WO2020211184A1 - 制冷*** - Google Patents

制冷*** Download PDF

Info

Publication number
WO2020211184A1
WO2020211184A1 PCT/CN2019/091279 CN2019091279W WO2020211184A1 WO 2020211184 A1 WO2020211184 A1 WO 2020211184A1 CN 2019091279 W CN2019091279 W CN 2019091279W WO 2020211184 A1 WO2020211184 A1 WO 2020211184A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigeration system
ejector
economizer
evaporator
Prior art date
Application number
PCT/CN2019/091279
Other languages
English (en)
French (fr)
Inventor
孟庆良
宋强
谭雪艳
刘江彬
刘景升
王冰
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to US17/256,355 priority Critical patent/US11578896B2/en
Priority to EP19925115.8A priority patent/EP3819557A4/en
Publication of WO2020211184A1 publication Critical patent/WO2020211184A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the invention belongs to the technical field of refrigeration, and specifically provides a refrigeration system.
  • the refrigeration system is a system that can reduce the indoor ambient temperature.
  • the refrigeration system is generally used in shopping malls and office buildings. In the hot summer, the indoor environment temperature in shopping malls and office buildings is very high, which affects the user experience. At this time, it is necessary to use cooling
  • the system is used to cool the room, and the evaporating temperature range set during cooling is generally -10°C to -25°C.
  • a document with a patent number of 201711445292.X provides an air conditioner system, which is used in the intake of the compressor.
  • An ejector is set at the port to improve the energy efficiency ratio of the refrigeration system through the action of the ejector.
  • placing the ejector at the inlet of the compressor will easily affect the compressor’s performance.
  • Operational stability affects the life of the compressor.
  • this setting of the ejector may cause the suction temperature of the compressor to be too high, which will affect the properties of the compressor oil and affect the safety of compressor operation.
  • the refrigeration system includes an evaporator, a condenser, a throttling device, a compressor, an economizer and an ejector.
  • the condenser, an economizer, a throttling device, an evaporator, a compressor and an ejector together form a closed loop
  • the ejector is connected with the economizer, and the ejector is set on the discharge side of the compressor.
  • the refrigeration system further includes a gas-liquid separator connected to the refrigerant circulation circuit, and the gas-liquid separator is arranged between the evaporator and the compressor.
  • the refrigeration system further includes an oil separator connected to the refrigerant circulation circuit, and the oil separator is arranged between the compressor and the ejector.
  • the throttling device is arranged between the economizer and the evaporator.
  • the throttling device is arranged between the economizer and the condenser.
  • the throttling device is an electronic expansion valve.
  • the ejector can mix the low-pressure fluid and the high-pressure fluid, and utilize the turbulent diffusion effect of the jet to improve
  • the output fluid pressure can achieve the effect of two-stage supercharging, improve the energy efficiency ratio of the refrigeration system, and install the ejector on the discharge side of the compressor, so that the refrigeration system can achieve two-stage supercharging at the same time.
  • the airflow of the ejector is unstable, which affects the stability of the compressor operation, and at the same time does not affect the properties of the compressor oil, and does not affect the safety of the compressor operation.
  • Figure 1 is a schematic diagram of the structure of the refrigeration system of the present invention.
  • Figure 2 is a refrigeration data table of a common refrigeration system in the prior art
  • Figure 3 is a refrigeration data table of a two-stage compression refrigeration system in the prior art
  • Fig. 4 is a refrigeration data table of a refrigeration system with supplemental gas and enthalpy compression in the prior art
  • Fig. 5 is a refrigeration data table of a refrigeration system in which the ejector is arranged on the intake side of the compressor in the prior art;
  • Fig. 6 is a refrigeration data table of the refrigeration system in which the ejector is installed on the discharge side of the compressor in the present invention.
  • the present invention provides a refrigeration system, which aims to While the ejector achieves two-stage supercharging, it will not affect the stability of the compressor operation due to the unstable airflow of the ejector, and will not affect the properties of the compressor oil and the compressor operation. safety.
  • the refrigeration system of the present invention includes an evaporator 1, a condenser 2, a throttling device 3, a compressor 4, an economizer 5, and an ejector 6, a condenser 2, an economizer 5, and a throttle device.
  • the flow device 3, the evaporator 1, the compressor 4 and the ejector 6 jointly constitute a closed-loop refrigerant circulation circuit.
  • the ejector 6 is connected with the economizer 5, and the ejector 6 is arranged on the discharge side of the compressor 4.
  • condenser 2 is connected to economizer 5 through pipelines
  • economizer 5 is connected to evaporator 1 through pipelines
  • evaporator 1 is connected to compressor 4 through pipelines
  • compressor 4 is connected to ejector 6 through pipelines
  • the ejector 6 is connected to the condenser 2 through a pipeline
  • the throttling device 3 can be connected between the evaporator 1 and the economizer 5, or between the condenser 2 and the economizer 5.
  • the condenser 2, the economizer 5, the throttling device 3, the evaporator 1, the compressor 4, and the ejector 6 can jointly form a closed-loop refrigerant circulation circuit.
  • the economizer 5 is also connected to the ejector 6 through a separate pipeline.
