WO2019207699A1 - 対物光学系及びそれを用いた撮像装置 - Google Patents

対物光学系及びそれを用いた撮像装置 Download PDF

Info

Publication number
WO2019207699A1
WO2019207699A1 PCT/JP2018/016935 JP2018016935W WO2019207699A1 WO 2019207699 A1 WO2019207699 A1 WO 2019207699A1 JP 2018016935 W JP2018016935 W JP 2018016935W WO 2019207699 A1 WO2019207699 A1 WO 2019207699A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical system
objective optical
refractive power
Prior art date
Application number
PCT/JP2018/016935
Other languages
English (en)
French (fr)
Inventor
水澤聖幸
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/016935 priority Critical patent/WO2019207699A1/ja
Publication of WO2019207699A1 publication Critical patent/WO2019207699A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives

Definitions

  • the present invention relates to an objective optical system and an imaging apparatus using the objective optical system.
  • Patent Document 1 A small imaging optical system having an inner focus function is disclosed in Patent Document 1 and Patent Document 2.
  • the angle of view variation during focusing is slightly large.
  • the F number is slightly large and the focusing range is narrow.
  • the present invention has been made in view of such problems, and uses an objective optical system that has a wide angle, has a small angle of view variation at the time of focusing, and has various aberrations corrected satisfactorily.
  • An object is to provide an imaging device.
  • an objective optical system includes: From the object side, A first lens group having negative refractive power; A second lens group; The aperture stop, A third lens group having a positive refractive power, During focusing, the second lens group moves along the optical axis, The second lens group includes a positive lens and a negative lens.
  • An imaging apparatus includes: The above-described objective optical system, an image sensor, a control unit, and a calculation unit,
  • the image sensor receives an optical image generated by the objective optical system
  • the control unit moves the second lens group to the near point photographing position and the far point photographing position
  • the near-point image at the near-point shooting position and the far-point image at the far-point shooting position are acquired by the image sensor
  • the computing unit synthesizes the near point image and the far point image.
  • an objective optical system that has a wide angle, has a small angle of view variation during focusing, and has various aberrations corrected well, and an imaging apparatus using the objective optical system.
  • FIG. 1 is a cross-sectional view of an objective optical system according to Example 1.
  • FIG. 6 is a cross-sectional view of an objective optical system according to Example 2.
  • FIG. 6 is a sectional view of an objective optical system according to Example 3.
  • FIG. 6 is a cross-sectional view of an objective optical system according to Example 4.
  • FIG. 4 is an aberration diagram of the objective optical system according to Example 1.
  • FIG. 6 is an aberration diagram of the objective optical system according to Example 2.
  • FIG. 6 is an aberration diagram of an objective optical system according to Example 3.
  • FIG. 10 is an aberration diagram of the objective optical system according to Example 4.
  • the objective optical system according to the present embodiment can observe an object located at a long distance and an object located at a short distance with a single optical system. Therefore, in the objective optical system according to the present embodiment, the optical system is configured by a plurality of lens groups, and one lens group moves on the optical axis. Thereby, an optical image when focusing on a long-distance object and an optical image when focusing on a short-distance object are formed.
  • the objective optical system includes, in order from the object side, a first lens group having negative refractive power, a second lens group, an aperture stop, and a third lens group having positive refractive power,
  • the second lens group moves along the optical axis during focusing, and the second lens group includes a positive lens and a negative lens.
  • the objective optical system according to the present embodiment includes, in order from the object side, a first lens group having a negative refractive power, a second lens group, and a third lens group having a positive refractive power. By doing so, it is possible to secure a wide angle of view and shorten the overall length of the optical system.
  • a lens group having negative refractive power is positioned on the object side, and a lens group having positive refractive power is positioned on the image side.
  • the first lens group having a negative refractive power is located on the object side, and the third lens group having a positive refractive power is located on the image side. Therefore, the objective optical system of the present embodiment employs a retrofocus type optical system. Therefore, a long back focus can be secured.
  • Object distance differs between long-distance objects and short-distance objects. In observing an object, it is preferable that a clear image is formed even if the object distance changes. For this purpose, it is necessary to move at least one lens group.
  • the number of lens groups to be moved is small. If the number of lens groups to be moved is one, the driving mechanism can be simplified. In the objective optical system of the present embodiment, the second lens group moves during focusing. Since the number of moving lens groups is one, the focusing mechanism can be simplified.
  • the second lens group includes a positive lens and a negative lens. Therefore, the refractive power of the second lens group is small. As a result, it is possible to reduce the angle of view variation during focusing.
  • the objective optical system according to the present embodiment preferably satisfies the following conditional expression (1). -3.5 ⁇ f2n / f2p ⁇ -1.5 (1) here, f2p is the focal length of the positive lens in the second lens group, f2n is the focal length of the negative lens of the second lens group, It is.
  • the refractive power of the positive lens is relatively larger than the refractive power of the negative lens.
  • an aberration affected by the positive lens for example, a negative spherical aberration occurs.
  • the imaging performance deteriorates.
  • the refractive power of the negative lens is relatively larger than the refractive power of the positive lens.
  • an aberration affected by the negative lens for example, a positive spherical aberration occurs.
  • the imaging performance deteriorates.
  • the objective optical system according to the present embodiment preferably satisfies the following conditional expression (2). 5 ⁇ f2 / ffar ⁇ 8 (2) here, f2 is the focal length of the second lens group, ffar is the focal length of the entire objective optical system when focusing on the farthest object, It is.
  • the focal length of the second lens group becomes too long. Therefore, the focusing range is narrowed.
  • the focusing range can be expanded by increasing the amount of movement of the second lens group. However, if the amount of movement of the second lens group is increased, the overall length of the optical system becomes longer.
  • the third lens group includes, in order from the object side, an aperture stop, a first lens component, a second lens component, and a third lens component.
  • the first lens component is a single lens having a positive refractive power or a cemented lens having a positive refractive power
  • the second lens component is a single lens having a negative refractive power or a negative refractive power.
  • the third lens component is a single lens having a positive refractive power or a cemented lens having a positive refractive power.
  • the first lens component has a positive refractive power
  • the second lens component has a negative refractive power
  • the third lens component has a positive refractive power. Therefore, in the objective optical system according to the present embodiment, a portion in which the refractive power is arranged to have a positive refractive power, a negative refractive power, and a positive refractive power is formed in the third lens group.
  • Such an arrangement of refractive power is the same as the arrangement of refractive power in a triplet lens. Therefore, in the objective optical system according to the present embodiment, it can be considered that a triplet lens is arranged in the third lens group.
  • the triplet lens can achieve both a small F-number and a wide angle of view. Therefore, the objective optical system according to the present embodiment can achieve both a small F number and a wide angle of view.
  • the first lens group includes an object-side lens and an image-side lens
  • the object-side lens is a surface whose image side surface is concave on the image side. Is an object side concave surface on the object side, the image side lens is arranged next to the object side lens, It is preferable that the image side surface of the object side lens and the object side surface of the image side lens face each other.
  • the image side surface of the object side lens has negative refractive power.
