WO2019062136A1 - 摄像透镜组 - Google Patents

摄像透镜组 Download PDF

Info

Publication number
WO2019062136A1
WO2019062136A1 PCT/CN2018/086539 CN2018086539W WO2019062136A1 WO 2019062136 A1 WO2019062136 A1 WO 2019062136A1 CN 2018086539 W CN2018086539 W CN 2018086539W WO 2019062136 A1 WO2019062136 A1 WO 2019062136A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image pickup
image
curvature
unit according
Prior art date
Application number
PCT/CN2018/086539
Other languages
English (en)
French (fr)
Inventor
李明
邢天详
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710889190.0A external-priority patent/CN107479172B/zh
Priority claimed from CN201721249422.8U external-priority patent/CN207181799U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/273,806 priority Critical patent/US11169353B2/en
Publication of WO2019062136A1 publication Critical patent/WO2019062136A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to an image pickup lens group, particularly an image pickup lens group composed of seven lenses.
  • the present invention proposes an image pickup lens group which is applicable to a portable electronic product and has a large aperture, good image quality, and low sensitivity.
  • the present invention provides an image pickup lens group.
  • An aspect of the invention provides an image pickup lens group, which includes, in order from the object side to the image side, a first lens having a positive power, a convex side of the object side, and a second positive light power. a lens; a third lens having a power; a fourth lens; a fifth lens having a power having a concave side, the image side being a convex surface; and a sixth lens having a power having a concave side;
  • the seventh lens having a negative power has a concave side on the image side; wherein the effective focal length f of the imaging lens group and the entrance pupil diameter EPD of the imaging lens group satisfy: f/EPD ⁇ 1.60.
  • the fourth lens has a power.
  • the dispersion coefficient V2 of the second lens, the dispersion coefficient V3 of the third lens, the dispersion coefficient V4 of the fourth lens, the dispersion coefficient V6 of the sixth lens, and the dispersion coefficient V7 of the seventh lens satisfy :1 ⁇ (V2+V7)/(V3+V4+V6) ⁇ 2.
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens satisfy: 1 ⁇ f1/f2 ⁇ 5.
  • the entrance pupil diameter EPD of the image pickup lens group satisfies half of the diagonal length ImgH of the effective pixel area on the imaging plane: EPD/ImgH ⁇ 0.75.
  • the radius of curvature R4 of the side surface of the second lens image and the radius of curvature R7 of the side surface of the fourth lens object satisfy:
  • the radius of curvature R8 of the side surface of the fourth lens image and the radius of curvature R14 of the side surface of the seventh lens image satisfy: 0 ⁇ (R8 - R14) / (R8 + R14) ⁇ 2.
  • the effective focal length f of the imaging lens group and the effective focal length f1 of the first lens satisfy: 1.5 ⁇ f1/f ⁇ 5.
  • the on-axis distance T23 between the second lens and the fifth lens and the on-axis distance T56 of the fifth lens and the sixth lens satisfy: 0 ⁇ T23 / T56 ⁇ 3.5.
  • the effective focal length f of the image pickup lens group and the radius of curvature R9 of the side surface of the fifth lens object satisfy: -1 ⁇ f / R9 ⁇ 0.
  • the radius of curvature R1 of the side surface of the first lens object and the radius of curvature R9 of the side surface of the fifth lens object satisfy: -0.5 ⁇ R1/R9 ⁇ 0.
  • the effective focal length f of the imaging lens group and the radius of curvature R12 of the sixth lens image side satisfy: 0 ⁇ f / R12 ⁇ 1.
  • An aspect of the invention provides an imaging lens group including, in order from the object side to the image side, a first lens having a positive power; a second lens having a positive power; a third lens having a power; a fourth lens; a fifth lens having a power; a sixth lens having a power; a seventh lens having a negative power; wherein a dispersion coefficient V2 of the second lens, a dispersion coefficient V3 of the third lens, and a third lens
  • the dispersion coefficient V4 of the four lenses, the dispersion coefficient V6 of the sixth lens, and the dispersion coefficient V7 of the seventh lens satisfy: 1 ⁇ (V2 + V7) / (V3 + V4 + V6) ⁇ 2.
  • the object side surface of the first lens is a convex surface
  • the object side surface of the fifth lens is a concave surface and the image side surface is a convex surface
  • the image side surface of the sixth lens is a concave surface
  • the image side surface of the seventh lens is a concave surface.
  • the fourth lens has a power.
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein the effective focal length f1 of the first lens and the effective focal length f2 of the second lens satisfy: 1 ⁇ f1/f2 ⁇ 5.
  • the fourth lens has a power.
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein the entrance pupil diameter EPD of the imaging lens group is equal to half the ImgH of the diagonal length of the effective pixel area on the imaging surface: EPD/ImgH ⁇ 0.75.
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein the radius of curvature R8 of the side surface of the fourth lens image and the radius of curvature R14 of the side surface of the seventh lens image satisfy: 0 ⁇ (R8-R14)/(R8+R14) ⁇ 2.
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein the radius of curvature R4 of the second lens image side and the radius of curvature R7 of the fourth lens object side satisfy:
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein the effective focal length f of the imaging lens group and the effective focal length f1 of the first lens satisfy: 1.5 ⁇ f1/f ⁇ 5.
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein the on-axis distance T23 between the second lens and the fifth lens and the on-axis distance T56 between the fifth lens and the sixth lens satisfy: 0 ⁇ T23 / T56 ⁇ 3.5.
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein the effective focal length f of the imaging lens group and the radius of curvature R9 of the side surface of the fifth lens satisfy: -1 ⁇ f / R9 ⁇ 0.
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein a radius of curvature R1 of the side surface of the first lens object and a radius of curvature R9 of the side surface of the fifth lens object satisfy: -0.5 ⁇ R1/R9 ⁇ 0.
  • An aspect of the invention provides an image pickup lens group comprising, in order from the object side to the image side, a first lens having a positive power, a convex side of the object surface, a second lens having a positive power, and a power a third lens; a fourth lens having a power of a fifth lens having a concave side and a convex side; the sixth lens having a power having a concave side;
  • the seventh lens has a concave side on the image side; wherein the effective focal length f of the imaging lens group and the radius of curvature R12 of the side surface of the sixth lens image satisfy: 0 ⁇ f / R12 ⁇ 1.
  • the image pickup lens group according to the present invention is applicable to portable electronic products and is an optical system having a large aperture, good image quality, and low sensitivity.
  • FIG. 1 is a schematic structural view of an image pickup lens unit of Embodiment 1;
  • FIG. 2 to FIG. 5 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens group of Embodiment 1.
  • FIG. 6 is a schematic structural view of an image pickup lens unit of Embodiment 2;
  • FIG. 11 is a schematic structural view of an image pickup lens unit of Embodiment 3.
  • FIG. 16 is a schematic structural view of an image pickup lens unit of Embodiment 4.
  • FIG. 21 is a schematic structural view of an image pickup lens unit of Embodiment 5.
  • 26 is a schematic structural view of an image pickup lens unit of Embodiment 6;
  • FIG. 30 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the image pickup lens unit of Embodiment 6;
  • Figure 31 is a view showing the configuration of an image pickup lens unit of Embodiment 7;
  • FIG. 36 is a schematic structural view of an image pickup lens unit of Embodiment 8.
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the present application provides an imaging lens group, which includes, in order from the object side to the image side, a first lens having positive refractive power, a convex surface thereof, a second lens having positive power, and a third power having power.
  • the lens has a concave side like the side.
  • the fourth lens may have a power
  • the dispersion coefficient V2 of the second lens, the dispersion coefficient V3 of the third lens, the dispersion coefficient V4 of the fourth lens, the dispersion coefficient V6 of the sixth lens, and the dispersion coefficient V7 of the seventh lens satisfy. :1 ⁇ (V2+V7)/(V3+V4+V6) ⁇ 2. Specifically, 1.12 ⁇ (V2 + V7) / (V3 + V4 + V6) ⁇ 1.83 is satisfied.
  • the imaging lens group that satisfies the above relationship has a large relative aperture, can obtain a good shooting effect, and satisfies the specification effect of the existing electronic products, and can correct the lens chromatic aberration by mutual cooperation between different materials.
  • the entrance pupil diameter EPD of the imaging lens group satisfies half of the diagonal length ImgH of the effective pixel area on the imaging plane: EPD/ImgH ⁇ 0.75. Specifically, EPD/ImgH ⁇ 0.76 is satisfied.
  • the lens can be miniaturized to achieve large aperture and high image quality.
  • the effective focal length f of the image pickup lens group and the entrance pupil diameter EPD of the image pickup lens group satisfy: f/EPD ⁇ 1.60. Specifically, f/EPD ⁇ 1.58 is satisfied.
  • the imaging lens group that satisfies the above relationship has a large relative aperture, can obtain a good shooting effect, and satisfies the specification effect of the existing electronic products, and can correct the lens chromatic aberration by mutual cooperation between different materials.
  • the radius of curvature R8 of the side surface of the fourth lens image and the radius of curvature R14 of the side surface of the seventh lens image satisfy: 0 ⁇ (R8 - R14) / (R8 + R14) ⁇ 2. Specifically, 0.72 ⁇ (R8 - R14) / (R8 + R14) ⁇ 1.04 is satisfied.
  • the radius of curvature R4 of the side surface of the second lens image and the radius of curvature R7 of the side surface of the fourth lens object satisfy:
  • the effective focal length f of the imaging lens group and the effective focal length f1 of the first lens satisfy: 1.5 ⁇ f1/f ⁇ 5. Specifically, 1.91 ⁇ f1/f ⁇ 4.70 is satisfied.
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens satisfy: 1 ⁇ f1/f2 ⁇ 5. Specifically, 1.08 ⁇ f1/f2 ⁇ 4.21 is satisfied.
  • the imaging lens group that satisfies the above relationship can correct aberrations and reduce sensitivity by power distribution.
  • the on-axis distance T23 between the second lens and the fifth lens and the on-axis distance T56 of the fifth lens and the sixth lens satisfy: 0 ⁇ T23/T56 ⁇ 3.5. Specifically, 0.31 ⁇ T23 / T56 ⁇ 1.00 is satisfied.
  • the effective focal length f of the imaging lens group and the radius of curvature R9 of the side surface of the fifth lens object satisfy: -1 ⁇ f / R9 ⁇ 0. Specifically, -0.79 ⁇ f / R9 ⁇ -0.04 is satisfied.
  • the camera lens group satisfying the above relationship can reasonably control the radius of curvature of the side surface of the fifth lens object, improve the trend of the light on the fifth lens, improve the contrast degree, and effectively correct the astigmatism.
