WO2020147671A1 - 一种高镍三元正极材料表面改性的方法 - Google Patents

一种高镍三元正极材料表面改性的方法 Download PDF

Info

Publication number
WO2020147671A1
WO2020147671A1 PCT/CN2020/071713 CN2020071713W WO2020147671A1 WO 2020147671 A1 WO2020147671 A1 WO 2020147671A1 CN 2020071713 W CN2020071713 W CN 2020071713W WO 2020147671 A1 WO2020147671 A1 WO 2020147671A1
Authority
WO
WIPO (PCT)
Prior art keywords
high nickel
nickel ternary
cathode material
ternary cathode
positive electrode
Prior art date
Application number
PCT/CN2020/071713
Other languages
English (en)
French (fr)
Inventor
夏阳
陈安琪
王坤
张文魁
吴海军
黄辉
毛秦钟
吉同棕
甘永平
张俊
梁初
Original Assignee
浙江工业大学
浙江美都海创锂电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学, 浙江美都海创锂电科技有限公司 filed Critical 浙江工业大学
Priority to JP2021540849A priority Critical patent/JP7236631B2/ja
Publication of WO2020147671A1 publication Critical patent/WO2020147671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for surface modification of a high nickel ternary positive electrode material, and belongs to the technical field of lithium ion battery positive electrode materials.
  • Lithium-ion batteries have been widely used in portable electronic devices, household appliances, and power tools.
  • the application in the field of electric vehicles has not yet achieved this achievement, mainly because the high cost of lithium-ion batteries has increased the cost of electric vehicles, and the specific energy density cannot meet the needs of users, restricting the development of electric vehicles.
  • the cost and energy density of lithium-ion batteries largely depend on the performance of the cathode material, which is the heaviest and most expensive component.
  • the high nickel ternary cathode material has the advantages of high mass specific capacity and low price. It is regarded as the next generation lithium ion battery cathode material and has received extensive attention.
  • high-nickel cathode materials are very sensitive to water in the air, and easily react with moisture in the air to generate lithium hydroxide on the surface, which causes the surface of the material to deteriorate, causing difficulties in subsequent preparation of cathode slurry, degradation of cathode capacity, and stable cycling. Many problems such as sexual deterioration. Therefore, the high nickel cathode material without surface treatment has strict requirements on storage conditions and post-processing environment, which not only increases the storage cost of the material, but also increases the difficulty of subsequent processing of the material. In order to solve the above problems, researchers usually use inert oxide coating methods to modify and modify the surface of high nickel ternary cathode materials to improve structural stability and cycle stability.
  • Chinese patent CN106207128A discloses a method for preparing a Zr(OH) 4 coated nickel-cobalt-aluminum ternary cathode material, which includes the following steps: (1) preparing an alcohol solution of soluble zirconium alkoxide; (2) preparing an alcohol-water solution, and Slowly add dropwise into the solution prepared in step (1); (3) ultrasonic, washing, suction filtration, and drying to obtain amorphous Zr(OH) 4 powder; (4) combine the ternary material and Zr(OH) 4 The powders are mixed by ball milling to obtain Zr(OH) 4 coated and modified ternary cathode materials.
  • Citride CN103178258A discloses a preparation method of alumina-coated modified nickel-cobalt-manganese ternary cathode material, which includes: (1) Precursor preparation: mixing water-soluble metal nickel salt, cobalt salt and manganese salt into a mixed solution , Together with the precipitating agent and the morphology control agent, are added dropwise to the reaction vessel to control the pH value and reaction temperature of the system.
  • the precursor is obtained by filtration, washing and vacuum drying;
  • the Al 2 O 3 coated precursor powder and lithium salt powder are uniformly mixed, and then calcined at high temperature to obtain an alumina-coated modified nickel-cobalt-manganese ternary positive electrode with a layered crystal structure material.
  • solid phase coating and liquid phase coating sintering there are currently two main methods for coating and modifying the surface of high nickel cathode materials: solid phase coating and liquid phase coating sintering.
  • the uniformity of the coating layer obtained by the solid-phase coating and sintering method is poor, and the bonding force between the coating layer and the substrate is weak, and the coating layer is broken due to the anisotropic volume expansion of the positive electrode material during the cycle.
  • the liquid phase method mostly uses water as a solvent, but water reacts with the high-nickel ternary cathode material, causing lithium loss and ultimately reducing the material capacity.
  • the present invention provides a plasma surface modification treatment method that uses gas-solid reaction on the surface of high nickel ternary cathode material Constructing a layer of lithium carbonate and carbon coating can not only effectively isolate the active material from direct contact with the electrolyte, enhance the electronic conductivity of the surface interface, but also greatly improve the chemical stability after being exposed to humid air for a long time. Helps improve the structural stability and post-processability of the material. Compared with the traditional coating method, this method has the advantages of simplicity, convenience, fastness, efficiency, and low cost.