  • the object side surface of the image side lens has negative refractive power. Therefore, in the objective optical system according to the present embodiment, the negative refractive power of the first lens group can be shared by the two lens surfaces. Therefore, a wide angle of view can be secured while suppressing the occurrence of various aberrations.
  • the image side surface of the object side lens faces the object side surface of the image side lens. Therefore, the angle of view can be widened while reducing curvature of field and astigmatism.
  • both the positive lens and the negative lens of the second lens group are meniscus lenses having a convex surface facing the object side.
  • the positive lens of the second lens group is located closer to the object side than the negative lens of the second lens group.
  • the third lens group includes a fourth lens component and a fifth lens component
  • the fourth lens component includes a single lens or a cemented lens.
  • the lens component 5 is preferably a cemented lens.
  • the fourth lens component and the fifth lens component of the third lens group are disposed near the image plane. At this position, the on-axis light beam and the off-axis light beam are separated. Therefore, the off-axis aberration can be favorably corrected with the fourth lens component and the fifth lens component. Since the fifth lens component is composed of a cemented lens, the lateral chromatic aberration can be particularly favorably corrected.
  • An imaging apparatus includes the above-described objective optical system, an imaging element, a control unit, and a calculation unit.
  • the imaging element receives an optical image generated by the objective optical system, and receives a control unit.
  • the second lens group is moved to the near point photographing position and the far point photographing position, the near point image at the near point photographing position and the far point image at the far point photographing position are acquired by the imaging device, , The near point image and the far point image are synthesized.
  • (A) is a lens cross-sectional view when focusing on a long-distance object
  • (b) is a lens cross-sectional view when focusing on a short-distance object.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion aberration
  • SA Spherical aberration
  • AS Astigmatism
  • DT Distortion aberration
  • the first lens group is indicated by G1
  • the second lens group is indicated by G2
  • the third lens group is indicated by G3
  • the aperture stop is indicated by S
  • the image surface is indicated by I.
  • a parallel plate CG1 and a parallel plate CG2 are disposed between the third lens group G3 and the image plane I.
  • the parallel plate CG1 is a cover glass of the image sensor, and the parallel plate CG2 is a sealing glass.
  • a gap is formed between the parallel plate CG2 and the image plane I.
  • the image plane I may be located on the image side surface of the parallel plate CG2.
  • the objective optical system of Example 1 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3.
  • the first lens group G1 includes a plano-concave negative lens L1 having a plane on the object side, a biconcave negative lens L2, and a positive meniscus lens L3 having a convex surface facing the object side.
  • the second lens group G2 includes a positive meniscus lens L4 having a convex surface facing the object side and a negative meniscus lens L5 having a convex surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L6, a biconcave negative lens L7, a positive meniscus lens L8 having a convex surface facing the image side, a biconvex positive lens L9, and a negative meniscus having a convex surface facing the image side. It has a lens L10, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface facing the image side.
  • the biconvex positive lens L9 and the negative meniscus lens L10 are cemented.
  • the biconvex positive lens L11 and the negative meniscus lens L12 are cemented.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed in the vicinity of the surface closest to the object side of the third lens group G3.
  • the second lens group G2 moves.
  • the second lens group G2 moves to the image side.
  • the aperture stop S is fixed together with the third lens group G3.
  • a parallel plate CG1 and a parallel plate CG2 are arranged on the image side of the third lens group G3.
  • the objective optical system of Example 2 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3.
  • the first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the image side, and a negative meniscus lens L3 having a convex surface facing the image side.
  • the second lens group G2 includes a positive meniscus lens L4 having a convex surface facing the object side and a negative meniscus lens L5 having a convex surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface on the image side, a positive meniscus lens L8 having a convex surface on the image side, a biconvex positive lens L9, and an image side. It has a negative meniscus lens L10 having a convex surface, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface facing the image side.
  • the biconvex positive lens L9 and the negative meniscus lens L10 are cemented.
  • the biconvex positive lens L11 and the negative meniscus lens L12 are cemented.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed in the vicinity of the surface closest to the object side of the third lens group G3.
  • the second lens group G2 moves.
  • the second lens group G2 moves to the image side.
  • the aperture stop S is fixed together with the third lens group G3.
  • a parallel plate CG1 and a parallel plate CG2 are arranged on the image side of the third lens group G3.
  • the objective optical system of Example 3 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3.
  • the first lens group G1 includes a planoconcave negative lens L1, a biconcave negative lens L2, and a biconvex positive lens L3.
  • the biconcave negative lens L2 and the biconvex positive lens L3 are cemented.
  • the second lens group G2 includes a positive meniscus lens L4 having a convex surface facing the object side and a negative meniscus lens L5 having a convex surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L6, a biconcave negative lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a negative meniscus lens L10 having a convex surface facing the object side, and a biconvex lens.
  • a positive lens L11 and a negative meniscus lens L12 having a convex surface facing the image side.
  • the concave negative lens L7 and the biconvex positive lens L8 are cemented.
  • the biconvex positive lens L11 and the negative meniscus lens L12 are cemented.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed in the vicinity of the surface closest to the object side of the third lens group G3.
  • the second lens group G2 moves.
  • the second lens group G2 moves to the image side.
  • the aperture stop S is fixed together with the third lens group G3.
  • a parallel plate CG1 and a parallel plate CG2 are arranged on the image side of the third lens group G3.
  • the objective optical system of Example 4 includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3.
  • the first lens group G1 includes a plano-concave negative lens L1 having a flat surface on the object side, a negative meniscus lens L2 having a convex surface facing the image side, and a positive meniscus lens L3 having a convex surface facing the object side.
  • the second lens group G2 includes a positive meniscus lens L4 having a convex surface facing the object side and a negative meniscus lens L5 having a convex surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L6, a biconcave negative lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a biconvex positive lens L10, and a negative with a convex surface facing the image side. Meniscus lens L11.
  • the biconvex positive lens L10 and the negative meniscus lens L11 are cemented.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3. More specifically, the aperture stop S is disposed in the vicinity of the surface closest to the object side of the third lens group G3.
  • the second lens group G2 moves.
  • the second lens group G2 moves to the image side.
  • the aperture stop S is fixed together with the third lens group G3.
  • a parallel plate CG1 and a parallel plate CG2 are arranged on the image side of the third lens group G3.
  • r is the radius of curvature of each lens surface
  • d is the distance between the lens surfaces
  • ne is the refractive index of the e-line of each lens
  • ⁇ d is the Abbe number of each lens.
  • the long distance is when the long distance object is focused
  • the short distance is when the short distance object is focused
  • OB is the object distance
  • f is the focal length of the entire system
  • FNO is the F number
  • is the half field angle
  • IH is the image height.
  • f1, f2,... are focal lengths of the lens groups.
  • Example 1 Example 2
  • Example 3 Example 4 f2n / f2p -1.914 -1.466 -3.553 -2.484 f2 / ffar 7.76 7.46 5.22 5.85
  • the present invention is suitable for an objective optical system in which fluctuations in the angle of view at the time of focusing are small and various aberrations are well corrected, and an imaging apparatus using the objective optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

