WO2019210738A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019210738A1
WO2019210738A1 PCT/CN2019/077287 CN2019077287W WO2019210738A1 WO 2019210738 A1 WO2019210738 A1 WO 2019210738A1 CN 2019077287 W CN2019077287 W CN 2019077287W WO 2019210738 A1 WO2019210738 A1 WO 2019210738A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
focal length
effective focal
Prior art date
Application number
PCT/CN2019/077287
Other languages
English (en)
French (fr)
Inventor
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019210738A1 publication Critical patent/WO2019210738A1/zh
Priority to US16/854,372 priority Critical patent/US11573402B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an optical imaging lens, in particular an optical imaging lens composed of six lenses.
  • the invention proposes an optical lens which has an ultra-large optical image surface and can be used for a 1/2.3 inch chip and has an ultra-large aperture.
  • the present application provides an optical imaging lens.
  • An aspect of the present application provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power; a second lens having a negative power, the object side being a convex surface, and the image side being a concave surface; a third lens having a power; a fourth lens having a power; a fifth lens having a positive power, the image side being a convex surface; and a sixth lens having a negative power, the object side being a concave surface
  • the image side is concave; wherein the effective focal length f of the optical imaging lens, the effective focal length f3 of the third lens, and the effective focal length f4 of the fourth lens satisfy
  • a half ImgH of the diagonal length of the effective pixel area on the imaging plane and an on-axis distance TTL of the first lens object side to the imaging surface satisfy 0.75 ⁇ ImgH / TTL ⁇ 0.9.
  • an effective focal length f of the optical imaging lens, an effective focal length f2 of the second lens, and an effective focal length f6 of the sixth lens satisfy 2.0 ⁇
  • 0.5 ⁇ f1/f5 ⁇ 1.2 is satisfied between the effective focal length f1 of the first lens and the effective focal length f5 of the fifth lens.
  • 0 ⁇ f/R5 ⁇ 0.5 is satisfied between the effective focal length f of the optical imaging lens and the radius of curvature R5 of the side surface of the third lens.
  • the effective focal length f of the optical imaging lens and the radius of curvature R10 of the side surface of the fifth lens image satisfy -2.5 ⁇ f / R10 ⁇ - 1.5.
  • the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image satisfy 0.5 ⁇ R7 / R8 ⁇ 2.0.
  • the air gap T34 on the optical axis between the third lens and the fourth lens satisfies T34/(CT3+CT4) between the center thickness CT3 of the third lens and the center thickness CT4 of the fourth lens. ) ⁇ 0.3.
  • f/EPD ⁇ 2.0 is satisfied between the effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens.
  • half of the maximum angle of view of the optical imaging lens, HFOV, the effective focal length f5 of the fifth lens, and the center thickness CT5 of the fifth lens satisfy 4.5 ⁇ f5 * tan (HFOV) / CT5 ⁇ 8.0 .
  • the side surface of the first lens object is a convex surface, and the image side surface is a concave surface; the side surface of the fourth lens object is a convex surface, and the image side surface is a concave surface.
  • An aspect of the present application provides an optical imaging lens including, in order from the object side to the image side, a first lens having a positive power, a convex side of the object side, a concave side of the image side, and a second color having a negative power a lens having a convex side, a side surface being a concave surface, a third lens having a power; a fourth lens having a power, a convex side of the object side, a concave side of the image side, and a fifth lens having a positive power a sixth lens having a negative power; a sixth lens having a negative refractive power, the object side being a concave surface, and the image side being a concave surface; wherein, the maximum angle of view of the optical imaging lens is half of the HFOV, and the effective focal length f5 of the fifth lens is The center thickness CT5 of the fifth lens satisfies 4.5 ⁇ f5 * tan (HFOV) / CT5 ⁇
  • An aspect of the present application provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power; a second lens having a negative power, the object side being a convex surface, and the image side being a concave surface; a third lens having a power; a fourth lens having a power; a fifth lens having a positive power, the image side being a convex surface; and a sixth lens having a negative power, the object side being a concave surface
  • the image side is a concave surface; wherein, the air space T45 on the optical axis between the fourth lens and the fifth lens, the air space T56 on the optical axis between the fifth lens and the sixth lens, and the center thickness of the fifth lens 1.3 ⁇ (T45+T56)/CT5 ⁇ 2.5 is satisfied between CT5.
  • An aspect of the present application provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power; a second lens having a negative power, the object side being a convex surface, and the image side being a concave surface; a third lens having a power; a fourth lens having a power; a fifth lens having a positive power, the image side being a convex surface; and a sixth lens having a negative power, the object side being a concave surface
  • the image side is concave; wherein the effective focal length f of the optical imaging lens and the radius of curvature R5 of the side surface of the third lens satisfy 0 ⁇ f/R5 ⁇ 0.5.
  • the optical imaging lens according to the present application has an ultra-large optical image surface, can be used for a 1/2.3 inch chip, and has an oversized aperture.
  • FIG. 1 is a schematic structural view of an optical imaging lens of Embodiment 1;
  • FIG. 6 is a schematic structural view of an optical imaging lens of Embodiment 2;
  • FIG. 11 is a schematic structural view of an optical imaging lens of Embodiment 3.
  • FIG. 16 is a schematic structural view of an optical imaging lens of Embodiment 4.
  • 17 to 20 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 21 is a schematic structural view of an optical imaging lens of Embodiment 5.
  • Figure 26 is a view showing the configuration of an optical imaging lens of Embodiment 6;
  • 27 to 30 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • Figure 31 is a view showing the configuration of an optical imaging lens of Embodiment 7;
  • FIG. 36 is a schematic structural view of an optical imaging lens of Embodiment 8.
  • Figure 46 is a view showing the configuration of an optical imaging lens of Embodiment 10.
  • Figure 51 is a view showing the configuration of an optical imaging lens of Embodiment 11;
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the present application provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power; a second lens having a negative power, the object side being a convex surface, and the image side being a concave surface; a third lens having a power; a fourth lens having a power; a fifth lens having a positive power, the image side being a convex surface; and a sixth lens having a negative power, the object side being a concave surface, the image side It is concave.
  • half of the maximum angle of view of the optical imaging lens, HFOV, the effective focal length f5 of the fifth lens, and the center thickness CT5 of the fifth lens satisfy 4.5 ⁇ f5 * tan (HFOV) / CT5 ⁇ 8.0. Specifically, 4.63 ⁇ f5 * tan (HFOV) / CT5 ⁇ 7.81 is satisfied.
  • the half of the diagonal length ImgH of the effective pixel area on the imaging surface and the on-axis distance TTL of the first lens object side to the imaging surface satisfy 0.75 ⁇ ImgH / TTL ⁇ 0.9, specifically, satisfy 0.75 ⁇ ImgH / TTL ⁇ 0.82.
  • the effective focal length f of the optical imaging lens, the effective focal length f3 of the third lens, and the effective focal length f4 of the fourth lens satisfy
  • the effective focal length f of the optical imaging lens, the effective focal length f2 of the second lens, and the effective focal length f6 of the sixth lens satisfy 2.0 ⁇
  • the power of the second lens and the sixth lens can be properly distributed, which is advantageous for realizing a large image plane of the optical system and ensuring that the system has small optical distortion.
  • 0.5 ⁇ f1/f5 ⁇ 1.2 is satisfied between the effective focal length f1 of the first lens and the effective focal length f5 of the fifth lens, and more specifically, 0.85 ⁇ f1/f5 ⁇ 1.14 is satisfied.
  • the effective focal length f of the optical imaging lens and the radius of curvature R5 of the side surface of the third lens satisfy 0 ⁇ f/R5 ⁇ 0.5, and more specifically, 0.19 ⁇ f/R5 ⁇ 0.41.
  • the curvature of the side surface of the third lens object can be controlled such that the field curvature contribution amount is within a reasonable range, and the optical sensitivity of the third lens object measuring surface is lowered.
  • the effective focal length f of the optical imaging lens and the radius of curvature R10 of the side surface of the fifth lens image satisfy -2.5 ⁇ f / R10 ⁇ - 1.5, specifically, - 2.26 ⁇ f / R10 ⁇ -1.82.
  • the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image satisfy 0.5 ⁇ R7 / R8 ⁇ 2.0, specifically, 0.72 ⁇ R7 / R8 ⁇ 1.69.
  • the ratio of the radius of curvature of the side surface of the fourth lens object and the image side surface can be restricted to a certain range, and the optical distortion can be reduced to ensure a good image quality.
  • the air gap T34 on the optical axis between the third lens and the fourth lens satisfies T34/(CT3+CT4) between the center thickness CT3 of the third lens and the center thickness CT4 of the fourth lens. ) ⁇ 0.3.
  • the spatial ratio of the fifth lens can be reasonably controlled, which is advantageous for ensuring the assembly process of the lens and miniaturizing the optical lens, so that it is easier to meet the requirements of the whole machine.
  • f/EPD ⁇ 2.0 is satisfied between the effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens.
  • the side surface of the first lens object is a convex surface, and the image side surface is a concave surface; the side surface of the fourth lens object is a convex surface, and the image side surface is a concave surface.
