WO2019233142A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019233142A1
WO2019233142A1 PCT/CN2019/076961 CN2019076961W WO2019233142A1 WO 2019233142 A1 WO2019233142 A1 WO 2019233142A1 CN 2019076961 W CN2019076961 W CN 2019076961W WO 2019233142 A1 WO2019233142 A1 WO 2019233142A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
focal length
optical
Prior art date
Application number
PCT/CN2019/076961
Other languages
English (en)
French (fr)
Inventor
高雪
李明
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019233142A1 publication Critical patent/WO2019233142A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present application relates to an optical imaging lens, and more particularly, the present application relates to a telephoto lens including six lenses.
  • the present application provides an optical imaging lens, for example, a telephoto lens, which is applicable to portable electronic products and can at least partially solve at least one of the above disadvantages in the prior art.
  • the present application provides such an optical imaging lens, which includes, in order from the object side to the image side, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the first lens has optical power, and its object side can be convex and the image side can be concave; the second lens can have positive power; the third lens can have negative power; the fourth lens has power; the fifth The lens may have a negative power and its image side may be concave; the sixth lens has a power.
  • the distance TTL on the optical axis from the object side of the first lens to the imaging surface of the optical imaging lens and the total effective focal length f of the optical imaging lens may satisfy TTL / f ⁇ 1.
  • the total effective focal length f of the optical imaging lens and the effective focal length f2 of the second lens may satisfy 2 ⁇ f / f2 ⁇ 3.
  • the total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy
  • both the object side and the image side of the first lens may be spherical.
  • the curvature radius R1 of the object side of the first lens and the curvature radius R2 of the image side of the first lens may satisfy 0.5 ⁇ R1 / R2 ⁇ 1.5.
  • the total effective focal length f of the optical imaging lens and the curvature radius R3 of the object side of the second lens may satisfy 4 ⁇ f / R3 ⁇ 5.
  • the total effective focal length f of the optical imaging lens and the combined focal length f12 of the first lens and the second lens may satisfy 2 ⁇ f / f12 ⁇ 3.
  • the effective focal length f3 of the third lens and the curvature radius R6 of the image side of the third lens may satisfy -2.5 ⁇ f3 / R6 ⁇ -1.5.
  • the effective focal length f5 of the fifth lens and the curvature radius R10 of the image side of the fifth lens may satisfy -2 ⁇ f5 / R10 ⁇ -1.
  • the combined focal length f56 of the fifth lens and the sixth lens and the total effective focal length f of the optical imaging lens may satisfy -2 ⁇ f56 / f ⁇ -1.
  • the distance T45 between the fourth lens and the fifth lens on the optical axis and the center thickness CT6 of the sixth lens on the optical axis may satisfy 1 ⁇ T45 / CT6 ⁇ 2.
  • the center thickness CT2 of the second lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy 2 ⁇ CT2 / CT4 ⁇ 3.
  • the distance T12 between the center thickness CT1 of the first lens on the optical axis and the first lens and the second lens on the optical axis may satisfy 2.3 ⁇ CT1 / T12 ⁇ 3.8.
  • a half of the diagonal length of the effective pixel area ImgH on the imaging surface of the optical imaging lens and the total effective focal length f of the optical imaging lens may satisfy ImgH / f ⁇ 0.5.
  • the optical imaging lens has a small size by reasonably distributing the power, surface shape, center thickness of each lens, and the axial distance between each lens. At least one of the beneficial effects such as high resolution, long focal length, and high imaging quality.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show the chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Example 1 on the axis;
  • FIG. 3 is a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Example 2;
  • FIG. 5 is a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens of Example 3;
  • FIG. 7 is a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an on-axis chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • FIGS. 10A to 10D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an on-axis chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6;
  • FIG. 13 is a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens of Example 7;
  • FIG. 15 is a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Embodiment 8;
  • FIG. 17 is a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application.
  • 18A to 18D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of Example 9.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are only examples and are not drawn to scale.
  • the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area. Concave.
  • the surface of each lens near the object side is called the object side of the lens, and the surface of each lens near the image side is called the image side of the lens.
  • An optical imaging lens may include, for example, six lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. These six lenses are sequentially arranged along the optical axis from the object side to the image side.
  • the first lens has a positive power or a negative power, and an object side may be a convex surface, and an image side may be a concave surface; the second lens may have a positive power; and the third lens may have a negative power.
  • the fourth lens has a positive or negative power; the fifth lens may have a negative power, and its image side may be concave; the sixth lens has a positive or negative power.
  • both the object side and the image side of the first lens may be spherical.
  • the image quality of the optical system can be effectively balanced, and good processability of the optical system can be ensured.
  • the object-side surface of the second lens may be a convex surface.
  • the image side of the third lens may be concave.
  • the optical imaging lens of the present application can satisfy the conditional expression TTL / f ⁇ 1, where TTL is a distance on the optical axis from the object side of the first lens to the imaging surface of the optical imaging lens, and f is an optical The total effective focal length of the imaging lens. More specifically, TTL and f can further satisfy 0.95 ⁇ TTL / f ⁇ 1, for example, 0.96 ⁇ TTL / f ⁇ 0.98.
  • TTL and f can further satisfy 0.95 ⁇ TTL / f ⁇ 1, for example, 0.96 ⁇ TTL / f ⁇ 0.98.