  • the radius of curvature R1 of the side surface of the first lens object and the radius of curvature R9 of the side surface of the fifth lens object satisfy: -0.5 ⁇ R1/R9 ⁇ 0. Specifically, -0.37 ⁇ R1/R9 ⁇ -0.02 is satisfied. Satisfying the above conditional conditions is beneficial to balancing the advanced spherical aberration of the system and reducing the sensitivity of the field of view in the central area of the system.
  • the effective focal length f of the imaging lens group and the radius of curvature R12 of the side surface of the sixth lens image satisfy: 0 ⁇ f / R12 ⁇ 1. Specifically, 0.31 ⁇ f / R12 ⁇ 0.92 is satisfied.
  • FIG. 1 is a schematic structural view showing an image pickup lens unit of Embodiment 1.
  • the image pickup lens group includes seven lenses.
  • the seven lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to seventh lenses E1 to E7 are sequentially disposed from the object side to the image side of the image pickup lens group.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • the image pickup lens group further includes a filter E8 having an object side surface S15 and an image side surface S16 for filtering out infrared light.
  • a filter E8 having an object side surface S15 and an image side surface S16 for filtering out infrared light.
  • light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the first to seventh lenses E1 to E7 have respective effective focal lengths f1 to f7.
  • the first lens E1 to the seventh lens E7 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the imaging lens group.
  • Table 1 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the imaging lens group, the total length TTL (mm) of the imaging lens group, and the effective pixel area pair of the electronic photosensitive element.
  • Half of the length of the corner is ImgH.
  • Table 2 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens in the image pickup lens group in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • each lens may be an aspherical lens, and each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 3 below shows the high order term coefficients of the respective aspheric surfaces S1-S14 that can be used for each aspherical lens in this embodiment.
  • FIG. 2 shows an axial chromatic aberration curve of the image pickup lens unit of Embodiment 1, which indicates that light beams of different wavelengths are deviated from a focus point after passing through the optical system.
  • 3 shows an astigmatism curve of the image pickup lens group of Embodiment 1, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 4 is a view showing a distortion curve of the image pickup lens unit of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 5 is a graph showing the chromatic aberration of magnification of the image pickup lens unit of the first embodiment, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens group.
  • the image pickup lens group according to Embodiment 1 is suitable for a portable electronic product having a large aperture, good image quality, and low sensitivity.
  • Fig. 6 is a schematic structural view showing an image pickup lens unit of Embodiment 2.
  • the image pickup lens group includes seven lenses.
  • the seven lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to seventh lenses E1 to E7 are sequentially disposed from the object side to the image side of the image pickup lens group.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • the image pickup lens group further includes a filter E8 having an object side surface S15 and an image side surface S16 for filtering out infrared light.
  • a filter E8 having an object side surface S15 and an image side surface S16 for filtering out infrared light.
  • light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 4 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 5 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens in the image pickup lens group in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 6 below shows the high order term coefficients of the respective aspheric surfaces S1-S14 that can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 7 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 2, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 8 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 2, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 9 is a view showing a distortion curve of the image pickup lens unit of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • Embodiment 10 is a graph showing a magnification chromatic aberration curve of the image pickup lens unit of Embodiment 2, which shows deviations of different image heights on the image plane after the light rays pass through the image pickup lens group.
  • the image pickup lens group according to Embodiment 2 is suitable for a portable electronic product having a large aperture, good image quality, and low sensitivity.
  • FIG. 11 is a schematic structural view showing an image pickup lens unit of Embodiment 3.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 7 shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 8 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens in the image pickup lens group in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 9 below shows the high order coefficient of each aspherical surface S1-S14 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 3, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 3, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the image pickup lens unit of Embodiment 3, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 3, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 3, which shows a meridional field curvature and a sagit
  • the image pickup lens group according to Embodiment 3 is suitable for a portable electronic product having a large aperture, good image quality, and low sensitivity.
  • Fig. 16 is a view showing the configuration of an image pickup lens unit of Embodiment 4.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a convex surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have no optical power, and the object side surface S7 may be a flat surface, and the image side surface S8 may be a flat surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 10 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 11 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • Table 12 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 17 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 4, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 4, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 19 is a view showing a distortion curve of the image pickup lens unit of Embodiment 4, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 17 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 4, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 4, which shows a meridional field curvature and a sagit
  • the imaging lens group according to Embodiment 4 is suitable for a portable electronic product having a large aperture, good imaging quality, and low sensitivity.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 13 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and the diagonal length of the effective pixel region of the electronic photosensitive element.
  • Table 14 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • Table 15 below shows the high order term coefficients of the respective aspherical surfaces S1 to S14 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 5, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 5, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 24 is a view showing the distortion curve of the image pickup lens unit of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 5, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 5, which shows a meridional field curvature and a sagittal
  • the imaging lens group according to Embodiment 5 is suitable for a portable electronic product having a large aperture, good imaging quality, and low sensitivity.
  • Fig. 26 is a schematic structural view showing the image pickup lens unit of the sixth embodiment.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 16 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the image pickup lens group, the total length TTL of the image pickup lens group, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 17 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • Table 18 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 27 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 6, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 28 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 6, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the image pickup lens unit of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • the image pickup lens group according to Embodiment 6 is suitable for a portable electronic product having a large aperture, good image quality, and low sensitivity.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 19 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 20 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • Table 21 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 32 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 7, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 33 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 7, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 34 is a view showing the distortion curve of the image pickup lens unit of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens group according to Embodiment 7 is suitable for a portable electronic product having a large aperture, good imaging quality, and low sensitivity.
  • Fig. 36 is a view showing the configuration of an image pickup lens unit of Embodiment 8.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 22 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 23 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment, in which the unit of curvature radius and thickness are all millimeters (mm).
  • Table 24 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 37 is a view showing the axial chromatic aberration curve of the image pickup lens unit of Example 8, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 38 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 8, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 39 is a view showing the distortion curve of the image pickup lens unit of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
  • the image pickup lens group according to Embodiment 8 is suitable for a portable electronic product having a large aperture, good image quality, and low sensitivity.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 25 shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the image pickup lens group, the total length TTL of the image pickup lens group, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 26 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • Table 27 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 42 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 9, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 43 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 9, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 44 is a view showing the distortion curve of the image pickup lens unit of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens group according to Embodiment 9 is suitable for a portable electronic product having a large aperture, good imaging quality, and low sensitivity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜(E1),其物侧面(S1)为凸面;具有正光焦度的第二透镜(E2);具有光焦度的第三透镜(E3);第四透镜(E4);具有光焦度的第五透镜(E5),其物侧面(S9)为凹面,像侧面(S10)为凸面;具有光焦度的第六透镜(E6),其像侧面(S12)为凹面;具有负光焦度的第七透镜(E7),其像侧面(S14)为凹面;其中,摄像透镜组的有效焦距f与摄像透镜组的入瞳直径EPD之间满足:f/EPD≤1.60。摄像透镜组可适用于便携式电子产品,是具有大孔径、良好成像质量和低敏感度的光学***。

Description

摄像透镜组
相关申请的交叉引用
本申请要求于2017年9月27日提交至中国国家知识产权局(SIPO)的、专利申请号为201710889190.0的中国专利申请以及于2017年9月27日提交至SIPO的、专利申请号为201721249422.8的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种摄像透镜组,特别是由七片镜片组成的摄像透镜组。
背景技术
随着科学技术的发展,市场对产品端成像镜头的要求愈加多样化。便携式电子产品越来越趋于小型化,这限制了镜头的总长,从而增加了镜头的设计难度。为了满足小型化的要求,现有镜头通常配置的F数均在2.0或2.0以上,实现减小镜头尺寸的同时具有良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对成像镜头提出了更高的要求,特别是针对光线不足(如阴雨天、黄昏等)、手抖等情况,故此2.0或2.0以上的F数已经无法满足更高阶的成像要求。
因此,本发明提出了一种可适用于便携式电子产品,具有大孔径、良好成像质量及低敏感度的摄像透镜组。
发明内容
为了解决现有技术中的至少一个问题,本发明提供了一种摄像透镜组。
本发明的一个方面提供了一种摄像透镜组,一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,像侧面为凸面;具有光焦度的第六透镜,其像侧 面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,摄像透镜组的有效焦距f与摄像透镜组的入瞳直径EPD之间满足:f/EPD≤1.60。
根据本发明的一个实施方式,第四透镜具有光焦度。
根据本发明的一个实施方式,第二透镜的色散系数V2、第三透镜的色散系数V3、第四透镜的色散系数V4、第六透镜的色散系数V6以及第七透镜的色散系数V7之间满足:1<(V2+V7)/(V3+V4+V6)<2。
根据本发明的一个实施方式,第一透镜的有效焦距f1与第二透镜的有效焦距f2之间满足:1≤f1/f2<5。
根据本发明的一个实施方式,摄像透镜组的入瞳直径EPD与成像面上有效像素区域对角线长的一半ImgH之间满足:EPD/ImgH≥0.75。
根据本发明的一个实施方式,第二透镜像侧面的曲率半径R4与第四透镜物侧面的曲率半径R7之间满足:|(R4-R7)/(R4+R7)|<1.5。
根据本发明的一个实施方式,第四透镜像侧面的曲率半径R8与第七透镜像侧面的曲率半径R14之间满足:0<(R8-R14)/(R8+R14)<2。
根据本发明的一个实施方式,摄像透镜组的有效焦距f与第一透镜的有效焦距f1之间满足:1.5<f1/f<5。
根据本发明的一个实施方式,第二透镜与第五透镜的轴上距离T23与第五透镜与第六透镜的轴上距离T56之间满足:0<T23/T56<3.5。
根据本发明的一个实施方式,摄像透镜组的有效焦距f与第五透镜物侧面的曲率半径R9之间满足:-1<f/R9<0。
根据本发明的一个实施方式,第一透镜物侧面的曲率半径R1与第五透镜物侧面的曲率半径R9之间满足:-0.5<R1/R9<0。
根据本发明的一个实施方式,摄像透镜组的有效焦距f与第六透镜像侧面的曲率半径R12之间满足:0<f/R12<1。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第二透镜的色散系数V2、第三透镜的色散系数V3、第四透镜的色散系数V4、第六透镜的色散系数V6以及第七透镜的色散系数V7之间满足:1<(V2+V7)/(V3+V4+V6)<2。
根据本发明的一个实施方式,第一透镜的物侧面为凸面;第五透镜的物侧面为凹面且像侧面为凸面;第六透镜的像侧面为凹面;以及第七透镜的像侧面为凹面。
根据本发明的一个实施方式,第四透镜具有光焦度。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,第一透镜的有效焦距f1与第二透镜的有效焦距f2之间满足:1≤f1/f2<5。
根据本发明的一个实施方式,第四透镜具有光焦度。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,摄像透镜组的入瞳直径EPD与成像面上有效像素区域对角线长的一半ImgH之间满足:EPD/ImgH≥0.75。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,第四透镜像侧面的曲率半径R8与第七透镜像侧面的曲率半径R14之间满足:0<(R8-R14)/(R8+R14)<2。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,第二透镜像侧面的曲率半 径R4与第四透镜物侧面的曲率半径R7之间满足:|(R4-R7)/(R4+R7)|<1.5。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,摄像透镜组的有效焦距f与第一透镜的有效焦距f1之间满足:1.5<f1/f<5。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,第二透镜与第五透镜的轴上距离T23与第五透镜与第六透镜的轴上距离T56之间满足:0<T23/T56<3.5。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,摄像透镜组的有效焦距f与第五透镜物侧面的曲率半径R9之间满足:-1<f/R9<0。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面;其中,第一透镜物侧面的曲率半径R1与第五透镜物侧面的曲率半径R9之间满足:-0.5<R1/R9<0。
本发明的一个方面提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有 负光焦度的第七透镜,其像侧面为凹面;其中摄像透镜组的有效焦距f与第六透镜像侧面的曲率半径R12之间满足:0<f/R12<1。
根据本发明的摄像透镜组可适用于便携式电子产品,是具有大孔径、良好成像质量和低敏感度的光学***。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的摄像透镜组的结构示意图;
图2至图5分别示出了实施例1的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图6示出了实施例2的摄像透镜组的结构示意图;
图7至图10分别示出了实施例2的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11示出了实施例3的摄像透镜组的结构示意图;
图12至图15分别示出了实施例3的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图16示出了实施例4的摄像透镜组的结构示意图;
图17至图20分别示出了实施例4的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21示出了实施例5的摄像透镜组的结构示意图;
图22至图25分别示出了实施例5的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图26示出了实施例6的摄像透镜组的结构示意图;
图27至图30分别示出了实施例6的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图31示出了实施例7的摄像透镜组的结构示意图;
图32至图35分别示出了实施例7的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图36示出了实施例8的摄像透镜组的结构示意图;
图37至图40分别示出了实施例8的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图41示出了实施例9的摄像透镜组的结构示意图;以及
图42至图45分别示出了实施例9的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们 的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种摄像透镜组,从物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有正光焦度的第二透镜;具有光焦度的第三透镜;第四透镜;具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凹面;具有负光焦度的第七透镜,其像侧面为凹面。
在本申请的实施例中,第四透镜可具有光焦度。
在本申请的实施例中,第二透镜的色散系数V2、第三透镜的色散系数V3、第四透镜的色散系数V4、第六透镜的色散系数V6以及第七透镜的色散系数V7之间满足:1<(V2+V7)/(V3+V4+V6)<2。具体地,满足1.12≤(V2+V7)/(V3+V4+V6)≤1.83。满足上述关系的摄像镜头组具有大相对孔径,可得到良好的拍摄效果,同时满足现有电子类产品的规格效果,并且能够通过不同材料之间的相互配合来矫正镜头色差。
在本申请的实施例中,摄像透镜组的入瞳直径EPD与成像面上有效像素区域对角线长的一半ImgH之间满足:EPD/ImgH≥0.75。具体地,满足EPD/ImgH≥0.76。通过满足上述关系,能够维持镜头小型化,实现大孔径和高像质拍摄。
在本申请的实施例中,摄像透镜组的有效焦距f与摄像透镜组的入瞳直 径EPD之间满足:f/EPD≤1.60。具体地,满足f/EPD≤1.58。满足上述关系的摄像镜头组具有大相对孔径,可得到良好的拍摄效果,同时满足现有电子类产品的规格效果,并且能够通过不同材料之间的相互配合来矫正镜头色差。
在本申请的实施例中,第四透镜像侧面的曲率半径R8与第七透镜像侧面的曲率半径R14之间满足:0<(R8-R14)/(R8+R14)<2。具体地,满足0.72≤(R8-R14)/(R8+R14)≤1.04。通过满足上述关系,能够有效矫正成像***的象散、畸变等像差,同时有利于匹配芯片主光线角度。
在本申请的实施例中,第二透镜像侧面的曲率半径R4与第四透镜物侧面的曲率半径R7之间满足:|(R4-R7)/(R4+R7)|<1.5。具体地,满足|(R4-R7)/(R4+R7)|≤1.30。通过满足上述关系,能够对球差进行平衡,减小彗差,避免周边斜率变化较大,进而降低杂散光的产生。
在本申请的实施例中,摄像透镜组的有效焦距f与第一透镜的有效焦距f1之间满足:1.5<f1/f<5。具体地,满足1.91≤f1/f≤4.70。通过满足上述关系,能够减小光线偏折角度、矫正镜头像差、降低公差敏感性以及规避杂散光。
在本申请的实施例中,第一透镜的有效焦距f1与第二透镜的有效焦距f2之间满足:1≤f1/f2<5。具体地,满足1.08≤f1/f2≤4.21。满足上述关系的摄像镜头组能够通过光焦度分配来矫正像差及降低敏感性。
在本申请的实施例中,第二透镜与第五透镜的轴上距离T23与第五透镜与第六透镜的轴上距离T56之间满足:0<T23/T56<3.5。具体地,满足0.31≤T23/T56≤1.00。通过满足上述关系,有效控制TTL、实现小型化、校正周边像差,从而进一步提升成像品质;以及有效避免透镜成型不良问题。
在本申请的实施例中,摄像透镜组的有效焦距f与第五透镜物侧面的曲率半径R9之间满足:-1<f/R9<0。具体地,满足-0.79≤f/R9≤-0.04。满足上述关系的摄像镜头组能够合理控制第五透镜物侧面的曲率半径,改善光线在第五透镜上的走势,提升相对照度,同时可有效矫正象散。
在本申请的实施例中,第一透镜物侧面的曲率半径R1与第五透镜物侧面的曲率半径R9之间满足:-0.5<R1/R9<0。具体地,满足-0.37≤R1/R9≤-0.02。满足上述条件式,有利于平衡***的高级球差,降低***中心区域 视场敏感性。
在本申请的实施例中,摄像透镜组的有效焦距f与第六透镜像侧面的曲率半径R12之间满足:0<f/R12<1。具体地,满足0.31≤f/R12≤0.92。通过满足上述关系,能够合理控制第六透镜像侧面的曲率半径,改善光线在第六透镜上的走势,提升相对照度,同时可有效矫正象散。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图5描述根据本申请实施例1的摄像透镜组。
图1为示出了实施例1的摄像透镜组的结构示意图。如图1所示,摄像透镜组包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从摄像透镜组的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
该摄像透镜组还包括用于滤除红外光的具有物侧面S15和像侧面S16的滤光片E8。在该实施例中,来自物体的光依次穿过各表面S1至S16并最终成像在成像表面S17上。
在该实施例中,第一透镜E1至第七透镜E7分别具有各自的有效焦距f1至f7。第一透镜E1至第七透镜E7沿着光轴依次排列并共同决定了摄像透镜组的总有效焦距f。下表1示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL(mm)以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm 9.86 f(mm) 3.74
f2(mm) 4.80 TTL(mm) 4.70
f3(mm) -9.11 ImgH(mm) 3.05
f4(mm) -17.77
f5(mm) 6.33
f6(mm) 29.81
f7(mm) -6.03
表1
表2示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000001
Figure PCTCN2018086539-appb-000002
表2
在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2018086539-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。
下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。
面号 A4 A A8 A10 A12 A14 A16 A18
S1 -1.0860E-02 4.7760E-03 -4.3650E-02 5.0083E-02 -3.8110E-02 1.1820E-02 -4.9000E-04 0.0000E+00
S2 1.4477E-02 -3.6550E-02 -9.5000E-04 -5.0800E-03 6.5630E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -8.5490E-02 2.8990E-01 -4.3572E-01 2.1934E-01 4.7103E-02 -8.2970E-02 2.2087E-02 0.0000E+00
S5 -1.2135E-01 3.0222E-01 -3.7841E-01 5.3567E-02 2.7570E-01 -2.0641E-01 4.6009E-02 0.0000E+00
S6 -1.1447E-01 6.7294E-02 1.3682E-01 -5.8444E-01 8.3783E-01 -5.5230E-01 1.5137E-01 0.0000E+00
S7 -1.4576E-01 8.8055E-02 -1.4886E-01 5.9521E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.6728E-01 2.3668E-01 -2.3850E-01 7.7323E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -2.4545E-01 5.0481E-01 -4.4030E-01 1.8682E-01 -3.3040E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -3.0750E-01 6.7926E-01 -1.0158E+00 1.0332E+00 -6.3711E-01 2.2836E-01 -4.4220E-02 3.5925E-03
S11 1.3185E-01 -1.3514E-01 -2.3280E-02 8.0988E-02 -5.3150E-02 1.5509E-02 -1.6600E-03 -3.6442E-06
S12 1.2396E-01 -1.7932E-01 8.6912E-02 -2.3740E-02 1.6270E-03 1.0230E-03 -2.6000E-04 1.7297E-05
S13 -4.2169E-01 2.5686E-01 -1.1652E-01 4.7170E-02 -1.3450E-02 2.2990E-03 -2.1000E-04 7.8193E-06
S14 -2.6144E-01 1.8308E-01 -1.0266E-01 4.1244E-02 -1.0530E-02 1.5770E-03 -1.2000E-04 3.9880E-06
表3
图2示出了实施例1的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图3示出了实施例1的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图5示 出了实施例1的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图2至图5可以看出,根据实施例1的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
实施例2
以下参照图6至图10描述根据本申请实施例2的摄像透镜组。
图6为示出了实施例2的摄像透镜组的结构示意图。如图6所示,摄像透镜组包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从摄像透镜组的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
该摄像透镜组还包括用于滤除红外光的具有物侧面S15和像侧面S16的滤光片E8。在该实施例中,来自物体的光依次穿过各表面S1至S16并 最终成像在成像表面S17上。
下表4示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 10.27 f(mm) 3.78
f2(mm) 4.59 TTL(mm) 4.70
f3(mm) -9.77 ImgH(mm) 3.10
f4(mm) -72.91
f5(mm) 8.68
f6(mm) 65.51
f7(mm) -6.26
表4
表5示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000004
表5
下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A1 A18
S1 -1.1650E-02 1.3133E-02 -6.0300E-02 7.2889E-02 -5.2120E-02 1.5452E-02 -9.0000E-04 0.0000E+00
S2 1.9591E-02 -4.3890E-02 1.5813E-02 -1.9316E-02 1.0100E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -9.7580E-02 3.5840E-01 -6.2516E-01 5.4087E-01 -2.5738E-01 6.4942E-02 -6.8400E-03 0.0000E+00
S5 -1.3683E-01 4.0966E-01 -7.5766E-01 7.4885E-01 -4.1729E-01 1.5028E-01 -2.8320E-02 0.0000E+00
S6 -1.2584E-01 8.1901E-02 9.4985E-02 -5.6706E-01 8.9628E-01 -6.3036E-01 1.8046E-01 0.0000E+00
S7 -9.8030E-02 2.8953E-02 -1.1637E-01 5.7212E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.6928E-01 2.3987E-01 -2.2721E-01 7.6138E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -2.5935E-01 5.4254E-01 -4.6996E-01 2.0470E-01 -3.7800E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -3.3880E-01 7.6048E-01 -1.0867E+00 1.0270E+00 -5.9106E-01 2.0010E-01 -3.7140E-02 2.9400E-03
S11 9.3687E-02 -3.2950E-02 -1.6835E-01 1.7529E-01 -7.4290E-02 1.0567E-02 1.5220E-03 -4.2000E-04
S12 1.0608E-01 -9.5350E-02 -3.9900E-02 7.6127E-02 -4.3450E-02 1.2505E-02 -1.7800E-03 9.8200E-05
S13 -4.2222E-01 3.5408E-01 -2.1998E-01 9.2229E-02 -2.3390E-02 3.4030E-03 -2.6000E-04 7.6400E-06
S14 -2.4566E-01 1.8940E-01 -1.1366E-01 4.4411E-02 -1.0350E-02 1.3510E-03 -8.8000E-05 2.0600E-06
表6
图7示出了实施例2的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图8示出了实施例2的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
实施例3
以下参照图11至图15描述根据本申请实施例3的摄像透镜组。
图11为示出了实施例3的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表7示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 9.92 f(mm) 3.82
f2(mm) 4.75 TTL(mm) 4.70
f3(mm -10.87 ImgH(mm) 3.10
f4(mm) -141.12
f5(mm) 10.85
f6(mm) 26.31
f7(mm) -5.63
表7
表8示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000005
Figure PCTCN2018086539-appb-000006
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A4 A16 A18
S1 -8.5600E-03 7.2490E-03 -3.9930E-02 3.7359E-02 -2.0020E-02 3.1400E-05 2.0920E-03 0.0000E+00
S2 2.2676E-02 -3.8050E-02 3.5960E-03 -1.5310E-02 9.9950E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -8.0160E-02 2.6860E-01 -4.1555E-01 3.1960E-01 -1.5156E-01 4.7024E-02 -7.2600E-03 0.0000E+00
S5 -1.0877E-01 2.7040E-01 -4.1026E-01 2.8590E-01 -8.0270E-02 1.7689E-02 -4.4200E-03 0.0000E+00
S6 -9.9170E-02 -2.6310E-02 4.1103E-01 -1.1841E+00 1.6614E+00 -1.1654E+00 3.4150E-01 0.0000E+00
S7 -8.3090E-02 -1.7330E-02 -6.0080E-02 3.5458E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.0475E-01 1.0834E-01 -1.1471E-01 4.2201E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.6415E-01 3.3374E-01 -2.7623E-01 1.1956E-01 -2.3180E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -2.8115E-01 5.6501E-01 -7.7447E-01 7.2420E-01 -4.0822E-01 1.3312E-01 -2.3499E-02 1.7545E-03
S11 1.1507E-01 -1.1478E-01 -7.3110E-02 1.3139E-01 -7.5350E-02 2.0254E-02 -2.1828E-03 2.6560E-05
S12 1.3253E-01 -1.3895E-01 -6.4300E-03 6.4735E-02 -4.2950E-02 1.3330E-02 -2.0171E-03 1.1904E-04
S13 -4.3318E-01 3.8761E-01 -2.5035E-01 1.0563E-01 -2.6750E-02 3.8920E-03 -2.9643E-04 8.9304E-06
S14 -2.3326E-01 1.6981E-01 -9.4780E-02 3.3207E-02 -6.4500E-03 5.8200E-04 -7.9030E-06 -1.3485E-06
表9
图12示出了实施例3的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图13示出了实施例3的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以 看出,根据实施例3的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
实施例4
以下参照图16至图20描述根据本申请实施例4的摄像透镜组。
图16为示出了实施例4的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凸面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可不具有光焦度,且其物侧面S7可为平面,像侧面S8可为平面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表10示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 7.33 f(mm) 3.78
f2(mm) 5.60 TTL(mm) 4.70
f3 mm) -10.53 ImgH(mm) 3.05
f4(mm) -
f5 mm) 5.15
f6(mm) -10.73
f7(mm) -6.59
表10
下表11示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000007
表11
下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -9.4900E-03 2.0266E-02 -7.9972E-02 1.0631E-01 -8.7070E-02 3.3585E-02 -4.4300E-03 0.0000E+00
S2 6.9190E-03 -2.3220E-02 -6.2349E-03 -5.5900E-03 8.0840E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -1.4361E-01 4.0880E-01 -5.4079E-01 2.6064E-01 3.3296E-02 -7.1550E-02 1.7835E-02 0.0000E+00
S5 -1.8047E-01 4.7305E-01 -6.4394E-01 4.2224E-01 -1.0734E-01 1.7410E-02 -5.9500E-03 0.0000E+00
S6 -1.0350E-01 7.7987E-02 1.6172E-01 -6.7627E-01 9.8486E-01 -6.7683E-01 1.9565E-01 0.0000E+00
S7 -1.1986E-01 7.7527E-02 -1.7534E-01 7.4921E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -2.1594E-01 3.7424E-01 -3.6863E-01 1.2204E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -3.7874E-01 9.0234E-01 -8.7538E-01 4.0822E-01 -7.7510E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -2.6863E-01 5.7037E-01 -8.2832E-01 8.0948E-01 -4.7993E-01 1.6719E-01 -3.2204E-02 2.6860E-03
S11 2.8741E-01 -4.7284E-01 3.8312E-01 -2.5030E-01 1.2662E-01 -4.4510E-02 9.3618E-03 -8.5000E-04
S12 1.6330E-01 -2.4248E-01 1.3829E-01 -4.8190E-02 9.1780E-03 -4.6000E-04 -1.0841E-04 1.2500E-05
S13 -4.3064E-01 3.4273E-01 -2.1330E-01 9.6672E-02 -2.7720E-02 4.7190E-03 -4.3665E-04 1.6900E-05
S14 -2.5496E-01 1.9092E-01 -1.1492E-01 4.6577E-02 -1.1560E-02 1.6630E-03 -1.2602E-04 3.8400E-06
表12
图17示出了实施例4的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图18示出了实施例4的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图17至图20可以看出,根据实施例4的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
实施例5
以下参照图21至图25描述根据本申请实施例5的摄像透镜组。
图21为示出了实施例5的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表13示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 19.28 f(mm) 4.10
f2(mm) 4.58 TTL(mm) 4.98
f3(mm) -12.12 ImgH(mm) 3.40
f4(mm) 16.62
f5(mm) -13.07
f6(mm) 11.23
f7(mm) -10.33
表13
下表14示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000008
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A1 A16 A18 A20
S1 -5.1186E-03 3.8997E-02 -2.1132E-01 4.5311E-01 -5.8080E-01 4.4122E-01 -1.9476E-01 4.6470E-02 -4.6800E-03
S2 1.0251E-01 -2.2170E-01 6.5141E-02 -3.7751E-02 1.7973E-01 -1.4249E-01 1.0890E-02 2.3392E-02 -6.5400E-03
S3 5.2264E-02 -1.6775E-01 1.5465E-01 -3.4202E-01 5.5469E-01 -3.1210E-01 -2.3090E-02 7.7881E-02 -1.9970E-02
S4 -1.4673E-01 4.6436E-01 -1.1322E+00 1.7628E+00 -1.7204E+00 1.0147E+00 -3.2822E-01 4.2529E-02 8.2700E-04
S5 -1.3338E-01 3.7362E-01 -8.5121E-01 1.2823E+00 -1.0749E+00 3.2374E-01 1.7703E-01 -1.6476E-01 3.6520E-02
S6 -1.1834E-01 7.0651E-02 7.3923E-02 -4.3231E-01 8.7116E-01 -1.0292E+00 7.3104E-01 -2.8969E-01 5.1496E-02
S7 -5.1018E-02 6.6190E-03 -5.5220E-02 -7.2697E-02 3.2639E-01 -4.4771E-01 2.7030E-01 -6.0520E-02 0.0000E+00
S8 -4.4824E-02 4.1303E-02 -1.5381E-01 2.0539E-01 -2.2245E-01 1.7195E-01 -7.9690E-02 1.7129E-02 0.0000E+00
S9 -4.4289E-02 5.0291E-02 -1.7690E-02 -5.7446E-03 -1.5976E-01 3.6084E-01 -3.2587E-01 1.3976E-01 -2.3880E-02
S10 -7.4699E-02 -3.1495E-01 9.2849E-01 -1.3534E+00 1.2046E+00 -6.5869E-01 2.1513E-01 -3.8550E-02 2.9200E-03
S11 2.4990E-02 -3.9944E-01 6.6294E-01 -7.4544E-01 5.5281E-01 -2.6024E-01 7.4416E-02 -1.1740E-02 7.8000E-04
S12 1.4450E-01 -2.1316E-01 1.4500E-01 -6.9729E-02 2.4383E-02 -6.0600E-03 9.9400E-04 -9.3000E-05 3.7200E-06
S13 -4.2453E-01 2.6899E-01 -1.3181E-01 4.4790E-02 -9.7500E-03 1.3380E-03 -1.1000E-04 5.9100E-06 -1.5000E-07
S14 -1.9162E-01 1.1245E-01 -5.5410E-02 1.8528E-02 -4.0400E-03 6.1600E-04 -7.0000E-05 5.4700E-06 -2.0000E-07
表15
图22示出了实施例5的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图23示出了实施例5的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
实施例6
以下参照图26至图30描述根据本申请实施例6的摄像透镜组。
图26为示出了实施例6的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2可为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表16示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 7.21 f(mm) 3.78
f2(mm) 6.66 TTL(mm) 4.70
f3(mm) -15.88 ImgH(mm) 3.10
f4(mm) 5991.62
f5(mm) 5.59
f6(mm) -11.01
f7(mm) -7.41
表16
下表17示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000009
Figure PCTCN2018086539-appb-000010
表17
下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A6 A18
S1 -1.2990E-02 4.2052E-02 -1.3844E-01 1.9172E-01 -1.5220E-01 5.9830E-02 -8.9500E-03 0.0000E+00
S2 7.8340E-03 -3.2120E-02 2.6350E-03 -5.2900E-03 5.5160E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -1.6480E-01 3.9630E-01 -4.2233E-01 4.2800E-02 2.1215E-01 -1.3825E-01 2.6585E-02 0.0000E+00
S5 -1.6481E-01 3.9671E-01 -4.4892E-01 1.4036E-01 1.2238E-01 -8.0860E-02 1.0881E-02 0.0000E+00
S6 -9.7010E-02 6.2425E-02 1.4916E-01 -5.8114E-01 8.4397E-01 -5.7975E-01 1.7011E-01 0.0000E+00
S7 -1.0650E-01 4.3105E-02 -1.4729E-01 7.3428E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.9024E-01 3.2041E-01 -3.2087E-01 1.0872E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -3.5051E-01 8.3246E-01 -8.1280E-01 3.8527E-01 -7.5130E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -2.9298E-01 6.3334E-01 -9.4361E-01 9.1187E-01 -5.2105E-01 1.7119E-01 -3.0390E-02 2.2860E-03
S11 2.7014E-01 -4.1578E-01 2.7667E-01 -1.4670E-01 6.7038E-02 -2.3900E-02 5.4350E-03 -5.4000E-04
S12 1.7155E-01 -2.5852E-01 1.4886E-01 -5.4010E-02 1.1521E-02 -9.3000E-04 -7.9000E-05 1.3700E-05
S13 -4.5571E-01 3.7834E-01 -2.4236E-01 1.1122E-01 -3.2070E-02 5.4690E-03 -5.0000E-04 1.9400E-05
S14 -2.5534E-01 2.0031E-01 -1.2860E-01 5.5718E-02 -1.4860E-02 2.3170E-03 -1.9000E-04 6.5500E-06
表18
图27示出了实施例6的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图28示出了实施例6的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以 看出,根据实施例6的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
实施例7
以下参照图31至图35描述根据本申请实施例7的摄像透镜组。
图31为示出了实施例7的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表19示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 7.51 f(mm) 3.87
f2(mm) 6.47 TTL(mm) 4.80
f3(mm) -12.86 ImgH(mm) 3.10
f4(mm) -265.54
f5(mm) 5.37
f6(mm) -14.42
f7(mm) -6.38
表19
下表20示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000011
表20
下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -8.8300E-03 2.6736E-02 -8.8770E-02 1.1853E-01 -9.0240E-02 3.3335E-02 -4.6300E-03 0.0000E+00
S2 6.6410E-03 -2.1290E-02 2.2020E-03 -7.4700E-03 4.9910E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -1.5924E-01 3.8966E-01 -4.4905E-01 1.4853E-01 8.0575E-02 -6.9260E-02 1.3509E-02 0.0000E+00
S5 -1.5883E-01 3.8028E-01 -4.0222E-01 8.5072E-02 1.3888E-01 -8.2510E-02 1.2041E-02 0.0000E+00
S6 -1.0303E-01 1.3313E-01 -1.5454E-01 1.3776E-01 -1.2410E-01 9.0270E-02 -1.9770E-02 0.0000E+00
S7 -1.2131E-01 8.0581E-02 -1.7907E-01 8.2865E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.8170E-01 2.9137E-01 -2.9295E-01 9.8559E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -3.1840E-01 7.2947E-01 -6.8584E-01 3.1543E-01 -6.0400E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -2.6182E-01 5.1702E-01 -7.1956E-01 6.6276E-01 -3.4866E-01 9.7940E-02 -1.3020E-02 5.3900E-04
S11 2.3853E-01 -3.5761E-01 2.3281E-01 -1.2828E-01 6.6553E-02 -2.7790E-02 7.0790E-03 -7.5000E-04
S12 1.5437E-01 -2.1904E-01 1.1381E-01 -3.5650E-02 5.9260E-03 -1.6000E-04 -7.7000E-05 6.0600E-06
S13 -4.3717E-01 3.5984E-01 -2.3114E-01 1.0537E-01 -2.9850E-02 4.9630E-03 -4.4000E-04 1.6500E-05
S14 -2.4568E-01 1.9034E-01 -1.1936E-01 4.9854E-02 -1.2750E-02 1.8990E-03 -1.5000E-04 4.8700E-06
表21
图32示出了实施例7的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图33示出了实施例7的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图31至图35可以看出,根据实施例7的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
实施例8
以下参照图36至图40描述根据本申请实施例8的摄像透镜组。
图36为示出了实施例8的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12 可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表22示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 8.46 f(mm) 3.80
f2(mm) 6.28 TTL(mm) 4.80
f3(mm) -15.48 ImgH(mm) 3.10
f4(mm) -162.47
f5(mm) 6.87
f6(mm) 36.80
f7(mm) -4.65
表22
下表23示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000012
Figure PCTCN2018086539-appb-000013
表23
下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -1.0940E-02 3.0015E-02 -8.3650E-02 9.7821E-02 -6.6960E-02 2.2149E-02 -2.7100E-03 0.0000E+00
S2 1.2361E-02 -1.7370E-02 -6.4500E-03 -1.4600E-03 2.5060E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -1.3450E-01 2.7675E-01 -2.7570E-01 5.0183E-02 8.3556E-02 -5.3400E-02 9.5160E-03 0.0000E+00
S5 -1.1913E-01 2.3704E-01 -1.6111E-01 -1.1682E-01 2.1987E-01 -9.7610E-02 1.3136E-02 0.0000E+00
S6 -8.5200E-02 6.6576E-02 -5.4800E-03 -7.7290E-02 8.5709E-02 -3.8990E-02 1.5153E-02 0.0000E+00
S7 -1.1680E-01 2.5694E-02 -1.0344E-01 4.7546E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.1742E-01 1.0506E-01 -9.2900E-02 2.8104E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.8274E-01 3.2529E-01 -2.4349E-01 1.0411E-01 -2.1510E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -1.8189E-01 1.3050E-01 1.3528E-01 -4.3034E-01 4.6529E-01 -2.4619E-01 6.3500E-02 -6.4057E-03
S11 1.0432E-01 -2.6138E-01 3.2019E-01 -3.1876E-01 2.0681E-01 -8.2120E-02 1.8206E-02 -1.7030E-03
S12 1.0859E-01 -2.0669E-01 1.6462E-01 -1.0174E-01 4.1277E-02 -9.6300E-03 1.1800E-03 -5.9655E-05
S13 -5.1651E-01 4.9191E-01 -3.7849E-01 1.9806E-01 -6.2510E-02 1.1454E-02 -1.1300E-03 4.6300E-05
S14 -2.4275E-01 1.9470E-01 -1.2615E-01 5.5675E-02 -1.5250E-02 2.4500E-03 -2.1000E-04 7.5373E-06
表24
图37示出了实施例8的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图38示出了实施例8的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图36至图40可以看出,根据实施例8的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
实施例9
以下参照图41至图45描述根据本申请实施例9的摄像透镜组。
图41为示出了实施例9的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表25示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 12.37 f(mm) 3.85
f2(mm) 4.99 TTL(mm) 4.80
f3(mm) -15.00 ImgH(mm) 3.10
f4(mm) -54.60
f5(mm) 6.28
f6(mm) 103.14
f7(mm) -4.58
表25
下表26示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086539-appb-000014
Figure PCTCN2018086539-appb-000015
表26
下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -4.8600E-03 5.5470E-03 -3.7140E-02 4.0294E-02 -2.6159E-02 6.3070E-03 -1.9000E-04 0.0000E+00
S2 2.6296E-02 -3.2060E-02 1.4204E-02 -1.8220E-02 6.1653E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -1.3544E-01 3.2381E-01 -5.1523E-01 4.3718E-01 -2.0020E-01 4.6018E-02 -4.0300E-03 0.0000E+00
S5 1.8981E-02 -9.5870E-02 2.8955E-01 -6.4099E-01 6.8769E-01 -3.3590E-01 6.2245E-02 0.0000E+00
S6 -1.0852E-01 1.5162E-01 -4.3899E-01 8.0845E-01 -1.0002E+00 6.9471E-01 -1.9771E-01 0.0000E+00
S7 -1.3527E-01 9.6878E-02 -1.3961E-01 5.5385E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.5707E-01 1.6389E-01 -1.1139E-01 2.8748E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.5258E-01 2.7141E-01 -1.8299E-01 6.9543E-02 -1.4464E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -4.4000E-02 -9.6080E-02 4.3757E-01 -7.3837E-01 6.7557E-01 -3.3565E-01 8.4681E-02 -8.5100E-03
S11 1.1453E-01 -2.3493E-01 2.5205E-01 -2.4651E-01 1.6353E-01 -6.6810E-02 1.5142E-02 -1.4300E-03
S12 -1.8120E-02 5.1303E-02 -1.3242E-01 1.1297E-01 -5.5670E-02 1.6522E-02 -2.6400E-03 1.7200E-04
S13 -5.2400E-01 5.3076E-01 -4.1963E-01 2.2151E-01 -7.0210E-02 1.2890E-02 -1.2700E-03 5.1900E-05
S14 -2.6242E-01 2.2518E-01 -1.4955E-01 6.6056E-02 -1.8050E-02 2.9140E-03 -2.6000E-04 9.3900E-06
表27
图42示出了实施例9的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学***后的会聚焦点偏离。图43示出了实施例9的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图45 示出了实施例9的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图41至图45可以看出,根据实施例9的摄像透镜组适用于便携式电子产品,具有大孔径、良好的成像质量和低敏感度。
概括地说,在上述实施例1至9中,各条件式满足下面表28的条件。
Figure PCTCN2018086539-appb-000016
表28
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (37)

  1. 一种摄像透镜组,从物侧至像侧依次包括:
    具有正光焦度的第一透镜,其物侧面为凸面;
    具有正光焦度的第二透镜;
    具有光焦度的第三透镜;
    第四透镜;
    具有光焦度的第五透镜,其物侧面为凹面,像侧面为凸面;
    具有光焦度的第六透镜,其像侧面为凹面;
    具有负光焦度的第七透镜,其像侧面为凹面;
    其特征在于,摄像透镜组的有效焦距f与摄像透镜组的入瞳直径EPD之间满足:f/EPD≤1.60。
  2. 根据权利要求1所述的摄像透镜组,其特征在于,第四透镜具有光焦度。
  3. 根据权利要求1或2所述的摄像透镜组,其特征在于,第二透镜的色散系数V2、第三透镜的色散系数V3、第四透镜的色散系数V4、第六透镜的色散系数V6以及第七透镜的色散系数V7之间满足:1<(V2+V7)/(V3+V4+V6)<2。
  4. 根据权利要求1或2所述的摄像透镜组,其特征在于,第一透镜的有效焦距f1与第二透镜的有效焦距f2之间满足:1≤f1/f2<5。
  5. 根据权利要求1所述的摄像透镜组,其特征在于,摄像透镜组的入瞳直径EPD与成像面上有效像素区域对角线长的一半ImgH之间满足:EPD/ImgH≥0.75。
  6. 根据权利要求2所述的摄像透镜组,其特征在于,第二透镜像侧面的曲率半径R4与第四透镜物侧面的曲率半径R7之间满足:|(R4-R7)/(R4+R7)|<1.5。
  7. 根据权利要求6所述的摄像透镜组,其特征在于,第四透镜像侧面的曲率半径R8与第七透镜像侧面的曲率半径R14之间满足:0<(R8-R14)/(R8+R14)<2。
  8. 根据权利要求1所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第一透镜的有效焦距f1之间满足:1.5<f1/f<5。
  9. 根据权利要求1所述的摄像透镜组,其特征在于,第二透镜与第五透镜的轴上距离T23与第五透镜与第六透镜的轴上距离T56之间满足:0<T23/T56<3.5。
  10. 根据权利要求1所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第五透镜物侧面的曲率半径R9之间满足:-1<f/R9<0。
  11. 根据权利要求1至2以及5至10中任一项所述的摄像透镜组,其特征在于,第一透镜物侧面的曲率半径R1与第五透镜物侧面的曲率半径R9之间满足:-0.5<R1/R9<0。
  12. 根据权利要求1至2以及5至10中任一项所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第六透镜像侧面的曲率半径R12之间满足:0<f/R12<1。
  13. 一种摄像透镜组,从物侧至像侧依次包括:
    具有正光焦度的第一透镜;
    具有正光焦度的第二透镜;
    具有光焦度的第三透镜;
    第四透镜;
    具有光焦度的第五透镜;
    具有光焦度的第六透镜;
    具有负光焦度的第七透镜;
    其特征在于,第二透镜的色散系数V2、第三透镜的色散系数V3、第四透镜的色散系数V4、第六透镜的色散系数V6以及第七透镜的色散系数V7之间满足:1<(V2+V7)/(V3+V4+V6)<2。
  14. 根据权利要求13所述的摄像透镜组,其特征在于,
    第一透镜的物侧面为凸面;
    第五透镜的物侧面为凹面且像侧面为凸面;
    第六透镜的像侧面为凹面;以及
    第七透镜的像侧面为凹面。
  15. 根据权利要求13所述的摄像透镜组,其特征在于,第四透镜具有光焦度。
  16. 根据权利要求13至15中任一项所述的摄像透镜组,其特征在于,摄像透镜组的入瞳直径EPD与成像面上有效像素区域对角线长的一半ImgH之间满足:EPD/ImgH≥0.75。
  17. 根据权利要求16所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与摄像透镜组的入瞳直径EPD之间满足:f/EPD≤1.60。
  18. 根据权利要求13所述的摄像透镜组,其特征在于,第一透镜的有效焦距f1与第二透镜的有效焦距f2之间满足:1≤f1/f2<5。
  19. 根据权利要求13所述的摄像透镜组,其特征在于,第二透镜像侧面的曲率半径R4与第四透镜物侧面的曲率半径R7之间满足:|(R4-R7)/(R4+R7)|<1.5。
  20. 根据权利要求13所述的摄像透镜组,其特征在于,第四透镜像侧面的曲率半径R8与第七透镜像侧面的曲率半径R14之间满足: 0<(R8-R14)/(R8+R14)<2。
  21. 根据权利要求13所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第一透镜的有效焦距f1之间满足:1.5<f1/f<5。
  22. 根据权利要求13所述的摄像透镜组,其特征在于,第二透镜与第五透镜的轴上距离T23与第五透镜与第六透镜的轴上距离T56之间满足:0<T23/T56<3.5。
  23. 根据权利要求13所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第五透镜物侧面的曲率半径R9之间满足:-1<f/R9<0。
  24. 根据权利要求13至15以及18至23中任一项所述的摄像透镜组,其特征在于,第一透镜物侧面的曲率半径R1与第五透镜物侧面的曲率半径R9之间满足:-0.5<R1/R9<0。
  25. 根据权利要求13至15以及18至23中任一项所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第六透镜像侧面的曲率半径R12之间满足:0<f/R12<1。
  26. 一种摄像透镜组,从物侧至像侧依次包括:
    具有正光焦度的第一透镜,其物侧面为凸面;
    具有正光焦度的第二透镜;
    具有光焦度的第三透镜;
    第四透镜;
    具有光焦度的第五透镜,其物侧面为凹面,其像侧面为凸面;
    具有光焦度的第六透镜,其像侧面为凹面;
    具有负光焦度的第七透镜,其像侧面为凹面;
    其特征在于,第一透镜的有效焦距f1与第二透镜的有效焦距f2之间满足:1≤f1/f2<5。
  27. 根据权利要求26所述的摄像透镜组,其特征在于,第四透镜具有光焦度。
  28. 根据权利要求26或27所述的摄像透镜组,其特征在于,第二透镜像侧面的曲率半径R4与第四透镜物侧面的曲率半径R7之间满足:|(R4-R7)/(R4+R7)|<1.5。
  29. 根据权利要求28所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与摄像透镜组的入瞳直径EPD之间满足:f/EPD≤1.60。
  30. 根据权利要求28所述的摄像透镜组,其特征在于,第二透镜的色散系数V2、第三透镜的色散系数V3、第四透镜的色散系数V4、第六透镜的色散系数V6以及第七透镜的色散系数V7之间满足:1<(V2+V7)/(V3+V4+V6)<2。
  31. 根据权利要求26所述的摄像透镜组,其特征在于,摄像透镜组的入瞳直径EPD与成像面上有效像素区域对角线长的一半ImgH之间满足:EPD/ImgH≥0.75。
  32. 根据权利要求26所述的摄像透镜组,其特征在于,第四透镜像侧面的曲率半径R8与第七透镜像侧面的曲率半径R14之间满足:0<(R8-R14)/(R8+R14)<2。
  33. 根据权利要求26所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第一透镜的有效焦距f1之间满足:1.5<f1/f<5。
  34. 根据权利要求26所述的摄像透镜组,其特征在于,第二透镜与第五透镜的轴上距离T23与第五透镜与第六透镜的轴上距离T56之间满足:0<T23/T56<3.5。
  35. 根据权利要求26所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第五透镜物侧面的曲率半径R9之间满足:-1<f/R9<0。
  36. 根据权利要求26至27以及31至35中任一项所述的摄像透镜组,其特征在于,第一透镜物侧面的曲率半径R1与第五透镜物侧面的曲率半径R9之间满足:-0.5<R1/R9<0。
  37. 根据权利要求26至27以及31至35中任一项所述的摄像透镜组,其特征在于,摄像透镜组的有效焦距f与第六透镜像侧面的曲率半径R12之间满足:0<f/R12<1。
PCT/CN2018/086539 2017-09-27 2018-05-11 摄像透镜组 WO2019062136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/273,806 US11169353B2 (en) 2017-09-27 2019-02-12 Camera lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710889190.0A CN107479172B (zh) 2017-09-27 2017-09-27 摄像透镜组
CN201721249422.8U CN207181799U (zh) 2017-09-27 2017-09-27 摄像透镜组
CN201721249422.8 2017-09-27
CN201710889190.0 2017-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/273,806 Continuation US11169353B2 (en) 2017-09-27 2019-02-12 Camera lens assembly

Publications (1)

Publication Number Publication Date
WO2019062136A1 true WO2019062136A1 (zh) 2019-04-04

Family

ID=65900518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086539 WO2019062136A1 (zh) 2017-09-27 2018-05-11 摄像透镜组

Country Status (2)

Country Link
US (1) US11169353B2 (zh)
WO (1) WO2019062136A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656377B (zh) 2018-03-28 2019-04-11 大立光電股份有限公司 取像光學鏡頭、取像裝置及電子裝置
CN114460722A (zh) * 2018-05-29 2022-05-10 三星电机株式会社 光学成像***
CN112987250B (zh) 2018-05-29 2023-07-18 三星电机株式会社 光学成像***
JP7189724B2 (ja) * 2018-10-17 2022-12-14 東京晨美光学電子株式会社 撮像レンズ
CN111290099B (zh) * 2018-12-10 2022-08-23 信泰光学(深圳)有限公司 成像镜头
JP2020106620A (ja) * 2018-12-26 2020-07-09 ソニー株式会社 撮像レンズ及び撮像装置
CN110346904B (zh) * 2019-06-29 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
JP7449142B2 (ja) * 2020-04-03 2024-03-13 東京晨美光学電子株式会社 撮像レンズ
KR102448450B1 (ko) * 2020-09-24 2022-09-28 (주)코아시아옵틱스 초고화소 모바일 소형 광학계

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140139931A1 (en) * 2012-11-19 2014-05-22 Takashi Kubota Imaging lens, imaging device and information device
CN104101985A (zh) * 2014-01-25 2014-10-15 徐中一 数码相机全幅镜头
CN105425363A (zh) * 2015-12-24 2016-03-23 瑞声声学科技(苏州)有限公司 摄影光学***
CN106842512A (zh) * 2017-04-17 2017-06-13 浙江舜宇光学有限公司 摄像镜头
CN106896476A (zh) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 光学成像镜头
CN107153257A (zh) * 2017-05-15 2017-09-12 浙江舜宇光学有限公司 光学成像***
CN107479172A (zh) * 2017-09-27 2017-12-15 浙江舜宇光学有限公司 摄像透镜组
CN207181799U (zh) * 2017-09-27 2018-04-03 浙江舜宇光学有限公司 摄像透镜组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823223B1 (ko) * 2016-01-28 2018-01-29 삼성전기주식회사 촬상 광학계
TWI655474B (zh) * 2017-12-22 2019-04-01 大立光電股份有限公司 取像用光學鏡頭、取像裝置及電子裝置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140139931A1 (en) * 2012-11-19 2014-05-22 Takashi Kubota Imaging lens, imaging device and information device
CN104101985A (zh) * 2014-01-25 2014-10-15 徐中一 数码相机全幅镜头
CN105425363A (zh) * 2015-12-24 2016-03-23 瑞声声学科技(苏州)有限公司 摄影光学***
CN106896476A (zh) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 光学成像镜头
CN106842512A (zh) * 2017-04-17 2017-06-13 浙江舜宇光学有限公司 摄像镜头
CN107153257A (zh) * 2017-05-15 2017-09-12 浙江舜宇光学有限公司 光学成像***
CN107479172A (zh) * 2017-09-27 2017-12-15 浙江舜宇光学有限公司 摄像透镜组
CN207181799U (zh) * 2017-09-27 2018-04-03 浙江舜宇光学有限公司 摄像透镜组

Also Published As

Publication number Publication date
US11169353B2 (en) 2021-11-09
US20190179101A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2019210738A1 (zh) 光学成像镜头
WO2020001066A1 (zh) 摄像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019062136A1 (zh) 摄像透镜组
WO2018090609A1 (zh) 光学成像***及摄像装置
WO2019227877A1 (zh) 光学成像镜头
WO2018103250A1 (zh) 摄像镜头及摄像装置
WO2019114524A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2018153012A1 (zh) 摄像镜头
WO2018192126A1 (zh) 摄像镜头
WO2019141210A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2019052144A1 (zh) 光学成像镜头
WO2020107936A1 (zh) 光学成像***
WO2019052220A1 (zh) 光学成像镜头
WO2019214334A1 (zh) 摄像镜头组
WO2019056758A1 (zh) 摄像透镜组
WO2019056776A1 (zh) 光学成像镜头
WO2019205821A1 (zh) 光学成像镜头
WO2020029613A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019085524A1 (zh) 光学成像***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860491

Country of ref document: EP

Kind code of ref document: A1