  • FIG. 1 is a schematic structural view showing an optical imaging lens of Embodiment 1.
  • the optical imaging lens includes six lenses.
  • the six lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to sixth lenses E1 to E6 are disposed in order from the object side to the image side of the optical imaging lens.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power
  • the object side surface S9 may be a convex surface
  • the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power
  • the object side surface S11 may be a concave surface
  • the image side surface S12 may be a concave surface.
  • the optical imaging lens further includes a filter E7 having an object side S13 and an image side S14 for filtering out infrared light. In this embodiment, light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first to sixth lenses E1 to E6 have respective effective focal lengths f1 to f6.
  • the first lens E1 to the sixth lens E6 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the optical imaging lens.
  • Table 1 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 2 shows the surface type, the radius of curvature, the thickness, the refractive index, the dispersion coefficient, and the conic coefficient of each lens in the optical imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • each lens may be an aspherical lens, and each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 3 below shows the high order term coefficients of the respective aspheric surfaces S1-S12 of the respective aspherical lenses usable in this embodiment.
  • the optical imaging lens according to Embodiment 1 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3 inch chip and has an ultra-large aperture.
  • Fig. 6 is a schematic structural view showing an optical imaging lens of Embodiment 2.
  • the optical imaging lens includes six lenses.
  • the six lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to sixth lenses E1 to E6 are disposed in order from the object side to the image side of the optical imaging lens.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 4 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 5 shows the surface type, the radius of curvature, the thickness, the refractive index, the dispersion coefficient, and the conic coefficient of each lens in the optical imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 6 below shows the high order term coefficients of the respective aspheric surfaces S1-S12 that can be used for each aspherical lens in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 7 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 8 shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 9 is a view showing a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 2, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 2 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3 inch chip and which has an ultra-large aperture.
  • Fig. 11 is a schematic structural view showing an optical imaging lens of Embodiment 3.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 7 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°). ).
  • Table 8 shows the surface type, the radius of curvature, the thickness, the refractive index, the dispersion coefficient, and the conic coefficient of each lens in the optical imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 9 below shows the high order coefficient of each aspherical surface S1-S12 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • the optical imaging lens according to Embodiment 3 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3 inch chip and having an oversized aperture.
  • Fig. 16 is a view showing the configuration of an optical imaging lens of Embodiment 4.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 10 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 11 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 12 below shows the high order coefficient of each aspherical surface S1-S12 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 17 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 19 is a view showing a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 20 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 4, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 4 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3 inch chip and which has an ultra-large aperture.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 13 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 14 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 15 below shows the high order term coefficients of the respective aspherical surfaces S1 to S12 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24 is a view showing a distortion curve of the optical imaging lens of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • the optical imaging lens according to Embodiment 5 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3-inch chip and which has an ultra-large aperture.
  • Fig. 26 is a schematic structural view showing the optical imaging lens of Embodiment 6.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 16 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 17 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 18 below shows the high order coefficient of each aspherical surface S1-S12 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 27 is a view showing an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 28 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 6, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 30 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 6 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3-inch chip and which has an ultra-large aperture.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 19 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°). ).
  • Table 20 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 21 below shows the high order coefficient of each aspherical surface S1-S12 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 32 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 33 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 34 is a view showing the distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 35 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 7 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3 inch chip and which has an ultra-large aperture.