  • the optical imaging lens of the present application can satisfy the conditional expression 2 ⁇ f / f2 ⁇ 3, where f is a total effective focal length of the optical imaging lens and f2 is an effective focal length of the second lens. More specifically, f and f2 can further satisfy 2 ⁇ f / f2 ⁇ 2.5, for example, 2.10 ⁇ f / f2 ⁇ 2.25. Reasonably controlling the ratio of the total effective focal length of the optical system to the effective focal length of the second lens can effectively allocate the system power and correct chromatic aberration.
  • the optical imaging lens of the present application can satisfy the conditional expression -2.5 ⁇ f3 / R6 ⁇ -1.5, where f3 is the effective focal length of the third lens and R6 is the radius of curvature of the image side of the third lens. More specifically, f3 and R6 can further satisfy -2.19 ⁇ f3 / R6 ⁇ -1.50.
  • Reasonably controlling the ratio of the effective focal length of the third lens to the curvature radius of the image side of the third lens can effectively reduce the astigmatism and distortion of the optical system.
  • the optical imaging lens of the present application may satisfy a conditional expression -2 ⁇ f5 / R10 ⁇ -1, where f5 is an effective focal length of the fifth lens and R10 is a radius of curvature of an image side of the fifth lens. More specifically, f5 and R10 can further satisfy ⁇ 1.84 ⁇ f5 / R10 ⁇ ⁇ 1.27. Reasonably controlling the ratio of the effective focal length of the fifth lens to the curvature radius of the image side of the fifth lens can effectively reduce the astigmatism and distortion of the optical system.
  • the optical imaging lens of the present application can satisfy the conditional formula ImgH / f ⁇ 0.5, where ImgH is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, and f is the length of the optical imaging lens. Total effective focal length. More specifically, ImgH and f can further satisfy 0.4 ⁇ ImgH / f ⁇ 0.5, for example, 0.42 ⁇ ImgH / f ⁇ 0.45. Meet the conditional expression ImgH / f ⁇ 0.5, can effectively compress the size of the optical system, and ensure the compact size characteristics of the lens.
  • the optical imaging lens of the present application can satisfy the conditional expression 0.5 ⁇ R1 / R2 ⁇ 1.5, where R1 is the curvature radius of the object side of the first lens and R2 is the curvature radius of the image side of the first lens . More specifically, R1 and R2 can further satisfy 0.7 ⁇ R1 / R2 ⁇ 1.2, for example, 0.76 ⁇ R1 / R2 ⁇ 1.09. Reasonably controlling the ratio of the curvature radius of the object side and the curvature radius of the image side of the first lens can make the optical system match the principal ray angle of the chip better.
  • the optical imaging lens of the present application can satisfy the conditional expression 4 ⁇ f / R3 ⁇ 5, where f is the total effective focal length of the optical imaging lens and R3 is the radius of curvature of the object side of the second lens. More specifically, f and R3 can further satisfy 4 ⁇ f / R3 ⁇ 4.5, for example, 4.11 ⁇ f / R3 ⁇ 4.27.
  • Reasonably controlling the ratio of the total effective focal length of the optical system to the curvature radius of the object side of the second lens can effectively reduce the system's spherical aberration and astigmatism.
  • the optical imaging lens of the present application can satisfy the conditional expression 2 ⁇ f / f12 ⁇ 3, where f is a total effective focal length of the optical imaging lens, and f12 is a combined focal length of the first lens and the second lens. More specifically, f and f12 can further satisfy 2 ⁇ f / f12 ⁇ 2.5, for example, 2.05 ⁇ f / f12 ⁇ 2.24. Reasonably distributing the ratio of the total effective focal length of the optical system to the combined focal length of the first lens and the second lens can effectively improve the sensitivity of the system.
  • the optical imaging lens of the present application can satisfy the conditional expression -2 ⁇ f56 / f ⁇ -1, where f56 is the combined focal length of the fifth lens and the sixth lens, and f is the total effective length of the optical imaging lens. focal length. More specifically, f56 and f can further satisfy ⁇ 1.79 ⁇ f56 / f ⁇ -1.31. Reasonably distributing the ratio of the combined focal length of the fifth lens and the sixth lens to the total effective focal length of the optical system is beneficial to slowing down the deflection angle of the light, reducing the sensitivity of the optical system, and improving the image quality of the optical system.
  • the optical imaging lens of the present application can satisfy the conditional expression 1 ⁇ T45 / CT6 ⁇ 2, where T45 is the distance between the fourth lens and the fifth lens on the optical axis, and CT6 is the sixth lens. Center thickness on the optical axis. More specifically, T45 and CT6 can further satisfy 1.28 ⁇ T45 / CT6 ⁇ 1.76. Satisfying conditional expression 1 ⁇ T45 / CT6 ⁇ 2, can improve the astigmatism and distortion of the optical system, and reduce the size of the rear end of the optical system.
  • the optical imaging lens of the present application can satisfy the conditional expression 2 ⁇ CT2 / CT4 ⁇ 3, where CT2 is the center thickness of the second lens on the optical axis and CT4 is the fourth lens on the optical axis. Center thickness. More specifically, CT2 and CT4 can further satisfy 2.25 ⁇ CT2 / CT4 ⁇ 2.95. Reasonably arranging the center thickness of the second lens and the fourth lens can ensure the miniaturization of the lens, reduce the deflection of the light, reduce the system sensitivity, and reduce the coma and astigmatism of the system.
  • the optical imaging lens of the present application may satisfy a conditional expression
  • Reasonably controlling the ratio of the total effective focal length of the optical system to the effective focal length of the first lens can effectively balance the chromatic aberration of the optical system.
