WO2019200778A1 - 一种用于合成气制吡啶碱的催化剂及制备方法和应用 - Google Patents

一种用于合成气制吡啶碱的催化剂及制备方法和应用 Download PDF

Info

Publication number
WO2019200778A1
WO2019200778A1 PCT/CN2018/098435 CN2018098435W WO2019200778A1 WO 2019200778 A1 WO2019200778 A1 WO 2019200778A1 CN 2018098435 W CN2018098435 W CN 2018098435W WO 2019200778 A1 WO2019200778 A1 WO 2019200778A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hours
auxiliary agent
molecular sieve
pyridine base
Prior art date
Application number
PCT/CN2018/098435
Other languages
English (en)
French (fr)
Inventor
刘小攀
罗超然
薛谊
王文魁
杜翔
Original Assignee
南京红太阳生物化学有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京红太阳生物化学有限责任公司 filed Critical 南京红太阳生物化学有限责任公司
Priority to US17/048,563 priority Critical patent/US11110441B2/en
Publication of WO2019200778A1 publication Critical patent/WO2019200778A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/655Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/69Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7088MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7676MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7876MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/08Preparation by ring-closure
    • C07D213/09Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles
    • C07D213/10Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles from acetaldehyde or cyclic polymers thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the invention belongs to the technical field of catalysts, and in particular relates to a catalyst for preparing pyridine base by syngas and a preparation method and application thereof.
  • Pyridinium commonly known as the "chip" of heterocyclic three drugs and three drug intermediates, is a nitrogen-containing heterocyclic compound that is mainly encouraged by the state for heterocyclic pesticides, medicines and veterinary drugs, and three drug intermediates. An important raw material for chemical, food and feed additives.
  • ZSM-5 molecular sieve catalyzes the cyclization condensation of aldehyde with ammonia to form pyridine compounds, which is the most commonly used method for industrial production of pyridine base.
  • acetaldehyde is usually produced industrially by an ethylene oxidation method, an ethanol oxidation method or an acetylene synthesis method.
  • Syngas is a mixture of carbon monoxide and hydrogen as the main components, with a wide range of sources and low prices.
  • the exploration of a new process for the preparation of pyridinium by syngas has important implications for the pyridine industry as well as the C1 chemical industry.
  • Chinese patent CN1354043A discloses a ruthenium-based catalyst for the preparation of dicarbon oxygenates from synthesis gas.
  • the catalyst uses a relatively high silica-alumina MCM-41 or MCM-22 as the carrier, and the selectivity of the C2 oxygenate is up to 55.4. %.
  • Chinese Patent No. CN1175479A discloses a hydrogenation of carbon monoxide to a two-carbon oxygenate catalyst such as ethanol or acetaldehyde.
  • the catalyst is a Rh-VM/SiO 2 catalyst system, and M is Ru, Fe, Ir, Mo, Mn, K, One or several mixed elements of Li, Zr or Cu, the catalyst can efficiently convert carbon monoxide and hydrogen into ethanol and acetaldehyde products, 1% Rh-1.5% V-0.5%Fe-0.1%Ir-0.1 The selectivity of ethanol and acetaldehyde of the %K/SiO 2 catalyst was 86%.
  • the object of the present invention is to provide a catalyst for synthesizing gas to produce pyridine base, which can catalyze the formation of pyridine, 2-methylpyridine, 3-methylpyridine and 4-methylpyridine by one-step catalysis of carbon monoxide, hydrogen and ammonia.
  • the pyridine base product is to provide a catalyst for synthesizing gas to produce pyridine base, which can catalyze the formation of pyridine, 2-methylpyridine, 3-methylpyridine and 4-methylpyridine by one-step catalysis of carbon monoxide, hydrogen and ammonia.
  • a catalyst for synthesizing gas to produce pyridine base comprising a carrier, an active component, a first auxiliary agent and a second auxiliary agent;
  • the carrier is a molecular sieve;
  • the active component is Rh;
  • the first auxiliary agent is one or more of Mn, Fe, Na, and La, preferably Mn and at least one selected from the group consisting of Fe, Na, and La; and the second auxiliary agent is Zn, Co.
  • the content of the active component Rh is 0.5 to 3%, preferably 1 to 3% by mass of the carrier; the first auxiliary agent is 0.05 to 5%, preferably 1.5 to 5% by mass of the carrier; The second auxiliary agent is from 0.5 to 15%, preferably from 5 to 11% by mass of the carrier.
  • the molecular sieve is one or more of HZSM-5 molecular sieve, HZSM-11 molecular sieve, HZSM-35 molecular sieve and MCM-22 molecular sieve; preferably HZSM-5 molecular sieve with a silicon to aluminum ratio of 50-150, HZSM-11 One or more of molecular sieve, HZSM-35 molecular sieve and MCM-22 molecular sieve; further preferably one or more of HZSM-5 molecular sieve and HZSM-11 molecular sieve having a silicon to aluminum ratio of 50 to 150.
  • Another object of the present invention is to provide a process for the preparation of a catalyst for the synthesis of pyridine base, comprising:
  • Step (1) the metal salt corresponding to the cerium salt, the first auxiliary agent and the second auxiliary agent is dissolved in a solvent to obtain a metal salt solution, and the carrier and the metal salt solution are uniformly mixed, and immersed at room temperature for 0.5 to 48 hours;
  • Step (2) the mixture obtained in the step (1) is vacuum dried at 80 to 120 ° C for 0.5 to 4 hours, and calcined at 300 to 550 ° C for 1 to 5 hours to obtain a catalyst for synthesizing gas to produce pyridine base;
  • step (1) the cerium salt is dissolved in a solvent to obtain a cerium salt solution, the carrier and the cerium salt solution are uniformly mixed, and immersed at room temperature for 0.5 to 48 hours;
  • the mixture obtained in the step (2) and the step (1) is vacuum dried at 80 to 120 ° C for 0.5 to 4 hours, and calcined at 300 to 550 ° C for 1 to 5 hours to prepare a precursor loaded with an active component ruthenium;
  • Step (3) the metal salt corresponding to the auxiliary agent is dissolved in a solvent to obtain a metal salt solution, and the precursor prepared in the step (2) is uniformly mixed with the metal salt solution, and immersed at room temperature for 0.5 to 48 hours;
  • the mixture obtained in the step (4) and the step (3) is vacuum dried at 80 to 120 ° C for 0.5 to 4 hours, and calcined at 300 to 550 ° C for 1 to 5 hours to obtain a catalyst for synthesizing gas to produce pyridine base;
  • step (1) the metal salt corresponding to the auxiliary agent is dissolved in a solvent to obtain a metal salt solution, the molecular sieve and the metal salt solution are uniformly mixed, and immersed at room temperature for 0.5 to 48 hours;
  • the mixture obtained in the step (2) and the step (1) is vacuum dried at 80 to 120 ° C for 0.5 to 4 hours, and calcined at 300 to 550 ° C for 1-5 hours to prepare a precursor loaded with an auxiliary agent;
  • Step (3) the cerium salt is dissolved in a solvent and stirred to obtain a cerium salt solution, the precursor prepared in the step (2) and the cerium salt solution are uniformly mixed, and immersed at room temperature for 0.5 to 48 hours;
  • the mixture obtained in the step (4) and the step (3) is vacuum-dried at 80 to 120 ° C for 0.5 to 4 hours, and calcined at 300 to 550 ° C for 1 to 5 hours to obtain a catalyst for synthesizing a gas to produce a pyridine base.
  • the cerium salt is cerium chloride, the metal salt corresponding to the first auxiliary agent Mn, Fe, Na, and La is a nitrate; the metal salt corresponding to the second auxiliary Zn, Co, Cr, Bi, and Cu is a nitrate.
  • the solvent is one or more of deionized water, methanol, ethanol, and isopropanol.
  • a method for preparing a pyridine base by using the catalyst catalyzed by the catalyst of the invention comprises: synthesizing a gas with a donor gas as a raw material, wherein the molar ratio of H 2 to CO in the synthesis gas is 1 to 5:1.
