WO2019208705A1 - N,n-二置換アミドの製造方法およびn,n-二置換アミド製造用触媒 - Google Patents

N,n-二置換アミドの製造方法およびn,n-二置換アミド製造用触媒 Download PDF

Info

Publication number
WO2019208705A1
WO2019208705A1 PCT/JP2019/017670 JP2019017670W WO2019208705A1 WO 2019208705 A1 WO2019208705 A1 WO 2019208705A1 JP 2019017670 W JP2019017670 W JP 2019017670W WO 2019208705 A1 WO2019208705 A1 WO 2019208705A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
producing
group
disubstituted amide
disubstituted
Prior art date
Application number
PCT/JP2019/017670
Other languages
English (en)
French (fr)
Inventor
祥之 上田
渋谷 彰
英雄 宮田
内田 博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020515570A priority Critical patent/JPWO2019208705A1/ja
Priority to CN201980027984.3A priority patent/CN112004796B/zh
Priority to US17/049,792 priority patent/US11358927B2/en
Publication of WO2019208705A1 publication Critical patent/WO2019208705A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • C07C231/065By hydration using metals or metallic ions as catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0222Sulfur-containing compounds comprising sulfonyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0222Sulfur-containing compounds comprising sulfonyl groups
    • B01J31/0224Sulfur-containing compounds comprising sulfonyl groups being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • B01J31/0227Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0231Halogen-containing compounds
    • B01J31/0232Halogen-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0228
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/05Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing at least two sulfo groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/06Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing halogen atoms, or nitro or nitroso groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing N, N-disubstituted amides and a catalyst for producing N, N-disubstituted amides.
  • N, N-disubstituted amides such as N, N-dimethylacetamide are industrially important and are used as various solvents.
  • a method for producing an N, N-disubstituted amide a method using a dialkylamine as a raw material is generally used. Specifically, a method for producing N, N-dimethylacetamide by reacting N, N-dimethylamine, which is N, N-dialkylamine, with acetic acid or an acetate ester is used.
  • N, N-dialkylamine is generally produced by reacting ammonia with a corresponding alcohol or alkyl halide.
  • monoalkylamine and / or trialkylamine are easily produced as a by-product together with N, N-dialkylamine. Therefore, it is necessary to separate and purify N, N-dialkylamine after the reaction. For this reason, N, N-dialkylamines are generally expensive.
  • Catalysts and / or promoters that promote the reaction between nitrile and alcohol include chlorides such as SbCl 5 , ZnCl 2 , SnCl 4 , CoCl 2 , phosphates such as cadmium acetate, zeolite, BPO 4 , magnesium sulfate, Sulfates such as aluminum sulfate, pyridine, water and the like are used.
  • the present invention has been made in view of such circumstances, and a method for producing an N, N-disubstituted amide and an N, N-2 diester that can efficiently produce an N, N-disubstituted amide by the reaction of a nitrile and an alcohol. It is an object to provide a catalyst for producing a substituted amide.
  • the present inventor has intensively studied a catalyst that can sufficiently promote the reaction between a nitrile and an alcohol.
  • MXn (wherein M is a metal cation having an oxidation number n and X is —S ( ⁇ O) 2 —R 3 (wherein R 3 is a hydrocarbon group having 10 or less carbon atoms) as a catalyst. Or a group in which part or all of the hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms.)
  • a method for producing an N, N-disubstituted amide according to an embodiment of the present invention comprises N, N-disubstituted amides produced by reacting a nitrile and an alcohol in the presence of a catalyst.
  • a method for producing a disubstituted amide The nitrile is R 1 CN (R 1 in the formula is an alkyl group having 10 or less carbon atoms or an aryl group having 10 or less carbon atoms.)
  • a compound represented by The alcohol is R 2 OH (Wherein R 2 is an alkyl group having 10 or less carbon atoms),
  • the catalyst is MXn (In the formula, M is a metal cation having an oxidation number n, and X is —S ( ⁇ O) 2 —R 3 (wherein R 3 is a hydrocarbon group having 10 or less carbon atoms, or in the hydrocarbon group) A part of or all of the hydrogen atoms are substituted with fluorine atoms.)
  • R 3 is preferably an alkyl group or a perfluoroalkyl group.
  • the catalyst may be a metal methanesulfonate.
  • the catalyst may be a metal trifluoromethanesulfonate.
  • the M is classified into Zn, Cu, Sn, Al, Sc, and a lanthanoid. Any one selected from the group consisting of the following elements may be used.
  • the catalyst is used in an amount of 0.1 to 3.0 mol% of the molar amount of the nitrile. Is preferred.
  • the nitrile may be acetonitrile.
  • the alcohol may be methanol.
  • the reaction is preferably performed in a sealed state in an autoclave reaction vessel.
  • the reaction temperature is preferably less than 300 ° C.
  • a catalyst for producing an N, N-disubstituted amide according to an embodiment of the present invention is used for producing an N, N-disubstituted amide by reacting a nitrile and an alcohol in the presence of the catalyst.
  • MXn (wherein M is a metal cation having an oxidation number of n and X is —S ( ⁇ O) 2 —R 3 (wherein R 3 is a hydrocarbon group having 10 or less carbon atoms, or A part of or all of the hydrogen atoms in the hydrogen group are groups substituted by fluorine atoms.), Wherein n is an integer of 1 to 4.
  • X may be any one selected from anions represented by the following formulas (2) to (9): .
  • X may be an anion represented by the formula (3).
  • M is classified into Zn, Cu, Sn, Al, Sc, and a lanthanoid. Any one selected from the group consisting of the following elements may be used.
  • M may be any one selected from Zn, Nd, and Ce.
  • the production method of the present invention is a method for producing an N, N-disubstituted amide by reacting a nitrile and an alcohol in the presence of a catalyst.
  • MXn M in the formula is a metal having an oxidation number n
  • X is —S ( ⁇ O) 2 —R 3 (wherein R 3 is a hydrocarbon group having 10 or less carbon atoms, or a part or all of the hydrogen atoms in the hydrocarbon group are fluorine atoms)
  • the reaction rate is high, and N, N-disubstituted amides can be produced efficiently.
  • the present inventor has intensively studied a catalyst capable of obtaining a sufficient reaction rate by paying attention to the reaction temperature of nitrile and alcohol and the amount of catalyst. If the reaction temperature between the nitrile and the alcohol is higher than 300 ° C., the yield of N, N-disubstituted amide may be increased. However, since nitrile and alcohol used as raw materials are both low boiling point compounds, when the reaction temperature exceeds 300 ° C., the pressure in the reaction vessel temporarily becomes a high pressure of 10 MPa or more, or a supercritical state It is expected to become. Since the low boiling component is converted to the high boiling component as the reaction proceeds, the pressure in the reaction vessel gradually decreases. However, when the reaction temperature exceeds 300 ° C., there is a risk of the synthesis reaction of N, N-disubstituted amide. It is necessary to use a high reaction container that requires sufficient durability.
  • the present inventor has a sufficient reaction rate even under conditions where the reaction temperature is a low temperature of less than 300 ° C. and the amount of catalyst is a small amount of 3.0 mol% or less of the molar amount of nitrile used as a raw material. Catalysts obtained and not chlorides were investigated. As a result, it was found that it is effective to use a catalyst containing a metal salt represented by MXn.
  • M is a metal cation having an oxidation number n
  • X is a monovalent anion containing at least one substituted sulfonyl group represented by —S ( ⁇ O) 2 —R 3
  • n is 1 to 4 It is an integer.
  • R 3 is a hydrocarbon group having 10 or less carbon atoms (preferably 1 to 8, more preferably 1 to 4), or a group in which part or all of the hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms. .
  • the anion (X) is monovalent, and the negative charge is localized in the anion (X) due to the resonance effect of two oxygen atoms in the substituted sulfonyl group.
  • Localization to the cation (M) enhances the Lewis acidity of the metal cation (M), and high catalytic activity is obtained. For this reason, even if the reaction temperature is lowered to less than 300 ° C., for example, when the reaction temperature is 275 ° C., the nitrile and the alcohol can be reacted in a reaction time of 8 hours or less.
  • the metal salt since the said metal salt has high catalyst activity, sufficient reaction rate is obtained with little usage-amount.