合焦の際の画角変動が小さく、諸収差が良好に補正された対物光学系及びそれを用いた撮像装置を提供する。 対物光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、第2レンズ群G2と、明るさ絞りSと、正の屈折力を有する第3レンズ群G3と、からなり、合焦時、第2レンズ群G2は光軸に沿って移動し、第2レンズ群G2は、正レンズと、負レンズと、からなる。

Description

対物光学系及びそれを用いた撮像装置
 本発明は、対物光学系及びそれを用いた撮像装置に関する。
 インナーフォーカス機能を備えた小型の撮像光学系が、特許文献1や特許文献2に開示されている。
国際公開第2016/06783号 特許第5948530号公報
 特許文献1に開示された撮像光学系では、合焦の際の画角変動がやや大きい。特許文献2に開示された撮像光学系では、Fナンバーがやや大きく、合焦範囲が狭い。
 本発明は、このような課題に鑑みてなされたものであって、広角でありながら、合焦の際の画角変動が小さく、諸収差が良好に補正された対物光学系及びそれを用いた撮像装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る対物光学系は、
 物体側から順に、
 負の屈折力を有する第1レンズ群と、
 第2レンズ群と、
 明るさ絞りと、
 正の屈折力を有する第3レンズ群と、からなり、
 合焦時、第2レンズ群は光軸に沿って移動し、
 第2レンズ群は、正レンズと、負レンズと、からなることを特徴とする。
 本発明の少なくとも幾つかの実施形態に係る撮像装置は、
 上述の対物光学系と、撮像素子と、制御部と、演算部と、を備え、
 撮像素子は、対物光学系で生成された光学像を受光し、
 制御部は、第2レンズ群を、近点撮影位置と遠点撮影位置に移動させ、
 近点撮影位置における近点画像と遠点撮影位置における遠点画像とを、撮像素子で取得し、
 演算部は、近点画像と遠点画像とを合成することを特徴とする。
 本発明によれば、広角でありながら、合焦の際の画角変動が小さく、諸収差が良好に補正された対物光学系及びそれを用いた撮像装置を提供することができる。
実施例1に係る対物光学系の断面図である。 実施例2に係る対物光学系の断面図である。 実施例3に係る対物光学系の断面図である。 実施例4に係る対物光学系の断面図である。 実施例1に係る対物光学系の収差図である。 実施例2に係る対物光学系の収差図である。 実施例3に係る対物光学系の収差図である。 実施例4に係る対物光学系の収差図である。
 実施例の説明に先立ち、本発明のある態様にかかる実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。
 本実施形態に係る対物光学系は、一つの光学系で、遠距離に位置する物体と近距離に位置する物体とを観察できる。そのために、本実施形態に係る対物光学系では、光学系を複数のレンズ群で構成すると共に、1つのレンズ群が光軸上を移動する。これにより、遠距離物体に合焦したときの光学像と、近距離物体に合焦したときの光学像が形成される。
 本実施形態に係る対物光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、第2レンズ群と、明るさ絞りと、正の屈折力を有する第3レンズ群と、からなり、合焦時、第2レンズ群は光軸に沿って移動し、第2レンズ群は、正レンズと、負レンズと、からなることを特徴とする。
 本実施形態の対物光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、第2レンズ群と、正の屈折力を有する第3レンズ群と、で構成されている。このようにすることで、広い画角の確保と、光学系の全長の短縮ができる。
 レトロフォーカスタイプの光学系では、物体側に負の屈折力を有するレンズ群が位置し、像側に正の屈折力を有するレンズ群が位置している。本実施形態の対物光学系では、負の屈折力を有する第1レンズ群が物体側に位置し、正の屈折力を有する第3レンズ群が像側に位置している。よって、本実施形態の対物光学系では、レトロフォーカスタイプの光学系が採用されている。そのため、長いバックフォーカスを確保できる。
 遠距離物体と近距離物体とでは、物体距離が異なる。物体の観察では、物体距離が変化しても、鮮明な像が形成されることが好ましい。そのためには、レンズ群を少なくとも1つ動かす必要がある。
 移動させるレンズ群の数は、少ないほうが好ましい。移動させるレンズ群の数を1つにすると、駆動機構を簡略化できる。本実施形態の対物光学系では、合焦時、第2レンズ群が移動する。移動するレンズ群の数が1つなので、合焦機構を簡略化できる。
 第2レンズ群の屈折力が大きいと、画角変動は大きくなる。本実施形態の対物光学系では、第2レンズ群は、正レンズと負レンズを含んでいる。そのため、第2レンズ群の屈折力が小さい。その結果、合焦の際の画角変動を小さくできる。
 本実施形態に係る対物光学系は、以下の条件式(1)を満足することが好ましい。
 -3.5<f2n/f2p<-1.5   (1)
 ここで、
 f2pは、第2レンズ群の正レンズの焦点距離、
 f2nは、第2レンズ群の負レンズの焦点距離、
である。
 値が条件式(1)の下限値を下回る場合、正レンズの屈折力が相対的に、負レンズの屈折力より大きくなり過ぎる。この場合、正レンズの影響を受ける収差、例えば、負の球面収差が生じる。そのため、結像性能が劣化する。
 値が条件式(1)の上限値を上回る場合、負レンズの屈折力が相対的に、正レンズの屈折力より大きくなり過ぎる。この場合、負レンズの影響を受ける収差、例えば、正の球面収差が生じる。そのため、結像性能が劣化する。
 本実施形態に係る対物光学系は、以下の条件式(2)を満足することが好ましい。
 5<f2/ffar<8   (2)
 ここで、
