WO2019142717A1 - 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法 - Google Patents

変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法 Download PDF

Info

Publication number
WO2019142717A1
WO2019142717A1 PCT/JP2019/000453 JP2019000453W WO2019142717A1 WO 2019142717 A1 WO2019142717 A1 WO 2019142717A1 JP 2019000453 W JP2019000453 W JP 2019000453W WO 2019142717 A1 WO2019142717 A1 WO 2019142717A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
mutation
seq
acid sequence
sequence shown
Prior art date
Application number
PCT/JP2019/000453
Other languages
English (en)
French (fr)
Inventor
新吾 小林
吉田 慎一
俊輔 佐藤
直明 田岡
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP19740819.8A priority Critical patent/EP3741858A4/en
Priority to US16/962,282 priority patent/US11186831B2/en
Priority to JP2019566440A priority patent/JP7360329B2/ja
Publication of WO2019142717A1 publication Critical patent/WO2019142717A1/ja
Priority to JP2023118237A priority patent/JP2023139129A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a mutant polyhydroxyalkanoate synthetase, a gene encoding the enzyme, a transformant containing the gene, and a method for producing polyhydroxyalkanoate using the transformant.
  • PHA Polyhydroxyalkanoate
  • PHA polyhydroxybutyrate
  • 3HB 3-hydroxybutyrate
  • PHBH a copolyester polyester Poly (3HB-co-3HH) (hereinafter referred to as, 3HB and 3-hydroxyhexanoate (hereinafter referred to as "3HH") "PHBH” has been reported.
  • PHBH is a copolymer having lower physical properties than PHB and having soft physical properties due to having 3HH as a monomer unit.
  • Non-Patent Documents 1 and 2 a method of introducing a mutation into a PHA synthetase is examined in order to increase the 3HH ratio in PHBH.
  • Non-Patent Document 1 A.I. The activity of PHA synthetase and a substrate for 3HH-CoA by introducing a mutation of asparagine at position 149 into serine or substitution of asparagine at position 171 with glycine for the caviae-derived PHA synthetase It has been reported that specificity can be improved to produce PHBH with up to 18 mole% 3HH ratios.
  • Non-Patent Document 2 reports that PHBH having a higher 3HH ratio can be produced by a PHA synthetase (hereinafter abbreviated as "NSDG”) in which these two mutations are duplicated.
  • NDG PHA synthetase
  • the 3HH ratio of PHA copolymers that can be produced by culturing transformants is limited. Further, in order to produce PHA having preferable physical properties, the higher the 3HH ratio is, the higher the lower the better. Therefore, a technique for freely adjusting the 3HH ratio to high or low is necessary. For this reason, construction of a PHA synthetase library capable of producing a PHA copolymer having a higher or lower 3HH ratio is desired.
  • the present invention provides a mutant PHA synthetase that realizes production of a PHA copolymer having a high or low 3HH ratio while maintaining PHA productivity, a gene encoding the enzyme, and a transformant having the gene It is an object of the present invention to provide a method for producing PHA using the transformant.
  • the present invention has a sequence identity of 85% or more with the amino acid sequence shown in SEQ ID NO: 1, and a mutation having an amino acid sequence comprising any one or more mutation of the following (a) to (c) Type polyhydroxyalkanoate synthetase.
  • Mutation (a) mutation in which the 389th serine from the N terminus of the amino acid sequence shown in SEQ ID NO: 1 is substituted with an amino acid other than serine
  • Mutation (b) 436 from the N terminus of the amino acid sequence shown in SEQ ID NO: 1 Mutation in which leucine is substituted with an amino acid other than leucine.
  • Mutation (c) mutation in which 11 or more and 19 or less amino acid residues are deleted from the C terminus of the amino acid sequence shown by SEQ ID NO: 1.
  • mutation (a) is a mutation in which the 389th serine from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is substituted with cysteine, isoleucine, threonine or valine. Also preferably, the mutation (a) is a mutation in which the 389th serine from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is substituted with aspartic acid, glutamic acid, glycine, histidine, lysine, asparagine, proline, arginine or tryptophan. It is.
  • mutation (b) is a mutation in which leucine at position 436 from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is substituted with valine.
  • mutation (b) is a mutation in which leucine at position 436 from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is substituted with alanine, cysteine, phenylalanine, asparagine, threonine, tryptophan or tyrosine.
  • mutation (c) is a mutation in which 12 or more and 19 or less amino acid residues are deleted from the C-terminus of the amino acid sequence shown in SEQ ID NO: 1.
  • the mutant polyhydroxyalkanoate synthetase of the present invention preferably has an amino acid sequence further comprising a mutation in which asparagine at position 149 from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is substituted with serine. It is preferable to have an amino acid sequence further including a mutation in which aspartate at position 171 from the N-terminus of the amino acid sequence shown in 1 is substituted with glycine.
  • the present invention also relates to a gene encoding the mutant polyhydroxyalkanoate synthetase.
  • the present invention also relates to a transformant having the above gene, preferably the host is a eubacteria, more preferably the eubacteria are bacteria belonging to the genus Capriabidus, still more preferably Capriabidas necatol, still more preferably Is the Capri Abidas Nekator H16.
  • the present invention also relates to a method for producing polyhydroxyalkanoic acid, which comprises the step of culturing the transformant.
  • the polyhydroxyalkanoic acid contains 3-hydroxyhexanoic acid as monomer unit. More preferably, the polyhydroxyalkanoic acid is a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid.
  • a mutant PHA synthetase that realizes production of a PHA copolymer having a high or low 3HH ratio while maintaining PHA productivity, a gene encoding the enzyme, and transformation containing the gene Can provide a body.
  • culturing the transformant it becomes possible to fermentatively produce a PHA copolymer having a high or low 3HH ratio without reducing the PHA productivity.
  • mutant PHA synthetase exhibits 85% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 1, and contains one or more of the mutations (a) to (c) below: It has an arrangement.
  • the present invention also provides a gene encoding the mutant PHA synthetase (hereinafter abbreviated as "mutant PHA synthetase gene").
  • the mutant PHA synthetase of the present invention realizes production of a PHA copolymer having a high or low 3HH ratio while maintaining the productivity of PHA, but it is produced by the mutant PHA synthetase of the present invention
  • the 3HH ratio of the PHA copolymer is high or low, under the same conditions as the PHA synthetase having the same amino acid sequence as the mutant PHA synthetase of the present invention except that the mutation characterized by the present invention is not introduced. It means that it is relatively high or low as compared to the 3HH ratio of the PHA copolymer which can be produced in
  • the mutant PHA synthetase of the present invention is an enzyme having PHA synthesis activity and has an amino acid sequence having a sequence identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 1.
  • the amino acid sequence shown by SEQ ID NO: 1 is the amino acid sequence of PHA synthetase PhaC Ac derived from Aeromonas caviae.
  • the mutant PHA synthetase of the present invention may have a mutation other than the following mutations (a) to (c) within the range satisfying the above sequence identity.
  • the mutant PHA synthetase of the present invention may be linked to a heterologous protein having different functions to form a fusion protein.
  • the amino acid sequence of the heterologous protein is not considered when calculating the above sequence identity.
  • the sequence identity to the amino acid sequence shown in SEQ ID NO: 1 may be 85% or more, preferably 90% or more, more preferably 95% or more, and still more preferably 97 % Or more, more preferably 98% or more, particularly preferably 99% or more.
  • the sequence identity of the base sequence is not limited as long as it is a base sequence encoding the amino acid sequence constituting the mutant PHA synthetase of the present invention.
  • the origin of the mutant PHA synthetase and the mutant PHA synthetase gene of the present invention is not particularly limited, but is preferably derived from the genus Aeromonas, and more preferably derived from Aeromonas caviae.
  • mutant PAH synthetase of the present invention may contain any one of mutations (a) to (c), or may contain two or more of these mutations.
  • the amino acid after substitution can be selected in consideration of PHA productivity and 3HH ratio of PHA to be produced.
  • the 389th serine is aspartic acid, glutamic acid, glycine, histidine, lysine, asparagine, proline, arginine
  • a mutation substituted for tryptophan is preferred, and a mutation substituted for aspartic acid, glutamic acid, glycine, histidine, lysine, proline, arginine or tryptophan is more preferred, aspartic acid, glutamic acid, lysine, proline or Further preferred is a mutation substituted for arginine.
  • leucine at position 436 from the N-terminus is substituted with an amino acid other than leucine.
  • the amino acid after substitution can be selected in consideration of PHA productivity and 3HH ratio of PHA to be produced.
  • leucine at position 436 is alanine, cysteine, phenylalanine, asparagine, threonine, tryptophan, or tyrosine.
  • the mutation substituted is preferable, the mutation substituted by alanine, cysteine, phenylalanine or threonine is more preferable, and the mutation substituted by alanine or threonine is more preferable.
  • a mutation in which leucine at position 436 is substituted by valine is preferable.
  • the upper limit of the number of amino acid residues to be deleted is preferably 19 amino acid residues from the C-terminus, more preferably 18 amino acid residues, still more preferably 17 amino acid residues, and 16 amino acid residues remaining Groups are particularly preferred, and 15 amino acid residues are most preferred.
  • the lower limit of the number of amino acid residues to be deleted is preferably 11 amino acid residues from the C-terminus, more preferably 12 amino acid residues, and still more preferably 13 amino acid residues.
  • the amino acid sequence of the mutant PHA synthetase of the present invention further comprises a mutation in which asparagine at position 149 from the N-terminus is substituted with serine in the amino acid sequence shown in SEQ ID NO: 1 to enhance PHA productivity. It is preferable to further include a mutation in which aspartic acid at position 171 from the N-terminus is substituted with glycine.