  • the optical imaging lens of the present application can satisfy the conditional expression 2.3 ⁇ CT1 / T12 ⁇ 3.8, where CT1 is the center thickness of the first lens on the optical axis, and T12 is the first lens and the second lens at The separation distance on the optical axis. More specifically, CT1 and T12 can further satisfy 2.39 ⁇ CT1 / T12 ⁇ 3.67. Reasonably controlling the ratio of the central thickness of the first lens to the air interval of the first lens and the second lens on the optical axis can effectively reduce the front-end size of the optical system and ensure the miniaturization of the optical system.
  • the above-mentioned optical imaging lens may further include at least one diaphragm to improve the imaging quality of the lens.
  • the stop can be set at any position as needed, for example, the stop can be set between the first lens and the second lens.
  • the above-mentioned optical imaging lens may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
  • This application proposes a six-piece telephoto lens that can be combined with other well-known wide-angle lenses to form a dual-lens lens, thereby achieving the purpose of zooming to obtain ideal magnification and good quality images in the case of autofocus. , Suitable for shooting distant subjects.
  • the telephoto lens of this application effectively reduces the volume of the telephoto lens and reduces the telephoto by rationally distributing the power, surface shape, center thickness of each lens, and the axial distance between the lenses.
  • the sensitivity of the lens and the improved processability of the telephoto lens make the above telephoto lens more conducive to production and processing and suitable for portable electronic products.
  • aspheric lenses are often used as lenses having optical power other than the first lens.
  • Aspheric lenses are characterized by a curvature that varies continuously from the center of the lens to the periphery of the lens.
  • an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatic aberration.
  • the use of aspheric lenses can eliminate as much aberrations as possible during imaging, thereby improving imaging quality.
  • the number of lenses constituting the optical imaging lens may be changed to obtain various results and advantages described in this specification.
  • the optical imaging lens is not limited to including six lenses. If necessary, the optical imaging lens may further include other numbers of lenses. Specific examples of the optical imaging lens applicable to the above embodiments will be further described below with reference to the drawings.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.
  • an optical imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a first lens
  • the four lenses E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 1 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging lens of Example 1.
  • the units of the radius of curvature and thickness are millimeters (mm).
  • each aspheric lens can be defined using, but not limited to, the following aspheric formula:
  • x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the aspherical i-th order.
  • Table 2 below shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18, and A 20 that can be used for each aspherical mirror surface S3-S12 in Example 1. .
  • Table 3 shows the effective focal lengths f1 to f6 of each lens, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1 and the maximum half field of view Angular HFOV.
  • FIG. 2A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 1, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 2B shows an astigmatism curve of the optical imaging lens of Example 1, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 2C shows a distortion curve of the optical imaging lens of Example 1, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 2D shows the magnification chromatic aberration curve of the optical imaging lens of Example 1, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. According to FIG. 2A to FIG. 2D, it can be known that the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a first lens
  • the four lenses E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 2, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 5 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the effective focal lengths f1 to f6 of each lens in Example 2, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view. Angular HFOV.
  • FIG. 4A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 2, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 4B shows an astigmatism curve of the optical imaging lens of Example 2, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 4C shows a distortion curve of the optical imaging lens of Example 2, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 4D shows a magnification chromatic aberration curve of the optical imaging lens of Example 2, which represents deviations of different image heights on the imaging plane after light passes through the lens. According to FIG. 4A to FIG. 4D, it can be known that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a first lens
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a concave surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 3.
  • the units of the radius of curvature and thickness are millimeters (mm).
  • Table 8 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 3, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 9 shows the effective focal lengths f1 to f6 of the lenses in Example 3, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view Angular HFOV.
  • FIG. 6A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 3, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 6B shows an astigmatism curve of the optical imaging lens of Example 3, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 6C shows a distortion curve of the optical imaging lens of Example 3, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Example 3, which represents deviations of different image heights on the imaging plane after light passes through the lens. According to FIG. 6A to FIG. 6D, it can be known that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, The four lenses E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 10 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging lens of Example 4, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 11 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 12 shows the effective focal lengths f1 to f6 of the lenses in Example 4, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view. Angular HFOV.
  • FIG. 8A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 4, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 8B shows an astigmatism curve of the optical imaging lens of Example 4, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 8C shows a distortion curve of the optical imaging lens of Example 4, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 8D shows the magnification chromatic aberration curve of the optical imaging lens of Example 4, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, it can be known that the optical imaging lens provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a first lens.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 5, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 14 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 shows the effective focal lengths f1 to f6 of each lens in Example 5, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the center of the object side S1 of the first lens E1 to the imaging surface S15, and the maximum half Field of View HFOV.
  • FIG. 10A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 5, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 10B shows an astigmatism curve of the optical imaging lens of Example 5, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 10C illustrates a distortion curve of the optical imaging lens of Example 5, which represents the magnitude of distortion at different viewing angles.
  • FIG. 10D shows the magnification chromatic aberration curve of the optical imaging lens of Example 5, which represents the deviation of different image heights on the imaging surface after the light passes through the lens. It can be seen from FIGS. 10A to 10D that the optical imaging lens provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens includes: a first lens E1, an aperture STO, a second lens E2, a third lens E3, a first lens
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 6, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 17 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 18 shows the effective focal lengths f1 to f6 of each lens in Example 6, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view. Angular HFOV.
  • FIG. 12A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 6, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 12C shows a distortion curve of the optical imaging lens of Example 6, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 12D shows the magnification chromatic aberration curve of the optical imaging lens of Example 6, which represents the deviation of different image heights on the imaging surface after the light passes through the lens. According to FIG. 12A to FIG. 12D, it can be known that the optical imaging lens provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application.
