WO2019153795A1 - 一种铅蓄电池板栅合金的制备方法 - Google Patents

一种铅蓄电池板栅合金的制备方法 Download PDF

Info

Publication number
WO2019153795A1
WO2019153795A1 PCT/CN2018/112133 CN2018112133W WO2019153795A1 WO 2019153795 A1 WO2019153795 A1 WO 2019153795A1 CN 2018112133 W CN2018112133 W CN 2018112133W WO 2019153795 A1 WO2019153795 A1 WO 2019153795A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
lead
aluminum
rare earth
stirring
Prior art date
Application number
PCT/CN2018/112133
Other languages
English (en)
French (fr)
Inventor
代飞
刘青
高根芳
姚秋实
汤序锋
胡曙
周文渭
熊正林
李丹
田庆山
Original Assignee
天能电池集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63266223&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019153795(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 天能电池集团有限公司 filed Critical 天能电池集团有限公司
Priority to DE112018007020.4T priority Critical patent/DE112018007020T5/de
Priority to BR112020015587-0A priority patent/BR112020015587B1/pt
Priority to US16/965,770 priority patent/US11851732B2/en
Publication of WO2019153795A1 publication Critical patent/WO2019153795A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lead storage battery production, such as a method for preparing a lead storage battery grid alloy.
  • Lead-acid batteries are reversible DC power sources that convert chemical energy into electrical energy and also convert electrical energy into chemical energy.
  • the lead storage battery is mainly composed of an electrolyte, a battery tank and a pole group.
  • the electrolyte of the lead storage battery is a sulfuric acid solution, wherein the pole group is mainly composed of a positive electrode plate, a negative electrode plate and a separator, and the separator mainly serves to store the electrolyte as oxygen.
  • the composite gas passage serves to prevent the active material from falling off and the short circuit between the positive and negative electrodes.
  • the grid is used as the carrier and conductor of the lead paste.
  • the lead paste can only become the plate after being solidified and dried on the grid.
  • the plate is the core of the lead battery, and the grid is like a skeleton. It has a direct impact on the strength and service life of the entire plate.
  • the lead battery grid has a shunting action on the plates, so that the current is evenly distributed into the active material, and the current conductor acts as a current collecting, confluent and transporting flow. Therefore, the lead battery grid is the key to determine the battery performance. factor.
  • Authorization announcement number CN101656312B discloses an alloy material for high energy battery grid and a preparation method thereof, and the chemical composition weight percentage of the alloy material is: Ca 0.06%-0.14%, Sn 0.1%-2.0%, Al 0.01%-0.06%, Zn 0.01 -0.1%, rare earth 0.001-2.0%, the balance is Pb.
  • the rare earth is one or two of Er, Yb, or a mixture of Ho, Er, Tm, Yb.
  • the preparation method comprises the following steps: adding Ca, Al, and rare earth to the electric furnace according to the ratio, and vacuuming and protecting with nitrogen under the temperature of 600-900 ° C; and adding Pb according to the ratio; Sn, Zn, smelting at a temperature of 550 to 650 ° C, and stirring it uniformly, sampling after stationary (adjusting the alloy composition according to the sample components), then removing the slag, keeping it at the above temperature for 0.5 to 3 hours, and then Cooling is carried out, and the cooling rate is controlled at 102 to 105 K/s.
  • the Chinese invention patent with the publication number CN103762369A discloses a rare earth lead alloy for a positive electrode grid of a lead-acid battery, which is obtained by melting the following components of the weight percentage component: calcium 0.01% to 0.12%, tin 1.2 to 2.0%, aluminum 0.02. % ⁇ 0.05%, ⁇ 0.01% ⁇ 0.12%, ⁇ 0.01% ⁇ 0.12%, ⁇ 0.02% ⁇ 0.15%, the rest is lead.
  • a lead-bismuth rare earth positive grid alloy and a preparation method thereof which are composed of the following metal components of mass fraction: ⁇ : 0.5% to 1%, ⁇ : 0.005 to 0.1%, ⁇ : 0.005 to 0.1%, lead For the balance.
  • lead-bismuth and lead-bismuth alloys are prepared as master alloys; pure germanium is added to the molten lead liquid, and stirred until completely molten, and then lead-bismuth, lead-bismuth alloy is added for mixed melting. The lead-bismuth rare earth positive grid alloy is obtained.
  • the existing lead rare earth alloy is prepared. Because the melting point of the rare earth metal is very high, generally around 1000 ° C or even higher, the alloy is prepared at such a high temperature with high energy consumption and large burning loss, and the utilization rate of the rare earth metal is generally 80%. Hereinafter, the content of the rare earth element is not easily controlled. Rare earths have more impurity content. Direct preparation requires the use of rare earth metals. In nature, rare earths are mostly oxides. The production and purification of rare earth elements consume a lot of energy and cost, and the formulated alloys may also contain higher Impurity content.
  • the invention provides a preparation method of a lead storage battery grid alloy, which overcomes the problems of high energy consumption, large burning loss, high impurity content and low utilization rate of rare earth metal in the preparation of the rare earth alloy in the related art.
  • a method for preparing a lead storage battery grid alloy wherein the composition of the lead storage battery grid alloy is:
  • the preparation method comprises the following steps:
  • the method for preparing an aluminum-niobium-tellurium rare earth mother alloy by molten salt electrolysis comprises the following steps:
  • Molten salt electrolysis is a metallurgical process that uses electrical energy to heat and convert it into chemical energy, melts certain metal salts and electrolyzes it as an electrolyte to extract and purify the metal.
  • a certain potential difference that is, the electrode potential