  • the transformant of the present invention is a transformant having a gene encoding the mutant PHA synthetase of the present invention, and is produced by introducing the gene into a host microorganism.
  • the host of the transformant of the present invention is not particularly limited, and any microorganism such as fungus (mold, fungus, yeast and the like), eubacteria (bacteria) and archaea can be used, but eubacteria are preferable.
  • eubacteria include, for example, Ralstonia genera, Cupriavidus genera, Wautersia genera, Aeromonas genera, Aeromonas genera, Escherichia genera, Alcaligenes genera, Pseudomonas genera.
  • the bacteria belonging to are mentioned as a preferred example.
  • bacteria belonging to the genus Lalstonia, Capriabidas, Aeromonas or Wautersia still more preferably bacteria belonging to the genus Capriabidus or Aeromonas, still more preferably Capribidas It is a bacterium belonging to the genus, particularly preferably Capriavidus necator (Cupriavidus necator), and most preferably Capriavidus necator H16 strain.
  • any method can be used as a method of introducing the mutant PHA synthetase gene of the present invention into a host microorganism.
  • the mutant PHA synthetase gene of the present invention may be introduced onto a chromosome, a plasmid, a DNA such as a megaplasmid carried by a microorganism serving as a host using known genetic recombination techniques, or A plasmid vector or artificial chromosome into which the gene has been introduced may be introduced into the host microorganism.
  • a method of introducing the gene onto a chromosome or megaplasmid carried by a microorganism is preferable, and a method of introducing the gene onto a chromosome held by a microorganism is more preferable.
  • a method of site-specific substitution or insertion of an arbitrary base sequence on DNA possessed by a microorganism, or a method of deleting an arbitrary nucleotide sequence in DNA possessed by a microorganism is widely known to those skilled in the art. It can be used in producing the transformant of the present invention. Although not particularly limited, as a representative method, a method using transposon and the mechanism of homologous recombination (Ohman et al., J. Bacteriol., Vol. 162: p.
  • the method for introducing the vector into the microorganism is not particularly limited, and examples thereof include the calcium chloride method, the electroporation method, the polyethylene glycol method, the spheroplast method and the like.
  • the gene can be linked to any expression regulatory sequence.
  • an expression control sequence is described as a sequence composed of a promoter and a Shine-Dalgarno sequence.
  • an expression regulatory sequence for example, the expression regulatory sequence (SEQ ID NO: 2) of the phaC1 gene of Capriavidas nekator or the expression regulatory sequence (SEQ ID NO: 3) of the phaP1 gene can be used.
  • lac promoter SEQ ID NO: 4
  • trp promoter SEQ ID NO: 5
  • lacUV 5 promoter SEQ ID NO: 6
  • trc promoter SEQ ID NO: 7
  • tic promoter SEQ ID NO: 6
  • the tac promoter SEQ ID NO: 9
  • lacN17 promoter SEQ ID NO: 10
  • the like can also be used as an expression regulatory sequence by linking it with the SD sequence (SEQ ID NO: 11) derived from Capriavidas nekator H16 strain.
  • PHA By culturing the transformant of the present invention, PHA can be produced by the transformant and PHA can be produced by recovering the obtained PHA.
  • the transformant is preferably cultured in a medium containing a carbon source, a nitrogen source which is a nutrient source other than the carbon source, inorganic salts, and other organic nutrient sources.
  • the carbon source is not particularly limited as long as it is a carbon source containing fats and oils and / or fatty acids that can be assimilated by the transformant of the present invention, and any carbon source can be used.
  • oils and fats such as palm oil, palm kernel oil, corn oil, coconut oil, olive oil, soybean oil, rapeseed oil, jatropha oil and their fractionated oils; lauric acid, oleic acid, stearic acid, palmitic acid, Examples thereof include fatty acids such as myristin acid and derivatives thereof.
  • nitrogen source examples include ammonia; ammonium salts such as ammonium chloride, ammonium sulfate and ammonium phosphate; peptone, meat extract, yeast extract and the like.
  • inorganic salts examples include potassium dihydrogen phosphate, disodium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride and the like.
  • organic nutrient sources include, for example, amino acids such as glycine, alanine, serine, threonine and proline; and vitamins such as vitamin B1, vitamin B12 and vitamin C.
  • conditions such as culture temperature, culture time, pH at the time of culture, and the like are the host microorganism, for example, Ralstonia, Capriabidas, Wautersia, Aeromonas, Escherichia, Alcaligenes.
  • the conditions may be those commonly used in the culture of microorganisms such as Pseudomonas, and are not particularly limited.
  • the type of PHA produced in the present invention is not particularly limited as long as it is a PHA copolymer containing 3HH as a monomer unit.
  • PHA obtained by polymerizing 3HH with one or more monomers selected from 2-hydroxyalkanoic acid having 4 to 16 carbon atoms, 3-hydroxyalkanoic acid (except 3HH) and 4-hydroxyalkanoic acid Copolymers are preferred, and P (3HB-co-3HH), which is a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid, is most preferred.
  • the type of PHA to be produced is the type of PHA synthetase gene carried by the microorganism used or introduced separately, the type of metabolic gene involved in PHA synthesis, the carbon source used for culture, and the like It can be appropriately selected depending on culture conditions and the like.
  • recovery of PHA from the cells is not particularly limited, and can be carried out by a known method.
  • PHA can be recovered by the following method. After completion of the culture, cells are separated from the culture solution by a centrifuge or the like, and the cells are washed with distilled water, methanol or the like and dried. PHA is extracted from the dried cells using an organic solvent such as chloroform. The cell components are removed from the organic solvent solution containing PHA by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to precipitate PHA. Furthermore, the supernatant is removed by filtration or centrifugation and dried to recover PHA.
  • the analysis of the monomer unit composition (mol%) such as 3HH unit contained in the obtained PHA can be carried out, for example, by gas chromatography, nuclear magnetic resonance method or the like.
  • the genetic manipulation described below can be performed with reference to the description of Molecular Cloning (Cold Spring Harbor Laboratory Press (1989)).
  • enzymes used for gene manipulation, cloning hosts and the like can be purchased from market suppliers and used according to the description.
  • the enzyme is not particularly limited as long as it can be used for genetic manipulation.
  • a plasmid for phaC1 gene disruption was prepared.
  • a DNA fragment (SEQ ID NO: 12) having a nucleotide sequence upstream and downstream of the phaC1 gene was obtained by PCR using synthetic oligo DNA.
  • the resulting DNA fragment was digested with restriction enzyme SwaI.
  • This DNA fragment was ligated with the vector pNS2X-sacB described in JP2007-259708, which was also digested with SwaI, to prepare a plasmid vector pNS2X-sacB-phaC1UL for gene disruption having a nucleotide sequence upstream and downstream from phaC1. did.
  • ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 strain was prepared using pNS2X-sacB-phaC1UL.
  • pNS2X-sacB-phaC1UL was introduced into E. coli strain S17-1 (ATCC 47055).
  • the resulting transformants were mixed and cultured on KNK 005 trc-pha J4b ⁇ pha Z1, 2, 6 (see WO 2015/115619) and Nutrient Agar medium (Difco) to conduct junctional transfer.
  • the resulting culture solution was collected on a Simmons agar medium containing 250 mg / L kanamycin (2 g / L sodium citrate, 5 g / L sodium chloride, 0.2 g / L magnesium sulfate heptahydrate, 1 g ammonium dihydrogenphosphate / l Inoculate L, 1 g / L of dipotassium hydrogen phosphate, agar 15 g / L, pH 6.8), and obtain a strain in which pNS2X-sacB-phaC1UL has been integrated on the chromosome of KNK005 trc-pha J4b ⁇ pha Z1, 2, 6 strain did.
  • This strain was cultured for two generations in Nutrient Broth medium (manufactured by Difco), diluted and applied onto Nutrient Agar medium containing 15% sucrose to obtain a strain from which the plasmid was detached. From the resulting transformants, one strain of which strain from the start codon to the stop codon of the phaC1 gene on the chromosome was deleted was isolated by PCR and DNA sequencer analysis. This gene-disrupted strain was designated as H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6.
  • the obtained H16 ⁇ pha C1 Ptrc-pha J4 b dZ1,2,6 is deleted from the start codon to the stop codon of the phaZ1 gene and phaZ6 gene on the chromosome of the Capribidas nekator H16 strain, and further from the 16th codon of the phaZ2 gene
  • This strain is a strain in which deletion to the stop codon has been carried out, expression of the R-body specific enoyl-CoA hydratase gene on the chromosome has been enhanced, and furthermore, the start codon to the stop codon of the phaC1 gene has been deleted.
  • the resulting pCUP2-Ptrp-NSDG is a plasmid that expresses NSDG under the trp promoter.
  • NSDG is a mutant PHA synthetase consisting of the amino acid sequence shown in SEQ ID NO: 14, wherein substitution of the amino acid sequence shown in SEQ ID NO: 1 with serine at asparagine 149 from the N-terminus, and 171 Two types of mutations have been introduced: substitution of aspartic acid with glycine.
  • Preparation Example 3 Preparation of pCUP2-Ptrp-NSDG-S389X PCR was performed using pCUP2-Ptrp-NSDG prepared in Preparation Example 2 as a template and the DNAs shown in SEQ ID NO: 15 and SEQ ID NO: 16 as primer pairs. Similarly, PCR was performed using the DNAs shown in SEQ ID NO: 17 and SEQ ID NO: 18 as primer pairs. Using the two types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 15 and SEQ ID NO: 18 as primer pairs, PCR was performed under the same conditions to obtain DNA fragments.
  • This DNA fragment was ligated with a DNA fragment obtained by digesting pCUP2 vector with MunI and SpeI using In-fusion HD Cloning Kit, and introduced into E. coli JM109 competent cells (Takara Bio).
  • the plasmid was recovered from each E. coli colony and the DNA sequence was confirmed to obtain pCUP2-Ptrp-NSDG-S389X.
  • X represents amino acids A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, T, V, W, or Y.