  • the optical imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, The four lenses E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 7, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 20 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 7, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 21 shows the effective focal lengths f1 to f6 of the lenses in Example 7, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view Angular HFOV.
  • FIG. 14A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 14B shows an astigmatism curve of the optical imaging lens of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 14C shows a distortion curve of the optical imaging lens of Example 7, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Example 7, which represents the deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens provided in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application.
  • the optical imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a first lens
  • the four lenses E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative power, and an object-side surface S1 thereof is a convex surface, and an image-side surface S2 thereof is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 8, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 23 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in the above-mentioned Embodiment 1.
  • Table 24 shows the effective focal lengths f1 to f6 of the lenses in Example 8, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view. Angular HFOV.
  • FIG. 16A shows an on-axis chromatic aberration curve of the optical imaging lens of Embodiment 8, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 16B shows an astigmatism curve of the optical imaging lens of Example 8, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 16C shows a distortion curve of the optical imaging lens of Example 8, which represents the value of the distortion magnitude at different viewing angles.
  • FIG. 16D shows the magnification chromatic aberration curve of the optical imaging lens of Example 8, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. According to FIG. 16A to FIG. 16D, it can be known that the optical imaging lens provided in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application.
  • the optical imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a first lens
  • the four lenses E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative power, and an object-side surface S1 thereof is a convex surface, and an image-side surface S2 thereof is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 9, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 26 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 27 shows the effective focal lengths f1 to f6 of each lens in Example 9, the total effective focal length f of the optical imaging lens, the distance TTL on the optical axis from the object side S1 to the imaging surface S15 of the first lens E1, and the maximum half field of view. Angular HFOV.
  • FIG. 18A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 9, which indicates that light rays with different wavelengths deviate from the focal point after passing through the lens.
  • FIG. 18B shows an astigmatism curve of the optical imaging lens of Example 9, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 18C shows a distortion curve of the optical imaging lens of Example 9, which represents the magnitude of the distortion at different viewing angles.
  • FIG. 18D shows the magnification chromatic aberration curve of the optical imaging lens of Example 9, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. It can be known from FIG. 18A to FIG. 18D that the optical imaging lens provided in Embodiment 9 can achieve good imaging quality.
  • Examples 1 to 9 satisfy the relationships shown in Table 28, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be an independent imaging device such as a digital camera or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,第一透镜具有光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有正光焦度;第三透镜具有负光焦度;第四透镜具有光焦度;第五透镜具有负光焦度,其像侧面为凹面;第六透镜具有光焦度;以及第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的总有效焦距f满足TTL/f<1,使其成像镜头具有长焦特性,且同时满足小型化要求。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年06月06日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810574159.2的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括六片透镜的长焦镜头。
背景技术
随着例如智能手机和平板电脑等便携式电子产品的快速发展,消费者对于产品端摄像镜头的要求日益多样化。除了要求摄像镜头具有小型化、高像素、高分辨率和高相对亮度等特性,还对摄像镜头的焦距、解像力和小型化等方面提出了要求。
目前,为实现在自动对焦的情况下得到放大倍率且质量良好的像,兴起了组合使用由长焦镜头和广角镜头的双摄镜头。在双摄镜头的应用中,为了能够更好地达到变焦目的并获得质量优良的像,对其中的长焦镜头在具有长焦距、高解像力、高成像质量等方面均提出了相应的要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头,例如,长焦镜头。
本申请提供了这样一种光学成像镜头,该镜头由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有光焦度。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的总有效焦距f可满足TTL/f<1。