  • Two electrodes are inserted in the same molten salt, and the applied voltage is passed through the direct current. When the voltage reaches a certain value, some components in the molten salt will be decomposed.
  • composition of the electrolyte system is: 30-40% by weight of cesium fluoride, 30-40% by weight of cesium fluoride, 10-20% by weight of lithium fluoride, and 10-20% by weight of cesium fluoride.
  • the fluoride electrolysis process is suitable for the preparation of low melting point rare earth metals.
  • the amount of each component in the mixture of cerium oxide, cerium oxide and aluminum oxide is 10 to 40% by weight of cerium oxide, 10 to 40% by weight of cerium oxide, and 30 to 80% by weight of aluminum oxide. Since the ratio of the metal element to the oxygen element in each oxide is different, the mass ratio of each oxide mixture is different from the ratio in the finally obtained grid alloy.
  • the electrolytic bath used for molten salt electrolysis is graphite crucible, the anode is graphite sheet, the cathode is molybdenum rod, and molybdenum crucible is used as an alloy receiver; the anode current density of molten salt electrolysis is 1.0-1.5 A/cm 2 , cathode The current density is 15 to 20 A/cm 2 and the electrolysis temperature is 850 to 950 °C.
  • Each parameter of molten salt electrolysis is a good range of conditions summarized on the basis of a large number of experiments.
  • the composition of the aluminum-niobium-tellurium rare earth mother alloy is: 10 to 50 wt% of aluminum, 25 to 50 wt% of niobium, and 25 to 50 wt% of niobium.
  • the composition of the intermediate alloy is: 1 to 4 wt% of aluminum, 2 to 5 wt% of rhodium, 2 to 5 wt% of rhodium, 2 to 5 wt% of sodium, and the balance is lead.
  • the intermediate alloy is prepared by vacuum melting, and lead is introduced into the vacuum melting furnace. After melting, the temperature is raised to 950-1000 ° C, and the aluminum-niobium-tellurium rare-earth alloy and sodium are added while stirring, and stirring is continued for 20-40 min. After the temperature is lowered, the ingot is cast at a temperature of 550 ° C to 650 ° C. Vacuum melting is a special smelting technique for metal and alloy smelting under vacuum conditions.
  • the alloy composition (mainly some relatively active elements) is not easily controlled due to burning, and vacuum melting is not contaminated by the surrounding atmosphere, and the molten metal is out of contact with oxygen and nitrogen in the atmosphere, so Vacuum melting can strictly control the content of active elements in the alloy, and control the alloy composition in a narrow range, thus ensuring the performance, quality and stability of the alloy.
  • step (3) the lead is firstly melted in a molten lead furnace, and then heated to 620 ° C to 670 ° C, and the intermediate alloy is added while stirring, and the mixture is continuously stirred for 10 to 15 minutes; the calcium is added while stirring. After the calcium is melted, stirring is continued for 10 to 15 minutes; tin is added while stirring, the tin is melted and stirring is continued for 10 to 15 minutes, then the temperature is lowered, and the ingot is cast at a temperature of 550 ° C to 600 ° C.
  • the various parameters of the vacuum melting method are a good range of conditions summarized on the basis of a large number of experiments.
  • the lead is electrolytic lead having a lead content of ⁇ 99.994%.
  • the rare earth mother alloy is prepared by the molten salt electrolysis method, and the rare earth mother alloy has stable composition, less impurity content and higher utilization rate of raw materials than the simple preparation of the rare earth element element from the oxide first. Directly using rare earth oxides as raw materials, raw materials are more readily available, and the utilization rate of rare earth metals is over 90%.
  • the intermediate alloy is then used to produce working alloys with more uniform composition and high process controllability.
  • FIG. 1 is a flow chart of a method for preparing a lead storage battery grid alloy according to an embodiment of the present application.
  • Fig. 3 is a graph showing the results of metallographic examination of the grid alloy prepared in Comparative Example 2.
  • Example 4 is a graph showing the results of metallographic examination of the grid alloy prepared in Example 7.
  • Fig. 5 is a graph showing the results of metallographic examination after the grid alloy prepared in Comparative Example 1 was prepared into a grid.
  • Fig. 6 is a graph showing the results of metallographic examination after the grid alloy prepared in Comparative Example 2 was prepared into a grid.
  • Fig. 7 is a graph showing the results of metallographic examination after the grid alloy prepared in Example 7 was prepared into a grid.
  • Fig. 8 is a graph showing the results of battery cycle life test in Example 14.
  • FIG. 1 is a flow chart showing a method for preparing a lead storage battery grid alloy according to a specific embodiment of the present application, first preparing an aluminum-niobium-tellurium rare earth mother alloy, and then an aluminum-niobium-tellurium rare earth mother alloy with sodium and a part of lead It is prepared as an intermediate alloy; finally, the intermediate alloy is made into lead battery grid alloy with calcium, tin and residual lead.
  • An aluminum-niobium-niobium rare earth mother alloy was prepared by molten salt electrolysis.
  • the current intensity of molten salt electrolysis is 2800A, the anode current density is 1.0-1.2 A/cm 2 , the cathode current density is 15-18 A/cm 2 , the electrolysis temperature is 880-910 ° C, and the electrolyte mass in the electrolytic furnace is 100 kg.
  • An aluminum-niobium-niobium rare earth mother alloy was prepared by molten salt electrolysis.
  • the current intensity of molten salt electrolysis is 2700A, the anode current density is 1.2-1.4A/cm 2 , the cathode current density is 18-20A/cm 2 , the electrolysis temperature is 920-950°C, and the electrolyte mass in the electrolytic furnace is 250kg.