  • the liquid phase refrigerant from the condenser 2 is divided into two parts in the economizer 5. The first part The refrigerant continues to flow to the evaporator 1, and the second part of the refrigerant is divided to the ejector 6. The first part of the refrigerant becomes a gas phase refrigerant after passing through the evaporator 1.
  • the gas phase refrigerant continues to pass through the compressor 4 and becomes a high pressure gas phase refrigerant, which is ejected
  • the device 6 receives the second part of the refrigerant from the economizer 5 and the high-pressure gas phase refrigerant from the compressor 4, wherein the pressure of the second part of the refrigerant from the economizer 5 is less than that of the high-pressure gas phase refrigerant from the compressor 4 Pressure, two refrigerants with different pressures and different phases are mixed in the ejector 6, and a mixed shock phenomenon occurs in the ejector 6, so that the pressure of the refrigerant coming out of the ejector 6 increases sharply, which is in the joint action with the compressor 4. , The effect of two-stage boost is formed.
  • the economizer 5 is a heat exchanger, and its function is to absorb heat by throttling and evaporating the refrigerant itself, so that another part of the refrigerant is supercooled.
  • the refrigeration system further includes a gas-liquid separator 7 connected to the refrigerant circulation circuit, and the gas-liquid separator 7 is arranged between the evaporator 1 and the compressor 4.
  • the gas-liquid separator 7 is arranged on the intake side of the compressor 4 and on the exhaust side of the evaporator 1. With this arrangement, the gas-liquid separator 7 prevents the intake side of the compressor 4 from sucking in The liquid-phase refrigerant generates liquid hammer, thereby damaging the compressor 4.
  • the refrigeration system further includes an oil separator 8 connected to the refrigerant circulation circuit, and the oil separator 8 is arranged between the compressor 4 and the ejector 6.
  • the oil separator 8 is arranged on the discharge side of the compressor 4 and on the intake side of the ejector 6.
  • the refrigerant and lubricating oil in the compressor 4 are vaporized.
  • the mixture after the mixture leaves the compressor 4, will reduce the lubricating oil in the compressor 4.
  • the oil separator 8 the lubricating oil can be returned to the oil storage tank of the compressor 4 to prevent the compressor 4 from being caused by the lubricating oil.
  • the lack of power leads to malfunctions and prolongs the service life of the compressor 4.
  • the throttling device 3 can be an electronic expansion valve, a manual expansion valve, or a capillary tube. Those skilled in the art can flexibly set the specific structure of the throttling device 3 in practical applications. The adjustment and change of the specific structure of the throttling device 3 does not constitute a limitation to the present invention, and should be limited within the protection scope of the present invention.
  • the refrigeration system adopting the present invention is compared with the prior art common refrigeration system, two-stage compression refrigeration system, supplemental gas enthalpy compression refrigeration system and ejector 6
  • the energy efficiency ratio of the refrigeration system on the intake side of the compressor 4 is significantly improved. Since the evaporating temperature range set by the refrigeration system is generally -10°C to -25°C, four evaporation temperature values of -10°C, -15°C, -20°C and -25°C are specially selected to change the temperature Compare and analyze the energy efficiency ratio of the refrigeration system in the prior art with the energy efficiency ratio of the refrigeration system in the prior art.
  • the energy efficiency ratio of the refrigeration system of the present invention is greatly improved compared with the energy efficiency ratio of the ordinary refrigeration system in the prior art, and it can be calculated that the improved energy efficiency ratio can reach up to 18%.
  • the energy efficiency ratio of the refrigeration system of the present invention is also greatly improved compared to the energy efficiency ratio of the two-stage compression refrigeration system in the prior art. It can be calculated that the improved energy efficiency ratio can be as high as Up to 12.7%.
  • the energy efficiency ratio of the refrigeration system of the present invention is significantly improved compared to the energy efficiency ratio of the refrigeration system of the prior art with supplemental air and enthalpy compression. It can be calculated that the improved energy efficiency ratio can be the highest. Up to 2.54%.
  • the energy efficiency ratio of the refrigeration system of the present invention is significantly improved compared to the energy efficiency ratio of the refrigeration system in which the ejector 6 is arranged on the intake side of the compressor 4 in the prior art. Available, the improved energy efficiency ratio can reach up to 1.67%.
  • the refrigeration system of the present invention can not only realize two-stage supercharging, but also that compared with the prior art refrigeration system in which the ejector 6 is arranged on the intake side of the compressor 4, the refrigeration system of the present invention does not Since the air flow of the ejector 6 is unstable, it affects the stability of the operation of the compressor 4, and at the same time does not affect the properties of the compressor oil, and does not affect the safety of the operation of the compressor 4. Moreover, the refrigeration system of the present invention The energy efficiency ratio during refrigeration is significantly higher than that of any type of refrigeration system in the prior art, thereby ensuring that the refrigeration system of the present invention has a high refrigeration capacity and is more energy-efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种制冷***,包括蒸发器(1)、冷凝器(2)、节流装置(3)、压缩机(4)、经济器(5)和引射器(6),这些装置共同构成闭环的冷媒循环回路,引射器(6)与经济器(5)连接,引射器(6)设置在压缩机(4)的排气侧。该结构使得制冷***在实现双级增压的同时,不会由于引射器(6)的气流不稳定而影响压缩机(4)的稳定性,且不会对压缩机(4)的机油性质产生影响,从而保证了压缩机(4)运行的安全性。