  • the metal salt is not a chloride that degrades the durability of the reaction vessel. The present inventor has conceived the present invention based on such knowledge.
  • Method for producing N, N-disubstituted amide and the catalyst for producing N, N-disubstituted amide of the present invention will be described in detail.
  • this invention is not limited only to embodiment shown below.
  • Method for producing N, N-disubstituted amide In the production method of this embodiment, a nitrile and an alcohol are reacted in the presence of a catalyst to produce an N, N-disubstituted amide represented by the following formula (1).
  • a compound represented by R 1 CN is used as the nitrile.
  • R 1 in the formula is an alkyl group having 10 or less carbon atoms or an aryl group having 10 or less carbon atoms.
  • a compound represented by R 2 OH is used as the alcohol.
  • R 2 in the formula is an alkyl group containing 10 or less carbon atoms.
  • the substituent bonded to the carbon atom in the carbonyl group is R 1 described above.
  • the two substituents bonded to the nitrogen atom in the amide group are both R 2 described above.
  • R 1 in the compound represented by R 1 CN is an alkyl group having 10 or less carbon atoms (preferably 1-8, more preferably 1-2) containing or containing, An aryl group having 10 or less carbon atoms (preferably 6 to 8, more preferably 6 to 7).
  • the alkyl group containing 10 or less carbon atoms it is preferable to use a methyl group or an ethyl group because of its good reactivity with alcohol.
  • a methyl group is used as an alkyl group having 10 or less carbon atoms (in other words, acetonitrile is used as a nitrile)
  • N is known to be highly useful in applications such as aprotic highly polar solvents.
  • N-disubstituted acetamide is preferred.
  • the aryl group having 10 or less carbon atoms a phenyl group is preferably used because it is readily available and inexpensive.
  • R 2 in the compound represented by R 2 OH is an alkyl group having 10 or less carbon atoms (preferably 1-8, more preferably 1 to 3).
  • the alkyl group having 10 or less carbon atoms a methyl group, an ethyl group, or an n-propyl group is preferably used.
  • a by-product such as an alkene accompanying intramolecular dehydration of alcohol
  • a protic group is not generated.
  • It is more preferable to use a methyl group (in other words, to use methanol as an alcohol) because N, N-dimethylamide, which is known to be highly useful in applications such as a highly polar solvent, can be obtained.
  • the R 1 in the compound represented by R 1 CN, and R 2 in the compound represented by R 2 OH may be the same or may be different.
  • the target compound synthesized by the production method of this embodiment is an N, N-disubstituted amide represented by the formula (1).
  • R 1 in the formula (1) is R 1 in the compound represented by R 1 CN used as the nitrile.
  • R 2 in Formula (1) is R 2 in the compound represented by R 2 OH used as the alcohol.
  • R 1 is any one selected from a methyl group, an ethyl group, and a phenyl group
  • R 2 is a methyl group, an ethyl group, and an n-propyl group.
  • N, N-dimethylacetamide in which R 1 and R 2 are methyl groups is preferable.
  • N, N-disubstituted amide represented by the formula (1) is N, N-dimethylacetamide, it can be efficiently synthesized at a higher reaction rate.
  • the reaction between the nitrile and the alcohol is preferably performed in a closed autoclave reaction vessel.
  • a closed autoclave reaction vessel This allows the reaction to proceed stably.
  • the atmosphere in the reaction vessel contains oxygen gas, the alcohol is oxidized to produce aldehyde, or the aldehyde further reacts with alcohol. Acetal may be a by-product. Therefore, the atmosphere in the reaction vessel is preferably an inert atmosphere such as nitrogen gas or argon.
  • the starting material is sealed in a sealed container under atmospheric pressure, the volume of air sealed in the sealed container is reduced, and the amount of oxygen gas in the sealed container is compared with the amount of alcohol.
  • the internal pressure of the reaction vessel during the reaction is preferably less than 10 MPa and more preferably 8 MPa or less in all steps from the start to the end of the reaction.
  • the internal pressure of the reaction vessel during the reaction is preferably normal pressure (0.1 MPa) or more.
  • the reaction temperature between the nitrile and the alcohol is less than 300 ° C. and may be any temperature within the range in which the reaction between the nitrile and the alcohol proceeds, and is preferably 280 ° C. or less. Since the lower the reaction temperature, the lower the internal pressure of the reaction vessel during the reaction, the safety of the synthesis reaction of N, N-disubstituted amide is improved and the durability of the reaction vessel is improved. However, since the reaction rate decreases as the reaction temperature decreases, the reaction temperature is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 180 ° C. or higher.
  • the reaction time between the nitrile and the alcohol is preferably within the range of 2 to 24 hours, more preferably within the range of 3 to 12 hours, and even more preferably within the range of 4 to 8 hours.
  • Catalyst for N, N-disubstituted amide production In the method for producing an N, N-disubstituted amide of this embodiment, the following catalyst for producing an N, N-disubstituted amide of this embodiment (hereinafter sometimes abbreviated as “catalyst”) is used.
  • the catalyst of this embodiment is used when an N, N-disubstituted amide is produced by reacting a nitrile and an alcohol in the presence of the catalyst.
  • the catalyst of the present embodiment includes a metal salt represented by MXn.
  • M is a metal cation having an oxidation number n
  • X is a monovalent anion containing at least one substituted sulfonyl group represented by —S ( ⁇ O) 2 —R 3
  • n is 1 to 4 Is an integer.
  • R 3 in the formula is a hydrocarbon group having 10 or less carbon atoms, or a group in which part or all of the hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms.
  • the metal salt represented by MXn can be used alone as a catalyst, but a metal salt represented by MXn supported on a carrier that does not adversely influence the reaction may be used as a catalyst.
  • a metal salt represented by MXn soluble in nitrile and alcohol it is preferable to use a metal salt represented by MXn soluble in nitrile and alcohol alone as a catalyst.
  • M constituting the metal salt represented by MXn is a metal cation having an oxidation number n of 1 to 4, and preferably a metal cation having an oxidation number n of 2 to 4.
  • M in the metal salt represented by MXn elements classified into Zn, Cu, Sn, Al, Sc, and lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Ag and the like.
  • M is preferably not cadmium from the viewpoint of harmfulness.
  • X constituting the metal salt represented by MXn is —S ( ⁇ O) 2 —R 3
  • a monovalent anion containing at least one substituted sulfonyl group represented by the formula: R 3 in the formula is a hydrocarbon group having 10 or less carbon atoms, or a group in which part or all of the hydrogen atoms constituting the hydrocarbon group are substituted with fluorine atoms.
  • the number of substituted sulfonyl groups contained in X is preferably one or two, and more preferably one.
  • R 3 contained in the substituted sulfonyl group is preferably an alkyl group or a perfluoroalkyl group, and more preferably a perfluoroalkyl group since the Lewis acidity of the metal cation is strong and high catalytic activity is obtained.
  • X constituting the metal salt represented by MXn is preferably an anion represented by the following formulas (2) to (9).
  • the metal salt represented by MXn is preferable because it is soluble in nitrile and alcohol at room temperature and acts as a homogeneous catalyst.
  • the catalyst is a metal methanesulfonate
  • the compound represented by the formula (3) is used.
  • the triflate anion in other words, the catalyst is a metal trifluoromethanesulfonate) or the triflimide anion of formula (7) (in other words, the catalyst is a metal bis (trifluoromethanesulfonyl) imide salt)
  • an anion represented by the formula (3) or (7) it is more preferable, and an anion represented by the formula (3) or (7) is more preferable.
  • X constituting the metal salt represented by MXn is an anion represented by the formula (3) or (7), the catalyst has a higher reaction rate.
  • BPO 4 does not dissolve the starting material at room temperature, dissolved in N- monosubstituted amide which is the by-product. For this reason, it is presumed that BPO 4 dissolves in the N-monosubstituted amide during the reaction and acts as a homogeneous catalyst. Therefore, when BPO 4 is used as a catalyst, there is a possibility that the reaction path may change due to a slight difference in experimental conditions such as when the catalyst starts to work as a homogeneous catalyst, and there is a concern about reproducibility.