  • the ammonia donor has a molar ratio of NH 3 to CO of 1:1 to 100, and the reaction raw material is passed into a fixed bed reactor packed with the catalyst of the present invention at a space velocity of 5000 to 15000 h -1 .
  • the reaction temperature is from 250 to 400 ° C, and the reaction pressure is from 1 to 5 MPa to obtain a pyridine base product, and the pyridine base product is absorbed by deionized water.
  • the ammonia donor is selected from one or more of ammonia gas, liquid ammonia, and ammonia water.
  • the pyridine base is one or more of pyridine, 2-methylpyridine, 3-methylpyridine, and 4-methylpyridine.
  • the active component, the first auxiliary agent and the second auxiliary agent are present in the form of a metal element or an oxide.
  • the catalyst is subjected to reduction treatment by using hydrogen gas before use.
  • the reduction treatment is carried out by charging the catalyst in a constant temperature section of a fixed bed reactor, a hydrogen space velocity of 500 to 1200 h -1 , a reduction temperature of 250 to 450 ° C, and a reduction time of 1 to 5h.
  • Rh and the first auxiliary agent jointly catalyze the efficient conversion of carbon monoxide and hydrogen into acetaldehyde and ethanol, and selectively oxidize the produced ethanol into acetaldehyde with the participation of the second auxiliary agent, followed by acetaldehyde and ammonia in the molecular sieve.
  • the pyridine base product is formed by acid site catalysis.
  • the catalyst of the invention can couple the hydrogenation of carbon monoxide to cyclization condensation reaction of acetaldehyde with aldehyde ammonia, and realize the conversion from synthesis gas to pyridine base by one-step catalysis, the conversion rate of carbon monoxide is between 8 and 20%, and the selection of pyridine base
  • the property is 10 to 18%, and the selectivity of the pyridine base is significantly higher than that of the catalyst containing only the first auxiliary agent or the second auxiliary agent.
  • the invention provides a new idea for the production of pyridine base and the deep utilization of syngas, and has broad market prospects.
  • Step (1) 0.1283 g of RhCl 3 ⁇ 3H 2 O, 0.3914 g of Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.0361 g of Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.0311 g of La(NO 3 ) 3 ⁇ 6H 2 O, 1.1423g Zn(NO 3 ) 2 ⁇ 6H 2 O is dissolved in 5g of absolute ethanol and stirred uniformly to obtain a uniform metal salt solution. 5g of HZSM-5 molecular sieve (silicon to aluminum ratio 120) is mixed with metal salt solution. After uniform, immersed for 4 h at room temperature;
  • Step (2) the mixture obtained in the step (1) is dried under vacuum at 80 ° C for 2 h, and calcined at 350 ° C for 2 h, and is designated as 1.0Rh-1.5Mn-0.1Fe-0.2La-5.0Zn/HZSM-5 (1.0Rh). It indicates that the mass of Rh atom accounts for 1% of the mass of the carrier, the same below).
  • Step (1) 0.1919 g of RhCl 3 ⁇ 3H 2 O, 0.3914 g of Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.1083 g of Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.4932 g of Co(NO 3 ) 2 ⁇ 6H 2 O, 3.8462g Cr(NO 3 ) 3 ⁇ 9H 2 O is dissolved in 5g of ethanol and stirred uniformly to obtain a uniform metal salt solution. After mixing 5g of HZSM-11 molecular sieve (silicon-aluminum ratio 120) with metal salt solution, it is evenly mixed. Immersed at room temperature for 10 h;
  • the mixture obtained in the step (1) is dried under vacuum at 100 ° C for 1 h, and calcined at 400 ° C for 1.5 h, and is designated as 1.5Rh-1.5Mn-0.3Fe-2.0Co-10Cr/HZSM-11.
  • Step (1) dissolving 0.1577 g of Rh(NO 3 ) 3 ⁇ 2H 2 O in 5 g of deionized water and stirring uniformly to obtain a uniform cerium chloride solution, and 5 g of HZSM-35 molecular sieve (silica-aluminum ratio 120) and chlorination
  • the hydrazine solution is mixed evenly;
  • Step (2) the mixture obtained in the step (1) is immersed at room temperature for 2 h, vacuum dried at 100 ° C for 0.5 h, and calcined at 500 ° C for 4 h to obtain a precursor 1.0Rh / HZSM-35;
  • Step (3) 0.1305 g Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.9018 g Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.1142 g Zn(NO 3 ) 2 ⁇ 6H 2 O, 1.9231 g Cr (NO) 3 ) 3 ⁇ 9H 2 O, 0.3766g Cu(NO 3 ) 2 ⁇ 3H 2 O is dissolved in 5g of deionized water and stirred uniformly to obtain a uniform metal salt solution.
  • the precursor prepared in step (2) is 1.0Rh/HZSM. -35 mixed with the metal salt solution and then immersed at room temperature for 2 h;
  • Step (4) the mixture obtained in the step (3) is vacuum dried at 100 ° C for 0.5 h, and calcined at 500 ° C for 4 h, and is designated as 1.0Rh-0.05Mn-2.5Fe-0.5Zn-2.0Cu-5.0Cr/HZSM- 35.
  • Step (1) dissolving 0.1921 g of RhCl 3 ⁇ 3H 2 O in 5 g of ethanol and stirring uniformly to obtain a uniform cerium chloride solution, and uniformly mixing 5 g of HZSM-5 molecular sieve (silica-aluminum ratio 120) with a cerium chloride solution;
  • Step (2) the mixture obtained in the step (2) is immersed at room temperature for 24 h, dried at 110 ° C for 3 h, and calcined at 550 ° C for 3 h to obtain a precursor 1.5Rh / HZSM-5;
  • Step (3) dissolving 0.6523 g of Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.3115 g of La(NO 3 ) 3 ⁇ 6H 2 O, 2.4661 g of Co(NO 3 ) 2 ⁇ 6H 2 O in 5 g of ethanol, and stirring uniformly. Obtaining a uniform metal salt solution, mixing the precursor 1.5Rh/HZSM-5 prepared in the step (2) with the metal salt solution, and then immersing for 24 hours at room temperature;
  • the mixture obtained in the step (3) was vacuum dried at 110 ° C for 3 h, and calcined at 550 ° C for 3 h, and designated as 1.5Rh-2.5Mn-2.0La-10.0Co/HZSM-5.
  • Step (1) dissolving 0.1577 g of Rh(NO 3 ) 3 ⁇ 2H 2 O in 5 g of deionized water and stirring uniformly to obtain a uniform cerium chloride solution, and 5 g of HZSM-11 molecular sieve (silica-aluminum ratio 120) and chlorination
  • the hydrazine solution is uniformly mixed and immersed at room temperature for 48 hours;
  • Step (2) the mixture obtained in the step (1) is vacuum dried at 120 ° C for 3 h, and calcined at 300 ° C for 3 h to obtain a precursor 1.0Rh / HZSM-11;
  • Step (3) 0.3914 g Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.0361 g Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.0580 g Bi(NO 3 ) 3 ⁇ 5H 2 O, 1.9009 g Cu (NO) 3 ) 2 ⁇ 3H 2 O is dissolved in 5g of deionized water and stirred uniformly to obtain a uniform metal salt solution.
  • the 1.0Rh/HZSM-11 precursor prepared in step (2) is uniformly mixed with the metal salt solution, and then immersed at room temperature for 48 hours;
  • the mixture obtained in the step (3) was vacuum dried at 120 ° C for 3 h, and calcined at 300 ° C for 3 h, and designated as 1.0 Rh-1.5Mn-0.1Fe-0.5Bi-10.0Cu/HZSM-11.
  • Step (1) dissolving 0.3914 g of Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.0184 g of NaNO 3 , 2.2846 g of Zn(NO 3 ) 2 ⁇ 6H 2 O, and 0.0941 g of Cu(NO 3 ) 2 ⁇ 3H 2 O Stir well in 5g deionized water to obtain a uniform metal salt solution, and mix 5g of HZSM-11 molecular sieve (silicon-aluminum ratio 120) with metal salt solution and then immerse for 8h at room temperature;
  • Step (2) the mixture obtained in the step (1) is dried under vacuum at 100 ° C for 4 h, and calcined at 350 ° C for 2.5 h to obtain a precursor 1.5Mn-0.1Na-10.0Zn-0.5Cu/HZSM-11;
  • Step (3) dissolving 0.3837 g of RhCl 3 ⁇ 3H 2 O in 5 g of deionized water and stirring uniformly to obtain a uniform cerium chloride solution, and preparing the precursor 1.5Mn-0.1Na-10.0Zn obtained in the step (2). -0.5Cu/HZSM-11 mixed with cerium chloride solution and immersed for 8 hours at room temperature;
  • the mixture obtained in the step (3) was vacuum dried at 100 ° C for 4 h, and calcined at 350 ° C for 2.5 h, and designated as 3.0Rh-1.5Mn-0.1Na-10.0Zn-0.5Cu/HZSM-11.
  • Step (1) 0.3914 g Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.1233 g Co(NO 3 ) 2 ⁇ 6H 2 O, 0.1923 g Cr(NO 3 ) 3 ⁇ 9H 2 O, 0.5801 g Bi (NO 3 3 ⁇ 5H 2 O dissolved in 5g deionized water and stirred uniformly to obtain a uniform metal salt solution, 5g MCM-22 molecular sieve (silicon-aluminum ratio 50) and metal salt solution were mixed uniformly and then immersed for 15h at room temperature;
