WO2020054160A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2020054160A1
WO2020054160A1 PCT/JP2019/023406 JP2019023406W WO2020054160A1 WO 2020054160 A1 WO2020054160 A1 WO 2020054160A1 JP 2019023406 W JP2019023406 W JP 2019023406W WO 2020054160 A1 WO2020054160 A1 WO 2020054160A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
design surface
boom
arm
work
Prior art date
Application number
PCT/JP2019/023406
Other languages
English (en)
French (fr)
Inventor
田中 宏明
寿身 中野
悠介 鈴木
坂本 博史
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US16/981,516 priority Critical patent/US11840822B2/en
Priority to KR1020207024445A priority patent/KR102378264B1/ko
Priority to EP19859305.5A priority patent/EP3851589A4/en
Priority to CN201980015844.4A priority patent/CN111868333B/zh
Publication of WO2020054160A1 publication Critical patent/WO2020054160A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for

Definitions

  • the present invention relates to a working machine such as a hydraulic shovel.
  • Conventional hydraulic systems mounted on working machines such as hydraulic excavators include a prime mover such as an engine, a hydraulic pump driven by the prime mover, an actuator driven by pressure oil discharged from the hydraulic pump, and a hydraulic pump.
  • a prime mover such as an engine
  • a hydraulic pump driven by the prime mover
  • an actuator driven by pressure oil discharged from the hydraulic pump
  • a hydraulic pump driven by pressure oil discharged from the hydraulic pump
  • a hydraulic pump a hydraulic pump.
  • a directional control valve configured to control the direction and flow rate of pressure oil supplied to an actuator. The operation direction and operation speed of the actuator are determined by the operator operating an operation device such as an operation lever provided on the work machine.
  • Patent Document 1 discloses, for example, a hydraulic shovel (semi-automatic shovel) equipped with semi-automatic control capable of assisting an operator in an operation of excavating the ground according to a design surface indicating a target shape to be constructed.
  • Patent Document 1 discloses a working machine including a boom that is swingably attached to a vehicle body, an arm that is swingably attached to the boom, a bucket that is swingably attached to the arm, and the working machine.
  • An operating tool that receives a driving user operation and outputs an operation signal corresponding to the user operation, and a work mode of the work machine when at least an arm operation signal for operating the arm is included in the operation signal Is determined to be a molding operation, and when the arm operation signal is not included in the operation signal, the operation mode is a work mode determination unit that determines that the operation mode is a blade edge alignment operation, and the operation mode is a molding operation If it is determined that there is, the bucket is moved along the design surface indicating the target shape of the excavation target, and it is determined that the work mode is a blade edge alignment work The case, the work machine control system and a drive control unit for stopping the bucket at a predetermined position relative to the said design surface is described.
  • the pilot when performing excavation work using a hydraulic excavator that is not a semi-automatic excavator, the pilot considers the angle of the design surface and the posture of the work equipment and considers the arm and boom so that the toe of the bucket moves along the design surface. Manipulate.
  • the design surface is a horizontal surface
  • operate the arm in the winding direction to excavate and operate the boom in the up direction to adjust the distance between the bucket toe and the design surface.
  • the design surface is a vertical surface
  • which of the arm and the boom is operated to perform excavation changes according to the angle of the arm (excavation angle) with respect to the design surface.
  • the excavation angle is 90 degrees or less
  • the boom is operated in the upward direction to adjust the distance between the bucket toe and the design surface, and the excavation is performed.
  • the arm is operated in the pushing direction to adjust the distance between the bucket toe and the design surface while operating the boom in the downward direction for digging.
  • the operator operates the arm or the boom to perform the excavation changes according to the angle of the design surface and the posture of the work implement.
  • the operation mode of the working machine is determined to be a molding operation, and the arm operation signal is If the operation signal is not included in the operation signal, it is determined that the operation mode is the edge alignment operation. Therefore, even if the operator operates the boom in the downward direction to excavate a vertical design surface, the operation mode is the forming operation. Is not determined. Therefore, the operation of the pilot cannot be assisted so that the bucket moves along the vertical design plane.
  • the present invention has been made in view of the above problems, and an object of the present invention is to allow a work implement to move along a design surface regardless of an angle of a design surface or a posture of a work machine indicating a target shape to be constructed. Another object of the present invention is to provide a working machine that can assist the operation of a driver.
  • the present invention provides an articulated working machine having a working tool and a plurality of working members, a plurality of actuators for driving the working machine, and an operation for operating the working machine.
  • An apparatus a controller that controls the operation of the working machine according to an operation signal output from the operating device, a construction target setting device for setting a design surface indicating a target shape to be constructed, and A posture and position measurement device for measuring the posture and the position of the work implement, the controller determines target speeds of the plurality of actuators based on an operation signal output from the operation device, and the construction target setting device
  • the controller may Based on the design surface set by the construction target setting device and the posture of the working machine measured by the posture position measuring device, positioning of the digging actuator and the work tool that are responsible for digging operation among the plurality of actuators. Determining a positioning actuator responsible for the operation, determining a target speed
  • the positioning operation of the excavating actuator and the work implement that are responsible for the excavating operation among the plurality of actuators is performed.
  • the positioning actuator to be carried is determined, the target speed of the excavating actuator is determined based on an operation signal output from the operating device, and the target speed of the positioning actuator is limited in a direction in which the work implement approaches the design surface.
  • FIG. 1 is a side view of a hydraulic shovel according to a first embodiment of the present invention. It is a schematic block diagram of the hydraulic control system mounted in the hydraulic shovel shown in FIG.
  • FIG. 3 is a functional block diagram of the controller shown in FIG. 2.
  • FIG. 3 is a diagram illustrating a calculation logic of an actuator operation restriction determination unit illustrated in FIG. 2.
  • FIG. 3 is a diagram illustrating calculation logic relating to the operation of a boom cylinder of the semi-automatic control unit illustrated in FIG. 2.
  • FIG. 3 is a diagram illustrating calculation logic relating to the operation of an arm cylinder of the semi-automatic control unit illustrated in FIG. 2.
  • FIG. 3 is a diagram illustrating an operation of a front working machine realized by the controller illustrated in FIG. 2.
  • FIG. 13 is a diagram illustrating the operation logic of an actuator role determination unit according to a second embodiment of the present invention. It is a figure showing operation of a front work implement realized by a controller in a 2nd example of the present invention. It is a functional block diagram of a controller in a 3rd example of the present invention. It is a figure showing an example of operation auxiliary information displayed on a display in a 3rd example of the present invention.
  • FIG. 1 is a side view of a hydraulic shovel according to a first embodiment of the present invention.
  • a hydraulic excavator 100 includes a traveling body 1, a revolving body 2 rotatably mounted on the traveling body 1 via a revolving device 8, and an up-down direction on a front side of the revolving body 2. And a front working machine 110 rotatably connected.
  • the revolving unit 2 has a revolving frame 2 a forming a foundation lower structure.
  • a front work machine 110 is connected to the front side of the revolving frame 2a so as to be rotatable in a vertical direction.
  • a counterweight 3 for balancing the weight with the front work machine 110 is attached.
  • a driver's cab 4 is provided at a left front portion of the turning frame 2a. In the operator's cab 4, left and right operation lever devices 15L and 15R (shown in FIG. 2) as operation devices for operating the front work machine 110 and the revolving superstructure 2 are arranged.
  • an engine (not shown) as a prime mover, a pump device 9 including one or more hydraulic pumps driven by the engine, a revolving motor 8a for driving the revolving device 8, and revolving from the pump device 9
  • a control valve unit 10 including a motor 8a and a plurality of directional control valves for controlling a flow of hydraulic oil supplied to a plurality of hydraulic actuators including a boom cylinder 5a, an arm cylinder 6a, and a bucket cylinder 7a, which will be described later, and the like are mounted. .
  • the front working machine 110 has a boom 5 having a base end rotatably connected to the right front portion of the revolving frame 2a in a vertically rotatable manner, and a boom 5 connected to the tip end of the boom 5 so as to be rotatable in the up and down, front and rear directions.
  • Angle sensors 11a, 11b, and 11c are attached to the boom 5, the arm, and the bucket 7, respectively.
  • the angle sensors 11a to 11c constitute a posture position measuring device that measures the posture of the front work machine 110 and the toe position of the bucket 7.
  • FIG. 2 is a schematic configuration diagram of a hydraulic control system mounted on the excavator 100.
  • the hydraulic control system 200 includes a controller 20, a construction target setting device 21 for setting a design surface indicating a target shape to be constructed, and a display device for displaying information output from the controller 20. 22, left and right operating lever devices 15L and 15R for instructing the operation of the hydraulic excavator 100 to the controller 20, work implement posture position measuring devices 11a to 11c, and a hydraulic device 23.
  • the left and right operation lever devices 15L and 15R output operation signals to the controller 20 according to the lever operation by the driver.
  • the controller 20 controls the operation signals input from the left and right operation lever devices 15L and 15R, the design surface information input from the construction target setting device 21, and the work machine posture input from the work machine posture position measuring devices 11a to 11c. Based on the position information, an operation command for the actuators 5a, 6a, 7a, 8a is generated and output to the hydraulic device 23.
  • the hydraulic device 23 supplies pressure oil to the boom cylinder 5a, the arm cylinder 6a, the bucket cylinder 7a, and the turning motor 8a in response to an operation command from the controller 20, and the boom 5, the arm 6, the bucket 7, and the turning device 8 Drive.
  • FIG. 3 is a functional block diagram of the controller 20.
  • the controller 20 includes an operation command unit 30, an actuator role determination unit 31, an actuator operation restriction determination unit 32, and a semi-automatic control unit 33.
  • the operation command unit 30 determines target operation speeds of the actuators 5a, 6a, 7a based on operation signals (left and right lever operation amounts) input from the left and right operation lever devices 15L, 15R, and corresponds to the target speeds. An operation command is output to the semi-automatic control unit 33.
  • the actuator role determining unit 31 receives the working machine posture position information from the working machine posture position measuring devices 11a to 11c and the construction target information from the construction target setting device 21.