在一个实施方式中,光学成像镜头的总有效焦距f与第二透镜的有效焦距f2可满足2<f/f2<3。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足|f/f1|<0.2。
在一个实施方式中,第一透镜的物侧面和像侧面均可为球面。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0.5<R1/R2<1.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第二透镜的物侧面的曲率半径R3可满足4<f/R3<5。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜和第二透镜的组合焦距f12可满足2<f/f12<3。
在一个实施方式中,第三透镜的有效焦距f3与第三透镜的像侧面的曲率半径R6可满足-2.5≤f3/R6≤-1.5。
在一个实施方式中,第五透镜的有效焦距f5与第五透镜的像侧面的曲率半径R10可满足-2<f5/R10<-1。
在一个实施方式中,第五透镜和第六透镜的组合焦距f56与光学成像镜头的总有效焦距f可满足-2<f56/f<-1。
在一个实施方式中,第四透镜和第五透镜在光轴上的间隔距离T45与第六透镜于光轴上的中心厚度CT6可满足1<T45/CT6<2。
在一个实施方式中,第二透镜于光轴上的中心厚度CT2与第四透镜于光轴上的中心厚度CT4可满足2<CT2/CT4<3。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第一透镜和第二透镜在光轴上的间隔距离T12可满足2.3<CT1/T12<3.8。
在一个实施方式中,光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与光学成像镜头的总有效焦距f可满足ImgH/f<0.5。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有小型化、长焦距、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及 倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜靠近物侧的表面称为该透镜的物侧面,每个透镜靠近像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释 为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其像侧面可为凹面;第六透镜具有正光焦度或负光焦度。
在示例性实施方式中,第一透镜的物侧面和像侧面均可为球面。将第一透镜的物侧面和像侧面均布置为球面,可有效地平衡光学***的像质,并有利于保证光学***的良好的可加工性。
在示例性实施方式中,第二透镜的物侧面可为凸面。
在示例性实施方式中,第三透镜的像侧面可为凹面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/f<1,其中,TTL为第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离,f为光学成像镜头的总有效焦距。更具体地,TTL和f进一步可满足0.95<TTL/f<1,例如,0.96≤TTL/f≤0.98。通过控制从第一透镜物侧面至成像面的轴上距离和光学成像***的总有效焦距,使其成像镜头具有长焦特性,且同时满足小型化要求。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<f/f2<3,其中,f为光学成像镜头的总有效焦距,f2为第二透镜的有效焦距。更具体地,f和f2进一步可满足2<f/f2<2.5,例如,2.10≤f/f2≤2.25。合理控制光学***的总有效焦距与第二透镜的有效焦距的比值,可有效分配***光焦度,并矫正色差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2.5≤f3/R6≤-1.5,其中,f3为第三透镜的有效焦距,R6为第三透镜的像侧面的曲率半径。更具体地,f3和R6进一步可满足-2.19≤f3/R6≤-1.50。合理控制第三透镜的有效焦距与第三透镜像侧面的曲率半径的比值,可有效地减小光学***的象散和畸变。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2<f5/R10<-1,其中,f5为第五透镜的有效焦距,R10为第五透镜的像侧面的曲率半径。更具体地,f5和R10进一步可满足-1.84≤f5/R10≤-1.27。合理控制第五透镜的有效焦距与第五透镜像侧面的曲率半径的比值,可有效地减小光学***的象散和畸变。
在示例性实施方式中,本申请的光学成像镜头可满足条件式ImgH/f<0.5,其中,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半,f为光学成像镜头的总有效焦距。更具体地,ImgH和f进一步可满足0.4<ImgH/f<0.5,例如,0.42≤ImgH/f≤0.45。满足条件式ImgH/f<0.5,能有效压缩光学***的尺寸,保证镜头紧凑的尺寸特性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<R1/R2<1.5,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足0.7 <R1/R2<1.2,例如,0.76≤R1/R2≤1.09。合理控制第一透镜的物侧面曲率半径和像侧面曲率半径的比值,可使光学***较好地与芯片的主光线角度匹配。
在示例性实施方式中,本申请的光学成像镜头可满足条件式4<f/R3<5,其中,f为光学成像镜头的总有效焦距,R3为第二透镜的物侧面的曲率半径。更具体地,f和R3进一步可满足4<f/R3<4.5,例如,4.11≤f/R3≤4.27。合理控制光学***的总有效焦距与第二透镜物侧面的曲率半径的比值,可有效地减小***的球差和象散。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<f/f12<3,其中,f为光学成像镜头的总有效焦距,f12为第一透镜和第二透镜的组合焦距。更具体地,f和f12进一步可满足2<f/f12<2.5,例如,2.05≤f/f12≤2.24。合理的分配光学***的总有效焦距与第一透镜和第二透镜的组合焦距的比值,能有效改善***的敏感性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2<f56/f<-1,其中,f56为第五透镜和第六透镜的组合焦距,f为光学成像镜头的总有效焦距。更具体地,f56和f进一步可满足-1.79≤f56/f≤-1.31。合理分配第五透镜和第六透镜的组合焦距与光学***的总有效焦距的比值,有利于减缓光线偏折角度,降低光学***敏感性,改善光学***的像质。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<T45/CT6<2,其中,T45为第四透镜和第五透镜在光轴上的间隔距离,CT6为第六透镜于光轴上的中心厚度。更具体地,T45和CT6进一步可满足1.28≤T45/CT6≤1.76。满足条件式1<T45/CT6<2,可改善光学***的象散和畸变,同时减小光学***的后端尺寸。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<CT2/CT4<3,其中,CT2为第二透镜于光轴上的中心厚度,CT4为第四透镜于光轴上的中心厚度。更具体地,CT2和CT4进一步可满足2.25≤CT2/CT4≤2.95。合理布置第二透镜和第四透镜的中心厚度,可保证镜头小型化,使光线偏折趋于缓和,降低***敏感性,并减小***的彗差和象散。
在示例性实施方式中,本申请的光学成像镜头可满足条件式|f/f1|<0.2,其中,f为光学成像镜头的总有效焦距,f1为第一透镜的有效焦距。更具体地,f和f1进一步可满足0<|f/f1|<0.1,例如,0.01≤|f/f1|≤0.08。合理控制光学***的总有效焦距与第一透镜的有效焦距的比值,能够有效地平衡光学***的色差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2.3<CT1/T12<3.8,其中,CT1为第一透镜于光轴上的中心厚度,T12为第一透镜和第二透镜在光轴上的间隔距离。更具体地,CT1和T12进一步可满足2.39≤CT1/T12≤3.67。合理控制第一透镜的中心厚度与第一透镜和第二透镜在光轴上的空气间隔的比值,可有效地减小光学***的前端尺寸,保证光学***的小型化。
在示例性实施方式中,上述光学成像镜头还可包括至少一个光阑,以提升镜头的成像质量。光阑可根据需要设置在任意位置处,例如,光阑可设置在第一透镜与第二透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
本申请提出了一种六片式长焦镜头,该长焦镜头可与其他公知的广角镜头搭配构成双摄镜头,从而 达到变焦的目的,以在自动对焦情况下得到理想放大倍率以及质量良好的像,适合于拍摄远处的对象。同时,本申请的长焦镜头通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,有效地缩小了长焦镜头的体积、降低长焦镜头的敏感度并提高长焦镜头的可加工性,使得上述长焦镜头更有利于生产加工并且可适用于便携式电子产品。
在本申请的实施方式中,除第一透镜以外的其余具有光焦度的透镜多采用非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019076961-appb-000001
Figure PCTCN2019076961-appb-000002
表1
由表1可知,第一透镜E1的物侧面S1和像侧面S2均为球面,第二透镜E2至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019076961-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S3-S12的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2960E-03 -2.3620E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 5.4930E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7150E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5280E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9310E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表2