  • the present invention provides a method for surface modification of high nickel ternary cathode materials.
  • a method for surface modification of a high nickel ternary cathode material comprising the following steps:
  • the chemical formula of the high nickel ternary cathode material in step S1 is LiNi (1-xy) Co x M y O 2 , where x+y ⁇ 0.7, and M is Mn or Al.
  • the chemical formula of the high nickel ternary cathode material is LiNi 0.9 Co 0.05 Mn 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.85 Co 0.1 Al 0.05 O 2 or LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
  • the arc starting gas is carbon dioxide.
  • the flat thickness of the high nickel ternary cathode material in step S1 is 0.3 mm-10 mm.
  • the power of the plasma generator in step S3 is 5-2000W.
  • the present application also provides a lithium ion battery, and the positive electrode material of the lithium ion battery is a surface-modified high nickel ternary positive electrode material prepared by the method described in this application.
  • Plasma surface treatment can be used to construct a composite coating layer of lithium carbonate and carbon on the surface of the high nickel ternary cathode material.
  • Lithium carbonate is an electrochemically inert substance that can isolate the high nickel ternary cathode material from water vapor in the air. , To prevent it from reacting with water vapor to generate lithium hydroxide, destroying its surface and interface structure, thereby improving its processability in the subsequent electrode sheet production process; at the same time, the presence of a small amount of carbon in the coating layer can improve the high nickel ternary cathode
  • the electronic conductivity of the surface and interface of the material is beneficial to improve the cycle and rate performance of the battery; the method is simple in process, convenient to handle, fast and efficient, and has significant economic benefits.
  • Figure 1 is an SEM spectrum of the modified ternary cathode material obtained in Example 1;
  • Example 2 is an XRD pattern of the modified ternary cathode material obtained in Example 1;
  • Figure 3 is the first three charge and discharge curves of the battery prepared in Example 1 at a current density of 20 mA/g;
  • Fig. 4 is a charge-discharge cycle curve of the battery prepared in Example 1 first activated at a current density of 20 mA/g for three cycles, and then cycled at a current density of 100 mA/g for 200 times.
  • Step 1 Preparation of surface modified high nickel ternary cathode material
  • a method for surface modification of a high nickel ternary cathode material comprising the following steps:
  • step S5 Coat the slurry obtained in step S4 evenly on a clean and flat aluminum foil with a coating thickness of 200 ⁇ m. Dry it in a vacuum oven at 120°C for 12h. After drying, it is punched into a pole piece with a diameter of 15mm and pressed with a pressure of 18MPa. Actually, as a positive pole piece, spare;
  • the lithium ion battery performance of the prepared material is as follows;
  • Figure 1 is an SEM chart of the LiNi 0.83 Co 0.085 Mn 0.085 O 2 ternary cathode material in this embodiment after treatment. The chart shows that the surface of the material becomes rough after the carbon dioxide plasma treatment, but the spherical morphology remains unchanged;
  • Figure 2 is an XRD pattern of the LiNi 0.83 Co 0.085 Mn 0.085 O 2 ternary cathode material in this embodiment after treatment, and the pattern shows that the layered structure of the material has not changed after the carbon dioxide plasma treatment;
  • Figure 3 shows the first three charge-discharge curves of the battery in this embodiment at a current density of 20mA/g and a voltage range of 3-4.2V, and the first discharge capacity is 194mA h/g;
  • Figure 4 is a graph showing the cycle performance of the battery in this embodiment first activated at a current density of 20mA/g for 3 times and then at a current density of 100mA/g. After 200 cycles, the discharge capacity is still 158mA h/ g, the capacity retention rate is 86.8% (relative to the fourth charge and discharge).
  • Example 1 According to the experimental steps of Example 1, the surface treatment time was changed.
  • the surface treatment times of Examples 2 to 5 were 5 min, 20 min, 30 min, and 60 min (0 min is the control group, that is, no surface treatment).
  • the battery assembly steps are the same Example 1.
  • the electrochemical performance of the tested battery is shown in Table 1:
  • Example 2 According to the experimental procedure of Example 1, the power of the plasma generator was changed. The power of the plasma generators of Examples 6 and 7 were 6.8W and 10.5W, respectively. Under other conditions unchanged, the steps for assembling the battery were the same In Example 1, the electrochemical performance of the tested battery is shown in Table 2:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种高镍三元正极材料表面改性方法,将高镍三元正极材料放入等离子体发生器里,采用二氧化碳气体作为起弧气体,在二氧化碳等离子体气氛中对三元正极材料进行表面处理,可以在其表面原位构筑一层碳酸锂和碳包覆层,不仅可以有效隔离活性物质与电解液直接接触,增强其表界面的电子电导率,同时可以大幅改善在潮湿空气中长时间暴露的化学稳定性,有助于提高材料的结构稳定性和后期加工性。经该方法表面处理后的三元正极材料表面粗糙(树根状),其加工性能、循环稳定性、容量保持率和倍率性能都得到了明显改善。该表面处理方法具有工艺简单,操作简便,快速高效、成本低廉,经济效益显著的特点。

