WO2020010689A1 - 一种核-壳结构纳米沉淀碳酸钙的制备方法 - Google Patents

一种核-壳结构纳米沉淀碳酸钙的制备方法 Download PDF

Info

Publication number
WO2020010689A1
WO2020010689A1 PCT/CN2018/104622 CN2018104622W WO2020010689A1 WO 2020010689 A1 WO2020010689 A1 WO 2020010689A1 CN 2018104622 W CN2018104622 W CN 2018104622W WO 2020010689 A1 WO2020010689 A1 WO 2020010689A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
core
nano
precipitated calcium
lime slurry
Prior art date
Application number
PCT/CN2018/104622
Other languages
English (en)
French (fr)
Inventor
朱勇
莫英桂
梁明
刘松豪
Original Assignee
广西华纳新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西华纳新材料科技有限公司 filed Critical 广西华纳新材料科技有限公司
Priority to EP18926055.7A priority Critical patent/EP3738926B1/en
Publication of WO2020010689A1 publication Critical patent/WO2020010689A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • C09C1/022Treatment with inorganic compounds
    • C09C1/024Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Definitions

  • the present invention requires a Chinese patent application submitted by Guangxi Warner New Materials Technology Co., Ltd. to the Chinese Patent Office on July 12, 2018, with an application number of 201810765893.7 and an invention name of "a method for preparing nano-precipitated calcium carbonate with a core-shell structure"
  • the priority of this application is incorporated herein by reference in its entirety.
  • the invention belongs to the technical field of inorganic materials, relates to precipitated calcium carbonate, and more specifically, relates to a method for preparing core-shell nanometer precipitated calcium carbonate using limestone as a raw material.
  • Calcium carbonate is an important non-metallic inorganic mineral.
  • Calcium carbonate raw ore generally refers to ores with high calcium carbonate content such as limestone, calcite and marble.
  • Industrial calcium carbonate is a powder product with different morphologies and different particle sizes produced by physical or chemical methods using limestone, calcite and marble as raw materials.
  • the product prepared by the precipitation crystallization method is called precipitated calcium carbonate, and the average particle diameter of less than 100 nm is called nano-precipitated calcium carbonate. Due to the advantages of low cost, high whiteness, and controllable grain morphology and size, nano-precipitated calcium carbonate is widely used for filling polymer composites such as sealants, coatings, and plastics.
  • nano-precipitated calcium carbonate is generally produced by carbonation, and the raw material is limestone.
  • the quality of limestone directly affects the whiteness of the product.
  • Low-grade limestone has high levels of impurities such as iron, manganese, and hydrochloric acid insolubles, which seriously affects the hue of nano-precipitated calcium carbonate products.
  • impurities such as iron, manganese, and hydrochloric acid insolubles
  • limestone mineral deposits there are not many high-quality limestones, and most of them are of low grade and high impurity content.
  • impurities such as iron and manganese in the form of ions or oxides in the limestone finally enter the product, affecting the whiteness of the calcium carbonate, and then the hue of the filled products. Therefore, many low-grade limestone ore with high impurity content are discarded or sold as construction materials, causing waste of resources.
  • lime sorting refers to the classification and screening of lime obtained after calcination of low-grade limestone, and the selection of high-quality lime for production.
  • Chemical whitening is the oxidation of non-ferrous metal ions and water-insoluble oxides by adding strong oxidants such as sodium hypochlorite, hydrogen peroxide, sodium dithionite, calcium sulfite, and sodium thiosulfate in the production process of calcium carbonate.
  • Low-value compounds that are soluble in water can be removed by filtration and dehydration to achieve the purpose of whitening. Strong oxidants are added during lime digestion, carbonation, or after carbonation. In addition, chemical whitening can also use complexes to remove or mask colored ions.
  • the methods commonly used in production to improve the whiteness of precipitated calcium carbonate are mainly lime screening, bleaching lime slurry or precipitated calcium carbonate products and physical removal of impurities.
  • the above methods are used for the whitening of calcium carbonate.
  • the method for screening lime obtained by calcining limestone is difficult to quantify and determine the quality of lime, and it is difficult to implement automatic screening. Therefore, the production has low operability or requires high labor costs.
  • Chemical whitening method because different bleaching agents are suitable for different pH ranges, if the bleaching is performed by adjusting the pH value of calcium carbonate to keep it under strong acidic conditions, the basic properties of calcium carbonate will be changed.
  • the essence of chemical whitening the finished product of low-whiteness nanometer-precipitated calcium carbonate is to bleach the surface calcium carbonate, which has a significant effect.
  • coating the surface of the low-whiteness nano-precipitated calcium carbonate with a layer of high-whiteness may also improve the whiteness.
  • the product is a nano-precipitated calcium carbonate with a core-shell structure.
  • Core-shell structure nanomaterials can give nanomaterials many new properties that core / shell single-component materials do not possess because of their unique structural properties.
  • the core-shell structure is composed of a core particle (core) and a cladding layer. The core-shell is connected by physical or chemical interactions.
  • the core-shell part can be composed of a variety of materials, including polymers, inorganics, and metals.
  • core-shell structural materials are mainly divided into organic / inorganic, inorganic / organic, and inorganic / inorganic types.
  • the core-shell precipitated calcium carbonate is mostly inorganic / organic, which is obtained by coating calcium carbonate with an organic polymer.
  • the precipitated calcium carbonate with inorganic / organic core-shell structure refers to the precipitation of calcium carbonate after surface treatment, and the surface is coated with an organic substance, so as to improve the dispersibility of precipitated calcium carbonate and the processing and application performance of the product.
  • Organic / inorganic core-shell structure calcium carbonate refers to composite particles obtained by coating a core of organic matter with a layer of precipitated calcium carbonate. At present, the inorganic / inorganic core-shell structure calcium carbonate is mostly coated with precipitated calcium carbonate with silica or titanium dioxide. In addition, there are other techniques for coating and depositing calcium carbonate with inorganic materials.
  • the object of the present invention is to provide a method for preparing nano-precipitated calcium carbonate with core-shell structure.