  • Step (2) the mixture obtained in the step (1) is dried under vacuum at 100 ° C for 4 h, and calcined at 400 ° C for 2 h to obtain a precursor 1.5Mn-0.5Co-5.0Bi-0.5Cr/MCM-22;
  • Step (3) dissolving 0.0642g of RhCl 3 ⁇ 3H 2 O in 5g of ethanol and stirring uniformly to obtain a uniform ruthenium chloride solution, and the precursor prepared in the step (2) is 1.5Mn-0.5Co-5.0Bi- 0.5Cr/MCM-22 mixed with cerium chloride solution and immersed for 15h at room temperature;
  • the mixture obtained in the step (3) was vacuum dried at 100 ° C for 4 h, and calcined at 400 ° C for 2 h, and recorded as 0.5 Rh-1.5Mn-0.5Co-5.0Bi-0.5Cr/MCM-22.
  • Step (1) dissolving 0.3914 g of Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.0722 g of Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.0184 g of NaNO 3 , and 1.1602 g of Bi(NO 3 ) 3 ⁇ 5H 2 O Stir well in 5g deionized water to obtain a uniform metal salt solution, and mix 5g of HZSM-5 molecular sieve (silica-aluminum ratio 120) with metal salt solution and then immerse for 10h at room temperature;
  • Step (2) the mixture obtained in the step (1) is vacuum dried at 120 ° C for 3 h, and calcined at 450 ° C for 5 h to obtain a precursor 1.5Mn-0.2Fe-0.1Na-10.0Bi / HZSM-5;
  • Step (3) dissolving 0.2547 g of RhCl 3 ⁇ 3H 2 O in 5 g of deionized water and stirring uniformly to obtain a uniform cerium chloride solution, and preparing the precursor 1.5Mn-0.2Fe-0.1Na- obtained in the step (2).
  • 10.0Bi/HZSM-5 was mixed with barium chloride solution and then immersed for 10 hours at room temperature;
  • Step (4) the mixture obtained in the step (3) was vacuum dried at 120 ° C for 3 h, and calcined at 450 ° C for 5 h, and designated as 2.0Rh-1.5Mn-0.2Fe-0.1Na-10.0Bi/HZSM-5.
  • Step (1) 0.3914 g of Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.0722 g of Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.0184 g of NaNO 3 is dissolved in 5 g of deionized water and stirred uniformly to obtain a uniform metal salt.
  • Solution, 5g HZSM-5 molecular sieve (silicon-aluminum ratio 120) and metal salt solution are mixed uniformly and then immersed for 10h at room temperature;
  • Step (2) the mixture obtained in the step (1) is dried under vacuum at 120 ° C for 3 h, and calcined at 450 ° C for 5 h to obtain a precursor 1.5Mn-0.2Fe-0.1Na/HZSM-5;
  • Step (3) dissolving 0.2547 g of RhCl 3 ⁇ 3H 2 O in 5 g of deionized water and stirring uniformly to obtain a uniform cerium chloride solution, and the precursor prepared in the step (2) is 1.5Mn-0.2Fe-0.1Na/ HZSM-5 and cerium chloride solution are mixed uniformly and then immersed for 10h at room temperature;
  • Step (4) the mixture obtained in the step (3) was vacuum dried at 120 ° C for 3 h, and calcined at 450 ° C for 5 h, and designated as 2.0Rh-1.5Mn-0.2Fe-0.1Na/HZSM-5.
  • Step (1) 1.1602g Bi(NO 3 ) 3 ⁇ 5H 2 O is dissolved in 5g of deionized water and stirred uniformly to obtain a uniform metal salt solution, and 5g of HZSM-5 molecular sieve (silica-aluminum ratio 120) is mixed with the metal salt solution. After uniform, immersed at room temperature for 10 h;
  • Step (2) the mixture obtained in the step (1) was vacuum dried at 120 ° C for 3 h, and calcined at 450 ° C for 5 h to obtain a precursor 10.0Bi / HZSM-5;
  • Step (3) dissolving 0.2547 g of RhCl 3 ⁇ 3H 2 O in 5 g of deionized water and stirring uniformly to obtain a uniform cerium chloride solution, and the precursor 10.0Bi/HZSM-5 obtained in the step (2) is chlorinated.
  • the hydrazine solution is uniformly mixed and immersed at room temperature for 10 h;
  • the mixture obtained in the step (3) was vacuum dried at 120 ° C for 3 h, and calcined at 450 ° C for 5 h, and recorded as 2.0Rh-10.0Bi/HZSM-5.
  • Step (1) dissolving 0.3914 g of Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.0722 g of Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.0184 g of NaNO 3 , and 1.1602 g of Bi(NO 3 ) 3 ⁇ 5H 2 O Stir well in 5g deionized water to obtain a uniform metal salt solution, 5g MCM-41 molecular sieve (full silica molecular sieve) and metal salt solution are mixed uniformly and then immersed for 10h at room temperature;
  • Step (2) the mixture obtained in the step (1) was vacuum dried at 120 ° C for 3 h, and calcined at 450 ° C for 5 h to obtain a precursor 1.5Mn-0.2Fe-0.1Na-10.0Bi / MCM-41;
  • Step (3) dissolving 0.2547 g of RhCl 3 ⁇ 3H 2 O in 5 g of deionized water and stirring uniformly to obtain a uniform cerium chloride solution, and preparing the precursor 1.5Mn-0.2Fe-0.1Na- obtained in the step (2).
  • 10.0Bi/MCM-41 was mixed with barium chloride solution and then immersed for 10 hours at room temperature;
  • the mixture obtained in the step (3) is dried under vacuum at 120 ° C for 3 hours, and calcined at 450 ° C for 5 hours, and is designated as 2.0Rh-1.5Mn-0.2Fe-0.1Na-10.0Bi/MCM-41.
  • Step (1) dissolving 0.3914 g of Mn(NO 3 ) 2 ⁇ 6H 2 O, 0.0722 g of Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.0184 g of NaNO 3 , and 1.1602 g of Bi(NO 3 ) 3 ⁇ 5H 2 O Stir well in 5g deionized water to obtain a uniform metal salt solution, mix 5g SiO 2 and metal salt solution and then immerse for 10h at room temperature;
  • Step (2) the mixture obtained in the step (1) is vacuum dried at 120 ° C for 3 h, and calcined at 450 ° C for 5 h to obtain a precursor 1.5Mn-0.2Fe-0.1Na-10.0Bi/SiO 2 ;
  • Step (3) dissolving 0.2547 g of RhCl 3 ⁇ 3H 2 O in 5 g of deionized water and stirring uniformly to obtain a uniform cerium chloride solution, and preparing the precursor 1.5Mn-0.2Fe-0.1Na- obtained in the step (2). 10.0Bi/SiO 2 and cerium chloride solution were uniformly mixed and immersed at room temperature for 10 h;
  • the mixture obtained in the step (3) is dried under vacuum at 120 ° C for 3 hours, and calcined at 450 ° C for 5 hours, and is designated as 2.0Rh-1.5Mn-0.2Fe-0.1Na-10.0Bi/SiO 2 .
  • the specific method is as follows: 1.5 g of the tablet is crushed to a catalyst of 20-40 for loading in a constant temperature section of the fixed bed reactor, and the reaction tube is a reaction tube having an inner diameter of 19 mm and a tube length of 700 mm.
  • the catalyst was reduced with pure hydrogen before the start of the reaction.
  • the space velocity of hydrogen was 800 h -1
  • the reduction temperature was 350 ° C
  • the reduction time was 3 h.
  • the total space velocity of the raw materials was 8000 h -1 ; the mixed product containing pyridine base was absorbed by deionized water, and after 3 hours, the pyridine base product in the aqueous phase and the carbon monoxide in the non-condensable gas were respectively analyzed and the reaction results were compared.
  • the pyridine base reaction of syngas is a series reaction in which the Rh active site catalyzes the hydrogenation of carbon monoxide and the aldehyde condensation of acid sites.
  • the active site of Rh and the acidity of the carrier are indispensable. It can be seen from Table 1 that HZSM-5 molecular sieve, HZSM-11 molecular sieve and HZSM-35 molecular sieve are selected as catalyst carriers. Since the carrier has suitable pore structure and acidic sites, Rh synergistic effect between the first auxiliary agent and the second auxiliary agent. The lower catalysis of carbon monoxide and hydrogen to form acetaldehyde, and further aldehyde ammonia condensation reaction to form a pyridine base product.
  • MCM-22 molecular sieve has suitable acid strength, due to its large 12-membered ring super-cage structure, acetaldehyde and ammonia easily undergo deep dehydrogenation and other side reactions in the super cage to form macromolecular carbon deposits to block the pores, CO The conversion rate is lower than that of the HZSM molecular sieve, but the desired catalytic effect can still be obtained.
  • MCM-41 and SiO 2 as carriers, it is difficult to catalyze further aldehyde-ammonia condensation reaction between acetaldehyde and ammonia due to its weak acidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种用于合成气制吡啶碱的催化剂,包括载体、活性组分、第一助剂与第二助剂;载体为分子筛,活性组分为Rh,第一助剂为Mn、Fe、Na、La中的一种或多种,第二助剂为Zn、Co、Cr、Bi、Cu中的一种或多种;Rh为载体质量的0.5~3%,第一助剂为载体质量的0.05~5%,第二助剂为载体质量的0.5~15%。该催化剂应用在催化合成气制备吡啶碱中,以合成气与供氨体为反应原料,反应得到吡啶碱产物。催化剂可将一氧化碳加氢生成乙醛与醛氨的环化缩合反应耦合,经一步催化实现由合成气到吡啶碱的转化,一氧化碳的转化率在8~20%,吡啶碱的选择性为10~18%。