Description

一种高镍三元正极材料表面改性的方法 技术领域
本发明涉及一种高镍三元正极材料表面改性的方法,属于锂离子电池正极材料技术领域。
背景技术
锂离子电池在便携式电子设备,家用电器,和电动工具中已经得到了广泛的使用。然而,在电动汽车领域的应用还未能达到这种成就,主要是因为锂离子电池高昂的成本增加了电动汽车的成本,比能量密度达不到用户的使用需求,限制了电动汽车的发展。目前,锂离子电池成本和能量密度在很大程度上取决于正极材料的性能,这是最重和最昂贵的组件。高镍三元正极材料具有质量比容量高和价格低廉等优点,被认为是下一代锂离子电池正极材料而受到了广泛的关注。然而,高镍正极材料对空气中的水非常敏感,极易与空气中的潮气反应,在表面生成氢氧化锂,从而造成材料表面变质,引起后续正极浆料制备困难、正极容量衰减和循环稳定性变差等诸多问题。因此,未经表面处理的高镍正极材料对存放条件和后期加工环境具有较为苛刻的要求,不仅增加了材料的储存成本,也增加了材料后续加工难度。为了解决上述问题,研究人员通常会采用惰性氧化物包覆方法对高镍三元正极材料的表面改性和修饰,以此提高结构稳定性和循环稳定性。
中国专利CN106207128A公开了一种Zr(OH) 4包覆镍钴铝三元正极材料的制备方法,包括以下步骤:(1)制备可溶性锆醇盐的醇溶液;(2)制备醇-水溶液,并缓慢滴加进步骤(1)制得的溶液中;(3)超声、洗涤、抽滤、烘干,得到无定形Zr(OH) 4粉末;(4)将三元材料和Zr(OH) 4粉末通过球磨混合得到Zr(OH) 4包覆改性后的三元正极材料。
中国专利CN103178258A公开了一种氧化铝包覆改性镍钴锰三元正极材料的制备方法,其包括:(1)制备前驱体:将水溶性金属镍盐、钴盐和锰盐配成混合溶液,与沉淀剂、形貌控制剂一起滴加到反应容器中并控制体系的pH值和反应温度,反应后经过滤、洗涤和真空干燥,得到前驱体;(2)制备氧化铝包覆的前驱体:将前驱体、水溶性铝盐和均散剂分散在去离子水中,边搅拌边升温至均散剂水解, 过滤得到Al(OH) 3包覆的前驱体,置于烧结炉中焙烧得到Al 2O 3包覆的前驱体粉末;(3)将Al 2O 3包覆的前驱体粉末与锂盐粉末均匀混合,高温煅烧得到层状晶体结构的氧化铝包覆改性镍钴锰三元正极材料。
如前所述,对高镍正极材料表面包覆改性方法目前主要有固相和液相包覆烧结两种。固相包覆烧结法所获得的包覆层均匀性较差,包覆层与基体之间的结合力较弱,在循环过程中由于正极材料的各向异性体积膨胀导致包覆层出现破裂,继续导致材料恶化,影响材料循环性能。液相法大多采用水作为溶剂,然而水与高镍三元正极材料会发生反应,造成锂流失,最终导致材料容量下降。针对固相表面包覆均匀性较差和液相包覆导致容量损失等问题,本发明提供一种等离子体表面改性处理方法,在高镍三元正极材料表面通过气-固反应方式原位构筑一层碳酸锂和碳包覆层,不仅可以有效隔离活性物质与电解液直接接触,增强其表界面的电子电导率,同时可以大幅改善暴露在潮湿空气中长时间后的化学稳定性,有助于提高材料的结构稳定性和后期加工性。该方法相对于传统包覆方法具有简单方便,快速高效,成本低廉等优势。
发明内容
本发明是为了解决现有技术中不足,而提供一种高镍三元正极材料表面改性的方法。
