WO2024066173A1 - 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用 - Google Patents

一种表面双层包覆的富锂锰基正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024066173A1
WO2024066173A1 PCT/CN2023/077151 CN2023077151W WO2024066173A1 WO 2024066173 A1 WO2024066173 A1 WO 2024066173A1 CN 2023077151 W CN2023077151 W CN 2023077151W WO 2024066173 A1 WO2024066173 A1 WO 2024066173A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
rich manganese
positive electrode
electrode material
layer
Prior art date
Application number
PCT/CN2023/077151
Other languages
English (en)
French (fr)
Inventor
李爱霞
余海军
谢英豪
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024066173A1 publication Critical patent/WO2024066173A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of positive electrode materials for lithium-ion batteries, and in particular to a double-layer-coated lithium-rich manganese-based positive electrode material and a preparation method and application thereof.
  • the positive electrode material of lithium-ion batteries is the core key material of lithium-ion batteries.
  • the positive electrode material is the key factor that determines the energy density, service life and cost of lithium-ion batteries.
  • LiCoO 2 , LiMnO 4 , LiFePO 4 and other materials are mainly used as positive electrode materials.
  • the actual specific capacity of the above positive electrode materials is less than 200 mAh/g, which cannot meet the performance requirements of lithium-ion batteries at this stage.
  • lithium-rich manganese-based materials have electrochemical performance problems such as low first coulomb efficiency, which also seriously restricts the application of lithium-rich manganese-based materials.
  • Prior art CN 112510200 A discloses a preparation method of a double conductive layer coated lithium-rich manganese-based material, which includes coating the surface of the lithium-rich manganese-based positive electrode material with lithium carbonate and polyaniline to improve the electrochemical performance of the lithium-rich manganese-based material.
  • the first coulombic efficiency of the double conductive layer coated lithium-rich manganese-based material can only reach 80.9%, which is still relatively low.
  • the purpose of the present application is to overcome the defects of poor electrochemical performance in the prior art and to provide a lithium-rich manganese-based positive electrode material with a double-layer coating on the surface, with cerium aluminum oxide as the inner coating material and copper sulfate as the outer coating material.
  • the lithium-rich manganese-based positive electrode material obtained by double-layer coating has excellent specific capacity, rate performance and first coulombic efficiency.
  • Another object of the present application is to provide a method for preparing the above-mentioned double-layer-coated lithium-rich manganese-based positive electrode material.
  • Another object of the present application is to provide an application of the above-mentioned double-layer-coated lithium-rich manganese-based positive electrode material.
  • a lithium-rich manganese-based positive electrode material with a double-layer coating on the surface comprising a base material, an inner coating material and an outer coating material, wherein the inner coating material is between the base material and the outer coating material;
  • the matrix material is a lithium-rich manganese-based material
  • the inner layer coating material is Cu 9 S 5
  • the outer layer coating material is cerium aluminum oxide.
  • the surface of the lithium-rich manganese-based positive electrode material of the present application is coated with a double-layer material, wherein the inner coating material is Cu 9 S 5 and the outer coating material is cerium aluminum oxide (CeAlO ⁇ ), which provides a large number of oxygen vacancies for the lithium-rich manganese-based positive electrode material.
  • the increase in oxygen vacancies can reduce the generation of oxygen, promote the reversible redox reaction of oxygen during charge and discharge, and inhibit the crystal structure decay of the material in a long period.
  • the increase in oxygen vacancies means that more lithium insertion/extraction sites can be obtained in the subsequent charge and discharge cycles, thereby obtaining A higher first discharge capacity is obtained.
  • the present application uses double-layer coating to enable the lithium-rich manganese-based material to exhibit excellent rate performance and cycle stability, with high reversible capacity and low voltage decay.
  • the inner layer coating material accounts for 0.5wt% to 1.5wt% of the base material.
  • the inner layer coating material accounts for 1wt% of the base material.
  • the outer coating material accounts for 2wt% to 4wt% of the base material.
  • the outer coating material accounts for 3wt% of the base material.
  • the coating ratio of the inner coating material is preferably 0.5wt% to 1.5wt%, and the coating ratio of the outer coating material is preferably 2wt% to 4wt%. Too much or too little coating material may have a negative impact on the electrochemical performance of the lithium-rich manganese-based positive electrode material.
  • the lithium-rich manganese-based material contains a LiMnO phase and a LiMO phase, wherein M is at least one of Mn, Ni, and Co.
  • the chemical formula of the lithium-rich manganese-based material is Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 .
  • the present application also protects a method for preparing the above-mentioned double-layer-coated lithium-rich manganese-based positive electrode material, comprising the following steps:
  • the lithium-rich manganese-based material is dispersed in deionized water, stirred, dried, and calcined to obtain a pretreated lithium-rich manganese-based material;
  • the solution B is dripped into the solution A, and the obtained mixed solution is heat-treated, cooled, washed, and dried.
  • the dried material is placed in a heater, heated to 400 to 600° C. at a rate of 1 to 3° C./min, and kept warm for 1.5 to 2.5 hours to obtain an inner-layer coated lithium-rich manganese-based material;
  • the inner-layer coated lithium-rich manganese-based material is dispersed in deionized water containing water-soluble cerium salt and water-soluble aluminum salt, and then ammonia water is added.
  • the obtained mixed solution is dried, and the dried material is placed in a heater, heated to 400-600°C at a rate of 1-3°C/min, and kept warm for 1.5-2.5h to obtain a lithium-rich manganese-based positive electrode material with a double-layer surface coating.