  • the actuator role determining unit 31 determines an actuator in charge of excavation (an actuator for excavation) and an actuator in charge of positioning of the bucket 7 (positioning actuator) based on the work equipment posture position information and the construction target information, The result is output to the actuator operation restriction determining unit 32 as actuator role information.
  • the actuator operation restriction determining unit 32 receives the working machine posture position information from the working machine posture position measuring devices 11a to 11c, the construction target information from the construction target setting device 21, and the actuator role information from the actuator role determining unit 31. Is entered. The actuator operation restriction determining unit 32 determines whether or not to restrict the operation of each actuator based on the work machine posture position information, the construction target information, and the actuator role information, and uses the result as operation restriction information as a semi-automatic control unit. 33.
  • the semi-automatic control unit 33 receives an operation command from the operation command unit 30, receives work machine posture position information from the work machine posture position measuring devices 11a to 11c, and receives construction target information from the construction target setting device 21, Operation restriction information is input from the actuator operation restriction determination unit 32.
  • the semi-automatic control unit 33 controls the work implement posture position information so that the target speed of the actuator is limited as the deviation between the design surface included in the construction target information and the bucket toe position decreases, in order to prevent excessive excavation by the bucket 7.
  • the operation command is corrected on the basis of the construction target information and the operation restriction information, and is output to the hydraulic device 23.
  • FIG. 4 is a diagram showing the calculation logic of the actuator operation restriction determining unit 32.
  • the actuator operation restriction determination unit 32 includes a deviation calculation unit 41, a time differentiation unit 42, a boom operation restriction determination unit 43, and an arm operation restriction determination unit 44.
  • the deviation calculator 41 receives construction target information from the construction target setting device 21, and receives work machine posture position information from the work machine posture position measuring devices 11 a to 11 c.
  • the deviation calculating unit 41 calculates a bucket toe distance Db, which is a deviation between a design surface included in the construction target information and a bucket toe position included in the work machine attitude position information, and calculates a time differentiating unit 42 and a boom operation restriction determining unit 43. And the arm operation restriction determining unit 44.
  • the ⁇ time differentiator 42 differentiates the bucket toe distance Db input from the deviation calculator 41 with respect to time, and outputs the result to the boom operation restriction determiner 43 and the arm operation restriction determiner 44 as the bucket toe speed Vb.
  • the boom operation restriction determination unit 43 receives the boom cylinder role information from the actuator role determination unit 31, the bucket toe distance Db from the deviation calculation unit 41, and the bucket toe speed Vb from the time differentiation unit 42.
  • the boom operation restriction determining unit 43 determines whether to limit the operation of the boom cylinder 5a based on the boom cylinder role information, the bucket toe distance Db, and the bucket toe speed Vb, and outputs the result to the semi-automatic control unit 33. Specifically, when the boom cylinder 5a is an excavating actuator, the boom cylinder 5a is a positioning actuator, and the bucket toe distance Db is larger than a predetermined distance threshold Dt (the bucket toe is far away from the design surface).
  • the boom cylinder 5a is a positioning actuator
  • the bucket toe distance Db is equal to or smaller than a predetermined distance threshold Dt (the bucket toe is located near or below the design surface)
  • the bucket toe speed Vb is a positive value.
  • the boom cylinder 5a is a positioning actuator and the bucket toe distance Db is equal to or less than a predetermined distance threshold Dt. (Bucket toe located near or below design surface) and bucket If previous velocity Vb is 0 following values (bucket toe moves toward the design surface) determines to limit the operation of the boom cylinder 5a.
  • the arm operation restriction determining unit 44 receives the arm role information from the actuator role determining unit 31, the bucket toe distance Db from the deviation calculating unit 41, and the bucket toe speed Vb from the time differentiating unit 42.
  • the arm operation restriction determining unit 44 determines whether to restrict the operation of the arm cylinder 6a based on the arm cylinder role information, the bucket toe distance Db, and the bucket toe speed Vb, and outputs the result to the semi-automatic control unit 33. Specifically, when the arm cylinder 6a is a digging actuator, the arm cylinder 6a is a positioning actuator, and the bucket toe distance Db is larger than a predetermined distance threshold Dt (the bucket toe is far away from the design surface).
  • the arm cylinder 6a is a positioning actuator
  • the bucket toe distance Db is equal to or less than a predetermined distance threshold Dt (the bucket toe is located near or below the design surface)
  • the bucket toe speed Vb is a positive value.
  • the arm cylinder 6a is a positioning actuator and the bucket toe distance Db is equal to or less than a predetermined distance threshold Dt. (Bucket toe located near or below design surface) and bucket claw If the speed Vb is 0 following values (bucket toe moves toward the design surface) determines to limit the operation of the arm cylinder 6a.
  • FIG. 5 is a diagram showing calculation logic relating to the operation of the boom cylinder 5a of the semi-automatic control unit 33.
  • the semi-automatic control unit 33 includes a limiting coefficient determining unit 50, a multiplying unit 51, a deviation calculating unit 52, a boom target speed determining unit 53, a limiting coefficient determining unit 54, and a multiplying unit 55. , An adder 56.
  • the restriction coefficient determination unit 50 determines a restriction coefficient based on the boom operation restriction information output from the boom operation restriction determination unit 43, and outputs the restriction coefficient to the multiplication unit 51. Specifically, 0 is output when the boom operation restriction is performed, and 1 is output when the boom operation restriction is not performed.
  • the multiplication unit 51 multiplies the boom target speed (included in the operation command) input from the operation command unit 30 by the restriction coefficient input from the restriction coefficient determination unit 50, and outputs the result to the addition unit 56.
  • the deviation calculator 52 calculates the deviation between the design plane (included in the construction target information) input from 21 and the bucket toe position (included in the work machine posture position information) input from the work machine posture position measuring devices 11a to 11c. Is calculated and output to the boom target speed determination unit 53.
  • the boom target speed determination unit 53 outputs the boom lower boom target speed to the multiplication unit 55, If the bucket claw difference distance Db is negative (the bucket toe is below the design surface), the boom target speed on the boom raising side is output to the multiplier 55.
  • the restriction coefficient determination unit 54 determines a restriction coefficient based on the boom operation restriction information input from the actuator operation restriction determination unit 32, and outputs the restriction coefficient to the multiplication unit 55. Specifically, 1 is output when the boom operation restriction is performed, and 0 is output when the boom operation restriction is not performed.
  • the multiplication unit 55 multiplies the boom target speed input from the boom target speed determination unit 53 by the restriction coefficient input from the restriction coefficient determination unit 54, and outputs the result to the addition unit 56.
  • the addition unit 56 adds the output of the multiplication unit 51 and the output of the multiplication unit 55 and outputs the result to the hydraulic device.
  • FIG. 6 is a diagram showing arithmetic logic relating to the operation of the arm cylinder 6a of the semi-automatic control unit 33.
  • the semi-automatic control unit 33 includes a limiting coefficient determining unit 60, a multiplying unit 61, a deviation calculating unit 62, an arm target speed determining unit 63, a limiting coefficient determining unit 64, a multiplying unit 65, And an adder 66.
  • the calculation logic related to the operation of the arm cylinder 6a shown in FIG. 6 is the same as the calculation logic related to the operation of the boom cylinder 5a shown in FIG.
  • FIG. 7A shows a work member (working member for excavation) in which the arm 6 is in charge of excavation, and shows an operation when the arm operation is performed and the boom operation is not performed.
  • the controller 20 drives the arm 6 according to the lever operation (without restricting the operation of the arm 6), and drives the boom 5 in the upward direction so that the bucket toe is along the design surface.
  • FIG. 7B shows the operation when the arm 6 is a work member for excavation, the arm operation is not performed, and the boom operation is performed.
  • the controller 20 drives the boom 5 in accordance with the lever operation (without restricting the operation of the boom 5), performs the boom lowering operation, and If the bucket toe distance Db is equal to or less than the predetermined distance threshold Dt (the bucket toe is close to the design surface), the boom lowering operation is restricted.
  • FIG. 7C shows the operation when the boom 5 is a work member for excavation, the arm operation is not performed, and the boom operation is performed.
  • the controller 20 drives the boom 5 in response to the lever operation (without restricting the operation of the boom 5), and moves the arm 6 in the winding direction or the pushing direction so that the bucket toe is along the design surface. Drive.
  • FIG. 7D shows the operation when the boom 5 is a work member for excavation, the arm operation is performed, and the boom operation is not performed.
  • the controller 20 drives the arm 6 to the winding side in accordance with the lever operation (without restricting the operation of the arm 6), and the arm pushing operation. Is performed and the bucket tip distance Db is equal to or smaller than a predetermined distance threshold Dt (the bucket tip is close to the design surface), the arm pushing operation is restricted.
  • a multi-joint type working machine 110 having a working tool 7 and a plurality of working members 5 and 6, a plurality of actuators 5 a, 6 a and 7 a for driving the working machine 110, and the working machine 110 are operated.
  • Devices 15L and 15R for the operation a controller 20 for controlling the operation of the work machine 110 in accordance with operation signals output from the operation devices 15L and 15R, and a construction for setting a design surface indicating a target shape to be constructed.
  • the controller 20 includes a target setting device 21 and work implement posture position measuring devices 11a to 11c for measuring the posture of the work implement 110 and the position of the work implement 7, and the controller 20 is configured based on operation signals output from the operation devices 15L and 15R.
  • the controller 20 determines a plurality of positions based on the design surface set by the construction target setting device 21 and the posture of the work machine 110 measured by the work machine posture position measuring devices 11a to 11c.
  • the actuators 5a, 6a, 7a an excavating actuator for performing the excavating operation and a positioning actuator for performing the positioning operation of the work implement 7 are determined, and the target speed of the excavating actuator is output from the operating devices 15L, 15R. Determined based on the signal, the target speed of the positioning actuator is limited in a direction in which the work implement 7 approaches the design surface.
  • the positioning actuator responsible for the positioning operation of the work implement 7 are determined, the target speed of the excavation actuator is determined based on operation signals output from the operating devices 15L and 15R, and the target speed of the positioning actuator is determined by the work implement. 7 is restricted in the direction approaching the design surface. Thereby, it is possible to assist the operation of the driver so that the work implement moves along the design surface regardless of the angle of the design surface and the posture of the work implement 110.
  • the second embodiment of the present invention will be described focusing on the differences from the first embodiment.
  • FIG. 8 is a diagram showing the calculation logic of the actuator role determination unit 31.
  • the actuator role determining unit 31 includes a design plane angle determining unit 70, a digging angle calculating unit 71, a digging angle determining unit 72, a digging state determining unit 73, and an actuator role determining unit 74.
  • the design surface angle determination unit 70 determines the magnitude of the design surface angle ⁇ d based on the design surface angle ⁇ d (included in the construction target information) input from the construction target setting device 21 and uses the result as design surface angle determination information. To the excavation state determination unit 73. Specifically, when the design plane angle ⁇ d is larger than a predetermined angle threshold ⁇ t (for example, 70 degrees) (the slope of the design plane is steep), 1 is output, and the design plane angle ⁇ d is set to the predetermined angle threshold ⁇ t. If it is below (the slope of the design surface is not steep), 0 is output.
  • a predetermined angle threshold ⁇ t for example, 70 degrees
  • the design surface angle ⁇ d (included in the construction target information) is input from the construction target setting device 21 to the excavation angle calculation unit 71, and the arm angle ⁇ a (to the working machine posture position information) is input from the work implement posture measurement devices 11a to 11c. Is included).
  • the digging angle calculation unit 71 calculates a digging angle ⁇ e, which is a deviation between the design surface angle ⁇ d and the arm angle ⁇ a, and outputs the calculated digging angle ⁇ e to the digging angle determination unit 72.
  • the excavation angle ⁇ a is an angle formed by a line connecting the rotation fulcrum of the arm 6 and the bucket toe with respect to the design surface.
  • the digging angle determination unit 72 determines the magnitude of the digging angle ⁇ e with respect to the design surface based on the digging angle ⁇ e input from the digging angle calculation unit 71, and outputs the result to the digging state determination unit 73 as digging angle determination information. . Specifically, when the excavation angle ⁇ e is smaller than 90 degrees, 0 is output, and when the excavation angle ⁇ e is 90 degrees or more, 1 is output.
  • the digging state determination unit 73 determines the digging state based on the design surface angle determination information input from the design surface angle determination unit 70 and the digging angle determination information input from the digging angle determination unit 72, and digs the result. It outputs to the actuator role determination section 74 as state determination information. Specifically, when the design surface angle determination information is 1 and the excavation angle determination information is 1, A is output, and when the design surface angle determination information is 1 and the excavation angle determination information is 0, B is output. If the design plane inclination information is 0, C is output.
  • the actuator role determination unit 74 determines the roles of the arm cylinder 6a and the boom cylinder 5a based on the excavation state determination information input from the excavation state determination unit 73, and uses the result as actuator role information to the actuator operation restriction determination unit 32. Output. Specifically, when the excavation state determination information is A, the boom cylinder 5a is determined as the excavation actuator, and the arm cylinder 6a is determined as the positioning actuator. On the other hand, when the digging state determination information is B or C, the arm cylinder 6a is determined as the digging actuator, and the boom cylinder 5a is determined as the positioning actuator.
  • FIG. 9A shows the operation when the design surface angle ⁇ d is 0 degree, the arm winding operation is performed, the boom operation is not performed, and the excavation angle ⁇ e is smaller than 90 degrees.
  • the controller 20 determines the arm cylinder 6a as a digging actuator and determines the boom cylinder 5a as a positioning actuator. Thereby, the arm 6 is driven in the winding direction in response to the lever operation (the operation of the arm cylinder 6a is not limited), and the boom 5 is automatically driven in the raising direction so that the bucket toe is along the design surface.
  • FIG. 9B shows the operation when the design surface angle ⁇ d is 0 degree, the arm winding operation is performed, the boom operation is not performed, and the excavation angle ⁇ e is larger than 90 degrees.
  • the controller 20 determines the arm cylinder 6a as a digging actuator and determines the boom cylinder 5a as a positioning actuator.
  • the arm 6 is driven in the winding direction in response to the lever operation (the operation of the arm 6 is not limited), and the boom 5 is automatically driven in the lowering direction so that the bucket tip is along the design surface.
  • FIG. 9C shows the operation when the design surface angle ⁇ d is 90 degrees, the arm wrapping operation is performed, the boom operation is not performed, and the excavation angle ⁇ e is smaller than 90 degrees.
  • the controller 20 determines the arm cylinder 6a as a digging actuator and determines the boom cylinder 5a as a positioning actuator. Accordingly, the arm 6 is driven in the winding direction in response to the lever operation (the operation of the arm 6 is not limited), and the boom 5 is automatically driven in the raising direction so that the bucket toe is along the design surface.
  • FIG. 9D shows the operation when the design surface angle ⁇ d is 90 degrees, the arm operation is not performed, the boom lowering operation is performed, and the excavation angle ⁇ e is larger than 90 degrees.
  • the controller 20 determines the boom cylinder 5a as the excavating actuator and determines the arm cylinder 6a as the positioning actuator.
  • the boom 5 is driven in the downward direction in response to the lever operation (the operation of the boom 5 is not limited), and the arm 6 is automatically driven in the winding direction so that the bucket toe follows the design surface.
  • FIG. 9E shows the operation when the design surface angle ⁇ d is 90 degrees, the arm operation is not performed, the boom lowering operation is performed, and the excavation angle ⁇ e is larger than 90 degrees.
  • the controller 20 determines the boom cylinder 5a as the excavating actuator and the arm cylinder 6a as the positioning actuator.
  • the boom 5 is driven in the downward direction in response to the lever operation (the operation of the boom 5 is not limited), and the arm 6 is automatically driven in the pushing direction so that the bucket toe follows the design surface.
  • the controller 20 determines whether the design surface angle ⁇ d, which is an angle formed by the design surface with respect to the horizontal plane, is equal to or less than a predetermined angle threshold ⁇ t set between 0 ° and 90 °, or When the excavation angle ⁇ e, which is the angle formed by the line connecting the pivot point and the toe of the bucket 7 with respect to the design surface, is smaller than 90 degrees, the arm cylinder 6a is determined as the excavation actuator, and the boom cylinder 5a is positioned. When the design surface angle ⁇ d is larger than the predetermined angle threshold ⁇ t and the excavation angle ⁇ e is 90 degrees or more, the boom cylinder 5a is determined as the excavation actuator, and the arm cylinder 6a is used for positioning. Determine the actuator.
  • the third embodiment of the present invention will be described focusing on differences from the first embodiment.
  • FIG. 10 is a functional block diagram of the controller 20 in this embodiment.
  • the controller 20 further includes a display command unit 34.
  • the display command unit 34 is provided with the work machine posture position information input from the work machine posture position measuring devices 11a to 11c, the construction target information inputted from the construction target setting device 21, and the actuator role information inputted from the actuator role determination unit 31. Based on the above, information (operation assistance information) for assisting the digging operation of the operator is generated and output to the display device 22.
  • FIG. 11 is a diagram showing an example of the operation auxiliary information displayed on the display device 22.
  • the display device 22 displays the work members to be operated by the pilot when performing the excavation operation and the operation direction thereof.
  • FIG. 11A shows a display example when the design surface angle ⁇ d is 0 degree and the excavation angle ⁇ e is smaller than 90 degrees.
  • the controller 20 determines the arm cylinder 6a as the excavating actuator, determines the boom cylinder 5a as the positioning actuator, and instructs the arm 6 to be operated in the winding direction (the direction of the arrow). .
  • FIG. 11B shows a display example when the design surface angle ⁇ d is 90 degrees and the excavation angle ⁇ e is larger than 90 degrees.
  • the controller 20 determines the boom cylinder 5a as the excavating actuator, determines the arm cylinder 6a as the positioning actuator, and instructs the boom 5 to be operated in the downward direction (the direction of the arrow).
  • FIG. 11C shows a display example when the design surface angle ⁇ d is slightly smaller than a predetermined angle threshold ⁇ t (for example, 70 degrees) and the excavation angle ⁇ e is larger than 90 degrees.
  • the controller 20 determines the arm cylinder 6a as the excavating actuator, determines the boom cylinder 5a as the positioning actuator, and instructs the arm 6 to be operated in the winding direction (the direction of the arrow). .
  • FIG. 11D shows a display example when the design surface angle ⁇ d is slightly larger than the predetermined angle threshold ⁇ t (for example, 70 degrees) and the excavation angle ⁇ e is larger than 90 degrees.
  • the controller 20 determines the boom cylinder 5a as the excavating actuator, determines the arm cylinder 6a as the positioning actuator, and instructs the boom 5 to be operated in the lowering direction (the direction of the arrow).
  • the controller 20 generates information indicating a work member driven by the excavating actuator and information indicating an operation direction of the work member among the plurality of work members 5 and 6, the design surface information and the posture information of the work machine 110.
  • the output is also output to the display device 22.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. It is also possible to add a part of the configuration of another embodiment to the configuration of a certain embodiment, delete a part of the configuration of a certain embodiment, or replace it with a part of another embodiment. It is possible.
  • Controller 21 ... Construction target setting device, 22 ... Display device, 23 ... Hydraulic device, 30 ... Operation command unit, 31 ... A Tutor role determination unit, 32: Actuator operation restriction determination unit, 33: Semi-automatic control unit, 41: Deviation calculation unit, 42: Time differentiation unit, 43: Boom operation restriction determination unit, 44: Arm operation restriction determination unit, 50: Restriction Coefficient determination unit, 51 Multiplication unit, 52 Deviation calculation unit, 53 Boom target speed determination unit, 54 Restriction coefficient determination unit, 55 Multiplication unit, 56 Addition unit, 60 Restriction coefficient determination unit, 61 Multiplication Unit, 62: deviation calculation unit, 63: arm target speed determination unit, 64: restriction coefficient determination unit, 65: multiplication unit, 66: addition unit, 70: design surface angle determination unit, 72: excavation angle determination unit, 73 ... Excavation state determination unit, 74: Actuator role determination unit, 100: hydraulic excavator (work machine), 110: front work machine (work machine), 200: hydraulic control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

施工対象の目標形状を示す設計面の角度や作業機の姿勢に関わらず、設計面に沿って作業具が移動するように操縦者の操作を補助することができる作業機械を提供する。 コントローラは、施工目標設定装置で設定された設計面と作業機姿勢位置測定装置で測定された作業機の姿勢とに基づいて、複数のアクチュエータのうち掘削動作を担う掘削用アクチュエータと前記作業具の位置決め動作を担う位置決め用アクチュエータとを決定し、前記掘削用アクチュエータの目標速度を操作装置から出力される操作信号に基づいて決定し、前記位置決め用アクチュエータの目標速度を前記作業具が前記設計面に近づく方向において制限する。

Description

作業機械
 本発明は、油圧ショベル等の作業機械に関する。
 従来の油圧ショベル等の作業機械に搭載される油圧システムとしては、エンジン等の原動機と、原動機により駆動される油圧ポンプと、油圧ポンプから吐出された圧油により駆動されるアクチュエータと、油圧ポンプからアクチュエータに供給される圧油の方向および流量を制御する方向制御弁とで構成されたものが知られている。アクチュエータの動作方向と動作速度は、操縦者が作業機械に備えられた操作レバー等の操作装置を操作することで決定される。
 施工対象の目標形状を示す設計面通りに地面を掘削する作業で操縦者の操作を補助できる半自動制御を搭載した油圧ショベル(半自動ショベル)を開示するものとして、例えば特許文献1がある。
 特許文献1には、車両本体に揺動可能に取り付けられるブームと、前記ブームに揺動可能に取り付けられるアームと、前記アームに揺動可能に取り付けられるバケットを含む作業機と、前記作業機を駆動するユーザ操作を受け付け、前記ユーザ操作に応じた操作信号を出力する操作具と、少なくとも前記アームを操作するためのアーム操作信号が前記操作信号に含まれている場合に前記作業機の作業形態は成形作業であると判定し、前記アーム操作信号が前記操作信号に含まれていない場合に前記作業形態は刃先位置合せ作業であると判定する作業形態判定部と、前記作業形態が成形作業であると判定された場合に、掘削対象の目標形状を示す設計面に沿って前記バケットを移動させ、前記作業形態が刃先位置合せ作業であると判定された場合に、前記設計面を基準とする所定位置で前記バケットを停止させる駆動制御部と、を備える作業機制御システムが記載されている。
特許第5548306号
 ところで、半自動ショベルではない油圧ショベルを用いて掘削作業を行う場合、操縦者は設計面の角度や作業機の姿勢を考慮し、バケットの爪先が設計面に沿って移動するようにアームとブームを操作する。
 例えば、設計面が水平面である場合は、アームを巻込み方向に操作して掘削を行いつつ、ブームを上げ方向に操作してバケット爪先と設計面との距離を調整する。一方、設計面が垂直面である場合は、設計面に対するアームの角度(掘削角度)に応じてアームとブームのいずれを操作して掘削を行うかが変化する。具体的には、掘削角度が90度以下のときは、アームを巻込み方向に操作して掘削を行いつつ、ブームを上げ方向に操作してバケット爪先と設計面との距離を調整し、掘削角度が90度より大きいときは、ブームを下げ方向に操作して掘削を行いつつ、アームを押出方向に操作してバケット爪先と設計面との距離を調整する。このように、操縦者がアームとブームのいずれを操作して掘削を行うかは、設計面の角度や作業機の姿勢に応じて変化する。
 しかしながら、特許文献1に記載の半自動ショベルでは、少なくともアームを操作するためのアーム操作信号が操作信号に含まれている場合に作業機の作業形態は成形作業であると判定され、アーム操作信号が操作信号に含まれていない場合に作業形態は刃先位置合せ作業であると判定されるため、操縦者が垂直な設計面を掘削しようとしてブームを下げ方向に操作しても、作業形態が成形作業であると判定されない。そのため、垂直な設計面に沿ってバケットが移動するように操縦者の操作を補助することができない。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、施工対象の目標形状を示す設計面の角度や作業機の姿勢に関わらず、設計面に沿って作業具が移動するように操縦者の操作を補助することができる作業機械を提供することにある。
 上記目的を達成するために、本発明は、作業具と複数の作業部材とを有する多関節型の作業機と、前記作業機を駆動する複数のアクチュエータと、前記作業機を操作するための操作装置と、前記操作装置から出力される操作信号に応じて前記作業機の動作を制御するコントローラと、施工対象の目標形状を示す設計面を設定するための施工目標設定装置と、前記作業機の姿勢および前記作業具の位置を測定する姿勢位置測定装置とを備え、前記コントローラは、前記操作装置から出力される操作信号に基づいて前記複数のアクチュエータの目標速度を決定し、前記施工目標設定装置で設定された設計面と前記姿勢位置測定装置で測定された前記作業具の位置とに基づいて前記目標速度を補正する作業機械において、前記コントローラは、前記施工目標設定装置で設定された前記設計面と前記姿勢位置測定装置で測定された前記作業機の姿勢とに基づいて、前記複数のアクチュエータのうち掘削動作を担う掘削用アクチュエータと前記作業具の位置決め動作を担う位置決め用アクチュエータとを決定し、前記掘削用アクチュエータの目標速度を前記操作装置から出力される操作信号に基づいて決定し、前記位置決め用アクチュエータの目標速度を前記作業具が前記設計面に近づく方向において制限するものとする。
 以上のように構成した本発明によれば、施工対象の目標形状を示す設計面と作業機の姿勢とに基づいて、複数のアクチュエータのうち掘削動作を担う掘削用アクチュエータと作業具の位置決め動作を担う位置決め用アクチュエータとが決定され、掘削用アクチュエータの目標速度が操作装置から出力される操作信号に基づいて決定され、位置決め用アクチュエータの目標速度が作業具が設計面に近づく方向において制限される。これにより、設計面の角度や作業機の姿勢に関わらず、設計面に沿って作業具が移動するように操縦者の操作を補助することが可能となる。
 本発明に係る作業機械によれば、施工対象の目標形状を示す設計面の角度や作業機の姿勢に関わらず、設計面に沿って作業具が移動するように操縦者の操作を補助することが可能となる。
本発明の第1の実施例に係る油圧ショベルの側面図である。 図1に示す油圧ショベルに搭載される油圧制御システムの概略構成図である。 図2に示すコントローラの機能ブロック図である。 図2に示すアクチュエータ動作制限判定部の演算ロジックを示す図である。 図2に示す半自動制御部のブームシリンダの動作に関わる演算ロジックを示す図である。 図2に示す半自動制御部のアームシリンダの動作に関わる演算ロジックを示す図である。 図2に示すコントローラによって実現されるフロント作業機の動作を示す図である。 本発明の第2の実施例におけるアクチュエータ役割決定部の演算ロジックを示す図である。 本発明の第2の実施例におけるコントローラによって実現されるフロント作業機の動作を示す図である。 本発明の第3の実施例におけるコントローラの機能ブロック図である。 本発明の第3の実施例における表示装置に表示される操作補助情報の一例を示す図である。
 以下、本発明の実施の形態に係る作業機械として油圧ショベルを例に挙げ、図面を参照して説明する。なお、各図中、同等の部材には同一の符号を付し、重複した説明は適宜省略する。
 図1は、本発明の第1の実施例に係る油圧ショベルの側面図である。
 図1に示すように、油圧ショベル100は、走行体1と、この走行体1上に旋回装置8を介して旋回可能に搭載された旋回体2と、この旋回体2の前側に上下方向に回動可能に連結されたフロント作業機110とを備えている。
 旋回体2は、基礎下部構造をなす旋回フレーム2aを有する。旋回フレーム2aの前側には、フロント作業機110が上下方向に回動可能に連結されている。旋回フレーム2aの後側には、フロント作業機110との重量バランスを取るためのカウンタウェイト3が取り付けられている。旋回フレーム2aの左側前部には、運転室4が設けられている。運転室4内には、フロント作業機110および旋回体2を操作するための操作装置としての左右の操作レバー装置15L,15R(図2に示す)等が配置されている。旋回フレーム2a上には、原動機としてのエンジン(図示せず)、エンジンによって駆動される1つまたは複数の油圧ポンプからなるポンプ装置9、旋回装置8を駆動する旋回モータ8a、ポンプ装置9から旋回モータ8aおよび後述するブームシリンダ5a、アームシリンダ6a、バケットシリンダ7aを含む複数の油圧アクチュエータに供給される圧油の流れを制御する複数の方向制御弁からなるコントロールバルブユニット10等が搭載されている。
 フロント作業機110は、基端部が旋回フレーム2aの右側前部に上下方向に回動可能に連結されたブーム5と、このブーム5の先端部に上下、前後方向に回動可能に連結され、ブーム5によって昇降されるアーム6と、このアーム6の先端部に上下、前後方向に回動可能に連結され、ブーム5またはアーム6によって昇降される作業具としてのバケット7と、ブーム5を駆動するブームシリンダ5aと、アーム6を駆動するアームシリンダ6aと、バケット7を駆動するバケットシリンダ7aとを備えている。ブーム5、アーム、バケット7には、角度センサ11a,11b,11cがそれぞれ取り付けられている。角度センサ11a~11cは、フロント作業機110の姿勢およびバケット7の爪先位置を測定する姿勢位置測定装置を構成している。
 図2は、油圧ショベル100に搭載される油圧制御システムの概略構成図である。
 図2に示すように、油圧制御システム200は、コントローラ20と、施工対象の目標形状を示す設計面を設定するための施工目標設定装置21と、コントローラ20から出力される情報を表示する表示装置22と、油圧ショベル100の動作をコントローラ20に指示するための左右の操作レバー装置15L,15Rと、作業機姿勢位置測定装置11a~11cと、油圧装置23とを備えている。
 左右の操作レバー装置15L,15Rは、操縦者によるレバー操作に応じた操作信号をコントローラ20に出力する。
 コントローラ20は、左右の操作レバー装置15L,15Rから入力される操作信号と、施工目標設定装置21から入力される設計面情報と、作業機姿勢位置測定装置11a~11cから入力される作業機姿勢位置情報とを基に、アクチュエータ5a,6a,7a,8aに対する動作指令を生成し、油圧装置23に出力する。
 油圧装置23は、コントローラ20からの動作指令に応じて、ブームシリンダ5a、アームシリンダ6a、バケットシリンダ7a、旋回モータ8aに圧油を供給し、ブーム5、アーム6、バケット7、旋回装置8を駆動する。
 図3は、コントローラ20の機能ブロック図である。
 図3に示すように、コントローラ20は、動作指令部30と、アクチュエータ役割決定部31と、アクチュエータ動作制限判定部32と、半自動制御部33とを有する。
 動作指令部30は、左右の操作レバー装置15L,15Rから入力される操作信号(左右のレバー操作量)を基に、アクチュエータ5a,6a,7aの目標動作速度を決定し、目標速度に相当する動作指令を半自動制御部33に出力する。
 アクチュエータ役割決定部31には、作業機姿勢位置測定装置11a~11cから作業機姿勢位置情報が入力され、施工目標設定装置21から施工目標情報が入力される。アクチュエータ役割決定部31は、作業機姿勢位置情報と施工目標情報とを基に、掘削を担当するアクチュエータ(掘削用アクチュエータ)とバケット7の位置決めを担当するアクチュエータ(位置決め用アクチュエータ)とを決定し、その結果をアクチュエータ役割情報としてアクチュエータ動作制限判定部32に出力する。
 アクチュエータ動作制限判定部32には、作業機姿勢位置測定装置11a~11cから作業機姿勢位置情報が入力され、施工目標設定装置21から施工目標情報が入力され、アクチュエータ役割決定部31からアクチュエータ役割情報が入力される。アクチュエータ動作制限判定部32は、作業機姿勢位置情報と施工目標情報とアクチュエータ役割情報とを基に、各アクチュエータの動作を制限するか否かを決定し、その結果を動作制限情報として半自動制御部33に出力する。
 半自動制御部33には、動作指令部30から動作指令が入力され、作業機姿勢位置測定装置11a~11cから作業機姿勢位置情報が入力され、施工目標設定装置21から施工目標情報が入力され、アクチュエータ動作制限判定部32から動作制限情報が入力される。半自動制御部33は、バケット7による掘り過ぎを防止するため、施工目標情報に含まれる設計面とバケット爪先位置との偏差が小さくなるほどアクチュエータの目標速度が制限されるように、作業機姿勢位置情報と施工目標情報と動作制限情報とを基に動作指令を補正し、油圧装置23に出力する。
 図4は、アクチュエータ動作制限判定部32の演算ロジックを示す図である。
 図4に示すように、アクチュエータ動作制限判定部32は、偏差演算部41と、時間微分部42と、ブーム動作制限決定部43と、アーム動作制限決定部44とを有する。
 偏差演算部41には、施工目標設定装置21から施工目標情報が入力され、作業機姿勢位置測定装置11a~11cから作業機姿勢位置情報が入力される。偏差演算部41は、施工目標情報に含まれる設計面と作業機姿勢位置情報に含まれるバケット爪先位置との偏差であるバケット爪先距離Dbを演算し、時間微分部42とブーム動作制限決定部43とアーム動作制限決定部44とに出力する。
 時間微分部42は、偏差演算部41から入力されるバケット爪先距離Dbを時間微分し、その結果をバケット爪先速度Vbとしてブーム動作制限決定部43とアーム動作制限決定部44とに出力する。
 ブーム動作制限決定部43には、アクチュエータ役割決定部31からブームシリンダ役割情報が入力され、偏差演算部41からバケット爪先距離Dbが入力され、時間微分部42からバケット爪先速度Vbが入力される。ブーム動作制限決定部43は、ブームシリンダ役割情報とバケット爪先距離Dbとバケット爪先速度Vbとを基に、ブームシリンダ5aの動作を制限するか否かを決定し、半自動制御部33に出力する。具体的には、ブームシリンダ5aが掘削用アクチュエータの場合、ブームシリンダ5aが位置決め用アクチュエータでかつバケット爪先距離Dbが所定の距離閾値Dtよりも大きい(バケット爪先が設計面から大きく離れている)場合、または、ブームシリンダ5aが位置決め用アクチュエータでかつバケット爪先距離Dbが所定の距離閾値Dt以下(バケット爪先が設計面の近くまたは下側に位置する)でかつバケット爪先速度Vbが正の値である(バケット爪先が設計面から離れる方向に移動する)場合は、ブームシリンダ5aの動作を制限しないことを決定し、ブームシリンダ5aが位置決め用アクチュエータでかつバケット爪先距離Dbが所定の距離閾値Dt以下で(バケット爪先が設計面の近くまたは下側に位置し)かつバケット爪先速度Vbが0以下の値である(バケット爪先が設計面に近づく方向に移動する)場合は、ブームシリンダ5aの動作を制限することを決定する。
 アーム動作制限決定部44には、アクチュエータ役割決定部31からアーム役割情報が入力され、偏差演算部41からバケット爪先距離Dbが入力され、時間微分部42からバケット爪先速度Vbが入力される。アーム動作制限決定部44は、アームシリンダ役割情報とバケット爪先距離Dbとバケット爪先速度Vbとを基に、アームシリンダ6aの動作を制限するか否かを決定し、半自動制御部33に出力する。具体的には、アームシリンダ6aが掘削用アクチュエータの場合、アームシリンダ6aが位置決め用アクチュエータでかつバケット爪先距離Dbが所定の距離閾値Dtよりも大きい(バケット爪先が設計面から大きく離れている)場合、または、アームシリンダ6aが位置決め用アクチュエータでかつバケット爪先距離Dbが所定の距離閾値Dt以下で(バケット爪先が設計面の近くまたは下側に位置し)かつバケット爪先速度Vbが正の値である(バケット爪先が設計面から離れる方向に移動する)場合は、アームシリンダ6aの動作を制限しないことを決定し、アームシリンダ6aが位置決め用アクチュエータでかつバケット爪先距離Dbが所定の距離閾値Dt以下で(バケット爪先が設計面の近くまたは下側に位置し)かつバケット爪先速度Vbが0以下の値である(バケット爪先が設計面に近づく方向に移動する)場合は、アームシリンダ6aの動作を制限することを決定する。
 図5は、半自動制御部33のブームシリンダ5aの動作に関する演算ロジックを示す図である。
 図5に示すように、半自動制御部33は、制限係数決定部50と、乗算部51と、偏差演算部52と、ブーム目標速度決定部53と、制限係数決定部54と、乗算部55と、加算部56を有する。
 制限係数決定部50は、ブーム動作制限決定部43から出力されるブーム動作制限情報を基に制限係数を決定し、乗算部51に出力する。具体的には、ブーム動作制限を行う場合は0を出力し、ブーム動作制限を行わない場合は1を出力する。
 乗算部51は、動作指令部30から入力されるブーム目標速度(動作指令に含まれる)と制限係数決定部50から入力される制限係数とを掛け合わせ、加算部56に出力する。
 偏差演算部52は、21から入力される設計面(施工目標情報に含まれる)と作業機姿勢位置測定装置11a~11cから入力されるバケット爪先位置(作業機姿勢位置情報に含まれる)の偏差であるバケット爪差距離Dbを演算し、ブーム目標速度決定部53に出力する。
 ブーム目標速度決定部53は、偏差演算部52から入力されるバケット爪差距離Dbが正(バケット爪先が設計面より上側)であればブーム下げ側のブーム目標速度を乗算部55に出力し、バケット爪差距離Dbが負(バケット爪先が設計面より下側)であればブーム上げ側のブーム目標速度を乗算部55に出力する。
 制限係数決定部54は、アクチュエータ動作制限判定部32から入力されるブーム動作制限情報を基に制限係数を決定し、乗算部55に出力する。具体的には、ブーム動作制限を行う場合は1を出力し、ブーム動作制限を行わない場合は0を出力する。
 乗算部55は、ブーム目標速度決定部53から入力されるブーム目標速度と制限係数決定部54から入力される制限係数とを掛け合わせ、加算部56に出力する。
 加算部56は、乗算部51の出力と乗算部55の出力とを足し合わせ、油圧装置に出力する。
 図6は、半自動制御部33のアームシリンダ6aの動作に関する演算ロジックを示す図である。
 図6に示すように、半自動制御部33は、制限係数決定部60と、乗算部61と、偏差演算部62と、アーム目標速度決定部63と、制限係数決定部64と、乗算部65、加算部66とを有する。図6に示すアームシリンダ6aの動作に関する演算ロジックは、図5に示すブームシリンダ5aの動作に関する演算ロジックと同様であるため、説明は省略する。
 以上のように構成したコントローラ20によって実現されるフロント作業機110の動作を図7を用いて説明する。
 図7(a)は、アーム6が掘削を担当する作業部材(掘削用作業部材)であり、アーム操作が行われ、かつブーム操作が行われなかった場合の動作を示している。図7(a)において、コントローラ20は、レバー操作に応じてアーム6を駆動し(アーム6の動作を制限せず)、バケット爪先が設計面に沿うようにブーム5を上げ方向に駆動する。
 図7(b)は、アーム6が掘削用作業部材であり、アーム操作が行われず、かつブーム操作が行われた場合の動作を示している。図7(b)において、コントローラ20は、ブーム上げ操作が行われた場合は、レバー操作に応じてブーム5を駆動し(ブーム5の動作を制限せず)、ブーム下げ操作が行われ、かつバケット爪先距離Dbが所定の距離閾値Dt以下である(バケット爪先が設計面に近い)場合は、ブーム下げ動作を制限する。
 図7(c)は、ブーム5が掘削用作業部材であり、アーム操作が行われず、かつブーム操作が行われた場合の動作を示している。図7(c)において、コントローラ20は、レバー操作に応じてブーム5を駆動し(ブーム5の動作を制限せず)、バケット爪先が設計面に沿うようにアーム6を巻込み方向または押出方向に駆動する。
 図7(d)は、ブーム5が掘削用作業部材であり、アーム操作が行われ、かつブーム操作が行われなかった場合の動作を示している。図7(d)において、コントローラ20は、アーム巻込み操作が行われた場合は、レバー操作に応じてアーム6を巻込み側に駆動し(アーム6の動作を制限せず)、アーム押出操作が行われ、かつバケット爪先距離Dbが所定の距離閾値Dt以下である(バケット爪先が設計面に近い)場合は、アーム押出動作を制限する。
 本実施例では、作業具7と複数の作業部材5,6とを有する多関節型の作業機110と、作業機110を駆動する複数のアクチュエータ5a,6a,7aと、作業機110を操作するための操作装置15L,15Rと、操作装置15L,15Rから出力される操作信号に応じて作業機110の動作を制御するコントローラ20と、施工対象の目標形状を示す設計面を設定するための施工目標設定装置21と、作業機110の姿勢および作業具7の位置を測定する作業機姿勢位置測定装置11a~11cとを備え、コントローラ20は、操作装置15L,15Rから出力される操作信号に基づいて複数のアクチュエータ5a,6a,7aの目標速度を決定し、施工目標設定装置21で設定された設計面と前記作業機の姿勢に基づいて前記目標速度を補正する作業機械100において、コントローラ20は、施工目標設定装置21で設定された設計面と作業機姿勢位置測定装置11a~11cで測定された作業機110の姿勢とに基づいて、複数のアクチュエータ5a,6a,7aのうち掘削動作を担う掘削用アクチュエータと作業具7の位置決め動作を担う位置決め用アクチュエータとを決定し、前記掘削用アクチュエータの目標速度を操作装置15L,15Rから出力される操作信号に基づいて決定し、前記位置決め用アクチュエータの目標速度を作業具7が前記設計面に近づく方向において制限する。
 以上のように構成した本実施例によれば、施工対象の目標形状を示す設計面と作業機110の姿勢とに基づいて、複数のアクチュエータ5a,6a,7aのうち掘削動作を担う掘削用アクチュエータと作業具7の位置決め動作を担う位置決め用アクチュエータとが決定され、掘削用アクチュエータの目標速度を操作装置15L,15Rから出力される操作信号に基づいて決定され、位置決め用アクチュエータの目標速度を作業具7が設計面に近づく方向において制限される。これにより、設計面の角度や作業機110の姿勢に関わらず、作業具が設計面に沿って移動するように操縦者の操作を補助することが可能となる。
 本発明の第2の実施例について、第1の実施例との相違点を中心に説明する。
 図8は、アクチュエータ役割決定部31の演算ロジックを示す図である。
 図8において、アクチュエータ役割決定部31は、設計面角度判定部70と、掘削角度演算部71と、掘削角度判定部72と、掘削状態判定部73と、アクチュエータ役割判定部74とを有する。
 設計面角度判定部70は、施工目標設定装置21から入力される設計面角度θd(施工目標情報に含まれる)を基に設計面角度θdの大小を判定し、その結果を設計面角度判定情報として掘削状態判定部73に出力する。具体的には、設計面角度θdが所定の角度閾値θt(例えば70度)よりも大きい(設計面の傾斜が急峻である)場合は1を出力し、設計面角度θdが所定の角度閾値θt以下である(設計面の傾斜が急峻でない)場合は0を出力する。
 掘削角度演算部71には、施工目標設定装置21から設計面角度θd(施工目標情報に含まれる)が入力され、作業機姿勢位置測定装置11a~11cからアーム角度θa(作業機姿勢位置情報に含まれる)が入力される。掘削角度演算部71は、設計面角度θdとアーム角度θaとの偏差である掘削角度θeを演算し、掘削角度判定部72に出力する。ここで、掘削角度θaは、アーム6の回動支点とバケット爪先とを結んだ線が設計面に対してなす角度である。
 掘削角度判定部72は、掘削角度演算部71から入力される掘削角度θeを基に設計面に対する掘削角度θeの大小を判定し、その結果を掘削角度判定情報として掘削状態判定部73に出力する。具体的には、掘削角度θeが90度よりも小さい場合は0を出力し、掘削角度θeが90度以上である場合は1を出力する。
 掘削状態判定部73は、設計面角度判定部70から入力される設計面角度判定情報と掘削角度判定部72から入力される掘削角度判定情報とを基に掘削状態を判定し、その結果を掘削状態判定情報としてアクチュエータ役割判定部74に出力する。具体的には、設計面角度判定情報が1でかつ掘削角度判定情報が1の場合はAを出力し、設計面角度判定情報が1でかつ掘削角度判定情報が0の場合はBを出力し、設計面傾斜情報が0の場合はCを出力する。
 アクチュエータ役割判定部74は、掘削状態判定部73から入力される掘削状態判定情報を基にアームシリンダ6aおよびブームシリンダ5aの役割を決定し、その結果をアクチュエータ役割情報としてアクチュエータ動作制限判定部32に出力する。具体的には、掘削状態判定情報がAの場合は、ブームシリンダ5aを掘削用アクチュエータに決定し、かつアームシリンダ6aを位置決め用アクチュエータに決定する。一方、掘削状態判定情報がBまたはCの場合は、アームシリンダ6aを掘削用アクチュエータに決定し、ブームシリンダ5aを位置決め用アクチュエータに決定する。
 以上のように構成したコントローラ20によって実現されるフロント作業機110の動作を図9を用いて説明する。
 図9(a)は、設計面角度θdが0度で、アーム巻込み操作が行われ、ブーム操作は行われず、かつ掘削角度θeが90度より小さい場合の動作を示している。図9(a)において、コントローラ20は、アームシリンダ6aを掘削用アクチュエータに決定し、ブームシリンダ5aを位置決め用アクチュエータに決定する。これにより、レバー操作に応じてアーム6が巻込み方向に駆動され(アームシリンダ6aの動作は制限されず)、バケット爪先が設計面に沿うように自動でブーム5が上げ方向に駆動される。
 図9(b)は、設計面角度θdが0度で、アーム巻込み操作が行われ、ブーム操作は行われず、かつ掘削角度θeが90度より大きい場合の動作を示している。図9(b)において、コントローラ20は、アームシリンダ6aを掘削用アクチュエータに決定し、ブームシリンダ5aを位置決め用アクチュエータに決定する。これにより、レバー操作に応じてアーム6が巻込み方向に駆動され(アーム6の動作は制限されず)、バケット爪先が設計面に沿うように自動でブーム5が下げ方向に駆動される。
 図9(c)は、設計面角度θdが90度で、アーム巻込み操作が行われ、ブーム操作は行われず、かつ掘削角度θeが90度より小さい場合の動作を示している。図9(c)において、コントローラ20は、アームシリンダ6aを掘削用アクチュエータに決定し、ブームシリンダ5aを位置決め用アクチュエータに決定する。これにより、レバー操作に応じてアーム6が巻込み方向に駆動され(アーム6の動作は制限されず)、バケット爪先が設計面に沿うように自動でブーム5が上げ方向に駆動される。
 図9(d)は、設計面角度θdが90度で、アーム操作は行われず、ブーム下げ操作が行われ、かつ掘削角度θeが90度より大きい場合の動作を示している。図9(d)において、コントローラ20は、ブームシリンダ5aを掘削用アクチュエータに決定し、アームシリンダ6aを位置決め用アクチュエータに決定する。これにより、レバー操作に応じてブーム5が下げ方向に駆動され(ブーム5の動作は制限されず)、バケット爪先が設計面に沿うように自動でアーム6が巻込み方向に駆動される。
 図9(e)は、設計面角度θdが90度で、アーム操作が行われず、ブーム下げ操作が行われ、かつ掘削角度θeが90度より大きい場合の動作を示している。図9(e)において、コントローラ20は、ブームシリンダ5aを掘削用アクチュエータに決定し、アームシリンダ6aを位置決め用アクチュエータに決定する。これにより、レバー操作に応じてブーム5が下げ方向に駆動され(ブーム5の動作は制限されず)、バケット爪先が設計面に沿うように自動でアーム6が押出方向に駆動される。
 本実施例におけるコントローラ20は、設計面が水平面に対してなす角度である設計面角度θdが0度から90度の間に設定された所定の角度閾値θt以下である場合、または、アーム6の回動支点とバケット7の爪先とを結んだ線が設計面に対してなす角度である掘削角度θeが90度より小さい場合に、アームシリンダ6aを掘削用アクチュエータに決定し、ブームシリンダ5aを位置決め用アクチュエータに決定し、設計面角度θdが所定の角度閾値θtよりも大きく、かつ掘削角度θeが90度以上である場合に、ブームシリンダ5aを掘削用アクチュエータに決定し、アームシリンダ6aを位置決め用アクチュエータに決定する。
 以上のように構成した本実施例によれば、ブーム5とアーム6とを有するフロント作業機110を備えた油圧ショベル100において、設計面の角度やフロント作業機110の姿勢に関わらず、操縦者の意図に沿った掘削動作を補助することが可能となる。
 本発明の第3の実施例について、第1の実施例との相違点を中心に説明する。
 図10は、本実施例におけるコントローラ20の機能ブロック図である。
 図10において、コントローラ20は、表示指令部34を更に有する。表示指令部34は、作業機姿勢位置測定装置11a~11cから入力される作業機姿勢位置情報と施工目標設定装置21から入力される施工目標情報とアクチュエータ役割決定部31から入力されるアクチュエータ役割情報とを基に、操縦者の掘削操作を補助するための情報(操作補助情報)を生成し、表示装置22に出力する。
 図11は、表示装置22に表示される操作補助情報の一例を示す図である。
 図11において、表示装置22には、掘削動作を行う際に操縦者が操作すべき作業部材とその操作方向が表示される。
 図11(a)は、設計面角度θdが0度でかつ掘削角度θeが90度より小さい場合の表示例を示している。図11(a)において、コントローラ20は、アームシリンダ6aを掘削用アクチュエータに決定し、ブームシリンダ5aを位置決め用アクチュエータに決定し、アーム6を巻込み方向(矢印方向)に操作するように指示する。
 図11(b)は、設計面角度θdが90度でかつ掘削角度θeが90度より大きい場合の表示例を示している。図11(b)において、コントローラ20は、ブームシリンダ5aを掘削用アクチュエータに決定し、アームシリンダ6aを位置決め用アクチュエータに決定し、ブーム5を下げ方向(矢印方向)に操作するように指示する。
 図11(c)は、設計面角度θdが所定の角度閾値θt(例えば70度)より僅かに小さく、かつ掘削角度θeが90度より大きい場合の表示例を示している。図11(c)において、コントローラ20は、アームシリンダ6aを掘削用アクチュエータに決定し、ブームシリンダ5aを位置決め用アクチュエータに決定し、アーム6を巻込み方向(矢印方向)に操作するように指示する。
 図11(d)は、設計面角度θdが所定の角度閾値θt(例えば70度)より僅かに大きく、かつ掘削角度θeが90度より大きい場合の表示例を示している。図11(d)において、コントローラ20は、ブームシリンダ5aを掘削用アクチュエータに決定し、アームシリンダ6aを位置決め用アクチュエータに決定し、ブーム5を下げ方向(矢印方向)に操作するように指示する。
 本実施例におけるコントローラ20は、複数の作業部材5,6のうち掘削用アクチュエータによって駆動される作業部材およびその操作方向を指示する情報を生成し、設計面の情報および作業機110の姿勢情報と合わせて表示装置22に出力する。これにより、油圧ショベル100の操縦者は、掘削作業を行う際に複数の作業部材5,6のうちいずれの作業部材を操作すべきかを容易に把握することができる。
 以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。
 1…走行体、2…旋回体、3…カウンタウェイト、4…運転室、5…ブーム(作業部材)、5a…ブームシリンダ(アクチュエータ)、6…アーム(作業部材)、6a…アームシリンダ(アクチュエータ)、7…バケット(作業具)、7a…バケットシリンダ(アクチュエータ)、8…旋回装置、8a…旋回モータ(アクチュエータ)、9…ポンプ装置、10…コントロールバルブユニット、11a…角度センサ(作業機姿勢位置測定装置)、11b…角度センサ(作業機姿勢位置測定装置)、11c…角度センサ(作業機姿勢位置測定装置)、15L…操作レバー装置(操作装置)、15R…操作レバー装置(操作装置)、20…コントローラ、21…施工目標設定装置、22…表示装置、23…油圧装置、30…動作指令部、31…アクチュエータ役割決定部、32…アクチュエータ動作制限判定部、33…半自動制御部、41…偏差演算部、42…時間微分部、43…ブーム動作制限決定部、44…アーム動作制限決定部、50…制限係数決定部、51…乗算部、52…偏差演算部、53…ブーム目標速度決定部、54…制限係数決定部、55…乗算部、56…加算部、60…制限係数決定部、61…乗算部、62…偏差演算部、63…アーム目標速度決定部、64…制限係数決定部、65…乗算部、66…加算部、70…設計面角度判定部、72…掘削角度判定部、73…掘削状態判定部、74…アクチュエータ役割判定部、100…油圧ショベル(作業機械)、110…フロント作業機(作業機)、200…油圧制御システム。

Claims (3)

  1.  作業具と複数の作業部材とを有する多関節型の作業機と、
     前記作業機を駆動する複数のアクチュエータと、
     前記作業機を操作するための操作装置と、
     前記操作装置から出力される操作信号に応じて前記作業機の動作を制御するコントローラと、
     施工対象の目標形状を示す設計面を設定するための施工目標設定装置と、
     前記作業機の姿勢および前記作業具の位置を測定する作業機姿勢位置測定装置とを備え、
     前記コントローラは、前記操作装置から出力される操作信号に基づいて前記複数のアクチュエータの目標速度を決定し、前記施工目標設定装置で設定された設計面と前記作業機姿勢位置測定装置で測定された前記作業具の位置とに基づいて前記目標速度を補正する作業機械において、
     前記コントローラは、
     前記施工目標設定装置で設定された前記設計面と前記作業機姿勢位置測定装置で測定された前記作業機の姿勢とに基づいて、前記複数のアクチュエータのうち掘削動作を担う掘削用アクチュエータと前記作業具の位置決め動作を担う位置決め用アクチュエータとを決定し、
     前記掘削用アクチュエータの目標速度を前記操作装置から出力される操作信号に基づいて決定し、
     前記位置決め用アクチュエータの目標速度を前記作業具が前記設計面に近づく方向において制限する
     ことを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     前記作業具はバケットであり、
     前記複数の作業部材はブームとアームとを含み、
     前記複数のアクチュエータは、前記ブームを駆動するブームシリンダと前記アームを駆動するアームシリンダとを含み、
     前記コントローラは、
     前記設計面が水平面に対してなす角度である設計面角度が0度から90度の間に設定された所定の角度閾値以下である場合、または、前記アームの回動支点と前記バケットの爪先とを結んだ線が前記設計面に対してなす角度である掘削角度が90度より小さい場合に、前記アームシリンダを前記掘削用アクチュエータに決定し、前記ブームシリンダを前記位置決め用アクチュエータに決定し、
     前記設計面角度が前記所定の角度閾値よりも大きく、かつ前記掘削角度が90度以上である場合に、前記ブームシリンダを前記掘削用アクチュエータに決定し、前記アームシリンダを前記位置決め用アクチュエータに決定する
     ことを特徴とする作業機械。
  3.  請求項1に記載の作業機械において、
     表示装置を更に備え、
     前記コントローラは、前記複数の作業部材のうち前記掘削用アクチュエータによって駆動される作業部材およびその操作方向を指示する情報を生成し、前記設計面の情報および前記作業機の姿勢情報と合わせて前記表示装置に出力する
     ことを特徴とする作業機械。
PCT/JP2019/023406 2018-09-13 2019-06-13 作業機械 WO2020054160A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/981,516 US11840822B2 (en) 2018-09-13 2019-06-13 Work machine
KR1020207024445A KR102378264B1 (ko) 2018-09-13 2019-06-13 작업 기계
EP19859305.5A EP3851589A4 (en) 2018-09-13 2019-06-13 WORK MACHINERY
CN201980015844.4A CN111868333B (zh) 2018-09-13 2019-06-13 作业机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171931A JP7141899B2 (ja) 2018-09-13 2018-09-13 作業機械
JP2018-171931 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020054160A1 true WO2020054160A1 (ja) 2020-03-19

Family

ID=69777092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023406 WO2020054160A1 (ja) 2018-09-13 2019-06-13 作業機械

Country Status (6)

Country Link
US (1) US11840822B2 (ja)
EP (1) EP3851589A4 (ja)
JP (1) JP7141899B2 (ja)
KR (1) KR102378264B1 (ja)
CN (1) CN111868333B (ja)
WO (1) WO2020054160A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189624A1 (ja) * 2018-03-30 2019-10-03 住友建機株式会社 ショベル
JP7227046B2 (ja) * 2019-03-22 2023-02-21 日立建機株式会社 作業機械
KR20220121612A (ko) * 2021-02-25 2022-09-01 현대두산인프라코어(주) 머신 가이던스 프로그램 및 이를 이용하는 굴삭기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548306B2 (ja) 1977-03-15 1980-12-05
JPH11350537A (ja) * 1998-06-08 1999-12-21 Hitachi Constr Mach Co Ltd 油圧作業機械の制御装置
WO2014167718A1 (ja) * 2013-04-12 2014-10-16 株式会社小松製作所 建設機械の制御システム及び制御方法
WO2015137528A1 (ja) * 2014-06-02 2015-09-17 株式会社小松製作所 建設機械の制御システム、及び建設機械の制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0173835B1 (ko) * 1994-06-01 1999-02-18 오까다 하지모 건설기계의 영역제한 굴삭제어장치
JP3794771B2 (ja) * 1996-10-17 2006-07-12 株式会社小松製作所 油圧ショベルの作業機制御装置
JPH10219727A (ja) * 1997-01-31 1998-08-18 Komatsu Ltd 建設機械の作業機制御装置
KR100353566B1 (ko) * 1997-02-13 2003-01-06 히다치 겡키 가부시키 가이샤 유압셔블의경사면굴삭제어장치,목표경사면설정장치및경사면굴삭형성방법
CN103354855B (zh) * 2011-03-24 2016-08-10 株式会社小松制作所 挖掘控制***及建筑机械
KR101542470B1 (ko) 2011-03-24 2015-08-06 가부시키가이샤 고마쓰 세이사쿠쇼 작업기 제어 시스템, 건설 기계 및 작업기 제어 방법
CN104471152B (zh) * 2013-07-12 2017-03-08 株式会社小松制作所 作业车辆以及作业车辆的控制方法
JP5952244B2 (ja) * 2013-09-12 2016-07-13 日立建機株式会社 掘削領域制限制御の基礎情報の演算装置及び建設機械
JP2018135679A (ja) * 2017-02-21 2018-08-30 株式会社小松製作所 作業車両および作業車両の制御方法
EP3767041B1 (en) * 2018-03-15 2024-02-07 Hitachi Construction Machinery Co., Ltd. Work machine
EP3770332B1 (en) * 2018-03-22 2024-01-03 Hitachi Construction Machinery Co., Ltd. Working machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548306B2 (ja) 1977-03-15 1980-12-05
JPH11350537A (ja) * 1998-06-08 1999-12-21 Hitachi Constr Mach Co Ltd 油圧作業機械の制御装置
WO2014167718A1 (ja) * 2013-04-12 2014-10-16 株式会社小松製作所 建設機械の制御システム及び制御方法
WO2015137528A1 (ja) * 2014-06-02 2015-09-17 株式会社小松製作所 建設機械の制御システム、及び建設機械の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851589A4

Also Published As

Publication number Publication date
KR102378264B1 (ko) 2022-03-25
CN111868333A (zh) 2020-10-30
EP3851589A4 (en) 2022-06-15
US20210010226A1 (en) 2021-01-14
JP2020041385A (ja) 2020-03-19
EP3851589A1 (en) 2021-07-21
CN111868333B (zh) 2022-02-25
US11840822B2 (en) 2023-12-12
KR20200110432A (ko) 2020-09-23
JP7141899B2 (ja) 2022-09-26

Similar Documents

Publication Publication Date Title
US10443214B2 (en) Control system for work vehicle, control method, and work vehicle
JP3091667B2 (ja) 建設機械の領域制限掘削制御装置
JP2020122389A (ja) ショベル及びショベル用のシステム
WO2020054160A1 (ja) 作業機械
WO2015025986A1 (ja) 作業車両
WO2015025987A1 (ja) 作業車両
US11313107B2 (en) Work machine
JP6807290B2 (ja) 作業機械
WO2020049821A1 (ja) 作業機械
JP6581136B2 (ja) 作業機械
EP3690148A1 (en) Work machine
JP7326066B2 (ja) ショベル
WO2022163168A1 (ja) 作業機械
US11970840B2 (en) Work machine
JP2000355957A (ja) 油圧ショベルの領域制限掘削制御装置
WO2022230417A1 (ja) 作業機械
WO2023149104A1 (ja) 作業機械および作業機械の制御方法
WO2019012700A1 (ja) 作業機械および作業機械の制御方法
WO2024070262A1 (ja) 作業機械
WO2022071584A1 (ja) 作業機械
JP2614625B2 (ja) 掘削作業機
WO2020044777A1 (ja) 建設機械
JP2023151687A (ja) ショベル
JPH1088610A (ja) 電子制御式作業車の制御方法
JPH01178619A (ja) 掘削作業機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207024445

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859305

Country of ref document: EP

Effective date: 20210413