Description

制冷*** 技术领域
本发明属于制冷技术领域,具体提供一种制冷***。
背景技术
制冷***是一种能够降低室内环境温度的***,制冷***一般应用于商场、写字楼等,在炎热的夏季,商场、写字楼等室内的环境温度非常高,影响用户的体验,这时候就需要利用制冷***来对室内进行降温,其制冷时设定的蒸发温度区间一般为-10℃至-25℃。
现有技术中,在提高制冷***制冷能力的同时,还要考虑到制冷***的能效比,从而保证制冷***的制冷能力能够提高,并且更为节能,因此,现有的许多制冷***已经采用了双级压缩机,或者采用补气增焓压缩机,其在一定程度上都能够提高制冷***的能效比,然而,双级压缩机和补气增焓压缩机的成本都非常高,且结构复杂,不易维修。因此,为了降低成本,并且进一步提高制冷***的能效比,可以在制冷***中加入引射器,例如专利号为201711445292.X的文献中提供了一种空调器***,其在压缩机的进气口处设置引射器,通过引射器的作用来提高制冷***的能效比,然而,由于引射器的气流不稳定,将引射器设置在压缩机的进气口处容易影响压缩机的运行稳定性,从而影响压缩机寿命,而且,引射器的这种设置方式还有可能导致压缩机的吸气温度过高,对压机油性质有影响,影响压缩机运行安全性。
因此,本领域需要一种新的制冷***来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有制冷***中将引射器设置在压缩机的进气口处易影响压缩机的运行稳定性和运行安全性的问题,本发明提供了一种制冷***,制冷***包括蒸发器、冷凝器、节流装置、压缩机、经济器和引射器,冷凝器、经济器、节流装 置、蒸发器、压缩机和引射器共同构成闭环的冷媒循环回路,引射器与经济器连接,引射器设置在压缩机的排气侧。
在上述制冷***的优选技术方案中,制冷***还包括气液分离器,气液分离器连接于冷媒循环回路上,且气液分离器设置在蒸发器和压缩机之间。
在上述制冷***的优选技术方案中,制冷***还包括油分离器,油分离器连接于冷媒循环回路上,且油分离器设置在压缩机与引射器之间。
在上述制冷***的优选技术方案中,节流装置设置在经济器和蒸发器之间。
在上述制冷***的优选技术方案中,节流装置设置在经济器和冷凝器之间。
在上述制冷***的优选技术方案中,节流装置为电子膨胀阀。
本领域技术人员能够理解的是,在本发明的优选技术方案中,通过将引射器与经济器连接,使得引射器能够将低压流体和高压流体混合,利用射流的紊动扩散作用,提高输出的流体压力,从而实现双级增压的效果,提高制冷***的能效比,并且将引射器设置在压缩机的排气侧,在使制冷***实现双级增压的同时,不会由于引射器的气流不稳定,而影响压缩机运行的稳定性,同时不会对压机油的性质产生影响,不会影响压缩机运行的安全性。
附图说明
图1是本发明的制冷***的结构示意图;
图2是现有技术中普通制冷***的制冷数据表;
图3是现有技术中双级压缩的制冷***的制冷数据表;
图4是现有技术中补气增焓压缩的制冷***的制冷数据表;
图5是现有技术中将引射器设置在压缩机的进气侧的制冷***的制冷数据表;
图6是本发明中将引射器设置在压缩机的排气侧的制冷***的制冷数据表。
附图标记:
1、蒸发器;2、冷凝器;3、节流装置;4、压缩机;5、经济器;6、引射器;7、气液分离器;8、油分离器。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
基于背景技术指出的现有制冷***中将引射器设置在压缩机的进气口处易影响压缩机的运行稳定性和运行安全性的问题,本发明提供了一种制冷***,旨在通过引射器实现双级增压的同时,不会由于引射器的气流不稳定,而影响压缩机运行的稳定性,同时不会对压机油的性质产生影响,不会影响压缩机运行的安全性。