  • Fig. 36 is a view showing the configuration of an optical imaging lens of Embodiment 8.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 22 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 23 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 24 below shows the high order coefficient of each aspherical surface S1-S12 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • the optical imaging lens according to Embodiment 8 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3 inch chip and which has an ultra-large aperture.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 25 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 26 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 27 below shows the high order coefficient of each aspherical surface S1-S12 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 42 is a graph showing the axial chromatic aberration curve of the optical imaging lens of Example 9, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 43 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 44 is a view showing the distortion curve of the optical imaging lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 45 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 9 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3-inch chip and which has an ultra-large aperture.
  • Fig. 46 is a view showing the configuration of an optical imaging lens of Embodiment 10.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 28 below shows the effective focal lengths f1 to f6 of the first to sixth lenses E1 to E6, the total effective focal length f of the optical imaging lens, the aperture Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 29 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 30 below shows the high order coefficient of each aspherical surface S1-S12 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 47 is a view showing an axial chromatic aberration curve of the optical imaging lens of Example 10, which shows that light rays of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 48 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 10, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 49 is a view showing the distortion curve of the optical imaging lens of Embodiment 10, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 50 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 10, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 10 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3-inch chip and which has an ultra-large aperture.
  • Fig. 51 is a view showing the configuration of an optical imaging lens of Embodiment 11.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • Table 31 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the optical imaging lens, the aperture number Fno of the optical imaging lens, and the maximum half angle of view HFOV of the imaging lens (°) ).
  • Table 32 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 33 below shows the higher order coefficient of each aspherical surface S1-S12 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 52 is a view showing the axial chromatic aberration curve of the optical imaging lens of Example 11, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 53 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 11, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 54 is a view showing the distortion curve of the optical imaging lens of Embodiment 11, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 55 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 11, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 11 is an optical lens having an ultra-large optical image surface which can be used for a 1/2.3-inch chip and which has an ultra-large aperture.
  • each conditional expression satisfies the conditions of Table 34 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,其中,第一透镜具有正光焦度;第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;第三透镜具有光焦度;第四透镜具有光焦度;第五透镜具有正光焦度,且其像侧面为凸面;第六透镜具有负光焦度,且其物侧面为凹面,像侧面为凹面;光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足|f/f3|+|f/f4|≤0.3。本申请的光学成像镜头具有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年5月4日提交于中国国家知识产权局的、专利申请号为201810421623.4的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,特别是由六片镜片组成的光学成像镜头。
背景技术
随着科技的进步,携带摄像功能的电子产品快速发展,消费者对有理想拍照效果的电子产品的需求也越来越强烈,这对成像镜头提出了高成像品质的要求。同时,CCD和CMOS等图像传感器等技术的进步,使芯片上像元数得以增加以及单像元的尺寸得以减小,这对成像镜头满足小型化的要求越来越高。
本发明提出了一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
发明内容
为了解决现有技术中的至少一个问题,本申请提供了一种光学成像镜头。
本申请的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有光焦度的第三透镜;具有光焦度的第四透镜;具有正光焦度的第五透镜,其像侧面为凸面;具有负光焦度的第六透镜,其物侧面为凹面,像侧面为凹面;其中,光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足|f/f3|+|f/f4|≤0.3。
根据本申请的一个实施方式,成像面上有效像素区域对角线长的一半ImgH与第一透镜物侧面至成像面的轴上距离TTL之间满足0.75≤ImgH/TTL≤0.9。
根据本申请的一个实施方式,光学成像镜头的有效焦距f、第二透镜的有效焦距f2与第六透镜的有效焦距f6之间满足2.0≤|f/f2|+|f/f6|<3.0。
根据本申请的一个实施方式,第一透镜的有效焦距f1与第五透镜的有效焦距f5之间满足0.5<f1/f5<1.2。
根据本申请的一个实施方式,光学成像镜头的有效焦距f与第三透镜物侧面的曲率半径R5之间满足0<f/R5<0.5。
根据本申请的一个实施方式,光学成像镜头的有效焦距f与为第五透镜像侧面的曲率半径R10之间满足-2.5<f/R10<-1.5。
根据本申请的一个实施方式,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足0.5<R7/R8<2.0。
根据本申请的一个实施方式,第三透镜和第四透镜之间在光轴上的空气间隔T34、第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足T34/(CT3+CT4)≤0.3。
根据本申请的一个实施方式,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤2.0。
根据本申请的一个实施方式,光学成像镜头的最大视场角的一半HFOV、第五透镜的有效焦距f5与第五透镜的中心厚度CT5之间满足4.5≤f5*tan(HFOV)/CT5≤8.0。
根据本申请的一个实施方式,第四透镜和第五透镜之间在光轴上的空气间隔T45、第五透镜和第六透镜之间在光轴上的空气间隔T56与第五透镜的中心厚度CT5之间满足1.3<(T45+T56)/CT5<2.5。
根据本申请的一个实施方式,第一透镜物侧面为凸面,像侧面为凹面;第四透镜物侧面为凸面,像侧面为凹面。
本申请的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有负光焦度的第六透镜,其物侧面为凹面,像侧面为凹面;其中,光学成像镜头的最大视场角的一半HFOV、第五透镜的有效焦距f5与第五透镜的中心厚度CT5之间满足4.5≤f5*tan(HFOV)/CT5≤8.0。
本申请的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有光焦度的第三透镜;具有光焦度的第四透镜;具有正光焦度的第五透镜,其像侧面为凸面;具有负光焦度的第六透镜,其物侧面为凹面,像侧面为凹面;其中,第四透镜和第五透镜之间在光轴上的空气间隔T45、第五透镜和第六透镜之间在光轴上的空气间隔T56与第五透镜的中心厚度CT5之间满足1.3<(T45+T56)/CT5<2.5。
本申请的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有光焦度的第三透镜;具有光焦度的第四透镜;具有正光焦度的第五透镜,其像侧面为凸面;具有负光焦度的第六透镜,其物侧面为凹面,像侧面为凹面;其中,光学成像镜头的有效焦距f与第三透镜物侧面的曲率半径R5之间满足0<f/R5<0.5。
根据本申请的光学成像镜头拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的光学成像镜头的结构示意图;
图2至图5分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率 色差曲线;
图6示出了实施例2的光学成像镜头的结构示意图;
图7至图10分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11示出了实施例3的光学成像镜头的结构示意图;
图12至图15分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图16示出了实施例4的光学成像镜头的结构示意图;
图17至图20分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21示出了实施例5的光学成像镜头的结构示意图;
图22至图25分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图26示出了实施例6的光学成像镜头的结构示意图;
图27至图30分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图31示出了实施例7的光学成像镜头的结构示意图;
图32至图35分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图36示出了实施例8的光学成像镜头的结构示意图;
图37至图40分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图41示出了实施例9的光学成像镜头的结构示意图;
图42至图45分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图46示出了实施例10的光学成像镜头的结构示意图;
图47至图50分别示出了实施例10的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图51示出了实施例11的光学成像镜头的结构示意图;以及
图52至图55分别示出了实施例11的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说 明书全文中,相同的附图标号指代相同的元件。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有负光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有光焦度的第三透镜;具有光焦度的第四透镜;具有正光焦度的第五透镜,其像侧面为凸面;具有负光焦度的第六透镜,其物侧面为凹面,像侧面为凹面。
在本申请的实施例中,光学成像镜头的最大视场角的一半HFOV、第五透镜的有效焦距f5与第五透镜的中心厚度CT5之间满足4.5≤f5*tan(HFOV)/CT5≤8.0,具体地,满足4.63≤f5*tan(HFOV)/CT5≤7.81。通过满足上述关系,能够合理分配第五透镜的厚度和光学成像镜头的视场角,可以实现***大像面的成像效果,拥有较高的光学性能以及较好的加工工艺。