  • the amount of the catalyst used is preferably 0.1 to 3.0 mol%, more preferably 0.5 to 1.0 mol% of the molar amount of nitrile.
  • the amount of the catalyst used is 0.1 mol% or more of the molar amount of nitrile, the reactivity can be effectively improved.
  • the amount of the catalyst used is 3.0 mol% or less of the molar amount of the nitrile, separation of the catalyst itself and the target compound is hardly complicated, side reactions can be suppressed, and catalyst costs can be suppressed. .
  • the present invention will be described more specifically with reference to examples and comparative examples.
  • this invention is not limited only to a following example.
  • the pressure in a following example and a comparative example means a gauge pressure.
  • Example 1 A stainless steel (SUS316) 100 mL autoclave reaction vessel (manufactured by Nitto High Pressure Co., Ltd., heat resistant internal temperature 300 ° C., with 10 MPa safety valve), acetonitrile (11 g, 0.26 mol), methanol (16 g, 0.52 mol), catalyst Zinc (II) trifluoromethanesulfonate (0.8 g, 2 mmol) was added to form a solution, and this autoclave reaction vessel was sealed under an atmospheric pressure atmosphere.
  • nitrogen gas of about 8 MPa was supplied from a nitrogen cylinder into the autoclave reaction vessel after sealing, and it was confirmed that there was no leak. Thereafter, the valve attached to the autoclave reaction vessel was opened and the inside of the autoclave reaction vessel was brought to a normal pressure nitrogen gas atmosphere, and then the valve was closed and sealed again.
  • the contents in the autoclave reaction vessel are stirred with stirring blades and measured with a thermometer so that the internal temperature is maintained at 275 ° C., while the autoclave reaction vessel is heated in an electric furnace for 4 hours to react acetonitrile and methanol. I let you.
  • the internal pressure of the autoclave reaction vessel during the reaction was gradually decreased after rising to 7.20 [MPa], and was 3.30 [MPa] when kept at 275 ° C. for 4 hours.
  • the autoclave reaction vessel and its contents are cooled to room temperature, the valve attached to the autoclave reaction vessel is opened in the draft chamber, and the gaseous product that did not dissolve in the liquid reaction mixture is released, Residual pressure (0.20 MPa, weight loss 1.0 g) was removed.
  • the autoclave reaction vessel was opened under an air atmosphere to obtain a reaction mixture (26.1 g) as a blackish brown liquid.
  • the compound composition in the reaction mixture was analyzed using gas chromatography (GC).
  • GC gas chromatography
  • the yield was calculated by the method shown below using the calibration curve obtained by the above method.
  • the reaction mixture is analyzed using gas chromatography (GC), the peak area of the target product in the reaction mixture is determined, and the reaction mixture is analyzed based on the calibration curve determined by the above method and the amount of the recovered reaction mixture.
  • the content of the target product was calculated and the number of moles thereof was determined.
  • the ratio of the number-of-moles of the target object in the reaction mixture with respect to the number-of-moles of acetonitrile used as a raw material was calculated
  • a calibration curve is obtained by the method described below, and the contents of acetonitrile and methanol in the reaction mixture are obtained from the results of analysis using gas chromatography (GC), and the conversion rate is subtracted from the amount used as a starting material.
  • GC gas chromatography
  • a mixture of acetonitrile and methanol, three or more types of samples having different methanol concentrations within the range of 5 to 20% by mass were prepared.
  • Each sample was analyzed using gas chromatography (GC), and a calibration curve of methanol was obtained from the obtained peak area.
  • GC gas chromatography
  • Examples 2 to 11, Comparative Examples 1 to 8 Reaction mixtures of Examples 2 to 9, 11 and Comparative Examples 1 to 8 were obtained in the same manner as in Example 1 except that the catalysts shown in Table 1 were used in the catalyst amounts shown in Table 1. Further, silver methanesulfonate (AgOMs) manufactured by Aldrich and 0.5 equivalent of ZnCl 2 (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed with nitrile and alcohol in a 1: 2 mass ratio (molar).
  • AgOMs silver methanesulfonate
  • ZnCl 2 manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 10 a zinc methanesulfonate ((Zn (OMs) 2 ), which is a compound contained in a starting material produced by the reaction of silver methanesulfonate and ZnCl 2 and functions as a catalyst, is catalyzed. It was.
  • Table 1 shows the types of catalysts used in Examples 1 to 11 and Comparative Examples 1 to 8, the supply source of the catalyst, and the amount of catalyst (amount used relative to the molar amount of nitrile).
  • MeCN is acetonitrile and “MeOH” is methanol.
  • OTf is a triflate anion represented by formula (3)
  • OMs is a mesylate anion represented by formula (2)
  • NTf 2 is a triflimide anion represented by formula (5). It is.
  • SAPO is silicoaluminophosphate
  • Zn (OAc) 2 is zinc acetate.
  • the catalyst of the present invention containing the metal salt having the above anion is a catalyst having acetate ions disclosed in Patent Documents 2 and 5 as anions, or phosphate ions and sulfate ions disclosed in Patent Document 5 as anions. It is suggested to be effective compared to the catalyst having.
  • Examples 4, 6, and 11 have higher yields of N, N-dimethylacetamide and higher catalytic activity than Comparative Examples 1, 2, and 4 to 8, which have a larger amount of catalyst. It could be confirmed.
  • Example 2 it was confirmed that the yield of N, N-dimethylacetamide was higher and the catalytic activity was higher than those of Comparative Examples 3 and 4 having a larger amount of catalyst. Further, in Comparative Example 3, 8 mol% of the same catalyst as in Comparative Example 2 was used, but the yield of N, N-dimethylacetamide was almost the same as in Example 7 where the amount of catalyst was 1/10. The catalytic activity was low.
  • the catalysts used in Examples 1 to 11 can obtain high catalytic activity even when the reaction temperature is as low as 275 ° C. Further, since the catalysts used in Examples 1 to 11 have high catalytic activity, the reaction can be caused in a short time of about 4 hours even with a small amount of 0.8 mol% or less, which has the effect of increasing the reaction rate. It turns out that it is obtained.
  • Examples 13 to 16 R1CN instead of acetonitrile with nitrites (R1 in the formula is as shown in Table 2) represented by, R 2 OH in place of methanol (R 2 in the formula is as shown in Table 2)
  • R1CN instead of acetonitrile with nitrites
  • R 2 OH in place of methanol
  • the same procedure as in Example 1 was conducted except that the nitrile and the alcohol were used in a ratio of 1: 2 (nitrile: alcohol) in the ratio of the substance amount (molar) and the reaction time shown in Table 2 was used.
  • reaction mixtures of Examples 13 to 16 were obtained.
  • Example 12 A reaction mixture of Example 12 was obtained in the same manner as in Example 1 except that the reaction temperature was 250 ° C. and the reaction time was as shown in Table 2. Further, a reaction mixture of Example 17 was obtained in the same manner as in Example 16 except that the reaction temperature was 250 ° C. and the reaction times shown in Table 2 were used.
  • the yield of the target N, N-disubstituted amide in the reaction mixture obtained in Example 12 was determined in the same manner as in Example 1.
  • the yield of the target N, N-disubstituted amide in the reaction mixtures of Examples 13 to 17 was determined by the method shown below.
  • the reaction mixture was analyzed using gas chromatography (GC). The ratio of the peak area of the target product to the total peak area was calculated and used as the yield of N, N-disubstituted amide.
  • Example 12 conversion rates were determined for acetonitrile and methanol in the same manner as in Example 1. The results are shown in Table 2.
  • Table 2 “Me” is a methyl group, “Et” is an ethyl group, “Ph” is a phenyl group, and “n-Pr” is an n-propyl group.
  • Table 2 also shows Example 1 shown in Table 1 for easy comparison. The GC yield of Example 1 is the same as in Table 1.
  • zinc trifluoromethanesulfonate (II), which is the catalyst used in Examples 1 and 12 to 17, is any one of R1 selected from a methyl group, an ethyl group, and a phenyl group
  • R 2 is any one selected from a methyl group, an ethyl group, and an n-propyl group
  • a catalytic activity can be obtained even when the reaction temperature is as low as 275 ° C. (250 ° C. in Examples 12 and 17). It was. Further, it was found that this catalyst can achieve the effect of increasing the reaction rate even when the amount used is as small as 0.8 mol%.
  • the reaction promoting effect by the catalyst was remarkable and the synthesis was efficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Abstract

本発明のN,N-二置換アミドの製造方法は、ニトリルとアルコールとを触媒の存在下で反応させる方法であり、ニトリルがRCN(Rは炭素原子数10以下のアルキル基または炭素原子数10以下のアリール基)で示される化合物、アルコールがROH(Rは炭素原子数10以下のアルキル基)で示される化合物、触媒がMXn(Mは酸化数nの金属カチオン、Xは-S(=O)-R(Rは炭素原子数10以下の炭化水素基、または炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基)で表される置換スルホニル基を含む1価のアニオン、nは1~4の整数)で示される金属塩、N,N-二置換アミドのカルボニル基中の炭素原子に結合する置換基がR、アミド基中の窒素原子に結合する2つの置換基が同じRである。

Description

N,N-二置換アミドの製造方法およびN,N-二置換アミド製造用触媒
 本発明は、N,N-二置換アミドの製造方法およびN,N-二置換アミド製造用触媒に関する。
 本願は、2018年4月27日に、日本に出願された特願2018-087771号に基づき優先権を主張し、その内容をここに援用する。
 N,N-ジメチルアセトアミドなどのN,N-二置換アミドは、工業的に重要であり、種々の溶剤として使用されている。
 N,N-二置換アミドを製造する方法としては、一般に、ジアルキルアミンを原料として使用する方法が用いられている。具体的には、N,N-ジアルキルアミンであるN,N-ジメチルアミンと、酢酸または酢酸エステルとを反応させて、N,N-ジメチルアセトアミドを製造する方法が用いられている。
 一方、N,N-ジアルキルアミンは、一般に、アンモニアと、対応するアルコールまたはハロゲン化アルキルとを反応させて製造されている。この反応では、N,N-ジアルキルアミンとともに、モノアルキルアミンおよび/またはトリアルキルアミンが副生しやすいため、反応後にN,N-ジアルキルアミンを分離・精製する必要がある。このことから、N,N-ジアルキルアミンは、一般に高価である。
 そこで、N,N-ジアルキルアミンを原料として使用せずに、対応するN,N-二置換アミドを製造する方法が検討されている(例えば、特許文献1~特許文献6参照)。
 N,N-ジアルキルアミンを原料として使用せずに、N,N-二置換アミドを製造する方法としては、ニトリルとアルコールとを触媒の存在下で反応させる方法がある。ニトリルとアルコールとの反応を促進させる触媒および/または促進剤としては、SbCl、ZnCl、SnCl、CoClなどの塩化物、酢酸カドミウム、ゼオライト、BPOなどのリン酸塩、硫酸マグネシウムや硫酸アルミニウムなどの硫酸塩、ピリジン、水等が用いられている。
特公昭36-3967号公報 特公昭45-35525号公報 特公昭48-3813号公報 米国特許第5103055号明細書 米国特許第5072024号明細書 米国特許第5118846号明細書
 しかしながら、ニトリルとアルコールとを、従来から用いられている触媒の存在下で反応させてN,N-二置換アミドを製造する製造方法では、ニトリルとアルコールとの反応効率が低く(反応温度が高いわりに反応速度(収率)は大きくなく)、反応効率を大きくすることが要求されていた。
 本発明は、かかる事情に鑑みてなされたものであり、ニトリルとアルコールとの反応により効率よくN,N-二置換アミドを製造できるN,N-二置換アミドの製造方法およびN,N-二置換アミド製造用触媒を提供することを課題とする。
 本発明者は、上記課題を解決するために、ニトリルとアルコールとの反応を十分に促進できる触媒について鋭意検討した。その結果、触媒として、MXn(式中のMは酸化数nの金属カチオンであり、Xは-S(=O)-R(式中のRは炭素原子数10以下の炭化水素基、または前記炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基である。)で表される置換スルホニル基を少なくとも1つ含む1価のアニオンであり、nは1~4の整数である。)で示される金属塩を用いることが有効であることを見出し、本発明を想到した。
 すなわち、本発明は以下の事項に関する。
[1]本発明の一態様に係るN,N-二置換アミドの製造方法は、ニトリルとアルコールとを触媒の存在下で反応させて、N,N-二置換アミドを製造するN,N-二置換アミドの製造方法であり、
 前記ニトリルが
CN
(式中のRは炭素原子数10以下のアルキル基または炭素原子数10以下のアリール基である。)
で示される化合物であり、
 前記アルコールが
OH
(式中のRは炭素原子数10以下のアルキル基である。)で示される化合物であり、
 前記触媒が、
MXn
(式中のMは酸化数nの金属カチオンであり、Xは-S(=O)-R(式中のRは炭素原子数10以下の炭化水素基、または前記炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基である。)で表される置換スルホニル基を少なくとも1つ含む1価のアニオンであり、nは1~4の整数である。)
で示される金属塩を含み、
 前記N,N-二置換アミドのカルボニル基中の炭素原子に結合する置換基が前記Rであり、アミド基中の窒素原子に結合する2つの置換基が同じであって前記Rである。
[2]前記[1]に記載のN,N-二置換アミドの製造方法において、前記Rが、アルキル基またはパーフルオロアルキル基であることが好ましい。
[3]前記[1]または[2]のいずれかに記載のN,N-二置換アミドの製造方法において、前記触媒が、金属メタンスルホン酸塩であってもよい。
[4]前記[1]または[2]のいずれかに記載のN,N-二置換アミドの製造方法において、前記触媒が、金属トリフルオロメタンスルホン酸塩であってもよい。
[5]前記[1]または[2]のいずれかに記載のN,N-二置換アミドの製造方法において、前記Xが、下記式(2)~(9)で示されるアニオンから選ばれるいずれか一種であってもよい。
Figure JPOXMLDOC01-appb-C000003
[6]前記[1]~[5]のいずれか一つに記載のN,N-二置換アミドの製造方法において、前記Mが、Zn、Cu、Sn、Al、Sc、およびランタノイドに分類される元素からなる群から選択されるいずれか一種であってもよい。
[7]前記[1]~[6]のいずれか一つに記載のN,N-二置換アミドの製造方法において、前記触媒を前記ニトリルのmol量の0.1~3.0mol%用いることが好ましい。
[8]前記[1]~[7]のいずれか一つに記載のN,N-二置換アミドの製造方法において、前記ニトリルがアセトニトリルであってもよい。
[9]前記[1]~[8]のいずれか一つに記載のN,N-二置換アミドの製造方法において、前記アルコールがメタノールであってもよい。
[10]前記[1]~[9]のいずれか一つに記載のN,N-二置換アミドの製造方法において、前記反応を、オートクレーブ反応容器内で密閉した状態で行うことが好ましい。
[11]前記[1]~[10]のいずれか一つに記載のN,N-二置換アミドの製造方法において、反応温度を300℃未満とすることが好ましい。
[12]本発明の一実施形態に係るN,N-二置換アミド製造用触媒は、ニトリルとアルコールとを触媒の存在下で反応させて、N,N-二置換アミドを製造する際に用いられ、MXn(式中のMは酸化数nの金属カチオンであり、Xは-S(=O)-R(式中のRは炭素原子数10以下の炭化水素基、または前記炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基である。)で表される置換スルホニル基を少なくとも1つ含む1価のアニオンであり、nは1~4の整数である。)で示される金属塩を含む。
[13]前記[12]に記載のN,N-二置換アミド製造用触媒において、前記Xが、下記式(2)~(9)で示されるアニオンから選ばれるいずれか一種であってもよい。
Figure JPOXMLDOC01-appb-C000004
[14]前記[13]に記載のN,N-二置換アミド製造用触媒において、前記Xが、式(3)で示されるアニオンであってもよい。
[15]前記[12]~[14]のいずれか一つに記載のN,N-二置換アミド製造用触媒において、前記Mが、Zn、Cu、Sn、Al、Sc、およびランタノイドに分類される元素からなる群から選択されるいずれか一種であってもよい。
[16]前記[15]に記載のN,N-二置換アミド製造用触媒において、前記Mが、Zn、Nd、Ceから選ばれるいずれか一種であってもよい。
 本発明の製造方法は、ニトリルとアルコールとを触媒の存在下で反応させて、N,N-二置換アミドを製造する方法であり、触媒として、MXn(式中のMは酸化数nの金属カチオンであり、Xは-S(=O)-R(式中のRは炭素原子数10以下の炭化水素基、または前記炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基である。)で表される置換スルホニル基を少なくとも1つ含む1価のアニオンであり、nは1~4の整数である。)で示される金属塩を含むものを用いるので、反応速度が大きく、効率よくN,N-二置換アミドを製造できる。
 本発明者は、上記課題を解決するために、ニトリルとアルコールとの反応温度と、触媒量に着目し、十分な反応速度が得られる触媒について鋭意検討を重ねた。
 ニトリルとアルコールとの反応温度を300℃超の高温とした場合、N,N-二置換アミドの収率を高くできる可能性がある。しかし、原料として使用するニトリルおよびアルコールは、いずれも沸点が低い化合物であるため、反応温度を300℃超にすると、一時的に反応容器内の圧力が10MPa以上の高圧になったり、超臨界状態となったりすることが予想される。反応の進行により低沸成分が高沸成分に転化するため、反応容器内の圧力は漸減するが、反応温度が300℃超である場合、N,N-二置換アミドの合成反応の危険性が高く、反応容器として十分な耐久性を要するものを用いる必要がある。
 また、触媒としては、少ない使用量で十分な反応速度が得られるものであって、反応容器の耐久性を劣化させる塩化物でないことが望まれている。
 そこで、本発明者は、反応温度を300℃未満の低温とし、触媒量を、原料として使用するニトリルのmol量の3.0mol%以下の少量とした条件であっても、十分な反応速度が得られ、かつ塩化物ではない触媒について検討した。
 その結果、MXnで示される金属塩を含む触媒を用いることが有効であることを見出した。Mは酸化数nの金属カチオンであり、Xは、-S(=O)-Rで表される置換スルホニル基を少なくとも1つ含む、1価のアニオンであり、nは1~4の整数である。Rは炭素原子数10以下(好ましくは1~8、より好ましくは1~4)の炭化水素基、または炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基である。
 上記金属塩(MXn)は、アニオン(X)が1価であり、置換スルホニル基中の2個の酸素原子による共鳴効果により負電荷がアニオン(X)に局在化するため、正電荷が金属カチオン(M)に局在化して金属カチオン(M)のルイス酸性が強められ、高い触媒活性が得られる。このため、反応温度を300℃未満の低温にしても、例えば、反応温度を275℃の場合、反応時間8時間以下でニトリルとアルコールとを反応させることができる。また、上記金属塩は、触媒活性が高いため、少ない使用量で十分な反応速度が得られる。しかも、上記金属塩は、反応容器の耐久性を劣化させる塩化物ではない。
 本発明者は、このような知見に基づいて本発明を想到した。
 以下、本発明のN,N-二置換アミドの製造方法およびN,N-二置換アミド製造用触媒について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。
「N,N-二置換アミドの製造方法」
 本実施形態の製造方法では、ニトリルとアルコールとを触媒の存在下で反応させて、下記式(1)で示されるN,N-二置換アミドを製造する。
Figure JPOXMLDOC01-appb-C000005
 本実施形態の製造方法では、ニトリルとして、RCNで示される化合物を用いる。式中のRは、含有する炭素原子数が10以下のアルキル基、または炭素原子数10以下のアリール基である。
 
 また、アルコールとして、ROHで示される化合物を用いる。式中のRは、含有する炭素原子数が10以下のアルキル基である。
 式(1)で示されるN,N-二置換アミドにおいて、カルボニル基中の炭素原子に結合している置換基は上記Rである。式(1)で示されるN,N-二置換アミドにおいて、アミド基中の窒素原子に結合している2つの置換基は、いずれも上記Rである。
 本実施形態の製造方法において、RCNで示される化合物中のRは、含有する炭素原子数が10以下(好ましくは1~8、より好ましくは1~2)のアルキル基、または含有する炭素原子数が10以下(好ましくは6~8、より好ましくは6~7)のアリール基である。含有する炭素原子数が10以下のアルキル基としては、アルコールとの反応性が良好であるため、メチル基またはエチル基を用いることが好ましい。特に、含有する炭素原子数が10以下のアルキル基としてメチル基を用いる(言い換えると、ニトリルとしてアセトニトリルを用いる)場合、非プロトン性の高極性溶剤などの用途で高い有用性が知られているN,N-二置換アセトアミドが得られるため好ましい。炭素原子数10以下のアリール基としては、入手しやすくコストが安いことから、フェニル基を用いることが好ましい。
 本実施形態の製造方法において、ROHで示される化合物中のRは、炭素原子数10以下(好ましくは1~8、より好ましくは1~3)のアルキル基である。炭素原子数10以下のアルキル基としては、メチル基、エチル基、n-プロピル基を用いることが好ましく、特に、副生成物(アルコールの分子内脱水に伴うアルケン等)が生成されにくく、非プロトン性の高極性溶剤などの用途で高い有用性が知られているN,N-ジメチルアミドが得られるため、メチル基を用いる(言い換えると、アルコールとしてメタノールを用いる)ことがより好ましい。
 本実施形態の製造方法において、RCNで示される化合物中のRと、ROHで示される化合物中のRとは、同じであってもよいし、異なっていてもよい。
 本実施形態の製造方法により合成される目的物としての化合物は、式(1)で示されるN,N-二置換アミドである。式(1)におけるRは、ニトリルとして用いたRCNで示される化合物中のRである。式(1)におけるRは、アルコールとして用いたROHで示される化合物中のR2である。
 式(1)で示されるN,N-二置換アミドは、Rがメチル基、エチル基、フェニル基から選ばれるいずれか一種であって、Rがメチル基、エチル基、n-プロピル基から選ばれるいずれか一種であることが好ましい。特に、RおよびRがメチル基であるN,N-ジメチルアセトアミドであることが好ましい。式(1)で示されるN,N-二置換アミドが、N,N-ジメチルアセトアミドである場合、より高いい反応速度で、効率よく合成できる。
 本実施形態の製造方法では、ニトリルとアルコールとの反応は、密閉したオートクレーブ反応容器内で行うことが好ましい。このことにより、安定して反応を進めることができる。
 密閉したオートクレーブ反応容器内でニトリルとアルコールとを反応させる場合、反応容器内の雰囲気中に酸素ガスが含まれていると、アルコールが酸化されてアルデヒドが生じたり、アルデヒドがさらにアルコールと反応してアセタールが副生したりすることがある。そのため、反応容器内の雰囲気を、窒素ガス、アルゴンなどの不活性雰囲気とすることが好ましい。なお、常圧の空気雰囲気下で密閉容器に出発物質を封入する場合、密閉容器中に封入される空気の体積を少なくし、密閉容器内の酸素ガスの物質量をアルコールの物質量と比べて僅少(アルコールの物質量の約1%以下)とすることで、アセタールの副生による収率の低下を抑制できる。
 反応中の反応容器の内圧は、反応開始から終了までの全工程において10MPa未満であることが好ましく、8MPa以下であることがより好ましい。また、反応中の反応容器の内圧は、常圧(0.1MPa)以上であることが好ましい。
 ニトリルとアルコールとの反応温度は、300度未満であって、ニトリルとアルコールとの反応が進行する範囲内の温度であればよく、280℃以下とすることが好ましい。反応温度が低いほど反応中の反応容器の内圧が低くなるので、N,N-二置換アミドの合成反応の安全性が向上するとともに、反応容器の耐久性が向上する。ただし、反応温度が低くなるのに伴って反応速度が遅くなるので、反応温度は100℃以上であることが好ましく、150℃以上であることがより好ましく、180℃以上であることがさらに好ましい。ニトリルとアルコールとの反応時間は、2~24時間の範囲に含まれることが好ましく、3~12時間の範囲に含まれることがより好ましく、4~8時間の範囲に含まれることがさらに好ましい。
「N,N-二置換アミド製造用触媒」
 本実施形態のN,N-二置換アミドの製造方法では、以下に示す本実施形態のN,N-二置換アミド製造用触媒(以下、「触媒」と略記する場合がある。)を用いる。
 本実施形態の触媒は、ニトリルとアルコールとを触媒の存在下で反応させて、N,N-二置換アミドを製造する際に用いられるものである。
 本実施形態の触媒は、MXnで示される金属塩を含む。式中のMは酸化数nの金属カチオンであり、Xは-S(=O)-Rで表される置換スルホニル基を少なくとも1つ含む1価のアニオンであり、nは1~4の整数である。式中のRは、炭素原子数10以下の炭化水素基、または前記炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基である。
 
 MXnで示される金属塩は、それ自体を単独で触媒として用いることができるが、反応に悪影響を及ぼさない担体に、MXnで示される金属塩を担持させたものを触媒として用いてもよい。均一な反応系で反応させる上では、触媒として、ニトリルおよびアルコールに可溶なMXnで示される金属塩を、単独で用いることが好ましい。
 MXnで示される金属塩を構成するMは、酸化数nが1~4の金属カチオンであり、酸化数nが2~4の金属カチオンであることが好ましい。具体的には、MXnで示される金属塩中のMとして、Zn、Cu、Sn、Al、Sc、およびランタノイドに分類される元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)、Agなどが挙げられる。これらの中でもZn、Nd、Ceから選ばれるいずれか一種を用いることが好ましく、この場合には、反応速度のより大きい触媒が得られる。また、Mは有害性の観点からカドミウムでないことが好ましい。
 MXnで示される金属塩を構成するXは、
-S(=O)-R
で表される置換スルホニル基を少なくとも1つ含む1価のアニオンである。
式中のRは、炭素原子数10以下の炭化水素基、または炭化水素基を構成する水素原子の一部または全部がフッ素原子に置換された基である。
Xに含まれる置換スルホニル基の数は、1つまたは2つであることが好ましく、1つであることがより好ましい。
 置換スルホニル基に含まれるRはアルキル基またはパーフルオロアルキル基であることが好ましく、金属カチオンのルイス酸性が強く、高い触媒活性が得られるため、パーフルオロアルキル基であることがより好ましい。
 MXnで示される金属塩を構成するXは、具体的には、下記式(2)~(9)で示されるアニオンであることが好ましい。Xが式(2)~(9)で示されるアニオンである場合に、MXnで示される金属塩は、室温でニトリルおよびアルコールに可溶であり、均一触媒として働くため好ましい。
 これらの中でも、MXnで示される金属塩を構成するXが、式(2)で示されるメシラートアニオンである(言い換えると、触媒が金属メタンスルホン酸塩である)場合、式(3)で示されるトリフラートアニオンである(言い換えると、触媒が金属トリフルオロメタンスルホン酸塩である)場合、または式(7)で示されるトリフルイミドアニオンである(言い換えると、触媒が金属ビス(トリフルオロメタンスルホニル)イミド塩である)場合、から選ばれるいずれかのアニオンである場合がより好ましく、特に、式(3)または(7)で示されるアニオンである場合がさらに好ましい。MXnで示される金属塩を構成するXが、式(3)または(7)で示されるアニオンであると、より反応速度が大きい触媒となる。
Figure JPOXMLDOC01-appb-C000006
 これに対し、例えば、触媒としてBPOを用いた場合、BPOは室温で出発物質に溶解せず、副生物であるN-一置換アミドに溶解する。このため、BPOは、反応中にN-一置換アミドに溶解し、均一触媒として働くようになると推定される。したがって、触媒としてBPOを用いた場合、触媒が均一触媒として働き始めた時点など、実験条件の些細な違いによって反応経路が変化する可能性があり、再現性に懸念がある。
 触媒の使用量は、ニトリルのmol量の0.1~3.0mol%であることが好ましく、0.5~1.0mol%であることがより好ましい。触媒の使用量がニトリルのmol量の0.1mol%以上であると、効果的に反応性を向上させることができる。また、触媒の使用量がニトリルのmol量の3.0mol%以下であると、触媒自体と目的物である化合物との分離が煩雑になりにくく、副反応も抑制でき、また触媒コストも抑制できる。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。なお、以下の実施例、比較例中の圧力はゲージ圧を意味する。
(実施例1)
 ステンレス(SUS316)製の100mLオートクレーブ反応容器(日東高圧株式会社製、耐熱内温300℃、10MPa安全弁付)に、アセトニトリル(11g、0.26mol)と、メタノール(16g、0.52mol)と、触媒としてのトリフルオロメタンスルホン酸亜鉛(II)(0.8g、2mmol)とを加えて溶液とし、常圧の空気雰囲気下で、このオートクレーブ反応容器を密閉した。
 リークの有無をチェックするため、密閉後のオートクレーブ反応容器内に、窒素ボンベより約8MPaの窒素ガスを供給し、漏れがないことを確認した。その後、オートクレーブ反応容器付属のバルブを開放して、オートクレーブ反応容器内を常圧の窒素ガス雰囲気とした後、バルブを閉じて再度密閉状態にした。
 オートクレーブ反応容器内の内容物を攪拌羽により攪拌し、内部温度が275℃で保持されるように温度計で計測しながら、オートクレーブ反応容器を電気炉で4時間加熱し、アセトニトリルとメタノールとを反応させた。反応中のオートクレーブ反応容器の内圧は、7.20[MPa]まで上昇した後に漸減し、275℃で4時間保持した時点では3.30[MPa]であった。その後、オートクレーブ反応容器とその内容物を室温まで冷却し、ドラフトチャンバー内でオートクレーブ反応容器に取り付けられたバルブを開放し、液体の反応混合物に溶解しなかった気体の生成物を放出することにより、残圧(0.20MPa、重量減1.0g)を除去した。続いて、オートクレーブ反応容器を大気雰囲気下で開封し、反応混合物(26.1g)を黒褐色の液体として得た。
 反応混合物中の化合物組成を、ガスクロマトグラフィー(GC)を用いて分析した。その結果、目的物であるN,N-ジメチルアセトアミドの他に、アセトアミド、N-メチルアセトアミド、酢酸、酢酸メチル、ジメチルアミン、ジメチルエーテル、メチルアミン、アンモニアが副生物として生成されていた。
 このようにして得られた反応混合物中の目的物であるN,N-ジメチルアセトアミドの収率と、原料であるアセトニトリルとメタノールの転化率を、以下に示す方法により求めた。その結果を表1に示す。
(ガスクロマトグラフィー(GC)収率)
 まず、以下に示す方法により、目的物である化合物の検量線を求めた。アセトニトリルとメタノールとをモル比で1:2(MeCN:MeOH)の割合で混合した混合溶液を用いて、目的物である化合物の市販品(N,N-ジメチルアセトアミド:富士フイルム和光純薬工業製、超脱水、有機合成用)を希釈し、濃度が異なる3つ以上の目的物のサンプルを調製した。各サンプルを、ガスクロマトグラフィー(GC)を用いて分析し、得られたピーク面積より検量線を求めた。
 次に、上記の方法により求めた検量線を用いて、以下に示す方法により収率を算出した。ガスクロマトグラフィー(GC)を用いて反応混合物を分析し、反応混合物中の目的物のピーク面積を求め、上記の方法により求めた検量線と回収された反応混合物質量とに基づいて、反応混合物中の目的物の含有量を算出し、そのモル数を求めた。そして、原料として使用したアセトニトリルのモル数に対する反応混合物中の目的物のモル数の割合を求め、収率を算出した。
(転化率)
 以下に示す方法により検量線を求め、ガスクロマトグラフィー(GC)を用いて分析した結果から、反応混合物中のアセトニトリルとメタノールの含有量をそれぞれ求め、出発物質として使用した量から差し引くことで転化率を算出した。
 アセトニトリルとメタノールとの混合液であって、アセトニトリル濃度を5~20質量%の範囲内で異ならせた3種類以上のサンプルを調製した。各サンプルを、ガスクロマトグラフィー(GC)を用いて分析し、得られたピーク面積よりアセトニトリルの検量線を求めた。
 一方、アセトニトリルとメタノールとの混合液であって、メタノール濃度を5~20質量%の範囲内で異ならせた3種類以上のサンプルを調製した。各サンプルを、ガスクロマトグラフィー(GC)を用いて分析し、得られたピーク面積よりメタノールの検量線を求めた。
(実施例2~11、比較例1~8)
 表1に示す触媒を、表1に示す触媒量で用いたこと以外は、実施例1と同様にして、実施例2~9、11、比較例1~8の反応混合物を得た。
 また、Aldrich社製の銀メタンスルホン酸塩(AgOMs)と、0.5当量のZnCl(和光純薬工業社製)とを、ニトリルとアルコールとを物質量(モル)比で1:2(MeCN:MeOH)の割合で使用した混合溶液に加えて混合し、析出した難溶性沈殿のAgClを除去した溶液を出発物質として反応容器内に入れ、密閉したこと以外は、実施例1と同様にして、実施例10の反応混合物を得た。実施例10では、銀メタンスルホン酸塩とZnClとの反応により生成された出発物質中に含まれる化合物であって、触媒として機能する亜鉛メタンスルホン酸塩((Zn(OMs))を触媒とした。
 実施例2~11、比較例1~8の反応混合物中の化合物組成を、ガスクロマトグラフィー(GC)を用いて分析した。その結果、実施例2~11、比較例1~8のいずれにおいても、目的物であるN,N-ジメチルアセトアミドの他に、アセトアミド、N-メチルアセトアミド、酢酸、酢酸メチル、ジメチルアミン、ジメチルエーテル、メチルアミン、アンモニアが副生物として生成していた。
 このようにして得られた実施例2~11、比較例1~8の反応混合物中の目的物であるN,N-ジメチルアセトアミドの収率と、原料であるアセトニトリルとメタノールの転化率を、実施例1と同様にして求めた。その結果を表1に示す。
 また、表1に、実施例1~11、比較例1~8で使用した触媒の種類、触媒の供給元、触媒量(ニトリルのmol量に対する使用量)を示す。表1において「MeCN」はアセトニトリルであり、「MeOH」はメタノールである。また、「OTf」は式(3)で示されるトリフラートアニオンであり、「OMs」は式(2)で示されるメシラートアニオンであり、「NTf」は式(5)で示されるトリフルイミドアニオンである。また、「SAPO」はシリコアルミノリン酸塩(Silicoaluminophosphate)であり、「Zn(OAc)」は酢酸亜鉛である。
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、本発明の触媒である上記MXnで示される金属塩を用いた実施例1、3、5、7~10では、これらと触媒量(モル量)が同じである比較例1、2、6、7、および触媒量(モル量)が多い比較例4、5、8と比較して、N,N-ジメチルアセトアミドの収率が高く、触媒活性が高いことが確認できた。上記アニオンを有する金属塩を含む本発明の触媒は、特許文献2および5に開示されている酢酸イオンをアニオンとして有する触媒、あるいは特許文献5に開示されているリン酸イオンや硫酸イオンをアニオンとして有する触媒と比較して、有効であることが示唆される。
 また、実施例4、6、11は、これらよりも触媒量が多い比較例1、2、4~8と比較して、N,N-ジメチルアセトアミドの収率が高く、触媒活性が高いことが確認できた。
 また、実施例2は、これよりも触媒量が多い比較例3、4と比較して、N,N-ジメチルアセトアミドの収率が高く、触媒活性が高いことが確認できた。
 また、比較例3では、比較例2と同じ触媒を8mol%使用しているが、N,N-ジメチルアセトアミドの収率は、触媒量が10分の1である実施例7と同程度であり、触媒活性が低かった。
 これらのことから、実施例1~11で使用した触媒は、反応温度が275℃と低くても、高い触媒活性が得られることが分かった。また、実施例1~11で使用した触媒は、触媒活性が高いため、0.8mol%以下の少ない使用量でも、4時間程度の短い時間で反応を引き起こすことができ、反応速度を高める効果が得られることが分かった。
(実施例13~16)
 アセトニトリルに代えてR1CN(式中のR1は表2に示されるものである)で示されるニトリルを用い、メタノールに代えてROH(式中のRは表2に示されるものである)で示されるアルコールを用い、ニトリルとアルコールとを物質量(モル)比で1:2(ニトリル:アルコール)の割合で使用し、表2に示す反応時間としたこと以外は、実施例1と同様にして、実施例13~16の反応混合物を得た。
(実施例12、17)
 反応温度を250℃とし、表2に示す反応時間としたこと以外は、実施例1と同様にして、実施例12の反応混合物を得た。
 また、反応温度を250℃とし、表2に示す反応時間としたこと以外は、実施例16と同様にして、実施例17の反応混合物を得た。
 このようにして得られた実施例12の反応混合物中の目的物であるN,N-二置換アミドの収率を、実施例1と同様にして求めた。
 また、実施例13~17の反応混合物中の目的物であるN,N-二置換アミドの収率を、以下に示す方法により求めた。
 反応混合物を、ガスクロマトグラフィー(GC)を用いて分析した。全てのピーク面積に対する目的物のピーク面積の比を算出し、N,N-二置換アミドの収率とした。
 また、実施例12~17の原料のうち、アセトニトリルおよびメタノールについて、それぞれ実施例1と同様にして転化率を求めた。その結果を表2に示す。
 表2において「Me」はメチル基、「Et」はエチル基、「Ph」はフェニル基、「n-Pr」はn-プロピル基である。
 また、表2には、比較しやすくするため、表1に示す実施例1についても示す。また実施例1のGC収率は表1と同じである。
Figure JPOXMLDOC01-appb-T000008
 表2に示すように、実施例1、12~17で使用した触媒であるトリフルオロメタンスルホン酸亜鉛(II)は、R1がメチル基、エチル基、フェニル基から選ばれるいずれか一種であって、Rがメチル基、エチル基、n-プロピル基から選ばれるいずれかである場合、反応温度が275℃(実施例12、17では250℃)と低くても、触媒活性が得られることが分かった。また、この触媒は、使用量が0.8mol%と少なくても反応速度を高める効果が得られることが分かった。
 特に、RおよびRがメチル基であるジメチルアセトアミドを合成する反応(実施例1、12)では、触媒による反応促進効果が顕著であり、効率よく合成できることが確認できた。

Claims (16)

  1.  ニトリルとアルコールとを触媒の存在下で反応させて、N,N-二置換アミドを製造するN,N-二置換アミドの製造方法であり、
     前記ニトリルが
    CN
    (式中のRは炭素原子数10以下のアルキル基または炭素原子数10以下のアリール基である。)
    で示される化合物であり、
     前記アルコールが
    OH
    (式中のRは炭素原子数10以下のアルキル基である。)で示される化合物であり、
     前記触媒が
    MXn
    (式中のMは酸化数nの金属カチオンであり、Xは-S(=O)-R(式中のRは炭素原子数10以下の炭化水素基、または前記炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基である。)で表される置換スルホニル基を少なくとも1つ含む1価のアニオンであり、nは1~4の整数である。)
    で示される金属塩を含み、
     前記N,N-二置換アミドのカルボニル基中の炭素原子に結合する置換基が前記Rであり、アミド基中の窒素原子に結合する2つの置換基が同じであって前記RであるN,N-二置換アミドの製造方法。
  2.  前記Rが、アルキル基またはパーフルオロアルキル基である請求項1に記載のN,N-二置換アミドの製造方法。
  3.  前記触媒が、金属メタンスルホン酸塩である請求項1または請求項2に記載のN,N-二置換アミドの製造方法。
  4.  前記触媒が、金属トリフルオロメタンスルホン酸塩である請求項1または請求項2に記載のN,N-二置換アミドの製造方法。
  5.  前記Xが、下記式(2)~(9)で示されるアニオンから選ばれるいずれか一種である請求項1または請求項2に記載のN,N-二置換アミドの製造方法。
    Figure JPOXMLDOC01-appb-C000001
  6.  前記Mが、Zn、Cu、Sn、Al、Sc、およびランタノイドに分類される元素からなる群から選択されるいずれか一種である請求項1~請求項5のいずれか一項に記載のN,N-二置換アミドの製造方法。
  7.  前記触媒を前記ニトリルのmol量の0.1~3.0mol%用いる請求項1~請求項6のいずれか一項に記載のN,N-二置換アミドの製造方法。
  8.  前記ニトリルがアセトニトリルである請求項1~請求項7のいずれか一項に記載のN,N-二置換アミドの製造方法。
  9.  前記アルコールがメタノールである請求項1~請求項8のいずれか一項に記載のN,N-二置換アミドの製造方法。
  10.  前記反応を、オートクレーブ反応容器内で密閉した状態で行う請求項1~請求項9のいずれか一項に記載のN,N-二置換アミドの製造方法。
  11.  反応温度を300℃未満とする請求項1~請求項10のいずれか一項に記載のN,N-二置換アミドの製造方法。
  12.  ニトリルとアルコールとを触媒の存在下で反応させて、N,N-二置換アミドを製造する際に用いられ、MXn(式中のMは酸化数nの金属カチオンであり、Xは-S(=O)-R(式中のRは炭素原子数10以下の炭化水素基、または前記炭化水素基中の水素原子の一部または全部がフッ素原子に置換された基である。)で表される置換スルホニル基を少なくとも1つ含む1価のアニオンであり、nは1~4の整数である。)で示される金属塩を含むN,N-二置換アミド製造用触媒。
  13.  前記Xが、下記式(2)~(9)で示されるアニオンから選ばれるいずれか一種である請求項12に記載のN,N-二置換アミド製造用触媒。
    Figure JPOXMLDOC01-appb-C000002
  14.  前記Xが、式(3)で示されるアニオンである請求項13に記載のN,N-二置換アミド製造用触媒。
  15.  前記Mが、Zn、Cu、Sn、Al、Sc、およびランタノイドに分類される元素からなる群から選択されるいずれか一種である請求項12~請求項14のいずれか一項に記載のN,N-二置換アミド製造用触媒。
  16.  前記Mが、Zn、Nd、Ceから選ばれるいずれか一種である請求項15に記載のN,N-二置換アミド製造用触媒。
PCT/JP2019/017670 2018-04-27 2019-04-25 N,n-二置換アミドの製造方法およびn,n-二置換アミド製造用触媒 WO2019208705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020515570A JPWO2019208705A1 (ja) 2018-04-27 2019-04-25 N,n−二置換アミドの製造方法およびn,n−二置換アミド製造用触媒
CN201980027984.3A CN112004796B (zh) 2018-04-27 2019-04-25 N,n-二取代酰胺的制造方法及用于制造n,n-二取代酰胺的催化剂
US17/049,792 US11358927B2 (en) 2018-04-27 2019-04-25 Method of producing N,N-disubstituted amide and catalyst for producing N,N-disubstituted amide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-087771 2018-04-27
JP2018087771 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208705A1 true WO2019208705A1 (ja) 2019-10-31

Family

ID=68294018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017670 WO2019208705A1 (ja) 2018-04-27 2019-04-25 N,n-二置換アミドの製造方法およびn,n-二置換アミド製造用触媒

Country Status (5)

Country Link
US (1) US11358927B2 (ja)
JP (1) JPWO2019208705A1 (ja)
CN (1) CN112004796B (ja)
TW (1) TWI735867B (ja)
WO (1) WO2019208705A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332786B (zh) * 2023-03-02 2024-02-09 武汉瑞威尔化学科技有限公司 一种化合物乙酰胺的制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072024A (en) * 1990-04-27 1991-12-10 The Standard Oil Company Synthesis of N-substituted amides by condensation of nitriles with certain organic hydroxyl compounds
US5118846A (en) * 1990-04-27 1992-06-02 The Standard Oil Company Synthesis of N-disubstituted amides by reaction of amides with certain organic hydroxyl compounds

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1576256A (ja) * 1967-08-15 1969-07-25
US3882175A (en) * 1970-08-29 1975-05-06 Asahi Chemical Ind Process for the preparation of N,N-dialkylformamides
JPS5634635A (en) * 1979-08-28 1981-04-06 Agency Of Ind Science & Technol Preparation of amide by hydration of nitrile under high pressure
US5041659A (en) * 1990-04-26 1991-08-20 The Standard Oil Company Synthesis of n-disubstituted amides by reaction of amides with certain organic hydroxyl compounds
US5099066A (en) * 1990-04-27 1992-03-24 The Standard Oil Company Synthesis of N-substituted amides by condensation of nitriles with certain organic hydroxyl compounds
US5103055A (en) * 1990-05-10 1992-04-07 The Standard Oil Company Water-promoted synthesis of amides from nitriles and alcohols
DE19518474A1 (de) * 1995-05-19 1996-11-21 Basf Ag Verfahren zur Herstellung von Carbonsäurederivaten
JP3613321B2 (ja) * 1999-04-07 2005-01-26 東亞合成株式会社 2−シアノアクリレート系組成物
AU2002238707A1 (en) * 2001-03-12 2002-09-24 The Queen's University Of Belfast Process catalysed by fluoroalkylsulfonated compounds, preferably bis-triflimide compounds
AT413101B (de) * 2002-10-01 2005-11-15 Dsm Fine Chem Austria Gmbh Verbessertes verfahren zur herstellung von n-substituierten amiden aus nitrilen
JP5653442B2 (ja) * 2010-08-23 2015-01-14 日本曹達株式会社 縮合環化合物
CN105820061A (zh) * 2015-01-07 2016-08-03 南京理工大学 一种合成n-烷基酰胺的方法
CN105085341B (zh) 2015-09-02 2017-03-22 西南石油大学 一种n‑取代酰胺衍生物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072024A (en) * 1990-04-27 1991-12-10 The Standard Oil Company Synthesis of N-substituted amides by condensation of nitriles with certain organic hydroxyl compounds
US5118846A (en) * 1990-04-27 1992-06-02 The Standard Oil Company Synthesis of N-disubstituted amides by reaction of amides with certain organic hydroxyl compounds

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAMAMOTO, KANAME ET AL.: "Syntheses of N-substituted amides from nitriles and alcohols", JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, vol. 80, no. 3, 1959, pages 326 - 328 *
POSEVINS, D. ET AL.: "Indium- triflate-catalyzed ritter reaction in liquid sulfur dioxide", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 7, 2016, pages 1414 - 1419 *
YARAGORLA, S. ET AL.: "Microwave assisted, Ca(II)-catalyzed ritter reaction for the green synthesis of amides", TETRAHEDRON LETTERS, vol. 55, no. 33, 2014, pages 4657 - 4660, XP029040800, DOI: 10.1016/j.tetlet.2014.06.068 *

Also Published As

Publication number Publication date
CN112004796A (zh) 2020-11-27
TWI735867B (zh) 2021-08-11
US20210238123A1 (en) 2021-08-05
CN112004796B (zh) 2023-06-06
JPWO2019208705A1 (ja) 2021-05-13
TW202000641A (zh) 2020-01-01
US11358927B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
BRPI0607424B1 (pt) Processo para preparar bifenilas substituídas
KR102500024B1 (ko) 방향족 플루오린화 방법
JP6213417B2 (ja) 2,2−ジフルオロアセトアルデヒドの保存安定性の向上方法
JPWO2013099819A1 (ja) バナジウム錯体を用いたファルネサールの製造方法
BRPI0911992B1 (pt) Processo para preparação de bifenilanilidas substituídas
WO2019208705A1 (ja) N,n-二置換アミドの製造方法およびn,n-二置換アミド製造用触媒
JP5381257B2 (ja) 含フッ素ボロン酸エステル化合物の製造方法
JP2010241764A5 (ja)
US5087757A (en) Preparation of alkylthioethylamine salts
US7141693B2 (en) Process for producing β-oxonitrile compound or alkali metal salt thereof
JP6894608B2 (ja) 新規な環状尿素誘導体−三臭化水素酸塩
JP2019524783A5 (ja)
JP2016040240A (ja) ジアリールヨードニウム塩
JP2021042169A (ja) カルボン酸エステルの製造方法
JP7341093B2 (ja) ホルムアミド化合物の製造方法
BRPI0618555A2 (pt) processo para produção de bifenilas
US20180370889A1 (en) Method for Preservation of Alpha, Alpha-Difluoroacetaldehyde Alkyl Hemiacetal
CN115611715B (zh) 环骨架含氟醚、制备方法及其应用
RU2502724C1 (ru) Способ получения нитродифениламинов
JP4032861B2 (ja) β−オキソニトリル誘導体又はそのアルカリ金属塩の製法
CN110997612B (zh) 甲醇与仲醇或叔醇的铁催化的交叉偶联以生产甲酸酯
JP7158717B2 (ja) 求電子的アジド化剤又はジアゾ化剤
KR970000485B1 (ko) 2-(디알콕시메틸)카복실산 에스테르의 제조방법
PL84344B1 (ja)
JP2005289976A (ja) N’−ベンゾイル−α−ヒドラジノエステル化合物の不斉合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791667

Country of ref document: EP

Kind code of ref document: A1