具体地,如图1所示,本发明的制冷***包括蒸发器1、冷凝器2、节流装置3、压缩机4、经济器5和引射器6,冷凝器2、经济器5、节流装置3、蒸发器1、压缩机4和引射器6共同构成闭环的冷媒循环回路,引射器6与经济器5连接,引射器6设置在压缩机4的排气侧。其中,冷凝器2通过管路与经济器5连接,经济器5通过管路与蒸发器1连接,蒸发器1通过管路与压缩机4连接,压缩机4通过管路与引射器6连接,引射器6通过管路与冷凝器2连接,节流装置3可以连接于蒸发器1和经济器5之间,也可以连接于冷凝器2和经济器5之间,通过这样的设置,使得冷凝器2、经济器5、节流装置3、蒸发器1、压缩机4和引射器6能够共同构成闭环的冷媒循环回路。在此之外,经济器5还通过单独的管路与引射器6连接,在制冷***制冷的过程中,从冷凝器2出来的液相冷媒在经济器5中分流成两部分,第一部分冷媒继续流向蒸发器1,第二部分冷媒分流至引射器6,第一部分冷媒在经过蒸发器1后变成气相冷媒,该气相冷媒继续经过压缩机4后变成高压的气相冷媒,引射器6接收到从经济器5出来的第二部分冷媒和从压缩机4出来的高压气相冷媒,其中,从经济器5出来的第二部分冷媒的压力小于从压缩机4出来的高压气相冷媒的压力,两股不同压力且不同相态的冷媒在引射器6中混合,引射器6发生混合激波现象,从而使引射器6出来的冷 媒压力激增,在与压缩机4的共同作用下,形成了两级增压的效果。需要说明的是,经济器5为一个换热器,其作用是通过冷媒自身节流蒸发吸收热量从而使另一部分冷媒得到过冷。
优选地,制冷***还包括气液分离器7,气液分离器7连接于冷媒循环回路上,且气液分离器7设置在蒸发器1和压缩机4之间。也就是说,气液分离器7设置在压缩机4的进气侧,且位于蒸发器1的排气侧,通过这样的设置,使得通过气液分离器7防止压缩机4进气侧吸进液相冷媒而产生液击,从而损坏压缩机4。
优选地,制冷***还包括油分离器8,油分离器8连接于冷媒循环回路上,且油分离器8设置在压缩机4与引射器6之间。也就是说,油分离器8设置在压缩机4的排气侧,且位于引射器6的进气侧,在压缩机4的运行过程中,压缩机4内的冷媒和润滑油被蒸汽成混合物,该混合物离开压缩机4后,会使压缩机4内的润滑油减少,通过油分离器8的作用,可以使润滑油返回到压缩机4的储油槽中,防止压缩机4由于润滑油的缺乏而引发故障,延长压缩机4的使用寿命。
在本发明中,节流装置3可以为电子膨胀阀,也可以为手动式膨胀阀,也可以为毛细管等,本领域技术人员可以在实际应用中灵活地设置节流装置3的具体结构,这种节流装置3具体结构的调整和改变不构成对本发明的限制,均应限定在本发明的保护范围之内。
经过发明人反复地试验、对比和分析,采用本发明的制冷***相比于现有技术中普通制冷***、双级压缩的制冷***、补气增焓压缩的制冷***以及将引射器6设置在压缩机4的进气侧的制冷***,其能效比都显著提升。由于利用制冷***制冷时其设定的蒸发温度区间一般为-10℃至-25℃,因此特选取-10℃、-15℃、-20℃和-25℃四个蒸发温度值来将本发明的制冷***的能效比与现有技术中的制冷***的能效比进行对比和分析。
如图2和6所示,本发明的制冷***的能效比相比于现有技术中普通制冷***的能效比具有大幅度的提升,经计算可得,提升的能效比最高可达18%。
如图3和6所示,本发明的制冷***的能效比相比于现有技术中双级压缩的制冷***的能效比也具有大幅度的提升,经计算可得,提升的能效比最高可达12.7%。
如图4和6所示,本发明的制冷***的能效比相比于现有技术中补气增焓压缩的制冷***的能效比具有明显的提升,经计算可得,提升的能效比最高可达2.54%。
如图5和6所示,本发明的制冷***的能效比相比于现有技术中将引射器6设置在压缩机4的进气侧的制冷***的能效比具有明显的提升,经计算可得,提升的能效比最高可达1.67%。
由此可见,本发明的制冷***不仅能够实现双级增压,并且相比于现有技术中将引射器6设置在压缩机4的进气侧的制冷***,本发明的制冷***不会由于引射器6的气流不稳定,而影响压缩机4运行的稳定性,同时不会对压机油的性质产生影响,不会影响压缩机4运行的安全性,而且,本发明的制冷***在制冷时的能效比明显高于现有技术中任何一种类型的制冷***的能效比,从而保证本发明的制冷***具有很高的制冷能力,同时还更加节能。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (6)