 f2は、第2レンズ群の焦点距離、
 ffarは、最遠距離物体に合焦したときの対物光学系全体の焦点距離、
である。
 値が条件式(2)の下限値を下回る場合、第2レンズ群の焦点距離が短くなり過ぎる。この場合、第2レンズ群の屈折力が大きくなるので、合焦の際の画角変動が大きくなる。
 値が条件式(2)の上限値を上回る場合、第2レンズ群の焦点距離が長くなり過ぎる。そのため、合焦範囲が狭くなる。合焦範囲は、第2レンズ群の移動量を大きくすることで広げられる。しかしながら、第2レンズ群の移動量を大きくすると、光学系の全長が長くなってしまう。
 本実施形態に係る対物光学系では、第3レンズ群は、物体側から順番に、明るさ絞りと、第1のレンズ成分と、第2のレンズ成分と、第3のレンズ成分と、を含み、第1のレンズ成分は、正の屈折力を有する単レンズ、又は正の屈折力を有する接合レンズからなり、第2のレンズ成分は、負の屈折力を有する単レンズ、又は負の屈折力を有する接合レンズからなり、第3のレンズ成分は、正の屈折力を有する単レンズ、又は正の屈折力を有する接合レンズからなることが好ましい。
 第1のレンズ成分は正の屈折力を有し、第2のレンズ成分は負の屈折力を有し、第3のレンズ成分は正の屈折力を有する。よって、本実施形態に係る対物光学系では、第3レンズ群中に、屈折力の並びが、正の屈折力、負の屈折力、正の屈折力となる部分が形成される。
 このような屈折力の並びは、トリプレットレンズにおける屈折力の並びと同じである。よって、本実施形態に係る対物光学系では、第3レンズ群中に、トリプレットレンズが配置されていると見なすことができる。
 トリプレットレンズでは、小さいFナンバーの確保と広い画角の確保とが両立できる。よって、本実施形態に係る対物光学系でも、小さいFナンバーの確保と広い画角の確保とが両立できる。
 本実施形態に係る対物光学系では、第1レンズ群は、物体側レンズと、像側レンズと、を有し、物体側レンズは、像側面が像側に凹の面であり、像側レンズは、物体側面が物体側に凹の面であり、像側レンズは、物体側レンズの隣に配置され、
 物体側レンズの像側面と像側レンズの物体側面とが向かい合っていることが好ましい。
 物体側レンズの像側面を像側に凹の面にすることで、物体側レンズの像側面は負の屈折力を持つ。像側レンズの物体側面を物体側に凹の面にすることで、像側レンズの物体側面は負の屈折力を持つ。よって、本実施形態に係る対物光学系では、第1レンズ群の負の屈折力を、2つのレンズ面に分担させることができる。そのため、諸収差の発生を抑制しつつ、広い画角を確保できる。
 更に、物体側レンズの像側面と像側レンズの物体側面とは向かい合っている。そのため、像面湾曲や非点収差を低減させつつ、画角を広げられる。
 本実施形態に係る対物光学系では、第2レンズ群の正レンズと負レンズは、共に、物体側に凸面を向けたメニスカスレンズであることが好ましい。
 このようにすることで、広角化に伴って発生する諸収差を、より良好に補正できる。
 本実施形態に係る対物光学系では、第2レンズ群の正レンズは、第2レンズ群の負レンズよりも物体側に位置することが好ましい。
 本実施形態に係る対物光学系では、第3レンズ群は、第4のレンズ成分と、第5のレンズ成分と、を有し、第4レンズ成分は、単レンズ、又は接合レンズからなり、第5のレンズ成分は接合レンズからなることが好ましい。
 本実施形態に係る対物光学系では、第3レンズ群の第4のレンズ成分と第5のレンズ成分は、像面の近くに配置されている。この位置では、軸上光束と軸外光束が分離した状態になっている。そのため、第4のレンズ成分と第5のレンズ成分とで、軸外収差を良好に補正できる。第5のレンズ成分は接合レンズからなるので、特に、倍率色収差を良好に補正できる。
 本実施形態に係る撮像装置は、上述の対物光学系と、撮像素子と、制御部と、演算部と、を備え、撮像素子は、対物光学系で生成された光学像を受光し、制御部は、第2レンズ群を、近点撮影位置と遠点撮影位置に移動させ、近点撮影位置における近点画像と遠点撮影位置における遠点画像とを、撮像素子で取得し、演算部は、近点画像と遠点画像とを合成することを特徴とする。
 このようにすることで、焦点深度が拡張された画像を生成できる。
 以下に、対物光学系の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 各実施例のレンズ断面図について説明する。(a)は遠距離物体合焦時のレンズ断面図、(b)は近距離物体合焦時のレンズ断面図を示している。
 各実施例の収差図について説明する。(a)は遠距離物体合焦時の球面収差(SA)、(b)は遠距離物体合焦時の非点収差(AS)、(c)は遠距離物体合焦時の歪曲収差(DT)を示している。
 各実施例の収差図について説明する。(d)は近距離物体合焦時の球面収差(SA)、(e)は近距離物体合焦時の非点収差(AS)、(f)は近距離物体合焦時の歪曲収差(DT)を示している。
 第1レンズ群はG1、第2レンズ群はG2、第3レンズ群はG3、明るさ絞りはS、像面(撮像面)はIで示してある。また、第3レンズ群G3と像面Iとの間に、平行平板CG1と、平行平板CG2と、が配置されている。
 平行平板CG1は撮像素子のカバーガラス、平行平板CG2は封止ガラスである。以下の実施例では、平行平板CG2と像面Iとの間に、隙間が形成されている。しかしながら、この隙間は、必ずしも必要ではない。平行平板CG2の像側面に像面Iが位置していても良い。
 実施例1の対物光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、で構成されている。
 第1レンズ群G1は、物体側が平面である平凹負レンズL1と、両凹負レンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、物体側に凸面を向けた負メニスカスレンズL5と、を有する。