  • step S1 the lithium-rich manganese-based material is pretreated with deionized water.
  • Deionized water is used as a pre-activator, and combined with a secondary roasting modification process, H protons in H2O exchange ions with Li + in the lithium-rich manganese-based base material, and while extracting Li + from the lithium layer, oxygen vacancies are formed, resulting in a weakened shielding between oxygen layers.
  • the modification process may cause proton exchange at the surface interface of the lithium-rich manganese-based material, resulting in the generation of oxygen vacancies.
  • step S1 the stirring is stirring at 50-55° C. for 1-1.5 h.
  • step S1 the stirring is stirring at 50° C. for 1 hour.
  • step S1 the calcination treatment is performed at 250-350°C for 1.5-2.5 hours.
  • step S1 the calcination treatment is performed at 300°C for 2 hours.
  • step S1 the weight ratio of the lithium-rich manganese-based material to deionized water is 1:(6-10).
  • step S1 the weight ratio of the lithium-rich manganese-based material to deionized water is 1:8.
  • step S2 the inner layer Cu 9 S 5 of the lithium-rich manganese-based material is coated. Due to the doping of S 2- , a low-energy Li-S bond is formed, which causes the electron cloud arrangement of the transition metal element to change, thereby affecting the electron cloud arrangement in the material structure. As the doping amount of S 2- increases, more oxygen vacancies are generated in the structure. This is because S 2- has a very strong reducing property and can deprive the lattice oxygen in the lithium-rich manganese-based material to form a SO 4 2- structure.
  • Cu 9 S 5 has higher electronic conductivity, and combined with S 2- doping, it can form low-energy Li-S bonds. At the same time, the rate performance of lithium-rich manganese-based treatment is improved. In addition, under the combined effect of high electronic conductivity of Cu 9 S 5 and S 2- doping, the valence of transition metal elements is reduced to introduce more oxygen vacancies in the material structure, thereby reducing the activity of O 2- .
  • the alcohol-soluble copper salt is CuCl 2 ⁇ 2H 2 O.
  • step S2 the weight ratio of the alcohol-soluble copper salt, thioacetamide and the pretreated lithium-rich manganese-based material is (1.5-3):(0.5-1.5):100.
  • step S2 the weight ratio of the alcohol-soluble copper salt, thioacetamide and the pretreated lithium-rich manganese-based material is 2:1:100.
  • step S2 the heat treatment is performed at 150° C. for 6 hours.
  • the heater is a muffle furnace.
  • step S2 the material is placed on a heater, heated to 500°C at a rate of 2°C/min, and then kept warm for 2 hours.
  • step S3 the CeO2- component with oxygen storage function in the outer layer coating material cerium aluminum oxide provides abundant oxygen vacancies.
  • the large amount of oxygen vacancies on the surface of the material can reduce the surface oxygen partial pressure of the lithium-rich manganese-based positive electrode material, and the built-in electric field at the oxygen vacancy center promotes the deintercalation of lithium ions and stabilizes the reversible redox reaction of oxygen.
  • the lithium - rich manganese-based positive electrode material of the present application increases a large number of oxygen vacancies, thereby promoting the lithium-rich manganese-based material to have excellent electrochemical properties.
  • the water-soluble cerium salt is Ce(NO 3 ) 3 ⁇ 6H 2 O.
  • the water-soluble aluminum salt is Al(NO 3 ) 3 ⁇ 9H 2 O.
  • step S3 the molar mass ratio of the water-soluble cerium salt, the water-soluble aluminum salt and the inner-layer coated lithium-rich manganese-based material is (0.45 mol to 0.6 mol): (0.45 mol to 0.6 mol): 10 g.
  • step S3 the drying treatment is evaporative drying at 60°C.
  • step S3 the material is placed on a heater, heated to 500° C. at a rate of 2° C./min, and then kept warm for 2 hours.
  • the present application also protects the use of the above-mentioned double-layer-coated lithium-rich manganese-based positive electrode material as a positive electrode material for lithium-ion batteries.
  • the present application develops a double-layer coated lithium-rich manganese-based positive electrode material, which includes a lithium-rich manganese-based material as a base material, Cu 9 S 5 as an inner layer coating material, and cerium aluminum oxide as an outer layer coating material.
  • the lithium - rich manganese-based positive electrode material of the present application increases a large number of oxygen vacancies, thereby promoting the lithium-rich manganese-based material to have excellent electrochemical properties.
  • FIG. 1 is a TEM image of a double-layer-coated lithium-rich manganese-based positive electrode material prepared in Example 1.
  • the lithium-rich manganese-based material used in the examples and comparative examples of the present application is Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 , which is prepared by the following method:
  • the positive electrode material, conductive carbon black and polyvinylidene fluoride were prepared into slurry in a mass ratio of 8:1:1, and the slurry was evenly coated on a 16 ⁇ m thick aluminum foil with a special scraper, and the coating thickness was 120 ⁇ m; vacuum dried at 120°C for more than 24h; CR2025 button cells were assembled in an argon-protected glove box, the electrolyte used was 1mol/LLiPF6/EC+DMC (volume ratio 1:1, produced in Suzhou), the diaphragm was 2325 type polypropylene film, and the negative electrode was a metal lithium sheet; its first discharge specific capacity at 2.0 ⁇ 4.6V, the coulomb efficiency of the first cycle, the capacity retention rate after 100 cycles at a rate of 1c, and the electrochemical properties at different rates were tested.
  • the reagents, methods and equipment used in this application are conventional reagents, methods and equipment in the art. Unless otherwise specified, the reagents and materials used in this application are commercially available.
  • This embodiment provides a lithium-rich manganese-based positive electrode material with a double-layer coating on the surface, and the preparation method is as follows:
  • the product in the reaction kettle was taken out and washed with deionized water. After washing, the product was dried in a vacuum oven, and the dried product was placed in a muffle furnace, and the temperature was raised from room temperature to 500°C at 2°C/min, and kept warm for 2 hours to obtain a 1wt% Cu 9 S 5 -coated lithium-rich manganese-based material, that is, an inner-layer-coated lithium-rich manganese-based material;
  • Ce(NO 3 ) 3 ⁇ 6H 2 O and Al(NO 3 ) 3 ⁇ 9H 2 O are weighed in a molar ratio of 1:1, and Ce(NO 3 ) 3 ⁇ 6H 2 O and Al(NO 3 ) 3 ⁇ 9H 2 O are dissolved in deionized water, and the molar concentrations of Ce(NO 3 ) 3 ⁇ 6H 2 O and Al(NO 3 ) 3 ⁇ 9H 2 O are both 0.18 mol/L; then an appropriate amount of aqueous ammonia is added and stirred to obtain a mixed solution; the mixed solution is evaporated at 60°C, the evaporated material is put into a muffle furnace, the temperature is increased from room temperature to 500°C at 2°C/min, and the temperature is kept for 2h to obtain a lithium-rich manganese-based material coated with a 3wt% cerium aluminum oxide outer layer, that is, a lithium-rich manganese-based positive electrode material with a double-layer coating on the surface is obtained.
  • the double-layer coated lithium-rich manganese-based positive electrode material of Example 1 was characterized and analyzed by TEM. As shown in Figure 1, it can be seen that the material has an inner coating and an outer coating structure; the double-layer coating structure covers the surface coating of the outer layer, which will not destroy the main structure of the lithium-rich manganese-based positive electrode material; the cerium aluminum oxide coating layer is in the form of small particles agglomerates embedded in the particle surface of the inner layer coating material of the lithium-rich manganese-based material.
  • the Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 , pretreated lithium-rich manganese-based material, inner-layer coated lithium-rich manganese-based material, and double-layer coated lithium-rich manganese-based positive electrode material of this embodiment were respectively used as positive electrode materials for lithium-ion batteries, and electrochemical performance tests were performed. The results are shown in Table 1.
  • This embodiment provides a lithium-rich manganese-based positive electrode material with a double-layer surface coating.
  • the preparation method is different from that of embodiment 1 in that:
  • step S2 the addition amount of CuCl 2 ⁇ 2H 2 O is adjusted to 1.5 g; the addition amount of thioacetamide is adjusted to 0.5 g; and the addition amount of the pretreated lithium-rich manganese-based material is adjusted to 100 g;
  • Step S2 preparing a lithium-rich manganese-based material coated with 0.5 wt% Cu 9 S 5 .
  • the double-layer-coated lithium-rich manganese-based positive electrode material of Example 2 was used as the positive electrode material of a lithium-ion battery to carry out electrochemical performance testing.
  • the results are shown in Table 3.
  • This embodiment provides a lithium-rich manganese-based positive electrode material with a double-layer surface coating.
  • the preparation method is different from that of embodiment 1 in that:
  • step S2 the amount of CuCl 2 ⁇ 2H 2 O added was adjusted to 3 g; the amount of thioacetamide added was adjusted to 1.5 g; the amount of pretreatment added was adjusted to 100 g;
  • Step S2 preparing a lithium-rich manganese-based material coated with 1.5 wt% Cu 9 S 5 .
  • the double-layer-coated lithium-rich manganese-based positive electrode material of Example 3 was used as the positive electrode material of a lithium-ion battery to carry out electrochemical performance testing. The results are shown in Table 5.
  • This embodiment provides a lithium-rich manganese-based positive electrode material with a double-layer surface coating.
  • the preparation method is different from that of embodiment 1 in that:
  • step S3 the molar concentrations of Ce(NO 3 ) 3 ⁇ 6H 2 O and Al(NO 3 ) 3 ⁇ 9H 2 O are adjusted to 0.15 mol/L;
  • Step S3 obtains a lithium-rich manganese-based material coated with a 2 wt% cerium aluminum oxide outer layer.
  • the double-layer-coated lithium-rich manganese-based positive electrode material of Example 4 was used as the positive electrode material of a lithium-ion battery to carry out electrochemical performance testing.
  • the results are shown in Table 7.
  • This embodiment provides a lithium-rich manganese-based positive electrode material with a double-layer surface coating.
  • the preparation method is different from that of embodiment 1 in that:
  • step S3 the molar concentrations of Ce(NO 3 ) 3 ⁇ 6H 2 O and Al(NO 3 ) 3 ⁇ 9H 2 O are adjusted to 0.2 mol/L;
  • Step S3 obtains a lithium-rich manganese-based material coated with a 4 wt% cerium aluminum oxide outer layer.
  • the double-layer-coated lithium-rich manganese-based positive electrode material of Example 5 was used as the positive electrode material of a lithium-ion battery to carry out electrochemical performance testing.
  • the results are shown in Table 9.
  • This embodiment provides a lithium-rich manganese-based positive electrode material with a double-layer surface coating.
  • the preparation method is different from that of embodiment 1 in that:
  • step S1 the mass ratio of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 lithium-rich manganese-based material to deionized water is 1:6.
  • the pretreated lithium-rich manganese-based material and the double-layer-coated lithium-rich manganese-based positive electrode material of Example 6 were used as positive electrode materials of lithium-ion batteries, and their electrochemical performance tests were performed respectively. The results are shown in Table 11.
  • the double-layer-coated lithium-rich manganese-based positive electrode material of Example 6 is used as a positive electrode material for a lithium-ion battery
  • the rate performance test results are shown in Table 12.
  • This embodiment provides a lithium-rich manganese-based positive electrode material with a double-layer surface coating.
  • the preparation method is different from that of embodiment 1 in that:
  • step S1 the mass ratio of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 lithium-rich manganese-based material to deionized water is 1:10.
  • the pretreated lithium-rich manganese-based material and the double-layer-coated lithium-rich manganese-based positive electrode material of Example 7 were used as positive electrode materials of lithium-ion batteries, and their electrochemical performance tests were performed respectively. The results are shown in Table 13.
  • the double-layer-coated lithium-rich manganese-based positive electrode material of Example 7 is used as a positive electrode material for a lithium-ion battery
  • the rate performance test results are shown in Table 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种表面双层包覆的富锂锰基正极材料及其制备方法和应用,属于锂离子电池正极材料技术领域。表面双层包覆的富锂锰基正极材料,以富锂锰基正极材料为基础材料,Cu 9S 5为内层包覆材料,铈铝氧化物为外层包覆材料。通过去离子水改性、S 2-掺杂、Cu 9S 5内层包覆和铈铝氧化物外层包覆的制备方法,使得富锂锰基正极材料引进了大量的氧空位,从而促使富锂锰基正极材料具有优异的电化学性能。

Description

一种表面双层包覆的富锂锰基正极材料及其制备方法和应用 技术领域
本申请涉及锂离子电池正极材料技术领域,尤其是一种表面双层包覆的富锂锰基正极材料及其制备方法和应用。
背景技术
伴随着电子设备的多样化和普及化,锂离子电池的需求量不断增加。锂离子电池的正极材料是锂离子电池的核心关键材料,正极材料是决定锂离子电池能量密度、使用寿命及成本等指标的关键因素。
现有的商业化锂离子电池正极材料中,主要使用LiCoO2、LiMnO4、LiFePO4等材料作为正极材料,但是上述正极材料的实际比容量<200mAh/g,不能满足现阶段锂离子电池的性能需求。
有研究报道,将Li2MnO3(LiMnO相)与层状的过渡金属氧化物LiMO2(LiMO相)结合,制备成富锂型固溶体材料,可以获得较高的比容量,该材料成为富锂锰基材料。研究表明,富锂锰基材料往往具有接近200mAh/g以上的高比容量,是实现锂离子电池400Wh/kg高比能量的良好选择,颇有发展前景。然而,富锂锰基材料作为锂离子电池的正极材料,存在的首次库仑效率低等的电化学性能问题,也严重制约了富锂锰基材料的应用进程。
现有技术CN 112510200 A公开了一种双导电层包覆富锂锰基材料的制备方法,包括对富锂锰基正极材料表面混合包覆碳酸锂、聚苯胺,以提高富锂锰基材料的电化学性能。但是该双导电层包覆富锂锰基材料的首次库伦效率仅能达到80.9%,仍然较低。
因此,需要提供一种具有高的比容量、倍率性能和首次库仑效率的富锂锰基正极材料。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于,克服现有技术中电化学性能差的缺陷,提供一种表面双层包覆的富锂锰基正极材料,以铈铝氧化物为内层包覆材料,硫酸铜为外层包覆材料,通过双层包覆,制得的富锂锰基正极材料具有优异的比容量、倍率性能和首次库仑效率。