  • the alloy is made 3.2kg, the alloy has a cerium content of 49.8%, the cerium content is 36.2%, the metal cerium utilization rate is 92.2%, and the metal cerium utilization rate is 93.6%.
  • the composition of the aluminum-cerium-lanthanum rare earth mother alloy is as shown in Table 2. .
  • An aluminum-niobium-niobium rare earth mother alloy was prepared by molten salt electrolysis.
  • the current intensity of molten salt electrolysis is 2600A, the anode current density is 1.3-1.5A/cm 2 , the cathode current density is 17-20A/cm 2 , the electrolysis temperature is 850-880°C, and the electrolyte mass in the electrolytic furnace is 50kg.
  • the alloy is made 2.1kg, the alloy has a cerium content of 28.4%, the cerium content is 27.3%, the metal cerium utilization rate is 90.1%, and the metal cerium utilization rate is 92.5%.
  • the composition of the aluminum-cerium-lanthanum rare earth mother alloy is as shown in Table 3. .
  • An intermediate alloy was prepared using the aluminum-niobium-tellurium rare earth mother alloy prepared in Example 1.
  • An intermediate alloy was prepared using the aluminum-niobium-niobium rare earth mother alloy prepared in Example 2.
  • An intermediate alloy was prepared using the aluminum-niobium-niobium rare earth mother alloy prepared in Example 3.
  • a finished product (working alloy) was prepared using the intermediate alloy prepared in Example 4.
  • a finished product (working alloy) was prepared using the intermediate alloy prepared in Example 5.
  • a finished product (working alloy) was prepared using the intermediate alloy prepared in Example 6.
  • a certain amount of pure lead is put into the lead melting furnace, the lead is melted and heated to 580-600 ° C, and the high-speed stirring is maintained after the slag is poured, and 0.13% of the calcium-aluminum master alloy is added with the weight of pure lead (the ratio of calcium to aluminum is 75:25). Stirring was continued for 15 min, 1.5% pure tin by weight of pure lead was added, stirring was continued for 15 min, then the temperature was lowered, and the ingot was cast at a temperature of 550 ° C to obtain a lead calcium-tin alloy.
  • the alloy composition is shown in Table 10.
  • a certain amount of pure lead is put into the lead melting furnace, and the lead is melted and heated to 880-900 ° C. After the slag is taken, high-speed stirring is maintained, and 0.04% of pure lead and 0.04% of pure lead by weight of pure lead are added.
  • the lead alloy is made into a sample with a diameter of 10 mm and a length of 20 mm.
  • the sample is ground with a metallographic grinding and polishing machine to control the rotation speed of the grinding disc of 800 r/min.
  • the water is used as a lubricant and a cooling liquid.
  • 300# and 600 are used. # ⁇ for rough grinding, and then finely ground with 1500#, 2000# sandpaper.
  • the ground sample is polished with a polymer synthetic fabric, and after washing, it is washed twice with water, etched with a solution of analytically pure acetic acid and hydrogen peroxide (volume ratio 1:3), and then washed in anhydrous ethanol. Dry with a hair dryer and observe the microstructure of the alloy interface under a metallographic microscope.
  • the alloys prepared in Comparative Example 1, Comparative Example 2, and Example 7 were tested. The results of the tests are shown in Figures 2, 3, and 4, respectively. It can be found that the ordinary lead-calcium alloy (prepared in Comparative Example 1) has a coarse grain size of 200 ⁇ m or more. And there is obvious segregation phenomenon; ordinary lead rare earth alloy (prepared in Comparative Example 2) has fine grains but irregular grain boundaries, and has black speckled or butterfly-like impurities or segregation points; the lead rare earth alloy crystal prepared in Example 7 The particles are finer, reaching about 10 ⁇ m, and the grain boundary is regular and the segregation is less.
  • the grid alloys prepared in Comparative Example 1, Comparative Example 2, and Example 7 were respectively cast into a grid, and the metallographic structure was examined. The detection results are shown in Figures 5, 6, and 7, respectively, as can be seen from the metallographic phase of the grid.
  • Ordinary lead-calcium-tin alloy (prepared in Comparative Example 1) casts a large grain of the grid, irregular grain boundaries, and a large number of intermetallic compounds are precipitated;
  • ordinary lead rare earth alloy (prepared in Comparative Example 2) cast plated crystal The particles are finer but the size is very uneven, the grain boundaries are irregular and contain a certain amount of precipitation of intermetallic compounds; the lead rare earth alloy prepared by the method of Example 7 has a finer and evenly distributed grain grid, regular grain boundaries and more impurities. less.
  • Example 7 Comparative Example 1, and Comparative Example 2 were respectively cast into a grid, and then produced into a plate and assembled into a battery for cycle test, and a charge and discharge cycle was performed at 100% discharge depth (100% DoD). After 200 cycles, the battery was dissected, and the dimensional change of the grid was measured to measure the creep resistance of the alloy. The smaller the dimensional change, the stronger the creep resistance of the alloy. The results are shown in Table 13, and the grid alloy prepared by the preparation method of the present application has stronger creep resistance.
  • Example 7 Comparative Example 1, and Comparative Example 2 were respectively cast into a grid, and then produced into a plate and assembled into a battery for cyclic test.
  • the charge and discharge cycle was performed at 100% DoD, and the discharge capacity was lower than three consecutive discharges of the battery.
  • the test was terminated at 96 min, the battery was found to be ineffective, and the number of cycles completed before the battery failure was calculated, which was recorded as the cycle life of the battery.
  • the grid alloy prepared in the preparation method of the present application (prepared in Example 7) was produced.