  1. 一种制冷***,其特征在于,所述制冷***包括蒸发器、冷凝器、节流装置、压缩机、经济器和引射器,所述冷凝器、所述经济器、所述节流装置、所述蒸发器、所述压缩机和所述引射器共同构成闭环的冷媒循环回路,所述引射器与所述经济器连接,所述引射器设置在所述压缩机的排气侧。
  2. 根据权利要求1所述的制冷***,其特征在于,所述制冷***还包括气液分离器,所述气液分离器连接于所述冷媒循环回路上,且所述气液分离器设置在所述蒸发器和所述压缩机之间。
  3. 根据权利要求1所述的制冷***,其特征在于,所述制冷***还包括油分离器,所述油分离器连接于所述冷媒循环回路上,且所述油分离器设置在所述压缩机与所述引射器之间。
  4. 根据权利要求1所述的制冷***,其特征在于,所述节流装置设置在所述经济器和所述蒸发器之间。
  5. 根据权利要求1所述的制冷***,其特征在于,所述节流装置设置在所述经济器和所述冷凝器之间。
  6. 根据权利要求1至5中任一项所述的制冷***,其特征在于,所述节流装置为电子膨胀阀。
PCT/CN2019/091279 2019-04-18 2019-06-14 制冷*** WO2020211184A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/256,355 US11578896B2 (en) 2019-04-18 2019-06-14 Refrigeration system
EP19925115.8A EP3819557A4 (en) 2019-04-18 2019-06-14 REFRIGERATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910314874.7A CN111829201B (zh) 2019-04-18 2019-04-18 制冷***
CN201910314874.7 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020211184A1 true WO2020211184A1 (zh) 2020-10-22