Description

一种用于合成气制吡啶碱的催化剂及制备方法和应用 技术领域
本发明属于催化剂技术领域,具体涉及一种用于合成气制吡啶碱的催化剂及制备方法和应用。
背景技术
吡啶碱俗称为杂环类三药与三药中间体的“芯片”,是国家重点鼓励的杂环类农药、医药及兽药等三药与三药中间体的含氮杂环类化合物,也是日用化工、食品与饲料添加剂的重要原料。
目前,ZSM-5分子筛催化醛与氨环化缩合生成吡啶类化合物是工业上生产吡啶碱最常用的方法。乙醛作为反应中的重要原料,在工业上通常采用乙烯氧化法、乙醇氧化法或乙炔合成法生产。这些工艺虽然发展较为成熟,但也有能耗高、对石油资源依赖较大等不足。合成气是一种以一氧化碳与氢气为主要组分的混合物,具有来源广泛、价格低廉等特点。探索以合成气制吡啶碱的新工艺对吡啶产业以及C1化工领域都有及其重要的意义。
迄今为止,尚未有用于合成气制吡啶碱的催化剂及相关工艺的报道,但有较多合成气制C2含氧化合物的报道。中国专利CN1354043A公布了一种用于合成气制备二碳含氧化合物的铑基催化剂,该催化剂采用硅铝比较高的MCM-41或MCM-22为载体,C2含氧化合物的选择性最高为55.4%。中国专利CN1175479A公开了一种一氧化碳加氢制乙醇、乙醛等二碳含氧化合物催化剂,所述催化剂为Rh-V-M/SiO 2催化剂体系,M为Ru、Fe、Ir、Mo、Mn、K、Li、Zr或Cu元素中的一种或几种混合元素,该催化剂可使一氧化碳与氢气高效的转化为乙醇、乙醛产物,1%Rh-1.5%V-0.5%Fe-0.1%Ir-0.1%K/SiO 2催化剂的乙醇与乙醛选择性为86%。
发明内容
本发明的目的是提供一种用于合成气制吡啶碱的催化剂,该催化剂可将一氧化碳、氢气、氨经一步催化生成吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶等吡啶碱产物。
本发明的目的是通过如下技术方案实现的:
一种用于合成气制吡啶碱的催化剂,所述的催化剂包括载体、活性组分、第一助剂与第二助剂;所述的载体为分子筛;所述的活性组分为Rh;所述的第一助剂为Mn、Fe、Na、La中的一种或多种,优选为Mn与选自Fe、Na、La中的至少一种;所述的第二助剂为Zn、Co、Cr、Bi、Cu中的一种或多种。
所述的活性组分Rh的含量为载体质量的0.5~3%,优选为1~3%;所述的第一助剂为 载体质量的0.05~5%,优选为1.5~5%;所述的第二助剂为载体质量的0.5~15%,优选为5~11%。
所述的分子筛为HZSM-5分子筛、HZSM-11分子筛、HZSM-35分子筛与MCM-22分子筛中的一种或多种;优选为硅铝比为50~150的HZSM-5分子筛、HZSM-11分子筛、HZSM-35分子筛与MCM-22分子筛中的一种或多种;进一步优选为硅铝比为50~150的HZSM-5分子筛、HZSM-11分子筛中的一种或多种。
本发明的另一个目的是提供用于合成气制吡啶碱的催化剂的制备方法,包括:
步骤(1)、将铑盐、第一助剂和第二助剂对应的金属盐溶解于溶剂中获得金属盐溶液,将载体与金属盐溶液混合均匀,室温浸渍0.5~48h;
步骤(2)、将步骤(1)获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1~5h,获得用于合成气制吡啶碱的催化剂;
或步骤(1)、将铑盐溶解于溶剂中获得铑盐溶液,将载体与铑盐溶液混合均匀,室温浸渍0.5~48h;
步骤(2)、步骤(1)获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1~5h,制得负载有活性组分铑的前驱体;
步骤(3)、将助剂对应的金属盐溶解于溶剂中获得金属盐溶液,将步骤(2)制得的前驱体与金属盐溶液混合均匀,室温浸渍0.5~48h;
步骤(4)、步骤(3)获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1~5h,获得用于合成气制吡啶碱的催化剂;
或步骤(1)、将助剂对应的金属盐溶解于溶剂中获得金属盐溶液,将分子筛与金属盐溶液混合均匀,室温浸渍0.5~48h;
步骤(2)、步骤(1)中获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1-5h,制得负载有助剂的前驱体;
步骤(3)、将铑盐溶解于溶剂中搅拌获得铑盐溶液,将步骤(2)制得的前驱体与铑盐溶液混合均匀,室温浸渍0.5~48h;
步骤(4)、步骤(3)获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1~5h,获得用于合成气制吡啶碱的催化剂。
所述的铑盐为氯化铑,第一助剂Mn、Fe、Na、La对应的金属盐为硝酸盐;第二助剂Zn、Co、Cr、Bi、Cu对应的金属盐为硝酸盐。
所述的溶剂为去离子水、甲醇、乙醇、异丙醇中的一种或多种。
本发明所述的催化剂在催化合成气制备吡啶碱中的应用。
一种采用本发明所述的催化剂催化合成气制备吡啶碱的方法,包括:以合成气与供氨体为反应原料,所述的合成气中H 2与CO的摩尔比为1~5:1,所述的供氨体以NH 3计与CO的摩尔比为1:1~100,反应原料以空速5000~15000h -1通入装填有本发明所述的催化剂的固定床反应器,在反应温度为250~400℃,反应压力为1~5MPa下反应得到吡啶碱产物,吡啶碱产物经去离子水吸收。
所述的供氨体选自氨气、液氨、氨水中的一种或多种。
所述的吡啶碱为吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶中的一种或多种。
本发明所述的催化剂中活性组分、第一助剂与第二助剂以金属单质或氧化物形式存在。所述的催化剂在使用前采用氢气进行还原处理,还原处理的方式为:催化剂装填于固定床反应器的恒温段,氢气空速500~1200h -1,还原温度250~450℃,还原时间1~5h。
本发明的有益效果为:
本发明催化剂中Rh与第一助剂共同催化一氧化碳与氢气高效的转化为乙醛与乙醇,在第二助剂参与下将生成的乙醇选择性氧化为乙醛,随后乙醛与氨在分子筛的酸性位点催化下生成吡啶碱产物。本发明催化剂可将一氧化碳加氢生成乙醛与醛氨的环化缩合反应耦合,经一步催化实现由合成气到吡啶碱的转化,一氧化碳的转化率在8~20%之间,吡啶碱的选择性为10~18%,吡啶碱的选择性显著高于只含有第一助剂或第二助剂的催化剂。
同时,本发明为吡啶碱的生产以及合成气的深层次利用提供了新思路,具有广阔的市场前景。
具体实施方式
下面结合实施例对本发明的技术方案进行具体描述。
实施例1
