WO2020029613A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2020029613A1
WO2020029613A1 PCT/CN2019/084949 CN2019084949W WO2020029613A1 WO 2020029613 A1 WO2020029613 A1 WO 2020029613A1 CN 2019084949 W CN2019084949 W CN 2019084949W WO 2020029613 A1 WO2020029613 A1 WO 2020029613A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
image side
object side
Prior art date
Application number
PCT/CN2019/084949
Other languages
English (en)
French (fr)
Inventor
叶丽慧
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020029613A1 publication Critical patent/WO2020029613A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens including seven lenses.
  • the photosensitive elements of general imaging lenses are mainly photosensitive coupling elements (CCD) or complementary metal-oxide-semiconductor elements (CMOS).
  • CCD photosensitive coupling elements
  • CMOS complementary metal-oxide-semiconductor elements
  • the present application provides an optical imaging lens that is applicable to portable electronic products and can at least solve or partially solve at least one of the above disadvantages in the prior art.
  • the present application provides such an optical imaging lens, which includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens having optical power. , A fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have positive power, the object side may be convex, and the image side may be concave; the second lens may have positive power, and the image side may be convex; the image side of the sixth lens may be concave; seventh The object side of the lens may be convex, and the image side may be concave.
  • a distance T34 between the center thickness CT4 of the fourth lens on the optical axis and the third lens and the fourth lens on the optical axis may satisfy 1.5 ⁇ CT4 / T34 ⁇ 2.5.
  • the effective focal length f5 of the fifth lens and the effective focal length f7 of the seventh lens may satisfy 0.5 ⁇
  • the curvature radius R12 of the image side of the sixth lens and the total effective focal length f of the optical imaging lens may satisfy 0.5 ⁇ R12 / f ⁇ 1.3.
  • the edge thickness ET5 of the fifth lens and the center thickness CT5 of the fifth lens on the optical axis may satisfy 0.5 ⁇ ET5 / CT5 ⁇ 1.
  • the curvature radius R13 of the object side of the seventh lens, the curvature radius R14 of the image side of the seventh lens, and the half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, ImgH can satisfy 0.5 ⁇ ( R13 + R14) / ImgH ⁇ 1.5.
  • the center thickness CT6 of the sixth lens on the optical axis and the center thickness CT7 of the seventh lens on the optical axis may satisfy 1 ⁇ CT7 / CT6 ⁇ 3.
  • the effective focal length f1 of the first lens, the curvature radius R1 of the object side of the first lens, and the curvature radius R2 of the image side of the first lens may satisfy 1 mm ⁇ f1 ⁇ R2 / (R1 ⁇ 5) ⁇ 2mm .
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging lens may satisfy 1 ⁇ f1 / f ⁇ 1.5.
  • the combined focal length f12 of the first lens and the second lens and the combined focal length f567 of the fifth lens, the sixth lens, and the seventh lens may satisfy 0.1 ⁇
  • the distance TTL on the optical axis from the object side of the first lens to the imaging surface of the optical imaging lens and half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, ImgH can satisfy TTL / ImgH ⁇ 1.4.
  • the maximum half field angle HFOV of the optical imaging lens can satisfy HFOV ⁇ 45 °.
  • the optical imaging lens has an ultra-thin, large-aperture, excellent At least one beneficial effect such as image quality.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application
  • FIGS. 2A to 2D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 1; curve;
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application
  • FIGS. 4A to 4D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 2 curve;
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application
  • FIGS. 6A to 6D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 3, respectively. curve;
  • FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application
  • FIGS. 8A to 8D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 4; curve;
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application
  • FIGS. 10A to 10D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 5; curve;
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application
  • FIGS. 12A to 12D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 6; curve;
  • FIG. 13 shows a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application
  • FIGS. 14A to 14D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 7; curve;
  • FIG. 15 shows a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application
  • FIGS. 16A to 16D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Embodiment 8 respectively. curve.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are only examples and are not drawn to scale.
  • the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
  • the surface of each lens closest to the subject is called the object side of the lens, and the surface of each lens closest to the imaging plane is called the image side of the lens.
  • An optical imaging lens may include, for example, seven lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a first lens. Seven lenses. The seven lenses are sequentially arranged along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
  • the first lens may have positive power, its object side may be convex, and the image side may be concave; the second lens may have positive power, and its image side may be convex; the third lens may have positive light
  • the optical imaging lens of the present application can satisfy the conditional expression 1.5 ⁇ CT4 / T34 ⁇ 2.5, where CT4 is the center thickness of the fourth lens on the optical axis, and T34 is the third lens and the fourth lens are at The separation distance on the optical axis. More specifically, CT4 and T34 can further satisfy 1.56 ⁇ CT4 / T34 ⁇ 2.24. The reasonable configuration of the air interval between the third lens and the fourth lens on the optical axis and the center thickness of the fourth lens can make the lens have a good ability to eliminate distortion while maintaining the miniaturization characteristics.
  • the optical imaging lens of the present application may satisfy a conditional expression 1 ⁇ f1 / f ⁇ 1.5, where f1 is an effective focal length of the first lens and f is a total effective focal length of the optical imaging lens. More specifically, f1 and f can further satisfy 1.04 ⁇ f1 / f ⁇ 1.33. Controlling the negative power of the first lens to a reasonable range is conducive to increasing the overall focal length of the imaging lens, and it can also play a role in balancing field curvature.
  • the optical imaging lens of the present application can satisfy the conditional TTL / ImgH ⁇ 1.4, where TTL is the distance on the optical axis from the object side of the first lens to the imaging surface of the optical imaging lens, and ImgH is optical The half of the diagonal of the effective pixel area on the imaging surface of the imaging lens. More specifically, TTL and ImgH can further satisfy 1.18 ⁇ TTL / ImgH ⁇ 1.22. The smaller the ratio of TTL to ImgH, the shorter the total optical length TTL of the lens under the same imaging surface size, which is conducive to achieving the ultra-thin characteristics of the optical imaging lens while satisfying the imaging quality.
  • the total size of the imaging lens can be effectively compressed, and the ultra-thin characteristics and miniaturization of the imaging lens can be achieved, so that the above imaging lens can be better suited for size Limited system.
  • the optical imaging lens of the present application may satisfy the conditional expression 0.5 ⁇
  • the power of the fifth lens and the seventh lens are reasonably allocated, and the power of the rear section of the imaging lens is controlled within a small range, which can reduce the deflection angle of the light, thereby reducing the sensitivity of the imaging lens.
