WO2020059431A1 - 赤外線吸収ガラスの製造方法 - Google Patents

赤外線吸収ガラスの製造方法 Download PDF

Info

Publication number
WO2020059431A1
WO2020059431A1 PCT/JP2019/033273 JP2019033273W WO2020059431A1 WO 2020059431 A1 WO2020059431 A1 WO 2020059431A1 JP 2019033273 W JP2019033273 W JP 2019033273W WO 2020059431 A1 WO2020059431 A1 WO 2020059431A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
processing
infrared absorbing
cleaning
organic solvent
Prior art date
Application number
PCT/JP2019/033273
Other languages
English (en)
French (fr)
Inventor
裕貴 片山
喜之 坂出
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980053301.1A priority Critical patent/CN112566879A/zh
Priority to KR1020217010892A priority patent/KR20210060531A/ko
Priority to JP2020548202A priority patent/JP7452428B2/ja
Publication of WO2020059431A1 publication Critical patent/WO2020059431A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B11/00Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto
    • B08B11/04Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto specially adapted for plate glass, e.g. prior to manufacture of windshields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a method for producing an infrared absorbing glass.
  • Patent Document 1 there has been known an infrared-absorbing glass containing, as a glass composition, 5% or more of P 5+ in terms of cation% and 0.5% or more of Cu 2+ .
  • Such an infrared absorbing glass is used, for example, as a filter for correcting the visibility of a solid-state imaging device such as a CCD (charge-coupled device) or a CMOS (complementary metal oxide semiconductor).
  • a glass containing 5% or more of P 5+ and 0.5% or more of Cu 2+ in terms of cation% as a glass composition is prepared, and the glass is subjected to treatment such as polishing and washing. Is obtained.
  • the glass having a glass composition containing P 5+ as a main component as described above has extremely low water resistance as compared with glass or the like containing SiO 2 as a main component. If the glass is left in a wet state, there is a possibility that the glass may not be able to maintain a sufficient quality such as embrittlement of the glass.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing an infrared absorbing glass capable of suppressing deterioration in quality.
  • a method for producing an infrared-absorbing glass that solves the above-mentioned problem includes a preparing step of preparing a glass containing 5% or more of P 5+ and 0.5% or more of Cu 2+ as a glass composition in terms of cation%, A first treatment step of treating the glass using the first treatment step, and after the first treatment step, a treatment of diluting or removing water adhering to the surface of the glass using an organic solvent compatible with the water. And two processing steps.
  • the second treatment step includes a treatment liquid immersion step of immersing the glass in a treatment liquid containing the organic solvent. According to this method, water adhering to the surface of the glass can be quickly diluted or removed.
  • the glass in the processing liquid is irradiated with ultrasonic waves in the immersion step of the processing liquid in the second processing step. According to this method, the cleanliness of the glass can be further improved by using the treatment liquid immersion stage.
  • the second processing step includes a spraying step of spraying a processing liquid containing the organic solvent onto the glass. According to this method, for example, the amount of the organic solvent used can be reduced.
  • the first processing step includes a polishing step of polishing the glass. According to this method, it is possible to obtain an infrared absorbing glass having an improved surface smoothness.
  • the first processing step includes a rub cleaning step of rubbing and cleaning the glass using a resin foam. According to this method, the foreign matter adhering to the surface of the glass can be easily removed, so that the cleanliness of the glass can be easily improved.
  • the first treatment step includes an immersion washing step of washing the glass by immersing the glass in an aqueous cleaning solution containing water. According to this method, the cleanliness of the glass can be easily increased using the aqueous cleaning liquid.
  • the aqueous cleaning solution used in the immersion cleaning step of the first processing step contains a surfactant. According to this method, the cleanliness of the surface of the glass can be more easily improved by utilizing the cleaning action of the surfactant.
  • the pH of the aqueous cleaning solution containing the surfactant is preferably in the range of 9 or more and 13 or less. According to this method, for example, it is possible to suppress the embrittlement of the glass and to enhance the cleanability of the glass.
  • the organic solvent used in the second treatment step has higher volatility than the water. According to this method, for example, the glass can be dried quickly.
  • a processing operation of performing the second processing step after the first processing step may be repeated a plurality of times. According to this method, for example, it is possible to cope with more advanced glass processing.
  • the glass prepared in the preparation step is expressed as a glass composition in terms of cation%, P 5+ : 5 to 50%, Al 3+ : 2 to 30%, R + (where R is At least one selected from Li, Na, and K): 10 to 50%, R ′ 2+ (where R ′ is at least one selected from Mg, Ca, Sr, Ba, and Zn): 20 to 50%; And Cu 2+ : preferably 0.5 to 15%, and in terms of% anion, F ⁇ : 5 to 80% and O 2 ⁇ : 20 to 95%.
  • the present invention it is possible to suppress the deterioration of the quality of the infrared absorbing glass.
  • the method for producing an infrared-absorbing glass includes a preparing step (step) for preparing a glass containing 5% or more of P 5+ and 0.5% or more of Cu 2+ as a glass composition in terms of cation%. S1) and a first processing step (step S2) of processing the glass using water.
  • a second processing step of diluting or removing water adhering to the surface of the glass using an organic solvent compatible with the water is further provided.
  • step S1 the preparation process of step S1 will be described.
  • P 5+ 5 to 50%, Al 3+ : 2 to 30%, and R + (where R is Li, Na, and K) in terms of cation% as glass composition.
  • Glasses containing 5 to 15% and containing, in terms of% anions, F ⁇ : 5 to 80% and O 2 ⁇ : 20 to 95% are preferred.
  • P 5+ 40 to 50%, Al 3+ : 7 to 12%, K + : 15 to 25%, Mg 2+ : 3 to 12%, and Ca 5 2+ : 3 to 6%, Ba 2+ : 7 to 12%, Cu 2+ : 1 to 15%, and in terms of anion%, F ⁇ : 5 to 80%, and O 2 ⁇ : 20 to 95% Containing glass (phosphate glass).
  • P 5+ 20 to 35%
  • Al 3+ 10 to 20%
  • Li + 20 to 30%
  • Na + 0 to 10% in terms of cation% as glass composition
  • Sr 2+ 2 to 12%
  • Ba 2+ 2 to 8%
  • Zn 2+ 0 to 5%
  • Cu 2+ 0.5 to 5 % at containing and anion percentages
  • O 2- glass containing 35 to 75% (fluorophosphate glass)
  • P 5+ 35 to 45%, Al 3+ : 8 to 12%, Li + : 20 to 30%, Mg 2+ : 1 to 5% in terms of cation% as glass composition.
  • Ca 2+ 3 to 6%, Ba 2+ : 4 to 8%, and Cu 2+ : 1 to 6%, and in terms of% anion, F ⁇ : 10 to 20%, and O 2 ⁇ : 75 to Glass containing 95% (fluorophosphate glass) is exemplified.
  • More preferable specific examples of the other glasses are as follows: P 5+ : 30 to 45%, Al 3+ : 15 to 25%, Li + : 1 to 5%, Na + : 7 to 13% in terms of cation% as glass composition. , K + : 0.1 to 5%, Mg 2+ : 1 to 8%, Ca 2+ : 3 to 13%, Ba 2+ : 6 to 12%, Zn 2+ : 0 to 7%, and Cu 2+ : 1 to 5 %, And a glass (fluorophosphate glass) containing 30% to 45% of F ⁇ and 50% to 70% of O 2 ⁇ in terms of anion%.
  • the glass is preferably plate-shaped.
  • the thickness of the plate-like glass is preferably 0.4 mm or less, more preferably 0.3 mm or less, and still more preferably 0.02 mm or more and 0.2 mm or less.
  • Glass can be obtained by molding a molten glass obtained by steps such as melting, fining, and stirring glass raw materials by a known method.
  • the glass can be obtained by a method of cutting a glass ingot formed from molten glass, or a forming method such as an overflow down draw method, a down draw method (slot down method, a redraw method, etc.), a float method and the like.