步骤(1)、将0.1283g RhCl 3·3H 2O,0.3914g Mn(NO 3) 2·6H 2O,0.0361g Fe(NO 3) 3·9H 2O,0.0311g La(NO 3) 3·6H 2O,1.1423g Zn(NO 3) 2·6H 2O溶解于5g无水乙醇中搅拌均匀,获得均一的金属盐溶液,将5g HZSM-5分子筛(硅铝比120)与金属盐溶液混合均匀后室温浸渍4h;
步骤(2)、将步骤(1)获得的混合物在80℃下真空干燥2h,350℃下焙烧2h,记作1.0Rh-1.5Mn-0.1Fe-0.2La-5.0Zn/HZSM-5(1.0Rh表示Rh原子质量占载体质量的1%,下同)。
实施例2
步骤(1)、将0.1919g RhCl 3·3H 2O,0.3914g Mn(NO 3) 2·6H 2O,0.1083g Fe(NO 3) 3·9H 2O,0.4932g Co(NO 3) 2·6H 2O,3.8462g Cr(NO 3) 3·9H 2O溶解于5g乙醇中搅拌均匀,获得均一的金 属盐溶液,将5g HZSM-11分子筛(硅铝比120)与金属盐溶液混合均匀后室温浸渍10h;
步骤(2)、将步骤(1)获得的混合物在100℃下真空干燥1h,400℃下焙烧1.5h,记作1.5Rh-1.5Mn-0.3Fe-2.0Co-10Cr/HZSM-11。
实施例3
步骤(1)、将0.1577g Rh(NO 3) 3·2H 2O溶解于5g去离子水中搅拌均匀,获得均一的氯化铑溶液,将5g HZSM-35分子筛(硅铝比120)与氯化铑溶液混合均匀;
步骤(2)、将步骤(1)获得的混合物室温浸渍2h,100℃下真空干燥0.5h,500℃下焙烧4h制得前驱体1.0Rh/HZSM-35;
步骤(3)、将0.1305g Mn(NO 3) 2·6H 2O,0.9018g Fe(NO 3) 3·9H 2O,0.1142g Zn(NO 3) 2·6H 2O,1.9231g Cr(NO 3) 3·9H 2O,0.3766g Cu(NO 3) 2·3H 2O溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将步骤(2)制得的前驱体1.0Rh/HZSM-35与金属盐溶液混合均匀后室温浸渍2h;
步骤(4)、将步骤(3)获得的混合物在100℃下真空干燥0.5h,500℃下焙烧4h,记作1.0Rh-0.05Mn-2.5Fe-0.5Zn-2.0Cu-5.0Cr/HZSM-35。
实施例4
步骤(1)、将0.1921g RhCl 3·3H 2O溶解于5g乙醇中搅拌均匀,获得均一的氯化铑溶液,将5g HZSM-5分子筛(硅铝比120)与氯化铑溶液混合均匀;
步骤(2)、将步骤(2)获得的混合物室温浸渍24h,110℃下真空干燥3h,550℃下焙烧3h制得前驱体1.5Rh/HZSM-5;
步骤(3)、将0.6523gMn(NO 3) 2·6H 2O,0.3115gLa(NO 3) 3·6H 2O,2.4661g Co(NO 3) 2·6H 2O溶解于5g乙醇中搅拌均匀,获得均一的金属盐溶液,将步骤(2)制得的前驱体1.5Rh/HZSM-5与金属盐溶液混合均匀后室温浸渍24h;
步骤(4)、将步骤(3)获得的混合物在110℃下真空干燥3h,550℃下焙烧3h,记作1.5Rh-2.5Mn-2.0La-10.0Co/HZSM-5。
实施例5
步骤(1)、将0.1577g Rh(NO 3) 3·2H 2O溶解于5g去离子水中搅拌均匀,获得均一的氯化铑溶液,将5g HZSM-11分子筛(硅铝比120)与氯化铑溶液混合均匀后室温浸渍48h;
步骤(2)、将步骤(1)获得的混合物在120℃下真空干燥3h,300℃下焙烧3h制得前驱体1.0Rh/HZSM-11;
步骤(3)、将0.3914g Mn(NO 3) 2·6H 2O,0.0361g Fe(NO 3) 3·9H 2O,0.0580g Bi(NO 3) 3·5H 2O, 1.9009g Cu(NO 3) 2·3H 2O溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将步骤(2)制得的1.0Rh/HZSM-11前驱体与金属盐溶液混合均匀后室温浸渍48h;
步骤(4)、将步骤(3)获得的混合物在120℃下真空干燥3h,300℃下焙烧3h,记作1.0Rh-1.5Mn-0.1Fe-0.5Bi-10.0Cu/HZSM-11。
实施例6
步骤(1)、将0.3914g Mn(NO 3) 2·6H 2O,0.0184g NaNO 3,2.2846g Zn(NO 3) 2·6H 2O,0.0941g Cu(NO 3) 2·3H 2O溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将5gHZSM-11分子筛(硅铝比120)与金属盐溶液混合均匀后室温浸渍8h;
步骤(2)、将步骤(1)获得的混合物在100℃下真空干燥4h,350℃下焙烧2.5h制得前驱体1.5Mn-0.1Na-10.0Zn-0.5Cu/HZSM-11;
步骤(3)、将0.3837g RhCl 3·3H 2O,溶解于5g去离子水中搅拌均匀,获得均一的氯化铑溶液,将步骤(2)制得的前驱体1.5Mn-0.1Na-10.0Zn-0.5Cu/HZSM-11与氯化铑溶液混合均匀后室温浸渍8h;
步骤(4)、将步骤(3)获得的混合物在100℃下真空干燥4h,350℃下焙烧2.5h,记作3.0Rh-1.5Mn-0.1Na-10.0Zn-0.5Cu/HZSM-11。
实施例7
步骤(1)、将0.3914g Mn(NO 3) 2·6H 2O,0.1233g Co(NO 3) 2·6H 2O,0.1923gCr(NO 3) 3·9H 2O,0.5801g Bi(NO 3) 3·5H 2O溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将5g MCM-22分子筛(硅铝比50)与金属盐溶液混合均匀后室温浸渍15h;
步骤(2)、将步骤(1)获得的混合物在100℃下真空干燥4h,400℃下焙烧2h制得前驱体1.5Mn-0.5Co-5.0Bi-0.5Cr/MCM-22;
步骤(3)、将0.0642g RhCl 3·3H 2O,溶解于5g乙醇中搅拌均匀,获得均一的氯化铑溶液,将步骤(2)制得的前驱体1.5Mn-0.5Co-5.0Bi-0.5Cr/MCM-22与氯化铑溶液混合均匀后室温浸渍15h;
步骤(4)、将步骤(3)获得的混合物在100℃下真空干燥4h,400℃下焙烧2h,记作0.5Rh-1.5Mn-0.5Co-5.0Bi-0.5Cr/MCM-22。