Abstract

一种铅蓄电池板栅合金的制备方法,包括以下步骤:(1)采用熔盐电解法制备铝-镧-铈稀土母合金;(2)将铝-镧-铈稀土母合金与钠、部分铅熔融并搅拌均匀制备成中间合金;(3)将中间合金与钙、锡和剩余铅熔融并搅拌均匀制成所述铅蓄电池板栅合金。

Description

一种铅蓄电池板栅合金的制备方法 技术领域
本申请涉及铅蓄电池生产技术领域,例如一种铅蓄电池板栅合金的制备方法。
背景技术
铅蓄电池属于可逆直流电源,可将化学能转变为电能,同时也可将电能转变为化学能。铅蓄电池主要由电解液、电池槽以及极群组成,铅蓄电池的电解液为硫酸溶液,其中极群主要由正极板、负极板和隔板组成,隔板主要起到储存电解液,作为氧气复合的气体通道,起到防止活性物质脱落以及正、负极之间短路的作用。
在蓄电池生产加工过程中,板栅作为铅膏的载体和导体,铅膏只有填涂在板栅上经过固化干燥后才能成为极板,而极板却是铅蓄电池的核心,板栅犹如骨架,对整个极板的强度和使用寿命都有直接的影响。铅蓄电池板栅对极板具有分流作用,使得电流均匀分布到活性物质中,而且对电流的传导体起着集流、汇流和输流的作用,因此铅蓄电池板栅是决定电池性能的关键性因素。
授权公告号CN101656312B公开了高能量蓄电池板栅用合金材料及其制备方法,合金材料化学成分重量百分比为:Ca 0.06%-0.14%,Sn 0.1%-2.0%,Al 0.01%-0.06%,Zn 0.01-0.1%,稀土0.001-2.0%,余量为Pb。所述稀土为Er、Yb中的一种或两种,或者为Ho、Er、Tm、Yb的混合物。制备方法包括下列步骤:将Ca、Al、稀土按所述的配比加入坩埚电炉中,在600~900℃温度下,抽真空、通氮气保护进行熔炼;再按所述的配比加入Pb、Sn、Zn,在550~650℃温度下熔炼,并将其搅拌均匀、静止后取样(根据试样成分进行合金成分调整)、然后将渣捞出,在上述温度下保温0.5~3小时,再进行冷却,冷却速度控制在102~105K/S。
公开号为CN103762369A的中国发明专利公开了一种铅酸蓄电池正极板栅用稀土铅合金,由下列重量百分比组分的材料熔化制得:钙0.01%~0.12%,锡1.2~2.0%,铝0.02%~0.05%,镧0.01%~0.12%,钇0.01%~0.12%,铈0.02%~0.15%,其余为铅。
授权公告号CN102329982B一种铅锑稀土正极板栅合金及其制备方法,由以下质量分数的金属元素组成:锑:0.5%~1%、镧:0.005~0.1%、钐:0.005~0.1%、铅为余量。制备时,先制备铅-镧、铅-钐合金作为母合金;在熔融的铅液中加入纯锑,并搅拌至完全熔融,然后再加入铅-镧、铅-钐母合金进行混合熔炼,制得所述铅锑稀土正极板栅合金。
现有的铅稀土合金配制,由于稀土金属的熔点非常高,一般在1000℃左右甚至更高,在这么高的温度下配制合金能耗高、烧损大,稀土金属的利用率一般在80%以下,稀土元素的含量不易控制。稀土本身杂质含量就比较多,直接配制需要利用稀土金属单质,而自然界中稀土多以氧化物存在,稀土单质的生产和提纯需要消耗大量的能源和成本,配制出的合金也可能含有更高的杂质含量。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供了一种铅蓄电池板栅合金的制备方法,克服了相关技术中配制稀土合金能耗高、烧损大且杂质含量多,稀土金属利用率较低等问题。
一种铅蓄电池板栅合金的制备方法,所述铅蓄电池板栅合金的组分为:
锡1.0~2.0wt%,钙0.05~0.10wt%,镧0.02~0.05wt%,铈0.02~0.05wt%,钠0.02~0.05wt%,铝0.01~0.04wt%,余量为铅;
所述制备方法包括以下步骤:
(1)采用熔盐电解法制备铝-镧-铈稀土母合金;
(2)将铝-镧-铈稀土母合金与钠、部分铅熔融并搅拌均匀制备成中间合金;
(3)将中间合金与钙、锡和剩余铅熔融并搅拌均匀制成所述铅蓄电池板栅合金。
可选地,熔盐电解法制备铝-镧-铈稀土母合金的方法包括以下步骤:
(a)向电解质体系中加入氧化镧、氧化铈和氧化铝的混合物,该混合物与电解质体系的质量比为1∶50~1∶10;
(b)熔盐电解共析制得铝-镧-铈稀土母合金。
熔盐电解,是利用电能加热并转换为化学能,将某些金属的盐类熔融并作为电解质进行电解,以提取和提纯金属的冶金过程。当熔融电解质与金属接触时,两者之间将产生一定的电势差,即电极电势。在同一熔盐中***两个电极,并利用外加电压通过直流电,当电压达到一定的数值时,熔盐中的某些组分将分解。
可选地,所述电解质体系的组分为:氟化镧30~40wt%,氟化铈30~40wt%,氟化锂10~20wt%,氟化钡10~20wt%。氟化物电解工艺适用于制备低熔点的稀土金属。
可选地,氧化镧、氧化铈和氧化铝的混合物中各组分的量为氧化镧10~40wt%、氧化铈10~40wt%、氧化铝30~80wt%。由于各氧化物中金属元素与氧元素的比例有所不同,所以各氧化物混合物的质量比例与最终所得板栅合金中的比例有所不同。
可选地,熔盐电解使用的电解槽为石墨坩埚,阳极为石墨片,阴极为钼棒,使用钼坩埚作为合金接收器;熔盐电解的阳极电流密度为1.0~1.5A/cm 2,阴极电流密度为15~20A/cm 2,电解温度为850~950℃。熔盐电解的各个参数均为大量实验的基础上总结的结果较好的条件范围。
可选地,所述铝-镧-铈稀土母合金的组分为:铝10~50wt%,镧25~50wt%,铈25~50wt%。
可选地,中间合金的组分为:铝1~4wt%,镧2~5wt%,铈2~5wt%,钠2~5wt%,余量为铅。
可选地,中间合金的制备使用真空熔炼法,在真空熔炼炉内投入铅,熔化后升温至950~1000℃,边搅拌边加入铝-镧-铈稀土母合金和钠,继续搅拌20~40min后降温,在温度为550℃~650℃时铸锭。真空熔炼法是在真空条件下进行金属与合金熔炼的特种熔炼技术。大气 熔炼和浇注的主要缺点之一是合金成分(主要是一些比较活泼的元素)由于烧损不易准确控制,而真空熔炼不受周围气氛污染,金属液与大气中的氧和氮脱离接触,所以真空熔炼能严格控制合金中活泼元素的含量,将合金成分控制在很窄的范围内,因而能保证合金的性能、质量及其稳定性。
可选地,步骤(3)中先将铅投入熔铅炉中熔化,然后升温至620℃~670℃,边搅拌边加入所述中间合金,继续搅拌10~15min混合均匀;边搅拌边加入钙,钙熔化后继续搅拌10~15min;边搅拌边加入锡,锡熔化后继续搅拌10~15min,然后降温,在温度为550℃~600℃时铸锭。真空熔炼法的各个参数均为大量实验的基础上总结的结果较好的条件范围。
可选地,所述铅为铅含量≥99.994%的电解铅。
本申请通过熔盐电解法配制稀土母合金,相较于通过先从氧化物中制备稀土元素单质再用单质直接配制,制得的稀土母合金成分稳定,杂质含量少,且原材料利用率更高,直接以稀土氧化物为原料,原料更易得,稀土金属利用率达到90%以上;再配制成中间合金来生产工作合金,成分更加均匀,过程可控性高。