 第3レンズ群G3は、両凸正レンズL6と、両凹負レンズL7と、像側に凸面を向けた正メニスカスレンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、を有する。ここで、両凸正レンズL9と負メニスカスレンズL10とが、接合されている。両凸正レンズL11と負メニスカスレンズL12とが、接合されている。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より詳しくは、開口絞りSは、第3レンズ群G3の最も物体側に位置する面の近傍に配置されている。
 合焦時、第2レンズ群G2が移動する。遠距離物体から近距離物体への合焦時、第2レンズ群G2は像側に移動する。開口絞りSは、第3レンズ群G3と共に固定されている。
 第3レンズ群G3の像側には、平行平板CG1と、平行平板CG2と、が配置されている。
 実施例2の対物光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、で構成されている。
 第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、像側に凸面を向けた負メニスカスレンズL2と、像側に凸面を向けた負メニスカスレンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、物体側に凸面を向けた負メニスカスレンズL5と、を有する。
 第3レンズ群G3は、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、像側に凸面を向けた正メニスカスレンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、を有する。ここで、両凸正レンズL9と負メニスカスレンズL10とが、接合されている。両凸正レンズL11と負メニスカスレンズL12とが、接合されている。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より詳しくは、開口絞りSは、第3レンズ群G3の最も物体側に位置する面の近傍に配置されている。
 合焦時、第2レンズ群G2が移動する。遠距離物体から近距離物体への合焦時、第2レンズ群G2は像側に移動する。開口絞りSは、第3レンズ群G3と共に固定されている。
 第3レンズ群G3の像側には、平行平板CG1と、平行平板CG2と、が配置されている。
 実施例3の対物光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、で構成されている。
 第1レンズ群G1は、物体側が平面である平凹負レンズL1と、両凹負レンズL2と、両凸正レンズL3と、を有する。ここで、両凹負レンズL2と両凸正レンズL3とが、接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、物体側に凸面を向けた負メニスカスレンズL5と、を有する。
 第3レンズ群G3は、両凸正レンズL6と、両凹負レンズL7と、両凸正レンズL8と、両凸正レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、を有する。ここで、凹負レンズL7と両凸正レンズL8とが、接合されている。両凸正レンズL11と負メニスカスレンズL12とが、接合されている。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より詳しくは、開口絞りSは、第3レンズ群G3の最も物体側に位置する面の近傍に配置されている。
 合焦時、第2レンズ群G2が移動する。遠距離物体から近距離物体への合焦時、第2レンズ群G2は像側に移動する。開口絞りSは、第3レンズ群G3と共に固定されている。
 第3レンズ群G3の像側には、平行平板CG1と、平行平板CG2と、が配置されている。
 実施例4の対物光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、で構成されている。
 第1レンズ群G1は、物体側が平面である平凹負レンズL1と、像側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、を有する。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と、物体側に凸面を向けた負メニスカスレンズL5と、を有する。
 第3レンズ群G3は、両凸正レンズL6と、両凹負レンズL7と、両凸正レンズL8と、両凸正レンズL9と、両凸正レンズL10と、像側に凸面を向けた負メニスカスレンズL11と、を有する。ここで、両凸正レンズL10と負メニスカスレンズL11とが、接合されている。
 開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。より詳しくは、開口絞りSは、第3レンズ群G3の最も物体側に位置する面の近傍に配置されている。
 合焦時、第2レンズ群G2が移動する。遠距離物体から近距離物体への合焦時、第2レンズ群G2は像側に移動する。開口絞りSは、第3レンズ群G3と共に固定されている。
 第3レンズ群G3の像側には、平行平板CG1と、平行平板CG2と、が配置されている。
 以下に、上記各実施例の数値データを示す。面データにおいて、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νdは各レンズのアッベ数である。
 また、各種データにおいて、遠距離は遠距離物体合焦時、近距離は近距離物体合焦時、OBは物体距離、fは全系の焦点距離、FNO.はFナンバー、ωは半画角、IHは像高である。
 また、各群焦点距離において、f1、f2…は各レンズ群の焦点距離である。
数値実施例1
単位  mm
 