实施例8
步骤(1)、将0.3914g Mn(NO 3) 2·6H 2O,0.0722g Fe(NO 3) 3·9H 2O,0.0184g NaNO 3,1.1602g Bi(NO 3) 3·5H 2O溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将5gHZSM-5分子筛(硅铝比120)与金属盐溶液混合均匀后室温浸渍10h;
步骤(2)、将步骤(1)获得的混合物在120℃下真空干燥3h,450℃下焙烧5h制得前驱体1.5Mn-0.2Fe-0.1Na-10.0Bi/HZSM-5;
步骤(3)、将0.2547g RhCl 3·3H 2O溶解于5g去离子水中搅拌均匀,获得均一的氯化铑溶液,将步骤(2)制得的前驱体1.5Mn-0.2Fe-0.1Na-10.0Bi/HZSM-5与氯化铑溶液混合均匀后室温浸渍10h;
步骤(4)、将步骤(3)中获得的混合物在120℃下真空干燥3h,450℃下焙烧5h,记作2.0Rh-1.5Mn-0.2Fe-0.1Na-10.0Bi/HZSM-5。
对比例1
步骤(1)、将0.3914g Mn(NO 3) 2·6H 2O,0.0722g Fe(NO 3) 3·9H 2O,0.0184g NaNO 3溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将5g HZSM-5分子筛(硅铝比120)与金属盐溶液混合均匀后室温浸渍10h;
步骤(2)、将步骤(1)获得的混合物在120℃下真空干燥3h,450℃下焙烧5h制得前驱体1.5Mn-0.2Fe-0.1Na/HZSM-5;
步骤(3)、将0.2547g RhCl 3·3H 2O溶解于5g去离子水中搅拌均匀,获得均一的氯化铑溶液,将步骤(2)制得的前驱体1.5Mn-0.2Fe-0.1Na/HZSM-5与氯化铑溶液混合均匀后室温浸渍10h;
步骤(4)、将步骤(3)获得的混合物在120℃下真空干燥3h,450℃下焙烧5h,记作2.0Rh-1.5Mn-0.2Fe-0.1Na/HZSM-5。
对比例2
步骤(1)、1.1602g Bi(NO 3) 3·5H 2O溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将5g HZSM-5分子筛(硅铝比120)与金属盐溶液混合均匀后室温浸渍10h;
步骤(2)、将步骤(1)获得的混合物在120℃下真空干燥3h,450℃下焙烧5h制得前驱体10.0Bi/HZSM-5;
步骤(3)、将0.2547g RhCl 3·3H 2O溶解于5g去离子水中搅拌均匀,获得均一的氯化铑溶液,将步骤(2)制得的前驱体10.0Bi/HZSM-5与氯化铑溶液混合均匀后室温浸渍10h;
步骤(4)、将步骤(3)获得的混合物在120℃下真空干燥3h,450℃下焙烧5h,记作2.0Rh-10.0Bi/HZSM-5。
对比例3
步骤(1)、将0.3914g Mn(NO 3) 2·6H 2O,0.0722g Fe(NO 3) 3·9H 2O,0.0184g NaNO 3,1.1602g Bi(NO 3) 3·5H 2O溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将5g MCM-41分子筛(全硅分子筛)与金属盐溶液混合均匀后室温浸渍10h;
步骤(2)、将步骤(1)获得的混合物在120℃下真空干燥3h,450℃下焙烧5h制得前驱体1.5Mn-0.2Fe-0.1Na-10.0Bi/MCM-41;
步骤(3)、将0.2547g RhCl 3·3H 2O溶解于5g去离子水中搅拌均匀,获得均一的氯化铑溶液,将步骤(2)制得的前驱体1.5Mn-0.2Fe-0.1Na-10.0Bi/MCM-41与氯化铑溶液混合均匀后室温浸渍10h;
步骤(4)、将步骤(3)中获得的混合物在120℃下真空干燥3h,450℃下焙烧5h,记作2.0Rh-1.5Mn-0.2Fe-0.1Na-10.0Bi/MCM-41。
对比例4
步骤(1)、将0.3914g Mn(NO 3) 2·6H 2O,0.0722g Fe(NO 3) 3·9H 2O,0.0184g NaNO 3,1.1602g Bi(NO 3) 3·5H 2O溶解于5g去离子水中搅拌均匀,获得均一的金属盐溶液,将5g SiO 2与金属盐溶液混合均匀后室温浸渍10h;
步骤(2)、将步骤(1)获得的混合物在120℃下真空干燥3h,450℃下焙烧5h制得前驱体1.5Mn-0.2Fe-0.1Na-10.0Bi/SiO 2
步骤(3)、将0.2547g RhCl 3·3H 2O溶解于5g去离子水中搅拌均匀,获得均一的氯化铑溶液,将步骤(2)制得的前驱体1.5Mn-0.2Fe-0.1Na-10.0Bi/SiO 2与氯化铑溶液混合均匀后室温浸渍10h;
步骤(4)、将步骤(3)中获得的混合物在120℃下真空干燥3h,450℃下焙烧5h,记作2.0Rh-1.5Mn-0.2Fe-0.1Na-10.0Bi/SiO 2
催化剂性能考察
使用固定床反应器评价实施例1-8与对比例1-4制备得到的催化剂的催化性能。
具体方法为:取1.5g压片破碎至20-40目的催化剂装填于固定床反应器的恒温段,反应器采用内径为19mm、管长为700mm的反应管。反应开始前采用纯氢气对催化剂进行还原,氢气空速800h -1,还原温度350℃,还原时间3h。还原结束后降温至320℃,通入H 2/CO=2:1的合成气,使***压力升至3.0MPa后,按照CO:NH 3=10:1(摩尔比)通入液氨,反应原料总空速为8000h -1;含有吡啶碱的混合产物经去离子水吸收,反应3h后分别对水相中的吡啶碱产物与不凝气中的一氧化碳进行分析并对比其反应结果。
合成气制吡啶碱反应是Rh活性位催化一氧化碳加氢与酸性位催化醛氨缩合的串联反应,Rh活性位与载体的酸性位为缺一不可。由表1可知,选取HZSM-5分子筛、HZSM-11分子筛、HZSM-35分子筛为催化剂载体,由于载体具有适宜的孔结构与酸性位点,Rh在第一助 剂与第二助剂的协同作用下催化一氧化碳与氢气生成乙醛,再进一步发生醛氨缩合反应生成吡啶碱产物。MCM-22分子筛虽然具有合适酸强度,但由于具有较大的十二元环超笼结构,乙醛与氨易在超笼中发生深度脱氢等副反应生成大分子积碳堵塞孔道,CO的转化率相对HZSM分子筛较低,但仍能够获得较为理想的催化效果。而以MCM-41与SiO 2为载体,由于其酸性较弱,难以催化乙醛与氨进一步发生醛氨缩合反应。
表1催化剂性能考察
Figure PCTCN2018098435-appb-000001