本发明解决其技术问题所采用的技术方案是:
一种高镍三元正极材料表面改性的方法,所述方法包括如下步骤:
S1、将高镍三元正极材料平铺于容器中,放入等离子体发生器腔体,打开真空泵,将等离子发生器腔体抽至真空;
S2、将干燥的起弧气体通入腔体中,使腔体气压维持在500~700Pa,保持20~60s,再将起弧气体抽出,使腔体真空度保持在40~50Pa;
S3、开启等离子体发生器,调节功率,反应0.5~120分钟后,即可获得表面改性的高镍三元正极材料。
作为优选,步骤S1中所述高镍三元正极材料的化学式为LiNi (1-x-y)Co xM yO 2,其中,x+y≤0.7,M为Mn或Al。
作为优选,所述高镍三元正极材料的化学式为 LiNi 0.9Co 0.05Mn 0.05O 2、LiNi 0.8Co 0.1Mn 0.1O 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.85Co 0.1Al 0.05O 2或LiNi 0.5Co 0.2Mn 0.3O 2
作为优选,所述起弧气体为二氧化碳。
作为优选,步骤S1中高镍三元正极材料的平铺厚度为0.3mm~10mm。
作为优选,步骤S3中等离子体发生器的功率为5~2000W。
本申请还提供了一种锂离子电池,所述锂离子电池的正极材料为本申请所述的方法制得的表面改性的高镍三元正极材料。
本发明的有益效果是:
采用等离子体表面处理即可在高镍三元正极材料表面构筑一层碳酸锂和碳的复合包覆层,碳酸锂为电化学惰性物质,可使高镍三元正极材料与空气中的水汽隔离,避免其与水汽反应生成氢氧化锂,破坏其表界面结构,从而改善其在后续电极片生产过程中的加工性;与此同时,包覆层中存在的少量碳可以提高高镍三元正极材料的表界面电子电导率,有利于提高电池的循环和倍率性能;该方法工艺简单,处理方便,快速高效,经济效益显著。
附图说明
图1为实施例1获得的改性三元正极材料的SEM图谱;
图2为实施例1获得的改性三元正极材料的XRD图谱;
图3为实施例1制备的电池在20mA/g电流密度下的前三次充放电曲线;
图4为实施例1制备的电池先在20mA/g电流密度下活化三个循环,然后在100mA/g电流密度下循环200次的充放电循环曲线。
具体实施方式
下面通过实施例,结合附图,对本发明的技术方案进一步阐述说明。
实施例1:
制备包含高镍三元正极材料的电池:
第一步:制备表面改性的高镍三元正极材料
一种高镍三元正极材料表面改性的方法,所述方法包括如下步骤:
S1、将2g三元正极LiNi 0.83Co 0.085Mn 0.085O 2材料,平铺于石英舟 内,控制平铺厚度在0.5mm,放入等离子体发生器中,将反应器腔体抽至真空;
S2、将干燥的二氧化碳气体通入反应器腔体中,使腔体气压维持在550Pa,保持20s,再将二氧化碳气体抽出,使腔体真空度保持在40Pa;
S3、开启等离子体发生器,调节功率为18W,反应10分钟后,即可获得表面改性的高镍三元正极材料。
第二步:电池的制备
S4、按质量比为90:5:5称取获得的表面改性的高镍三元正极材料、导电剂(乙炔黑)与粘结剂(聚偏氟乙烯),混合均匀,再加入适量的1-甲基-2吡咯烷酮(NMP)作溶剂,机械搅拌3h,得到具有一定粘度的浆料;