  • the obtained pCUP2-Ptrp-NSDG-S389X is a plasmid that expresses NSDG having a mutation in which the 389th serine from the N-terminus is substituted with X under the trp promoter.
  • PCR was performed using pCUP2-Ptrp-NSDG prepared in Preparation Example 2 as a template and the DNAs shown in SEQ ID NO: 15 and SEQ ID NO: 19 as primer pairs. Similarly, PCR was performed using the DNAs shown in SEQ ID NO: 20 and SEQ ID NO: 18 as primer pairs. Using the two types of DNA fragments obtained by the above PCR as templates and the DNAs shown in SEQ ID NO: 15 and SEQ ID NO: 18 as primer pairs, PCR was performed under the same conditions to obtain DNA fragments.
  • This DNA fragment was ligated with a DNA fragment obtained by digesting pCUP2 vector with MunI and SpeI using In-fusion HD Cloning Kit, and introduced into E. coli JM109 competent cells (Takara Bio).
  • the plasmid was recovered from each E. coli colony, and the DNA sequence was confirmed to obtain pCUP2-Ptrp-NSDG-L436X.
  • X represents amino acids A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, or Y.
  • the obtained pCUP2-Ptrp-NSDG-L436X is a plasmid that expresses NSDG having a mutation in which leucine at position 436 from the N-terminus is substituted with X under the trp promoter.
  • Preparation Example 5 Preparation of pCUP2-Ptrp-NSDG ⁇ CT5 PCR was performed using pCUP2-Ptrp-NSDG prepared in Preparation Example 2 as a template and the DNAs represented by SEQ ID NO: 15 and SEQ ID NO: 21 as primer pairs.
  • the obtained DNA fragment was ligated with a DNA fragment obtained by digesting pCUP2 vector with MunI and SpeI using In-fusion HD Cloning Kit to obtain pCUP2-Ptrp-NSDG ⁇ CT5.
  • the obtained pCUP2-Ptrp-NSDG ⁇ CT5 is a plasmid that expresses NSDG having a mutation in which 5 amino acid residues are deleted from the C-terminus under the trp promoter.
  • Preparation Example 6 Preparation of pCUP2-Ptrp-NSDG ⁇ CT10 PCR was carried out using pCUP2-Ptrp-NSDG prepared in Preparation Example 2 as a template and the DNAs shown in SEQ ID NO: 15 and SEQ ID NO: 22 as primer pairs.
  • the obtained DNA fragment was ligated with a DNA fragment prepared by digesting pCUP2 vector with MunI and SpeI using In-fusion HD Cloning Kit to obtain pCUP2-Ptrp-NSDG ⁇ CT10.
  • the obtained pCUP2-Ptrp-NSDG ⁇ CT10 is a plasmid that expresses NSDG having a mutation in which 10 amino acid residues are deleted from the C-terminus under the trp promoter.
  • Preparation Example 7 Preparation of pCUP2-Ptrp-NSDG ⁇ CT13 PCR was carried out using pCUP2-Ptrp-NSDG prepared in Preparation Example 2 as a template and the DNAs shown in SEQ ID NO: 15 and SEQ ID NO: 23 as primer pairs.
  • the obtained DNA fragment was ligated with a DNA fragment prepared by digesting pCUP2 vector with MunI and SpeI using In-fusion HD Cloning Kit to obtain pCUP2-Ptrp-NSDG ⁇ CT13.
  • the obtained pCUP2-Ptrp-NSDG ⁇ CT13 is a plasmid that expresses NSDG having a mutation in which 13 amino acid residues are deleted from the C-terminus under the trp promoter.
  • Preparation Example 8 Preparation of pCUP2-Ptrp-NSDG ⁇ CT15 PCR was carried out using pCUP2-Ptrp-NSDG prepared in Preparation Example 2 as a template and the DNAs shown in SEQ ID NO: 15 and SEQ ID NO: 24 as primer pairs.
  • the obtained DNA fragment was ligated with a DNA fragment obtained by digesting pCUP2 vector with MunI and SpeI using In-fusion HD Cloning Kit to obtain pCUP2-Ptrp-NSDG ⁇ CT15.
  • the obtained pCUP2-Ptrp-NSDG ⁇ CT15 is a plasmid that expresses NSDG having a mutation in which 15 amino acid residues are deleted from the C-terminus under the trp promoter.
  • pCUP2-Ptrp-NSDG ⁇ CT20 PCR was performed using the pCUP2-Ptrp-NSDG prepared in Preparation Example 2 as a template and the DNAs shown in SEQ ID NO: 15 and SEQ ID NO: 25 as primer pairs.
  • the obtained DNA fragment was ligated with a DNA fragment prepared by digesting pCUP2 vector with MunI and SpeI using In-fusion HD Cloning Kit to obtain pCUP2-Ptrp-NSDG ⁇ CT20.
  • the obtained pCUP2-Ptrp-NSDG ⁇ CT20 is a plasmid that expresses NSDG having a mutation in which 20 amino acid residues are deleted from the C-terminus under the trp promoter.
  • the bacterial fluid was mixed with the pCUP2-Ptrp-NSDG plasmid solution prepared in Preparation Example 2 and injected into a cuvette for electroporation. Electroporation was performed using a MicroPulser electroporator (Bio-Rad) under conditions of a voltage of 1.5 kV, a resistance of 800 ⁇ , and a current of 25 ⁇ F. After electroporation, the cell solution was collected, 5 mL of Nutrient Broth medium was added, and the cells were cultured at 30 ° C. for 3 hours. The obtained culture solution was applied to Nutrient Agar medium containing 100 mg / L kanamycin sulfate. After culturing at 30 ° C.
  • a strain into which the plasmid had been introduced was obtained from the obtained colonies.
  • the obtained strain was designated as H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG strain.
  • Production Example 15 Preparation of H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG ⁇ CT13 Strain
  • PCUP2-Ptrp-NSDG ⁇ CT13 prepared in Production Example 7 was introduced as a parent strain.
  • the obtained strain was designated as H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG ⁇ CT13 strain.
  • Production Example 16 Preparation of H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG ⁇ CT15 Strain
  • PCUP2-Ptrp-NSDG ⁇ CT15 prepared in Production Example 8 was introduced as a parent strain.
  • the obtained strain was designated as H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG ⁇ CT15 strain.
  • Production Example 17 Preparation of H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG ⁇ CT20 Strain
  • PCUP2-Ptrp-NSDG ⁇ CT20 prepared in Production Example 9 was introduced as a parent strain.
  • the obtained strain was designated as H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG ⁇ CT20 strain.
  • the gas chromatograph used was GC-17A manufactured by Shimadzu Corporation, and the capillary column used was NEUTRA BOND-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 ⁇ m) manufactured by GL Science Inc. He was used as a carrier gas, the column inlet pressure was 100 kPa, and 1 ⁇ L of the sample was injected. The temperature was raised at a rate of 8 ° C./min from the initial temperature of 50 ° C. to 200 ° C., and further raised at a rate of 30 ° C./min from 200 ° C. to 290 ° C.
  • composition of the seed culture medium is 10 g / L meat extract, 10 g / L bacto tryptone, 2 g / L yeast extract , 9 g / L sodium dihydrogen phosphate 12 hydrate, 1.5 g / L dipotassium hydrogen phosphate.
  • the composition of the PHA production medium is 11 g / L disodium hydrogen phosphate dodecahydrate, 1.9 g / L dipotassium hydrogen phosphate, 1.3 g / L ammonium sulfate, 5 mL / L magnesium solution, 1 mL / L trace metal salt It was a solution.
  • the magnesium solution was prepared by dissolving 200 g / L magnesium sulfate heptahydrate in water.
  • the trace metal salt solution is 0.1N hydrochloric acid, 0.218 g / L cobalt chloride hexahydrate, 16.2 g / L iron (III) chloride hexahydrate, 10.3 g / L calcium chloride dihydrate It was prepared by dissolving 0.118 g / L nickel chloride hexahydrate, 0.156 g / L copper sulfate pentahydrate.
  • PHA production cultures were performed in flasks. 50 mL of PHA production medium was placed in a 500 mL shake flask. Immediately before inoculation, 250 ⁇ L of a magnesium solution, 50 ⁇ L of a trace metal solution, and 1 g of palm kernel oil were added. After preparation of the medium, 500 ⁇ L of the preculture liquid was inoculated into a shake flask, and shake culture was performed at 30 ° C. for 72 hours. After completion of the culture, the cells were recovered from 10 mL of the culture solution, washed with ethanol, and then vacuum dried at 60 ° C. to obtain dry cells containing PHA, and the dry cell weight was measured. The results of dry cell weight and 3HH ratio are shown in Table 1.
  • the serine at position 389 of the amino acid sequence shown by SEQ ID NO: 14 is aspartic acid (D), glutamic acid (E), glycine (G), histidine (H), lysine (K), asparagine N), 9 kinds of variants (Examples 1 to 9) substituted with proline (P), arginine (R) or tryptophan (W) show a decrease in 3HH ratio compared to Comparative Example 1
  • an increase in 3HH ratio was observed in four variants (Examples 10 to 13) in which the 389th serine was substituted with cysteine (C), isoleucine (I), threonine (T), or valine (V).
  • PHA synthetase having a mutation in which serine at position 389 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with aspartic acid, glutamic acid, glycine, histidine, lysine, asparagine, proline, arginine or tryptophan is A PHA synthetase which is useful for producing PHA having a low 3HH ratio while maintaining polymer productivity, and which has a mutation in which serine at position 389 of the amino acid sequence is replaced with cysteine, isoleucine, threonine or valine Is found to be useful for producing PHA having a high 3HH ratio while maintaining polymer productivity.
  • leucine at position 436 of the amino acid sequence shown by SEQ ID NO: 14 is aspartic acid (D), glutamic acid (E), glycine (G), histidine (H), lysine (K), proline (P)
  • mutants Comparative examples 8 to 11, 13, 15 to 18 substituted with glutamine (Q), arginine (R), or serine (S)
  • dry cells compared to comparative example 1 The weight is greatly reduced, and it is considered that the polymer productivity is reduced.
  • the 436th leucine is substituted with alanine (A), cysteine (C), phenylalanine (F), asparagine (N), threonine (T), tryptophan (W) or tyrosine (Y)
  • A alanine
  • C cysteine
  • F phenylalanine
  • N asparagine
  • T threonine
  • W tryptophan
  • Y tyrosine
  • PHA synthetase having a mutation in which leucine at position 436 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with alanine, cysteine, phenylalanine, asparagine, threonine, tryptophan or tyrosine maintains polymer productivity. It is useful to produce PHA with low 3HH ratio as it is, and a PHA synthetase having a mutation in which leucine at position 436 of the amino acid sequence is substituted by valine has high 3HH ratio while maintaining polymer productivity. It proves to be useful for producing PHA.
  • H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG ⁇ C5, ⁇ C10, ⁇ C13, ⁇ C15, or ⁇ C20 strain for PHA production Prepared in Production Examples 13 to 17 H16 ⁇ phaC1 Ptrc-phaJ4b dZ1,2,6 / pCUP2-Ptrp-NSDG ⁇ C5, ⁇ C10, ⁇ C13, ⁇ C15, or ⁇ C20 was cultured in the same manner as in Comparative Example 1, and the dry cell weight and 3HH ratio were determined. analyzed. The results are shown in Table 3.
  • PHA synthetase having a mutation in which an appropriate number of amino acid residues are deleted from the C-terminus of the amino acid sequence shown in SEQ ID NO: 1 produces PHA with a low 3HH ratio while maintaining polymer productivity. It is found to be useful for