Claims (10)

  1. 一种用于合成气制吡啶碱的催化剂,其特征在于所述的催化剂包括载体、活性组分、第一助剂与第二助剂;所述的载体为分子筛;所述的活性组分为Rh;所述的第一助剂为Mn、Fe、Na、La中的一种或多种;所述的第二助剂为Zn、Co、Cr、Bi、Cu中的一种或多种。
  2. 根据权利要求1所述的催化剂,其特征在于所述的活性组分Rh为载体质量的0.5~3%;所述的第一助剂为载体质量的0.05~5%;所述的第二助剂为载体质量的0.5~15%。
  3. 根据权利要求2所述的催化剂,其特征在于根据权利要求1所述的催化剂,其特征在于所述的活性组分Rh为载体质量的1~3%;所述的第一助剂为载体质量的1.5~5%;所述的第二助剂为载体质量的5~11%。
  4. 根据权利要求1所述的催化剂,其特征在于所述的分子筛为HZSM-5分子筛、HZSM-11分子筛、HZSM-35分子筛与MCM-22分子筛中的一种或多种;优选为硅铝比为50~150的HZSM-5分子筛、HZSM-11分子筛、HZSM-35分子筛与MCM-22分子筛中的一种或多种;进一步优选为硅铝比为50~150的HZSM-5分子筛、HZSM-11分子筛中的一种或多种。
  5. 权利要求1所述的用于合成气制吡啶碱的催化剂的制备方法,其特征在于包括:
    步骤(1)、将铑盐、第一助剂和第二助剂对应的金属盐溶解于溶剂中获得金属盐溶液,将载体与金属盐溶液混合均匀,室温浸渍0.5~48h;
    步骤(2)、将步骤(1)获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1~5h,获得用于合成气制吡啶碱的催化剂;
    或步骤(1)、将铑盐溶解于溶剂中获得铑盐溶液,将载体与铑盐溶液混合均匀,室温浸渍0.5~48h;
    步骤(2)、步骤(1)获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1~5h,制得负载有活性组分铑的前驱体;
    步骤(3)、将助剂对应的金属盐溶解于溶剂中获得金属盐溶液,将步骤(2)制得的前驱体与金属盐溶液混合均匀,室温浸渍0.5~48h;
    步骤(4)、步骤(3)获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1~5h,获得用于合成气制吡啶碱的催化剂;
    或步骤(1)、将助剂对应的金属盐溶解于溶剂中获得金属盐溶液,将分子筛与金属盐溶液混合均匀,室温浸渍0.5~48h;
    步骤(2)、步骤(1)中获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1-5h,制得负载有助剂的前驱体;
    步骤(3)、将铑盐溶解于溶剂中搅拌获得铑盐溶液,将步骤(2)制得的前驱体与铑盐溶液混合均匀,室温浸渍0.5~48h;
    步骤(4)、步骤(3)获得的混合物在80~120℃下真空干燥0.5~4h,300~550℃下焙烧1~5h,获得用于合成气制吡啶碱的催化剂。
  6. 根据权利要求5所述的催化剂的制备方法,其特征在于所述的铑盐为氯化铑;第一助剂Mn、Fe、Na、La对应的金属盐为硝酸盐;第二助剂Zn、Co、Cr、Bi、Cu对应的金属盐为硝酸盐;所述的溶剂为去离子水、甲醇、乙醇、异丙醇中的一种或多种。
  7. 权利要求1所述的催化剂在催化合成气制备吡啶碱中的应用。
  8. 一种采用权利要求1所述的催化剂催化合成气制备吡啶碱的方法,其特征在于包括:以合成气与供氨体为反应原料,所述的合成气中H 2与CO的摩尔比为1~5:1,所述的供氨体以NH 3计与CO的摩尔比为1:1~100;反应原料以空速5000~15000h -1,通入装填有权利要求1所述的催化剂的固定床反应器,在反应温度为250~400℃、反应压力为1~5MPa下反应得到吡啶碱产物。
  9. 根据权利要求8所述的合成气制备吡啶碱的方法,其特征在于所述的供氨体选自氨气、液氨、氨水中的一种或多种;所述的吡啶碱产物包含吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶中的一种或多种。
  10. 根据权利要求8所述的合成气制备吡啶碱的方法,其特征在于所述的催化剂在使用前采用氢气进行还原处理,还原处理的方式为:催化剂装填于固定床反应器的恒温段,氢气空速500~1200h -1,还原温度250~450℃,还原时间1~5h。
PCT/CN2018/098435 2018-04-19 2018-08-03 一种用于合成气制吡啶碱的催化剂及制备方法和应用 WO2019200778A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/048,563 US11110441B2 (en) 2018-04-19 2018-08-03 Catalyst for preparing pyridine base from syngas, and preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810353733.1 2018-04-19
CN201810353733.1A CN108816275B (zh) 2018-04-19 2018-04-19 一种用于合成气制吡啶碱的催化剂及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019200778A1 true WO2019200778A1 (zh) 2019-10-24

Family

ID=64154446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098435 WO2019200778A1 (zh) 2018-04-19 2018-08-03 一种用于合成气制吡啶碱的催化剂及制备方法和应用

Country Status (3)

Country Link
US (1) US11110441B2 (zh)
CN (1) CN108816275B (zh)
WO (1) WO2019200778A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110441B2 (en) 2018-04-19 2021-09-07 Nanjing Redsun Biochemistry Co., Ltd Catalyst for preparing pyridine base from syngas, and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115709088A (zh) * 2022-06-21 2023-02-24 南京红太阳生物化学有限责任公司 一种哌啶脱氧催化剂的制备方法
CN115888801B (zh) * 2022-09-28 2024-03-29 山东明化新材料有限公司 用于提高3,5-二甲基吡啶收率的改性催化剂及提高3,5-二甲基吡啶收率的生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225852A (zh) * 1998-02-12 1999-08-18 中国科学院大连化学物理研究所 从合成气制乙醇、醋酸、乙醛等二碳含氧化合物催化剂及过程
US20040077493A1 (en) * 2002-10-17 2004-04-22 Antonelli David M. Metallic mesoporous transition metal oxide molecular sieves, room temperature activation of dinitrogen and ammonia production
CN102294260A (zh) * 2010-06-24 2011-12-28 中国石油化工股份有限公司 由合成气制低碳含氧化合物的方法
CN103301849A (zh) * 2012-03-14 2013-09-18 中国矿业大学(北京) 利用合成气制备二碳含氧化合物的催化剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8001935A (nl) * 1980-04-02 1981-11-02 Shell Int Research Werkwijze voor de bereiding van koolwaterstoffen.
DE60319940T2 (de) * 2002-12-10 2008-06-26 Haldor Topsoe A/S Verfahren zur katalytischen Dehydrierung und Katalysator dafür
CN1565736A (zh) * 2003-07-09 2005-01-19 中国石油化工股份有限公司 用于吡啶碱合成的催化剂
JP5069467B2 (ja) * 2004-07-15 2012-11-07 日揮ユニバーサル株式会社 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法
CN100540140C (zh) * 2007-04-09 2009-09-16 南京第一农药有限公司 用于生产吡啶碱的催化剂及其制备方法
CN102294259A (zh) * 2010-06-24 2011-12-28 中国石油化工股份有限公司 由合成气制低碳含氧化合物的催化剂及其制备方法
MY194296A (en) * 2012-11-08 2022-11-27 Ecovyst Catalyst Tech Llc Small crystal ferrierite and method of making the same
CN104761486B (zh) * 2015-04-20 2017-09-29 河北工业大学 一种催化甘油氨化制备吡啶碱类化合物的方法
EP3539652A1 (en) * 2018-03-14 2019-09-18 Saudi Arabian Oil Company Method of heavy reformate conversion into btx over metal-impregnated zsm-5+mesoporous mordenite zeolite composite catalyst
CN108816275B (zh) 2018-04-19 2021-02-05 南京红太阳生物化学有限责任公司 一种用于合成气制吡啶碱的催化剂及制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1225852A (zh) * 1998-02-12 1999-08-18 中国科学院大连化学物理研究所 从合成气制乙醇、醋酸、乙醛等二碳含氧化合物催化剂及过程
US20040077493A1 (en) * 2002-10-17 2004-04-22 Antonelli David M. Metallic mesoporous transition metal oxide molecular sieves, room temperature activation of dinitrogen and ammonia production
CN102294260A (zh) * 2010-06-24 2011-12-28 中国石油化工股份有限公司 由合成气制低碳含氧化合物的方法
CN103301849A (zh) * 2012-03-14 2013-09-18 中国矿业大学(北京) 利用合成气制备二碳含氧化合物的催化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110441B2 (en) 2018-04-19 2021-09-07 Nanjing Redsun Biochemistry Co., Ltd Catalyst for preparing pyridine base from syngas, and preparation method and application thereof

Also Published As

Publication number Publication date
US20210162381A1 (en) 2021-06-03
CN108816275B (zh) 2021-02-05
CN108816275A (zh) 2018-11-16
US11110441B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
CN108236955B (zh) 一种草酸二甲酯加氢合成乙醇用催化剂的制备方法以及由此得到的催化剂和其应用
JP6084963B2 (ja) 1,3−ブタジエンの製造方法
WO2017012246A1 (zh) 一种乙酸甲酯的生产方法
WO2019200778A1 (zh) 一种用于合成气制吡啶碱的催化剂及制备方法和应用
CN107445830B (zh) 乙醇酸酯氧化脱氢生产乙醛酸酯的方法
CN108452799B (zh) 一种负载型银催化剂的制备方法及其催化苯甲醇无氧脱氢制苯甲醛的应用
CN109894144B (zh) 一种1,3-丁二烯的合成方法及其催化剂的制备方法
US8609568B2 (en) Catalyst for oxidative dehydrogenation of propane to propylene
CN111203284A (zh) 负载型催化剂及其制备方法和甲烷氧化偶联制备烯烃的方法
CN113813953A (zh) 一种铈锆复合氧化物固溶体催化剂的制备及应用方法
WO2019095613A1 (zh) 一种2,2'-联吡啶及其衍生物的制备方法
EP3072586A1 (en) Bismuth molybdate-based catalyst having zeolite coating layer, method for producing same, and method for preparing 1,3-butadiene using same
US11292761B2 (en) Method for directly producing methyl acetate and/or acetic acid from syngas
TWI645899B (zh) 由乙醇原料製造乙烯的方法
CN114315557B (zh) 一种高收率反式2-丁烯酸的生产方法
WO2023134779A1 (zh) 加氢催化剂及其制备方法和制备异己二醇和甲基异丁基甲醇的方法
CN113813952B (zh) 一种氯修饰立方体氧化铈纳米晶催化剂的制备及应用方法
CN102784640A (zh) 用于co偶联反应合成草酸酯的催化剂及其制备方法
CN107445839B (zh) 乙醛酸酯的合成方法
JP6300281B2 (ja) 共役ジエンの製造方法及び反応装置
CN114632543A (zh) 一种乙醇氨化脱氢制备乙腈催化剂及其制备方法、应用
EP3689845A1 (en) Method for directly producing ethanol from syngas
CN111203282A (zh) 负载型催化剂及其制备方法和甲烷氧化偶联制备烯烃的方法
WO2022242730A1 (zh) 一锅法催化转化生物质制备2,5-己二酮的方法
CN110790637B (zh) 一种苯酚烷基化生产2,6-二甲酚的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915665

Country of ref document: EP

Kind code of ref document: A1