Family

ID=72838019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091279 WO2020211184A1 (zh) 2019-04-18 2019-06-14 制冷***

Country Status (4)

Country Link
US (1) US11578896B2 (zh)
EP (1) EP3819557A4 (zh)
CN (1) CN111829201B (zh)
WO (1) WO2020211184A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230681A (zh) * 2011-06-14 2011-11-02 合肥天鹅制冷科技有限公司 一种蒸发器出口零过热度运行的制冷***
CN202133171U (zh) * 2011-06-14 2012-02-01 合肥天鹅制冷科技有限公司 一种蒸发器出口零过热度运行的制冷***
CN103322729A (zh) * 2012-03-23 2013-09-25 珠海格力电器股份有限公司 制冷***及空调器
CN103471273A (zh) * 2013-09-02 2013-12-25 中国科学院理化技术研究所 混合工质制冷循环***
CN104019579A (zh) * 2014-06-10 2014-09-03 中国科学院理化技术研究所 利用余热驱动引射器的混合工质低温制冷循环***
EP3102891A1 (en) * 2014-02-06 2016-12-14 Carrier Corporation Ejector cycle heat recovery refrigerant separator
CN205860539U (zh) * 2016-07-11 2017-01-04 格力电器(芜湖)有限公司 一种空调***
WO2017146266A1 (ja) * 2016-02-26 2017-08-31 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN207180091U (zh) * 2017-07-19 2018-04-03 天津智川恒博科技发展有限公司 一种带引射器的吸收式制冷***
CN108344195A (zh) * 2018-04-20 2018-07-31 天津商业大学 回收膨胀功的二级引射一机双温制冷***
CN108981223A (zh) * 2018-09-17 2018-12-11 天津商业大学 喷射过冷制冷***