在阅读并理解了详细描述和附图后,可以明白其他方面。
附图说明
图1为本申请具体实施方式中铅蓄电池板栅合金的制备方法的流程图。
图2为对比例1制备的板栅合金的金相检测结果图。
图3为对比例2制备的板栅合金的金相检测结果图。
图4为实施例7制备的板栅合金的金相检测结果图。
图5为对比例1制备的板栅合金制备成板栅后的金相检测结果图。
图6为对比例2制备的板栅合金制备成板栅后的金相检测结果图。
图7为实施例7制备的板栅合金制备成板栅后的金相检测结果图。
图8为实施例14中电池循环寿命检测结果图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
如图1所示为本申请具体实施方式中铅蓄电池板栅合金的制备方法的流程图,先制备铝-镧-铈稀土母合金,再将铝-镧-铈稀土母合金与钠、部分铅制备成中间合金;最后将中间合金与钙、锡和剩余铅制成铅蓄电池板栅合金。
实施例1
使用熔盐电解法制备铝-镧-铈稀土母合金。
电解质体系中各组分的质量比为LaF 3∶CeF 3∶LiF∶BaF 2=40∶40∶10∶10;加入原料的质量比为La 2O 3∶CeO 2∶Al 2O 3=25∶25∶50。熔盐电解的电流强度为2800A,阳极电流密度为1.0~1.2 A/cm 2,阴极电流密度为15~18A/cm 2,电解温度为880~910℃;电解炉中电解质质量为100kg,中投入原料5kg,制得合金2.6kg,合金中镧含量39.2%,铈含量37.1%,金属镧利用率95.9%,金属铈利用率95.1%,制得铝-镧-铈稀土母合金成分如表1所示,其中Fe、Si、C、Cu、Ag、Sb等为杂质,下同。
表1铝-镧-铈稀土母合金成分分析结果/wt%
La Ce Al Fe Si C Cu Ag Sb
39.2 37.1 22.3 0.08 0.02 0.01 0.002 0.0004 0.001
实施例2
使用熔盐电解法制备铝-镧-铈稀土母合金。
电解质体系中各组分的质量比为LaF 3∶CeF 3∶LiF∶BaF 2=30∶30∶20∶20;加入原料的质量比为La 2O 3∶CeO 2∶Al 2O 3=40∶30∶30。熔盐电解的电流强度为2700A,阳极电流密度为1.2~1.4A/cm 2,阴极电流密度为18~20A/cm 2,电解温度为920~950℃;电解炉中电解质质量为250kg,投入原料5kg,制得合金3.2kg,合金种镧含量49.8%,铈含量36.2%,金属镧利用率92.2%,金属铈利用率93.6%,制得铝-镧-铈稀土母合金成分如表2所示。
表2铝-镧-铈稀土母合金成分分析结果/wt%
La Ce Al Fe Si C Cu Ag Sb
49.8 36.2 12.5 0.06 0.02 0.02 0.001 0.0003 0.001
实施例3
使用熔盐电解法制备铝-镧-铈稀土母合金。
电解质体系中各组分的质量比为LaF 3∶CeF 3∶LiF∶BaF 2=40∶40∶10∶10;加入原料质量比为La 2O 3∶CeO 2∶Al 2O 3=15∶15∶70。熔盐电解的电流强度为2600A,阳极电流密度为1.3~1.5A/cm 2,阴极电流密度为17~20A/cm 2,电解温度为850~880℃;电解炉中电解质质量为50kg,投入原料5kg,制得合金2.1kg,合金种镧含量28.4%,铈含量27.3%,金属镧利用率90.1%,金属铈利用率92.5%,制得铝-镧-铈稀土母合金成分如表3所示。
表3铝-镧-铈稀土母合金成分分析结果/wt%
La Ce Al Fe Si C Cu Ag Sb
28.1 27.3 43.1 0.07 0.01 0.02 0.002 0.0005 0.001
实施例4
利用实施例1制备的铝-镧-铈稀土母合金制备中间合金。
在真空熔炼炉内投入25kg纯铅,熔化后升温至980℃,边搅拌边加入实施例1制备的稀土母合金2.5kg和金属钠1.0kg,继续搅拌30min后降温,捞渣后在温度为600℃时铸锭,制得合金28.2kg,合金中镧含量3.38%,铈含量3.29%,铝含量1.76%,钠含量3.44%,制得 的中间合金成分如表4所示。
表4中间合金成分分析结果/wt%
La Ce Al Na Fe Si C
3.38 3.29 1.76 3.44 0.008 0.002 0.001
Cu Ag Bi Zn Sb Pb -
0.0002 0.0003 0.003 0.0003 0.0008 余量 -
实施例5
利用实施例2制备的铝-镧-铈稀土母合金制备中间合金。
在真空熔炼炉内投入25kg纯铅,熔化后升温至1000℃,边搅拌边加入实施例2制备的稀土母合金3.0kg和金属钠1.5kg,继续搅拌30min后降温,捞渣后在温度为600℃时铸锭,制得合金29.2kg,合金中镧含量4.96%,铈含量3.68%,铝含量1.23%,钠含量4.88%,制得的中间合金成分如表5所示。
表5中间合金成分分析结果/wt%
La Ce Al Na Fe Si C
4.96 3.68 1.23 4.88 0.006 0.002 0.002
Cu Ag Bi Zn Sb Pb -
0.0003 0.0004 0.002 0.0003 0.0007 余量 -
实施例6
利用实施例3制备的铝-镧-铈稀土母合金制备中间合金。
在真空熔炼炉内投入20kg纯铅,熔化后升温至950℃,边搅拌边加入实施例3制备的稀土母合金2.0kg和金属钠0.5kg,继续搅拌30min后降温,捞渣后在温度为600℃时铸锭,制得合金22.3kg,合金中镧含量2.42%,铈含量2.38%,铝含量3.66%,钠含量2.12%,制得的中间合金成分如表6所示。
表6中间合金成分分析结果/wt%
La Ce Al Na Fe Si C
2.42 2.38 3.66 2.12 0.007 0.001 0.002
Cu Ag Bi Zn Sb Pb  
0.0004 0.0005 0.002 0.0004 0.0007 余量  
实施例7
利用实施例4制备的中间合金制备成品(工作合金)。
在熔铅炉中投入1000kg铅,加热熔化,然后升温至630℃~660℃,边搅拌边加入10kg实施例4所制备的中间合金,继续搅拌15min混合均匀;边搅拌边加入0.6kg钙,钙熔化后 继续搅拌15min;边搅拌边加入20kg锡,锡熔化后继续搅拌15min,然后降温,捞渣后在温度为550℃时铸锭,制得工作合金,所制得的工作合金成分如表7所示。
表7工作合金成分分析结果/wt%
Sn Ca La Ce Al Na Bi Cu
1.92 0.055 0.032 0.032 0.015 0.033 0.005 0.001
As Ag Zn Ni Sb Fe Cd Pb
0.001 0.005 0.0005 0.0002 0.001 0.0005 0.0002 余量