S5、将步骤S4所得的浆料均匀涂覆在干净平整的铝箔上,涂覆厚度为200μm,在120℃真空烘箱中干燥12h,烘干后冲成直径为15mm的极片,用18MPa压力压实,作为正极极片,备用;
S6、在手套箱中按正极壳、正极极片、隔膜、电解液、锂片、泡沫镍、电解液、负极壳的顺序组装成CR2025型纽扣电池,其中,隔膜的型号为Celgard 2300,电解液是1mol L -1LiPF 6/EC+DEC(体积比为1:1)。
第三步:电化学性能的测试
将第二步制得的电池搁置12h后测试电化学性能:
采用一定的电流密度对电池进行充放电测试(前3次用电流密度为20mA/g的电流活化电池,随后用电流密度为100mA/g的电流进行充放电循环),电压区间为3~4.2V,充放电的时间间隔为5min。所制备材料的锂离子电池性能如下;
附图1是本实施例中的LiNi 0.83Co 0.085Mn 0.085O 2三元正极材料处理后的SEM图谱,图谱显示在二氧化碳等离子体处理后材料表面变得粗糙,但球形形貌未改变;
附图2是本实施例中的LiNi 0.83Co 0.085Mn 0.085O 2三元正极材料处理后的XRD图谱,图谱显示在二氧化碳等离子体处理后材料层状结构没有发生改变;
附图3为本实施例中的电池在20mA/g的电流密度下,电压区间为3~4.2V的前三次充放电曲线,首次放电容量为194mA h/g;
附图4为本实施例中的电池先在20mA/g的电流密度下活化3次,然后在100mA/g的电流密度下的循环性能图,在200次循环后,放电容量仍有158mA h/g,容量保持率为86.8%(相对第4次充放电)。
实施例2-5
按照实施例1的实验步骤,改变表面处理的时间,实施例2~5的表面处理时间分别为5min,20min,30min,60min(0min为对照组,即不作表面处理),组装电池的步骤同实施例1,所测电池的电化学性能如表1所示:
表1:二氧化碳等离子体处理时间对材料循环性能的影响
Figure PCTCN2020071713-appb-000001
从表1中可以看出经等离子体表面处理后的三元正极材料虽然在首次放电容量上略有衰减,但是在容量保持率上比未表面处理的样品性能更优(但不宜处理太长时间),说明等离子体表面改性处理能够提高材料的循环稳定性,该处理方法为后续三元正极材料的表面改性处理提供了新的思路。
实施例6-7
按照实施例1的实验步骤,改变等离子体发生器的功率,实施例6和7的等离子体发生器的功率分别为6.8W和10.5W,在其他条件不变的情况下,组装电池的步骤同实施例1,所测电池的电化学性能如表2所示:
表2:二氧化碳等离子体处理功率对材料循环性能的影响
Figure PCTCN2020071713-appb-000002
Figure PCTCN2020071713-appb-000003
从表2可以看出经等离子体表面处理后的高镍三元正极材料比等离子体表面处理前在容量保持率和循环稳定性上都有所提高,说明等离子体表面改性处理能够提高材料的循环稳定性。
以上所述的实施例只是本发明的较佳方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其他的变体及改型。