  • the nano-calcium carbonate with low whiteness is used as a core, and a high-whiteness shell precipitated calcium carbonate is coated on the surface of the core to improve The whiteness of precipitated calcium carbonate is obtained from low-grade ore as raw material.
  • the present invention provides a method for preparing a core-shell structure nano-precipitated calcium carbonate, which includes the following steps:
  • Nuclear material Calcined low-grade limestone to obtain quicklime, digest and remove slag to obtain the first lime slurry, adjust the solid content of the first lime slurry, and leave it to stand by.
  • Nuclear-nano-precipitated calcium carbonate carbonation take the first lime slurry into a carbonation tower for carbonation reaction to obtain a nuclear-nano-precipitated calcium carbonate suspension;
  • Shell material Calcining high-grade limestone to obtain quicklime, digesting and removing slag to obtain a second lime slurry, and adjusting the solid content of the second lime slurry;
  • the coating of the shell layer, the core-nano-precipitated calcium carbonate suspension prepared in step (1) and 10-30 wt.% Second lime slurry are mixed, and the core-shell is prepared by using a carbonation method or an aging method.
  • step (3) After treatment, the core-shell structured nano-precipitated calcium carbonate suspension obtained in step (2) is subjected to surface treatment, dehydrated, dried and pulverized to obtain a core-shell-structured nano-precipitated calcium carbonate.
  • the solid contents of the first lime slurry and the second lime slurry are both 10-20%.
  • the carbonation of the core-nano-precipitated calcium carbonate in step (1) is: taking the first lime slurry into the carbonation tower, starting the carbonation tower to stir, and controlling the initial carbonation temperature to 18-25 ° C Carbon dioxide is introduced at a flow rate of 50-100 L / min for carbonization, in which the concentration of carbon dioxide is 20-50 vol%, the ventilation is stopped when the conductivity reaches 0.1-0.3 mS / cm, and the carbonation reaction is terminated to obtain nuclear-nano-precipitated carbonic acid Calcium suspension.
  • the core-shell structure nano-precipitated calcium carbonate suspension prepared by the carbonation method in step (2) is: stirring the core-nano-precipitated calcium carbonate suspension in the carbonation tower, and the stirring rate is 800 -1200r / min, and pass in a carbon dioxide mixed gas at a flow rate of 20-40L / min, wherein the carbon dioxide concentration is 20-50vol%; at the same time, 10-30wt.% Second lime is slowly added to the nuclear-nanoprecipitation calcium carbonate suspension Slurry, the conductivity of the process control system is 1.0-2.0mS / cm, after the addition is completed, the ventilation is stopped when the conductivity of the system drops to 0.1-0.3mS / cm, the carbonation reaction is terminated, and a core-shell nanometer precipitated calcium carbonate suspension is obtained liquid.
  • the carbon dioxide mixed gas is a mixed gas of carbon dioxide and air.
  • the aging method used in step (2) to prepare the core-shell structure nano-precipitated calcium carbonate suspension is: adding 10-30 wt.% Of the second The lime slurry is further added with sodium carbonate or sodium bicarbonate, and the mixture is stirred uniformly, and the system temperature is maintained at 40-80 ° C. for 12-24 h, and a core-shell structure nano-precipitated calcium carbonate suspension can be obtained, wherein the second lime slurry
  • the molar ratio with the sodium carbonate or sodium bicarbonate is 1: 1-5.
  • the present invention has the following beneficial effects:
  • low-grade ore high content of impurities such as iron and manganese
  • high-grade ore low content of iron, manganese and other impurities
  • the shell material is used as the shell material. It is also calcined, digested and carbonated, and the core surface is coated with a high-whiteness shell to precipitate calcium carbonate.
  • the low-grade ore is used as the raw material. To obtain the whiteness of precipitated calcium carbonate, while reducing production costs.
  • the preparation method of the present invention controls the "core” and “shell” formation in steps, and the formation of the "shell” is not affected by the "core”.
  • the mass content of the shell is 10-30%
  • the "shell” controls a certain thickness to ensure that the shell layer is evenly covered, and at the same time, the shape of the precipitated calcium carbonate is controllable.
  • the conventional carbonation product of nano-precipitated calcium carbonate has a cuboid appearance
  • controlling the shell coating process in the present invention can also ensure that the core-shell structure nano-precipitated calcium carbonate has a cuboid appearance.
  • FIG. 1 is an SEM photograph of a core-shell structured nano-precipitated calcium carbonate prepared according to a method for preparing a core-shell-structured nano-precipitated calcium carbonate according to Example 1 of the present invention.
  • a method for preparing core-shell structured nano-precipitated calcium carbonate includes the following steps:
  • the quicklime obtained by calcining the limestone A is digested and slag-removed to obtain lime slurry A.
  • the solid content of the lime slurry A is adjusted to 15% and left to stand. Take 20 kg of lime slurry A with a solid content of 15% and send it to the carbonation tower, start the carbonation tower and stir, control the initial carbonation temperature to 20 ° C, and pass a mixture of carbon dioxide and air at a flow rate of 50 L / min for carbonization, of which carbon dioxide When the concentration was 40 vol%, the aeration was stopped when the reaction was conducted to a conductivity of 0.2 mS / cm, and the carbonation reaction was terminated to obtain a nuclear-nano-precipitated calcium carbonate suspension.
  • the limestone B is calcined to obtain quicklime, digested and slag removed, the solid content of the lime slurry B is adjusted to 15%, and it is left to stand for use.
  • the conductivity of the process control system is 1.0mS / cm after the addition, after the addition, the ventilation is stopped when the conductivity of the system drops to 0.3mS / cm, the carbonation reaction is terminated, and a core-shell nano-precipitated calcium carbonate suspension is obtained.
  • FIG. 1 a SEM photograph of the core-shell structure nano-precipitated calcium carbonate prepared in this example is shown.
  • a method for preparing core-shell structured nano-precipitated calcium carbonate includes the following steps:
  • the quicklime obtained by calcining limestone A is digested and slag-removed to obtain lime slurry A.
  • the solid content of lime slurry A is adjusted to 20% and left to stand. Take 20 kg of lime slurry A with a solid content of 20% and send it to the carbonation tower, start the carbonation tower and stir, control the initial carbonation temperature to 18 ° C, and pass carbon dioxide and air mixed gas at a flow rate of 100 L / min for carbonization, in which carbon dioxide When the concentration is 50 vol%, aeration is stopped when the electrical conductivity is 0.1 mS / cm, and the carbonation reaction is terminated to obtain a nuclear-nanoprecipitated calcium carbonate suspension.
  • Limestone B is calcined to obtain quicklime, digested and slag-removed to obtain lime slurry B.
  • the solid content of lime slurry B is adjusted to 20%, and left to stand.
  • 15 wt.% Lime slurry B was added, and sodium bicarbonate was further added, and the mixture was stirred uniformly, and the system temperature was maintained at 75 ° C for 20 hours, and the core-shell nano-precipitated carbonic acid was obtained Calcium suspension.
  • a core-shell structure nano-precipitated calcium carbonate is obtained, wherein the molar ratio of the lime slurry B to the sodium bicarbonate is 1: 1.
  • a method for preparing core-shell structured nano-precipitated calcium carbonate includes the following steps:
  • the quicklime obtained by calcining limestone A is digested and slag-removed to obtain lime slurry A.
  • the solid content of lime slurry A is adjusted to 10% and left to stand. Take 20 kg of lime slurry A with a solid content of 10% and send it to the carbonation tower, start the carbonation tower and stir, control the initial carbonation temperature to 25 ° C, and pass carbon dioxide and air mixed gas at a flow rate of 100 L / min for carbonization, in which carbon dioxide When the concentration is 20 vol%, ventilation is stopped when the conductivity reaches 0.3 mS / cm, and the carbonation reaction is terminated to obtain a nuclear-nano-precipitated calcium carbonate suspension.
  • the limestone B is calcined to obtain quicklime, digested and slag-removed to obtain lime slurry B.
  • the solid content of the lime slurry B is adjusted to 10%, and it is left to stand for use.
  • % Lime slurry B the conductivity of the process control system was added to 2.0mS / cm.
  • the quicklime obtained by calcining limestone A is digested and slag-removed to obtain lime slurry A.
  • Lime slurry A is adjusted to a solid content of 12% and left to stand. Take 20kg of lime slurry A with a solid content of 12% and send it to the carbonation tower, start the carbonation tower and stir, control the initial carbonation temperature to 23 ° C, and pass carbon dioxide and air mixed gas at a flow rate of 70L / min for carbonization, of which carbon dioxide When the concentration is 20 vol%, ventilation is stopped when the conductivity reaches 0.2 mS / cm, and the carbonation reaction is terminated to obtain a nano-precipitated calcium carbonate suspension.
  • the nano-precipitated calcium carbonate is obtained by surface treatment, dehydration, drying and pulverization.
  • a method for preparing core-shell structured nano-precipitated calcium carbonate includes the following steps:
  • the carbon dioxide concentration was 33 vol%.
  • the conductivity of the process control system is 1.0 mS / cm
  • the ventilation is stopped when the conductivity of the system drops to 0.3 mS / cm after the addition
  • the carbonation reaction is terminated, and nano-precipitated calcium carbonate with core-shell structure is obtained
  • the surface of the suspension is dehydrated, dried and pulverized to obtain nano-precipitated calcium carbonate with core-shell structure.
  • a method for preparing core-shell structured nano-precipitated calcium carbonate includes the following steps:
  • the carbon dioxide concentration was 50 vol%.
  • the limestone A is calcined to obtain quicklime, digested and slag-removed to obtain lime slurry A 2 , and the solid content of the lime slurry A 2 is adjusted to 20%, and left to stand for use.
  • the solid content of the obtained core-nano-precipitated calcium carbonate suspension 15 wt.% Lime slurry A 2 was added, and sodium bicarbonate was further added, and the mixture was stirred uniformly, and the system temperature was maintained at 60 ° C. for 20 hours to obtain a core-shell structure nano-precipitation.
  • the surface of the calcium carbonate suspension is subjected to surface treatment, dehydration, drying and pulverization to obtain nano-precipitated calcium carbonate with core-shell structure, wherein the molar ratio of the lime slurry A 2 to the sodium bicarbonate is 1: 2.
  • the concentration of carbon dioxide is 25 vol%.
  • ventilation is stopped and the carbonation reaction is terminated to obtain a nano-precipitated calcium carbonate suspension. After surface treatment, dehydration, drying and pulverization, nano-precipitated calcium carbonate is obtained.
  • a method for preparing core-shell structured nano-precipitated calcium carbonate includes the following steps:
  • the carbon dioxide concentration was 33 vol%.
  • the conductivity of the process control system is 1.0 mS / cm after the addition, the ventilation is stopped when the conductivity of the system drops to 0.1 mS / cm, the carbonation reaction is terminated, and a core-shell nano-precipitated calcium carbonate suspension is obtained. After the surface treatment, dehydration, drying and pulverization, nano-precipitated calcium carbonate with core-shell structure is obtained.
  • the quicklime obtained by calcining limestone A is digested and slag-removed to obtain lime slurry A.
  • the solid content of lime slurry A is adjusted to 12% and left to stand. Take 20 kg of lime slurry A with a solid content of 12% and send it to the carbonation tower, start the carbonation tower and stir, control the initial carbonation temperature to 20 ° C, and pass carbon dioxide and air mixed gas at a flow rate of 70 L / min for carbonization, in which carbon dioxide When the concentration is 30 vol%, ventilation is stopped when the conductivity reaches 0.1 mS / cm, and the carbonation reaction is terminated to obtain a nano-precipitated calcium carbonate suspension.
  • the quicklime obtained by calcining limestone B is digested and slag-removed to obtain lime slurry B.
  • the solid content of lime slurry B is adjusted to 12%, and it is left to stand for use.
  • the concentration is 30 vol%
  • ventilation is stopped when the conductivity reaches 0.2 mS / cm, and the carbonation reaction is terminated to obtain a nano-precipitated calcium carbonate suspension.
  • the mass ratio of nano-precipitated calcium carbonate suspension obtained by carbonizing the raw pulp of limestone B and the nano-precipitated calcium carbonate suspension obtained by carbonizing the raw pulp of limestone A is 1: 3, and after mixing, the surface treatment and dehydration are performed, and the mixture is dried. Crushing to obtain nano-precipitated calcium carbonate powder.
  • the core-shell nanometer calcium carbonate prepared by the method of the present invention has a significant effect on improving hue in soft PVC applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种核-壳结构纳米沉淀碳酸钙的制备方法,包括以下步骤:(1)核-纳米沉淀碳酸钙的制备:煅烧低品位石灰石得到生石灰,消化去渣,调节第一石灰浆的固含量;取第一石灰浆送入碳酸化塔进行碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液;(2)壳层的包覆:煅烧高品位石灰石得到生石灰,消化去渣,调节第二石灰浆固含量;壳层的包覆,将核-纳米沉淀碳酸钙悬浮液和10-30wt.%的第二石灰浆混合,采用碳酸化的方法或陈化的方法制备得到核-壳结构纳米沉淀碳酸钙悬浮液;经后处理得核-壳结构纳米沉淀碳酸钙。制备方法控制好壳层包覆工艺,也可确保核-壳结构纳米沉淀碳酸钙呈类立方形貌。

Description

一种核-壳结构纳米沉淀碳酸钙的制备方法
本发明要求广西华纳新材料科技有限公司于2018年7月12日向中国专利局提交的、申请号为201810765893.7、发明名称为“一种核-壳结构纳米沉淀碳酸钙的制备方法”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明属于无机材料技术领域,涉及沉淀碳酸钙,更准确地说,涉及以石灰石为原料的核-壳结构纳米沉淀碳酸钙的制备方法。
背景技术
碳酸钙是重要的非金属无机矿物。碳酸钙原矿泛指石灰石、方解石和大理石等碳酸钙含量高的矿石。工业碳酸钙是以石灰石、方解石和大理石等矿石为原料,经过物理或化学方法制得的不同形貌、不同粒度的粉体产品。通过沉淀结晶方法制取的产品称为沉淀碳酸钙,其中平均粒径小于100nm的称为纳米沉淀碳酸钙。因成本低,白度高,晶粒形貌和大小可控等优点,纳米沉淀碳酸钙被广泛应用于密封胶、涂料及塑料等聚合物复合材料填充。不同领域应用对纳米沉淀碳酸钙的化学成分、形态特征、表面改性及白度(或亮度)等有不同的要求,如白/浅色密封胶和塑料制品等对填充纳米沉淀碳酸钙的白度要求极高。白度是评判纳米沉淀碳酸钙产品质量的重要指标。
目前,纳米沉淀碳酸钙普遍采用碳酸化法生产,原料是石灰石。一般情况下,石灰石品质直接影响产品白度。低品位石灰石中铁、锰及盐酸不溶物等杂质含量高,严重影响纳米沉淀碳酸钙产品色相。在石灰石矿藏中,优质石灰石并不多,绝大部分石灰石品位低,杂质含量高。在沉淀碳酸钙生产过程中,在石灰石中大多数以离子或氧化物形式存在的铁锰等杂质最后进入产品中,影响碳酸钙白度,进而影响填充制品的色相。因此,很多杂质含量较高的低品位石灰石矿被丢弃或作为建筑材料贱卖,造成资源浪费。
为了充分利用石灰石资源,实现对低品位石灰石高价值化利用,不少学者研究如何利用杂质含量高的低品位石灰石矿石制备优质纳米碳酸钙,提高产品白度,改善其应用效果。目前普遍采用的方法包括石灰分选和化学增白。石灰分选是指对低品位石灰石煅烧后得到的石灰进行分级筛选,分选出优质石灰用于生产。化学增白是通过在碳酸钙生产过程中加 入强氧化剂,如次氯酸钠、过氧化氢、连二亚硫酸钠、亚硫酸钙、硫代硫酸钠等,将有色金属离子及其不溶于水的氧化物氧化成可溶于水的低价态化合物,经过滤脱水除去,达到增白的目的。强氧化剂在石灰消化、碳酸化过程中或碳酸化后加入。此外,化学增白还可采用络合物除去或掩蔽有色离子。
生产中常用于提高沉淀碳酸钙白度的方法主要是石灰筛选、漂白石灰浆或沉淀碳酸钙产品及物理除杂。以上方法用于对碳酸钙的增白均存在较大的局限性。对石灰石经煅烧后得到的石灰进行筛选的方法,由于石灰质量不易量化判断,难以实行自动化筛分,因此生产中可操作性低或需花费较高的人力成本。化学增白的方法,由于不同漂白剂适用的pH范围不同,若需通过调节碳酸钙pH值使其保持在较强酸性条件下进行还原反应进行漂白,碳酸钙的基本性质会被改变。
对低白度纳米沉淀碳酸钙成品化学增白的实质是对表层碳酸钙进行漂白,效果显著。同理,在低白度纳米沉淀碳酸钙表面包覆一层高白度作用物,也可能起到提高白度的作用,产品即为具有核-壳结构的纳米沉淀碳酸钙。核壳结构纳米材料因其独特的结构特性可赋予纳米材料许多核/壳单组分材料不具有的新特性。核壳结构是由中心粒子(核)和包覆层组成,核壳之间通过物理或者化学作用连接而成,核壳部分可由多种材料组成,包括高分子、无机物和金属等。根据核壳成分的不同,核壳结构材料主要分为有机/无机型、无机/有机型和无机/无机型。目前核壳结构的沉淀碳酸钙多为无机/有机型,通过有机聚合物包裹碳酸钙得到。简单说,无机/有机型核壳结构的沉淀碳酸钙多指沉淀碳酸钙经表面处理后,表面包覆一层有机物,从而达到提高沉淀碳酸钙分散性及制品加工和应用性能的作用。有机/无机型核壳结构碳酸钙是指在有机物的核上包覆上一层沉淀碳酸钙得到的复合粒子。目前无机/无机型核壳结构碳酸钙多以二氧化硅或二氧化钛对沉淀碳酸钙进行包覆。此外,也有其它无机材料包覆沉淀碳酸钙的技术。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种核-壳结构纳米沉淀碳酸钙的制备方法,以白度较低的纳米碳酸钙为核,在核表面包覆一层高白度壳层沉淀碳酸钙,以提高低品位矿石为原料制得沉淀碳酸钙的白度。
为实现上述目的,本发明提供了一种核-壳结构纳米沉淀碳酸钙的制备方法,包括以 下步骤:
(1)核-纳米沉淀碳酸钙的制备
核材原料:煅烧低品位石灰石得到生石灰,消化去渣,得到第一石灰浆,调节第一石灰浆的固含量,静置备用。
核-纳米沉淀碳酸钙碳酸化:取第一石灰浆送入碳酸化塔进行碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液;
(2)壳层的包覆
壳材原料:煅烧高品位石灰石得到生石灰,消化去渣,得到第二石灰浆,调节第二石灰浆的固含量;
壳层的包覆,将步骤(1)制得的核-纳米沉淀碳酸钙悬浮液和10-30wt.%的第二石灰浆混合,采用碳酸化的方法或陈化的方法制备得到核-壳结构纳米沉淀碳酸钙悬浮液;
(3)后处理,将步骤(2)得到的核-壳结构纳米沉淀碳酸钙悬浮液经表面处理,脱水,烘干和粉碎后即得核-壳结构纳米沉淀碳酸钙。
优选地,上述技术方案中,所述第一石灰浆和所述第二石灰浆的固含量均为10-20%。
优选地,上述技术方案中,步骤(1)中核-纳米沉淀碳酸钙碳酸化为:取第一石灰浆送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为18-25℃,以50-100L/min流量通入二氧化碳混合气体进行碳化,其中二氧化碳浓度为20-50vol%,反应至电导率0.1-0.3mS/cm时停止通气,终止碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液。
优选地,上述技术方案中,步骤(2)中采用碳酸化的方法制备核-壳结构纳米沉淀碳酸钙悬浮液为:搅拌碳酸化塔内的核-纳米沉淀碳酸钙悬浮液,搅拌速率为800-1200r/min,并以20-40L/min流量通入二氧化碳混合气体,其中二氧化碳浓度为20-50vol%;同时往核-纳米沉淀碳酸钙悬浮液里缓慢添加10-30wt.%的第二石灰浆,添加过程控制体系电导率为1.0-2.0mS/cm,添加完毕后待体系电导率下降至0.1-0.3mS/cm时停止通气,终止碳酸化反应,得到核-壳结构纳米沉淀碳酸钙悬浮液。
优选地,上述技术方案中,所述二氧化碳混合气体为二氧化碳和空气的混合气体。
优选地,上述技术方案中,步骤(2)中采用陈化的方法制备核-壳结构纳米沉淀碳酸钙悬浮液为:往核-纳米沉淀碳酸钙悬浮液中添加10-30wt.%的第二石灰浆,进一步加入碳酸钠或碳酸氢钠,搅拌均匀,保持体系温度为40-80℃陈化12-24h,可得核-壳结构纳米沉淀碳酸钙悬浮液,其中,所述第二石灰浆与所述碳酸钠或碳酸氢钠的摩尔比为1:1-5。
与现有技术相比,本发明具有如下有益效果:
(1)本发明核-壳结构纳米沉淀碳酸钙的制备方法,以低品位矿石(铁、锰等杂质含量高)经煅烧、消化及碳酸化得白度较低的纳米碳酸钙为核。采用高品位矿石(铁、锰等杂质含量低)为壳层原材料,同样经煅烧、消化及碳酸化,在核表面包覆一层高白度壳层沉淀碳酸钙,提高低品位矿石为原料制得沉淀碳酸钙的白度,同时降低生产成本。
(2)本发明的制备方法控制“核”和“壳”分步形成,“壳”的形成不受“核”的影响,在壳层包覆过程中,壳的质量含量为10-30%,“壳”控制一定厚度,确保壳层均匀包覆,同时沉淀碳酸钙形貌可控。其中,纳米沉淀碳酸钙的常规碳酸化产物呈类立方形貌,本发明中控制好壳层包覆工艺也可确保核-壳结构纳米沉淀碳酸钙呈类立方形貌。
附图说明
图1是根据本发明实施例1核-壳结构纳米沉淀碳酸钙的制备方法制备得到的核-壳结构纳米沉淀碳酸钙的SEM照片。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
本发明实施例使用的石灰石矿石成分由原子吸收光谱仪测试,见表1。
表1
矿石名称 CaCO3/wt.% MgCO3/wt.% Fe2O3/wt.% MnO2/wt.% 判定
石灰石A 95.37 3.5845 0.0957 0.0079 低品位矿石
石灰石B 99.46 0.4921 0.0062 0.0033 高品位矿石
实施例1
一种核-壳结构纳米沉淀碳酸钙的制备方法,包括以下步骤:
(1)核-纳米沉淀碳酸钙的制备
将煅烧石灰石A得到的生石灰,消化去渣,得到石灰浆A,调节石灰浆A固含量至15%,静置备用。取20kg固含量为15%的石灰浆A送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为20℃,以50L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为40vol%,反应至电导率0.2mS/cm时停止通气,终止碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液。
(2)壳层的包覆
煅烧石灰石B得到生石灰,消化去渣,调节石灰浆B固含量至15%,静置备用。重新开启碳酸化塔搅拌,搅拌速率为800r/min,并以40L/min流量通入二氧化碳与空气混合气体,其中二氧化碳浓度为50vol%;同时往核-纳米沉淀碳酸钙悬浮液里缓慢添加10wt.%的石灰浆B,添加过程控制体系电导率为1.0mS/cm,添加完毕后待体系电导率下降至0.3mS/cm时停止通气,终止碳酸化反应,得到核-壳结构纳米沉淀碳酸钙悬浮液。经表面处理,脱水,烘干和粉碎即得核-壳结构纳米沉淀碳酸钙。如图1所示,为本实施例制备得到核-壳结构纳米沉淀碳酸钙的SEM照片。
实施例2
一种核-壳结构纳米沉淀碳酸钙的制备方法,包括以下步骤:
(1)核-纳米沉淀碳酸钙的制备
将煅烧石灰石A得到的生石灰,消化去渣,得到石灰浆A,调节石灰浆A的固含量至20%,静置备用。取20kg固含量为20%的石灰浆A送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为18℃,以100L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为50vol%,反应至电导率0.1mS/cm时停止通气,终止碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液。
(2)壳层的包覆
煅烧石灰石B得到生石灰,消化去渣,得到石灰浆B,调节石灰浆B的固含量至20%,静置备用。按所得核-纳米沉淀碳酸钙悬浮液固含量,添加15wt.%的石灰浆B,进一步加入碳酸氢钠,搅拌均匀,保持体系温度为75℃陈化20h,可得核-壳结构纳米沉淀碳酸钙悬浮液。经表面处理,脱水,烘干和粉碎即得核-壳结构纳米沉淀碳酸钙,其中所述石灰浆B与所述碳酸氢钠的摩尔比为1:1。
实施例3
一种核-壳结构纳米沉淀碳酸钙的制备方法,包括以下步骤:
(1)核-纳米沉淀碳酸钙的制备
将煅烧石灰石A得到的生石灰,消化去渣,得到石灰浆A,调节石灰浆A的固含量至10%,静置备用。取20kg固含量为10%的石灰浆A送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为25℃,以100L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为20vol%,反应至电导率0.3mS/cm时停止通气,终止碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液。
(2)壳层的包覆
煅烧石灰石B得到生石灰,消化去渣,得到石灰浆B,调节石灰浆B的固含量至10%,静置备用。重新开启碳酸化塔搅拌,搅拌速率为1200r/min,并以40L/min流量通入二氧化碳与空气混合气体,其中二氧化碳浓度为25vol%;同时往核-纳米沉淀碳酸钙悬浮液里缓慢添加30wt.%石灰浆B,添加过程控制体系电导率为2.0mS/cm,添加完毕后待体系电导率下降至0.2mS/cm时停止通气,终止碳酸化反应,得到核-壳结构纳米沉淀碳酸钙悬浮液,经表面处理,脱水,烘干和粉碎即得核-壳结构纳米沉淀碳酸钙。
对比例1
将煅烧石灰石A得到的生石灰,消化去渣,得到石灰浆A,调节石灰浆A至固含量 12%,静置备用。取20kg固含量为12%的石灰浆A送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为23℃,以70L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为20vol%,反应至电导率0.2mS/cm时停止通气,终止碳酸化反应,得到纳米沉淀碳酸钙悬浮液,经表面处理,脱水,烘干和粉碎即得纳米沉淀碳酸钙。
对比例2
一种核-壳结构纳米沉淀碳酸钙的制备方法,包括以下步骤:
(1)核-纳米沉淀碳酸钙的制备
将煅烧石灰石A得到的生石灰,消化去渣,得到石灰浆A 1,调节石灰浆A 1的固含量至15%,静置备用。取20kg固含量为15%的石灰浆A 1送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为21℃,以50L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为33vol%,反应至电导率0.2mS/cm时停止通气,终止碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液。
(2)壳层的包覆
将煅烧石灰石A得到的生石灰,消化去渣,得到石灰浆A 2,调节石灰浆A 2的固含量至15%,静置备用。重新开启碳酸化塔搅拌,搅拌速率为800r/min,并以20L/min流量通入二氧化碳与空气混合气体,其中二氧化碳浓度为50vol%;同时往核-纳米沉淀碳酸钙悬浮液里缓慢添加10wt.%的石灰浆A 2,添加过程控制体系电导率为1.0mS/cm,添加完毕后待体系电导率下降至0.3mS/cm时停止通气,终止碳酸化反应,得到核-壳结构纳米沉淀碳酸钙悬浮液,经表面处理,脱水,烘干和粉碎即得核-壳结构纳米沉淀碳酸钙。
对比例3
一种核-壳结构纳米沉淀碳酸钙的制备方法,包括以下步骤:
(1)核-纳米沉淀碳酸钙的制备
将煅烧石灰石A得到的生石灰,消化去渣,得到石灰浆A 1,调节石灰浆A 1的固含量至20%,静置备用。取20kg固含量为20%的石灰浆A 1送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为18℃,以100L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为50vol%,反应至电导率0.2mS/cm时停止通气,终止碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液。
(2)壳层的包覆
煅烧石灰石A得到生石灰,消化去渣,得到石灰浆A 2,调节石灰浆A 2的固含量至20%,静置备用。按所得核-纳米沉淀碳酸钙悬浮液固含量,添加15wt.%的石灰浆A 2,进一步加入碳酸氢钠,搅拌均匀,保持体系温度为60℃陈化20h,可得核-壳结构纳米沉淀碳酸钙悬浮液,经表面处理,脱水,烘干和粉碎即得核-壳结构纳米沉淀碳酸钙,其中所述石灰浆A 2与所述碳酸氢钠的摩尔比为1:2。
对比例4
将煅烧石灰石B得到的生石灰,消化去渣,得到石灰浆B 1,调节石灰浆B 1的固含量至12%,静置备用。取20kg固含量为12%的石灰浆B 1送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为23℃,以75L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为25vol%,反应至电导率0.3mS/cm时停止通气,终止碳酸化反应,得到纳米沉淀碳酸钙悬浮液,经表面处理,脱水,烘干和粉碎即得纳米沉淀碳酸钙。
对比例5
一种核-壳结构纳米沉淀碳酸钙的制备方法,包括以下步骤:
(1)核-纳米沉淀碳酸钙的制备
将煅烧石灰石B得到的生石灰,消化去渣,得到石灰浆B 1,调节石灰浆B 1的固含量至10%,静置备用。取20kg固含量为10%的石灰浆B 1送入碳酸化塔,开启碳酸化塔搅拌, 控制起始碳酸化温度为23℃,以60L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为33vol%,反应至电导率0.3mS/cm时停止通气,终止碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液。
(2)壳层的包覆
煅烧石灰石B得到生石灰,消化去渣,得到石灰浆B 2,调节石灰浆B 2的固含量至10%,静置备用。重新开启碳酸化塔搅拌,搅拌速率为1000r/min,并以20L/min流量通入二氧化碳与空气混合气体,其中二氧化碳浓度为50vol%;同时往核-纳米沉淀碳酸钙悬浮液里缓慢添加15wt.%石灰浆B 2,添加过程控制体系电导率为1.0mS/cm,添加完毕后待体系电导率下降至0.1mS/cm时停止通气,终止碳酸化反应,得到核-壳结构纳米沉淀碳酸钙悬浮液,经表面处理,脱水,烘干和粉碎即得核-壳结构纳米沉淀碳酸钙。
对比例6
将煅烧石灰石A得到的生石灰,消化去渣,得到石灰浆A,调节石灰浆A的固含量至12%,静置备用。取20kg固含量为12%的石灰浆A送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为20℃,以70L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为30vol%,反应至电导率0.1mS/cm时停止通气,终止碳酸化反应,得到纳米沉淀碳酸钙悬浮液。
将煅烧石灰石B得到的生石灰,消化去渣,得到石灰浆B,调节石灰浆B的固含量至12%,静置备用。取20kg固含量为12%的石灰浆B送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为20℃,以75L/min流量通入二氧化碳与空气混合气体进行碳化,其中二氧化碳浓度为30vol%,反应至电导率0.2mS/cm时停止通气,终止碳酸化反应,得到纳米沉淀碳酸钙悬浮液。
按石灰石B的生浆碳化所得纳米沉淀碳酸钙悬浮液与石灰石A的生浆碳化所得纳米沉淀碳酸钙悬浮液质量比1:3混合两者,搅拌均匀后,经表面处理及脱水后,烘干粉碎即得纳米沉淀碳酸钙粉。
对不同实施例和对比例制备得到的碳酸钙表征和应用结果进行对比,对比结果如表2所示。
表2不同实施例和对比例制备得到的碳酸钙表征和应用结果对比
Figure PCTCN2018104622-appb-000001
如表2所示,通过本发明方法制备得到的核-壳结构纳米碳酸钙在软质PVC应用里改善色相效果显著。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (6)

  1. 一种核-壳结构纳米沉淀碳酸钙的制备方法,其特征在于,包括以下步骤:
    (1)核-纳米沉淀碳酸钙的制备
    核材原料:煅烧低品位石灰石得到生石灰,消化去渣,得到第一石灰浆,调节第一石灰浆的固含量;
    核-纳米沉淀碳酸钙碳酸化:取第一石灰浆送入碳酸化塔进行碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液;
    (2)壳层的包覆
    壳材原料:煅烧高品位石灰石得到生石灰,消化去渣,得到第二石灰浆,调节第二石灰浆的固含量;
    壳层的包覆,将步骤(1)制得的核-纳米沉淀碳酸钙悬浮液和10-30wt.%的第二石灰浆混合,采用碳酸化的方法或陈化的方法制备得到核-壳结构纳米沉淀碳酸钙悬浮液;
    (3)后处理,将步骤(2)得到的核-壳结构纳米沉淀碳酸钙悬浮液经表面处理,脱水,烘干和粉碎后即得核-壳结构纳米沉淀碳酸钙。
  2. 根据权利要求1所述的核-壳结构纳米沉淀碳酸钙的制备方法,其特征在于,所述第一石灰浆和所述第二石灰浆的固含量均为10-20%。
  3. 根据权利要求1所述的核-壳结构纳米沉淀碳酸钙的制备方法,其特征在于,步骤(1)中核-纳米沉淀碳酸钙碳酸化为:取第一石灰浆送入碳酸化塔,开启碳酸化塔搅拌,控制起始碳酸化温度为18-25℃,以50-100L/min流量通入二氧化碳混合气体进行碳化,其中二氧化碳浓度为20-50vol%,反应至电导率0.1-0.3mS/cm时停止通气,终止碳酸化反应,得到核-纳米沉淀碳酸钙悬浮液。
  4. 根据权利要求1所述的核-壳结构纳米沉淀碳酸钙的制备方法,其特征在于,步骤(2)中采用碳酸化的方法制备核-壳结构纳米沉淀碳酸钙悬浮液为:搅拌碳酸化 塔内的核-纳米沉淀碳酸钙悬浮液,搅拌速率为800-1200r/min,并以20-40L/min流量通入二氧化碳混合气体,其中二氧化碳浓度为20-50vol%;同时往核-纳米沉淀碳酸钙悬浮液里缓慢添加10-30wt.%的第二石灰浆,添加过程控制体系电导率为1.0-2.0mS/cm,添加完毕后待体系电导率下降至0.1-0.3mS/cm时停止通气,终止碳酸化反应,得到核-壳结构纳米沉淀碳酸钙悬浮液。
  5. 根据权利要求3或4所述的核-壳结构纳米沉淀碳酸钙的制备方法,其特征在于,所述二氧化碳混合气体为二氧化碳和空气的混合气体。
  6. 根据权利要求1所述的核-壳结构纳米沉淀碳酸钙的制备方法,其特征在于,步骤(2)中采用陈化的方法制备核-壳结构纳米沉淀碳酸钙悬浮液为:往核-纳米沉淀碳酸钙悬浮液中添加10-30wt.%的第二石灰浆,进一步加入碳酸钠或碳酸氢钠,搅拌均匀,保持体系温度为40-80℃陈化12-24h,得到核-壳结构纳米沉淀碳酸钙悬浮液,其中,所述第二石灰浆与所述碳酸钠或碳酸氢钠的摩尔比为1:1-5。
PCT/CN2018/104622 2018-07-12 2018-09-07 一种核-壳结构纳米沉淀碳酸钙的制备方法 WO2020010689A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18926055.7A EP3738926B1 (en) 2018-07-12 2018-09-07 Preparation method for nanoprecipitated calcium carbonate having core-shell structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810765893.7A CN109251557B (zh) 2018-07-12 2018-07-12 一种核-壳结构纳米沉淀碳酸钙的制备方法
CN201810765893.7 2018-07-12

Publications (1)

Publication Number Publication Date
WO2020010689A1 true WO2020010689A1 (zh) 2020-01-16

Family

ID=65049057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104622 WO2020010689A1 (zh) 2018-07-12 2018-09-07 一种核-壳结构纳米沉淀碳酸钙的制备方法

Country Status (3)

Country Link
EP (1) EP3738926B1 (zh)
CN (1) CN109251557B (zh)
WO (1) WO2020010689A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291835A (zh) * 2021-12-31 2022-04-08 广西华纳新材料科技有限公司 一种大小立方分散沉淀碳酸钙的制备方法
CN114804178A (zh) * 2022-05-19 2022-07-29 广西民泰纳米科技有限公司 一种聚酯族降解塑料专用纳米碳酸钙的制备方法
CN115557524A (zh) * 2022-09-23 2023-01-03 广西华纳新材料股份有限公司 一种高白度高分散性纳米碳酸钙及其制备方法
CN115785529A (zh) * 2022-12-08 2023-03-14 广西平果市润丰钙新材料科技有限公司 一种高亮度低比重亮光胶专用纳米碳酸钙的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422894B (zh) * 2019-12-23 2022-10-11 广西大学 一种碳酸钙包覆碳酸钙粉体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839064A (en) * 1972-09-21 1974-10-01 Champion Int Corp Inorganic pigment-loaded polymeric microcapsular system
CN1377921A (zh) * 2002-04-05 2002-11-06 中山大学 纳米CaCO3/SiO2核-壳结构粒子的制备方法
CN1445311A (zh) * 2002-03-20 2003-10-01 新加坡纳米材料科技有限公司 CaCO3/SiO2·nH2O纳米复合颗粒和空心SiO2·nH2O纳米材料及其制备方法
CN1944541A (zh) * 2006-10-23 2007-04-11 上海东升新材料有限公司 核-壳结构TiO2/CaCO3复合白色颜料的制备方法
CN102020878A (zh) * 2009-09-15 2011-04-20 上海华明高技术(集团)有限公司 一种超细碳酸钙复合粒子的制备方法
CN108101094A (zh) * 2018-01-28 2018-06-01 宁波普莱斯帝金属制品有限公司 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE267851T1 (de) * 1996-03-04 2004-06-15 Fp Pigments Oy Mit gefalltem calciumcarbonat beschichtete pigmentteilchen und verfahren zu deren herstellung
JP4375842B2 (ja) * 1999-07-12 2009-12-02 北海道石灰化工株式会社 炭酸カルシウムの製造方法、及び石灰石からの沈降製炭酸カルシウムの白化方法
CN1208399C (zh) * 2001-02-27 2005-06-29 清华大学 一种重质碳酸钙表面包覆纳米碳酸钙的方法
KR100544427B1 (ko) * 2001-03-13 2006-01-24 주식회사 포스코 제강 조재제용 생석회의 제조방법
CN1257106C (zh) * 2001-10-31 2006-05-24 科学和工业研究会 由富含碳酸钙的工业副产品生产沉淀碳酸钙的方法
WO2005061386A1 (en) * 2003-12-16 2005-07-07 Imerys Pigments, Inc. Method and system for growing larger precipitated calcium carbonate crystals
CN101318684A (zh) * 2008-06-28 2008-12-10 福建省万旗非金属材料有限公司 利用低品位石灰石湿法活化制备超细活性纳米碳酸钙的方法
CN101318685A (zh) * 2008-06-28 2008-12-10 福建省万旗非金属材料有限公司 利用低品位石灰石活化罐活化制备超细活性纳米碳酸钙的方法
CN101560335B (zh) * 2009-05-25 2012-11-07 长兴清华粉体及新材料工程中心有限公司 一种制备纳米包覆复合碳酸钙的方法
CN101570342B (zh) * 2009-06-11 2011-08-24 福建省万旗非金属材料有限公司 一种利用低品位石灰石湿法制备硅酮密封胶专用高白度纳米碳酸钙的方法
PT2524898E (pt) * 2011-05-16 2015-11-03 Omya Int Ag Método para a produção de carbonato de cálcio precipitado a partir de refugos de fábricas de pasta de papel
CN102504617A (zh) * 2011-09-30 2012-06-20 广东轻工职业技术学院 一种高岭土复合材料及其制备方法
MX370793B (es) * 2011-10-13 2020-01-08 2262554 Ontario Inc Método y aparato para la preparación de partículas de hidróxido de calcio revestidas con carbonato de calcio.
CN102659159A (zh) * 2012-02-22 2012-09-12 常州碳酸钙有限公司 微米颗粒体复合纳米碳酸钙的制备方法
CN102583483B (zh) * 2012-02-22 2013-11-06 常州碳酸钙有限公司 微米纺锤体复合纳米碳酸钙的制备方法
CN103131210A (zh) * 2013-02-06 2013-06-05 浙江工业大学 一种复合碳酸钙的制备方法
KR101499139B1 (ko) * 2014-07-18 2015-03-06 주식회사 나노텍세라믹스 탄산염의 연속 제조방법
CN107446384A (zh) * 2017-08-10 2017-12-08 青阳县永诚钙业有限责任公司 一种复合碳酸钙的制备方法
CN107697940B (zh) * 2017-10-27 2019-04-02 山西新泰恒信纳米材料有限公司 一种纳米复合超细重质碳酸钙的制备方法
CN108069452B (zh) * 2017-12-19 2019-12-06 安徽省宣城市华纳新材料科技有限公司 一种链状方解石型碳酸钙的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839064A (en) * 1972-09-21 1974-10-01 Champion Int Corp Inorganic pigment-loaded polymeric microcapsular system
CN1445311A (zh) * 2002-03-20 2003-10-01 新加坡纳米材料科技有限公司 CaCO3/SiO2·nH2O纳米复合颗粒和空心SiO2·nH2O纳米材料及其制备方法
CN1377921A (zh) * 2002-04-05 2002-11-06 中山大学 纳米CaCO3/SiO2核-壳结构粒子的制备方法
CN1944541A (zh) * 2006-10-23 2007-04-11 上海东升新材料有限公司 核-壳结构TiO2/CaCO3复合白色颜料的制备方法
CN102020878A (zh) * 2009-09-15 2011-04-20 上海华明高技术(集团)有限公司 一种超细碳酸钙复合粒子的制备方法
CN108101094A (zh) * 2018-01-28 2018-06-01 宁波普莱斯帝金属制品有限公司 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3738926A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291835A (zh) * 2021-12-31 2022-04-08 广西华纳新材料科技有限公司 一种大小立方分散沉淀碳酸钙的制备方法
CN114291835B (zh) * 2021-12-31 2023-08-29 广西华纳新材料科技有限公司 一种大小立方分散沉淀碳酸钙的制备方法
CN114804178A (zh) * 2022-05-19 2022-07-29 广西民泰纳米科技有限公司 一种聚酯族降解塑料专用纳米碳酸钙的制备方法
CN114804178B (zh) * 2022-05-19 2023-12-01 广西民泰纳米科技有限公司 一种聚酯族降解塑料专用纳米碳酸钙的制备方法
CN115557524A (zh) * 2022-09-23 2023-01-03 广西华纳新材料股份有限公司 一种高白度高分散性纳米碳酸钙及其制备方法
CN115785529A (zh) * 2022-12-08 2023-03-14 广西平果市润丰钙新材料科技有限公司 一种高亮度低比重亮光胶专用纳米碳酸钙的制备方法
CN115785529B (zh) * 2022-12-08 2024-01-02 广西平果市润丰钙新材料科技有限公司 一种高亮度低比重亮光胶专用纳米碳酸钙的制备方法

Also Published As

Publication number Publication date
CN109251557A (zh) 2019-01-22
CN109251557B (zh) 2021-04-02
EP3738926A1 (en) 2020-11-18
EP3738926B1 (en) 2023-07-19
EP3738926A4 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
WO2020010689A1 (zh) 一种核-壳结构纳米沉淀碳酸钙的制备方法
CN106430272B (zh) 一种棒状文石型碳酸钙的制备方法
CN109650430B (zh) 一种高镁含量石灰石制备纳米碳酸钙的方法
CN111268712A (zh) 一种使用晶型控制剂调控制备纳米碳酸钙的方法
CN109809457B (zh) 规整球形碳酸钙及其制备工艺
CN112723402B (zh) 一种单分散纺锤形沉淀碳酸钙的制备方法
KR20100007871A (ko) Pcc 제조 방법
CN110372024A (zh) 一种塑料用亚微米级米粒形碳酸钙的制备方法
WO2010078821A1 (zh) 近球形硫酸法硫酸钡的制备方法及在铜箔基板中的应用
CN109809458B (zh) 橄榄球形碳酸钙及其制备工艺
CN111777089A (zh) 一种高纯球霰石型碳酸钙微球的制备方法
CN103693667A (zh) 一种棒状轻质碳酸钙及其制备方法
CN108069452B (zh) 一种链状方解石型碳酸钙的制备方法
CN109796632A (zh) 一种核壳结构高白沉淀碳酸钙的制备方法
CN109437273A (zh) 一种单分散立方形沉淀碳酸钙的制备方法
CN112079381A (zh) 一种生产粉末涂料的专用金红石型钛白粉的方法
CN113353962A (zh) 一种常温高浓度制备活性纳米碳酸钙的方法
JP4375842B2 (ja) 炭酸カルシウムの製造方法、及び石灰石からの沈降製炭酸カルシウムの白化方法
CN114291835B (zh) 一种大小立方分散沉淀碳酸钙的制备方法
CN109467112B (zh) 一种文石型晶种及文石型轻质碳酸钙及其制备方法
CN109824076B (zh) 气泡膜法制备碳酸钙工艺及其应用
CN107445188B (zh) 一种棒状沉淀碳酸钙的制备方法
KR102621557B1 (ko) 응집체 탄산칼슘 제조방법
CN110963520A (zh) 一种石灰沫生产立方形碳酸钙的方法
CN116040687A (zh) 硫酸法钛白废酸的综合利用方法和硫酸法钛白生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018926055

Country of ref document: EP

Effective date: 20200810

NENP Non-entry into the national phase

Ref country code: DE