在本申请的实施例中,成像面上有效像素区域对角线长的一半ImgH与第一透镜物侧面至成像 面的轴上距离TTL之间满足0.75≤ImgH/TTL≤0.9,具体地,满足0.75≤ImgH/TTL≤0.82。通过满足上述关系,能够控制光学成像镜头的总长和像高的比值,有利于提高像面大小,并且使***拥有较小的尺寸。
在本申请的实施例中,光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足|f/f3|+|f/f4|≤0.3,具体地,满足|f/f3|+|f/f4|≤0.27。通过满足上述关系,能够合理分配第三透镜和第四透镜的光焦度,有利于实现大孔径效果,同时有效降低镜头的轴上色差,提升镜头的成像品质。
在本申请的实施例中,光学成像镜头的有效焦距f、第二透镜的有效焦距f2与第六透镜的有效焦距f6之间满足2.0≤|f/f2|+|f/f6|<3.0,具体地,满足2.06≤|f/f2|+|f/f6|≤2.35。通过满足上述关系,能够合理分配第二透镜和第六透镜的光焦度,有利于实现光学***的大像面,确保***有较小的光学畸变。
在本申请的实施例中,第一透镜的有效焦距f1与第五透镜的有效焦距f5之间满足0.5<f1/f5<1.2,更具体地,满足0.85≤f1/f5≤1.14。通过满足上述关系,能够合理控制第一透镜和第五透镜的光焦度,有效降低第一透镜和第五透镜的光学敏感度,更有利于实现批量化生产。
在本申请的实施例中,光学成像镜头的有效焦距f与第三透镜物侧面的曲率半径R5之间满足0<f/R5<0.5,更具体地,满足0.19≤f/R5≤0.41。通过满足上述关系,能够控制第三透镜物侧面的曲率,使其场曲贡献量在合理的范围,降低了第三透镜物测面的光学敏感度。
在本申请的实施例中,光学成像镜头的有效焦距f与为第五透镜像侧面的曲率半径R10之间满足-2.5<f/R10<-1.5,具体地,满足-2.26≤f/R10≤-1.82。通过满足上述关系,能够控制第五透镜像侧面的曲率,有效降低轴上色差,确保较好的成像品质。
在本申请的实施例中,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足0.5<R7/R8<2.0,具体地,满足0.72≤R7/R8≤1.69。通过满足上述关系,能够将第四透镜物侧面和像侧面的曲率半径的比值约束在一定范围,可以降低光学畸变大小,确保较好的成像品质。
在本申请的实施例中,第三透镜和第四透镜之间在光轴上的空气间隔T34、第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足T34/(CT3+CT4)≤0.3。通过满足上述关系,能够合理控制第三透镜和第四透镜的空间占比,有利于保证镜片成型工艺性以及组装稳定性,能确保较好的生产性。
在本申请的实施例中,第四透镜和第五透镜之间在光轴上的空气间隔T45、第五透镜和第六透镜之间在光轴上的空气间隔T56与第五透镜的中心厚度CT5之间满足1.3<(T45+T56)/CT5<2.5,具体地,满足1.45≤(T45+T56)/CT5≤2.07。通过满足上述关系,能够合理控制第五透镜的空间占比,有利于保证镜片的组装工艺,并且实现光学镜头的小型化,使得更容易满足整机的需求。
在本申请的实施例中,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤2.0。通过满足上述关系,能够合理分配光焦度以及约束成像***的入瞳直径,使得大像面的成像***F数较小,可以保证***具有大孔径,在暗环境下也具有良好的成像质量。
在本申请的实施例中,第一透镜物侧面为凸面,像侧面为凹面;第四透镜物侧面为凸面,像侧 面为凹面。通过上述设置,能够进一步控制第一透镜和第四透镜的面型,有利于保证光学成像镜头的组装稳定性,更有利于实现批量化的生产。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图5描述根据本申请实施例1的光学成像镜头。
图1为示出了实施例1的光学成像镜头的结构示意图。如图1所示,光学成像镜头包括6片透镜。这6片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5和具有物侧面S11和像侧面S12的第六透镜E6。第一透镜E1至第六透镜E6从光学成像镜头的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。该光学成像镜头还包括用于滤除红外光的具有物侧面S13和像侧面S14的滤光片E7。在该实施例中,来自物体的光依次穿过各表面S1至S14并最终成像在成像表面S15上。
在该实施例中,第一透镜E1至第六透镜E6分别具有各自的有效焦距f1至f6。第一透镜E1至第六透镜E6沿着光轴依次排列并共同决定了光学成像镜头的总有效焦距f。下表1示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 3.98 f(mm) 4.53
f2(mm) -9.74 HFOV(゜) 41.3
f3(mm) 62.23 Fno 1.84
f4(mm) -158.38    
f5(mm) 4.22    
f6(mm) -2.85    
表1
表2示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000001
Figure PCTCN2019077287-appb-000002
表2
在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2019077287-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。
下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.5522E-01 -4.7105E-02 -1.8509E-01 6.6389E-01 -1.1105E+00 1.0951E+00 -6.4508E-01 2.0980E-01 -2.9079E-02
S2 -6.8433E-02 8.6444E-02 -1.5960E-01 3.5599E-01 -5.8246E-01 5.8613E-01 -3.4420E-01 1.0809E-01 -1.4127E-02
S3 -1.2256E-01 1.8918E-01 -1.7940E-01 2.6216E-01 -4.3496E-01 4.7141E-01 -2.7428E-01 7.4357E-02 -6.2115E-03
S4 -7.0423E-02 1.1558E-01 2.3163E-01 -1.4123E+00 3.7920E+00 -6.0218E+00 5.6996E+00 -2.9454E+00 6.4037E-01
S5 -8.6025E-02 9.3599E-02 -4.8277E-01 1.3703E+00 -2.5380E+00 2.8853E+00 -1.9075E+00 6.5603E-01 -8.4955E-02
S6 -1.5286E-01 1.5768E-01 -2.1267E-01 -3.0280E-02 5.2748E-01 -9.5564E-01 8.7112E-01 -3.9744E-01 7.1007E-02
S7 -2.6407E-01 3.0478E-01 -6.2388E-01 1.2298E+00 -1.7486E+00 1.4786E+00 -6.6991E-01 1.4034E-01 -8.8766E-03
S8 -1.9858E-01 1.5815E-01 -2.5455E-01 4.3681E-01 -5.4185E-01 4.1794E-01 -1.8717E-01 4.4561E-02 -4.3459E-03
S9 -6.0778E-03 -9.2504E-02 1.5977E-01 -2.0995E-01 1.7203E-01 -8.7415E-02 2.6536E-02 -4.3403E-03 2.9176E-04
S10 4.0565E-02 -4.1573E-02 4.4052E-02 -4.3886E-02 2.7021E-02 -9.2639E-03 1.7575E-03 -1.7346E-04 6.9567E-06
S11 -1.9059E-01 1.4259E-01 -8.8984E-02 4.0508E-02 -1.1504E-02 1.9966E-03 -2.0743E-04 1.1894E-05 -2.9023E-07
S12 -7.4248E-02 3.2258E-02 -1.0532E-02 1.9888E-03 -1.4227E-04 -1.8944E-05 4.9598E-06 -3.9887E-07 1.1470E-08
表3
图2示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图3示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图2至图5可以看出,根据实施例1的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例2
以下参照图6至图10描述根据本申请实施例2的光学成像镜头。
图6为示出了实施例2的光学成像镜头的结构示意图。如图6所示,光学成像镜头包括6片透 镜。这6片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5和具有物侧面S11和像侧面S12的第六透镜E6。第一透镜E1至第六透镜E6从光学成像镜头的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表4示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 3.88 f(mm) 4.54
f2(mm) -9.39 HFOV(゜) 41.0
f3(mm) 552.96 Fno 1.84
f4(mm) 70.17    
f5(mm) 4.28    
f6(mm) -2.76    
表4
表5示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000004
表5
下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.5702E-01 -4.4097E-02 -1.9057E-01 6.6023E-01 -1.0828E+00 1.0505E+00 -6.0949E-01 1.9525E-01 -2.6669E-02
S2 -7.2322E-02 7.6426E-02 -8.4804E-02 1.6439E-01 -2.9637E-01 3.2140E-01 -1.9753E-01 6.3962E-02 -8.6108E-03
S3 -1.3788E-01 2.3358E-01 -2.5263E-01 3.9038E-01 -6.4069E-01 7.0434E-01 -4.4154E-01 1.4289E-01 -1.8310E-02
S4 -8.1382E-02 1.2884E-01 3.2738E-01 -1.8106E+00 4.5897E+00 -6.9562E+00 6.3463E+00 -3.1905E+00 6.8076E-01
S5 -1.0897E-01 1.8140E-01 -7.4952E-01 1.8467E+00 -2.7642E+00 2.2996E+00 -8.2621E-01 -6.5988E-02 9.3280E-02
S6 -1.5415E-01 6.5239E-02 1.1192E-01 -6.8431E-01 1.4400E+00 -1.7500E+00 1.2580E+00 -4.8868E-01 7.8214E-02
S7 -2.3331E-01 1.0573E-01 -7.1710E-02 1.1222E-01 -9.3070E-02 -9.2530E-02 2.0692E-01 -1.2098E-01 2.3324E-02
S8 -1.7605E-01 7.2415E-02 -1.2029E-01 2.9950E-01 -4.1645E-01 3.2533E-01 -1.4381E-01 3.3804E-02 -3.2891E-03
S9 -2.5313E-03 -1.0973E-01 1.6627E-01 -2.0723E-01 1.7422E-01 -9.3195E-02 2.9814E-02 -5.1078E-03 3.5746E-04
S10 3.7682E-02 -5.6231E-02 5.9013E-02 -5.2140E-02 3.0838E-02 -1.0585E-02 2.0367E-03 -2.0468E-04 8.3654E-06
S11 -2.3947E-01 1.8500E-01 -1.0415E-01 4.2918E-02 -1.1510E-02 1.9349E-03 -1.9722E-04 1.1169E-05 -2.7015E-07
S12 -8.9659E-02 4.1748E-02 -1.3612E-02 2.7224E-03 -2.8183E-04 2.0123E-07 3.2888E-06 -3.1626E-07 9.6673E-09
表6
图7示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图8示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例3
以下参照图11至图15描述根据本申请实施例3的光学成像镜头。
图11为示出了实施例3的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表7示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 4.04 f(mm) 4.57
f2(mm) -9.31 HFOV(゜) 41.3
f3(mm) 25.60 Fno 1.79
f4(mm) 107.42    
f5(mm) 4.52    
f6(mm) -2.70    
表7
表8示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000005
Figure PCTCN2019077287-appb-000006
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.4157E-01 -4.4897E-02 -5.2313E-02 1.3856E-01 -1.1040E-01 1.1618E-02 3.4910E-02 -2.0521E-02 3.5343E-03
S2 -7.0300E-02 6.6364E-02 -5.0411E-02 1.4087E-01 -3.5137E-01 4.3971E-01 -2.8869E-01 9.5815E-02 -1.2750E-02
S3 -1.3864E-01 2.8694E-01 -5.3610E-01 1.1601E+00 -1.9341E+00 2.0653E+00 -1.3100E+00 4.4933E-01 -6.4158E-02
S4 -8.6263E-02 2.3657E-01 -3.0860E-01 1.9829E-01 5.3634E-01 -1.6679E+00 2.0218E+00 -1.1758E+00 2.7145E-01
S5 -8.9697E-02 1.9465E-01 -1.0044E+00 3.0053E+00 -5.5529E+00 6.2934E+00 -4.2381E+00 1.5433E+00 -2.3048E-01