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PHAの生産性を維持したまま、3HH比率が高い又は低いPHA共重合体の製造を実現する変異型PHA合成酵素の提供。配列番号1で示されるアミノ酸配列と85%以上の配列同一性を示し、かつ、下記(a)~(c)のいずれか1以上の変異を含むアミノ酸配列を有する、変異型ポリヒドロキシアルカン酸合成酵素。 変異(a):配列番号1で示されるアミノ酸配列のN末端から389番目のセリンが、セリン以外のアミノ酸に置換された変異 変異(b):配列番号1で示されるアミノ酸配列のN末端から436番目のロイシンが、ロイシン以外のアミノ酸に置換された変異 変異(c):配列番号1で示されるアミノ酸配列のC末端から11個以上19個以下のアミノ酸残基が欠失された変異

Description

変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法
 本発明は、変異型ポリヒドロキシアルカン酸合成酵素、該酵素をコードする遺伝子、該遺伝子を有する形質転換体、及び該形質転換体を用いたポリヒドロキシアルカン酸の製造方法に関する。
 ポリヒドロキシアルカン酸(Polyhydroxyalkanoate;以下、「PHA」と略す)は、多くの微生物種の細胞内にエネルギー貯蔵物質として生産、蓄積される熱可塑性ポリエステルである。微生物によって様々な天然の炭素源から生産されるPHAは、土中や水中の微生物により完全に生分解される環境調和型のプラスチックである。
 PHAとして、3-ヒドロキシ酪酸(3-hydroxybutyrate;以下、「3HB」と略す)のホモポリマーであるポリヒドロキシブチレート(Poly-3-hydroxybutyrate;以下、「PHB」と略す)が知られているが、PHBは高結晶性であり、結晶化度が高いため硬くて脆く、また、溶融加工性が低いという問題点を有している。
 PHBの脆性や溶融加工性が改善されたPHAとしては、3HBと3-ヒドロキシヘキサン酸(3-hydroxyhexanoate;以下、「3HH」と略す)の共重合ポリエステルPoly(3HB-co-3HH)(以下、「PHBH」と略す)が報告されている。PHBHは、3HHをモノマーユニットとして有することで、PHBと比べて結晶化度が低くなり、しやなかで柔らかい物性を有する共重合体である。
 PHBHの製造方法としては、土壌細菌カプリアヴィダス ネカトール(Cupriavidus necator)を宿主としてアエロモナス キャビエ(Aeromonas caviae)由来のPHA合成酵素を導入した形質転換体を用いた発酵生産によるものが報告されているが、PHBHの柔軟性を高めるため、PHBHにおける3HH比率を高める検討が行なわれている。
 非特許文献1及び2では、PHBHにおける3HH比率を高めるために、PHA合成酵素に変異を導入する方法が検討されている。具体的には、非特許文献1では、A.caviae由来のPHA合成酵素に対し、149番目のアスパラギンのセリンへの置換、または、171番目のアスパラギン酸のグリシンへの置換という変異を導入することによって、PHA合成酵素の活性と3HH-CoAに対する基質特異性が向上して、最大18モル%の3HH比率を有するPHBHを製造できることが報告されている。
 さらに非特許文献2では、この二つの変異を重複させたPHA合成酵素(以下、「NSDG」と略す)によって、さらに3HH比率の高いPHBHを生産できることが報告されている。
T.Kichise,S.Taguchi,Y.Doi,Appl.Environ.Microbiol.,68,pp.2411-2419(2002) T.Tsuge,S.Watanabe,D.Shimada,H.Abe,Y.Doi,S.Taguchi,FEMS Microbiol.Lett.,277,pp.217-222(2007)
 現在、形質転換体の培養によって生産できるPHA共重合体の3HH比率は限定的である。また好ましい物性を有するPHAを製造するためには、3HH比率は高いほど良いとは限らないため、3HH比率を高位又は低位に自在に調節する技術が必要である。このため、3HH比率がより高い又は低いPHA共重合体を製造できるPHA合成酵素ライブラリーの構築が望まれている。
 そこで、本発明は、PHAの生産性を維持したまま、3HH比率が高い又は低いPHA共重合体の製造を実現する変異型PHA合成酵素、該酵素をコードする遺伝子、該遺伝子を有する形質転換体、及び、該形質転換体を用いたPHAの製造方法を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、PHA合成酵素の389番目のセリンに対する変異導入、436番目のロイシンに対する変異導入、又は、C末端領域の欠失によって、PHAの生産性を維持したまま、3HH比率が異なるPHA共重合体を製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、配列番号1で示されるアミノ酸配列と85%以上の配列同一性を示し、かつ、下記(a)~(c)のいずれか1以上の変異を含むアミノ酸配列を有する、変異型ポリヒドロキシアルカン酸合成酵素である。
 変異(a):配列番号1で示されるアミノ酸配列のN末端から389番目のセリンが、セリン以外のアミノ酸に置換された変異
 変異(b):配列番号1で示されるアミノ酸配列のN末端から436番目のロイシンが、ロイシン以外のアミノ酸に置換された変異
 変異(c):配列番号1で示されるアミノ酸配列のC末端から11個以上19個以下のアミノ酸残基が欠失された変異。
 好ましくは、変異(a)が、配列番号1に示すアミノ酸配列のN末端から389番目のセリンがシステイン、イソロイシン、トレオニン又はバリンに置換された変異である。また、好ましくは、変異(a)が、配列番号1に示すアミノ酸配列のN末端から389番目のセリンがアスパラギン酸、グルタミン酸、グリシン、ヒスチジン、リジン、アスパラギン、プロリン、アルギニン又はトリプトファンに置換された変異である。
 好ましくは、変異(b)が、配列番号1に示すアミノ酸配列のN末端から436番目のロイシンがバリンに置換された変異である。また、好ましくは、変異(b)が、配列番号1に示すアミノ酸配列のN末端から436番目のロイシンがアラニン、システイン、フェニルアラニン、アスパラギン、トレオニン、トリプトファン又はチロシンに置換された変異である。
 好ましくは、変異(c)が、配列番号1に示すアミノ酸配列のC末端から12個以上19個以下のアミノ酸残基が欠失された変異である。
 本発明の変異型ポリヒドロキシアルカン酸合成酵素は、配列番号1に示すアミノ酸配列のN末端から149番目のアスパラギンがセリンに置換された変異をさらに含むアミノ酸配列を有することが好ましく、また、配列番号1に示すアミノ酸配列のN末端から171番目のアスパラギン酸がグリシンに置換された変異をさらに含むアミノ酸配列を有することが好ましい。
 本発明はまた、前記変異型ポリヒドロキシアルカン酸合成酵素をコードする遺伝子にも関する。
 さらに本発明は、前記遺伝子を有する形質転換体にも関し、好ましくは宿主が真正細菌であり、より好ましくは真正細菌がカプリアビダス属に属する細菌であり、さらに好ましくはカプリアビダス ネカトールであり、よりさらに好ましくはカプリアビダス ネカトールH16である。
 さらにまた、本発明は、前記形質転換体を培養する工程を含む、ポリヒドロキシアルカン酸の製造方法にも関する。好ましくは、ポリヒドロキシアルカン酸が、3-ヒドロキシヘキサン酸をモノマーユニットとして含有する。より好ましくは、ポリヒドロキシアルカン酸が、3-ヒドロキシ酪酸と3-ヒドロキシヘキサン酸との共重合体である。
 本発明によれば、PHAの生産性を維持したまま、3HH比率が高い又は低いPHA共重合体の製造を実現する変異型PHA合成酵素、該酵素をコードする遺伝子、及び該遺伝子を有する形質転換体を提供することができる。また、該形質転換体を培養することにより、PHAの生産性を低下させることなく、3HH比率が高い又は低いPHA共重合体を発酵生産することが可能となる。
 以下に本発明を詳細に説明する。
 (変異型PHA合成酵素)
 本発明に係る変異型PHA合成酵素は、配列番号1で示されるアミノ酸配列と85%以上の配列同一性を示し、かつ、下記(a)~(c)のいずれか1以上の変異を含むアミノ酸配列を有するものである。また、本発明は、該変異型PHA合成酵素をコードする遺伝子(以下、「変異型PHA合成酵素遺伝子」と略す)も提供する。
 本発明の変異型PHA合成酵素は、PHAの生産性を維持したまま、3HH比率が高い又は低いPHA共重合体の製造を実現するものであるが、本発明の変異型PHA合成酵素により製造されるPHA共重合体の3HH比率が高い又は低いとは、本発明の特徴たる変異を導入していないこと以外は本発明の変異型PHA合成酵素と同じアミノ酸配列を有するPHA合成酵素が同じ条件下で製造し得るPHA共重合体の3HH比率と比較して、相対的に高い又は低いことを意味する。
 本発明の変異型PHA合成酵素は、PHA合成活性を有する酵素であって、配列番号1で示されるアミノ酸配列に対し85%以上の配列同一性を有するアミノ酸配列を有する。配列番号1で示されるアミノ酸配列は、Aeromonas caviae由来のPHA合成酵素PhaCAcのアミノ酸配列である。本発明の変異型PHA合成酵素は、上記配列同一性を満足する範囲において、下記(a)~(c)の変異以外の変異を有するものであってよい。
 本発明の変異型PHA合成酵素は、異なる機能を有する異種タンパク質と結合して融合タンパク質を形成したものであってもよい。この場合、異種タンパク質のアミノ酸配列は、上記配列同一性を算出する際に考慮しない。
 本発明の変異型PHA合成酵素において、配列番号1で示されるアミノ酸配列に対する配列同一性は、85%以上であればよいが、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、よりさらに好ましくは98%以上、特に好ましくは99%以上である。
 また、本発明の変異型PHA合成酵素遺伝子の塩基配列については、本発明の変異型PHA合成酵素を構成するアミノ酸配列をコードする塩基配列である限り、塩基配列の配列同一性は限定されない。
 本発明の変異型PHA合成酵素および変異型PHA合成酵素遺伝子の由来については、特に限定されないが、Aeromonas属由来であることが好ましく、Aeromonas caviae由来であることがより好ましい。
 次に、本発明の変異型PAH合成酵素が含む変異(a)~(c)について説明する。本発明の変異型PAH合成酵素は、変異(a)~(c)のうちいずれか1つを含むものであってもよいし、これら変異の2以上を含むものであってもよい。
 変異(a):配列番号1で示されるアミノ酸配列において、N末端から389番目のセリンが、セリン以外のアミノ酸に置換される。置換後のアミノ酸は、PHA生産性及び、生産されるPHAの3HH比率を考慮して選択することができる。PHA生産性を維持したまま、3HH-CoA特異性を低下させ、3HH比率が低いPHAを生産するには、389番目のセリンが、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、リジン、アスパラギン、プロリン、アルギニン、又は、トリプトファンに置換された変異が好ましく、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、リジン、プロリン、アルギニン、又は、トリプトファンに置換された変異がより好ましく、アスパラギン酸、グルタミン酸、リジン、プロリン、又は、アルギニンに置換された変異がさらに好ましい。一方、PHA生産性を維持したまま、3HH-CoA特異性を上昇させ、3HH比率が高いPHAを生産するには、389番目のセリンが、システイン、イソロイシン、トレオニン、又は、バリンに置換された変異が好ましく、システイン、トレオニン、又は、バリンに置換された変異がより好ましい。
 変異(b):配列番号1で示されるアミノ酸配列において、N末端から436番目のロイシンが、ロイシン以外のアミノ酸に置換される。置換後のアミノ酸は、PHA生産性及び、生産されるPHAの3HH比率を考慮して選択することができる。PHA生産性を維持したまま、3HH-CoA特異性を低下させ、3HH比率が低いPHAを生産するには、436番目のロイシンが、アラニン、システイン、フェニルアラニン、アスパラギン、トレオニン、トリプトファン、又は、チロシンに置換された変異が好ましく、アラニン、システイン、フェニルアラニン、又は、トレオニンに置換された変異がより好ましく、アラニン又はトレオニンに置換された変異がさらに好ましい。一方、PHA生産性を維持したまま、3HH-CoA特異性を上昇させ、3HH比率が高いPHAを生産するには、436番目のロイシンが、バリンに置換された変異が好ましい。
 変異(c):配列番号1で示されるアミノ酸配列において、C末端領域のアミノ酸配列が欠失される。これにより、PHA生産性を維持したまま、3HH-CoA特異性を低下させ、3HH比率が低いPHAを生産することができる。欠失させるアミノ酸残基の個数の上限としては、C末端から19個のアミノ酸残基が好ましく、18個のアミノ酸残基がより好ましく、17個のアミノ酸残基がさらに好ましく、16個のアミノ酸残基が特に好ましく、15個のアミノ酸残基が最も好ましい。欠失させるアミノ酸残基の個数の下限としては、C末端から11個のアミノ酸残基が好ましく、12個のアミノ酸残基がより好ましく、13個のアミノ酸残基がさらに好ましい。
 本発明の変異型PHA合成酵素のアミノ酸配列は、PHA生産性を高めるため、配列番号1で示されるアミノ酸配列において、N末端から149番目のアスパラギンがセリンに置換された変異をさらに含むこと、及び/又は、N末端から171番目のアスパラギン酸がグリシンに置換された変異をさらに含むことが好ましい。
 (3HH単位含有共重合PHAを生産する形質転換体)
 本発明の形質転換体は、本発明の変異型PHA合成酵素をコードする遺伝子を有する形質転換体であり、該遺伝子を宿主の微生物に導入することにより製造される。
 本発明の形質転換体の宿主としては特に限定はなく、真菌(カビ、きのこ、酵母など)、真正細菌(バクテリア)、古細菌など任意の微生物を利用できるが、真正細菌が好ましい。当該真正細菌としては、例えば、ラルストニア(Ralstonia)属、カプリアビダス(Cupriavidus)属、ワウテルシア(Wautersia)属、アエロモナス(Aeromonas)属、エシェリキア(Escherichia)属、アルカリゲネス(Alcaligenes)属、シュードモナス(Pseudomonas)属等に属する細菌が好ましい例として挙げられる。安全性及び生産性の観点から、より好ましくはラルストニア属、カプリアビダス属、アエロモナス属、又は、ワウテルシア属に属する細菌であり、さらに好ましくはカプリアビダス属又はアエロモナス属に属する細菌であり、さらにより好ましくはカプリアビダス属に属する細菌であり、特に好ましくはカプリアビダス ネカトール(Cupriavidus necator)であり、最も好ましくはカプリアビダス ネカトールH16株である。