表3给出实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f1(mm) 1132.39 f6(mm) 8.11
f2(mm) 2.75 f(mm) 5.92
f3(mm) -4.35 TTL(mm) 5.70
f4(mm) -586.58 HFOV(°) 19.2
f5(mm) -4.07    
表3
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出 了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
Figure PCTCN2019076961-appb-000004
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2963E-03 -2.3620E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 -5.4927E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7155E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5279E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9314E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表5
f1(mm) 567.27 f6(mm) 6.26
f2(mm) 2.63 f(mm) 5.89
f3(mm) -4.04 TTL(mm) 5.69
f4(mm) -66.01 HFOV(°) 19.1
f5(mm) -3.47    
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距 离TTL以及最大半视场角HFOV。
Figure PCTCN2019076961-appb-000005
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2963E-03 -2.3620E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 -5.4927E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7155E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5279E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9314E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表8
f1(mm) 77.34 f6(mm) 7.13
f2(mm) 2.72 f(mm) 5.89
f3(mm) -4.21 TTL(mm) 5.70
f4(mm) -44.71 HFOV(°) 19.2
f5(mm) -3.76    
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出实施例4中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
Figure PCTCN2019076961-appb-000006
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2963E-03 -2.3624E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 -5.4927E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7155E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5279E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9314E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表11
f1(mm) 79.28 f6(mm) 7.25
f2(mm) 2.69 f(mm) 5.89
f3(mm) -4.21 TTL(mm) 5.70
f4(mm) -39.88 HFOV(°) 19.1
f5(mm) -3.79    
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
Figure PCTCN2019076961-appb-000007
Figure PCTCN2019076961-appb-000008
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2963E-03 -2.3624E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 -5.4927E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7155E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5279E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9314E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表14
f1(mm) 499.32 f6(mm) 6.90
f2(mm) 2.71 f(mm) 5.84
f3(mm) -4.43 TTL(mm) 5.70
f4(mm) -47.72 HFOV(°) 19.6
f5(mm) -3.59    
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
Figure PCTCN2019076961-appb-000009
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2963E-03 -2.3624E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 -5.4927E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7155E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5279E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9314E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表17
f1(mm) 547.87 f6(mm) 8.03
f2(mm) 2.76 f(mm) 5.91
f3(mm) -4.34 TTL(mm) 5.70
f4(mm) 1491.97 HFOV(°) 19.2
f5(mm) -4.20    
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出实施例7中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
Figure PCTCN2019076961-appb-000010
Figure PCTCN2019076961-appb-000011
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2963E-03 -2.3624E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 -5.4927E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7155E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5279E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9314E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表20
f1(mm) 499.92 f6(mm) 6.46
f2(mm) 2.61 f(mm) 5.87
f3(mm) -4.02 TTL(mm) 5.70
f4(mm) -53.81 HFOV(°) 19.2
f5(mm) -3.55    
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出实施例8中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
Figure PCTCN2019076961-appb-000012
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2963E-03 -2.3624E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 -5.4927E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7155E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5279E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9314E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表23
f1(mm) -893.11 f6(mm) 8.03
f2(mm) 2.73 f(mm) 5.91
f3(mm) -4.33 TTL(mm) 5.70
f4(mm) 626.94 HFOV(°) 19.3
f5(mm) -3.98    
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27给出实施例9中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
Figure PCTCN2019076961-appb-000013
Figure PCTCN2019076961-appb-000014
表25
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S3 9.2963E-03 -2.3624E-02 1.3802E-01 -3.9881E-01 7.0112E-01 -7.3634E-01 4.4024E-01 -1.2915E-01 1.1358E-02
S4 1.4872E-02 3.4942E-02 -5.7930E-02 2.4784E-02 1.9307E-01 -6.0821E-01 8.1732E-01 -5.5599E-01 1.5175E-01
S5 -5.4927E-02 2.3013E-01 -4.1617E-01 1.2277E+00 -3.4314E+00 6.3596E+00 -7.1648E+00 4.3385E+00 -1.0800E+00
S6 -9.7155E-02 3.5634E-01 -1.3159E+00 9.1431E+00 -4.0121E+01 1.0753E+02 -1.7016E+02 1.4639E+02 -5.2885E+01
S7 -6.2510E-02 2.3524E-01 -5.2087E-01 2.0720E+00 -4.2372E+00 4.4413E+00 -1.9091E+00 0.0000E+00 0.0000E+00
S8 2.1800E-02 1.1097E-01 3.8131E-01 -2.6792E+00 9.7265E+00 -2.0053E+01 2.3760E+01 -1.5018E+01 3.8779E+00
S9 -1.9696E-01 1.0317E-01 -1.1586E-01 7.7671E-02 5.9499E-02 -1.4177E-01 9.9098E-02 -3.0790E-02 3.6110E-03
S10 -9.5279E-02 1.1284E-01 -1.1130E-01 4.7705E-02 -8.5000E-04 -7.8900E-03 3.2530E-03 -5.4000E-04 3.3900E-05
S11 -1.5383E-01 3.2892E-01 -3.6125E-01 2.3707E-01 -9.8740E-02 2.6372E-02 -4.3800E-03 4.1200E-04 -1.7000E-05
S12 -9.9314E-02 6.8535E-02 -3.1530E-02 8.7280E-03 -7.6000E-04 -2.7000E-04 8.9300E-05 -9.8000E-06 3.6800E-07
表26
f1(mm) -244.27 f6(mm) -1000.32
f2(mm) 2.79 f(mm) 5.87
f3(mm) -4.60 TTL(mm) 5.67
f4(mm) 134.19 HFOV(°) 19.2
f5(mm) -7.55    
表27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表28中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9
TTL/f 0.96 0.97 0.97 0.97 0.98 0.96 0.97 0.96 0.97
f/f2 2.15 2.24 2.16 2.18 2.15 2.14 2.25 2.16 2.10
f3/R6 -2.09 -1.50 -1.89 -1.88 -2.01 -2.19 -1.65 -2.04 -2.11
f5/R10 -1.44 -1.48 -1.60 -1.58 -1.84 -1.27 -1.53 -1.38 -1.58
ImgH/f 0.44 0.42 0.43 0.42 0.45 0.44 0.45 0.44 0.45
R1/R2 0.99 0.98 0.76 0.77 0.97 0.98 0.97 1.03 1.09
f/R3 4.25 4.12 4.13 4.13 4.19 4.27 4.11 4.23 4.18
f/f12 2.14 2.23 2.22 2.23 2.14 2.13 2.24 2.13 2.05
f56/f -1.60 -1.53 -1.49 -1.48 -1.33 -1.79 -1.53 -1.55 -1.31
T45/CT6 1.57 1.56 1.54 1.57 1.28 1.76 1.53 1.55 1.62
CT2/CT4 2.85 2.88 2.48 2.44 2.85 2.64 2.95 2.82 2.25
|f/f1| 0.01 0.01 0.08 0.07 0.01 0.01 0.01 0.01 0.02
CT1/T12 3.64 2.75 2.68 2.70 2.58 3.67 2.39 3.41 3.21
表28
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (40)

  1. 光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度;
    所述第三透镜具有负光焦度;
    所述第四透镜具有光焦度;
    所述第五透镜具有负光焦度,其像侧面为凹面;
    所述第六透镜具有光焦度;以及
    所述第一透镜的物侧面至所述光学成像镜头的成像面在光轴上的距离TTL与所述光学成像镜头的总有效焦距f满足TTL/f<1。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的有效焦距f2满足2<f/f2<3。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足|f/f1|<0.2。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和像侧面均为球面。
  5. 根据权利要求4所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.5<R1/R2<1.5。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的物侧面的曲率半径R3满足4<f/R3<5。
  7. 根据权利要求1至6中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足2<f/f12<3。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第三透镜的像侧面的曲率半径R6满足-2.5≤f3/R6≤-1.5。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第五透镜的像侧面的曲率半径R10满足-2<f5/R10<-1。
  10. 根据权利要求1或9所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜的组合焦距f56与所述光学成像镜头的总有效焦距f满足-2<f56/f<-1。
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第六透镜于所述光轴上的中心厚度CT6满足1<T45/CT6<2。
  12. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第四透镜于所述光轴上的中心厚度CT4满足2<CT2/CT4<3。
  13. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足2.3<CT1/T12<3.8。
  14. 根据权利要求11至13中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的成 像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足ImgH/f<0.5。
  15. 光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度;
    所述第三透镜具有负光焦度;
    所述第四透镜具有光焦度;
    所述第五透镜具有负光焦度,其像侧面为凹面;
    所述第六透镜具有光焦度;以及
    所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH与所述光学成像镜头的总有效焦距f满足ImgH/f<0.5。
  16. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.5<R1/R2<1.5。
  17. 根据权利要求16所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足|f/f1|<0.2。
  18. 根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和像侧面均为球面。
  19. 根据权利要求15所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的有效焦距f2满足2<f/f2<3。
  20. 根据权利要求15所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的物侧面的曲率半径R3满足4<f/R3<5。
  21. 根据权利要求15所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第三透镜的像侧面的曲率半径R6满足-2.5≤f3/R6≤-1.5。
  22. 根据权利要求15所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第五透镜的像侧面的曲率半径R10满足-2<f5/R10<-1。
  23. 根据权利要求15至22中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足2<f/f12<3。
  24. 根据权利要求23所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜的组合焦距f56与所述光学成像镜头的总有效焦距f满足-2<f56/f<-1。
  25. 根据权利要求15至22中任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在光轴上的距离TTL与所述光学成像镜头的总有效焦距f满足TTL/f<1。
  26. 根据权利要求15所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第六透镜于所述光轴上的中心厚度CT6满足1<T45/CT6<2。
  27. 根据权利要求15所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第四透镜于所述光轴上的中心厚度CT4满足2<CT2/CT4<3。
  28. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足2.3<CT1/T12<3.8。
  29. 光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度;
    所述第三透镜具有负光焦度;
    所述第四透镜具有光焦度;
    所述第五透镜具有负光焦度,其像侧面为凹面;
    所述第六透镜具有光焦度;以及
    所述光学成像镜头的总有效焦距f与所述第二透镜的有效焦距f2满足2<f/f2<3。
  30. 根据权利要求29所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足|f/f1|<0.2。
  31. 根据权利要求30所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和像侧面均为球面。
  32. 根据权利要求31所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.5<R1/R2<1.5。
  33. 根据权利要求29所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的物侧面的曲率半径R3满足4<f/R3<5。
  34. 根据权利要求29所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足2<f/f12<3。
  35. 根据权利要求29所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第三透镜的像侧面的曲率半径R6满足-2.5≤f3/R6≤-1.5。
  36. 根据权利要求29所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第五透镜的像侧面的曲率半径R10满足-2<f5/R10<-1。
  37. 根据权利要求29所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜的组合焦距f56与所述光学成像镜头的总有效焦距f满足-2<f56/f<-1。
  38. 根据权利要求29至37中任一项所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第六透镜于所述光轴上的中心厚度CT6满足1<T45/CT6<2。
  39. 根据权利要求29至37中任一项所述的光学成像镜头,其特征在于,所述第二透镜于所述光轴上的中心厚度CT2与所述第四透镜于所述光轴上的中心厚度CT4满足2<CT2/CT4<3。
  40. 根据权利要求29至37中任一项所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足2.3<CT1/T12<3.8。
PCT/CN2019/076961 2018-06-06 2019-03-05 光学成像镜头 WO2019233142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810574159.2 2018-06-06
CN201810574159.2A CN108490588B (zh) 2018-06-06 2018-06-06 光学成像镜头

Publications (1)

Publication Number Publication Date
WO2019233142A1 true WO2019233142A1 (zh) 2019-12-12

Family

ID=63342304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076961 WO2019233142A1 (zh) 2018-06-06 2019-03-05 光学成像镜头

Country Status (2)

Country Link
CN (1) CN108490588B (zh)
WO (1) WO2019233142A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142235A (zh) * 2020-01-20 2020-05-12 厦门力鼎光电股份有限公司 一种大通光日夜两用的光学成像镜头
US10698178B2 (en) 2018-08-10 2020-06-30 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
CN115248497A (zh) * 2021-04-28 2022-10-28 华为技术有限公司 光学镜头、摄像头模组和电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490588B (zh) * 2018-06-06 2023-05-26 浙江舜宇光学有限公司 光学成像镜头
CN114355563A (zh) * 2019-06-27 2022-04-15 华为技术有限公司 光学镜头组、摄像头及终端设备
CN110346923B (zh) * 2019-06-30 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN113514931B (zh) * 2021-04-15 2023-05-02 浙江舜宇光学有限公司 光学成像镜头
CN114326042B (zh) * 2022-01-18 2024-05-31 浙江舜宇光学有限公司 移动对焦的光学透镜组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576297A (zh) * 2013-10-30 2014-02-12 浙江舜宇光学有限公司 摄像镜头
CN104423015A (zh) * 2013-08-29 2015-03-18 三星电机株式会社 光学***
CN106338815A (zh) * 2016-10-28 2017-01-18 浙江舜宇光学有限公司 摄像镜头及装配有该摄像镜头的摄像装置
CN107861222A (zh) * 2017-11-18 2018-03-30 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108490588A (zh) * 2018-06-06 2018-09-04 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101377562B (zh) * 2007-08-30 2010-06-02 鸿富锦精密工业(深圳)有限公司 透镜***
TWI463169B (zh) * 2013-07-25 2014-12-01 Largan Precision Co Ltd 影像系統鏡片組及取像裝置
JP6319765B2 (ja) * 2014-07-02 2018-05-09 株式会社オプトロジック 撮像レンズ
TWI574040B (zh) * 2016-04-15 2017-03-11 大立光電股份有限公司 光學成像系統組、取像裝置及電子裝置
KR101834729B1 (ko) * 2016-05-04 2018-03-06 주식회사 코렌 광각 렌즈 및 이를 포함한 촬상 장치
CN106802473A (zh) * 2017-03-21 2017-06-06 惠州市星聚宇光学有限公司 一种超高分辨率超薄光学透镜组和成像***
CN116400480A (zh) * 2018-05-14 2023-07-07 浙江舜宇光学有限公司 光学成像镜头
CN208477189U (zh) * 2018-06-06 2019-02-05 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423015A (zh) * 2013-08-29 2015-03-18 三星电机株式会社 光学***
CN103576297A (zh) * 2013-10-30 2014-02-12 浙江舜宇光学有限公司 摄像镜头
CN106338815A (zh) * 2016-10-28 2017-01-18 浙江舜宇光学有限公司 摄像镜头及装配有该摄像镜头的摄像装置
CN107861222A (zh) * 2017-11-18 2018-03-30 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108490588A (zh) * 2018-06-06 2018-09-04 浙江舜宇光学有限公司 光学成像镜头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10698178B2 (en) 2018-08-10 2020-06-30 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
CN111142235A (zh) * 2020-01-20 2020-05-12 厦门力鼎光电股份有限公司 一种大通光日夜两用的光学成像镜头
CN115248497A (zh) * 2021-04-28 2022-10-28 华为技术有限公司 光学镜头、摄像头模组和电子设备

Also Published As

Publication number Publication date
CN108490588A (zh) 2018-09-04
CN108490588B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2020024634A1 (zh) 光学成像镜片组
WO2019228064A1 (zh) 成像镜头
WO2019223263A1 (zh) 摄像镜头
WO2019233160A1 (zh) 光学成像镜片组
WO2020001066A1 (zh) 摄像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2020007080A1 (zh) 摄像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2020029620A1 (zh) 光学成像镜片组
CN108508581B (zh) 光学成像***
WO2019210739A1 (zh) 光学成像镜头
WO2020010879A1 (zh) 光学成像***
WO2020010878A1 (zh) 光学成像***
WO2021068753A1 (zh) 光学成像***
WO2020119146A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2019233142A1 (zh) 光学成像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2020134129A1 (zh) 光学成像***
WO2020019796A1 (zh) 光学成像***
CN109613683B (zh) 光学成像***
WO2020088024A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815239

Country of ref document: EP

Kind code of ref document: A1