S6 -1.4099E-01 -2.5346E-03 3.7625E-01 -1.2250E+00 2.0257E+00 -2.0253E+00 1.2316E+00 -4.1649E-01 5.9549E-02
S7 -2.2458E-01 1.0739E-01 3.8970E-02 -2.3179E-01 3.4325E-01 -3.3557E-01 2.2544E-01 -8.6321E-02 1.3469E-02
S8 -1.6849E-01 7.8925E-02 -5.5437E-02 7.4329E-02 -9.1902E-02 6.6082E-02 -2.5101E-02 4.6676E-03 -3.1956E-04
S9 -1.6359E-02 -7.9288E-02 1.1158E-01 -1.3649E-01 1.1499E-01 -6.2212E-02 2.0179E-02 -3.4927E-03 2.4565E-04
S10 3.0617E-02 -2.7789E-02 1.0756E-02 -7.2445E-03 6.6284E-03 -2.8885E-03 6.1885E-04 -6.4972E-05 2.6820E-06
S11 -1.9310E-01 1.3519E-01 -8.3129E-02 3.8348E-02 -1.0987E-02 1.9103E-03 -1.9778E-04 1.1260E-05 -2.7198E-07
S12 -7.6295E-02 3.2511E-02 -1.0340E-02 2.0770E-03 -2.3483E-04 9.5531E-06 7.5053E-07 -9.4725E-08 2.8389E-09
表9
图12示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图13示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以看出,根据实施例3的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例4
以下参照图16至图20描述根据本申请实施例4的光学成像镜头。
图16为示出了实施例4的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第 一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表10示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 3.99 f(mm) 4.75
f2(mm) -9.67 HFOV(゜) 40.7
f3(mm) 360.12 Fno 1.86
f4(mm) 256.90    
f5(mm) 4.30    
f6(mm) -2.99    
表10
下表11示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000007
表11
下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.4702E-01 -6.1899E-02 -6.0331E-02 2.8201E-01 -4.5198E-01 4.1095E-01 -2.2099E-01 6.5449E-02 -8.3029E-03
S2 -6.2324E-02 3.4300E-02 7.2668E-02 -2.2748E-01 3.1526E-01 -2.6592E-01 1.3774E-01 -4.0060E-02 4.9196E-03
S3 -1.2384E-01 1.9884E-01 -2.3008E-01 4.4019E-01 -8.0023E-01 9.2058E-01 -6.1169E-01 2.1704E-01 -3.1945E-02
S4 -8.0492E-02 2.0512E-01 -4.0213E-01 1.2715E+00 -2.9866E+00 4.3529E+00 -3.7409E+00 1.7450E+00 -3.3855E-01
S5 -9.7584E-02 1.3081E-01 -4.5758E-01 9.2984E-01 -1.0389E+00 3.7802E-01 3.7517E-01 -4.2967E-01 1.2581E-01
S6 -1.4809E-01 9.5116E-02 -6.2865E-02 -1.0104E-01 3.0984E-01 -4.2983E-01 3.4424E-01 -1.4513E-01 2.4472E-02
S7 -2.2916E-01 1.7879E-01 -3.2659E-01 6.9921E-01 -1.0189E+00 8.5676E-01 -3.9107E-01 8.7364E-02 -7.0896E-03
S8 -1.6903E-01 7.7617E-02 -8.9332E-02 1.8656E-01 -2.5540E-01 1.9784E-01 -8.5626E-02 1.9512E-02 -1.8306E-03
S9 -1.3397E-02 -8.4628E-02 1.2328E-01 -1.4489E-01 1.1532E-01 -5.8829E-02 1.8047E-02 -2.9716E-03 1.9999E-04
S10 2.7047E-02 -3.7577E-02 3.0282E-02 -2.5620E-02 1.6283E-02 -5.8087E-03 1.1242E-03 -1.1149E-04 4.4478E-06
S11 -1.7781E-01 1.0908E-01 -6.1328E-02 2.8099E-02 -8.1031E-03 1.4126E-03 -1.4608E-04 8.2882E-06 -1.9934E-07
S12 -7.5107E-02 2.9069E-02 -8.3105E-03 1.2793E-03 -1.6386E-05 -3.0706E-05 5.3314E-06 -3.7880E-07 1.0110E-08
表12
图17示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图18示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图17至图20可以看出,根据实施例4的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例5
以下参照图21至图25描述根据本申请实施例5的光学成像镜头。
图21为示出了实施例5的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表13示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 4.01 f(mm) 4.54
f2(mm) -9.55 HFOV(゜) 41.3
f3(mm) 57.06 Fno 1.84
f4(mm) -238.90    
f5(mm) 4.18    
f6(mm) -2.78    
表13
下表14示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000008
Figure PCTCN2019077287-appb-000009
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.5607E-01 -5.9042E-02 -1.2938E-01 5.1555E-01 -8.7306E-01 8.6177E-01 -5.0700E-01 1.6463E-01 -2.2800E-02
S2 -6.9770E-02 1.0047E-01 -2.3321E-01 5.8377E-01 -1.0043E+00 1.0562E+00 -6.5249E-01 2.1738E-01 -3.0206E-02
S3 -1.2166E-01 1.9955E-01 -2.3942E-01 4.3632E-01 -7.6248E-01 8.6512E-01 -5.6243E-01 1.9042E-01 -2.5782E-02
S4 -6.7924E-02 1.0882E-01 3.0139E-01 -1.8372E+00 5.1014E+00 -8.3200E+00 8.0247E+00 -4.2076E+00 9.2456E-01
S5 -8.1450E-02 4.9906E-02 -2.4198E-01 5.9057E-01 -9.9863E-01 1.0267E+00 -5.7832E-01 1.4350E-01 -4.2979E-03
S6 -1.4088E-01 1.0994E-01 -1.3065E-01 -5.7497E-02 3.6279E-01 -5.7378E-01 4.8735E-01 -2.1230E-01 3.6380E-02
S7 -2.3472E-01 1.7083E-01 -2.7391E-01 5.7740E-01 -9.2231E-01 8.5281E-01 -4.2545E-01 1.0564E-01 -1.0283E-02
S8 -1.7358E-01 6.6333E-02 -4.4093E-02 9.6535E-02 -1.6262E-01 1.4580E-01 -7.0056E-02 1.7283E-02 -1.7109E-03
S9 -1.4118E-04 -9.4436E-02 1.3706E-01 -1.7036E-01 1.3864E-01 -6.9965E-02 2.0925E-02 -3.3528E-03 2.2019E-04
S10 4.8426E-02 -5.1518E-02 4.3902E-02 -4.1601E-02 2.6587E-02 -9.4182E-03 1.8261E-03 -1.8290E-04 7.4129E-06
S11 -1.9280E-01 1.4216E-01 -8.8445E-02 4.0433E-02 -1.1510E-02 1.9982E-03 -2.0734E-04 1.1863E-05 -2.8867E-07
S12 -8.6214E-02 4.2540E-02 -1.6451E-02 4.3047E-03 -7.2801E-04 7.5029E-05 -4.2388E-06 1.0100E-07 -7.2914E-11
表15
图22示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图23示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例6
以下参照图26至图30描述根据本申请实施例6的光学成像镜头。
图26为示出了实施例6的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有负光焦度,且其 物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表16示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 3.99 f(mm) 4.77
f2(mm) -9.53 HFOV(゜) 40.5
f3(mm) -1.22E+04 Fno 1.87
f4(mm) 85.61    
f5(mm) 4.44    
f6(mm) -3.04    
表16
下表17示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000010
表17
下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.4738E-01 -6.5848E-02 -4.2875E-02 2.3771E-01 -3.8489E-01 3.4869E-01 -1.8621E-01 5.4686E-02 -6.8804E-03
S2 -6.1396E-02 2.5482E-02 1.1091E-01 -3.2031E-01 4.4902E-01 -3.8247E-01 1.9757E-01 -5.6599E-02 6.8080E-03
S3 -1.2448E-01 1.9986E-01 -2.2338E-01 4.1122E-01 -7.4491E-01 8.5981E-01 -5.7291E-01 2.0380E-01 -3.0091E-02
S4 -8.0850E-02 2.0126E-01 -3.5984E-01 1.0999E+00 -2.5887E+00 3.7938E+00 -3.2725E+00 1.5303E+00 -2.9718E-01
S5 -9.8260E-02 1.5384E-01 -6.2319E-01 1.5593E+00 -2.4305E+00 2.2360E+00 -1.1022E+00 2.1458E-01 7.1636E-03
S6 -1.4797E-01 7.4831E-02 4.5009E-02 -3.8710E-01 7.6025E-01 -8.6504E-01 5.9549E-01 -2.2420E-01 3.4863E-02
S7 -2.2751E-01 1.5829E-01 -2.4012E-01 4.9511E-01 -7.1608E-01 5.7291E-01 -2.2970E-01 3.6880E-02 -4.3905E-04
S8 -1.6644E-01 7.2860E-02 -8.1450E-02 1.7638E-01 -2.4545E-01 1.9091E-01 -8.2556E-02 1.8754E-02 -1.7517E-03
S9 -1.4196E-02 -7.8139E-02 1.0694E-01 -1.2631E-01 1.0432E-01 -5.5555E-02 1.7694E-02 -3.0010E-03 2.0667E-04
S10 2.5717E-02 -3.3816E-02 2.3501E-02 -1.9708E-02 1.3660E-02 -5.1628E-03 1.0343E-03 -1.0486E-04 4.2466E-06
S11 -1.7218E-01 1.0369E-01 -5.9885E-02 2.8296E-02 -8.3042E-03 1.4628E-03 -1.5232E-04 8.6848E-06 -2.0965E-07
S12 -7.5849E-02 2.9137E-02 -8.4320E-03 1.2962E-03 -1.7363E-06 -3.6676E-05 6.2830E-06 -4.5028E-07 1.2200E-08
表18
图27示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图28示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以看出,根据实施例6的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例7
以下参照图31至图35描述根据本申请实施例7的光学成像镜头。
图31为示出了实施例7的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表19示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 3.85 f(mm) 4.57
f2(mm) -9.45 HFOV(゜) 41.3
f3(mm) 75.65 Fno 1.92
f4(mm) 205.73    
f5(mm) 4.37    
f6(mm) -2.61    
表19