 本発明の形質転換体を製造するにあたって、本発明の変異型PHA合成酵素遺伝子を宿主の微生物に導入する方法としては、任意の方法を利用することができる。一例として、公知の遺伝子組換え技術を用いて、本発明の変異型PHA合成酵素遺伝子を、宿主となる微生物が保有する染色体、プラスミド、メガプラスミドなどのDNA上に導入してもよいし、また、該遺伝子を導入したプラスミドベクターまたは人工染色体を宿主の微生物に導入してもよい。しかし、導入された遺伝子の保持という観点から、微生物が保有する染色体あるいはメガプラスミド上に該遺伝子を導入する方法が好ましく、微生物が保有する染色体上に該遺伝子を導入する方法がより好ましい。
 微生物が保有するDNA上に任意の塩基配列を部位特異的に置換又は挿入する方法、または、微生物が保有するDNA中の任意の塩基配列を欠失させる方法は当業者に広く知られており、本発明の形質転換体を製造する際に使用できる。特に限定されないが、代表的な方法としては、トランスポゾンと相同組換えの機構を利用した方法(Ohman等,J.Bacteriol.,vol.162:p.1068(1985))、相同組換えの機構によって起こる部位特異的な組み込みと第二段階の相同組換えによる脱落を原理とした方法(Noti等,Methods Enzymol.,vol.154,p.197(1987))、Bacillus subtilis由来のsacB遺伝子を共存させて、第二段階の相同組換えによって遺伝子が脱落した微生物株をシュークロース添加培地耐性株として容易に単離する方法(Schweizer,Mol.Microbiol.,vol.6,p.1195(1992);Lenz等,J.Bacteriol.,vol.176,p.4385(1994))等が挙げられる。また、微生物へのベクターの導入方法としても特に限定されないが、例えば、塩化カルシウム法、エレクトロポレーション法、ポリエチレングリコール法、スフェロプラスト法等が挙げられる。
 なお、遺伝子クローニングや遺伝子組み換え技術については、Sambrook,J. et al.,Molecular Cloning,A Laboratory Manual,Cold Spring Harbor Laboratory Press(1989又は2001)などに記載される技術を利用することができる。
 本発明の変異型PHA合成酵素遺伝子を導入するにあたっては、該遺伝子を任意の発現調節配列に連結することができる。本明細書において、発現調節配列は、プロモーターとシャイン・ダルガノ配列から構成される配列として記載する。このような発現調節配列としては、例えばカプリアビダス ネカトールのphaC1遺伝子の発現調節配列(配列番号2)やphaP1遺伝子の発現調節配列(配列番号3)が使用できる。または、大腸菌に由来するlacプロモーター(配列番号4)やtrpプロモーター(配列番号5)、あるいは人工的に作製されたlacUV5プロモーター(配列番号6)、trcプロモーター(配列番号7)、ticプロモーター(配列番号8)、tacプロモーター(配列番号9)、lacN17プロモーター(配列番号10)等を、カプリアヴィダス ネカトールH16株由来のSD配列(配列番号11)と連結し、発現調節配列として使用することもできる。
 (PHAの製造方法)
 本発明の形質転換体を培養することで、該形質転換体にPHAを生産させ、得られたPHAを回収することでPHAを製造することができる。
 本発明によるPHAの生産においては、炭素源、炭素源以外の栄養源である窒素源、無機塩類、そのほかの有機栄養源を含む培地において、前記形質転換体を培養することが好ましい。
 炭素源としては、本発明の形質転換体が資化可能な、油脂および/または脂肪酸などを含む炭素源であれば特に限定されず、どのような炭素源でも使用可能である。具体的には、パーム油、パーム核油、コーン油、やし油、オリーブ油、大豆油、菜種油、ヤトロファ油などの油脂やその分画油類;ラウリン酸、オレイン酸、ステアリン酸、パルミチン酸、ミリンスチン酸などの脂肪酸やそれらの誘導体等が挙げられる。
 窒素源としては、例えば、アンモニア;塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩;ペプトン、肉エキス、酵母エキス等が挙げられる。
 無機塩類としては、例えば、リン酸2水素カリウム、リン酸水素2ナトリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。
 そのほかの有機栄養源としては、例えば、グリシン、アラニン、セリン、スレオニン、プロリン等のアミノ酸;ビタミンB1、ビタミンB12、ビタミンC等のビタミン等が挙げられる。
 本発明の形質転換体を培養する際の、培養温度、培養時間、培養時pH、培地等の条件は、宿主の微生物、例えばラルストニア属、カプリアビダス属、ワウテルシア属、アエロモナス属、エシェリキア属、アルカリゲネス属、シュードモナス属等の微生物の培養で通常使用されるような条件であってよく、特に限定されない。
 本発明において生産されるPHAの種類としては、3HHをモノマーユニットとして含有するPHA共重合体であれば特に限定されない。なかでも、炭素数4~16の2-ヒドロキシアルカン酸、3-ヒドロキシアルカン酸(3HHを除く)および4-ヒドロキシアルカン酸から選択される1種以上のモノマーと3HHとを重合して得られるPHA共重合体が好ましく、3-ヒドロキシ酪酸と3-ヒドロキシヘキサン酸との共重合体であるP(3HB-co-3HH)が最も好ましい。なお、生産されるPHAの種類は、使用する微生物の保有する又は別途導入されたPHA合成酵素遺伝子の種類や、PHA合成に関与する代謝系の遺伝子の種類、培養に使用する炭素源、その他の培養条件などによって適宜選択しうる。
 本発明において、形質転換体を培養した後、菌体からのPHAの回収は、特に限定されず、公知の方法によって実施することができる。一例として、次のような方法によってPHAを回収することができる。培養終了後、培養液から遠心分離機等で菌体を分離し、その菌体を蒸留水、メタノール等により洗浄し、乾燥させる。この乾燥菌体から、クロロホルム等の有機溶剤を用いてPHAを抽出する。このPHAを含んだ有機溶剤溶液から、濾過等によって菌体成分を除去し、そのろ液にメタノールやヘキサン等の貧溶媒を加えてPHAを沈殿させる。さらに、濾過や遠心分離によって上澄み液を除去し、乾燥させてPHAを回収する。
 得られたPHAに含まれる3HH単位等のモノマー単位組成(mol%)の分析は、例えば、ガスクロマトグラフ法や核磁気共鳴法等により実施することができる。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 以下で説明する遺伝子操作は、Molecular Cloning(Cold Spring Harbor Laboratory Press (1989))の記載を参照して実施することができる。また、遺伝子操作に使用する酵素、クローニング宿主等は、市場の供給者から購入し、その説明に従い使用することができる。なお、前記酵素としては、遺伝子操作に使用できるものであれば特に限定されない。
 (製造例1)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株の作製
 まず、phaC1遺伝子破壊用プラスミドを作製した。合成オリゴDNAを用いたPCRにより、phaC1遺伝子より上流および下流の塩基配列を有するDNA断片(配列番号12)を得た。得られたDNA断片を制限酵素SwaIで消化した。このDNA断片を、同じくSwaIで消化した特開2007-259708号公報に記載のベクターpNS2X-sacBと連結し、phaC1より上流および下流の塩基配列を有する遺伝子破壊用プラスミドベクターpNS2X-sacB-phaC1ULを作製した。
 次に、pNS2X-sacB-phaC1ULを用いてΔphaC1 Ptrc-phaJ4b dZ1,2,6株を作製した。pNS2X-sacB-phaC1ULを大腸菌S17-1株(ATCC47055)に導入した。得られた形質転換体を、KNK005 trc-phaJ4b ΔphaZ1,2,6株(国際公開第2015/115619号参照)とNutrient Agar培地(Difco社製)上で混合培養して接合伝達を行った。
 得られた培養液を、250mg/Lのカナマイシンを含むシモンズ寒天培地(クエン酸ナトリウム2g/L、塩化ナトリウム5g/L、硫酸マグネシウム・7水塩0.2g/L、りん酸二水素アンモニウム1g/L、りん酸水素二カリウム1g/L、寒天15g/L、pH6.8)に播種し、pNS2X-sacB-phaC1ULがKNK005 trc-phaJ4b ΔphaZ1,2,6株の染色体上に組み込まれた株を取得した。この株をNutrient Broth培地(Difco社製)で2世代培養した後、15%のショ糖を含むNutrient Agar培地上に希釈して塗布し、プラスミドが脱落した株を取得した。得られた形質転換体から、PCRおよびDNAシーケンサーによる解析により染色体上のphaC1遺伝子の開始コドンから終止コドンまでを欠失した菌株1株を単離した。この遺伝子破壊株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株と命名した。
 得られたH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株は、カプリアビダス ネカトールH16株の染色体上のphaZ1遺伝子及びphaZ6遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上のR体特異的エノイル-CoAヒドラターゼ遺伝子の発現が強化され、さらにphaC1遺伝子の開始コドンから終止コドンまでを欠失した菌株である。
 (製造例2)pCUP2-Ptrp-NSDGの作製
 合成オリゴDNA等を用いたPCRにより、配列番号13で示される塩基配列を有するDNA断片を増幅した。取得したDNA断片を、特開2007-259708号公報記載のpCUP2ベクターをMunIとSpeIで消化したDNA断片と、In-fusion HD Cloning Kit(タカラバイオ)にて連結し、pCUP2-Ptrp-NSDGを得た。
 得られたpCUP2-Ptrp-NSDGは、trpプロモーター下でNSDGを発現するプラスミドである。
 NSDGとは、配列番号14で示されるアミノ酸配列からなる変異型PHA合成酵素であって、配列番号1で示されるアミノ酸配列に対し、N末端から149番目のアスパラギンのセリンへの置換、及び、171番目のアスパラギン酸のグリシンへの置換という2種類の変異が導入されたものである。
 (製造例3)pCUP2-Ptrp-NSDG-S389Xの作製
 製造例2で作製したpCUP2-Ptrp-NSDGを鋳型とし、配列番号15および配列番号16で示したDNAをプライマーペアとして、PCRを行った。同様に配列番号17および配列番号18で示したDNAをプライマーペアとして、PCRを行った。上記PCRで得られた2種類のDNA断片を鋳型とし、配列番号15および配列番号18で示したDNAをプライマーペアとして、同様の条件でPCRを行い、DNA断片を取得した。このDNA断片を、pCUP2ベクターをMunIとSpeIで消化したDNA断片と、In-fusion HD Cloning Kitにて連結し、大腸菌JM109コンピテントセル(タカラバイオ)に導入した。各大腸菌コロニーからプラスミドを回収し、DNA配列を確認することにより、pCUP2-Ptrp-NSDG-S389Xを取得した。ここで、Xは、アミノ酸A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,T,V,W,又は、Yを表す。得られたpCUP2-Ptrp-NSDG-S389Xは、trpプロモーター下で、N末端から389番目のセリンがXに置換された変異を有するNSDGを発現するプラスミドである。
 (製造例4)pCUP2-Ptrp-NSDG-L436Xの作製
 製造例2で作製したpCUP2-Ptrp-NSDGを鋳型とし、配列番号15および配列番号19で示したDNAをプライマーペアとして、PCRを行った。同様に配列番号20および配列番号18で示したDNAをプライマーペアとして、PCRを行った。上記PCRで得られた2種類のDNA断片を鋳型とし、配列番号15および配列番号18で示したDNAをプライマーペアとして、同様の条件でPCRを行い、DNA断片を取得した。このDNA断片を、pCUP2ベクターをMunIとSpeIで消化したDNA断片と、In-fusion HD Cloning Kitにて連結し、大腸菌JM109コンピテントセル(タカラバイオ)に導入した。各大腸菌コロニーからプラスミドを回収し、DNA配列を確認することにより、pCUP2-Ptrp-NSDG-L436Xを取得した。ここで、Xは、アミノ酸A,C,D,E,F,G,H,I,K,M,N,P,Q,R,S,T,V,W,又は、Yを表す。得られたpCUP2-Ptrp-NSDG-L436Xは、trpプロモーター下で、N末端から436番目のロイシンがXに置換された変異を有するNSDGを発現するプラスミドである。
 (製造例5)pCUP2-Ptrp-NSDGΔCT5の作製
 製造例2で作製したpCUP2-Ptrp-NSDGを鋳型とし、配列番号15および配列番号21で示したDNAをプライマーペアとして、PCRを行った。得られたDNA断片を、pCUP2ベクターをMunIとSpeIで消化したDNA断片と、In-fusion HD Cloning Kitにて連結し、pCUP2-Ptrp-NSDGΔCT5を取得した。得られたpCUP2-Ptrp-NSDGΔCT5は、trpプロモーター下で、C末端から5個のアミノ酸残基が欠失された変異を有するNSDGを発現するプラスミドである。
 (製造例6)pCUP2-Ptrp-NSDGΔCT10の作製
 製造例2で作製したpCUP2-Ptrp-NSDGを鋳型とし、配列番号15および配列番号22で示したDNAをプライマーペアとして、PCRを行った。得られたDNA断片を、pCUP2ベクターをMunIとSpeIで消化したDNA断片と、In-fusion HD Cloning Kitにて連結し、pCUP2-Ptrp-NSDGΔCT10を取得した。得られたpCUP2-Ptrp-NSDGΔCT10は、trpプロモーター下で、C末端から10個のアミノ酸残基が欠失された変異を有するNSDGを発現するプラスミドである。
 (製造例7)pCUP2-Ptrp-NSDGΔCT13の作製
 製造例2で作製したpCUP2-Ptrp-NSDGを鋳型とし、配列番号15および配列番号23で示したDNAをプライマーペアとして、PCRを行った。得られたDNA断片を、pCUP2ベクターをMunIとSpeIで消化したDNA断片と、In-fusion HD Cloning Kitにて連結し、pCUP2-Ptrp-NSDGΔCT13を取得した。得られたpCUP2-Ptrp-NSDGΔCT13は、trpプロモーター下で、C末端から13個のアミノ酸残基が欠失された変異を有するNSDGを発現するプラスミドである。
 (製造例8)pCUP2-Ptrp-NSDGΔCT15の作製
 製造例2で作製したpCUP2-Ptrp-NSDGを鋳型とし、配列番号15および配列番号24で示したDNAをプライマーペアとして、PCRを行った。得られたDNA断片を、pCUP2ベクターをMunIとSpeIで消化したDNA断片と、In-fusion HD Cloning Kitにて連結し、pCUP2-Ptrp-NSDGΔCT15を取得した。得られたpCUP2-Ptrp-NSDGΔCT15は、trpプロモーター下で、C末端から15個のアミノ酸残基が欠失された変異を有するNSDGを発現するプラスミドである。
 (製造例9)pCUP2-Ptrp-NSDGΔCT20の作製
 製造例2で作製したpCUP2-Ptrp-NSDGを鋳型とし、配列番号15および配列番号25で示したDNAをプライマーペアとして、PCRを行った。得られたDNA断片を、pCUP2ベクターをMunIとSpeIで消化したDNA断片と、In-fusion HD Cloning Kitにて連結し、pCUP2-Ptrp-NSDGΔCT20を取得した。得られたpCUP2-Ptrp-NSDGΔCT20は、trpプロモーター下で、C末端から20個のアミノ酸残基が欠失された変異を有するNSDGを発現するプラスミドである。
 (製造例10)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG株の作製
 まず、製造例1で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株をNutrient Broth培地(DIFCO)で一晩培養した。得られた培養液0.5mLをNutrient Broth培地100mLに接種し、30℃で3時間培養した。得られた培養液を氷上で速やかに冷却し、菌体を回収して氷冷した蒸留水で良く洗浄した後、得られた菌体を2mLの蒸留水に懸濁した。菌体液を、製造例2で作製したpCUP2-Ptrp-NSDGプラスミド溶液と混合し、キュベットに注入してエレクトロポレーションを行った。エレクトロポレーションは、MicroPulserエレクトロポレーター(バイオ・ラッド)を使用し、電圧1.5kV、抵抗800Ω、電流25μFの条件で行った。エレクトロポレーション後、菌体溶液を回収して5mLのNutrient Broth培地を添加し、30℃で3時間培養した。得られた培養液を、100mg/Lのカナマイシン硫酸塩を含むNutrient Agar培地に塗布した。30℃で3日間培養し、得られたコロニーからプラスミドが導入された菌株を取得した。得られた菌株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG株と命名した。
 (製造例11)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG-S389X株の作製
 製造例10と同様の方法で、製造例1で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株を親株とし、製造例3で作製したpCUP2-Ptrp-NSDG-S389Xを導入した。得られた菌株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG-S389X株と命名した。
 (製造例12)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG-L436X株の作製
 製造例10と同様の方法で、製造例1で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株を親株とし、製造例4で作製したpCUP2-Ptrp-NSDG-L436Xを導入した。得られた菌株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG-L436X株と命名した。
 (製造例13)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT5株の作製
 製造例10と同様の方法で、製造例1で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株を親株とし、製造例5で作製したpCUP2-Ptrp-NSDGΔCT5を導入した。得られた菌株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT5株と命名した。
 (製造例14)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT10株の作製
 製造例10と同様の方法で、製造例1で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株を親株とし、製造例6で作製したpCUP2-Ptrp-NSDGΔCT10を導入した。得られた菌株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT10株と命名した。
 (製造例15)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT13株の作製
 製造例10と同様の方法で、製造例1で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株を親株とし、製造例7で作製したpCUP2-Ptrp-NSDGΔCT13を導入した。得られた菌株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT13株と命名した。
 (製造例16)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT15株の作製
 製造例10と同様の方法で、製造例1で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株を親株とし、製造例8で作製したpCUP2-Ptrp-NSDGΔCT15を導入した。得られた菌株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT15株と命名した。
 (製造例17)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT20株の作製
 製造例10と同様の方法で、製造例1で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6株を親株とし、製造例9で作製したpCUP2-Ptrp-NSDGΔCT20を導入した。得られた菌株をH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔCT20株と命名した。
 (PHAにおける3HH比率の分析方法)
 PHAを含む乾燥菌体約20mgに1mLの硫酸-メタノール混液(15:85)と1mLのクロロホルムを添加して密栓し、100℃で140分間加熱することでPHA分解物のメチルエステルを得た。冷却後、これに0.5mLの脱イオン水を加えてよく混合した後、水層と有機層が分離するまで放置した。その後、分取した有機層中のPHA分解物のモノマー単位組成をキャピラリーガスクロマトグラフィーにより分析した。得られたピーク面積から、3HH比率を算出した。
 ガスクロマトグラフは島津製作所製GC-17A、キャピラリーカラムはGLサイエンス社製NEUTRA BOND-1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。キャリアガスとしてHeを用い、カラム入口圧100kPaとし、サンプルは1μLを注入した。温度条件は、初発温度50℃から200℃までは8℃/分の速度で昇温し、さらに200℃から290℃までは30℃/分の速度で昇温した。
 (比較例1)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG株によるPHA生産
 種母培地の組成は、10g/L 肉エキス、10g/L バクトトリプトン、2g/L 酵母エキス、9g/L リン酸二水素ナトリウム12水和物、1.5g/L リン酸水素二カリウムとした。
 PHA生産培地の組成は、11g/L リン酸水素二ナトリウム12水和物、1.9g/L リン酸水素二カリウム、1.3g/L 硫酸アンモニウム、5mL/L マグネシウム溶液、1mL/L 微量金属塩溶液とした。マグネシウム溶液は、水に200g/L 硫酸マグネシウム七水和物を溶かして調製した。微量金属塩溶液は、0.1N塩酸に、0.218g/L 塩化コバルト六水和物、16.2g/L 塩化鉄(III)六水和物、10.3g/L 塩化カルシウム二水和物、0.118g/L 塩化ニッケル六水和物、0.156g/L 硫酸銅五水和物を溶かして調製した。
 製造例10で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG株のグリセロールストック溶液50μLを種母培地10mLに接種し、30℃で24時間振盪培養した。得られた培養液を前培養液とした。
 PHA生産培養は、フラスコで行った。500mL容量の振盪フラスコにPHA生産培地50mLを入れた。植菌直前に、マグネシウム溶液を250μL、微量金属溶液を50μL、パーム核油を1g添加した。培地調製後、振盪フラスコに前培養液を500μL接種し、30℃で72時間振盪培養を行った。培養終了後、培養液10mLから菌体を回収、エタノールで洗浄後、60℃で真空乾燥し、PHAを含む乾燥菌体を取得し、乾燥菌体重量を測定した。乾燥菌体重量、および3HH比率の結果を表1に示した。
 (実施例1~13、比較例2~7)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG-S389X株によるPHA生産
 製造例11で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG-S389X株を用いて、比較例1と同様の方法で培養を行い、乾燥菌体重量および3HH比率を分析した。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 表1の結果から、配列番号14で示されるアミノ酸配列の389番目のセリンをいずれのアミノ酸に置換しても、乾燥菌体重量に大きな変化はないことが分かる。このことから、ポリマー生産量にも劇的な変化は無いと考えられる。
 PHAの3HH比率を比較すると、配列番号14で示されるアミノ酸配列の389番目のセリンをアスパラギン酸(D)、グルタミン酸(E)、グリシン(G)、ヒスチジン(H)、リジン(K)、アスパラギン(N)、プロリン(P)、アルギニン(R)、又は、トリプトファン(W)に置換した9種類の変異体(実施例1~9)では、比較例1と比較して3HH比率の低下が認められた。一方、389番目のセリンをシステイン(C)、イソロイシン(I)、トレオニン(T)、又は、バリン(V)に置換した4種類の変異体(実施例10~13)では3HH比率の上昇が認められた。しかし、389番目のセリンをアラニン(A)、フェニルアラニン(F)、ロイシン(L)、メチオニン(M)、グルタミン(Q)、又は、チロシン(Y)に置換した6種類の変異体(比較例2~7)では3HH比率には大きな変化は認められなかった。
 以上の結果から、配列番号1で示されるアミノ酸配列の389番目のセリンをアスパラギン酸、グルタミン酸、グリシン、ヒスチジン、リジン、アスパラギン、プロリン、アルギニン、又は、トリプトファンに置換した変異を有するPHA合成酵素は、ポリマー生産性を維持したまま3HH比率が低いPHAを製造するのに有用であり、また、前記アミノ酸配列の389番目のセリンをシステイン、イソロイシン、トレオニン、又は、バリンに置換した変異を有するPHA合成酵素は、ポリマー生産性を維持したまま3HH比率が高いPHAを製造するのに有用であることが分かる。
 (実施例14~21、比較例8~18)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG-L436X株によるPHA生産
 製造例12で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDG-L436X株を用いて、比較例1と同様の方法で培養を行い、乾燥菌体重量および3HH比率を分析した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 <考察>
 表2の結果から、配列番号14で示されるアミノ酸配列の436番目のロイシンをアスパラギン酸(D)、グルタミン酸(E)、グリシン(G)、ヒスチジン(H)、リジン(K)、プロリン(P)、グルタミン(Q)、アルギニン(R)、又は、セリン(S)に置換した9種類の変異体(比較例8~11、13、15~18)では、比較例1と比較して乾燥菌体重量が大きく低下しており、ポリマー生産性が低下したと考えられる。また、436番目のロイシンをイソロイシン(I)、又は、メチオニン(M)に置換した変異体(比較例12、14)では、比較例1と比較して乾燥菌体重量および3HH比率のいずれにも変化は認められなかった。
 一方、436番目のロイシンをアラニン(A)、システイン(C)、フェニルアラニン(F)、アスパラギン(N)、トレオニン(T)、トリプトファン(W)、又は、チロシン(Y)に置換した変異体(実施例14~20)では、比較例1と比較して乾燥菌体重量に大きな変化がなく、かつ、3HH比率の低下が認められた。また、436番目のロイシンをバリン(V)に置換した変異体(実施例21)では、比較例1と比較して乾燥菌体重量に大きな変化がなく、かつ、3HH比率の上昇が認められた。
 以上の結果から、配列番号1で示されるアミノ酸配列の436番目のロイシンをアラニン、システイン、フェニルアラニン、アスパラギン、トレオニン、トリプトファン、又は、チロシンに置換した変異を有するPHA合成酵素は、ポリマー生産性を維持したまま3HH比率が低いPHAを製造するのに有用であり、また、前記アミノ酸配列の436番目のロイシンをバリンに置換した変異を有するPHA合成酵素は、ポリマー生産性を維持したまま3HH比率が高いPHAを製造するのに有用であることが分かる。
 (実施例23,24、比較例19~21)H16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔC5,ΔC10,ΔC13,ΔC15,又はΔC20株によるPHA生産
 製造例13~17で作製したH16 ΔphaC1 Ptrc-phaJ4b dZ1,2,6/pCUP2-Ptrp-NSDGΔC5,ΔC10,ΔC13,ΔC15,又はΔC20株を用いて、比較例1と同様の方法で培養を行い、乾燥菌体重量および3HH比率を分析した。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 <考察>
 表3の結果から、配列番号14で示されるアミノ酸配列のC末端から5個のアミノ酸残基が欠失した変異体(比較例19)および前記C末端から10個のアミノ酸残基が欠失した変異体(比較例20)では、比較例1と比較して乾燥菌体重量および3HH比率のいずれにも変化は認められず、前記C末端から20個のアミノ酸残基が欠失した変異体(比較例21)では、乾燥菌体重量が大きく低下した。しかし、前記C末端から13個のアミノ酸残基が欠失した変異体(実施例22)および前記C末端から15個のアミノ酸残基が欠失した変異体(実施例23)では、乾燥菌体重量に大きな変化がなく、かつ、3HH比率の低下が認められた。
 以上の結果から、配列番号1で示されるアミノ酸配列のC末端から適切な個数のアミノ酸残基が欠失した変異を有するPHA合成酵素は、ポリマー生産性を維持したまま3HH比率が低いPHAを製造するのに有用であることが分かる。