本申请的另一目的在于提供上述表面双层包覆的富锂锰基正极材料的制备方法。
本申请的另一目的在于提供上述表面双层包覆的富锂锰基正极材料的应用。
为实现上述目的,本申请采用如下技术方案:
一种表面双层包覆的富锂锰基正极材料,包括基体材料,内层包覆材料和外层包覆材料,其中内层包覆材料在基体材料和外层包覆材料之间;
所述基体材料为富锂锰基材料,所述内层包覆材料为Cu9S5,所述外层包覆材料为铈铝氧化物。
本申请的富锂锰基正极材料的表面包覆有双层材料,其中内层包覆材料为Cu9S5,外层包覆材料为铈铝氧化物(CeAlOδ),为富锂锰基正极材料提供大量的氧空位。氧空穴的增加可以减少氧气的产生,并在充放电期间促进氧的可逆氧化还原反应,也可以抑制长周期内材料的晶体结构衰退。同时,氧空穴的增多,意味着在随后的充放电循环中,可以获得更多的锂***/提取位置,从而获 得更高的首次放电容量。
本申请通过双层包覆,使富锂锰基材料表现出优异的倍率性能、循环稳定性,具有较高的可逆容量和较低的电压衰减。
可选地,所述内层包覆材料占基体材料的0.5wt%~1.5wt%。可选地,所述内层包覆材料占基体材料的1wt%。
可选地,所述外层包覆材料占基体材料的2wt%~4wt%。可选地,所述外层包覆材料占基体材料的3wt%。
不同的包覆材料,在适宜的包覆量下可以使富锂锰基正极材料具有更优的电化学性能。在本申请中,内层包覆材料的包覆占比优选为0.5wt%~1.5wt%,外层包覆材料的包覆占比优选为2wt%~4wt%。包覆材料过多或过少,均可能会对富锂锰基正极材料的电化学性能造成负面影响。
本申请中,所述富锂锰基材料含有LiMnO相和LiMO相,其中M为Mn、Ni、Co中的至少一种。
可选地,所述富锂锰基材料的化学式为Li1.2Mn0.54Ni0.13Co0.13O2
本申请还保护上述表面双层包覆的富锂锰基正极材料的制备方法,包括如下步骤:
S1.将富锂锰基材料分散至去离子水中,经搅拌、干燥、焙烧处理,得到预处理的富锂锰基材料;
S2.将醇溶性铜盐溶于乙醇溶剂中,并加入所述预处理的富锂锰基材料,混合均匀,得到溶液A;将硫代乙酰胺溶于乙醇溶剂中,得到溶液B;
将所述溶液B滴入所述溶液A中,得到的混合溶液进行热处理,冷却后,经洗涤、干燥,干燥后的材料置于加热器中,以1~3℃/min升温至400~600℃后,保温1.5~2.5h,得到内层包覆的富锂锰基材料;
S3.将所述内层包覆的富锂锰基材料分散至溶有水溶性铈盐和水溶性铝盐的去离子水中,再加入氨水,得到的混合溶液进行干燥处理,干燥后的材料置于加热器中,以1~3℃/min升温至400~600℃后,保温1.5~2.5h,得到表面双层包覆的富锂锰基正极材料。
在步骤S1中,使用去离子水对富锂锰基材料进行预处理。去离子水作为预激活剂,并结合二次焙烧改性工艺,H2O中的H质子与富锂锰基基础材料中的Li+进行离子交换,从锂层中抽提Li+的同时,形成了氧空位,导致氧层之间的屏蔽减弱。改性工艺可能使得富锂锰基材料表界面发生质子交换,导致氧空位的产生。
可选地,步骤S1中,所述搅拌为在50~55℃下搅拌1~1.5h。
可选地,步骤S1中,所述搅拌为在50℃下搅拌1h。
随着去离子水搅拌时间的增长,富锂锰基材料表面的残碱会逐步降低并趋于稳定。
可选地,步骤S1中,所述焙烧处理为250~350℃下处理1.5~2.5h。可选地,步骤S1中,所述焙烧处理为300℃下处理2h。
可选地,步骤S1中,所述富锂锰基材料与去离子水的重量比为1∶(6~10)。
可选地,步骤S1中,所述富锂锰基材料与去离子水的重量比为1∶8。
步骤S2中,实现了对富锂锰基材料的内层Cu9S5包覆。其中由于S2-的掺杂,形成了低键能的Li-S键,导致过渡金属元素的电子云排布发生变化,从而影响材料结构中的电子云排布。随着S2-的掺杂量增多,结构中产生了更多的氧空穴,这是由于S2-具有极强的还原性,可以剥夺富锂锰基材料中的晶格氧,形成SO4 2-结构。
Cu9S5具有更高的电子电导率,结合S2-掺杂可以形成低键能的Li-S键,共 同提升富锂锰基处理的倍率性能。并且,在Cu9S5高电子电导率和S2-掺杂的共同作用下,降低了过渡金属元素的化合价,以在材料结构中引进更多的氧空穴,从而降低了O2-的活性。
可选地,步骤S2中,所述醇溶性铜盐为CuCl2·2H2O。
可选地,步骤S2中,所述醇溶性铜盐、硫代乙酰胺与预处理的富锂锰基材料的重量比为(1.5~3)∶(0.5~1.5)∶100。
可选地,步骤S2中,所述醇溶性铜盐、硫代乙酰胺与预处理的富锂锰基材料的重量比为2∶1∶100。
可选地,步骤S2中,所述热处理为150℃下保温6h。
可选地,步骤S2中,所述加热器为马弗炉。
可选地,步骤S2中,材料置于加热器后,以2℃/min升温至500℃后,保温2h。
在步骤S3中,外层包覆材料铈铝氧化物中,具有储氧功能的CeO2-组分提供了丰富的氧空位,材料表面氧空位的大量存在,可降低富锂锰基正极材料的表面氧分压,且氧空位中心的内置电场促进了锂离子的脱嵌,稳定了氧的可逆氧化还原反应。
通过去离子水改性、S2-掺杂、Cu9S5内层包覆和铈铝氧化物外层包覆的制备方法,使得本申请的富锂锰基正极材料提高了大量的氧空位,从而促进了富锂锰基材料具有优异的电化学性能。
可选地,步骤S3中,所述水溶性铈盐为Ce(NO3)3·6H2O。
可选地,步骤S3中,所述水溶性铝盐为Al(NO3)3·9H2O。
可选地,步骤S3中,所述水溶性铈盐、水溶性铝盐与内层包覆的富锂锰基材料的摩尔质量比为(0.45mol~0.6mol)∶(0.45mol~0.6mol)∶10g。
可选地,步骤S3中,所述干燥处理为60℃蒸发干燥。
可选地,步骤S3中,材料置于加热器后,以2℃/min升温至500℃后,保温2h。
本申请还保护上述表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料的应用。
与现有技术相比,本申请的有益效果是:
本申请开发了一种表面双层包覆的富锂锰基正极材料,包括富锂锰基材料为基础材料,Cu9S5为内层包覆材料,铈铝氧化物为外层包覆材料。
通过去离子水改性、S2-掺杂、Cu9S5内层包覆和铈铝氧化物外层包覆的制备方法,使得本申请的富锂锰基正极材料提高了大量的氧空位,从而促进了富锂锰基材料具有优异的电化学性能。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为实施例1制备的表面双层包覆的富锂锰基正极材料的TEM图。
具体实施方式
为更好的说明本申请的目的、技术方案和优点,下面将结合具体实施例和附图来进一步说明本申请,但实施例并不对本申请做任何形式的限定。
本申请各实施例和对比例所采用的富锂锰基材料为Li1.2Mn0.54Ni0.13Co0.13O2,由如下方法制得:
先用碳酸盐共沉淀法合成Mn0.66Ni0.17Co0.17CO3碳酸盐前驱体;然后按n(Mn)∶n(Ni)∶n(Co)=4∶1∶1配制MnSO4·H2O、NiSO4·6H2O、Co SO4·7H2O的混合溶液,总浓度为2.0mol/L;称量并配制2.0mol/L Na2CO34溶液作为沉淀剂,2.0mol/L(NH4)2SO4溶液作为络合剂,0.6mol/L氨水溶液作为反应底液;用蠕动泵控制反应条件,在持续搅拌下,往反应釜中缓慢加入金属盐溶液、络合剂溶液和沉淀剂溶液,控制反应体系的pH值为7.49~7.53,连续搅拌下反应12h;真空干燥后,得到粉末状的前驱体Mn0.66Ni0.17Co0.17CO3;使用公知技术手段高温固相法,制得Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基材料。
本申请中,电化学性能测试的方法如下:
将正极材料、导电炭黑和聚偏氟乙烯按8:1:1的质量比制备成浆料,用专用刮刀将浆料均匀涂覆在16μm厚的铝箔上,涂层厚度为120μm;在120℃下真空干燥24h以上;在氩气保护的手套箱中组装CR2025型扣式电池,所用电解液为1mol/LLiPF6/EC+DMC(体积比1∶1,苏州产),隔膜为2325型聚丙烯薄膜,负极为金属锂片;检测其在2.0~4.6V下的首次放电比容量、首次循环的库仑效率、在1c倍率下循环100圈后的容量保持率,以及不同倍率下的电化学性能。
除非特别说明,本申请采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,本申请所用试剂和材料均为市购。
实施例1
本实施例提供一种表面双层包覆的富锂锰基正极材料,制备方法如下:
S1.将Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基材料和去离子水,按质量比1:8,加入到容器中,在50℃恒温下搅拌1h;水洗时间设置为1h,搅拌后烘干,在气 氛炉中300℃下热处理2h;将焙烧处理后的物料过筛、密封包装;得到预处理的富锂锰基材料;
S2.将1g CuCl2·2H2O溶于乙醇中,将步骤(1)的预处理的富锂锰基材料50g分散至2L乙醇中,搅拌均匀后制得溶液A;将0.5g硫代乙酰胺溶于250ml乙醇中制得溶液B,将溶液B逐滴加入溶液A中并搅拌,随后将溶液A和溶液B的混合溶液放入反应釜,在150℃下保温6h;
待自然冷却后,取出反应釜中的产物并用去离子水清洗,清洗后将产物在真空烘箱中干燥,把干燥后的产物放入马弗炉中,从室温以2℃/min升至500℃,并保温2h,制得1wt%Cu9S5包覆的富锂锰基材料,即内层包覆的富锂锰基材料;
S3.将1wt%Cu9S5包覆的富锂锰基材料10g分散到3L去离子水中;
按摩尔比1:1称取Ce(NO3)3·6H2O和Al(NO3)3·9H2O,将Ce(NO3)3·6H2O和Al(NO3)3·9H2O溶解在去离子水中,Ce(NO3)3·6H2O和Al(NO3)3·9H2O的摩尔浓度均为0.18mol/L;然后加入适量氨水,搅拌制得混合溶液;将混合搅拌在60℃下蒸发,将蒸发后的材料放入马弗炉中,从室温以2℃/min升至500℃,并保温2h,得到3wt%铈铝氧化物外层包覆的富锂锰基材料,即制得了表面双层包覆的富锂锰基正极材料。
对实施例1的表面双层包覆的富锂锰基正极材料进行TEM表征分析,如图1所示,可以看出,材料具有内层包覆、外层包覆结构;双层包覆结构包覆外层的表面包覆,不会破坏富锂锰基正极材料的主要结构;铈铝氧化物包覆层是以小颗粒的团聚形式镶嵌在了富锂锰基材料的内层包覆材料的颗粒表面上。
本实施例的Li1.2Mn0.54Ni0.13Co0.13O2、预处理的富锂锰基材料、内层包覆的富锂锰基材料、表面双层包覆的富锂锰基正极材料分别作为锂离子电池的正极材料,分别进行电化学性能测试,结果见表1。
表1实施例1的电化学性能测试结果
实施例1的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料的倍率性能测试结果见表2。
表2实施例1的倍率性能测试结果
实施例2
本实施例提供一种表面双层包覆的富锂锰基正极材料,制备方法与实施例1的区别在于:
步骤S2中,调整CuCl2·2H2O的添加量为1.5g;硫代乙酰胺的添加量为0.5g;预处理的富锂锰基材料的添加量为100g;
步骤S2制得0.5wt%Cu9S5包覆的富锂锰基材料。
实施例2的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料,进行电化学性能测试,结果见表3。
表3实施例2的电化学性能测试结果
实施例2的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料的倍率性能测试结果见表4。
表4实施例2的倍率性能测试结果
实施例3
本实施例提供一种表面双层包覆的富锂锰基正极材料,制备方法与实施例1的区别在于:
步骤S2中,调整CuCl2·2H2O的添加量为3g;硫代乙酰胺的添加量为1.5g;预处理的添加量为100g;
步骤S2制得1.5wt%Cu9S5包覆的富锂锰基材料。
实施例3的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料,进行电化学性能测试,结果见表5。
表5实施例3的电化学性能测试结果
实施例3的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料的倍率性能测试结果见表6。
表6实施例3的倍率性能测试结果
实施例4
本实施例提供一种表面双层包覆的富锂锰基正极材料,制备方法与实施例1的区别在于:
步骤S3中,调整Ce(NO3)3·6H2O和Al(NO3)3·9H2O的摩尔浓度均为0.15mol/L;
步骤S3制得2wt%铈铝氧化物外层包覆的富锂锰基材料。
实施例4的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料,进行电化学性能测试,结果见表7。
表7实施例4的电化学性能测试结果

实施例4的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料的倍率性能测试结果见表8。
表8实施例4的倍率性能测试结果
实施例5
本实施例提供一种表面双层包覆的富锂锰基正极材料,制备方法与实施例1的区别在于:
步骤S3中,调整Ce(NO3)3·6H2O和Al(NO3)3·9H2O的摩尔浓度均为0.2mol/L;
步骤S3制得4wt%铈铝氧化物外层包覆的富锂锰基材料。
实施例5的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料,进行电化学性能测试,结果见表9。
表9实施例5的电化学性能测试结果
实施例5的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料的倍率性能测试结果见表10。
表10实施例5的倍率性能测试结果
实施例6
本实施例提供一种表面双层包覆的富锂锰基正极材料,制备方法与实施例1的区别在于:
步骤S1中,Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基材料和去离子水的质量比为1:6。
实施例6的预处理的富锂锰基材料、表面双层包覆的富锂锰基正极材料分别作为锂离子电池的正极材料,分别进行电化学性能测试,结果见表11。
表11实施例6的电化学性能测试结果
实施例6的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料 的倍率性能测试结果见表12。
表12实施例6的倍率性能测试结果
实施例7
本实施例提供一种表面双层包覆的富锂锰基正极材料,制备方法与实施例1的区别在于:
步骤S1中,Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基材料和去离子水的质量比为1:10。
实施例7的预处理的富锂锰基材料、表面双层包覆的富锂锰基正极材料分别作为锂离子电池的正极材料,分别进行电化学性能测试,结果见表13。
表13实施例7的电化学性能测试结果
实施例7的表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料 的倍率性能测试结果见表14。
表14实施例7的倍率性能测试结果
最后所应当说明的是,以上实施例仅用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的实质和范围。

Claims (10)

  1. 一种表面双层包覆的富锂锰基正极材料,其中,包括基体材料,内层包覆材料和外层包覆材料,其中内层包覆材料在基体材料和外层包覆材料之间;
    所述基体材料为富锂锰基材料,所述内层包覆材料为Cu9S5,所述外层包覆材料为铈铝氧化物。
  2. 根据权利要求1所述富锂锰基正极材料,其中,所述内层包覆材料占基体材料的0.5wt%~1.5wt%。
  3. 根据权利要求1所述富锂锰基正极材料,其中,所述外层包覆材料占基体材料的2wt%~4wt%。
  4. 权利要求1~3任一项所述表面双层包覆的富锂锰基正极材料的制备方法,其中,包括如下步骤:
    S1.将富锂锰基材料分散至去离子水中,经搅拌、干燥、焙烧处理,得到预处理的富锂锰基材料;
    S2.将醇溶性铜盐溶于乙醇溶剂中,并加入所述预处理的富锂锰基材料,混合均匀,得到溶液A;将硫代乙酰胺溶于乙醇溶剂中,得到溶液B;
    将所述溶液B滴入所述溶液A中,得到的混合溶液进行热处理,冷却后,经洗涤、干燥,干燥后的材料置于加热器中,以1~3℃/min升温至400~600℃后,保温1.5~2.5h,得到内层包覆的富锂锰基材料;
    S3.将所述内层包覆的富锂锰基材料分散至溶有水溶性铈盐和水溶性铝盐的去离子水中,再加入氨水,得到的混合溶液进行干燥处理,干燥后的材料置于加热器中,以1~3℃/min升温至400~600℃后,保温1.5~2.5h,得到表面双层包覆的富锂锰基正极材料。
  5. 根据权利要求4所述制备方法,其中,步骤S2中,所述醇溶性铜盐为CuCl2·2H2O。
  6. 根据权利要求4所述制备方法,其中,步骤S3中,所述水溶性铈盐为Ce(NO3)3·6H2O;所述水溶性铝盐为Al(NO3)3·9H2O。
  7. 根据权利要求4所述制备方法,其中,步骤S1中,所述富锂锰基材料与去离子水的重量比为1∶(6~10)。
  8. 根据权利要求4所述制备方法,其中,步骤S2中,所述醇溶性铜盐、硫代乙酰胺与预处理的富锂锰基材料的重量比为(1.5~3)∶(0.5~1.5)∶100。
  9. 根据权利要求4所述制备方法,其中,步骤S3中,所述水溶性铈盐、水溶性铝盐与内层包覆的富锂锰基材料的摩尔质量比为(0.45mol~0.6mol)∶(0.45mol~0.6mol)∶10g。
  10. 权利要求1~3任一项所述表面双层包覆的富锂锰基正极材料作为锂离子电池的正极材料的应用。
PCT/CN2023/077151 2022-09-29 2023-02-20 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用 WO2024066173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211197416.8 2022-09-29
CN202211197416.8A CN115411257A (zh) 2022-09-29 2022-09-29 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024066173A1 true WO2024066173A1 (zh) 2024-04-04

Family

ID=84167321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077151 WO2024066173A1 (zh) 2022-09-29 2023-02-20 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115411257A (zh)
WO (1) WO2024066173A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411257A (zh) * 2022-09-29 2022-11-29 广东邦普循环科技有限公司 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146443A (ja) * 2011-01-11 2012-08-02 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
CN107399717A (zh) * 2017-08-02 2017-11-28 东北大学 用于电池负极的Cu9S5@C纳米复合材料及制备方法
CN108172808A (zh) * 2018-01-16 2018-06-15 北京科技大学 一种铈锡复合氧化物包覆富锂锰基正极材料的改性方法
CN108428861A (zh) * 2017-12-22 2018-08-21 合肥国轩高科动力能源有限公司 一种硫化亚铁包覆富锂正极材料及其制备方法
CN111900334A (zh) * 2020-08-04 2020-11-06 杭州紫芯光电有限公司 一种阵列型金属硫化物复合电极材料及其制备方法
CN113644272A (zh) * 2021-08-12 2021-11-12 湖南杉杉能源科技有限公司 一种铈铋复合氧化物掺杂锂离子电池正极材料及其制备方法
CN115411257A (zh) * 2022-09-29 2022-11-29 广东邦普循环科技有限公司 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146443A (ja) * 2011-01-11 2012-08-02 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
CN107399717A (zh) * 2017-08-02 2017-11-28 东北大学 用于电池负极的Cu9S5@C纳米复合材料及制备方法
CN108428861A (zh) * 2017-12-22 2018-08-21 合肥国轩高科动力能源有限公司 一种硫化亚铁包覆富锂正极材料及其制备方法
CN108172808A (zh) * 2018-01-16 2018-06-15 北京科技大学 一种铈锡复合氧化物包覆富锂锰基正极材料的改性方法
CN111900334A (zh) * 2020-08-04 2020-11-06 杭州紫芯光电有限公司 一种阵列型金属硫化物复合电极材料及其制备方法
CN113644272A (zh) * 2021-08-12 2021-11-12 湖南杉杉能源科技有限公司 一种铈铋复合氧化物掺杂锂离子电池正极材料及其制备方法
CN115411257A (zh) * 2022-09-29 2022-11-29 广东邦普循环科技有限公司 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 15 November 2021, SHAN DONG UNIVERSITY, CN, article NIE, XIANGKUN : "Preparation And Collaborative Modification Research of Lithium-rich Manganese-based Positive Electrode Material", pages: 1 - 157, XP009553568 *

Also Published As

Publication number Publication date
CN115411257A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN109980219B (zh) 全梯度镍钴锰正极材料、氧化钌包覆材料及其制备方法
CN113955809B (zh) 一种壳核壳结构的镍钴锰铝酸锂正极材料及其制备方法
CN109659542B (zh) 一种核壳结构的高电压钴酸锂正极材料及其制备方法
US20190386293A1 (en) Ternary material and preparation method thereof, battery slurry, positive electrode and lithium battery
WO2021258662A1 (zh) 一种正极材料、其制备方法和锂离子电池
CN108258224A (zh) 一种表面包覆金属氧化物的三元正极材料及其制备方法
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
CN114883522B (zh) 一种类高熵多元层状过渡金属氧化物正极材料及其制备方法与应用
CN106602024B (zh) 一种表面原位修饰型富锂材料及其制备方法
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN106910887A (zh) 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
CN106025208A (zh) 一种碳包覆三元正极材料的制备方法
CN103441263B (zh) 一种溶胶凝胶-固相烧结法合成镍钴锰酸锂的方法
CN113809294A (zh) 无钴高镍三元正极材料、制法和用于制备电池正极的方法
CN106006762A (zh) 花瓣层状镍钴锰三元材料前驱体的制备及作为锂离子电池正极材料的应用
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN113788500A (zh) 一种富锂锰基正极材料表面改性方法及富锂锰基正极材料
WO2024066173A1 (zh) 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用
CN109755530B (zh) 一种高压钴酸锂正极材料的钛钡双金属氧化物表面包覆方法
CN114804235A (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN107768628B (zh) 一种锂离子电池正极材料及其制备方法
WO2024037261A1 (zh) 一种双层包覆锂钠复合富锂锰基正极材料的制备方法
CN109768274A (zh) 电池正极材料前驱体、电池正极材料、其制备方法及应用
CN114864911A (zh) 一种改性高镍三元正极材料及其制备方法和应用
CN111313008B (zh) 一种含镁富锂锰基正极及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869436

Country of ref document: EP

Kind code of ref document: A1