实施例8
利用实施例5制备的中间合金制备成品(工作合金)。
在熔铅炉中投入1000kg铅,加热熔化,然后升温至650℃~670℃,边搅拌边加入10kg实施例5所制备的中间合金,继续搅拌15min混合均匀;边搅拌边加入0.8kg钙,钙熔化后继续搅拌15min;边搅拌边加入16kg锡,锡熔化后继续搅拌15min,然后降温,捞渣后在温度为550℃时铸锭,制得工作合金,所制得的工作合金成分如表8所示。
表8工作合金成分分析结果/wt%
Sn Ca La Ce Al Na Bi Cu
1.53 0.073 0.048 0.036 0.011 0.046 0.005 0.001
As Ag Zn Ni Sb Fe Cd Pb
0.001 0.005 0.0005 0.0002 0.001 0.0005 0.0002 余量
实施例9
利用实施例6制备的中间合金制备成品(工作合金)。
在熔铅炉中投入1000kg铅,加热熔化,然后升温至620℃~650℃,边搅拌边加入10kg实施例6所制备的中间合金,继续搅拌15min混合均匀;边搅拌边加入1.0kg钙,钙熔化后继续搅拌15min;边搅拌边加入12kg锡,锡熔化后继续搅拌15min,然后降温,捞渣后在温度为550℃时铸锭,制得工作合金,所制得的工作合金成分如表9所示。
表9工作合金成分分析结果/wt%
Sn Ca La Ce Al Na Bi Cu
1.13 0.092 0.022 0.021 0.036 0.021 0.005 0.001
As Ag Zn Ni Sb Fe Cd Pb
0.001 0.005 0.0005 0.0002 0.001 0.0005 0.0002 余量
对比例1
普通铅钙锡合金制备方法:
在熔铅炉中投入一定量的纯铅,熔铅并升温至580~600℃,捞渣后保持高速搅拌,加入 纯铅重量的0.13%的钙铝母合金(钙铝重量比为75∶25),继续搅拌15min,加入纯铅重量的1.5%的纯锡,继续搅拌15min,然后降温,捞渣后在温度为550℃时铸锭,制得铅钙锡合金。合金成分如表10所示。
表10普通铅钙锡合金成分分析结果/wt%
Sn Ca Al Bi Cu As Ag Zn Ni Sb Fe Cd Pb
1.216 0.074 0.022 0.003 0.001 0.001 0.005 0.0005 0.0002 0.001 0.0005 0.0002 余量
对比例2
直接添加稀土元素配制的铅稀土合金制备方法:
在熔铅炉中投入一定量的纯铅,熔铅并升温至880~900℃,捞渣后保持高速搅拌,加入纯铅重量的0.04%的纯镧和纯铅重量的0.04%的纯铈,高速搅拌10min,保持搅拌并降温至560~580℃,加入纯铅重量的0.06%的金属钠,高速搅拌10min;加入纯铅重量的0.13%的钙铝母合金(钙铝重量比为75∶25),继续搅拌15min,加入纯铅重量的1.5%的纯锡,继续搅拌15min,然后降温,捞渣后在温度为550℃时铸锭,制得铅稀土合金。合金成分如表11所示。
表11直接添加稀土元素配制的铅稀土合金成分分析结果/wt%
Sn Ca La Ce Al Na Bi Cu
1.223 0.076 0.026 0.027 0.025 0.032 0.004 0.001
As Ag Zn Ni Sb Fe Cd Pb
0.001 0.005 0.0005 0.0002 0.001 0.0005 0.0002 余量
实施例10
金相检测:
将铅合金制成直径10mm,长度为20mm的试样,用金相磨抛机对试样进行磨制,控制磨盘转速800r/min,以水做润滑剂和冷却液,先用300#、600#金相砂纸进行粗磨,再用1500#、2000#砂纸细磨。磨制后的试样用高分子合成织物进行抛光处理,抛光结束后用水二次冲洗,用分析纯醋酸和双氧水(体积比1∶3)混合的溶液进行侵蚀,然后在无水乙醇种泡洗,用电吹风吹干,在金相显微镜下观察合金界面的组织结构。
将对比例1、对比例2、实施例7制备的合金进行检测,检测结果分别如图2、3、4所示,可以发现普通铅钙合金(对比例1制备)晶粒粗大达到200μm以上,且有明显的偏析现象;普通铅稀土合金(对比例2制备)晶粒稍细但晶界不规则,有黑色的斑点状或蝴蝶状的杂质或偏析点;实施例7制备的铅稀土合金晶粒更细,达到10μm左右,且晶界规则,偏析更少。
实施例11
将对比例1、对比例2、实施例7制备的板栅合金分别浇铸成板栅后,检测金相结构,检测结果分别如图5、6、7所示,从板栅金相可以看出,普通铅钙锡合金(对比例1制备)浇 铸的板栅晶粒较大,晶界不规则,且分布很多金属间化合物的析出;普通铅稀土合金(对比例2制备)浇铸的板栅晶粒较细但大小非常不均匀,晶界不规则且含有一定量的金属间化合物的析出;实施例7制备的铅稀土合金浇铸的板栅晶粒较细、分布均匀,晶界规则且杂质更少。
实施例12
将实施例7、对比例1、对比例2制备的合金分别浇铸成板栅后,在1.28g/mL的硫酸溶液中通入50mA电流进行恒流腐蚀试验,腐蚀面积为5cm 2,腐蚀时间20天,测试样品在腐蚀后的重量减轻数据从而计算出平均每天的腐蚀失重量,衡量合金样品的耐腐蚀性能,平均每天腐蚀失重量越低则说明合金的耐腐蚀性越强。结果如表12所示,可见,本申请制备方法下制备的板栅合金耐腐蚀效果较好。
表12耐腐蚀性检测结果
合金 腐蚀前/g 腐蚀后/g 失重/mg 腐蚀速度mg/d
对比例1 48.6565 48.0138 642.70 30.60
对比例2 48.0112 47.4646 546.60 26.03
实施例7 47.9411 47.6292 311.90 14.85
实施例13
将实施例7、对比例1、对比例2制备的合金分别浇铸成板栅后,生产成极板并组装电池进行循环测试,以100%放电深度(100%DoD)进行充放电循环,在全部完成200次循环后解剖电池,测量板栅的尺寸变化量,衡量合金的抗蠕变性能,尺寸变化量越小则说明该合金的抗蠕变性能越强。结果如表13所示,使用本申请制备方法制备的板栅合金抗蠕变性能更强。
表13抗蠕变性能检测结果
合金 初始高度/mm 循环后高度/mm 高度增长量/mm 高度变化率
对比例1 136.12 137.58 1.46 1.07%
对比例2 136.15 137.46 1.31 0.96%
实施例7 136.13 136.76 0.63 0.46%
实施例14
将实施例7、对比例1、对比例2制备的合金分别浇铸成板栅后,生产成极板并组装电池进行循环测试,以100%DoD进行充放电循环,当电池连续三次放电容量低于96min时终止测试,认定该电池失效,计算电池失效前完成的循环次数,记为该电池的循环寿命,结果如图8所示,本申请制备方法制备的板栅合金(实施例7制备)生产的电池循环寿命达到491次,普通合金(对比例1制备)为292次,普通铅稀土合金(对比例2制备)电池为368次,说明本申请制备方法制备的板栅合金可以极大地延长电池的循环寿命。