  • the optical imaging lens of the present application can satisfy the conditional expression 0.5 ⁇ R12 / f ⁇ 1.3, where R12 is the curvature radius of the image side of the sixth lens, and f is the total effective focal length of the optical imaging lens. More specifically, R12 and f can further satisfy 0.64 ⁇ R12 / f ⁇ 1.08.
  • the reasonable setting of the curvature radius of the object side of the sixth lens is beneficial to the adjustment of the deflection angle of the light, so that the system can easily match the commonly used chip.
  • the optical imaging lens of the present application can satisfy a conditional expression of 0.1 ⁇
  • Reasonably controlling the combined focal lengths of the first lens and the second lens and the combined focal lengths of the fifth lens, the sixth lens, and the seventh lens can effectively correct the distortion of the paraxial region at the image plane and improve the imaging quality of the lens.
  • the optical imaging lens of the present application can satisfy the conditional expression 0.5 ⁇ ET5 / CT5 ⁇ 1, where ET5 is the edge thickness of the fifth lens and CT5 is the center thickness of the fifth lens on the optical axis. More specifically, ET5 and CT5 can further satisfy 0.60 ⁇ ET5 / CT5 ⁇ 0.82. Reasonably controlling the edge thickness and the center thickness of the fifth lens can effectively control the incident angle of light on the image side of the fifth lens, thereby improving the imaging quality of the optical imaging lens.
  • the optical imaging lens of the present application can satisfy a conditional expression of 0.5 ⁇ (R13 + R14) / ImgH ⁇ 1.5, where R13 is a radius of curvature of the object side of the seventh lens, and R14 is an image of the seventh lens.
  • the curvature radius of the side, ImgH is half the length of the diagonal of the effective pixel area on the imaging surface of the optical imaging lens. More specifically, R13, R14, and ImgH can further satisfy 0.71 ⁇ (R13 + R14) /ImgH ⁇ 1.37.
  • the optical imaging lens of the present application can satisfy the conditional expression 1 ⁇ CT7 / CT6 ⁇ 3, where CT6 is the center thickness of the sixth lens on the optical axis and CT7 is the seventh lens on the optical axis. Center thickness. More specifically, CT6 and CT7 can further satisfy 1.10 ⁇ CT7 / CT6 ⁇ 2.92. Reasonably controlling the center thickness of the sixth lens and the center thickness of the seventh lens will help to uniformly distribute the lens size, ensure assembly stability, and help reduce aberrations of the entire optical imaging lens and shorten the overall length of the optical imaging lens .
  • the optical imaging lens of the present application can satisfy the conditional expression 1mm ⁇ f1 ⁇ R2 / (R1 ⁇ 5) ⁇ 2mm, where f1 is an effective focal length of the first lens and R1 is an object side of the first lens
  • the curvature radius of R2 is the curvature radius of the image side of the first lens.
  • f1, R1, and R2 can further satisfy 1.49 mm ⁇ f1 ⁇ R2 / (R1 ⁇ 5) ⁇ 1.91 mm.
  • Reasonably configuring the effective focal length of the first lens and the curvature radii of the object and image sides of the first lens can effectively control the deflection of the light at the first lens and reduce the sensitivity of the lens; at the same time, it is beneficial to reduce the system's ball Aberration, astigmatism, etc., and can effectively improve the imaging quality of optical imaging lenses.
  • the optical imaging lens of the present application can satisfy the conditional expression HFOV ⁇ 45 °, where HFOV is the maximum half field angle of the optical imaging lens. More specifically, HFOV can further satisfy 45.1 ° ⁇ HFOV ⁇ 47.2 °. Under the premise of keeping the size of the lens small, by controlling the angle of field of view, problems such as excessive aberrations of the edge field of view and low illumination can be effectively avoided, and the lens has excellent imaging quality in a wide field of view.
  • the optical imaging lens according to the above embodiment of the present application may employ multiple lenses, such as the seven lenses described above.
  • the size of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the optical imaging lens configured as above can also have beneficial effects such as ultra-thin, large aperture, and excellent imaging quality.
  • At least one of the mirror surfaces of each lens is an aspherical mirror surface.
  • Aspheric lenses are characterized by a curvature that varies continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the lens center to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatic aberrations. The use of aspheric lenses can eliminate as much aberrations as possible during imaging, thereby improving imaging quality.
  • the number of lenses constituting the optical imaging lens may be changed to obtain various results and advantages described in this specification.
  • the optical imaging lens is not limited to including seven lenses. If necessary, the optical imaging lens may further include other numbers of lenses. Specific examples of the optical imaging lens applicable to the above embodiments will be further described below with reference to the drawings.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.
  • an optical imaging lens includes an aperture STO, a first lens E1, a second lens E2, a third lens E3, and a first lens along an optical axis in order from the object side to the image side.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 thereof is a concave surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 1, where the units of the radius of curvature and thickness are millimeters (mm).
  • each aspheric lens can be defined using, but not limited to, the following aspheric formula:
  • x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis direction;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the aspherical i-th order.
  • Table 2 below shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14, and A 16 that can be used for each aspherical mirror surface S1-S14 in Example 1.
  • Table 3 shows the effective focal lengths f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17
  • the diagonal of the upper effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 2A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 2B shows an astigmatism curve of the optical imaging lens of Example 1, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 2C shows a distortion curve of the optical imaging lens of Example 1, which represents the value of distortion corresponding to different image heights.
  • FIG. 2D shows the magnification chromatic aberration curve of the optical imaging lens of Example 1, which represents the deviation of different image heights on the imaging surface after the light passes through the lens. It can be known from FIG. 2A to FIG. 2D that the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, The four lenses E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 2, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 5 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the effective focal lengths f1 to f7 of each lens in Example 2, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the upper effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 4A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 2, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 4B shows an astigmatism curve of the optical imaging lens of Example 2, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 4C shows the distortion curve of the optical imaging lens of Example 2, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 4D shows a magnification chromatic aberration curve of the optical imaging lens of Example 2, which represents deviations of different image heights on the imaging plane after light passes through the lens. According to FIG. 4A to FIG. 4D, it can be known that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, and a first lens.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 thereof is a concave surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 3.
  • the units of the radius of curvature and thickness are millimeters (mm).
  • Table 8 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 3, where each aspherical surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 9 shows the effective focal lengths f1 to f7 of the lenses in Example 3, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the upper effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 6A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 3, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 6B shows an astigmatism curve of the optical imaging lens of Example 3, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 6C shows a distortion curve of the optical imaging lens of Example 3, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 6D shows the magnification chromatic aberration curve of the optical imaging lens of Example 3, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. According to FIG. 6A to FIG. 6D, it can be known that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, and a first lens.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 4, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 11 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 shows the effective focal lengths f1 to f7 of each lens in Example 4, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17
  • the diagonal of the upper effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 8A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 4, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 8B shows an astigmatism curve of the optical imaging lens of Example 4, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 8C shows a distortion curve of the optical imaging lens of Example 4, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Example 4, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. According to FIG. 8A to FIG. 8D, it can be known that the optical imaging lens provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, a first lens
  • the four lenses E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 5, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 14 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in the above-mentioned Embodiment 1.
  • Table 15 shows the effective focal lengths f1 to f7 of the lenses in Example 5, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the upper effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 10A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 5, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 10B shows an astigmatism curve of the optical imaging lens of Example 5, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 10C shows a distortion curve of the optical imaging lens of Example 5, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 10D shows the magnification chromatic aberration curve of the optical imaging lens of Example 5, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. It can be seen from FIGS. 10A to 10D that the optical imaging lens provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, and a first lens.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 6, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 17 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 shows the effective focal lengths f1 to f7 of each lens in Example 6, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the upper effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 12A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 6, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 12C shows a distortion curve of the optical imaging lens of Example 6, which represents the magnitude of the distortion corresponding to different image heights.
  • FIG. 12D shows the magnification chromatic aberration curve of the optical imaging lens of Example 6, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. According to FIG. 12A to FIG. 12D, it can be known that the optical imaging lens provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, The four lenses E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 7, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 20 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 7, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 21 shows the effective focal length f1 to f7 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17
  • the diagonal of the upper effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 14A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 7, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 14B shows an astigmatism curve of the optical imaging lens of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 14C illustrates a distortion curve of the optical imaging lens of Example 7, which represents the magnitude of distortion corresponding to different image heights.
  • FIG. 14D shows the magnification chromatic aberration curve of the optical imaging lens of Example 7, which represents the deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens provided in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, a first lens
  • the four lenses E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 8, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 23 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 shows the effective focal lengths f1 to f7 of the lenses in Example 8, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the upper effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 16A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 8, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 16B shows an astigmatism curve of the optical imaging lens of Example 8, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 16C shows the distortion curve of the optical imaging lens of Example 8, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 16D shows the magnification chromatic aberration curve of the optical imaging lens of Example 8, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. According to FIG. 16A to FIG. 16D, it can be known that the optical imaging lens provided in Embodiment 8 can achieve good imaging quality.
  • Examples 1 to 8 satisfy the relationships shown in Table 25, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be an independent imaging device such as a digital camera or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)和第七透镜(E7)。第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有正光焦度,其像侧面为凸面;第六透镜的像侧面为凹面;第七透镜的物侧面为凸面,像侧面为凹面。第四透镜在光轴上的中心厚度CT4与第三透镜和第四透镜在光轴上的间隔距离T34满足1.5<CT4/T34<2.5。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年08月06日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810886101.1的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,涉及一种包括七片透镜的光学成像镜头。
背景技术
近些年,随着具备摄影功能的便携式电子产品的快速发展,市场对适用于便携式电子产品的小型化光学***的要求日益提高。目前,一般成像镜头的感光元件主要是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)两种。随着CCD和CMOS等感光元件性能的提高及尺寸的减小,对于相配套的光学成像镜头的高成像品质及小型化均提出了更高的要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
一方面,本申请提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其像侧面可为凸面;第六透镜的像侧面可为凹面;第七透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第三透镜和第四透镜在光轴上的间隔距离T34可满足1.5<CT4/T34<2.5。
在一个实施方式中,第五透镜的有效焦距f5与第七透镜的有效焦距f7可满足0.5<|f5/f7|<2。
在一个实施方式中,第六透镜的像侧面的曲率半径R12与光学成像镜头的总有效焦距f可满足0.5<R12/f<1.3。
在一个实施方式中,第五透镜的边缘厚度ET5与第五透镜在光轴上的中心厚度CT5可满足0.5<ET5/CT5<1。
在一个实施方式中,第七透镜的物侧面的曲率半径R13、第七透镜的像侧面的曲率半径R14与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足0.5<(R13+R14)/ImgH<1.5。
在一个实施方式中,第六透镜在光轴上的中心厚度CT6与第七透镜在光轴上的中心厚度CT7可满足1<CT7/CT6<3。
在一个实施方式中,第一透镜的有效焦距f1、第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足1mm<f1×R2/(R1×5)<2mm。
在一个实施方式中,第一透镜的有效焦距f1与光学成像镜头的总有效焦距f可满足1≤f1/f<1.5。
在一个实施方式中,第一透镜和第二透镜的组合焦距f12与第五透镜、第六透镜和第七透镜的组合焦距f567可满足0.1<|f12/f567|<0.5。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<1.4。
在一个实施方式中,光学成像镜头的最大半视场角HFOV可满足HFOV≥45°。
本申请采用了七片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有超薄、大孔径、优良成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可相互组合。下面将参考附图并结合实施例来详细说明本申请。以下将详细描述本申请的特征、原理和其他方面。
根据本申请示例性实施方式的光学成像镜头可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列,且各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其像侧面可为凸面;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度,其像侧面可为凹面;第七透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<CT4/T34<2.5,其中,CT4为第四透镜在光轴上的中心厚度,T34为第三透镜和第四透镜在光轴上的间隔距离。更具体地,CT4和T34进一步可满足1.56≤CT4/T34≤2.24。合理配置第三透镜和第四透镜在光轴上的空气间隔以及第四透镜的中心厚度,可以使得镜头在保持小型化特性的同时具有较好的消畸变的能力。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1≤f1/f<1.5,其中,f1为第一透镜的有效焦距,f为光学成像镜头的总有效焦距。更具体地,f1和f进一步可满足1.04≤f1/f≤1.33。将第一透镜的负光焦度控制在合理范围,有利于增加成像镜头的整体焦距,同时还可以起到平衡场曲的作用。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/ImgH<1.4,其中,TTL为第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.18≤TTL/ImgH≤1.22。TTL与ImgH的比值越小,表示在同样成像面大小的情况下镜头的光学总长度TTL更短,进而有利于在满足成像质量的同时实现光学成像镜头的超薄特性。通过合理控制成像镜头的光学总长度与像高之间比例,可有效地压缩成像镜头的总尺寸,实现成像镜头的超薄特性与小型化,从而使得上述成像镜头能够较好地适用于尺寸受限的***。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<|f5/f7|<2,其中,f5为第五透镜的有效焦距,f7为第七透镜的有效焦距。更具体地,f5和f7进一步可满足0.64≤|f5/f7|≤1.74。合理分配第五透镜和第七透镜的光焦度,将成像镜头后段的光焦度控制在较小范围内,可以减小光线的偏转角,从而降低成像镜头的敏感性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<R12/f<1.3,其中,R12为第六透镜的像侧面的曲率半径,f为光学成像镜头的总有效焦距。更具体地,R12和f进一步可满足0.64≤R12/f≤1.08。合理设置第六透镜物侧面的曲率半径,有利于对光线偏折角度进行调控,使***能较容易地匹配常用芯片。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.1<|f12/f567|<0.5,其中,f12为第一透镜和第二透镜的组合焦距,f567为第五透镜、第六透镜和第七透镜的组合焦距。更具体地,f12和f567进一步可满足0.11≤|f12/f567|≤0.43。合理控制第一透镜和第二透镜的组合焦距以及第五透镜、第六透镜和第七透镜的组合焦距,可以有效校正像面处近轴区域的畸变,并提高镜头的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<ET5/CT5<1,其中,ET5为第五透镜的边缘厚度,CT5为第五透镜在光轴上的中心厚度。更具体地,ET5和CT5进一步可满足0.60≤ET5/CT5≤0.82。合理控制第五透镜的边缘厚度及中心厚度,能够有效控制光线在第五透镜像侧面的入射角度,进而提高光学成像镜头的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<(R13+R14)/ImgH<1.5,其中,R13为第七透镜的物侧面的曲率半径,R14为第七透镜的像侧面的曲率半径,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,R13、R14和ImgH进一步可满足0.71≤(R13+R14)/ImgH≤1.37。通过合理控制第七透镜的物侧面和像侧面的曲率半径的大小及方向,来实现对光学成像镜头的场曲的调控,进而有助于修正光学成像镜头的整体像差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<CT7/CT6<3,其中,CT6为第六透镜在光轴上的中心厚度,CT7为第七透镜在光轴上的中心厚度。更具体地,CT6和CT7进一步可满足1.10≤CT7/CT6≤2.92。合理控制第六透镜的中心厚度和第七透镜的中心厚度,有助于镜片尺寸的均匀分布,保证组装稳定性,并有助于减小整个光学成像镜头的像差,缩短光学成像镜头的总长。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1mm<f1×R2/(R1×5)<2mm,其中,f1为第一透镜的有效焦距,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,f1、R1和R2进一步可满足1.49mm≤f1×R2/(R1×5)≤1.91mm。合理配置第一透镜的有效焦 距以及第一透镜物侧面和像侧面的曲率半径,能有效地控制光线在第一透镜处的偏折,降低镜头的敏感性;同时,有利于减小***的球差、像散等,并可有效地提高光学成像镜头的成像品质。
在示例性实施方式中,本申请的光学成像镜头可满足条件式HFOV≥45°,其中,HFOV为光学成像镜头的最大半视场角。更具体地,HFOV进一步可满足45.1°≤HFOV≤47.2°。在保持镜头小型化的前提下,通过控制视场角,可以有效地避免边缘视场像差过大以及照度偏低等问题,保证镜头在较广的视场角内具有优良的成像品质。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学成像镜头还可具有超薄、大孔径、优良成像品质等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像镜头不限于包括七个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
        折射率 色散系数  
OBJ 球面 无穷 无穷      
STO 球面 无穷 -0.3022      
S1 非球面 1.1808 0.3790 1.55 56.1 0.3036
S2 非球面 2.5308 0.2021     4.0479
S3 非球面 45.8076 0.2788 1.55 56.1 99.0000
S4 非球面 -3.9950 0.0150     18.2420
S5 非球面 -22.6077 0.2116 1.64 23.8 99.0000
S6 非球面 4.7694 0.1045     29.7154
S7 非球面 -80.7910 0.2345 1.64 23.8 99.0000
S8 非球面 -9.2658 0.2850     -99.0000
S9 非球面 6.3721 0.3823 1.67 20.4 28.7971
S10 非球面 20.5566 0.1682     29.0713
S11 非球面 -28.0345 0.3270 1.55 56.1 -19.1835
S12 非球面 3.5533 0.1468     1.0705
S13 非球面 2.5781 0.5838 1.55 56.1 -44.8265
S14 非球面 1.9279 0.3547     -0.3970
S15 球面 无穷 0.2000 1.52 64.2  
S16 球面 无穷 0.1317      
S17 球面 无穷        
表1
由表1可知,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019084949-appb-000001
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.3393E-02 2.1756E-01 -1.3171E+00 4.4151E+00 -8.4589E+00 8.6743E+00 -3.7104E+00
S2 -2.6233E-02 -1.9600E-02 -1.6279E-01 9.0971E-01 -2.5376E+00 3.4201E+00 -1.6498E+00
S3 -1.0211E-01 1.8895E-01 -1.8563E+00 7.8959E+00 -1.8180E+01 2.2069E+01 -1.0687E+01
S4 -3.1618E-01 2.1045E+00 -1.3471E+01 4.9616E+01 -1.0226E+02 1.1144E+02 -5.0254E+01
S5 -4.3744E-01 2.2610E+00 -1.5319E+01 5.6328E+01 -1.1580E+02 1.2624E+02 -5.7322E+01
S6 -1.7708E-01 2.9550E-01 -1.2931E+00 1.4772E+00 1.3656E+00 -4.4887E+00 3.0453E+00
S7 -3.8227E-02 -1.1935E-02 1.7547E+00 -7.7517E+00 1.4542E+01 -1.3363E+01 4.9128E+00
S8 -6.3022E-02 -4.2939E-01 2.6310E+00 -6.3047E+00 7.9686E+00 -5.2211E+00 1.3788E+00
S9 4.9641E-02 -7.9220E-01 1.5586E+00 -2.0820E+00 1.8203E+00 -1.0154E+00 2.5311E-01
S10 3.6562E-01 -1.0274E+00 1.2641E+00 -9.4032E-01 4.2453E-01 -1.0733E-01 1.1485E-02
S11 2.7846E-01 -5.1831E-01 2.1375E-01 8.3148E-02 -9.7468E-02 3.0240E-02 -3.3337E-03
S12 -6.2931E-02 -8.9023E-02 -7.2976E-02 1.1586E-01 -4.7897E-02 8.3969E-03 -5.4699E-04
S13 5.8239E-02 -5.4971E-01 4.6504E-01 -1.7453E-01 3.4292E-02 -3.4501E-03 1.4066E-04
S14 -7.3619E-02 -1.5352E-01 1.3670E-01 -5.4572E-02 1.1551E-02 -1.2597E-03 5.5564E-05
表2
表3给出了实施例1中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f1(mm) 3.69 f7(mm) -20.51
f2(mm) 6.74 f(mm) 3.28
f3(mm) -6.13 TTL(mm) 4.00
f4(mm) 16.32 ImgH(mm) 3.29
f5(mm) 13.71 HFOV(°) 45.6
f6(mm) -5.76    
表3
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高处对应的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出了实施例2中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视 场角HFOV。
Figure PCTCN2019084949-appb-000002
表4
面号 A4 A6 A8 A10 A12 A14 A16
S1 -4.0889E-02 3.3165E-01 -2.2951E+00 8.7067E+00 -1.8877E+01 2.1689E+01 -1.0355E+01
S2 -3.0519E-02 -3.4553E-02 -2.4512E-01 1.3362E+00 -3.9130E+00 4.7742E+00 -1.2999E+00
S3 -1.0784E-01 9.3054E-02 -1.4967E+00 6.6221E+00 -1.5760E+01 1.9685E+01 -8.2590E+00
S4 -1.8529E-01 -1.0683E+00 7.9844E+00 -2.5192E+01 4.3817E+01 -3.9952E+01 1.5330E+01
S5 -1.9757E-01 -1.0754E+00 6.8934E+00 -2.1032E+01 3.4916E+01 -3.1816E+01 1.2037E+01
S6 2.4903E-02 -8.0061E-01 3.8339E+00 -1.3761E+01 2.8612E+01 -3.3497E+01 1.6879E+01
S7 -5.5954E-02 -2.5344E-01 1.9576E+00 -8.4425E+00 1.8140E+01 -2.0908E+01 9.4495E+00
S8 -1.4776E-01 2.3742E-01 -2.3727E-01 1.0900E-01 -2.4923E-02 2.7765E-03 -1.2037E-04
S9 -1.3978E-01 6.3493E-02 -3.0936E-01 3.4331E-01 -1.5897E-01 -2.2289E-02 2.3945E-02
S10 -1.0938E-01 -2.1369E-02 -2.1546E-02 2.2962E-02 -6.3502E-03 -2.3064E-03 7.5995E-04
S11 1.8465E-02 -4.1479E-01 4.7647E-01 -2.6296E-01 3.4749E-02 2.3282E-02 -6.7679E-03
S12 -1.3381E-01 -2.4512E-01 8.2441E-02 7.3633E-02 -5.0280E-02 1.1054E-02 -8.5380E-04
S13 6.5432E-02 -6.4864E-01 5.8317E-01 -2.3565E-01 5.0497E-02 -5.6174E-03 2.5686E-04
S14 -2.0613E-01 -1.5815E-02 7.5766E-02 -4.3074E-02 1.0680E-02 -1.2381E-03 5.3963E-05
表5
f1(mm) 3.94 f7(mm) 31.20
f2(mm) 4.49 f(mm) 3.26
f3(mm) -5.16 TTL(mm) 3.88
f4(mm) 62.46 ImgH(mm) 3.29
f5(mm) 36.43 HFOV(°) 45.9
f6(mm) -5.18    
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高处对应的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出了实施例3中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019084949-appb-000003
Figure PCTCN2019084949-appb-000004
表7
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.3707E-02 2.4864E-01 -1.6578E+00 6.0873E+00 -1.2834E+01 1.4462E+01 -6.8664E+00
S2 -2.0177E-02 -1.0394E-01 5.5330E-01 -2.7218E+00 7.2415E+00 -1.0510E+01 6.5419E+00
S3 -8.7901E-02 8.0191E-02 -8.9190E-01 3.3107E+00 -5.8638E+00 4.6637E+00 1.3045E-01
S4 -4.1420E-01 2.8562E+00 -1.6074E+01 5.4934E+01 -1.0979E+02 1.1930E+02 -5.4421E+01
S5 -5.4111E-01 2.9143E+00 -1.7153E+01 5.9045E+01 -1.2006E+02 1.3313E+02 -6.2999E+01
S6 -1.9622E-01 2.3610E-01 -5.4806E-01 -1.2471E+00 6.5843E+00 -9.9834E+00 5.5798E+00
S7 -3.3506E-02 -6.9880E-02 1.5125E+00 -5.9328E+00 1.0369E+01 -8.9773E+00 3.1278E+00
S8 -2.7033E-02 -5.0053E-01 2.5568E+00 -5.7269E+00 6.8258E+00 -4.2008E+00 1.0468E+00
S9 4.8860E-02 -8.6650E-01 1.6873E+00 -2.1899E+00 1.8832E+00 -1.1159E+00 3.1297E-01
S10 3.5368E-01 -1.1437E+00 1.5615E+00 -1.2667E+00 6.1240E-01 -1.6281E-01 1.8083E-02
S11 2.8069E-01 -6.9057E-01 4.8952E-01 -1.2077E-01 -1.5558E-02 1.3076E-02 -1.9131E-03
S12 -7.4200E-02 -1.6164E-01 -2.6494E-02 1.2295E-01 -6.0273E-02 1.1806E-02 -8.4770E-04
S13 6.6853E-02 -6.6620E-01 6.0391E-01 -2.4434E-01 5.2116E-02 -5.7378E-03 2.5826E-04
S14 -1.0249E-01 -1.4585E-01 1.5278E-01 -6.7922E-02 1.5776E-02 -1.8751E-03 8.9816E-05
表8
f1(mm) 3.73 f7(mm) -28.90
f2(mm) 6.20 f(mm) 3.28
f3(mm) -5.97 TTL(mm) 3.99
f4(mm) 17.72 ImgH(mm) 3.29
f5(mm) 18.53 HFOV(°) 45.6
f6(mm) -5.82    
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高处对应的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、 第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出了实施例4中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019084949-appb-000005
表10
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.6610E-02 2.7451E-01 -1.9022E+00 7.1466E+00 -1.5375E+01 1.7542E+01 -8.4060E+00
S2 -2.9015E-02 -1.8693E-01 9.7924E-01 -4.4492E+00 1.1145E+01 -1.5796E+01 1.0044E+01
S3 -1.2681E-01 5.3022E-02 -1.0399E+00 3.8241E+00 -7.2166E+00 7.0839E+00 -1.1285E+00
S4 -1.8252E-01 -1.2698E+00 9.9314E+00 -3.4429E+01 6.7356E+01 -7.0611E+01 3.1215E+01
S5 -1.7378E-01 -1.3167E+00 8.6242E+00 -2.8846E+01 5.4345E+01 -5.6942E+01 2.5361E+01
S6 6.9638E-02 -8.0706E-01 3.4956E+00 -1.2384E+01 2.6284E+01 -3.1213E+01 1.5816E+01
S7 -4.4294E-02 4.4240E-02 -8.0357E-01 3.2395E+00 -8.3719E+00 1.0764E+01 -6.0843E+00
S8 -1.9748E-01 3.7450E-01 -5.4379E-01 3.8277E-01 2.6702E-01 -5.9379E-01 2.3779E-01
S9 -1.1888E-01 8.1652E-02 -3.0144E-01 2.5454E-01 -4.9200E-02 -5.4268E-02 2.1121E-02
S10 -2.3902E-01 2.1990E-01 -3.3741E-01 2.8030E-01 -1.3422E-01 3.3358E-02 -3.4729E-03
S11 6.2952E-03 -5.6228E-01 8.6206E-01 -6.6316E-01 2.5192E-01 -3.8019E-02 3.8588E-04
S12 -1.2666E-01 -3.9562E-01 3.3598E-01 -1.0539E-01 1.3537E-02 -3.3045E-04 -4.3422E-05
S13 1.9796E-02 -5.5844E-01 5.0943E-01 -2.0427E-01 4.3167E-02 -4.7244E-03 2.1245E-04
S14 -2.2201E-01 2.8548E-02 3.6296E-02 -2.5341E-02 6.3871E-03 -7.0415E-04 2.7424E-05
表11
f1(mm) 3.84 f7(mm) 24.32
f2(mm) 4.68 f(mm) 3.23
f3(mm) -5.50 TTL(mm) 3.88
f4(mm) -69.85 ImgH(mm) 3.29
f5(mm) 23.32 HFOV(°) 45.9
f6(mm) -5.37    
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高处对应的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面 的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出了实施例5中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019084949-appb-000006
表13
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.2581E-03 3.5657E-02 -2.2684E-01 9.0302E-01 -2.0393E+00 2.3486E+00 -1.0708E+00
S2 -4.7654E-02 -1.2329E-02 -3.2491E-01 1.5896E+00 -4.1754E+00 5.1579E+00 -2.0855E+00
S3 -1.5882E-01 6.5376E-02 -7.6273E-01 3.0683E+00 -6.6941E+00 8.0498E+00 -3.6110E+00
S4 8.8408E-02 -3.6780E+00 1.7878E+01 -4.6323E+01 7.1293E+01 -6.1734E+01 2.3770E+01
S5 2.1672E-01 -3.6306E+00 1.5901E+01 -4.0107E+01 5.9400E+01 -4.9359E+01 1.8184E+01
S6 2.3075E-01 -8.8510E-01 2.5959E+00 -6.9975E+00 1.1876E+01 -1.1461E+01 4.9169E+00
S7 -1.1857E-01 -3.9602E-01 1.2749E+00 -2.0082E+00 1.4594E+00 -3.2383E-01 -2.2959E-01
S8 -2.8945E-02 -4.2142E-01 1.0250E+00 -1.5700E+00 1.7188E+00 -1.0675E+00 2.6350E-01
S9 1.7714E-01 -3.2277E-01 3.1791E-01 -4.7282E-01 4.2777E-01 -1.6511E-01 1.9315E-02
S10 -1.2642E-01 3.4397E-01 -5.0094E-01 3.3321E-01 -1.1348E-01 1.8713E-02 -1.0763E-03
S11 2.6554E-02 -7.2198E-02 2.7982E-03 1.2533E-02 -7.1689E-03 1.8007E-03 -1.7629E-04
S12 7.4339E-05 -7.7555E-02 3.9463E-02 -1.0963E-02 1.7483E-03 -1.4916E-04 5.3725E-06
S13 -2.3767E-01 8.4248E-02 -1.4190E-02 1.3821E-03 -8.7526E-05 4.2448E-06 -1.3278E-07
S14 -1.5832E-01 8.8522E-02 -4.1459E-02 1.2014E-02 -2.0249E-03 1.8216E-04 -6.7127E-06
表14
f1(mm) 3.97 f7(mm) -5.80
f2(mm) 5.16 f(mm) 3.23
f3(mm) -6.31 TTL(mm) 4.01
f4(mm) -198.19 ImgH(mm) 3.29
f5(mm) -10.10 HFOV(°) 46.0
f6(mm) 5.98    
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高处对应的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出了实施例6中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019084949-appb-000007
Figure PCTCN2019084949-appb-000008
表16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.2807E-02 1.2642E-01 -7.6507E-01 2.4313E+00 -4.4988E+00 4.3215E+00 -1.7656E+00
S2 -4.0021E-02 -5.7006E-02 -4.3987E-02 2.1278E-01 -7.7926E-01 8.0893E-01 -1.2974E-01
S3 -1.3976E-01 -7.9250E-03 -2.9170E-01 1.0088E+00 -2.0825E+00 2.6610E+00 -1.1662E+00
S4 5.6950E-02 -3.3951E+00 1.7291E+01 -4.7175E+01 7.6304E+01 -6.8542E+01 2.6644E+01
S5 1.7936E-01 -3.3015E+00 1.4933E+01 -3.9512E+01 6.1816E+01 -5.3923E+01 2.0290E+01
S6 2.2528E-01 -8.8154E-01 2.6215E+00 -6.6969E+00 1.0524E+01 -9.4533E+00 3.7316E+00
S7 -1.0262E-01 -5.2638E-01 1.5058E+00 -1.7462E+00 6.2873E-01 1.9941E-01 -2.1961E-01
S8 -1.2998E-02 -5.2227E-01 9.9701E-01 -1.1829E+00 1.2138E+00 -7.8436E-01 1.9922E-01
S9 1.7915E-01 -1.3060E-01 -2.9271E-01 4.1630E-01 -2.4177E-01 8.1500E-02 -1.6344E-02
S10 -1.7172E-01 5.3276E-01 -8.3700E-01 6.7279E-01 -3.0554E-01 7.5090E-02 -7.7604E-03
S11 1.0044E-01 -1.7859E-01 8.1957E-02 -2.7519E-02 9.4868E-03 -3.2931E-03 4.9951E-04
S12 1.3044E-01 -2.4713E-01 1.5627E-01 -5.9525E-02 1.3851E-02 -1.8358E-03 1.0616E-04
S13 -2.3775E-01 8.4244E-02 -1.4189E-02 1.3820E-03 -8.7565E-05 4.2134E-06 -1.4459E-07
S14 -1.6610E-01 9.3386E-02 -4.1868E-02 1.1512E-02 -1.8426E-03 1.5956E-04 -5.7948E-06
表17
f1(mm) 4.06 f7(mm) -7.32
f2(mm) 5.08 f(mm) 3.10
f3(mm) -6.30 TTL(mm) 4.00
f4(mm) -200.45 ImgH(mm) 3.29
f5(mm) -6.97 HFOV(°) 47.2
f6(mm) 4.69    
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高处对应的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申 请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出了实施例7中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019084949-appb-000009
表19
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.3052E-02 1.1569E-01 -6.9266E-01 2.0873E+00 -3.6882E+00 3.3463E+00 -1.3021E+00
S2 -3.9030E-02 -7.0908E-02 4.2926E-02 -1.5617E-01 3.7853E-02 -1.0941E-01 2.5140E-01
S3 -1.3756E-01 1.2729E-02 -4.6776E-01 1.6951E+00 -3.5981E+00 4.3819E+00 -1.9702E+00
S4 5.9041E-02 -3.5253E+00 1.8238E+01 -5.0134E+01 8.0822E+01 -7.1673E+01 2.7267E+01
S5 1.8116E-01 -3.4112E+00 1.5901E+01 -4.2858E+01 6.7599E+01 -5.8864E+01 2.1887E+01
S6 2.2797E-01 -9.0672E-01 2.7715E+00 -7.0293E+00 1.0898E+01 -9.6683E+00 3.7372E+00
S7 -9.3602E-02 -6.3933E-01 1.9304E+00 -2.8071E+00 2.5489E+00 -1.7644E+00 6.0678E-01
S8 -3.8133E-03 -5.5920E-01 1.0031E+00 -1.1751E+00 1.2571E+00 -8.3216E-01 2.0989E-01
S9 1.6864E-01 -1.9464E-02 -6.6205E-01 1.0416E+00 -8.3411E-01 3.7526E-01 -7.7818E-02
S10 -1.8795E-01 5.9760E-01 -9.7045E-01 8.3211E-01 -4.1300E-01 1.1212E-01 -1.2759E-02
S11 1.3618E-01 -2.3273E-01 1.4771E-01 -8.8882E-02 4.5501E-02 -1.4642E-02 1.9462E-03
S12 1.5986E-01 -2.7257E-01 1.6595E-01 -6.0736E-02 1.3574E-02 -1.7375E-03 9.8024E-05
S13 -2.3823E-01 8.4215E-02 -1.4190E-02 1.3822E-03 -8.7431E-05 4.2114E-06 -1.4527E-07
S14 -1.7095E-01 9.7550E-02 -4.3920E-02 1.2024E-02 -1.8986E-03 1.6114E-04 -5.7195E-06
表20
f1(mm) 4.12 f7(mm) -7.45
f2(mm) 5.03 f(mm) 3.10
f3(mm) -6.52 TTL(mm) 4.03
f4(mm) -115.74 ImgH(mm) 3.29
f5(mm) -6.73 HFOV(°) 47.2
f6(mm) 4.57    
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同像高处对应的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出了实施例8中各透镜的有效焦距f1至f7、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019084949-appb-000010
表22
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.4723E-02 2.4174E-01 -1.5543E+00 5.5235E+00 -1.1458E+01 1.2829E+01 -6.2581E+00
S2 -1.4943E-02 -1.3580E-01 9.8759E-01 -5.0836E+00 1.4198E+01 -2.1852E+01 1.3981E+01
S3 -1.0166E-01 2.0886E-01 -1.3832E+00 6.0018E+00 -1.3759E+01 1.5104E+01 -4.4588E+00
S4 -7.8578E-01 4.4876E+00 -2.1215E+01 6.9472E+01 -1.4577E+02 1.7339E+02 -8.7455E+01
S5 -7.3087E-01 3.9614E+00 -2.0980E+01 7.2603E+01 -1.6174E+02 2.0308E+02 -1.0867E+02
S6 -4.9762E-02 -4.8337E-01 2.7945E+00 -1.1645E+01 2.5770E+01 -2.9846E+01 1.4969E+01
S7 4.8126E-02 -4.6501E-01 2.7943E+00 -9.2021E+00 1.5960E+01 -1.4971E+01 6.0890E+00
S8 -7.7813E-03 -5.2622E-01 2.3301E+00 -4.8127E+00 5.4087E+00 -3.1633E+00 7.4934E-01
S9 -9.4123E-02 -4.9792E-01 1.0981E+00 -1.5408E+00 1.4644E+00 -9.9981E-01 3.1166E-01
S10 1.3953E-01 -6.8926E-01 9.9419E-01 -8.2456E-01 4.0889E-01 -1.1369E-01 1.3461E-02
S11 7.9602E-02 -3.7460E-01 1.8245E-01 1.0314E-01 -1.2406E-01 4.1895E-02 -4.9665E-03
S12 -8.2264E-02 -1.7615E-01 2.2110E-02 7.9765E-02 -4.2701E-02 8.4086E-03 -5.9419E-04
S13 6.6849E-02 -6.2755E-01 5.5599E-01 -2.2031E-01 4.6084E-02 -4.9822E-03 2.2045E-04
S14 -1.4560E-01 -7.8397E-02 1.0153E-01 -4.6416E-02 1.0714E-02 -1.2494E-03 5.8299E-05
表23
f1(mm) 3.37 f7(mm) -27.47
f2(mm) 22.43 f(mm) 3.25
f3(mm) 110.71 TTL(mm) 3.94
f4(mm) -22.17 ImgH(mm) 3.29
f5(mm) -33.66 HFOV(°) 45.1
f6(mm) -14.59    
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同像高处对应的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表25中所示的关系。
条件式/实施例 1 2 3 4 5 6 7 8
f1/f 1.12 1.21 1.14 1.19 1.23 1.31 1.33 1.04
TTL/ImgH 1.22 1.18 1.21 1.18 1.22 1.22 1.22 1.20
|f5/f7| 0.67 1.17 0.64 0.96 1.74 0.95 0.90 1.23
R12/f 1.08 0.67 0.98 0.65 0.64 0.86 0.89 1.00
|f12/f567| 0.38 0.33 0.27 0.25 0.20 0.12 0.11 0.43
ET5/CT5 0.81 0.60 0.79 0.62 0.66 0.74 0.79 0.82
(R13+R14)/ImgH 1.37 1.06 1.30 1.06 0.82 0.73 0.71 1.31
CT4/T34 2.24 2.13 2.01 1.56 1.65 1.81 1.84 1.98
CT7/CT6 1.79 2.82 1.75 2.92 1.10 1.20 1.19 1.42
f1×R2/(R1×5)(mm) 1.58 1.49 1.54 1.50 1.74 1.85 1.91 1.53
HFOV(°) 45.6 45.9 45.6 45.9 46.0 47.2 47.2 45.1
表25
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度,其像侧面为凸面;
    所述第六透镜的像侧面为凹面;
    所述第七透镜的物侧面为凸面,像侧面为凹面;以及
    所述第四透镜在所述光轴上的中心厚度CT4与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足1.5<CT4/T34<2.5。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第七透镜的有效焦距f7满足0.5<|f5/f7|<2。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜的像侧面的曲率半径R12与所述光学成像镜头的总有效焦距f满足0.5<R12/f<1.3。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜的边缘厚度ET5与所述第五透镜在所述光轴上的中心厚度CT5满足0.5<ET5/CT5<1。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第七透镜的物侧面的曲率半径R13、所述第七透镜的像侧面的曲率半径R14与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足0.5<(R13+R14)/ImgH<1.5。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜在所述光轴上的中心厚度CT6与所述第七透镜在所述光轴上的中心厚度CT7满足1<CT7/CT6<3。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足1mm<f1×R2/(R1×5)<2mm。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足1≤f1/f<1.5。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距f12与所述第五透镜、所述第六透镜和所述第七透镜的组合焦距f567满足0.1<|f12/f567|<0.5。
  10. 根据权利要求1至9中任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.4。
  11. 根据权利要求1至9中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角HFOV满足HFOV≥45°。
  12. 光学成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度,其像侧面为凸面;
    所述第六透镜的像侧面为凹面;
    所述第七透镜的物侧面为凸面,像侧面为凹面;以及
    所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足1≤f1/f<1.5。
  13. 根据权利要求12所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距f12与所述第五透镜、所述第六透镜和所述第七透镜的组合焦距f567满足0.1<|f12/f567|<0.5。
  14. 根据权利要求12所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第七透镜的有效焦距f7满足0.5<|f5/f7|<2。
  15. 根据权利要求12所述的光学成像镜头,其特征在于,所述第六透镜的像侧面的曲率半径R12与所述光学成像镜头的总有效焦距f满足0.5<R12/f<1.3。
  16. 根据权利要求12所述的光学成像镜头,其特征在于,所述第七透镜的物侧面的曲率半径R13、所述第七透镜的像侧面的曲率半径R14与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足0.5<(R13+R14)/ImgH<1.5。
  17. 根据权利要求12所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足1mm<f1×R2/(R1×5)<2mm。
  18. 根据权利要求12所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角HFOV满足HFOV≥45°。
  19. 根据权利要求13至18中任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.4。
  20. 根据权利要求19所述的光学成像镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足1.5<CT4/T34<2.5。
  21. 根据权利要求19所述的光学成像镜头,其特征在于,所述第五透镜的边缘厚度ET5与所述第五透镜在所述光轴上的中心厚度CT5满足0.5<ET5/CT5<1。
  22. 根据权利要求19所述的光学成像镜头,其特征在于,所述第六透镜在所述光轴上的中心厚度CT6与所述第七透镜在所述光轴上的中心厚度CT7满足1<CT7/CT6<3。
PCT/CN2019/084949 2018-08-06 2019-04-29 光学成像镜头 WO2020029613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810886101.1A CN108663780B (zh) 2018-08-06 2018-08-06 光学成像镜头
CN201810886101.1 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020029613A1 true WO2020029613A1 (zh) 2020-02-13

Family

ID=63789034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084949 WO2020029613A1 (zh) 2018-08-06 2019-04-29 光学成像镜头

Country Status (2)

Country Link
CN (1) CN108663780B (zh)
WO (1) WO2020029613A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10935760B2 (en) 2018-09-05 2021-03-02 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
CN112630940A (zh) * 2020-12-30 2021-04-09 厦门力鼎光电股份有限公司 一种大像面的光学成像镜头

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663780B (zh) * 2018-08-06 2023-06-16 浙江舜宇光学有限公司 光学成像镜头
TWI665488B (zh) * 2018-12-26 2019-07-11 大立光電股份有限公司 攝影光學系統、取像裝置及電子裝置
CN110262003B (zh) * 2019-06-29 2021-09-24 瑞声光学解决方案私人有限公司 摄像光学镜头
JP7449142B2 (ja) * 2020-04-03 2024-03-13 東京晨美光学電子株式会社 撮像レンズ
CN113391431B (zh) * 2021-05-26 2022-05-17 江西晶超光学有限公司 光学***和具有其的取像模组、电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203673137U (zh) * 2013-01-30 2014-06-25 康达智株式会社 摄像镜头
CN203965708U (zh) * 2013-09-11 2014-11-26 康达智株式会社 摄像镜头
CN106324811A (zh) * 2015-07-01 2017-01-11 大立光电股份有限公司 光学摄像镜头组、取像装置及电子装置
CN107015343A (zh) * 2016-01-28 2017-08-04 三星电机株式会社 光学成像***
CN108663780A (zh) * 2018-08-06 2018-10-16 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842512B (zh) * 2017-04-17 2019-10-11 浙江舜宇光学有限公司 摄像镜头
CN107976776B (zh) * 2017-11-18 2020-05-29 瑞声光学解决方案私人有限公司 摄像光学镜头
CN108037579B (zh) * 2018-01-19 2020-05-22 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203673137U (zh) * 2013-01-30 2014-06-25 康达智株式会社 摄像镜头
CN203965708U (zh) * 2013-09-11 2014-11-26 康达智株式会社 摄像镜头
CN106324811A (zh) * 2015-07-01 2017-01-11 大立光电股份有限公司 光学摄像镜头组、取像装置及电子装置
CN107015343A (zh) * 2016-01-28 2017-08-04 三星电机株式会社 光学成像***
CN108663780A (zh) * 2018-08-06 2018-10-16 浙江舜宇光学有限公司 光学成像镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10935760B2 (en) 2018-09-05 2021-03-02 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
CN112630940A (zh) * 2020-12-30 2021-04-09 厦门力鼎光电股份有限公司 一种大像面的光学成像镜头

Also Published As

Publication number Publication date
CN108663780A (zh) 2018-10-16
CN108663780B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2020119146A1 (zh) 光学成像镜头
WO2020024633A1 (zh) 光学成像镜头
WO2020007080A1 (zh) 摄像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2020119172A1 (zh) 光学成像镜头
WO2019210672A1 (zh) 光学成像***
WO2020001066A1 (zh) 摄像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学***
WO2020010879A1 (zh) 光学成像***
WO2019223263A1 (zh) 摄像镜头
WO2020038134A1 (zh) 光学成像***
WO2020010878A1 (zh) 光学成像***
WO2020107935A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2019114366A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2020073702A1 (zh) 光学成像镜片组
WO2020168717A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像***
WO2020024635A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846068

Country of ref document: EP

Kind code of ref document: A1