Claims (7)

  1. 一种高镍三元正极材料表面改性的方法,其特征在于,所述方法包括如下步骤:
    S1、将高镍三元正极材料平铺于容器中,放入等离子体发生器腔体内,打开真空泵,将等离子发生器腔体抽至真空;
    S2、将干燥的起弧气体通入腔体中,使腔体气压维持在500~700Pa,保持20~60s,再将起弧气体抽出,使腔体真空度保持在40~50Pa;
    S3、开启等离子体发生器,调节功率,反应0.5~120分钟后,即可获得表面改性的高镍三元正极材料。
  2. 根据权利要求1所述的高镍三元正极材料表面改性的方法,其特征在于,步骤S1中所述高镍三元正极材料的化学式为LiNi (1-x-y)Co xM yO 2,x+y≤0.7,M为Mn或Al。
  3. 根据权利要求2所述的高镍三元正极材料表面改性的方法,其特征在于,所述高镍三元正极材料的化学式为LiNi 0.9Co 0.05Mn 0.05O 2、LiNi 0.8Co 0.1Mn 0.1O 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.85Co 0.1Al 0.05O 2或LiNi 0.5Co 0.2Mn 0.3O 2
  4. 根据权利要求1所述的高镍三元正极材料表面改性的方法,其特征在于,所述起弧气体为二氧化碳。
  5. 根据权利要求1所述的高镍三元正极材料表面改性的方法,其特征在于,步骤S1中高镍三元正极材料的平铺厚度为0.3mm~10mm。
  6. 根据权利要求1所述的高镍三元正极材料表面改性的方法,其特征在于,步骤S3中等离子体发生器的功率为5~2000W。
  7. 一种锂离子电池,其特征在于,所述锂离子电池包括权利1~6任意一项的所述的方法制备的表面改性的高镍三元正极材料。
PCT/CN2020/071713 2019-01-17 2020-01-13 一种高镍三元正极材料表面改性的方法 WO2020147671A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021540849A JP7236631B2 (ja) 2019-01-17 2020-01-13 ニッケル三元正極材料の表面改質方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910043577.3 2019-01-17
CN201910043577.3A CN109742377B (zh) 2019-01-17 2019-01-17 一种高镍三元正极材料表面改性的方法

Publications (1)

Publication Number Publication Date
WO2020147671A1 true WO2020147671A1 (zh) 2020-07-23

Family

ID=66364991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071713 WO2020147671A1 (zh) 2019-01-17 2020-01-13 一种高镍三元正极材料表面改性的方法

Country Status (3)