Claims (17)

  1.  配列番号1で示されるアミノ酸配列と85%以上の配列同一性を示し、かつ、下記(a)~(c)のいずれか1以上の変異を含むアミノ酸配列を有する、変異型ポリヒドロキシアルカン酸合成酵素。
     変異(a):配列番号1で示されるアミノ酸配列のN末端から389番目のセリンが、セリン以外のアミノ酸に置換された変異
     変異(b):配列番号1で示されるアミノ酸配列のN末端から436番目のロイシンが、ロイシン以外のアミノ酸に置換された変異
     変異(c):配列番号1で示されるアミノ酸配列のC末端から11個以上19個以下のアミノ酸残基が欠失された変異
  2.  変異(a)が、配列番号1に示すアミノ酸配列のN末端から389番目のセリンがシステイン、イソロイシン、トレオニン又はバリンに置換された変異である、請求項1に記載の変異型ポリヒドロキシアルカン酸合成酵素。
  3.  変異(a)が、配列番号1に示すアミノ酸配列のN末端から389番目のセリンがアスパラギン酸、グルタミン酸、グリシン、ヒスチジン、リジン、アスパラギン、プロリン、アルギニン又はトリプトファンに置換された変異である、請求項1に記載の変異型ポリヒドロキシアルカン酸合成酵素。
  4.  変異(b)が、配列番号1に示すアミノ酸配列のN末端から436番目のロイシンがバリンに置換された変異である、請求項1~3のいずれか1項に記載の変異型ポリヒドロキシアルカン酸合成酵素。
  5.  変異(b)が、配列番号1に示すアミノ酸配列のN末端から436番目のロイシンがアラニン、システイン、フェニルアラニン、アスパラギン、トレオニン、トリプトファン又はチロシンに置換された変異である、請求項1~3のいずれか1項に記載の変異型ポリヒドロキシアルカン酸合成酵素。
  6.  変異(c)が、配列番号1に示すアミノ酸配列のC末端から12個以上19個以下のアミノ酸残基が欠失された変異である、請求項1~5のいずれか1項に記載の変異型ポリヒドロキシアルカン酸合成酵素。
  7.  配列番号1に示すアミノ酸配列のN末端から149番目のアスパラギンがセリンに置換された変異をさらに含むアミノ酸配列を有する、請求項1~6のいずれか1項に記載の変異型ポリヒドロキシアルカン酸合成酵素。
  8.  配列番号1に示すアミノ酸配列のN末端から171番目のアスパラギン酸がグリシンに置換された変異をさらに含むアミノ酸配列を有する、請求項1~7のいずれか1項に記載の変異型ポリヒドロキシアルカン酸合成酵素。
  9.  請求項1~8のいずれか1項に記載の変異型ポリヒドロキシアルカン酸合成酵素をコードする遺伝子。
  10.  請求項9に記載の遺伝子を有する形質転換体。
  11.  宿主が真正細菌である請求項10に記載の形質転換体。
  12.  真正細菌がカプリアビダス属に属する細菌である請求項11に記載の形質転換体。
  13.  真正細菌がカプリアビダス ネカトールである請求項11に記載の形質転換体。
  14.  真正細菌がカプリアビダス ネカトールH16である請求項11に記載の形質転換体。
  15.  請求項10~14のいずれか1項に記載の形質転換体を培養する工程を含む、ポリヒドロキシアルカン酸の製造方法。
  16.  ポリヒドロキシアルカン酸が、3-ヒドロキシヘキサン酸をモノマーユニットとして含有する、請求項15に記載のポリヒドロキシアルカン酸の製造方法。
  17.  ポリヒドロキシアルカン酸が、3-ヒドロキシ酪酸と3-ヒドロキシヘキサン酸との共重合体である、請求項15に記載のポリヒドロキシアルカン酸の製造方法。
PCT/JP2019/000453 2018-01-16 2019-01-10 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法 WO2019142717A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19740819.8A EP3741858A4 (en) 2018-01-16 2019-01-10 MUTANT POLYHYDROXYALCANIC ACID SYNTHASE, GENE AND TRANSFORMER THEREOF, AND METHOD FOR THE PRODUCTION OF POLYHYDROXYALCANIC ACID
US16/962,282 US11186831B2 (en) 2018-01-16 2019-01-10 Mutant polyhydroxyalkanoate synthase, gene thereof and transformant, and method for producing polyhydroxyalkanoate
JP2019566440A JP7360329B2 (ja) 2018-01-16 2019-01-10 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法
JP2023118237A JP2023139129A (ja) 2018-01-16 2023-07-20 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018004678 2018-01-16
JP2018-004678 2018-01-16

Publications (1)

Publication Number Publication Date
WO2019142717A1 true WO2019142717A1 (ja) 2019-07-25

Family

ID=67301317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000453 WO2019142717A1 (ja) 2018-01-16 2019-01-10 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法

Country Status (4)

Country Link
US (1) US11186831B2 (ja)
EP (1) EP3741858A4 (ja)
JP (2) JP7360329B2 (ja)
WO (1) WO2019142717A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113530A1 (ja) 2020-11-24 2022-06-02 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)の製造方法
WO2024029220A1 (ja) * 2022-08-05 2024-02-08 株式会社カネカ ポリヒドロキシアルカノエートの製造方法およびその利用
WO2024075597A1 (ja) * 2022-10-03 2024-04-11 株式会社カネカ 共重合ポリヒドロキシアルカン酸混合物の製造方法、及び形質転換微生物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283609A1 (en) * 2021-07-09 2023-01-12 The Board Of Trustees Of The Leland Stanford Junior University Polyhydroxyalkanoates and methods of making thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050277A1 (fr) * 2001-12-10 2003-06-19 Riken Procede de production de polyester biodegradable
JP2007259708A (ja) 2006-03-27 2007-10-11 Kaneka Corp 新規生分解性ポリエステルの製造方法
JP2015077103A (ja) * 2013-10-17 2015-04-23 独立行政法人理化学研究所 微生物によるポリヒドロキシアルカン酸の生産方法
WO2017056442A1 (ja) * 2015-09-28 2017-04-06 株式会社カネカ Pha合成酵素をコードする遺伝子を有する微生物、およびそれを用いたphaの製造方法
WO2017104722A1 (ja) * 2015-12-16 2017-06-22 株式会社カネカ スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849894A (en) * 1995-11-29 1998-12-15 Monsanto Company Rhodospirillum rubrum poly-β-hydroxyalkanoate synthase
EP1626087A4 (en) * 2003-05-15 2006-08-16 Kaneka Corp IMPROVED TRANSFORMANT AND METHOD FOR THE PREPARATION OF POLYESTER THEREWITH
JP5670728B2 (ja) * 2008-05-26 2015-02-18 株式会社カネカ 改良されたポリヒドロキシアルカノエート生産微生物及びそれを用いたポリヒドロキシアルカノエートの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050277A1 (fr) * 2001-12-10 2003-06-19 Riken Procede de production de polyester biodegradable
JP2007259708A (ja) 2006-03-27 2007-10-11 Kaneka Corp 新規生分解性ポリエステルの製造方法
JP2015077103A (ja) * 2013-10-17 2015-04-23 独立行政法人理化学研究所 微生物によるポリヒドロキシアルカン酸の生産方法
WO2017056442A1 (ja) * 2015-09-28 2017-04-06 株式会社カネカ Pha合成酵素をコードする遺伝子を有する微生物、およびそれを用いたphaの製造方法
WO2017104722A1 (ja) * 2015-12-16 2017-06-22 株式会社カネカ スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
KICHISE, T. ET AL.: "Enhanced accumulation and changed monomer composition in polyhydroxyalkanoate (PHA) copolyester by in vitro evolution of Aeromonas caviae PHA synthase", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 68, no. 5, 2002, pages 2411 - 2419, XP003000947, ISSN: 0099-2240, doi:10.1128/AEM.68.5.2411-2419.2002 *
LENZ ET AL., J. BACTERIOL., vol. 176, 1994, pages 4385
MOL. MICROBIOL., vol. 6, 1992, pages 1195
NOTI ET AL., METHODS ENZYMOL., vol. 154, 1987, pages 197
OHMAN ET AL., J. BACTERIOL., vol. 162, 1985, pages 1068
SAMBROOK, J. ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
T. KICHISES. TAGUCHIY DOI, APP. ENVIRON. MICROBIOL., vol. 68, 2002, pages 2411 - 2419
T. TSUGES. WATANABED. SHIMADAH. ABEY DOIS. TAGUCHI, FEMS MICROBIOL. LETT., vol. 277, 2007, pages 217 - 222
TSUGE, T. ET AL.: "Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis", FEMS MICROBIOL. LETT., vol. 277, 2007, pages 217 - 222, XP002702996, ISSN: 0378-1097, doi:10.1111/J.1574-6968.2007.00958.X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113530A1 (ja) 2020-11-24 2022-06-02 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)の製造方法
WO2024029220A1 (ja) * 2022-08-05 2024-02-08 株式会社カネカ ポリヒドロキシアルカノエートの製造方法およびその利用
WO2024075597A1 (ja) * 2022-10-03 2024-04-11 株式会社カネカ 共重合ポリヒドロキシアルカン酸混合物の製造方法、及び形質転換微生物

Also Published As

Publication number Publication date
US20200354696A1 (en) 2020-11-12
JP2023139129A (ja) 2023-10-03
JP7360329B2 (ja) 2023-10-12
EP3741858A1 (en) 2020-11-25
JPWO2019142717A1 (ja) 2021-02-04
EP3741858A4 (en) 2021-12-22
US11186831B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
JP7382315B2 (ja) 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法
US11453896B2 (en) Transformed microorganism for producing PHA copolymer comprising 3HH monomer unit at high composition rate and method for producing PHA using same
JP7360329B2 (ja) 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法
JP7001596B2 (ja) 3hh単位含有共重合phaを生産する形質転換体、及び当該phaの製造方法
JP3062459B2 (ja) ポリエステル重合酵素遺伝子及びポリエステルの製造方法
JP7256740B2 (ja) グリセロールキナーゼ活性を強化したpha産生微生物とそれを用いたphaの製造方法
JPWO2015115619A1 (ja) R体特異的エノイル−CoAヒドラターゼ遺伝子の発現が調節された微生物及びそれを用いたポリヒドロキシアルカノエート共重合体の製造方法
KR101273599B1 (ko) 2-하이드록시부티레이트를 모노머로 함유하고 있는 폴리하이드록시알카노에이트의 제조방법
JPWO2005098001A1 (ja) 新規形質転換体
JP2008029218A (ja) 酵素活性を低下させた微生物を用いる共重合ポリエステルの製造方法
JP6853787B2 (ja) スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法
JP2008086238A (ja) ポリヒドロキシアルカノエートの製造方法
EP2963119A1 (en) Production method for copolymer polyhydroxyalkanoate using genetically modified strain of fatty acid -oxidation pathway
JP2013042697A (ja) 変異型ポリヒドロキシアルカン酸結合タンパク質およびそれを用いたポリヒドロキシアルカン酸の製造方法
JP2009225775A (ja) ポリヒドロキシアルカン酸の製造方法
JP2007125004A (ja) ポリヒドロキシアルカン酸の製造法
JP7425783B2 (ja) 形質転換微生物、及びポリヒドロキシアルカン酸の製造方法
EP3960867A1 (en) Gene for synthesizing high molecular weight copolymer
JP2005333933A (ja) 新規発現プラスミド
JP3872050B2 (ja) maoC遺伝子及びそれを利用したポリヒドロキシアルカン酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019740819

Country of ref document: EP

Effective date: 20200817