下表20示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000011
Figure PCTCN2019077287-appb-000012
表20
下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.6988E-01 -1.2319E-01 1.4146E-01 -1.5883E-01 1.6685E-01 -1.3665E-01 7.1983E-02 -2.0275E-02 2.0109E-03
S2 -8.0556E-02 1.2528E-01 -2.6226E-01 5.8063E-01 -9.1209E-01 8.8779E-01 -5.0677E-01 1.5382E-01 -1.9106E-02
S3 -1.3900E-01 2.3263E-01 -2.4502E-01 4.1720E-01 -8.0547E-01 1.0244E+00 -7.4190E-01 2.8143E-01 -4.3645E-02
S4 -9.5823E-02 3.0933E-01 -7.7152E-01 2.0910E+00 -3.8467E+00 4.3071E+00 -2.6895E+00 7.9272E-01 -5.7494E-02
S5 -1.0449E-01 1.6657E-01 -8.2175E-01 2.5564E+00 -5.1520E+00 6.4792E+00 -4.8824E+00 2.0000E+00 -3.3625E-01
S6 -1.6719E-01 1.8439E-01 -3.2907E-01 2.9304E-01 3.4214E-02 -4.5560E-01 5.3406E-01 -2.6851E-01 5.0828E-02
S7 -2.4925E-01 1.5197E-01 -8.2762E-02 -1.2565E-02 1.1502E-01 -2.2461E-01 2.3300E-01 -1.1460E-01 2.0860E-02
S8 -1.9238E-01 8.2614E-02 -5.1910E-02 9.8666E-02 -1.6006E-01 1.4254E-01 -6.7524E-02 1.6239E-02 -1.5597E-03
S9 -1.4399E-02 -1.1343E-01 2.0742E-01 -2.8297E-01 2.4548E-01 -1.3361E-01 4.3701E-02 -7.7183E-03 5.6039E-04
S10 2.8764E-02 -4.9831E-02 7.3889E-02 -7.6005E-02 4.6159E-02 -1.5911E-02 3.0821E-03 -3.1345E-04 1.3022E-05
S11 -2.7074E-01 2.3930E-01 -1.4162E-01 5.6856E-02 -1.4629E-02 2.3690E-03 -2.3403E-04 1.2909E-05 -3.0519E-07
S12 -9.9994E-02 5.2989E-02 -1.8178E-02 3.4886E-03 -2.7169E-04 -2.4762E-05 7.3535E-06 -6.0197E-07 1.7428E-08
表21
图32示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图33示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图31至图35可以看出,根据实施例7的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例8
以下参照图36至图40描述根据本申请实施例8的光学成像镜头。
图36为示出了实施例8的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表22示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 3.60 f(mm) 4.22
f2(mm) -8.70 HFOV(゜) 40.2
f3(mm) 32.55 Fno 1.80
f4(mm) -30.43    
f5(mm) 3.15    
f6(mm) -2.26    
表22
下表23示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000013
表23
下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.2350E-02 1.2835E-02 1.5356E-02 -1.2721E-01 3.6214E-01 -5.2818E-01 4.2470E-01 -1.7907E-01 3.0425E-02
S2 -1.4495E-01 2.5591E-01 -1.8342E-01 -3.9925E-01 1.5362E+00 -2.4368E+00 2.1207E+00 -9.7925E-01 1.8727E-01
S3 -2.3653E-01 4.6069E-01 -2.5783E-01 -9.7043E-01 3.3158E+00 -5.1473E+00 4.5192E+00 -2.1405E+00 4.2554E-01
S4 -1.2528E-01 1.9091E-01 8.4586E-01 -5.4610E+00 1.6077E+01 -2.7843E+01 2.8797E+01 -1.6410E+01 3.9789E+00
S5 -7.3489E-02 -3.9430E-01 2.7931E+00 -1.1338E+01 2.7472E+01 -4.1436E+01 3.8034E+01 -1.9440E+01 4.2408E+00
S6 -1.7422E-01 7.5858E-02 3.0097E-01 -1.8953E+00 4.3614E+00 -5.7411E+00 4.4988E+00 -1.9229E+00 3.4075E-01
S7 -3.4181E-01 1.8941E-01 3.0194E-01 -1.5023E+00 2.7389E+00 -2.9031E+00 1.9395E+00 -7.4746E-01 1.2295E-01
S8 -3.2786E-01 1.9701E-01 4.5788E-03 -3.5164E-01 6.1242E-01 -5.4682E-01 2.8865E-01 -8.5359E-02 1.0786E-02
S9 -1.0303E-01 -6.1173E-02 1.0868E-01 -1.4519E-01 1.2509E-01 -5.7336E-02 9.6542E-03 1.2768E-03 -4.4587E-04
S10 3.3831E-02 -7.3229E-02 8.1462E-02 -7.4813E-02 5.2353E-02 -2.1988E-02 5.1798E-03 -6.3565E-04 3.1670E-05
S11 -1.2306E-01 9.3168E-02 -5.1387E-02 2.2184E-02 -6.3424E-03 1.1331E-03 -1.2207E-04 7.2758E-06 -1.8473E-07
S12 -9.3635E-02 5.6251E-02 -2.8276E-02 9.4926E-03 -2.1230E-03 3.1150E-04 -2.8869E-05 1.5334E-06 -3.5370E-08
表24
图37示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图38示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图36至图40可以看出,根据实施例8的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例9
以下参照图41至图45描述根据本申请实施例9的光学成像镜头。
图41为示出了实施例9的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表25示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 4.01 f(mm) 4.65
f2(mm) -9.21 HFOV(゜) 41.3
f3(mm) 31.64 Fno 1.82
f4(mm) 118.33    
f5(mm) 4.52    
f6(mm) -2.74    
表25
下表26示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000014
Figure PCTCN2019077287-appb-000015
表26
下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.4108E-01 -4.7142E-02 -2.2007E-02 5.0321E-02 1.3333E-02 -8.4347E-02 7.6741E-02 -3.0122E-02 4.4481E-03
S2 -4.3902E-02 -1.3428E-01 7.4113E-01 -1.6519E+00 2.0955E+00 -1.6079E+00 7.3726E-01 -1.8609E-01 1.9851E-02
S3 -1.3038E-01 2.1092E-01 -1.5483E-01 8.4101E-02 -1.4328E-01 2.6223E-01 -2.3151E-01 9.7176E-02 -1.5880E-02
S4 -1.0103E-01 3.8163E-01 -1.0658E+00 2.6035E+00 -4.2282E+00 4.2142E+00 -2.3595E+00 6.2005E-01 -3.8696E-02
S5 -1.0252E-01 2.2099E-01 -8.3323E-01 1.8681E+00 -2.5705E+00 2.0546E+00 -8.3519E-01 9.3631E-02 2.4271E-02
S6 -1.3723E-01 -5.5431E-02 5.7003E-01 -1.5423E+00 2.2909E+00 -2.1310E+00 1.2400E+00 -4.0999E-01 5.8123E-02
S7 -2.1235E-01 2.0590E-02 2.8940E-01 -5.7687E-01 5.4523E-01 -3.1682E-01 1.3942E-01 -4.5529E-02 7.1101E-03
S8 -1.6898E-01 7.3954E-02 -5.1325E-02 1.0306E-01 -1.6937E-01 1.5014E-01 -7.1562E-02 1.7592E-02 -1.7570E-03
S9 -2.8285E-03 -1.3987E-01 2.3488E-01 -2.7665E-01 2.0977E-01 -1.0034E-01 2.9007E-02 -4.5662E-03 2.9802E-04
S10 3.4545E-02 -3.9847E-02 2.5818E-02 -1.8880E-02 1.2370E-02 -4.6297E-03 9.2888E-04 -9.4585E-05 3.8501E-06
S11 -1.8914E-01 1.3479E-01 -8.6697E-02 4.1360E-02 -1.2112E-02 2.1397E-03 -2.2429E-04 1.2892E-05 -3.1367E-07
S12 -6.4664E-02 2.2048E-02 -5.2282E-03 5.5785E-04 4.7415E-05 -2.2541E-05 2.8686E-06 -1.6713E-07 3.7843E-09
表27
图42示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图43示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图45示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图41至图45可以看出,根据实施例9的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例10
以下参照图46至图50描述根据本申请实施例10的光学成像镜头。
图46为示出了实施例10的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表28示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 4.05 f(mm) 4.64
f2(mm) -9.40 HFOV(゜) 41.3
f3(mm) 26.50 Fno 1.82
f4(mm) 162.84    
f5(mm) 4.48    
f6(mm) -2.70    
表28
下表29示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000016
表29
下表30示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.4433E-01 -6.0432E-02 -7.7970E-03 6.0485E-02 -2.5029E-02 -4.5968E-02 5.7711E-02 -2.5194E-02 3.8855E-03
S2 -7.4567E-02 1.0592E-01 -2.2616E-01 5.5570E-01 -9.2211E-01 9.1527E-01 -5.2529E-01 1.6046E-01 -2.0206E-02
S3 -1.3482E-01 2.5822E-01 -4.4907E-01 9.9702E-01 -1.7143E+00 1.8543E+00 -1.1774E+00 4.0160E-01 -5.6810E-02
S4 -7.6265E-02 1.3491E-01 2.0205E-01 -1.3522E+00 3.4963E+00 -5.2162E+00 4.6042E+00 -2.2168E+00 4.4962E-01
S5 -9.2630E-02 2.2316E-01 -1.1547E+00 3.4716E+00 -6.4494E+00 7.3705E+00 -5.0234E+00 1.8601E+00 -2.8453E-01
S6 -1.4574E-01 3.2370E-02 2.7916E-01 -1.0887E+00 1.9316E+00 -2.0071E+00 1.2455E+00 -4.2490E-01 6.0871E-02
S7 -2.2358E-01 9.1186E-02 1.3439E-01 -5.1628E-01 8.1612E-01 -7.9324E-01 4.8198E-01 -1.6352E-01 2.3117E-02
S8 -1.6488E-01 5.8948E-02 3.1311E-03 -2.7318E-02 1.8226E-02 -8.4527E-03 5.3168E-03 -2.1490E-03 3.2275E-04
S9 -2.2049E-02 -5.4481E-02 6.3832E-02 -8.2162E-02 7.7370E-02 -4.6569E-02 1.6395E-02 -3.0044E-03 2.1976E-04
S10 2.8315E-02 -2.4422E-02 9.3352E-03 -7.8624E-03 7.2900E-03 -3.0905E-03 6.4658E-04 -6.6592E-05 2.7056E-06
S11 -1.9544E-01 1.4002E-01 -8.7634E-02 4.0521E-02 -1.1584E-02 2.0074E-03 -2.0703E-04 1.1733E-05 -2.8194E-07
S12 -7.3426E-02 3.0994E-02 -1.0016E-02 2.0899E-03 -2.5688E-04 1.4465E-05 2.1863E-07 -6.5195E-08 2.1679E-09
表30
图47示出了实施例10的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图48示出了实施例10的光学成像镜头的象散曲线,其表示子午像面弯曲和弧 矢像面弯曲。图49示出了实施例10的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图50示出了实施例10的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图46至图50可以看出,根据实施例10的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
实施例11
以下参照图51至图55描述根据本申请实施例11的光学成像镜头。
图51为示出了实施例11的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
下表31示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光圈数Fno以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 3.79 f(mm) 4.57
f2(mm) -8.89 HFOV(゜) 41.3
f3(mm) 68.42 Fno 1.93
f4(mm) 294.20    
f5(mm) 4.45    
f6(mm) -2.69    
表31
下表32示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019077287-appb-000017
Figure PCTCN2019077287-appb-000018
表32
下表33示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.7295E-01 -1.2869E-01 1.3683E-01 -8.1078E-02 -4.7603E-02 1.5443E-01 -1.4420E-01 6.3798E-02 -1.1406E-02
S2 -9.0400E-02 1.5501E-01 -3.3481E-01 7.3866E-01 -1.1522E+00 1.1135E+00 -6.3018E-01 1.8950E-01 -2.3292E-02
S3 -1.5526E-01 3.0000E-01 -4.4488E-01 9.3793E-01 -1.7799E+00 2.1899E+00 -1.5811E+00 6.1323E-01 -9.9039E-02
S4 -1.1177E-01 4.3311E-01 -1.5163E+00 5.2117E+00 -1.2041E+01 1.7543E+01 -1.5461E+01 7.5420E+00 -1.5584E+00
S5 -1.0140E-01 8.9959E-02 -3.5478E-01 9.6267E-01 -1.7493E+00 1.8566E+00 -1.0014E+00 1.6098E-01 4.0108E-02
S6 -1.5331E-01 1.2366E-01 -1.3710E-01 -1.2921E-01 6.7553E-01 -1.0912E+00 9.2312E-01 -4.0258E-01 7.0747E-02
S7 -2.4127E-01 1.4287E-01 -1.0349E-01 2.9564E-02 8.6735E-02 -2.0756E-01 2.1628E-01 -1.0434E-01 1.8499E-02
S8 -1.9287E-01 8.8377E-02 -5.2723E-02 4.0539E-02 -3.1218E-02 1.3091E-02 3.0186E-03 -3.9051E-03 7.9143E-04
S9 -3.2177E-02 -8.7345E-02 1.9279E-01 -2.7875E-01 2.4282E-01 -1.3090E-01 4.2344E-02 -7.4070E-03 5.3351E-04
S10 8.2943E-03 -3.2695E-02 7.6535E-02 -8.5966E-02 5.2259E-02 -1.7855E-02 3.4386E-03 -3.4894E-04 1.4506E-05
S11 -2.8881E-01 2.6478E-01 -1.5744E-01 6.2399E-02 -1.5820E-02 2.5284E-03 -2.4691E-04 1.3476E-05 -3.1537E-07
S12 -1.0647E-01 6.0785E-02 -2.2415E-02 4.8125E-03 -5.2534E-04 4.9031E-06 5.3399E-06 -5.3148E-07 1.6498E-08
表33
图52示出了实施例11的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图53示出了实施例11的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图54示出了实施例11的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图55示出了实施例11的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图51至图55可以看出,根据实施例11的光学成像镜头是一种拥有超大光学像面,可用于1/2.3寸芯片,并且拥有超大光圈的光学镜头。
概括地说,在上述实施例1至11中,各条件式满足下面表34的条件。
条件式/实施例 1 2 3 4 5 6 7 8 9 10 11
f5*tan(HFOV)/CT5 7.08 7.13 6.40 6.76 6.83 6.95 7.68 4.63 7.00 6.31 7.81
ImgH/TTL 0.77 0.77 0.77 0.76 0.77 0.76 0.82 0.75 0.77 0.77 0.79
|f/f3|+|f/f4| 0.10 0.07 0.22 0.03 0.10 0.06 0.08 0.27 0.19 0.20 0.08
|f/f2|+|f/f6| 2.06 2.13 2.19 2.08 2.11 2.07 2.23 2.35 2.20 2.21 2.22
f1/f5 0.94 0.91 0.89 0.93 0.96 0.90 0.88 1.14 0.89 0.90 0.85
f/R5 0.19 0.26 0.32 0.24 0.20 0.26 0.25 0.41 0.31 0.31 0.29
f/R10 -1.82 -1.92 -1.89 -1.97 -1.82 -2.01 -1.97 -2.26 -1.92 -1.95 -1.94
R7/R8 1.14 0.72 0.80 0.91 1.09 0.75 0.92 1.69 0.81 0.85 0.94
T34/(CT3+CT4) 0.18 0.18 0.14 0.18 0.20 0.17 0.21 0.30 0.15 0.15 0.22
(T45+T56)/CT5 2.00 1.95 1.47 1.75 2.07 1.76 2.01 1.61 1.64 1.45 2.03
f/EPD 1.84 1.84 1.79 1.86 1.84 1.87 1.92 1.80 1.82 1.82 1.93
表34
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (35)

  1. 一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,其特征在于,
    第一透镜具有正光焦度;
    第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    第三透镜具有光焦度;
    第四透镜具有光焦度;
    第五透镜具有正光焦度,且其像侧面为凸面;
    第六透镜具有负光焦度,且其物侧面为凹面,像侧面为凹面;
    光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足|f/f3|+|f/f4|≤0.3。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,成像面上有效像素区域对角线长的一半ImgH与第一透镜物侧面至成像面的轴上距离TTL之间满足0.75≤ImgH/TTL≤0.9。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f、第二透镜的有效焦距f2与第六透镜的有效焦距f6之间满足2.0≤|f/f2|+|f/f6|<3.0。
  4. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与第五透镜的有效焦距f5之间满足0.5<f1/f5<1.2。
  5. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与第三透镜物侧面的曲率半径R5之间满足0<f/R5<0.5。
  6. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与为第五透镜像侧面的曲率半径R10之间满足-2.5<f/R10<-1.5。
  7. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足0.5<R7/R8<2.0。
  8. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,第三透镜和第四透镜之间在光轴上的空气间隔T34、第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足T34/(CT3+CT4)≤0.3。
  9. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤2.0。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,光学成像镜头的最大视场角的一半HFOV、第五透镜的有效焦距f5与第五透镜的中心厚度CT5之间满足4.5≤f5*tan(HFOV)/CT5≤8.0。
  11. 根据权利要求1所述的光学成像镜头,其特征在于,第四透镜和第五透镜之间在光轴上的空气间隔T45、第五透镜和第六透镜之间在光轴上的空气间隔T56与第五透镜的中心厚度CT5之间满足1.3<(T45+T56)/CT5<2.5。
  12. 根据权利要求1所述的光学成像镜头,其特征在于,第一透镜物侧面为凸面,像侧面为凹 面;第四透镜物侧面为凸面,像侧面为凹面。
  13. 一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,其特征在于,
    第一透镜具有正光焦度,且其物侧面为凸面,像侧面为凹面;
    第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    第三透镜具有光焦度;
    第四透镜具有光焦度,且其物侧面为凸面,像侧面为凹面;
    第五透镜具有正光焦度,且其像侧面为凸面;
    第六透镜具有负光焦度,且其物侧面为凹面,像侧面为凹面;
    光学成像镜头的最大视场角的一半HFOV、第五透镜的有效焦距f5与第五透镜的中心厚度CT5之间满足4.5≤f5*tan(HFOV)/CT5≤8.0。
  14. 根据权利要求13所述的光学成像镜头,其特征在于,成像面上有效像素区域对角线长的一半ImgH与第一透镜物侧面至成像面的轴上距离TTL之间满足0.75≤ImgH/TTL≤0.9。
  15. 根据权利要求14所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f、第二透镜的有效焦距f2与第六透镜的有效焦距f6之间满足2.0≤|f/f2|+|f/f6|<3.0。
  16. 根据权利要求13至15中任一项所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与第五透镜的有效焦距f5之间满足0.5<f1/f5<1.2。
  17. 根据权利要求13至15中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与第三透镜物侧面的曲率半径R5之间满足0<f/R5<0.5。
  18. 根据权利要求13至15中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与为第五透镜像侧面的曲率半径R10之间满足-2.5<f/R10<-1.5。
  19. 根据权利要求13至15中任一项所述的光学成像镜头,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足0.5<R7/R8<2.0。
  20. 根据权利要求13至15中任一项所述的光学成像镜头,其特征在于,第三透镜和第四透镜之间在光轴上的空气间隔T34、第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足T34/(CT3+CT4)≤0.3。
  21. 根据权利要求13至15中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤2.0。
  22. 根据权利要求13所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足|f/f3|+|f/f4|≤0.3。
  23. 根据权利要求13所述的光学成像镜头,其特征在于,第四透镜和第五透镜之间在光轴上的空气间隔T45、第五透镜和第六透镜之间在光轴上的空气间隔T56与第五透镜的中心厚度CT5之间满足1.3<(T45+T56)/CT5<2.5。
  24. 一种光学成像镜头,从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜、 第五透镜以及第六透镜,其特征在于,
    第一透镜具有正光焦度;
    第二透镜具有负光焦度,且其物侧面为凸面,像侧面为凹面;
    第三透镜具有光焦度;
    第四透镜具有光焦度;
    第五透镜具有正光焦度,且其像侧面为凸面;
    第六透镜具有负光焦度,且其物侧面为凹面,像侧面为凹面;
    第四透镜和第五透镜之间在光轴上的空气间隔T45、第五透镜和第六透镜之间在光轴上的空气间隔T56与第五透镜的中心厚度CT5之间满足1.3<(T45+T56)/CT5<2.5。
  25. 根据权利要求24所述的光学成像镜头,其特征在于,成像面上有效像素区域对角线长的一半ImgH与第一透镜物侧面至成像面的轴上距离TTL之间满足0.75≤ImgH/TTL≤0.9。
  26. 根据权利要求25所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f、第二透镜的有效焦距f2与第六透镜的有效焦距f6之间满足2.0≤|f/f2|+|f/f6|<3.0。
  27. 根据权利要求24至26中任一项所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与第五透镜的有效焦距f5之间满足0.5<f1/f5<1.2。
  28. 根据权利要求24至26中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与第三透镜物侧面的曲率半径R5之间满足0<f/R5<0.5。
  29. 根据权利要求24至26中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与为第五透镜像侧面的曲率半径R10之间满足-2.5<f/R10<-1.5。
  30. 根据权利要求24至26中任一项所述的光学成像镜头,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足0.5<R7/R8<2.0。
  31. 根据权利要求24至26中任一项所述的光学成像镜头,其特征在于,第三透镜和第四透镜之间在光轴上的空气间隔T34、第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足T34/(CT3+CT4)≤0.3。
  32. 根据权利要求24至26中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤2.0。
  33. 根据权利要求24所述的光学成像镜头,其特征在于,光学成像镜头的最大视场角的一半HFOV、第五透镜的有效焦距f5与第五透镜的中心厚度CT5之间满足4.5≤f5*tan(HFOV)/CT5≤8.0。
  34. 根据权利要求33所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足|f/f3|+|f/f4|≤0.3。
  35. 根据权利要求24所述的光学成像镜头,其特征在于,第一透镜物侧面为凸面,像侧面为凹面;第四透镜物侧面为凸面,像侧面为凹面。
PCT/CN2019/077287 2018-05-04 2019-03-07 光学成像镜头 WO2019210738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/854,372 US11573402B2 (en) 2018-05-04 2020-04-21 Optical imaging lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810421623.4 2018-05-04
CN201810421623.4A CN108319003A (zh) 2018-05-04 2018-05-04 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/854,372 Continuation US11573402B2 (en) 2018-05-04 2020-04-21 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019210738A1 true WO2019210738A1 (zh) 2019-11-07

Family

ID=62896271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077287 WO2019210738A1 (zh) 2018-05-04 2019-03-07 光学成像镜头

Country Status (3)

Country Link
US (1) US11573402B2 (zh)
CN (5) CN108319003A (zh)
WO (1) WO2019210738A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319003A (zh) 2018-05-04 2018-07-24 浙江舜宇光学有限公司 光学成像镜头
CN109960018B (zh) * 2018-05-04 2021-05-25 浙江舜宇光学有限公司 光学成像镜头
JP6556927B1 (ja) * 2018-08-14 2019-08-07 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
CN109239890B (zh) * 2018-09-29 2019-11-05 江西联益光学有限公司 ***镜头
CN109283664B (zh) * 2018-12-05 2024-02-23 浙江舜宇光学有限公司 光学成像镜片组
KR20200127484A (ko) * 2019-05-02 2020-11-11 삼성전기주식회사 촬상 광학계
CN110333590B (zh) * 2019-06-29 2021-06-22 诚瑞光学(苏州)有限公司 摄像光学镜头
CN110346911B (zh) * 2019-06-30 2021-09-24 瑞声光学解决方案私人有限公司 摄像光学镜头
CN117331200A (zh) * 2019-07-16 2024-01-02 浙江舜宇光学有限公司 光学成像镜头
CN111045193B (zh) * 2019-12-30 2022-07-08 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111552065B (zh) * 2020-05-27 2022-03-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111399196B (zh) * 2020-06-08 2020-08-25 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN114384667A (zh) * 2020-10-20 2022-04-22 三营超精密光电(晋城)有限公司 光学镜头及具有该光学镜头的电子装置
CN112269245B (zh) * 2020-12-14 2021-03-09 常州市瑞泰光电有限公司 摄像光学镜头
CN112731624B (zh) * 2021-01-04 2022-09-09 浙江舜宇光学有限公司 一种光学成像镜头
CN113391433B (zh) * 2021-06-02 2022-08-30 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN113625434B (zh) * 2021-09-18 2023-10-13 浙江舜宇光学有限公司 光学成像镜头
CN114099133B (zh) * 2021-11-10 2023-05-26 华中科技大学 一种用于眼科手术的大视场大数值孔径手术物镜
CN117008302B (zh) * 2023-10-07 2024-02-20 江西联益光学有限公司 光学镜头
CN117369100B (zh) * 2023-12-06 2024-03-29 江西联创电子有限公司 光学镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201113553A (en) * 2009-10-13 2011-04-16 Young Optics Inc Fixed-focus lens
CN202330846U (zh) * 2011-08-05 2012-07-11 大立光电股份有限公司 拾像光学镜组
JP2013178483A (ja) * 2012-01-31 2013-09-09 Olympus Corp 顕微鏡対物レンズ
CN104950422A (zh) * 2014-08-13 2015-09-30 瑞声声学科技(深圳)有限公司 摄像镜头
CN106556919A (zh) * 2015-09-30 2017-04-05 大立光电股份有限公司 成像用光学***、取像装置及电子装置
CN107861218A (zh) * 2017-11-15 2018-03-30 广东旭业光电科技股份有限公司 一种光学成像镜头及摄像设备
CN108319003A (zh) * 2018-05-04 2018-07-24 浙江舜宇光学有限公司 光学成像镜头
CN108761716A (zh) * 2018-03-22 2018-11-06 瑞声声学科技(深圳)有限公司 摄像镜头

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452332B (zh) * 2012-08-08 2014-09-11 Largan Precision Co Ltd 光學攝影鏡片系統
JP6300183B2 (ja) * 2013-04-22 2018-03-28 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
JP2015114505A (ja) 2013-12-12 2015-06-22 コニカミノルタ株式会社 撮像レンズ及び撮像装置
JP2015129869A (ja) 2014-01-08 2015-07-16 コニカミノルタ株式会社 撮像光学系、撮像装置及び携帯端末
JP6422224B2 (ja) 2014-03-17 2018-11-14 キヤノン株式会社 複眼光学機器
JP2015222369A (ja) * 2014-05-23 2015-12-10 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP2016004196A (ja) 2014-06-18 2016-01-12 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP2016090777A (ja) 2014-11-04 2016-05-23 Hoya株式会社 撮像光学系
JP5894696B1 (ja) * 2015-05-28 2016-03-30 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP6573315B2 (ja) 2015-08-31 2019-09-11 カンタツ株式会社 撮像レンズ
JP5895095B1 (ja) 2015-12-21 2016-03-30 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
JP6403711B2 (ja) 2016-04-04 2018-10-10 カンタツ株式会社 撮像レンズ
US10281683B2 (en) * 2016-08-01 2019-05-07 Apple Inc. Imaging lens system
JP6570076B2 (ja) 2016-08-29 2019-09-04 カンタツ株式会社 撮像レンズ
JP6082839B1 (ja) * 2016-11-03 2017-02-15 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN112987260A (zh) * 2016-12-16 2021-06-18 玉晶光电(厦门)有限公司 光学成像镜头
CN107436477B (zh) * 2017-09-07 2022-10-28 浙江舜宇光学有限公司 光学成像镜头
CN109507787A (zh) * 2018-03-07 2019-03-22 浙江舜宇光学有限公司 光学成像镜头
JP6376632B1 (ja) * 2018-03-22 2018-08-22 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN108535841B (zh) * 2018-04-18 2021-01-22 诚瑞光学(苏州)有限公司 摄影光学***
CN108802972B (zh) * 2018-06-15 2019-12-17 浙江舜宇光学有限公司 光学成像***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201113553A (en) * 2009-10-13 2011-04-16 Young Optics Inc Fixed-focus lens
CN202330846U (zh) * 2011-08-05 2012-07-11 大立光电股份有限公司 拾像光学镜组
JP2013178483A (ja) * 2012-01-31 2013-09-09 Olympus Corp 顕微鏡対物レンズ
CN104950422A (zh) * 2014-08-13 2015-09-30 瑞声声学科技(深圳)有限公司 摄像镜头
CN106556919A (zh) * 2015-09-30 2017-04-05 大立光电股份有限公司 成像用光学***、取像装置及电子装置
CN107861218A (zh) * 2017-11-15 2018-03-30 广东旭业光电科技股份有限公司 一种光学成像镜头及摄像设备
CN108761716A (zh) * 2018-03-22 2018-11-06 瑞声声学科技(深圳)有限公司 摄像镜头
CN108319003A (zh) * 2018-05-04 2018-07-24 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN110441883A (zh) 2019-11-12
CN110441883B (zh) 2022-03-29
CN113219636A (zh) 2021-08-06
US20200249440A1 (en) 2020-08-06
CN113296245B (zh) 2022-08-26
CN113219636B (zh) 2022-08-26
CN108319003A (zh) 2018-07-24
CN113296245A (zh) 2021-08-24
CN109656005A (zh) 2019-04-19
US11573402B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2019210738A1 (zh) 光学成像镜头
WO2019169853A1 (zh) 光学成像镜头
CN107065141B (zh) 成像镜头
WO2019210739A1 (zh) 光学成像镜头
CN108681034B (zh) 光学成像镜头
WO2018076630A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2018090609A1 (zh) 光学成像***及摄像装置
WO2018153012A1 (zh) 摄像镜头
WO2019114524A1 (zh) 光学成像镜头
CN107976788B (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019214334A1 (zh) 摄像镜头组
WO2019056758A1 (zh) 摄像透镜组
WO2019052144A1 (zh) 光学成像镜头
WO2019233142A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019062136A1 (zh) 摄像透镜组
WO2019205821A1 (zh) 光学成像镜头
WO2021008232A1 (zh) 光学成像镜头
WO2019174286A1 (zh) 光学成像镜片组
CN110082892B (zh) 光学成像镜头
WO2018058754A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2020029613A1 (zh) 光学成像镜头
WO2019052179A1 (zh) 成像透镜组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796948

Country of ref document: EP

Kind code of ref document: A1