WO2020147671A1 - Procédé de modification de surface de matériau d'électrode positive ternaire à haute teneur en nickel - Google Patents

Procédé de modification de surface de matériau d'électrode positive ternaire à haute teneur en nickel Download PDF

Info

Publication number
WO2020147671A1
WO2020147671A1 PCT/CN2020/071713 CN2020071713W WO2020147671A1 WO 2020147671 A1 WO2020147671 A1 WO 2020147671A1 CN 2020071713 W CN2020071713 W CN 2020071713W WO 2020147671 A1 WO2020147671 A1 WO 2020147671A1
Authority
WO
WIPO (PCT)
Prior art keywords
high nickel
nickel ternary
cathode material
ternary cathode
positive electrode
Prior art date
Application number
PCT/CN2020/071713
Other languages
English (en)
Chinese (zh)
Inventor
夏阳
陈安琪
王坤
张文魁
吴海军
黄辉
毛秦钟
吉同棕
甘永平
张俊
梁初
Original Assignee
浙江工业大学
浙江美都海创锂电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学, 浙江美都海创锂电科技有限公司 filed Critical 浙江工业大学
Priority to JP2021540849A priority Critical patent/JP7236631B2/ja
Publication of WO2020147671A1 publication Critical patent/WO2020147671A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for surface modification of a high nickel ternary positive electrode material, and belongs to the technical field of lithium ion battery positive electrode materials.
  • Lithium-ion batteries have been widely used in portable electronic devices, household appliances, and power tools.
  • the application in the field of electric vehicles has not yet achieved this achievement, mainly because the high cost of lithium-ion batteries has increased the cost of electric vehicles, and the specific energy density cannot meet the needs of users, restricting the development of electric vehicles.
  • the cost and energy density of lithium-ion batteries largely depend on the performance of the cathode material, which is the heaviest and most expensive component.
  • the high nickel ternary cathode material has the advantages of high mass specific capacity and low price. It is regarded as the next generation lithium ion battery cathode material and has received extensive attention.
  • high-nickel cathode materials are very sensitive to water in the air, and easily react with moisture in the air to generate lithium hydroxide on the surface, which causes the surface of the material to deteriorate, causing difficulties in subsequent preparation of cathode slurry, degradation of cathode capacity, and stable cycling. Many problems such as sexual deterioration. Therefore, the high nickel cathode material without surface treatment has strict requirements on storage conditions and post-processing environment, which not only increases the storage cost of the material, but also increases the difficulty of subsequent processing of the material. In order to solve the above problems, researchers usually use inert oxide coating methods to modify and modify the surface of high nickel ternary cathode materials to improve structural stability and cycle stability.
  • Chinese patent CN106207128A discloses a method for preparing a Zr(OH) 4 coated nickel-cobalt-aluminum ternary cathode material, which includes the following steps: (1) preparing an alcohol solution of soluble zirconium alkoxide; (2) preparing an alcohol-water solution, and Slowly add dropwise into the solution prepared in step (1); (3) ultrasonic, washing, suction filtration, and drying to obtain amorphous Zr(OH) 4 powder; (4) combine the ternary material and Zr(OH) 4 The powders are mixed by ball milling to obtain Zr(OH) 4 coated and modified ternary cathode materials.
  • Citride CN103178258A discloses a preparation method of alumina-coated modified nickel-cobalt-manganese ternary cathode material, which includes: (1) Precursor preparation: mixing water-soluble metal nickel salt, cobalt salt and manganese salt into a mixed solution , Together with the precipitating agent and the morphology control agent, are added dropwise to the reaction vessel to control the pH value and reaction temperature of the system.
  • the precursor is obtained by filtration, washing and vacuum drying;
  • the Al 2 O 3 coated precursor powder and lithium salt powder are uniformly mixed, and then calcined at high temperature to obtain an alumina-coated modified nickel-cobalt-manganese ternary positive electrode with a layered crystal structure material.
  • solid phase coating and liquid phase coating sintering there are currently two main methods for coating and modifying the surface of high nickel cathode materials: solid phase coating and liquid phase coating sintering.
  • the uniformity of the coating layer obtained by the solid-phase coating and sintering method is poor, and the bonding force between the coating layer and the substrate is weak, and the coating layer is broken due to the anisotropic volume expansion of the positive electrode material during the cycle.
  • the liquid phase method mostly uses water as a solvent, but water reacts with the high-nickel ternary cathode material, causing lithium loss and ultimately reducing the material capacity.
  • the present invention provides a plasma surface modification treatment method that uses gas-solid reaction on the surface of high nickel ternary cathode material Constructing a layer of lithium carbonate and carbon coating can not only effectively isolate the active material from direct contact with the electrolyte, enhance the electronic conductivity of the surface interface, but also greatly improve the chemical stability after being exposed to humid air for a long time. Helps improve the structural stability and post-processability of the material. Compared with the traditional coating method, this method has the advantages of simplicity, convenience, fastness, efficiency, and low cost.
  • the present invention provides a method for surface modification of high nickel ternary cathode materials.
  • a method for surface modification of a high nickel ternary cathode material comprising the following steps:
  • the chemical formula of the high nickel ternary cathode material in step S1 is LiNi (1-xy) Co x M y O 2 , where x+y ⁇ 0.7, and M is Mn or Al.
  • the chemical formula of the high nickel ternary cathode material is LiNi 0.9 Co 0.05 Mn 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.85 Co 0.1 Al 0.05 O 2 or LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
  • the arc starting gas is carbon dioxide.
  • the flat thickness of the high nickel ternary cathode material in step S1 is 0.3 mm-10 mm.
  • the power of the plasma generator in step S3 is 5-2000W.
  • the present application also provides a lithium ion battery, and the positive electrode material of the lithium ion battery is a surface-modified high nickel ternary positive electrode material prepared by the method described in this application.
  • Plasma surface treatment can be used to construct a composite coating layer of lithium carbonate and carbon on the surface of the high nickel ternary cathode material.
  • Lithium carbonate is an electrochemically inert substance that can isolate the high nickel ternary cathode material from water vapor in the air. , To prevent it from reacting with water vapor to generate lithium hydroxide, destroying its surface and interface structure, thereby improving its processability in the subsequent electrode sheet production process; at the same time, the presence of a small amount of carbon in the coating layer can improve the high nickel ternary cathode
  • the electronic conductivity of the surface and interface of the material is beneficial to improve the cycle and rate performance of the battery; the method is simple in process, convenient to handle, fast and efficient, and has significant economic benefits.
  • Figure 1 is an SEM spectrum of the modified ternary cathode material obtained in Example 1;
  • Example 2 is an XRD pattern of the modified ternary cathode material obtained in Example 1;
  • Figure 3 is the first three charge and discharge curves of the battery prepared in Example 1 at a current density of 20 mA/g;
  • Fig. 4 is a charge-discharge cycle curve of the battery prepared in Example 1 first activated at a current density of 20 mA/g for three cycles, and then cycled at a current density of 100 mA/g for 200 times.
  • Step 1 Preparation of surface modified high nickel ternary cathode material
  • a method for surface modification of a high nickel ternary cathode material comprising the following steps:
  • step S5 Coat the slurry obtained in step S4 evenly on a clean and flat aluminum foil with a coating thickness of 200 ⁇ m. Dry it in a vacuum oven at 120°C for 12h. After drying, it is punched into a pole piece with a diameter of 15mm and pressed with a pressure of 18MPa. Actually, as a positive pole piece, spare;
  • the lithium ion battery performance of the prepared material is as follows;
  • Figure 1 is an SEM chart of the LiNi 0.83 Co 0.085 Mn 0.085 O 2 ternary cathode material in this embodiment after treatment. The chart shows that the surface of the material becomes rough after the carbon dioxide plasma treatment, but the spherical morphology remains unchanged;
  • Figure 2 is an XRD pattern of the LiNi 0.83 Co 0.085 Mn 0.085 O 2 ternary cathode material in this embodiment after treatment, and the pattern shows that the layered structure of the material has not changed after the carbon dioxide plasma treatment;
  • Figure 3 shows the first three charge-discharge curves of the battery in this embodiment at a current density of 20mA/g and a voltage range of 3-4.2V, and the first discharge capacity is 194mA h/g;
  • Figure 4 is a graph showing the cycle performance of the battery in this embodiment first activated at a current density of 20mA/g for 3 times and then at a current density of 100mA/g. After 200 cycles, the discharge capacity is still 158mA h/ g, the capacity retention rate is 86.8% (relative to the fourth charge and discharge).
  • Example 1 According to the experimental steps of Example 1, the surface treatment time was changed.
  • the surface treatment times of Examples 2 to 5 were 5 min, 20 min, 30 min, and 60 min (0 min is the control group, that is, no surface treatment).
  • the battery assembly steps are the same Example 1.
  • the electrochemical performance of the tested battery is shown in Table 1:
  • Example 2 According to the experimental procedure of Example 1, the power of the plasma generator was changed. The power of the plasma generators of Examples 6 and 7 were 6.8W and 10.5W, respectively. Under other conditions unchanged, the steps for assembling the battery were the same In Example 1, the electrochemical performance of the tested battery is shown in Table 2:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Procédé pour modifier la surface d'un matériau d'électrode positive ternaire à haute teneur en nickel, consistant à placer un matériau d'électrode positive ternaire à haute teneur en nickel dans un générateur de plasma, et soumettre le matériau d'électrode positive ternaire à un traitement de surface dans une atmosphère de plasma de dioxyde de carbone à l'aide de gaz de dioxyde de carbone en tant que gaz d'arc, de façon à construire, in situ, une couche de carbonate de lithium et une couche de revêtement de carbone sur la surface de celle-ci, qui non seulement peut isoler efficacement une substance active d'un contact direct avec une solution d'électrolyte et améliorer la conductibilité électronique de la surface et de l'interface de celle-ci, mais peut également améliorer considérablement la stabilité chimique du matériau pendant une exposition à long terme à de l'air humide, ce qui facilite l'amélioration de la stabilité structurale et de la propriété post-traitement du matériau. Le matériau d'électrode positive ternaire traité en surface par le procédé comporte une surface rugueuse (type racine d'arbre), et a une performance de traitement, une stabilité de cycle, un taux de rétention de capacité et une performance de taux considérablement améliorés. Le procédé de traitement de surface présente les caractéristiques d'un processus simple, d'une opération simple et pratique, est rapide et efficace, présente un faible coût, et fournit des avantages économiques significatifs.
PCT/CN2020/071713 2019-01-17 2020-01-13 Procédé de modification de surface de matériau d'électrode positive ternaire à haute teneur en nickel WO2020147671A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021540849A JP7236631B2 (ja) 2019-01-17 2020-01-13 ニッケル三元正極材料の表面改質方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910043577.3 2019-01-17
CN201910043577.3A CN109742377B (zh) 2019-01-17 2019-01-17 一种高镍三元正极材料表面改性的方法

Publications (1)

Publication Number Publication Date
WO2020147671A1 true WO2020147671A1 (fr) 2020-07-23

Family

ID=66364991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071713 WO2020147671A1 (fr) 2019-01-17 2020-01-13 Procédé de modification de surface de matériau d'électrode positive ternaire à haute teneur en nickel

Country Status (3)

Country Link
JP (1) JP7236631B2 (fr)
CN (1) CN109742377B (fr)
WO (1) WO2020147671A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764634A (zh) * 2021-08-16 2021-12-07 华中科技大学 一种氟化锂原位包覆高镍三元正极材料的制备方法
CN113764633A (zh) * 2021-07-21 2021-12-07 广西师范大学 一种表面改性锂离子电池正极材料及其制备方法
CN114229921A (zh) * 2021-12-22 2022-03-25 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114261996A (zh) * 2021-12-24 2022-04-01 广西师范大学 一种表面完全修饰的单晶高镍三元材料的制备方法及应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742377B (zh) * 2019-01-17 2021-01-05 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110350165B (zh) * 2019-06-25 2021-07-23 浙江工业大学 一种提升高镍正极材料稳定性和导电性的处理工艺
CN110350167B (zh) * 2019-06-25 2021-01-12 浙江工业大学 一种改善高镍正极材料循环性能和导电性的制备工艺
CN110233252A (zh) * 2019-06-25 2019-09-13 浙江工业大学 一种钠离子电池正极材料表面改性方法
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法
CN110330059B (zh) * 2019-06-25 2022-04-01 浙江工业大学 一种高稳定性锂离子高镍正极材料的烧结工艺
CN110714195A (zh) * 2019-08-26 2020-01-21 浙江工业大学 一种金属锂表面改性方法
CN111628151A (zh) * 2020-06-09 2020-09-04 湖南长远锂科股份有限公司 一种三元正极材料的表面改性方法
CN111883748A (zh) * 2020-06-29 2020-11-03 华南理工大学 一种锂离子电池正极粉体材料表面包覆氧化物薄膜的方法
CN112467066A (zh) * 2020-11-25 2021-03-09 四川虹微技术有限公司 一种高镍三元材料的制浆方法
CN113044893A (zh) * 2021-03-12 2021-06-29 电子科技大学 一种对高镍三元材料进行碳包覆改性的方法
CN114613988B (zh) * 2022-04-01 2022-09-20 湖南桑瑞新材料有限公司 一种高稳定性三元正极材料的制备方法、三元正极材料及锂离子电池
CN114988492B (zh) * 2022-05-31 2024-05-10 西安合升汇力新材料有限公司 一种富镍三元正极材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236521A (zh) * 2013-04-17 2013-08-07 天津华夏泓源实业有限公司 一种表面包覆硼锂复合氧化物的镍钴锰酸锂正极材料及其制备方法
KR20160112767A (ko) * 2015-03-20 2016-09-28 주식회사 엘지화학 양극 활물질 입자의 표면 처리 방법 및 이로부터 수득된 양극 활물질 입자
CN108615863A (zh) * 2018-04-17 2018-10-02 成都新柯力化工科技有限公司 一种三元锂电池正极材料的原子层级包覆方法
CN109742377A (zh) * 2019-01-17 2019-05-10 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法
CN110350165A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提升高镍正极材料稳定性和导电性的处理工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534845B (zh) * 2011-05-26 2015-09-09 丰田自动车株式会社 被覆活性物质及锂固体电池
JP6536141B2 (ja) * 2015-04-14 2019-07-03 トヨタ自動車株式会社 複合活物質の製造方法
WO2017111131A1 (fr) 2015-12-25 2017-06-29 富士フイルム株式会社 Accumulateur tout solide, particules destinées à des accumulateurs tout solide, composition d'électrolyte solide destinée à des accumulateurs tout solide, feuille d'électrode destinée à des accumulateurs tout solide, et leurs procédés de fabrication
CN107919475B (zh) * 2016-10-09 2020-10-16 上海中聚佳华电池科技有限公司 一种石墨烯改性的锂离子电池正极材料及制备方法和应用
CN108206279B (zh) * 2016-12-16 2021-02-19 宁德时代新能源科技股份有限公司 用于锂离子电池的表面包覆有锂盐包覆层的高镍三元正极材料的制备方法、锂离子电池
CN107026267A (zh) * 2017-06-14 2017-08-08 苏州思创源博电子科技有限公司 一种碳包覆三元材料的制备方法
CN109088065A (zh) * 2018-08-21 2018-12-25 成都新柯力化工科技有限公司 一种锂空气电池的负极材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236521A (zh) * 2013-04-17 2013-08-07 天津华夏泓源实业有限公司 一种表面包覆硼锂复合氧化物的镍钴锰酸锂正极材料及其制备方法
KR20160112767A (ko) * 2015-03-20 2016-09-28 주식회사 엘지화학 양극 활물질 입자의 표면 처리 방법 및 이로부터 수득된 양극 활물질 입자
CN108615863A (zh) * 2018-04-17 2018-10-02 成都新柯力化工科技有限公司 一种三元锂电池正极材料的原子层级包覆方法
CN109742377A (zh) * 2019-01-17 2019-05-10 浙江工业大学 一种高镍三元正极材料表面改性的方法
CN110350166A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提高三元正极材料稳定性和加工性的方法
CN110350165A (zh) * 2019-06-25 2019-10-18 浙江工业大学 一种提升高镍正极材料稳定性和导电性的处理工艺

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764633A (zh) * 2021-07-21 2021-12-07 广西师范大学 一种表面改性锂离子电池正极材料及其制备方法
CN113764634A (zh) * 2021-08-16 2021-12-07 华中科技大学 一种氟化锂原位包覆高镍三元正极材料的制备方法
CN114229921A (zh) * 2021-12-22 2022-03-25 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114229921B (zh) * 2021-12-22 2023-09-15 西南科技大学 Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN114261996A (zh) * 2021-12-24 2022-04-01 广西师范大学 一种表面完全修饰的单晶高镍三元材料的制备方法及应用
CN114261996B (zh) * 2021-12-24 2023-09-22 广西师范大学 一种表面完全修饰的单晶高镍三元材料的制备方法及应用

Also Published As

Publication number Publication date
JP2022517123A (ja) 2022-03-04
JP7236631B2 (ja) 2023-03-10
CN109742377A (zh) 2019-05-10
CN109742377B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2020147671A1 (fr) Procédé de modification de surface de matériau d'électrode positive ternaire à haute teneur en nickel
CN108321366B (zh) 一种提高高镍三元镍钴锰正极材料电化学性能的包覆方法
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
CN104022266B (zh) 一种硅基负极复合材料及其制备方法
CN106684323A (zh) 一种活性氧化物多重改善锂离子电池三元正极材料及其制备方法
CN107732205B (zh) 一种制备硫-氮共掺杂碳包覆纳米花状钛酸锂复合负极材料的方法
CN108258224A (zh) 一种表面包覆金属氧化物的三元正极材料及其制备方法
WO2020259436A1 (fr) Procédé pour améliorer la stabilité et l'aptitude au traitement d'un matériau d'électrode positive ternaire
CN114122372B (zh) 一种锂离子电池所用低膨胀硅碳负极材料及其制备方法
CN110156088B (zh) 一种立方体状Fe2O3纳米材料及其制备方法
CN114520318B (zh) 一种动力电池用高镍无钴镍钨锰酸锂正极材料及制备方法
CN115000388B (zh) 一种钠离子正极材料及其制备方法和用途
CN109494363B (zh) 一种SiOx原位改性的NCM三元正极材料及其制备方法
CN110112387B (zh) 一种亚氧化钛包覆改性的正极材料及其制备方法
CN108400320A (zh) 一种在尖晶石镍锰酸锂正极材料表面硫化的方法
CN113173606A (zh) 一种基于密度泛函理论计算提高富锂铁锰基正极材料性能的改性方法
WO2024066173A1 (fr) Matériau d'électrode positive à base de manganèse riche en lithium doté d'une surface revêtue à double couche, procédé de préparation associé et utilisation associée
CN109461917B (zh) 一种锆酸镧原位包覆高镍三元正极材料的制备方法
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN114105149B (zh) 一种碳包覆氮磷双掺杂氧化亚硅复合材料及其制备方法和在锂离子电池中的应用
CN112670511B (zh) 一种具有表层锂浓度梯度的ncm三元正极材料及其制备方法
CN110518194B (zh) 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用
CN114212834A (zh) 一种金属掺杂改性的三元正极材料及其制备方法
CN113307309A (zh) 一种氟化锂包覆层转化提高锂离子电池三元正极材料循环性能的方法
CN107689449B (zh) 一种外延式碳纳米管包覆的锂离子正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741820

Country of ref document: EP

Kind code of ref document: A1