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113853A (zh) * 1974-02-18 1975-09-06
JPS54137758A (en) * 1978-04-19 1979-10-25 Hitachi Ltd Refrigerating system
JPS57104056A (en) * 1980-12-18 1982-06-28 Nippon Denso Co Refrigeration cycle
JP3365273B2 (ja) * 1997-09-25 2003-01-08 株式会社デンソー 冷凍サイクル
JP2004205154A (ja) * 2002-12-26 2004-07-22 Nippon Soken Inc 冷凍機
JP2008057848A (ja) * 2006-08-31 2008-03-13 Denso Corp エジェクタを用いた蒸気圧縮式冷凍サイクル
CN100507401C (zh) * 2007-11-30 2009-07-01 清华大学 中间回路上设有喷射器的容量可调涡旋压缩机制冷***
CN102128508B (zh) * 2010-01-19 2014-10-29 珠海格力电器股份有限公司 喷射器节流补气***以及热泵或制冷***补气方法
JP2013200056A (ja) * 2012-03-23 2013-10-03 Sanden Corp 冷凍サイクル及び冷凍ショーケース
ITPD20130004A1 (it) * 2013-01-15 2014-07-16 Epta Spa Impianto frigorifero con eiettore
CN104121719B (zh) * 2013-04-25 2016-08-10 珠海格力电器股份有限公司 制冷***
CN106461299B (zh) * 2014-05-13 2017-10-27 大金工业株式会社 油分离装置
CN108224838A (zh) 2017-12-27 2018-06-29 青岛海尔空调电子有限公司 空调器***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230681A (zh) * 2011-06-14 2011-11-02 合肥天鹅制冷科技有限公司 一种蒸发器出口零过热度运行的制冷***
CN202133171U (zh) * 2011-06-14 2012-02-01 合肥天鹅制冷科技有限公司 一种蒸发器出口零过热度运行的制冷***
CN103322729A (zh) * 2012-03-23 2013-09-25 珠海格力电器股份有限公司 制冷***及空调器
CN103471273A (zh) * 2013-09-02 2013-12-25 中国科学院理化技术研究所 混合工质制冷循环***
EP3102891A1 (en) * 2014-02-06 2016-12-14 Carrier Corporation Ejector cycle heat recovery refrigerant separator
CN104019579A (zh) * 2014-06-10 2014-09-03 中国科学院理化技术研究所 利用余热驱动引射器的混合工质低温制冷循环***
WO2017146266A1 (ja) * 2016-02-26 2017-08-31 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN205860539U (zh) * 2016-07-11 2017-01-04 格力电器(芜湖)有限公司 一种空调***
CN207180091U (zh) * 2017-07-19 2018-04-03 天津智川恒博科技发展有限公司 一种带引射器的吸收式制冷***
CN108344195A (zh) * 2018-04-20 2018-07-31 天津商业大学 回收膨胀功的二级引射一机双温制冷***
CN108981223A (zh) * 2018-09-17 2018-12-11 天津商业大学 喷射过冷制冷***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819557A4

Also Published As

Publication number Publication date
US20210270497A1 (en) 2021-09-02
CN111829201A (zh) 2020-10-27
EP3819557A4 (en) 2022-04-20
US11578896B2 (en) 2023-02-14
CN111829201B (zh) 2021-11-02
EP3819557A1 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
CN102128508B (zh) 喷射器节流补气***以及热泵或制冷***补气方法
US9243827B2 (en) Chiller system including an oil separator and ejector connection
WO2018072510A1 (zh) 一种空调热回收***
CN204373252U (zh) 转换式co2跨临界循环制冷***
US11353249B2 (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
CN109269136B (zh) 空调***
KR20130026674A (ko) 공기조화기
JP2011214753A (ja) 冷凍装置
Zhang et al. Comparative analysis of typical improvement methods in transcritical carbon dioxide refrigeration cycle
US11300329B2 (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
CN108800393B (zh) 空调***
CN110608539A (zh) 一种复叠式高温热泵***
TWI564524B (zh) Refrigeration cycle
CN112963979A (zh) 一种可实现工作循环转换的复叠热泵***
WO2021036115A1 (zh) 制冷***
CN217685941U (zh) 一种双工况冷水机组
CN111076421A (zh) 直流变频复叠热水机组
WO2020211184A1 (zh) 制冷***
CN115143658A (zh) 一种双工况冷水机组及其控制方法
US20200318839A1 (en) Air conditioning system and control method therof
CN210425610U (zh) 制冷***
CN108204690B (zh) 一种单压缩机准复叠式空气源热泵***
KR102446555B1 (ko) 심온 냉동고
CN107631515A (zh) 热泵空调机组
WO2023231110A1 (zh) 一种多模式切换的co2热管冷却***及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE