quercetin marigold product, which is analyzed by liquid chromatography, and its purity is 95.23%, and the content yield is 69.27%.
  • the invention provides an industrialized method for extracting lutein and quercetin marigold quickly and efficiently.
  • the method of the present invention uses a mixture of n-hexane and acetone solution as an extractant to extract marigold flower particles, and the volume fraction of acetone in the acetone solution is 80-100%.
  • the mixed extractant of the present invention has very high selectivity to lutein and quercetin marigold, and can effectively extract the above two effective components, and after simple separation, lutein and high-purity quercetin marigold can be obtained
  • the product has simple process, low production cost, is conducive to industrialized production, and has good economic value and application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及天然产物提取领域,具体涉及一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法,其主要改进之处为,以正己烷和丙酮溶液的混合液作为提取剂对万寿菊花颗粒进行提取,所述丙酮溶液中丙酮的体积分数为80~100%。本发明的混合提取剂对叶黄素和槲皮万寿菊素有非常高的选择性,可有效地对上述两种有效成分进行提取,后续经过简单地分离可得到叶黄素和高纯度的槲皮万寿菊素产品,工艺简单,生产成本低,利于工业化生产。

Description

一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
交叉引用
本申请要求2019年5月14日提交的专利名称为“一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法”的第201910397773.0号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明属于天然有效成分的提取领域,具体涉及一种从万寿菊花中提取叶黄素和槲皮万寿菊素的方法。
背景技术
万寿菊中含有丰富功能性成分,其中黄酮类含有多种,如槲皮万寿菊素、6-羟基山奈酚和万寿菊素等黄酮成分,还有一些氨基酸等成分。另外,万寿菊中还含有丰富的叶黄素等。目前关于叶黄素和黄酮的提取方法,主要采用分步提取法,即先利用正己烷提取叶黄素,然后利用溶剂处理万寿菊花粕得到黄酮类产品。另外有两篇专利是利用混合溶剂提取,如中国专利201410104645.X中采用双水相溶剂进行提取;主要是提取得到叶黄素和黄酮混合物。中国专利201811188771.2采用石油醚和丙酮的混合溶剂进行提取,该专利中选用的分离方式为加入水后进行分离,操作较为复杂,而且也无法分离得到高纯度的槲皮万寿菊素,仅可得到万寿菊黄酮混合物。现有技术中关于高纯度槲皮万寿菊素的制备方法主要利用色谱分离。如中国专利CN201410708334.4公开通过一维液相色谱和二维液相色谱法提取得到高纯度的槲皮万寿菊素。中国专利201610108596.6是通过反复离心、过滤、洗涤等方法,制备得到含量大于85%的槲皮万寿菊素,还未见通过简单分离纯化得到高含量的槲皮万寿菊素的相关报导。
发明内容
本发明涉及一种步骤简单,可快速高效地提取叶黄素和槲皮万寿菊素的工业化方法,其主要改进之处为,以正己烷和丙酮溶液的混合液作为提 取剂对万寿菊花颗粒进行提取,所述丙酮溶液中丙酮的体积分数为80~100%。
采用上述正己烷和浓度80~100%丙酮的混合溶液对万寿菊花颗粒进行提取,提取得到的主要成分是叶黄素成分和槲皮万寿菊素成分,其他杂质成分在此范围的丙酮浓度下很少被提出来,通过后续简单的分离纯化即可得到高纯度的槲皮万寿菊素和叶黄素。
优选的,所述正己烷与所述丙酮溶液的体积比小于1:3。正己烷与丙酮的用量比例对槲皮万寿菊素的提取有重要的影响,在此比例下,更有利于万寿菊花颗粒中的槲皮万寿菊素被完全提取出来。
进一步优选的,所述正己烷与所述丙酮溶液的体积比为1:3~5。在此优选比例下,既能保证万寿菊花颗粒中的槲皮万寿菊素被提取接近完全,又能有效节省溶剂消耗和生产成本。
优选的,所述万寿菊花颗粒与所述提取剂的质量体积比小于1:4,在此比例下,更有利于万寿菊花颗粒中的叶黄素和槲皮万寿菊素被完全地提取出来。
进一步优选的,质量体积比为1:4~7。在此优选比例下,既能保证万寿菊花颗粒中的叶黄素和槲皮万寿菊素尽可能地被提取完全,又能有效节省溶剂消耗和生产成本。
优选的,提取温度为20~55℃,提取时间为2-8h。
优选的,所述提取的具体操作可以为浸提、逆流提取等本领域常用的提取方法。
优选的,萃取之前对溶有混合物的提取液的进行蒸发,至其中的提取剂完全挥发,得混合物。
优选的,还包括对提取得到的叶黄素和槲皮万寿菊素分离的操作,具体操作为用正己烷对提取得到的混合物进行萃取。
优选的,所述混合物与所述正己烷的质量体积比小于1:3。
进一步优选的,所述混合物与所述正己烷的质量体积比为1:3~5。
优选的,萃取的温度为20~55℃,萃取时间为2-8h。
优选的,所述萃取可采用本领域常规的操作进行。
作为优选的方案,本发明的方法包括如下步骤:
1)用所述正己烷和所述丙酮溶液的混合液作为提取剂对万寿菊花颗粒进行提取,将提取液至提取剂完全挥发,得混合物,所述丙酮溶液中丙酮的体积分数为80~100%;正己烷与所述丙酮溶液的体积比小于1:3;所述万寿菊花颗粒与所述提取剂的质量体积比小于1:4;
2)用正己烷对所述混合物进行萃取,然后进行固液分离,固相干燥得到槲皮万寿菊素产品,液相浓缩后得到叶黄素产品。
通过上述优选的方案进行提取,槲皮万寿菊的得率在90%以上,纯度在95%以上,还可保证叶黄素也具有较高的得率。
更进一步优选的,上述方案中,所述正己烷与所述丙酮溶液的体积比为1:3~5;所述万寿菊花颗粒与所述提取剂的质量体积比为1:4~7。
通过上述进一步地优选操作,可在实现槲皮万寿菊素的纯度在95%以上,得率在90%以上的前提下更好地降低生产成本,更有利于工业化的大规模应用。
本发明所述的丙酮溶液为丙酮的水溶液,所述的质量体积比中质量和体积均为标准单位,在比的过程中克对应毫升,千克对应升。
本发明的另一目的是保护本发明的方法制备得到的叶黄素产品和槲皮万寿菊素产品。
本发明具有如下有益效果:
1)本发明的方法通过简单的提取步骤可提取得到高纯度的槲皮万寿菊素,所得产品可直接适用于工业化生产。通过进一步优选方案后,槲皮万寿菊素的纯度在95%以上,槲皮万寿菊素的得率在90%以上,与现有技术中通过色谱法等复杂的方法相比,是一种十分高效地提取槲皮万寿菊素的方法,其提取成本低、耗时短,适用于工业化的大规模生产。
2)本发明的方法在提取槲皮万寿菊素的同时还可提取得到优质的 叶黄素,其纯度大于18%,得率大于99%,且二者的分离方法非常简单,仅通过正己烷进行简单的萃取即可,操作简单。
3)本发明的方法在提取的过程中不加水,不需精馏溶剂,工艺成本低廉,无废水产生,绿色环保。
附图说明
图1为实施例1所得槲皮万寿菊素产品的液相色谱图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例中涉及的万寿菊花颗粒是由万寿菊花经过发酵、压榨、烘干、粉碎、制粒得到的万寿菊花颗粒。
实施例1
本实施例涉及本发明所述的提取方法,包括如下步骤:
(1)投料100kg万寿菊花颗粒,用正己烷和80%丙酮溶液以体积比1:3混合,对所述万寿菊花颗粒按照总料液比1:4在20℃条件下浸提,每次浸提的时间为1h,重复提取3次后将浸提液混合,将浸提液浓缩至无馏出物,得到固体混合物24.47kg;
(2)向(1)中得到的混合物以质量体积比1:3加入正己烷进行萃取,在室温下萃取3h,然后进行固液双相分离,分别得到含有叶黄素的液相和含有槲皮万寿菊素的固相;
(3)将(2)中的叶黄素液相浓缩即得叶黄素产品18.59kg,经液相色谱分析,其纯度为18.02%,含量收率为99.25%。产品含量*产品重量
(4)将(2)中的槲皮万寿菊素固相干燥即得到槲皮万寿菊素产品5.88kg,经液相色谱分析(液相色谱图如图1,图中4.0min~4.5min之间峰为槲皮万寿菊素,其出峰时间为4.131),其纯度为95.15%,含量收率为90.24%。
Figure PCTCN2020090320-appb-000001
实施例2
本实施例涉及本发明所述的提取方法,包括如下步骤:
(1)投料100kg万寿菊花颗粒,用正己烷和100%的丙酮以体积比1:3混合,对所述万寿菊花颗粒按照1:6的物料比,在55℃条件浸提,每次浸提的时间为1h,重复提取3次后将浸提液混合,然后浓缩至无馏出物,得到固体物23.81kg;
(2)向(1)中得到的混合物以质量体积比1:5加入正己烷进行萃取,在30℃下萃取3h,然后进行固液双相分离,分别得到液相叶黄素相和固相槲皮万寿菊素相。
(3)将(2)中的叶黄素液相浓缩即得叶黄素产品17.81kg。经液相色谱分析,其纯度为18.9%,含量收率为99.76%。
(4)将(2)中的槲皮万寿菊素固相干燥即得到槲皮万寿菊素产品5.99kg,经液相色谱分析,其纯度为96.17%,含量收率为92.94%。
Figure PCTCN2020090320-appb-000002
实施例3
本实施例涉及本发明所述的提取方法,包括如下步骤:
(1)投料100kg万寿菊花颗粒,用正己烷和100%的丙酮溶液以体积比1:5混合,对所述万寿菊花颗粒按照1:6的物料比,在55℃条件下浸提,每次浸提的时间为1h,重复提取3次后将浸提液混合,然后将浸提液浓缩至无馏出物,得到固体混合物24.06kg;
(2)向(1)中得到的混合物以质量体积比1:5加入正己烷进行萃取,在50℃下萃取3h,然后进行固液双相分离,分别得到液相叶黄素液相和固相槲皮万寿菊素相。
(3)将(2)中的叶黄素液相浓缩即得叶黄素产品18.04kg。经液相色谱分析,其纯度为18.6%,含量收率为99.41%。
(4)将(2)中的槲皮万寿菊素固相干燥即得到槲皮万寿菊素产品6.02kg,经液相色谱分析,其纯度为96.48%,含量收率为93.73%。
Figure PCTCN2020090320-appb-000003
对比例1
与实施例3相比,其区别在于,所述步骤1)中,正己烷与丙酮溶液的体积比为1:2。
将步骤(2)中的叶黄素液相浓缩即得叶黄素产品17.54kg。经液相色谱分析,其纯度为18.61%,含量收率为96.71%。
将(2)中的槲皮万寿菊素固相干燥即得到槲皮万寿菊素产品5.07kg,经液相色谱分析,其纯度为95.76%,含量收率为78.24%。
对比例2
与实施例3相比,其区别在于,所述步骤1)中,丙酮溶液的中丙酮的体积分数为70%。
将步骤(2)中的叶黄素液相浓缩即得叶黄素产品16.56kg。经液相色谱分析,其纯度为18.79%,含量收率为92.21%。
将(2)中的槲皮万寿菊素固相干燥即得到槲皮万寿菊素产品7.14kg,经液相色谱分析,其纯度为79.16%,含量收率为91.22%。
对比例3
与实施例3相比,其区别在于,所述步骤2)中,用乙酸乙酯溶剂进行萃取,混合物与萃取液的质量体积比为1:4。
将步骤(2)中的叶黄素液相浓缩即得叶黄素产品16.45kg。经液相色谱分析,其纯度为13.76%,含量收率为67.08%。
将(2)中的槲皮万寿菊素固相干燥即得到槲皮万寿菊素产品7.35kg,经液相色谱分析,其纯度为75.68%,含量收率为89.77%。
对比例4
与实施例3相比,其区别在于,所述步骤1)中,万寿菊花颗粒与提取溶剂比为1:2。
将步骤(2)中的叶黄素液相浓缩即得叶黄素产品14.69kg。经液相色谱分析,其纯度为18.62%,含量收率为81.03%。
将(2)中的槲皮万寿菊素固相干燥即得到槲皮万寿菊素产品4.51kg,经液相色谱分析,其纯度为95.23%,含量收率为69.27%。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本发明提供一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法。本发明所述方法以正己烷和丙酮溶液的混合液作为提取剂对万寿菊花颗粒进行提取,所述丙酮溶液中丙酮的体积分数为80~100%。本发明的混合提取剂对叶黄素和槲皮万寿菊素有非常高的选择性,可有效地对上述两种有效成分进行提取,后续经过简单地分离可得到叶黄素和高纯度的槲皮万寿菊素产品,工艺简单,生产成本低,利于工业化生产,具有较好的经济价值和应用前景。

Claims (10)

  1. 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法,其特征在于,以正己烷和丙酮溶液的混合液作为提取剂对万寿菊花颗粒进行提取,所述丙酮溶液中丙酮的体积分数为80~100%。
  2. 根据权利要求1所述的工业化方法,其特征在于,所述正己烷与所述丙酮溶液的体积比小于1:3。
  3. 根据权利要求1或2所述的工业化方法,其特征在于,所述正己烷与所述丙酮溶液的体积比为1:3~5。
  4. 根据权利要求1~3任一项所述的工业化方法,其特征在于,所述万寿菊花颗粒与所述提取剂的质量体积比小于1:4。
  5. 根据权利要求1~4任一项所述的工业化方法,其特征在于,所述万寿菊花颗粒与所述提取剂的质量体积比为1:4~7。
  6. 根据权利要求1~5任一项所述的工业化方法,其特征在于,还包括对提取得到的混合物进行分离的操作,具体为,用正己烷对提取得到的混合物进行萃取。
  7. 根据权利要求6所述的工业化方法,其特征在于,所述混合物与所述正己烷的质量体积比小于1:3;优选的,所述混合物与所述正己烷的质量体积比为1:3~5。
  8. 根据权利要求1~7任一项所述的工业化方法,其特征在于,提取温度为20~55℃,提取时间为2~8h;和/或,萃取温度为20-55℃,萃取时间为2-8h。
  9. 根据权利要求1~8任一项所述的工业化方法,其特征在于,包括如下步骤:
    1)以所述正己烷和所述丙酮溶液的混合液作为提取剂对万寿菊花颗粒进行提取,将所得提取液浓缩至提取剂全部挥干,得混合物;所述丙酮溶液中丙酮的体积分数为80~100%;所述正己烷与所述丙酮溶液的体积比小于1:3;所述万寿菊花颗粒与所述提取剂的质量体积比小于1:4;
    2)用正己烷对所述混合物进行萃取,然后进行固液分离,固相干燥得到槲皮万寿菊素产品,液相浓缩后得到叶黄素产品。
  10. 权利要求1~9任一项方法制备得到的叶黄素产品和槲皮万寿菊素产品。
PCT/CN2020/090320 2019-05-14 2020-05-14 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法 WO2020228786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910397773.0 2019-05-14
CN201910397773.0A CN110003071B (zh) 2019-05-14 2019-05-14 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法

Publications (1)

Publication Number Publication Date
WO2020228786A1 true WO2020228786A1 (zh) 2020-11-19

Family

ID=67176824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090320 WO2020228786A1 (zh) 2019-05-14 2020-05-14 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法

Country Status (2)

Country Link
CN (1) CN110003071B (zh)
WO (1) WO2020228786A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003071B (zh) * 2019-05-14 2021-03-23 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110776449B (zh) * 2019-10-22 2021-04-09 晨光生物科技集团股份有限公司 一种提取叶黄素和槲皮万寿菊素的工业化方法
CN110746331B (zh) * 2019-10-22 2021-04-09 晨光生物科技集团股份有限公司 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
CN113367337B (zh) * 2020-03-10 2023-02-24 晨光生物科技集团股份有限公司 一种包含槲皮万寿菊素的组合物
CN114052247B (zh) * 2020-08-06 2023-06-16 晨光生物科技集团股份有限公司 一种含槲皮万寿菊素、6-羟基山奈酚和没食子酸的抗氧化组合物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286807C (zh) * 2005-05-27 2006-11-29 大庆金土地生物科技有限公司 从万寿菊花中提取叶黄素的工艺
CN102190646B (zh) * 2011-03-29 2013-03-13 中国农业大学 一种高纯度槲皮万寿菊素制备方法
CN105541775A (zh) * 2016-02-26 2016-05-04 中国农业大学 一种槲皮万寿菊素工业化制备方法
CN103936643B (zh) * 2014-03-20 2016-07-06 江苏大学 一种提取分离万寿菊中叶黄素和黄酮的方法
CN105693676B (zh) * 2014-11-28 2018-07-24 天津耀宇生物技术有限公司 从万寿菊中分离纯化槲皮万寿菊素的方法
CN109134254A (zh) * 2018-09-28 2019-01-04 晨光生物科技集团股份有限公司 一种制备高纯度叶黄素酯的工业化方法
CN109232346A (zh) * 2018-10-12 2019-01-18 晨光生物科技集团股份有限公司 一种叶黄素和万寿菊黄酮的工业化制备方法
CN110003071A (zh) * 2019-05-14 2019-07-12 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110105257A (zh) * 2019-05-15 2019-08-09 晨光生物科技集团股份有限公司 一种同步提取叶黄素和槲皮万寿菊素的工业化方法
CN110372554A (zh) * 2019-06-28 2019-10-25 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110746331A (zh) * 2019-10-22 2020-02-04 晨光生物科技集团股份有限公司 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
CN110776449A (zh) * 2019-10-22 2020-02-11 晨光生物科技集团股份有限公司 一种提取叶黄素和槲皮万寿菊素的工业化方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286807C (zh) * 2005-05-27 2006-11-29 大庆金土地生物科技有限公司 从万寿菊花中提取叶黄素的工艺
CN102190646B (zh) * 2011-03-29 2013-03-13 中国农业大学 一种高纯度槲皮万寿菊素制备方法
CN103936643B (zh) * 2014-03-20 2016-07-06 江苏大学 一种提取分离万寿菊中叶黄素和黄酮的方法
CN105693676B (zh) * 2014-11-28 2018-07-24 天津耀宇生物技术有限公司 从万寿菊中分离纯化槲皮万寿菊素的方法
CN105541775A (zh) * 2016-02-26 2016-05-04 中国农业大学 一种槲皮万寿菊素工业化制备方法
CN109134254A (zh) * 2018-09-28 2019-01-04 晨光生物科技集团股份有限公司 一种制备高纯度叶黄素酯的工业化方法
CN109232346A (zh) * 2018-10-12 2019-01-18 晨光生物科技集团股份有限公司 一种叶黄素和万寿菊黄酮的工业化制备方法
CN110003071A (zh) * 2019-05-14 2019-07-12 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110105257A (zh) * 2019-05-15 2019-08-09 晨光生物科技集团股份有限公司 一种同步提取叶黄素和槲皮万寿菊素的工业化方法
CN110372554A (zh) * 2019-06-28 2019-10-25 晨光生物科技集团股份有限公司 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110746331A (zh) * 2019-10-22 2020-02-04 晨光生物科技集团股份有限公司 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
CN110776449A (zh) * 2019-10-22 2020-02-11 晨光生物科技集团股份有限公司 一种提取叶黄素和槲皮万寿菊素的工业化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU, HONG: "Study on Separation and Anticancer Activity of Compounds from Tagetes Erecta L. Residue", NON-OFFICIAL TRANSLATION: MASTER DISSERTATION OF TIANJIN UNIVERSITY, 1 May 2016 (2016-05-01), DOI: 20200709123657X *

Also Published As

Publication number Publication date
CN110003071B (zh) 2021-03-23
CN110003071A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2020228786A1 (zh) 一种快速高效地提取叶黄素和槲皮万寿菊素的工业化方法
CN110845328B (zh) 一种以迷迭香油膏副产品制备高纯度鼠尾草酸的方法
CN110105257B (zh) 一种同步提取叶黄素和槲皮万寿菊素的工业化方法
CN109232346B (zh) 一种叶黄素和万寿菊黄酮的工业化制备方法
CN102408320B (zh) 一种从姜黄中提取分离姜黄素和姜黄油的方法
WO2021077926A1 (zh) 一种从万寿菊中提取叶黄素和槲皮万寿菊素的工业化方法
CN110655453A (zh) 一种次***二酚的提取分离方法
CN112209979B (zh) 自甘草酸单铵盐母液膏中联合分离高纯度甘草苷、去苦味甘草甜味素及甘草总黄酮生产工艺
CN113773184B (zh) 一种姜黄素类化合物的提取方法
CN108047016B (zh) 一种从姜黄中提取双脱甲氧基姜黄素的方法
CN107098942B (zh) 一种亚临界水萃取萝卜叶中山奈苷的方法
CN111171104B (zh) 一种以迷迭香油膏副产品制备熊果酸的方法
CN104987952B (zh) 从红景天全草中提取挥发油及红景天甙的方法
CN112159300A (zh) 一种从植物脱臭馏出物提取角鲨烯的方法
CN111018939A (zh) 一种茶皂素的快速精制方法
CN113501752B (zh) 一种辅酶q10的酸提纯方法
CN113801003B (zh) 一种***二酚的工业化提取方法
CN114671755A (zh) 一种高含量玛咖烯的制备方法
CN110878093B (zh) 一种高纯度水飞蓟宾的制备方法
CN104974041B (zh) 一种高纯度绿原酸及其制备方法和用途
CN112094184B (zh) 一种从银杏叶提取物层析废水中提取莽草酸的方法
CN108822067B (zh) 一种从葛花中制备鸢尾黄素的方法
CN107353296B (zh) 一种从东革阿里中提取活性蛋白和宽缨酮的方法
CN112022935A (zh) 一种纯化回收葡萄渣多酚的方法
CN101768098A (zh) β-胡萝卜素的制备色谱分离精制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805796

Country of ref document: EP

Kind code of ref document: A1