Claims (10)

  1. 一种铅蓄电池板栅合金的制备方法,其中,所述铅蓄电池板栅合金的组分为:
    锡1.0~2.0wt%,钙0.05~0.10wt%,镧0.02~0.05wt%,铈0.02~0.05wt%,钠0.02~0.05wt%,铝0.01~0.04wt%,余量为铅;
    所述制备方法包括以下步骤:
    (1)采用熔盐电解法制备铝-镧-铈稀土母合金;
    (2)将铝-镧-铈稀土母合金与钠、部分铅熔融并搅拌均匀制备成中间合金;
    (3)将中间合金与钙、锡和剩余铅熔融并搅拌均匀制成所述铅蓄电池板栅合金。
  2. 如权利要求1所述的制备方法,其中,所述熔盐电解法制备铝-镧-铈稀土母合金的方法包括以下步骤:
    (a)向电解质体系中加入氧化镧、氧化铈和氧化铝的混合物,所述混合物与电解质体系的质量比为1∶50~1∶10;
    (b)熔盐电解共析制得铝-镧-铈稀土母合金。
  3. 如权利要求1所述的制备方法,其中,所述中间合金的制备使用真空熔炼法,在真空熔炼炉内投入铅,熔化后升温至950~1000℃,边搅拌边加入铝-镧-铈稀土母合金和钠,继续搅拌20~40min后降温,在温度为550℃~650℃时铸锭。
  4. 如权利要求2所述的制备方法,其中,所述电解质体系的组分为:氟化镧30~40wt%,氟化铈30~40wt%,氟化锂10~20wt%,氟化钡10~20wt%。
  5. 如权利要求2所述的制备方法,其中,所述氧化镧、氧化铈和氧化铝的混合物中各组分的量为氧化镧10~40wt%、氧化铈10~40wt%、氧化铝30~80wt%。
  6. 如权利要求2所述的制备方法,其中,所述熔盐电解使用的电解槽为石墨坩埚,阳极为石墨片,阴极为钼棒,使用钼坩埚作为合金接收器;所述熔盐电解的阳极电流密度为1.0~1.5A/cm 2,阴极电流密度为15~20A/cm 2,电解温度为850~950℃。
  7. 如权利要求1所述的制备方法,其中,所述铝-镧-铈稀土母合金的组分为:铝10~50wt%,镧25~50wt%,铈25~50wt%。
  8. 如权利要求1所述的制备方法,其中,所述中间合金的组分为:铝1~4wt%,镧2~5wt%,铈2~5wt%,钠2~5wt%,余量为铅。
  9. 如权利要求1所述的制备方法,其中,步骤(3)中先将铅投入熔铅炉中熔化,然后升温至620℃~670℃,边搅拌边加入所述中间合金,继续搅拌10~15min混合均匀;边搅拌边加入钙,钙熔化后继续搅拌10~15min;边搅拌边加入锡,锡熔化后继续搅拌10~15min,然后降温,在温度为550℃~600℃时铸锭。
  10. 如权利要求1所述的制备方法,其中,所述铅为铅含量≥99.994%的电解铅。
PCT/CN2018/112133 2018-02-06 2018-10-26 一种铅蓄电池板栅合金的制备方法 WO2019153795A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018007020.4T DE112018007020T5 (de) 2018-02-06 2018-10-26 Verfahren für die herstellung einer gitterlegierung einer bleibatterie
BR112020015587-0A BR112020015587B1 (pt) 2018-02-06 2018-10-26 Método para preparar liga de grade de bateria de chumbo
US16/965,770 US11851732B2 (en) 2018-02-06 2018-10-26 Method for preparing grid alloy of lead battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810116166.8A CN108467968B (zh) 2018-02-06 2018-02-06 一种铅蓄电池板栅合金的制备方法
CN201810116166.8 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019153795A1 true WO2019153795A1 (zh) 2019-08-15

Family

ID=63266223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112133 WO2019153795A1 (zh) 2018-02-06 2018-10-26 一种铅蓄电池板栅合金的制备方法

Country Status (5)