面データ
面番号      r          d          ne         νd
物面       ∞        23
1          ∞         0.35      1.888146     40.76
2         1.27161     0.7
3        -2.4432      0.4       1.518251     64.14
4         7.47418     0.1
5         2.33831     0.7481    1.820167     46.62
6         5.58761     可変
7         1.81045     0.45      1.489147     70.23
8         6.94666     0.1
9         2.34144     0.25      1.489147     70.23
10        1.4923      可変
11(絞り)   ∞         0.1
12        2.05        0.7       1.732336     54.68
13       -4.38925     0.15
14       -1.53741     1.2119    1.820167     46.62
15       13.07404     0.1
16       -9.64112     0.7       1.732336     54.68
17       -2.37619     0.1
18        4.05447     1.4       1.498455     81.54
19       -2.2         0.4       1.888146     40.76
20       -3.21743     0.1
21        4.05447     1.4       1.498455     81.54
22       -2.2         0.4       1.855041     23.78
23      -29.72887     0.5892
24         ∞         0.8       1.518251     64.14
25         ∞         0.7       1.613503     50.40
26         ∞         0.100
像面       ∞
 
各種データ
          遠距離       近距離
OB       23            2.8
f          1.0703       1.0498
FNO.    3.5
2ω      159.9        160.0
IH        1.14
 
d6          0.2          0.9343
d10         0.9343       0.2
 
各群焦点距離
f1=-1.2761     f2=8.3042     f3=2.7438
数値実施例2
単位  mm
 
面データ
面番号      r          d          ne         νd
物面       ∞        23
1        10.1792      0.37      1.888146     40.76
2         1.2         0.75
3        -1.8402      0.4       1.518251     64.14
4        -7.5232      0.0969
5        -2.8899      0.4774    1.820167     46.62
6        -3.2906      可変
7         1.6         0.4       1.489147     70.23
8        54.6520      0.1859
9         4.6766      0.2       1.489147     70.23
10        1.5679      可変
11(絞り)   ∞         0.1
12        2.3173      0.7       1.654251     58.55
13       -3.4084      0.15
14       -1.4461      0.4513    1.820167     46.62
15       -2.8         0.4338
16       -4.8196      1         1.791961     47.37
17       -2.7602      0.1444
18       17.1786      1.2       1.498455     81.54
19       -2.1129      0.45      1.761671     27.51
20       -4.0300      0.1
21        3.4556      1.4       1.498455     81.54
22       -2.1         0.4       1.855041     23.78
23      -11.3110      0.4
24         ∞         0.8       1.518251     64.14
25         ∞         0.7       1.613503     50.40
26         ∞         0.1
像面       ∞
 