Country Link
JP (1) JP7236631B2 (zh)
CN (1) CN109742377B (zh)
WO (1) WO2020147671A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764634A (zh) * 2021-08-16 2021-12-07 华中科技大学 一种氟化锂原位包覆高镍三元正极材料的制备方法
CN113764633A (zh) * 2021-07-21 2021-12-07 广西师范大学 一种表面改性锂离子电池正极材料及其制备方法
CN114229921A (zh) * 2021-12-22 2022-03-25 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114261996A (zh) * 2021-12-24 2022-04-01 广西师范大学 一种表面完全修饰的单晶高镍三元材料的制备方法及应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742377B (zh) * 2019-01-17 2021-01-05 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法
CN110350167B (zh) * 2019-06-25 2021-01-12 浙江工业大学 一种改善高镍正极材料循环性能和导电性的制备工艺
CN110350165B (zh) * 2019-06-25 2021-07-23 浙江工业大学 一种提升高镍正极材料稳定性和导电性的处理工艺
CN110233252A (zh) * 2019-06-25 2019-09-13 浙江工业大学 一种钠离子电池正极材料表面改性方法
CN110330059B (zh) * 2019-06-25 2022-04-01 浙江工业大学 一种高稳定性锂离子高镍正极材料的烧结工艺
CN110714195A (zh) * 2019-08-26 2020-01-21 浙江工业大学 一种金属锂表面改性方法
CN111628151A (zh) * 2020-06-09 2020-09-04 湖南长远锂科股份有限公司 一种三元正极材料的表面改性方法
CN111883748A (zh) * 2020-06-29 2020-11-03 华南理工大学 一种锂离子电池正极粉体材料表面包覆氧化物薄膜的方法
CN112467066A (zh) * 2020-11-25 2021-03-09 四川虹微技术有限公司 一种高镍三元材料的制浆方法
CN113044893A (zh) * 2021-03-12 2021-06-29 电子科技大学 一种对高镍三元材料进行碳包覆改性的方法
CN114613988B (zh) * 2022-04-01 2022-09-20 湖南桑瑞新材料有限公司 一种高稳定性三元正极材料的制备方法、三元正极材料及锂离子电池
CN114988492B (zh) * 2022-05-31 2024-05-10 西安合升汇力新材料有限公司 一种富镍三元正极材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236521A (zh) * 2013-04-17 2013-08-07 天津华夏泓源实业有限公司 一种表面包覆硼锂复合氧化物的镍钴锰酸锂正极材料及其制备方法
KR20160112767A (ko) * 2015-03-20 2016-09-28 주식회사 엘지화학 양극 활물질 입자의 표면 처리 방법 및 이로부터 수득된 양극 활물질 입자
CN108615863A (zh) * 2018-04-17 2018-10-02 成都新柯力化工科技有限公司 一种三元锂电池正极材料的原子层级包覆方法
CN109742377A (zh) * 2019-01-17 2019-05-10 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110350165A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提升高镍正极材料稳定性和导电性的处理工艺
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578280B2 (ja) * 2011-05-26 2014-08-27 トヨタ自動車株式会社 被覆活物質およびリチウム固体電池
JP6536141B2 (ja) * 2015-04-14 2019-07-03 トヨタ自動車株式会社 複合活物質の製造方法
JP6762319B2 (ja) 2015-12-25 2020-09-30 富士フイルム株式会社 全固体二次電池、全固体二次電池用粒子、全固体二次電池用固体電解質組成物および全固体二次電池用電極シートならびにこれらの製造方法
CN107919475B (zh) * 2016-10-09 2020-10-16 上海中聚佳华电池科技有限公司 一种石墨烯改性的锂离子电池正极材料及制备方法和应用
CN108206279B (zh) * 2016-12-16 2021-02-19 宁德时代新能源科技股份有限公司 用于锂离子电池的表面包覆有锂盐包覆层的高镍三元正极材料的制备方法、锂离子电池
CN107026267A (zh) * 2017-06-14 2017-08-08 苏州思创源博电子科技有限公司 一种碳包覆三元材料的制备方法
CN109088065A (zh) * 2018-08-21 2018-12-25 成都新柯力化工科技有限公司 一种锂空气电池的负极材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236521A (zh) * 2013-04-17 2013-08-07 天津华夏泓源实业有限公司 一种表面包覆硼锂复合氧化物的镍钴锰酸锂正极材料及其制备方法
KR20160112767A (ko) * 2015-03-20 2016-09-28 주식회사 엘지화학 양극 활물질 입자의 표면 처리 방법 및 이로부터 수득된 양극 활물질 입자
CN108615863A (zh) * 2018-04-17 2018-10-02 成都新柯力化工科技有限公司 一种三元锂电池正极材料的原子层级包覆方法
CN109742377A (zh) * 2019-01-17 2019-05-10 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110350165A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提升高镍正极材料稳定性和导电性的处理工艺
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764633A (zh) * 2021-07-21 2021-12-07 广西师范大学 一种表面改性锂离子电池正极材料及其制备方法
CN113764634A (zh) * 2021-08-16 2021-12-07 华中科技大学 一种氟化锂原位包覆高镍三元正极材料的制备方法
CN114229921A (zh) * 2021-12-22 2022-03-25 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114229921B (zh) * 2021-12-22 2023-09-15 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114261996A (zh) * 2021-12-24 2022-04-01 广西师范大学 一种表面完全修饰的单晶高镍三元材料的制备方法及应用
CN114261996B (zh) * 2021-12-24 2023-09-22 广西师范大学 一种表面完全修饰的单晶高镍三元材料的制备方法及应用

Also Published As

Publication number Publication date
JP2022517123A (ja) 2022-03-04
CN109742377A (zh) 2019-05-10
CN109742377B (zh) 2021-01-05
JP7236631B2 (ja) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2020147671A1 (zh) 一种高镍三元正极材料表面改性的方法
CN108321366B (zh) 一种提高高镍三元镍钴锰正极材料电化学性能的包覆方法
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
CN104022266B (zh) 一种硅基负极复合材料及其制备方法
CN106684323A (zh) 一种活性氧化物多重改善锂离子电池三元正极材料及其制备方法
CN107732205B (zh) 一种制备硫-氮共掺杂碳包覆纳米花状钛酸锂复合负极材料的方法
CN108258224A (zh) 一种表面包覆金属氧化物的三元正极材料及其制备方法
WO2020259436A1 (zh) 一种提高三元正极材料稳定性和加工性的方法
CN114122372B (zh) 一种锂离子电池所用低膨胀硅碳负极材料及其制备方法
CN110156088B (zh) 一种立方体状Fe2O3纳米材料及其制备方法
CN114520318B (zh) 一种动力电池用高镍无钴镍钨锰酸锂正极材料及制备方法
CN115000388B (zh) 一种钠离子正极材料及其制备方法和用途
CN109494363B (zh) 一种SiOx原位改性的NCM三元正极材料及其制备方法
CN110112387B (zh) 一种亚氧化钛包覆改性的正极材料及其制备方法
CN108400320A (zh) 一种在尖晶石镍锰酸锂正极材料表面硫化的方法
CN113173606A (zh) 一种基于密度泛函理论计算提高富锂铁锰基正极材料性能的改性方法
WO2024066173A1 (zh) 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用
CN109461917B (zh) 一种锆酸镧原位包覆高镍三元正极材料的制备方法
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN114105149B (zh) 一种碳包覆氮磷双掺杂氧化亚硅复合材料及其制备方法和在锂离子电池中的应用
CN112670511B (zh) 一种具有表层锂浓度梯度的ncm三元正极材料及其制备方法
CN110518194B (zh) 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用
CN114212834A (zh) 一种金属掺杂改性的三元正极材料及其制备方法
CN113307309A (zh) 一种氟化锂包覆层转化提高锂离子电池三元正极材料循环性能的方法
CN107689449B (zh) 一种外延式碳纳米管包覆的锂离子正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741820

Country of ref document: EP

Kind code of ref document: A1