  • the first processing step of step S2 in the present embodiment includes a polishing step of polishing glass (step S2A).
  • the polishing can be performed by a known polishing method using an aqueous polishing liquid and a polishing pad.
  • the polishing in the polishing stage of step S2A may be performed by a polishing method of running or reciprocating a polishing tape.
  • the polishing in the polishing stage of step S2A may be any of chemical polishing, mechanical polishing, and chemical mechanical polishing.
  • the polishing in the polishing stage of step S2A may be rough polishing (lap polishing) or precision polishing (finish polishing, mirror polishing).
  • the polishing step of step S2A may be surface polishing for polishing the surface of the plate-shaped glass, or may be edge polishing for polishing the end surface of the plate-shaped glass.
  • the first processing step of step S2 in the present embodiment further includes an immersion cleaning step (step S2B) of immersing the glass in an aqueous cleaning solution containing water for cleaning.
  • the aqueous cleaning liquid may be composed of only water, or may contain a surfactant.
  • the surfactant contained in the aqueous cleaning solution include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • the pH of the aqueous cleaning solution containing a surfactant is preferably in the range of 9 or more and 13 or less.
  • the pH of the aqueous cleaning solution is a value measured at 20 ° C.
  • the pH of the aqueous cleaning solution can be adjusted with a pH adjuster (inorganic or organic alkali, inorganic or organic acid, etc.) or a buffer, if necessary.
  • the content of the surfactant in the aqueous cleaning liquid is preferably in the range of 1% by mass to 5% by mass. In this case, the cleaning action of the surfactant can be enhanced, and the surfactant remaining on the surface of the glass can be reduced.
  • the glass is immersed in a cleaning tank filled with an aqueous cleaning liquid, for example, in a state where one or more sheets are supported by a jig in a vertical position. In addition, the glass may be immersed in the cleaning tank while being supported in the horizontal posture.
  • the temperature of the aqueous cleaning solution used in the immersion cleaning step of Step S2B is, for example, 1 to 90 ° C., preferably 5 to 50 ° C., and more preferably 10 to 40 ° C.
  • the immersion time in the immersion cleaning step of Step S2B is, for example, 1 to 10 minutes, preferably 1 to 5 minutes, and more preferably 1 to 3 minutes.
  • the glass immersed in the aqueous cleaning liquid is in a state in which embrittlement due to water is apt to proceed, and when the glass in this state is irradiated with ultrasonic waves, erosion (erosion) easily occurs in the glass. Become. From the viewpoint of suppressing the occurrence of such erosion, it is preferable that the cleaning in the immersion cleaning step in step S2B is cleaning without irradiating the glass with ultrasonic waves.
  • the first processing step of Step S2 in the present embodiment further includes a rubbing cleaning step (Step S2C) of rubbing and cleaning glass using a resin foam.
  • a rubbing cleaning step (Step S2C) of rubbing and cleaning glass using a resin foam.
  • the resin of the resin foam used in the rubbing cleaning step of Step S2C include a polyvinyl alcohol resin, a polyurethane resin, a polyolefin resin, and a melamine resin.
  • the rubbing and cleaning step in step S2C may be performed by pressing a rotating pad or a rotating roller made of the above resin against the main surface of the glass, or may be performed manually by an operator.
  • Examples of the organic solvent used in the second processing step of Step S3 include alcohol, ketone, and ether.
  • the organic solvents an organic solvent having higher volatility than water is preferable, a monohydric alcohol having 1 to 3 carbon atoms is more preferable, and isopropyl alcohol is more preferable.
  • the second processing step of step S3 in the present embodiment includes a processing liquid immersion step of immersing glass in a processing liquid containing an organic solvent (step S3A).
  • the treatment liquid used in the treatment liquid immersion step of Step S3A contains an organic solvent as a main component, and may further contain water or the like that is compatible with the organic solvent.
  • the content of the organic solvent in the treatment liquid used in the treatment liquid immersion step of Step S3A is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the temperature of the treatment liquid used in the treatment liquid immersion step of Step S3A is, for example, 1 to 90 ° C., preferably 5 to 50 ° C., and more preferably 10 to 40 ° C.
  • the immersion time in the treatment liquid immersion step of step S3A is, for example, 1 to 10 minutes, preferably 1 to 5 minutes, and more preferably 1 to 3 minutes.
  • the glass is immersed in a treatment tank filled with the treatment liquid, for example, in a state in which one or more sheets are supported by the jig in a vertical posture.
  • the glass may be immersed in the processing tank while being supported in the horizontal posture.
  • step S3A it is preferable to irradiate ultrasonic waves to the glass in the treatment liquid.
  • a known ultrasonic cleaning device can be used.
  • the second processing step of step S3 in the present embodiment further includes a spraying step (step S3B) of spraying a processing liquid containing an organic solvent onto glass.
  • the treatment liquid used in the spraying step of Step S3B contains an organic solvent as a main component, and may further contain water or the like that is compatible with the organic solvent.
  • the content of the organic solvent in the treatment liquid used in the spraying step of step S3B is higher than the content of the organic solvent in the treatment liquid used in the treatment liquid immersion step of step S3A.
  • the content of the organic solvent in the treatment liquid used in the spraying step of Step S3B is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • the final step step of obtaining the infrared absorbing glass to be inspected
  • the second processing step of Step S3 from the viewpoint of further suppressing the embrittlement of the glass and drying the surface of the glass promptly, it is more volatile than water. It is preferable to use a treatment liquid containing 90% by mass or more of a highly volatile organic solvent.
  • a one-fluid spray nozzle or a two-fluid spray nozzle can be used.
  • the processing liquid is sprayed on both main surfaces of the glass, for example, in a state where one or a plurality of glasses are supported in a vertical posture by a jig. Note that the processing liquid may be sprayed on both main surfaces of the glass while the glass is supported in the horizontal posture.
  • the temperature of the spraying atmosphere in the spraying step of step S3B is, for example, 1 to 90 ° C, preferably 5 to 50 ° C, and more preferably 10 to 40 ° C.
  • the spraying time in the spraying step of step S3B is, for example, 1 to 10 minutes, preferably 1 to 5 minutes, and more preferably 1 to 3 minutes.
  • the processing operation of performing the second processing step after the first processing step described above may be repeated a plurality of times. That is, in the method for manufacturing an infrared absorbing glass, the first processing step and the second processing step may be performed as one processing operation, and this processing operation may be performed two or more times.
  • the infrared-absorbing glass obtained by the method for manufacturing an infrared-absorbing glass is inspected for abnormalities (scratch, etc.) on the surface, and then shipped in a packed state.
  • the glass obtained by the method for manufacturing an infrared absorbing glass can be suitably used for a filter application for correcting the visibility of a solid-state imaging device such as a CCD (charge-coupled device) and a CMOS (complementary metal oxide semiconductor). it can.