          遠距離       近距離
OB       23            3
f          0.9938       0.9816
FNO.    4.0
2ω      165.1        165.0
IH        1.14
 
d6          0.3          0.8201
d10         0.8201       0.3
 
各群焦点距離
f1=-1.1102     f2=7.4148     f3=2.7386
数値実施例3
単位  mm
 
面データ
面番号      r          d          ne         νd
物面       ∞        23
1          ∞         0.37      1.888146     40.76
2         1.3976      0.8554
3        -2.7332      0.3       1.732336     54.68
4         6           0.85      1.816434     22.76
5        -8.5586      可変
6         1.7056      0.45      1.654251     58.55
7         3.3510      0.3570
8         1.5681      0.3       1.654251     58.55
9         1.2706      可変
10(絞り)   ∞         0.1113
11        2.2510      0.7       1.776208     49.60
12       -4.3226      0.15
13       -1.4680      0.4620    1.743413     32.26
14        3.0621      1.2       1.520326     58.90
15       -2.55        0.1
16        8.1119      0.5094    1.758437     52.32
17       -5.5502      0.3449
18        3.6697      0.5431    1.810775     40.92
19        1.8654      0.1363
20        2.8910      1.3       1.654251     58.55
21       -3.2963      0.4       1.934291     18.90
22       -7.9998      0.4132
23         ∞         0.8       1.518251     64.14
24         ∞         0.7       1.613503     50.40
25         ∞         0.1036
像面       ∞
 
各種データ
          遠距離       近距離
OB       23            2.6
f          1.0648       1.0431
FNO.    3.8
2ω      160.5        160.0
IH        1.14
 
d5          0.3510       0.8675
d9          0.8429       0.3267
 
各群焦点距離
f1=-1.2277      f2=5.5565    f3=2.7446
数値実施例4
単位  mm
 
面データ
面番号      r          d          ne         νd
物面       ∞        23
1          ∞         0.37      1.888146     40.76
2         1.2842      0.8
3        -1.7069      0.4       1.542121     59.46
4        -3.2590      0.2
5         3.7402      1.0095    1.820167     46.62
6         8.6632      可変
7         1.55        0.45      1.489147     70.23
8         3.7430      0.12
9         1.4303      0.25      1.489147     70.23
10        1.0941      可変
11(絞り)   ∞         0.1
12        2.2663      0.7       1.732336     54.68
13       -4.8453      0.15
14       -1.7718      0.8487    1.810775     40.92
15        3.3169      0.1
16        3.7965      0.7       1.732336     54.68
17       -5.8677      0.1
18      547.2814      1.6       1.654251     58.55
19       -3.3119      0.1
20        2.8         1.65      1.498455     81.54
21       -2.4         0.4       1.855041     23.78
22      -37.312       0.6557
23         ∞         0.8       1.518251     64.14
24         ∞         0.7       1.613503     50.40
25         ∞         0.1
像面       ∞
 
          遠距離       近距離
OB       23            2.8
f          1.2016       1.1484
FNO.    4.0
2ω      154.5        160.0
IH        1.14
 
d6          0.3          0.996
d10         0.996        0.3
 
各群焦点距離
f1=-1.5522     f2=7.0330     f3=2.9333
 次に、各実施例における条件式の値を以下に掲げる。
            実施例1    実施例2    実施例3    実施例4
f2n/f2p     -1.914     -1.466       -3.553      -2.484
f2/ffar      7.76       7.46         5.22        5.85
 以上のように、本発明は、合焦の際の画角変動が小さく、諸収差が良好に補正された対物光学系及びそれを用いた撮像装置に適している。
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 S 明るさ開口絞り
 I 像面
 CG1、CG2 平行平板

Claims (8)

  1.  物体側から順に、
     負の屈折力を有する第1レンズ群と、
     第2レンズ群と、
     明るさ絞りと、
     正の屈折力を有する第3レンズ群と、からなり、
     合焦時、前記第2レンズ群は光軸に沿って移動し、
     前記第2レンズ群は、正レンズと、負レンズと、からなることを特徴とする対物光学系。
  2.  以下の条件式(1)を満足することを特徴とする請求項1に記載の対物光学系。
     -3.5<f2n/f2p<-1.5   (1)
     ここで、
     f2pは、前記第2レンズ群の前記正レンズの焦点距離、
     f2nは、前記第2レンズ群の前記負レンズの焦点距離、
    である。
  3.  以下の条件式(2)を満足することを特徴とする請求項1に記載の対物光学系。
     5<f2/ffar<8   (2)
     ここで、
     f2は、前記第2レンズ群の焦点距離、
     ffarは、最遠距離物体に合焦したときの前記対物光学系全体の焦点距離、
    である。
  4.  前記第3レンズ群は、物体側から順番に、明るさ絞りと、第1のレンズ成分と、第2のレンズ成分と、第3のレンズ成分と、を含み、
     前記第1のレンズ成分は、正の屈折力を有する単レンズ、又は正の屈折力を有する接合レンズからなり、
     前記第2のレンズ成分は、負の屈折力を有する単レンズ、又は負の屈折力を有する接合レンズからなり、
     前記第3のレンズ成分は、正の屈折力を有する単レンズ、又は正の屈折力を有する接合レンズからなることを特徴とする請求項1に記載の対物光学系。
  5.  前記第1レンズ群は、物体側レンズと、像側レンズと、を有し、
     前記物体側レンズは、像側面が像側に凹の面であり、
     前記像側レンズは、物体側面が物体側に凹の面であり、
     前記像側レンズは、前記物体側レンズの隣に配置され、
     前記物体側レンズの像側面と前記像側レンズの物体側面とが向かい合っていることを特徴とする請求項1に記載の対物光学系。
  6.  前記第2レンズ群の前記正レンズと前記負レンズは、共に、物体側に凸面を向けたメニスカスレンズであることを特徴とする請求項1に記載の対物光学系。
  7.  前記第2レンズ群の前記正レンズは、前記第2レンズ群の前記負レンズよりも物体側に位置することを特徴とする請求項1に記載の対物光学系。
  8.  請求項1に記載の対物光学系と、撮像素子と、制御部と、演算部と、を備え、
     前記撮像素子は、前記対物光学系で生成された光学像を受光し、
     前記制御部は、前記第2レンズ群を、近点撮影位置と遠点撮影位置に移動させ、
     前記近点撮影位置における近点画像と前記遠点撮影位置における遠点画像とを、前記撮像素子で取得し、
     前記演算部は、前記近点画像と前記遠点画像とを合成することを特徴とする撮像装置。
PCT/JP2018/016935 2018-04-26 2018-04-26 対物光学系及びそれを用いた撮像装置 WO2019207699A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016935 WO2019207699A1 (ja) 2018-04-26 2018-04-26 対物光学系及びそれを用いた撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016935 WO2019207699A1 (ja) 2018-04-26 2018-04-26 対物光学系及びそれを用いた撮像装置