Country Link
US (1) US11851732B2 (zh)
CN (1) CN108467968B (zh)
BR (1) BR112020015587B1 (zh)
DE (1) DE112018007020T5 (zh)
WO (1) WO2019153795A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705337A (zh) * 2020-06-23 2020-09-25 超威电源集团有限公司 一种熔盐原电池法制备铅钙母合金的方法
CN113106534A (zh) * 2021-04-13 2021-07-13 山西百一机械设备制造有限公司 铅合金电极板、制备方法以及阳极板
CN116287858A (zh) * 2023-03-30 2023-06-23 巨江电源科技有限公司 铅酸蓄电池负极板栅用铅基钡钠铝合金及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467968B (zh) 2018-02-06 2019-07-23 天能电池集团股份有限公司 一种铅蓄电池板栅合金的制备方法
CN110165149A (zh) * 2019-06-05 2019-08-23 天能电池(芜湖)有限公司 蓄电池板栅节能固化工艺
CN111349812B (zh) * 2020-02-20 2021-08-06 江苏海瑞电源有限公司 一种节能环保型铅基合金
CN111659733A (zh) * 2020-06-08 2020-09-15 宁夏天元锰材料技术开发有限公司 一种电解锰阳极板板栅及其制作方法
CN112159993B (zh) * 2020-09-24 2022-03-29 江西江钨浩运科技有限公司 含钇的混合稀土金属、稀土储氢合金及其制备方法
US11740328B2 (en) * 2020-12-16 2023-08-29 DC-001, Inc. Methods and systems for processing radar signals
CN113097573B (zh) * 2021-03-25 2022-08-12 北京阳光鸿志电气工程技术有限公司 一种快速充电全密封免维护铅酸蓄电池
CN114335445A (zh) * 2021-08-27 2022-04-12 漳州市华威电源科技有限公司 一种高循环性能铅酸电池的电池极板制备工艺
CN115772614B (zh) * 2022-11-01 2024-03-29 天能集团贵州能源科技有限公司 一种蓄电池正板栅合金及其制备方法
CN115772610A (zh) * 2022-11-23 2023-03-10 华宇新能源科技有限公司 一种耐腐蚀蓄电池板栅及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2096639A (en) * 1981-03-03 1982-10-20 Choride India Ltd Automobile battery grid
CN1447467A (zh) * 2003-04-03 2003-10-08 复旦大学 用作铅蓄电池正极板栅的铅-稀土多元合金及其制备方法
CN102660697A (zh) * 2012-04-27 2012-09-12 天能电池集团有限公司 一种动力用铅酸蓄电池板栅合金
CN108467968A (zh) * 2018-02-06 2018-08-31 天能电池集团有限公司 一种铅蓄电池板栅合金的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1259456C (zh) * 2004-01-08 2006-06-14 包头铝业股份有限公司 熔盐电解法直接制备铝铈中间合金的方法
JP5087950B2 (ja) * 2007-02-27 2012-12-05 新神戸電機株式会社 鉛蓄電池
CN100588729C (zh) 2007-08-08 2010-02-10 株洲冶炼集团股份有限公司 铅合金及其应用和制造方法
CN103762369B (zh) 2014-01-10 2016-08-17 江苏海宝电池科技有限公司 一种铅酸蓄电池正极板栅用稀土铅合金
CN106684391A (zh) 2016-12-21 2017-05-17 河南超威电源有限公司 一种铅酸蓄电池用稀土板栅合金及其生产方法
CN107146890B (zh) 2017-03-24 2019-10-29 淄博火炬能源有限责任公司 高温型阀控铅酸蓄电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2096639A (en) * 1981-03-03 1982-10-20 Choride India Ltd Automobile battery grid
CN1447467A (zh) * 2003-04-03 2003-10-08 复旦大学 用作铅蓄电池正极板栅的铅-稀土多元合金及其制备方法
CN102660697A (zh) * 2012-04-27 2012-09-12 天能电池集团有限公司 一种动力用铅酸蓄电池板栅合金
CN108467968A (zh) * 2018-02-06 2018-08-31 天能电池集团有限公司 一种铅蓄电池板栅合金的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705337A (zh) * 2020-06-23 2020-09-25 超威电源集团有限公司 一种熔盐原电池法制备铅钙母合金的方法
CN113106534A (zh) * 2021-04-13 2021-07-13 山西百一机械设备制造有限公司 铅合金电极板、制备方法以及阳极板
CN113106534B (zh) * 2021-04-13 2022-07-05 山西百一机械设备制造有限公司 铅合金电极板、制备方法以及阳极板
CN116287858A (zh) * 2023-03-30 2023-06-23 巨江电源科技有限公司 铅酸蓄电池负极板栅用铅基钡钠铝合金及其制备方法和应用
CN116287858B (zh) * 2023-03-30 2023-11-28 巨江电源科技有限公司 铅酸蓄电池负极板栅用铅基钡钠铝合金及其制备方法和应用

Also Published As

Publication number Publication date
CN108467968A (zh) 2018-08-31
BR112020015587B1 (pt) 2023-11-28
US11851732B2 (en) 2023-12-26
BR112020015587A2 (pt) 2021-01-05
DE112018007020T5 (de) 2020-11-12
CN108467968B (zh) 2019-07-23
US20210040583A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2019153795A1 (zh) 一种铅蓄电池板栅合金的制备方法
CN103290293B (zh) 锂铝合金及其生产方法和用途
CN110484788B (zh) 铝空气电池阳极材料及其制备方法和铝空气电池
CN106757169A (zh) 一种储氢合金用稀土中间合金及其制备方法
CN101388457A (zh) 电池用铝合金阳极材料
CN101113497A (zh) 一种RE-Mg-Ni-M系贮氢合金的制备方法
CN108682866B (zh) 新型铅钙锡铝合金、包含其的正极板板栅和铅酸蓄电池
CN109694964A (zh) 一种铝空气电池阳极材料的制备方法
CN111793760A (zh) 镁空气电池用阳极合金材料及其制备方法以及电池
CN112467064B (zh) 水系锌离子电池负极的制备方法、电池
CN102888545B (zh) 一种镁基储氢合金的制备方法
CN102703748B (zh) 一种纳米多孔铜锡合金的制备方法
JP6934097B1 (ja) 水素吸蔵合金
CN103647063B (zh) Ni-MH二次电池用贮氢电极合金及其制备方法
JP2013199703A (ja) 水素吸蔵合金、電極、ニッケル水素蓄電池及び水素吸蔵合金の製造方法
JPH0762463A (ja) 連続電気化学的鉛精錬方法
JPH06223827A (ja) 電池用水素吸蔵合金粉末の製造方法
JPH05156382A (ja) アルカリ蓄電池用水素吸蔵合金の製造法
JP2013221160A (ja) 二次電池の負極集電体用銅合金、二次電池の負極集電体用銅合金箔およびその製造方法
CN112267131B (zh) 一种钇镍合金及其制备方法和应用
CN1204640C (zh) 过化学计量比LaNi5基无钴贮氢合金电极材料及其制备方法
JPH11269501A (ja) 水素吸蔵合金粉末の製造方法及び水素吸蔵合金電極
JP6406796B2 (ja) 水素吸蔵合金、電極、ニッケル水素蓄電池及び水素吸蔵合金の製造方法
JP2002115038A (ja) 水素吸蔵合金
JP3136960B2 (ja) 電池用水素吸蔵合金の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905166

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020015587

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020015587

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200730

122 Ep: pct application non-entry in european phase

Ref document number: 18905166

Country of ref document: EP

Kind code of ref document: A1