  • the method for manufacturing an infrared absorbing glass includes a preparation step in step S1, a first processing step in step S2, and a second processing step in step S3.
  • the water adhering to the surface of the glass after the first processing step of step S2 is diluted or removed with an organic solvent in the second processing step of step S2, whereby the surface of the glass is removed. Embrittlement of glass due to contact with water can be suppressed. Therefore, the deterioration of the quality of the infrared absorbing glass can be suppressed.
  • the second processing step in step S3 preferably includes the step of immersing the processing liquid in step S3A.
  • water adhering to the surface of the glass can be quickly diluted or removed.
  • step S3 includes the treatment liquid immersion step of step S3A
  • the glass in the treatment liquid is irradiated with ultrasonic waves in the treatment liquid immersion step of step S3A.
  • the cleanliness of the glass can be further improved by using the treatment liquid immersion step of step S3A.
  • the second processing step of Step S3 includes a spraying step of Step S3B.
  • the amount of the organic solvent used can be reduced.
  • the first processing step of step S2 includes a polishing step of step S2A.
  • an infrared-absorbing glass with improved surface smoothness can be obtained.
  • the first processing step in step S2 includes a rubbing cleaning step in step S2C.
  • the foreign matter attached to the surface of the glass can be easily removed, so that the cleanliness of the glass can be easily improved.
  • the first processing step of step S2 includes a immersion cleaning step of step S2B.
  • the cleanliness of the glass can be easily increased by using the aqueous cleaning liquid.
  • the aqueous cleaning solution used in the immersion cleaning step of step S2B preferably contains a surfactant.
  • a surfactant In this case, the cleanliness of the surface of the glass can be more easily enhanced by utilizing the cleaning action of the surfactant.
  • the pH of the aqueous cleaning solution is preferably in the range of 9 or more and 13 or less. In this case, for example, it is possible to suppress the embrittlement of the glass and improve the cleaning property of the glass.
  • the organic solvent used in the second processing step of Step S3 has higher volatility than water.
  • the glass can be quickly dried.
  • the organic solvent used in the treatment liquid immersion step in step S3A and the organic solvent used in the spray step in step S3B may be the same type or different types.
  • an organic solvent having a lower volatility than water can be used in the treatment liquid immersion step of step S3A, and an organic solvent having a higher volatility than water can be used in the spraying step of step S3B.
  • the processing operation of performing the second processing step of step S3 after the first processing step of step S2 may be repeated a plurality of times.
  • the polishing step of step S2A a plurality of times, it is possible to cope with more advanced glass processing.
  • the time from the end of the first processing operation to the start of the second processing operation to be performed next is extended, the brittleness of the glass is suppressed, so that a waiting time between the steps must be ensured.
  • the degree of freedom of the infrared absorbing glass manufacturing process can be increased.
  • the first processing step of step S2 may be constituted by at least one stage.
  • the first processing step of step S2 can be changed to a step including, for example, a shower cleaning step of cleaning glass using a shower nozzle that sprays water.
  • the first processing step of step S2 includes at least one of a polishing step of step S2A, an immersion cleaning step of step S2B, a rubbing cleaning step of step S2C, and the shower cleaning step.
  • the second processing step of Step S3 may be constituted by at least one stage.
  • the second processing step of step S3 can be changed to a step including a processing liquid supply step of supplying the processing liquid to the glass using a shower nozzle that sprays a processing liquid containing an organic solvent, for example.
  • the second processing step of step S3 includes at least one of the processing liquid immersion step of step S3A, the spraying step of step S3B, and the processing liquid supply step.
  • the order of the immersion cleaning step of step S2B and the rubbing cleaning step of step S2C may be interchanged.
  • the same step may be repeated a plurality of times.
  • the immersion cleaning step of step S2B a plurality of immersion tanks are prepared, and glass is sequentially immersed in the plurality of tanks, whereby the immersion cleaning step of step S2B can be repeated a plurality of times.
  • the compositions of the aqueous cleaning liquids in the plurality of tanks may be the same or different from each other.
  • a plurality of immersion tanks are prepared, and glass is sequentially immersed in the plurality of tanks, whereby the treatment liquid immersion step of step S3A can be repeated a plurality of times.
  • the compositions of the processing liquids in the plurality of tanks may be the same or different from each other.
  • the processing of the etching step of step S4 may be further performed as shown in FIG.
  • the etching step in step S4 is performed, for example, by immersing glass in an etching solution.
  • an etching solution for example, a detergent containing an alkali component such as Na or K, a surfactant such as triethanolamine, benzyl alcohol or glycol, and water or an alcohol can be used.
  • hydrofluoric acid, hydrochloric acid or the like may be further added to this etching solution at a low concentration. Since the glass that has been subjected to the processes of steps S1 to S3 of the present invention hardly causes erosion or embrittlement, breakage and hole defects hardly occur in the etching step of step S4, and high-quality glass can be obtained.
  • the glass is preferably further washed with water.
  • the processing of the second processing step of Step S3 may be performed again. According to such a configuration, the etchant attached to the glass in the etching step of step S4 can be suitably removed, and the embrittlement of the glass due to residual moisture can be suppressed.
  • the present disclosure includes the following configurations.
  • Appendix 1 A method for producing an infrared absorbing glass according to non-limiting examples, Preparing a base material made of, for example, a glass plate containing 5% or more of P 5+ and 0.5% or more of Cu 2+ in terms of cation%; Treating the substrate with water, After the step of treating the substrate, a step of diluting or removing water adhering to the surface of the substrate using an organic solvent compatible with water is provided.
  • the step of diluting or removing water on the surface of the substrate includes immersing the substrate in a treatment liquid containing the organic solvent.
  • the step of diluting or removing water on the surface of the substrate includes spraying a treatment liquid containing the organic solvent on the substrate.
  • treating the substrate includes polishing the substrate.
  • treating the substrate comprises rubbing and cleaning the substrate with a resin foam.
  • treating the substrate includes immersing and cleaning the substrate in an aqueous cleaning solution.
  • the aqueous cleaning solution contains a surfactant.
  • the pH of the aqueous cleaning solution is 9-13.
  • the organic solvent has a higher volatility compared to water.
  • the steps of treating the substrate and subsequently diluting or removing water on the surface of the substrate are repeated multiple times.
  • the substrate comprises 5-50% P 5+ , 2-30 % Al 3+ and 10-50% R + , expressed as% cation, where R is Li, Na, and At least one selected from K), 20 to 50% of R ' 2+ (where R' is at least one selected from Mg, Ca, Sr, Ba, and Zn) and 0.5 to 15% of Cu 2+ contain, and 5-80% by anionic% display F - and containing O 2- and 20 to 95%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Optical Filters (AREA)
  • Glass Compositions (AREA)

Abstract

赤外線吸収ガラスの製造方法は、ガラス組成としてカチオン%表示で5%以上のP5+と、0.5%以上のCu2+とを含有するガラスを準備する準備工程(ステップS1)と、水を用いてガラスを処理する第1処理工程(ステップS2)とを備える。赤外線吸収ガラスの製造方法は、ガラスの表面に付着している水をその水と相溶する有機溶剤を用いて希釈又は除去する処理を行う第2処理工程(ステップS3)をさらに備える。

Description

赤外線吸収ガラスの製造方法
 本発明は、赤外線吸収ガラスの製造方法に関する。
 従来、特許文献1に開示されるように、ガラス組成としてカチオン%表示で5%以上のP5+と、0.5%以上のCu2+とを含有する赤外線吸収ガラスが知られている。このような赤外線吸収ガラスは、例えば、CCD(電荷結合素子)やCMOS(相補性金属酸化膜半導体)等の固体撮像素子の視感度を補正するフィルタ用途に用いられる。
特開2016-199430号公報
 上記のような赤外線吸収ガラスは、ガラス組成としてカチオン%表示で5%以上のP5+と、0.5%以上のCu2+とを含有するガラスを準備し、このガラスに研磨、洗浄等の処理を施すことで得られる。
 ここで、上記のようなP5+を主成分とするガラス組成のガラスは、SiOを主成分とするガラス等に比べて耐水性が極めて低いため、研磨や洗浄等の処理で付着した水により濡れた状態でガラスを放置すると、ガラスが脆化する等、十分なガラスの品位を維持できなくなるおそれがあった。
 本発明は、こうした実情に鑑みてなされたものであり、その目的は、品位の低下を抑えることのできる赤外線吸収ガラスの製造方法を提供することにある。
 上記課題を解決する赤外線吸収ガラスの製造方法は、ガラス組成としてカチオン%表示で5%以上のP5+と、0.5%以上のCu2+とを含有するガラスを準備する準備工程と、水を用いて前記ガラスを処理する第1処理工程と、前記第1処理工程後、前記ガラスの表面に付着している水を前記水と相溶する有機溶剤を用いて希釈又は除去する処理を行う第2処理工程と、を備える。
 この方法によれば、第1処理工程の後にガラスの表面に付着している水を、第2処理工程において有機溶剤を用いて希釈又は除去することにより、ガラスの表面と水との接触を要因としたガラスの脆化を抑えることができる。
 上記赤外線吸収ガラスの製造方法において、前記第2処理工程は、前記有機溶剤を含有する処理液に前記ガラスを浸漬する処理液浸漬段階を含むことが好ましい。
 この方法によれば、ガラスの表面に付着している水を速やかに希釈又は除去することができる。
 上記赤外線吸収ガラスの製造方法において、前記第2処理工程の前記処理液浸漬段階において、前記処理液中の前記ガラスに超音波を照射することが好ましい。
 この方法によれば、処理液浸漬段階を利用してガラスの清浄性をより高めることができる。
 上記赤外線吸収ガラスの製造方法において、前記第2処理工程は、前記有機溶剤を含有する処理液を前記ガラスに噴霧する噴霧段階を含むことが好ましい。
 この方法によれば、例えば、有機溶剤の使用量を抑えることが可能となる。
 上記赤外線吸収ガラスの製造方法において、前記第1処理工程は、前記ガラスを研磨する研磨段階を含むことが好ましい。
 この方法によれば、表面の平滑性を高めた赤外線吸収ガラスを得ることができる。
 上記赤外線吸収ガラスの製造方法において、前記第1処理工程は、樹脂発泡体を用いて前記ガラスを擦って洗浄する擦り洗浄段階を含むことが好ましい。
 この方法によれば、ガラスの表面に付着した異物を容易に除去することができるため、ガラスの清浄性を容易に高めることができる。
 上記赤外線吸収ガラスの製造方法において、前記第1処理工程は、水を含有する水系洗浄液に前記ガラスを浸漬して洗浄する浸漬洗浄段階を含むことが好ましい。
 この方法によれば、水系洗浄液を用いてガラスの清浄性を容易に高めることができる。
 上記赤外線吸収ガラスの製造方法において、前記第1処理工程の前記浸漬洗浄段階で用いる前記水系洗浄液は、界面活性剤を含有することが好ましい。
 この方法によれば、界面活性剤の洗浄作用を利用してガラスの表面の清浄性をさらに容易に高めることができる。
 上記赤外線吸収ガラスの製造方法において、前記界面活性剤を含有する前記水系洗浄液のpHは、9以上、13以下の範囲内であることが好ましい。
 この方法によれば、例えば、ガラスの脆化を抑え、かつガラスの洗浄性を高めることが可能となる。
 上記赤外線吸収ガラスの製造方法において、前記第2処理工程で用いる前記有機溶剤は、前記水よりも揮発性が高いことが好ましい。
 この方法によれば、例えば、ガラスを速やかに乾燥することが可能となる。
 上記赤外線吸収ガラスの製造方法において、前記第1処理工程の後に前記第2処理工程を行う処理操作を複数回繰り返してもよい。
 この方法によれば、例えば、より高度なガラスの処理に対応することができる。
 上記赤外線吸収ガラスの製造方法において、前記準備工程で準備するガラスは、ガラス組成としてカチオン%表示で、P5+:5~50%、Al3+:2~30%、R(但し、Rは、Li、Na、及びKから選ばれる少なくとも一種):10~50%、R’2+(但し、R’は、Mg、Ca、Sr、Ba、及びZnから選ばれる少なくとも一種):20~50%、及びCu2+:0.5~15%を含有し、かつアニオン%表示で、F:5~80%、及びO2-:20~95%を含有することが好ましい。
 本発明によれば、赤外線吸収ガラスの品位の低下を抑えることができる。
実施形態における赤外線吸収ガラスの製造方法を示すフロー図である。 赤外線吸収ガラスの製造方法の第1処理工程を示すフロー図である。 赤外線吸収ガラスの製造方法の第2処理工程を示すフロー図である。 変更例における赤外線吸収ガラスの製造方法を示すフロー図である。
 以下、赤外線吸収ガラスの製造方法の実施形態について図面を参照して説明する。
 図1に示すように、赤外線吸収ガラスの製造方法は、ガラス組成としてカチオン%表示で5%以上のP5+と、0.5%以上のCu2+とを含有するガラスを準備する準備工程(ステップS1)と、水を用いてガラスを処理する第1処理工程(ステップS2)とを備えている。赤外線吸収ガラスの製造方法は、ステップS2の第1処理工程後、ガラスの表面に付着している水をその水と相溶する有機溶剤を用いて希釈又は除去する処理を行う第2処理工程(ステップS3)をさらに備えている。
 まず、ステップS1の準備工程について説明する。
 ステップS1の準備工程で準備するガラスの中でも、ガラス組成としてカチオン%表示で、P5+:5~50%、Al3+:2~30%、R(但し、Rは、Li、Na、及びKから選ばれる少なくとも一種):10~50%、R’2+(但し、R’は、Mg、Ca、Sr、Ba、及びZnから選ばれる少なくとも一種):10~50%、及びCu2+:0.5~15%を含有し、かつアニオン%表示で、F:5~80%、及びO2-:20~95%を含有するガラスが好ましい。
 より好ましいガラスの具体例としては、ガラス組成としてカチオン%表示で、P5+:40~50%、Al3+:7~12%、K:15~25%、Mg2+:3~12%、Ca2+:3~6%、Ba2+:7~12%、Cu2+:1~15%を含有し、かつアニオン%表示で、F:5~80%、及びO2-:20~95%を含有するガラス(リン酸塩ガラス)が挙げられる。
 より好ましいガラスの他の具体例としては、ガラス組成としてカチオン%表示で、P5+:20~35%、Al3+:10~20%、Li:20~30%、Na:0~10%、Mg2+:1~8%、Ca2+:3~13%、Sr2+:2~12%、Ba2+:2~8%、Zn2+:0~5%、及びCu2+:0.5~5%を含有し、かつアニオン%表示で、F:30~65%、及びO2-:35~75%を含有するガラス(フツリン酸ガラス)が挙げられる。
 より好ましいガラスの他の具体例としては、ガラス組成としてカチオン%表示で、P5+:35~45%、Al3+:8~12%、Li:20~30%、Mg2+:1~5%、Ca2+:3~6%、Ba2+:4~8%、及びCu2+:1~6%を含有し、かつアニオン%表示で、F:10~20%、及びO2-:75~95%を含有するガラス(フツリン酸ガラス)が挙げられる。
 より好ましい他のガラスの具体例としては、ガラス組成としてカチオン%表示で、P5+:30~45%、Al3+:15~25%、Li:1~5%、Na:7~13%、K:0.1~5%、Mg2+:1~8%、Ca2+:3~13%、Ba2+:6~12%、Zn2+:0~7%、及びCu2+:1~5%を含有し、かつアニオン%表示で、F:30~45%、及びO2-:50~70%を含有するガラス(フツリン酸ガラス)が挙げられる。
 ガラスは、板状であることが好ましい。板状のガラスの厚さは、0.4mm以下であることが好ましく、より好ましくは0.3mm以下であり、さらに好ましくは0.02mm以上、0.2mm以下の範囲内である。
 ガラスは、ガラス原料の溶解、清澄、撹拌等の工程によって得られた溶融ガラスを周知の方法で成形することで得られる。ガラスは、溶融ガラスから成形したガラスインゴットを切断する方法や、オーバーフローダウンドロー法、ダウンドロー法(スロットダウン法、リドロー法等)、フロート法等の成形法を用いて得ることができる。
 次に、ステップS2の第1処理工程について説明する。
 図2に示すように、本実施形態におけるステップS2の第1処理工程は、ガラスを研磨する研磨段階(ステップS2A)を含む。ステップS2Aの研磨段階では、例えば、水系の研磨液と研磨パッドとを用いる周知の研磨方法により行うことができる。ステップS2Aの研磨段階における研磨は、研磨テープを走行または往復動させる研磨方法により行ってもよい。ステップS2Aの研磨段階における研磨は、化学研磨、機械研磨、及び化学機械研磨のいずれであってもよい。また、ステップS2Aの研磨段階における研磨は、粗研磨(ラップ研磨)であってもよいし、精密研磨(仕上研磨、鏡面研磨)であってもよい。また、ステップS2Aの研磨段階は、板状のガラスの表面を研磨する表面研磨でもよいし、板状のガラスの端面を研磨する端面研磨であってもよい。
 本実施形態におけるステップS2の第1処理工程は、水を含有する水系洗浄液にガラスを浸漬して洗浄する浸漬洗浄段階(ステップS2B)をさらに含む。水系洗浄液は、水のみから構成してもよいし、界面活性剤を含有させてもよい。水系洗浄液に含有させる界面活性剤としては、例えば、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、及びノニオン性界面活性剤があげられる。界面活性剤を含有する水系洗浄液のpHは、9以上、13以下の範囲内であることが好ましい。水系洗浄液のpHは、20℃で測定される値である。水系洗浄液のpHは、必要に応じてpH調整剤(無機又は有機アルカリ、無機又は有機酸等)や緩衝剤を用いて調整することができる。水系洗浄液中の界面活性剤の含有量は、1質量%以上、5質量%以下の範囲内であることが好ましい。この場合、界面活性剤の洗浄作用を高め、かつガラスの表面に残留する界面活性剤を削減することができる。ステップS2Bの浸漬洗浄段階において、ガラスは、例えば単数又は複数枚が治具に縦姿勢で支持された状態で、水系洗浄液で満たされた洗浄槽内に浸漬される。なお、ガラスは、横姿勢で支持された状態で、洗浄槽内に浸漬されてもよい。ステップS2Bの浸漬洗浄段階で用いる水系洗浄液の温度は、例えば1~90℃であり、好ましくは5~50℃、より好ましくは10~40℃である。また、ステップS2Bの浸漬洗浄段階における浸漬時間は、例えば1~10分であり、好ましくは1~5分、より好ましくは1~3分である。
 ここで、水系洗浄液に浸漬されているガラスは、水を要因とした脆化が進行し易い状態であり、この状態のガラスに超音波を照射すると、ガラスにエロージョン(壊食)が発生し易くなる。このようなエロージョンの発生を抑えるという観点から、ステップS2Bの浸漬洗浄段階における洗浄は、ガラスに超音波を照射しない洗浄であることが好ましい。
 本実施形態におけるステップS2の第1処理工程は、樹脂発泡体を用いてガラスを擦って洗浄する擦り洗浄段階(ステップS2C)をさらに含む。ステップS2Cの擦り洗浄段階で用いる樹脂発泡体の樹脂としては、例えば、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、メラミン樹脂等が挙げられる。
 ステップS2Cの擦り洗浄段階は、上記樹脂からなる回転パッドや、回転ローラをガラスの主面に押し当てることにより実施されてもよいし、作業者による手作業で実施されてもよい。
 次に、ステップS3の第2処理工程について説明する。
 ステップS3の第2処理工程で用いる上記有機溶剤としては、例えば、アルコール、ケトン、エーテル等が挙げられる。有機溶剤の中でも、水よりも揮発性が高い有機溶剤であることが好ましく、より好ましくは炭素数1~3の一価アルコールであり、さらに好ましくはイソプロピルアルコールである。
 図3に示すように、本実施形態におけるステップS3の第2処理工程は、有機溶剤を含有する処理液にガラスを浸漬する処理液浸漬段階(ステップS3A)を含む。ステップS3Aの処理液浸漬段階で用いる処理液は、有機溶剤を主成分とし、有機溶剤と相溶する水等をさらに含有していてもよい。ステップS3Aの処理液浸漬段階で用いる処理液中の有機溶剤の含有量は、50質量%以上であることが好ましく、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上である。この処理液中の有機溶剤の含有量を高めることで、ガラスの脆化をより抑えることができる。ステップS3Aの処理液浸漬段階で用いる処理液の温度は、例えば1~90℃であり、好ましくは5~50℃、より好ましくは10~40℃である。また、ステップS3Aの処理液浸漬段階における浸漬時間は、例えば1~10分であり、好ましくは1~5分、より好ましくは1~3分である。
 ステップS3Aの処理液浸漬段階において、ガラスは、例えば単数又は複数枚が治具に縦姿勢で支持された状態で、処理液で満たされた処理槽内に浸漬される。なお、ガラスは、横姿勢で支持された状態で、処理槽内に浸漬されてもよい。
 ステップS3Aの処理液浸漬段階では、処理液中のガラスに超音波を照射することが好ましい。このステップS3Aの処理液浸漬段階では、周知の超音波洗浄装置を用いることができる。
 本実施形態におけるステップS3の第2処理工程は、有機溶剤を含有する処理液をガラスに噴霧する噴霧段階(ステップS3B)をさらに含む。ステップS3Bの噴霧段階で用いる処理液は、有機溶剤を主成分とし、有機溶剤と相溶する水等をさらに含有していてもよい。
 ステップS3Bの噴霧段階で用いる処理液中の有機溶剤の含有量は、ステップS3Aの処理液浸漬段階で用いる処理液中の有機溶剤の含有量よりも高いことが好ましい。ステップS3Bの噴霧段階で用いる処理液中の有機溶剤の含有量は、90質量%以上であることが好ましく、より好ましくは95質量%以上である。この処理液中の有機溶剤の含有量を高めることで、ガラスの脆化をより抑えることができる。また、有機溶剤として、水よりも揮発性の高い有機溶剤を用いた場合、ガラスを速やかに乾燥することもできる。すなわち、ステップS3の第2処理工程における最終段階(検査に供する赤外線吸収ガラスを得る段階)では、ガラスの脆化をより抑え、かつガラスの表面を速やかに乾燥するという観点から、水よりも揮発性の高い有機溶剤を90質量%以上含有する処理液を用いることが好ましい。
 上述したステップS3Bの噴霧段階では、一流体噴霧ノズルや二流体噴霧ノズルを用いることができる。ステップS3Bの噴霧段階において、ガラスは、例えば単数又は複数枚が治具に縦姿勢で支持された状態で、ガラスの両主面に処理液が噴霧される。なお、ガラスは、横姿勢で支持された状態で、ガラスの両主面に処理液が噴霧されてもよい。ステップS3Bの噴霧段階における噴霧雰囲気の温度は、例えば1~90℃であり、好ましくは5~50℃、より好ましくは10~40℃である。また、ステップS3Bの噴霧段階における噴霧時間は、例えば1~10分であり、好ましくは1~5分、より好ましくは1~3分である。
 なお、赤外線吸収ガラスの製造方法において、上述した第1処理工程の後に第2処理工程を行う処理操作を複数回繰り返してもよい。すなわち、赤外線吸収ガラスの製造方法において、第1処理工程と第2処理工程とを1回の処理操作として、この処理操作を2回以上行うこともできる。
 赤外線吸収ガラスの製造方法によって得られた赤外線吸収ガラスは、表面における異常(傷等)の有無についての検査が行われた後、梱包された状態で出荷される。
 赤外線吸収ガラスの製造方法によって得られたガラスは、例えば、CCD(電荷結合素子)やCMOS(相補性金属酸化膜半導体)等の固体撮像素子の視感度を補正するフィルタ用途に好適に用いることができる。
 次に、本実施形態の作用及び効果について説明する。
 (1)赤外線吸収ガラスの製造方法は、ステップS1の準備工程と、ステップS2の第1処理工程と、ステップS3の第2処理工程とを備えている。
 この方法によれば、ステップS2の第1処理工程の後にガラスの表面に付着している水を、ステップS2の第2処理工程において有機溶剤を用いて希釈又は除去することにより、ガラスの表面と水との接触を要因としたガラスの脆化を抑えることができる。従って、赤外線吸収ガラスの品位の低下を抑えることができる。
 (2)赤外線吸収ガラスの製造方法において、ステップS3の第2処理工程は、ステップS3Aの処理液浸漬段階を含むことが好ましい。この場合、ガラスの表面に付着している水を速やかに希釈又は除去することができる。
 (3)ステップS3の第2処理工程がステップS3Aの処理液浸漬段階を含む場合、ステップS3Aの処理液浸漬段階では、処理液中のガラスに超音波を照射することが好ましい。この場合、ステップS3Aの処理液浸漬段階を利用してガラスの清浄性をより高めることができる。
 (4)赤外線吸収ガラスの製造方法において、ステップS3の第2処理工程は、ステップS3Bの噴霧段階を含むことが好ましい。この場合、例えば、有機溶剤の使用量を抑えることが可能となる。
 (5)赤外線吸収ガラスの製造方法において、ステップS2の第1処理工程は、ステップS2Aの研磨段階を含むことが好ましい。この場合、表面の平滑性を高めた赤外線吸収ガラスを得ることができる。
 (6)赤外線吸収ガラスの製造方法において、ステップS2の第1処理工程は、ステップS2Cの擦り洗浄段階を含むことが好ましい。この場合、ガラスの表面に付着した異物を容易に除去することができるため、ガラスの清浄性を容易に高めることができる。
 (7)赤外線吸収ガラスの製造方法において、ステップS2の第1処理工程は、ステップS2Bの浸漬洗浄段階を含むことが好ましい。この場合、水系洗浄液を用いてガラスの清浄性を容易に高めることができる。
 (8)ステップS2Bの浸漬洗浄段階で用いる水系洗浄液は、界面活性剤を含有することが好ましい。この場合、界面活性剤の洗浄作用を利用してガラスの表面の清浄性をさらに容易に高めることができる。
 (9)ステップS2Bの浸漬洗浄段階で界面活性剤を含有する水系洗浄液を用いる場合、水系洗浄液のpHは、9以上、13以下の範囲内であることが好ましい。この場合、例えば、ガラスの脆化を抑え、かつガラスの洗浄性を高めることが可能となる。
 (10)ステップS3の第2処理工程で用いる有機溶剤は、水よりも揮発性が高いことが好ましい。この場合、例えば、ガラスを速やかに乾燥することが可能となる。
 なお、ステップS3Aの処理液浸漬段階で用いる有機溶剤と、ステップS3Bの噴霧段階で用いる有機溶剤とは、同じ種類であってもよいし、互いに異なる種類であってもよい。例えば、ステップS3Aの処理液浸漬段階では、水よりも揮発性の低い有機溶剤を用いるとともに、ステップS3Bの噴霧段階では、水よりも揮発性が高い有機溶剤を用いることもできる。
 (11)赤外線吸収ガラスの製造方法において、ステップS2の第1処理工程の後にステップS3の第2処理工程を行う処理操作を複数回繰り返してもよい。この場合、例えば、ステップS2Aの研磨段階を複数回行うことで、より高度なガラスの処理に対応することができる。また、第1の処理操作の終了後から、次に行う第2の処理操作の開始時までの時間を延長したとしても、ガラスの脆化が抑えられるため、工程間の待機時間を確保することができる等、赤外線吸収ガラスの製造工程の自由度を高めることができる。
 (変更例)
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・赤外線吸収ガラスの製造方法において、ステップS2の第1処理工程を少なくとも一つの段階から構成することもできる。また、ステップS2の第1処理工程は、例えば、水を噴射するシャワーノズルを用いてガラスを洗浄するシャワー洗浄段階等を含む工程に変更することもできる。このようなステップS2の第1処理工程は、ステップS2Aの研磨段階、ステップS2Bの浸漬洗浄段階、ステップS2Cの擦り洗浄段階、及び上記シャワー洗浄段階の少なくとも一つの段階を含むことが好ましい。
 ・赤外線吸収ガラスの製造方法において、ステップS3の第2処理工程を少なくとも一つの段階から構成することもできる。また、ステップS3の第2処理工程は、例えば、有機溶剤を含有する処理液を噴射するシャワーノズルを用いて処理液をガラスに供給する処理液供給段階等を含む工程に変更することもできる。このようなステップS3の第2処理工程は、ステップS3Aの処理液浸漬段階、ステップS3Bの噴霧段階、及び上記処理液供給段階の少なくとも一つの段階を含むことが好ましい。
 ・ステップS2の第1処理工程において、ステップS2Bの浸漬洗浄段階と、ステップS2Cの擦り洗浄段階との順序を入れ替えてもよい。
 ・ステップS2の第1処理工程又はステップS3の第2処理工程において、同じ段階を複数回繰り返してもよい。例えば、ステップS2Bの浸漬洗浄段階では、浸漬用の槽を複数準備し、その複数の槽にガラスを順次浸漬することで、ステップS2Bの浸漬洗浄段階を複数回繰り返すことができる。この場合、複数の槽中の水系洗浄液の組成は、同じ組成であってもよいし、互いに異なる組成であってもよい。例えば、ステップS3Aの処理液浸漬段階についても、浸漬用の槽を複数準備し、その複数の槽にガラスを順次浸漬することで、ステップS3Aの処理液浸漬段階を複数回繰り返すことができる。この場合についても、複数の槽中の処理液の組成は、同じ組成であってもよいし、互いに異なる組成であってもよい。
 ・上述したステップS3の第2処理工程の後、図4に示すようにステップS4のエッチング工程の処理をさらに実施しても良い。ステップS4のエッチング工程は、例えば、ガラスをエッチング液に浸漬することで行われる。エッチング液としては、例えば、Na、Kなどのアルカリ成分や、トリエタノールアミン、ベンジルアルコール又はグリコールなどの界面活性剤、および水又はアルコールなどを含有する洗剤を使用できる。このエッチング液には、例えば、フッ酸、塩酸等を低濃度でさらに添加しても良い。本発明のステップS1~S3の処理を経たガラスはエロージョンや脆化が生じ難いため、ステップS4のエッチング工程で破損や穴欠陥が生じ難く、高い品位のガラスを得られる。
 ・ステップS4のエッチング工程の処理後、ガラスに対してさらに水による洗浄を行うことが好ましい。また、洗浄の後、再度、ステップS3の第2処理工程の処理を実行しても良い。このような構成によれば、ステップS4のエッチング工程においてガラスに付着したエッチング液を好適に除去し、且つ、残留水分によるガラスの脆化を抑制できる。
 本開示には以下の構成が含まれる。
 [付記1]
 非限定的な例に従う赤外線吸収ガラスの製造方法は、
 カチオン%表示で5%以上のP5+と0.5%以上のCu2+とを含有する例えばガラス板からなる基材を準備する工程と、
 水を用いて前記基材を処理する工程と、
 前記基材を処理する工程の後、前記基材の表面に付着している水を、水と相溶する有機溶剤を用いて希釈又は除去する工程と
を備える。
 [付記2]
 非限定的な例において、前記基材の表面の水を希釈又は除去する工程は、前記有機溶剤を含有する処理液に前記基材を浸漬することを含む。
 [付記3]
 非限定的な例において、前記処理液への前記基材の浸漬の際、前記処理液中の前記基材には超音波が照射される。
 [付記4]
 非限定的な例において、前記基材の表面の水を希釈又は除去する工程は、前記有機溶剤を含有する処理液を前記基材に噴霧することを含む。
 [付記5]
 非限定的な例において、前記基材を処理する工程は、前記基材を研磨することを含む。
 [付記6]
 非限定的な例において、前記基材を処理する工程は、樹脂発泡体を用いて前記基材を擦って洗浄することを含む。
 [付記7]
 非限定的な例において、前記基材を処理する工程は、水系洗浄液に前記基材を浸漬して洗浄することを含む。
 [付記8]
 非限定的な例において、前記水系洗浄液は界面活性剤を含有する。
 [付記9]
 非限定的な例において、前記水系洗浄液のpHは9~13である。
 [付記10]
 非限定的な例において、前記有機溶剤は水と比べて高い揮発性を有する。
 [付記11]
 非限定的な例において、前記基材を処理する工程及びその後に前記基材の表面の水を希釈又は除去する工程は、複数回にわたって繰り返し行われる。
 [付記12]
 非限定的な例において、前記基材は、カチオン%表示で5~50%のP5+と2~30%のAl3+と10~50%のR(但し、Rは、Li、Na、及びKから選ばれる少なくとも一種)と20~50%のR’2+(但し、R’は、Mg、Ca、Sr、Ba、及びZnから選ばれる少なくとも一種)と0.5~15%のCu2+とを含有し、かつアニオン%表示で5~80%のFと20~95%のO2-とを含有する。

Claims (12)

  1.  ガラス組成としてカチオン%表示で5%以上のP5+と、0.5%以上のCu2+とを含有するガラスを準備する準備工程と、
     水を用いて前記ガラスを処理する第1処理工程と、
     前記第1処理工程後、前記ガラスの表面に付着している水を前記水と相溶する有機溶剤を用いて希釈又は除去する処理を行う第2処理工程と、を備えることを特徴とする赤外線吸収ガラスの製造方法。
  2.  前記第2処理工程は、前記有機溶剤を含有する処理液に前記ガラスを浸漬する処理液浸漬段階を含むことを特徴とする請求項1に記載の赤外線吸収ガラスの製造方法。
  3.  前記第2処理工程の前記処理液浸漬段階において、前記処理液中の前記ガラスに超音波を照射することを特徴とする請求項2に記載の赤外線吸収ガラスの製造方法。
  4.  前記第2処理工程は、前記有機溶剤を含有する処理液を前記ガラスに噴霧する噴霧段階を含むことを特徴とする請求項1から請求項3のいずれか一項に記載の赤外線吸収ガラスの製造方法。
  5.  前記第1処理工程は、前記ガラスを研磨する研磨段階を含むことを特徴とする請求項1から請求項4のいずれか一項に記載の赤外線吸収ガラスの製造方法。
  6.  前記第1処理工程は、樹脂発泡体を用いて前記ガラスを擦って洗浄する擦り洗浄段階を含むことを特徴とする請求項1から請求項5のいずれか一項に記載の赤外線吸収ガラスの製造方法。
  7.  前記第1処理工程は、水を含有する水系洗浄液に前記ガラスを浸漬して洗浄する浸漬洗浄段階を含むことを特徴とする請求項1から請求項6のいずれか一項に記載の赤外線吸収ガラスの製造方法。
  8.  前記第1処理工程の前記浸漬洗浄段階で用いる前記水系洗浄液は、界面活性剤を含有することを特徴とする請求項7に記載の赤外線吸収ガラスの製造方法。
  9.  前記界面活性剤を含有する前記水系洗浄液のpHは、9以上、13以下の範囲内であることを特徴とする請求項8に記載の赤外線吸収ガラスの製造方法。
  10.  前記第2処理工程で用いる前記有機溶剤は、前記水よりも揮発性が高いことを特徴とする請求項1から請求項9のいずれか一項に記載の赤外線吸収ガラスの製造方法。
  11.  前記第1処理工程の後に前記第2処理工程を行う処理操作を複数回繰り返すことを特徴とする請求項1から請求項10のいずれか一項に記載の赤外線吸収ガラスの製造方法。
  12.  前記準備工程で準備するガラスは、ガラス組成としてカチオン%表示で、P5+:5~50%、Al3+:2~30%、R(但し、Rは、Li、Na、及びKから選ばれる少なくとも一種):10~50%、R’2+(但し、R’は、Mg、Ca、Sr、Ba、及びZnから選ばれる少なくとも一種):20~50%、及びCu2+:0.5~15%を含有し、かつアニオン%表示で、F:5~80%、及びO2-:20~95%を含有することを特徴とする請求項1から請求項11のいずれか一項に記載の赤外線吸収ガラスの製造方法。
PCT/JP2019/033273 2018-09-20 2019-08-26 赤外線吸収ガラスの製造方法 WO2020059431A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980053301.1A CN112566879A (zh) 2018-09-20 2019-08-26 红外线吸收玻璃的制造方法
KR1020217010892A KR20210060531A (ko) 2018-09-20 2019-08-26 적외선 흡수 유리의 제조 방법
JP2020548202A JP7452428B2 (ja) 2018-09-20 2019-08-26 赤外線吸収ガラスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-175864 2018-09-20
JP2018175864 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020059431A1 true WO2020059431A1 (ja) 2020-03-26

Family

ID=69887203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033273 WO2020059431A1 (ja) 2018-09-20 2019-08-26 赤外線吸収ガラスの製造方法

Country Status (4)

Country Link
JP (1) JP7452428B2 (ja)
KR (1) KR20210060531A (ja)
CN (1) CN112566879A (ja)
WO (1) WO2020059431A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172574A (ja) * 2020-04-30 2021-11-01 日本電気硝子株式会社 ガラス板の前処理方法及びガラス物品の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083290A (ja) * 2002-07-05 2004-03-18 Hoya Corp 近赤外光吸収ガラス、近赤外光吸収素子、近赤外光吸収フィルターおよび近赤外光吸収ガラス成形体の製造方法
WO2014084380A1 (ja) * 2012-11-30 2014-06-05 Hoya株式会社 ガラス物品
JP2016059973A (ja) * 2014-09-16 2016-04-25 旭硝子株式会社 研磨スラリーの再生方法、基板の製造方法
WO2019058858A1 (ja) * 2017-09-20 2019-03-28 日本電気硝子株式会社 赤外線吸収ガラス板及びその製造方法、並びに固体撮像素子デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091537A (ja) * 2005-09-29 2007-04-12 Hoya Corp 近赤外光吸収ガラス材ロットおよびそれを用いる光学素子の製造方法
CN102603189B (zh) * 2012-02-17 2017-12-29 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器
JP2014083504A (ja) * 2012-10-24 2014-05-12 Ohara Inc 光触媒部材及びその製造方法
JP6583609B2 (ja) 2015-04-10 2019-10-02 日本電気硝子株式会社 近赤外線吸収ガラス
JP6811053B2 (ja) 2016-04-11 2021-01-13 日本電気硝子株式会社 赤外線吸収ガラス板及びその製造方法、並びに固体撮像素子デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083290A (ja) * 2002-07-05 2004-03-18 Hoya Corp 近赤外光吸収ガラス、近赤外光吸収素子、近赤外光吸収フィルターおよび近赤外光吸収ガラス成形体の製造方法
WO2014084380A1 (ja) * 2012-11-30 2014-06-05 Hoya株式会社 ガラス物品
JP2016059973A (ja) * 2014-09-16 2016-04-25 旭硝子株式会社 研磨スラリーの再生方法、基板の製造方法
WO2019058858A1 (ja) * 2017-09-20 2019-03-28 日本電気硝子株式会社 赤外線吸収ガラス板及びその製造方法、並びに固体撮像素子デバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172574A (ja) * 2020-04-30 2021-11-01 日本電気硝子株式会社 ガラス板の前処理方法及びガラス物品の製造方法

Also Published As

Publication number Publication date
KR20210060531A (ko) 2021-05-26
CN112566879A (zh) 2021-03-26
JP7452428B2 (ja) 2024-03-19
JPWO2020059431A1 (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
US20110092074A1 (en) Texturing and cleaning agent for the surface treatment of wafers and use thereof
US6194366B1 (en) Post chemical-mechanical planarization (CMP) cleaning composition
KR100901058B1 (ko) 연마용 실리카입자 분산액, 그 제조방법 및 연마재
KR20120089570A (ko) 세정액 및 세정 방법
KR20060134810A (ko) 기판의 표면 처리 방법 및 ⅲ-ⅴ족 화합물 반도체의 제조방법
CN103464418A (zh) 一种半导体硅片脱胶工艺
WO2020059431A1 (ja) 赤外線吸収ガラスの製造方法
TW202043449A (zh) 半導體處理用組成物及處理方法
WO2019173669A3 (en) Method for minimizing dent defects in chemically strengthened glass
US9937602B2 (en) Substrate processing method
CN101226872A (zh) 一种多晶刻蚀腔室中硅材质零件表面的清洗方法
CN104966675B (zh) 使用蓝膜保护硅片表面部分二氧化硅膜的方法
US20080223414A1 (en) Compositions and methods for removing titanium dioxide from surfaces
TW201602035A (zh) 玻璃基板、玻璃基板之製造方法、及黑矩陣基板
KR20090030204A (ko) 반도체 웨이퍼의 세척 방법
TW201521105A (zh) 矽晶圓之製造方法
KR102397700B1 (ko) 세정제 조성물
US20140096793A1 (en) Uv treatment of polished wafers
CN109037032A (zh) 一种光电子半导体硅片脱胶工艺
JP5463740B2 (ja) 研磨した石英ガラス基板の洗浄方法
TWI438038B (zh) 在拋光由矽組成的半導體晶圓的程序之後立即清潔該半導體晶圓的方法
JP6405618B2 (ja) シリコンウェーハの製造方法
CN117660119A (zh) 水晶玻璃清洗剂及清洗方法
CN117862112A (zh) 一种半导体硅抛光片的去蜡清洗工艺
TW202138072A (zh) 玻璃板的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010892

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19862501

Country of ref document: EP

Kind code of ref document: A1