Publications (1)

Publication Number Publication Date
WO2019207699A1 true WO2019207699A1 (ja) 2019-10-31

Family

ID=68295096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016935 WO2019207699A1 (ja) 2018-04-26 2018-04-26 対物光学系及びそれを用いた撮像装置

Country Status (1)

Country Link
WO (1) WO2019207699A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304704A (ja) * 1995-03-08 1996-11-22 Nikon Corp ズームレンズ
JP2000131606A (ja) * 1998-10-22 2000-05-12 Olympus Optical Co Ltd バックフォーカスの長い広角レンズ
JP2007094174A (ja) * 2005-09-29 2007-04-12 Nikon Corp ズームレンズ
JP2008233284A (ja) * 2007-03-19 2008-10-02 Nikon Corp ズームレンズ、光学機器、および結像方法
JP2011107267A (ja) * 2009-11-13 2011-06-02 Nikon Corp レンズ系、光学機器、レンズ系の製造方法
JP2011242520A (ja) * 2010-05-17 2011-12-01 Olympus Imaging Corp 結像光学系及びそれを用いた撮像装置
WO2013027459A1 (ja) * 2011-08-24 2013-02-28 オリンパスメディカルシステムズ株式会社 撮像装置及び撮像装置システム
JP2014056133A (ja) * 2012-09-13 2014-03-27 Canon Inc ズームレンズ及びそれを有する撮像装置
WO2014088104A1 (ja) * 2012-12-07 2014-06-12 オリンパス株式会社 対物レンズ及びそれを備えた観察装置
WO2014129089A1 (ja) * 2013-02-22 2014-08-28 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系及び撮像装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304704A (ja) * 1995-03-08 1996-11-22 Nikon Corp ズームレンズ
JP2000131606A (ja) * 1998-10-22 2000-05-12 Olympus Optical Co Ltd バックフォーカスの長い広角レンズ
JP2007094174A (ja) * 2005-09-29 2007-04-12 Nikon Corp ズームレンズ
JP2008233284A (ja) * 2007-03-19 2008-10-02 Nikon Corp ズームレンズ、光学機器、および結像方法
JP2011107267A (ja) * 2009-11-13 2011-06-02 Nikon Corp レンズ系、光学機器、レンズ系の製造方法
JP2011242520A (ja) * 2010-05-17 2011-12-01 Olympus Imaging Corp 結像光学系及びそれを用いた撮像装置
WO2013027459A1 (ja) * 2011-08-24 2013-02-28 オリンパスメディカルシステムズ株式会社 撮像装置及び撮像装置システム
JP2014056133A (ja) * 2012-09-13 2014-03-27 Canon Inc ズームレンズ及びそれを有する撮像装置
WO2014088104A1 (ja) * 2012-12-07 2014-06-12 オリンパス株式会社 対物レンズ及びそれを備えた観察装置
WO2014129089A1 (ja) * 2013-02-22 2014-08-28 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系及び撮像装置

Similar Documents

Publication Publication Date Title
JP5315562B2 (ja) マクロレンズ
WO2015146067A1 (ja) ズームレンズ系、交換レンズ装置、及びカメラシステム
US10649201B2 (en) Objective optical system
US9766437B2 (en) Objective optical system for endoscope
US11751754B2 (en) Objective optical system, image pickup apparatus, endoscope and endoscope system
JP2011141364A5 (ja)
JP4717477B2 (ja) 望遠レンズ
US9568726B2 (en) Objective optical system for endoscope
GB2568358A (en) Optical system and image pickup apparatus
JP6230770B1 (ja) 内視鏡用対物光学系
JP2019139238A (ja) 撮像用の光学系および撮像装置
US20030011895A1 (en) Retrofocus imaging lens
JP6279195B1 (ja) 内視鏡光学系
JP5959872B2 (ja) ズームレンズ及びそれを有する撮像装置
US11536935B2 (en) Lens system and image pickup apparatus
JP2006139187A (ja) ズームレンズ
WO2019244867A1 (ja) レンズシステムおよび撮像装置
US20210072516A1 (en) Lens system and image pickup apparatus
US20220019072A1 (en) Endoscope objective optical system and endoscope
WO2019207699A1 (ja) 対物光学系及びそれを用いた撮像装置
JP2014038255A (ja) 結像光学系
JP2017215541A (ja) 顕微鏡対物レンズ、及びそれを用いた顕微鏡結像光学系
JP2013054191A (ja) ズームレンズ
JP2021028708A (ja) 撮像レンズおよび撮像装置
JP2006099130A (ja) ズームレンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP