WO2019124077A1 - 光ファイバケーブル - Google Patents

光ファイバケーブル Download PDF

Info

Publication number
WO2019124077A1
WO2019124077A1 PCT/JP2018/044747 JP2018044747W WO2019124077A1 WO 2019124077 A1 WO2019124077 A1 WO 2019124077A1 JP 2018044747 W JP2018044747 W JP 2018044747W WO 2019124077 A1 WO2019124077 A1 WO 2019124077A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
layer
twisting
fiber units
aggregation
Prior art date
Application number
PCT/JP2018/044747
Other languages
English (en)
French (fr)
Inventor
智晃 梶
真之介 佐藤
富川 浩二
大里 健
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201880034650.4A priority Critical patent/CN110662992B/zh
Priority to US16/612,199 priority patent/US11181706B2/en
Priority to AU2018387943A priority patent/AU2018387943B2/en
Priority to EP18891577.1A priority patent/EP3730985A4/en
Priority to CA3063028A priority patent/CA3063028C/en
Priority to KR1020197031868A priority patent/KR102397065B1/ko
Publication of WO2019124077A1 publication Critical patent/WO2019124077A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4413Helical structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4431Protective covering with provision in the protective covering, e.g. weak line, for gaining access to one or more fibres, e.g. for branching or tapping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element

Definitions

  • the present invention relates to optical fiber cables.
  • Priority is claimed on Japanese Patent Application No. 2017-243186, filed Dec. 19, 2017, the content of which is incorporated herein by reference.
  • the optical fiber cable comprises a first cable core, a second cable core, and a sheath for accommodating the cable cores.
  • the first cable core is formed by SZ twisting a plurality of optical fibers.
  • the second cable core is formed by helically twisting a plurality of optical fibers around the first cable core.
  • the present invention has been made in consideration of such circumstances, and an optical fiber cable in which twisting back of a plurality of optical fiber units and twisting back of a plurality of optical fibers included in these optical fiber units is suppressed Intended to be provided.
  • an optical fiber cable is a first assembly formed by twisting a plurality of first optical fiber units in a first direction in a spiral without twisting back.
  • the plurality of first optical fiber units each include a plurality of optical fibers twisted in a second direction, and the first direction and the second direction are different from each other.
  • FIG. 2 is an explanatory view when one first optical fiber unit included in a first assembly layer is viewed from the II-II cross section shown in FIG. 1; Part (a) is a cross-sectional view taken along the line AA in FIG. 2, part (b) is a cross-sectional view taken along the line BB, part (c) is a cross-sectional view taken along the line CC, part (d) is DD FIG. It is a cross-sectional view which shows the structure of the optical fiber cable concerning 2nd Embodiment. It is a cross-sectional view which shows the structure of the optical fiber cable concerning 3rd Embodiment.
  • the optical fiber cable 1A includes a core 2 in which a plurality of optical fibers 21 are collected, a sheath 4 accommodating the core 2 therein, a pair of tear cords 6 embedded in the sheath 4 and a pair And a tensile member 7 (tension member) of
  • the sheath 4 is formed in a tubular shape having a central axis O, and the optical fiber 21 extends along the central axis O.
  • the direction along the central axis O is referred to as the longitudinal direction.
  • the cross section orthogonal to the central axis O is called a cross section.
  • a direction intersecting the central axis O is referred to as a radial direction, and a direction circling around the central axis O is referred to as a circumferential direction.
  • the material of the sheath 4 is polyolefin (PO) such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), ethylene propylene copolymer (EP), etc. ) Resin, polyvinyl chloride (PVC), etc. can be used.
  • PO polyolefin
  • PE polyethylene
  • PP polypropylene
  • ESA ethylene ethyl acrylate copolymer
  • EVA ethylene vinyl acetate copolymer
  • EP ethylene propylene copolymer
  • PVC polyvinyl chloride
  • the inner circumferential surface and the outer circumferential surface of the sheath 4 are formed concentrically around the central axis O. Thereby, the thickness in the radial direction of the sheath 4 is substantially uniform in the circumferential direction.
  • the pair of tear cords 6 are disposed to sandwich the core 2 in the radial direction, and extend in parallel to the core 2 in the longitudinal direction.
  • the number of tear cords 6 embedded in the sheath 4 may be one or three or more.
  • the tearing cord 6 may be formed of yarn (yarn) obtained by twisting fibers such as PP or polyester, and the tearing cord 6 may have water absorbency.
  • the tensile strength members 7 are provided in a pair so as to sandwich the core 2 in the radial direction, and extend in parallel with the core 2 in the longitudinal direction.
  • the number of tensile strength members 7 embedded in the sheath 4 can be appropriately changed.
  • metal wire steel wire etc.
  • tensile strength fiber aramid fiber etc.
  • FRP etc. can be used, for example.
  • the core 2 is located radially outward of the first assembly layer L1 located at the center in the radial direction, the second assembly layer L2 located outside the first assembly layer L1 in the radial direction, and the second assembly layer L2. And a third aggregation layer L3. That is, the core 2 has a plurality of aggregated layers L1 to L3.
  • the third aggregation layer L3 is the outermost aggregation layer located at the radially outer side among the plurality of aggregation layers L1 to L3.
  • Each of the plurality of aggregation layers L1 to L3 includes a plurality of optical fiber units 20.
  • the optical fiber units 20 included in the assembly layers L1 to L3 may be referred to as a first optical fiber unit 20A, a second optical fiber unit 20B, and a third optical fiber unit 20C, respectively.
  • the core 2 has a press winding 24 that wraps the third collective layer L3.
  • the press-roll 24 may be made of, for example, a water-absorbent material such as a water-absorbent tape.
  • a water-absorbent material such as a water-absorbent tape.
  • the cross-sectional shape of the core 2 and each optical fiber unit 20 in this embodiment is circular, it is not restricted to this, Non-circles, such as an ellipse, may be sufficient.
  • the core 2 may not be provided with the holding winding 24.
  • each of the optical fiber units 20 included in the core 2 has a plurality of optical fibers 21 and a binding material 22 for bundling the plurality of optical fibers 21.
  • the configurations of the first optical fiber unit 20A, the second optical fiber unit 20B, and the third optical fiber unit 20C are the same as one another. However, the configurations of these optical fiber units 20A to 20C may be different from each other.
  • an optical fiber core wire, an optical fiber strand or the like can be used.
  • a so-called intermittent fixing tape core wire is employed as the plurality of optical fibers 21.
  • the intermittent fixing tape core wire has a structure in which a plurality of optical fibers 21 are intermittently connected by a plurality of connecting portions.
  • the optical fibers 21 are fixed to each other so as to spread in a mesh shape (in the form of a spider web).
  • the aspect of the optical fiber 21 contained in the optical fiber unit 20 is not restricted to an intermittent fixed tape core wire, You may change suitably. Further, the number of optical fibers 21 included in the optical fiber unit 20 can be changed as appropriate.
  • the first assembly layer L1 is configured by twisting together the three first optical fiber units 20A in a first direction S1 in a helical fashion in the “without strand-back” described later. .
  • the first direction S1 is clockwise.
  • the plurality of optical fibers 21 included in the first optical fiber unit 20A are twisted together in the second direction S2.
  • the second direction S2 is counterclockwise. As described above, in the present embodiment, the first direction S1 and the second direction S2 are different from each other.
  • FIG. 2 is an explanatory view when one first optical fiber unit 20A is viewed from the II-II cross section of FIG.
  • Parts (a) to (d) of FIG. 3 are cross-sectional views of the optical fiber unit 20, and the corresponding longitudinal positions differ by 1 ⁇ 4 of the twisting pitch P. 2, illustration of components other than one first optical fiber unit 20A is omitted.
  • the illustration of components other than the single optical fiber unit 20 of the respective aggregation layers L is omitted.
  • the plurality of optical fibers 21 included in the first optical fiber unit 20A are twisted together in a spiral shape.
  • the first optical fiber unit 20A helically extends around the central axis O while changing the circumferential position along the longitudinal direction (see parts (a) to (d) in FIG. 3).
  • the spacing in the longitudinal direction when the position of the first optical fiber unit 20A in the circumferential direction changes by 360 ° is the twist pitch P of the first optical fiber unit 20A.
  • the dimension P in the longitudinal direction shown in FIG. 2 indicates the twist pitch P of the first optical fiber unit 20A.
  • the twist pitch P is, for example, about 700 mm.
  • the first optical fiber unit 20A will be first described with reference to FIG.
  • a portion on the radially outer side of the first optical fiber unit 20A is indicated by a black circle on the basis of a state before the first optical fiber units 20A are twisted together, and the first light
  • the radially inner portion of the fiber unit 20A is indicated by a white circle.
  • the positions in the circumferential direction of the first optical fiber unit 20A are different, but the positions in the radial direction of the black and white circles are not changed. That is, in one cycle of the twisting pitch P, 360 ° twist is added to the first optical fiber unit 20A. This is because when the first optical fiber units 20A are twisted together, the pitch (revolution period) in which the first optical fiber units 20A revolve around the central axis O and the first optical fiber units 20A themselves have their central axes It is because the pitch (rotation period) twisted as the center substantially corresponds, and the rotation directions of revolution and rotation coincide. Further, in the parts (a) to (d) of FIG. 3, the second optical fiber unit 20B and the third optical fiber unit 20C also have a revolution period and a rotation period of approximately one, similarly to the first optical fiber unit 20A. And the rotational direction of revolution and rotation is the same.
  • a twisted state in which the revolution period and the rotation period substantially coincide and the rotation directions of the revolution and the rotation coincide is referred to as “without twisting back”.
  • a twisted state in which the revolution period and the rotation period do not match is referred to as "with strand-back”.
  • the second aggregated layer L2 is configured by nine second optical fiber units 20B spirally twisted in the first direction S1 so as to surround the first aggregated layer L1. .
  • the second optical fiber units 20B are twisted without being twisted back.
  • the number of second optical fiber units 20B included in the second aggregation layer L2 may be changed as appropriate.
  • the plurality of optical fibers 21 included in the second optical fiber unit 20B are twisted together in the second direction S2.
  • the third assembly layer L3 is configured by twelve third optical fiber units 20C spirally twisted in the first direction S1 so as to surround the second assembly layer L2. .
  • the third optical fiber units 20C are twisted without twisting.
  • the number of third optical fiber units 20C included in the third collective layer L3 may be changed as appropriate.
  • the plurality of optical fibers 21 included in the third optical fiber unit 20C are twisted together in the second direction S2.
  • the optical fiber cable 1A of the present embodiment includes the plurality of first optical fiber units 20A twisted without twisting in a spiral in the first direction S1 (clockwise). For this reason, the first optical fiber units 20A try to untwist counterclockwise.
  • the plurality of optical fibers 21 are helically twisted in the second direction S2 (counterclockwise). For this reason, in the first optical fiber unit 20A, the optical fiber 21 tries to twist back clockwise.
  • the direction in which the optical fiber 21 tries to untwist in the first optical fiber unit 20A and the direction in which the first optical fiber units 20A attempt to untwist each other are reversed. Therefore, in the first assembly layer L1, the force with which the optical fibers 21 tend to untwist and the force with which the first optical fiber units 20A attempt to untwist mutually cancel each other. Thereby, the twist return of 1st optical fiber unit 20A and the twist return of optical fiber 21 comrades in 1st optical fiber unit 20A can be suppressed.
  • the twisting direction of the optical fiber units 20 and the twisting direction of the optical fibers 21 are opposite to each other, so twisting can be suppressed.
  • the state in which the second aggregation layer L2 covers the first aggregation layer L1 can be easily maintained.
  • the first optical fiber unit 20A is exposed to the outside in the radial direction of the second collective layer L2, and when forming the sheath 4 or after that, the optical fiber 21 included in the first optical fiber unit 20A is locally And the increase in transmission loss can be suppressed.
  • the force by which the optical fibers 21 try to untwist in the optical fiber unit 20 acts as a force to tighten the twist of the optical fiber units 20. Therefore, the twisting of the optical fiber units 20 is tightened in the entire assembly layers L1 to L3. Therefore, the optical fiber 21 can be accommodated in the sheath 4 at a high density, and the diameter of the optical fiber cable 1A can be reduced.
  • the twisting back of the optical fiber units 20 is unlikely to occur, the twisted state can be maintained favorably even without strictly controlling the winding state of the pressure winding 24 when manufacturing the optical fiber cable 1A. Therefore, the manufacturing efficiency of the optical fiber cable 1A can be improved.
  • the core 2 has two aggregation layers L ⁇ b> 1 and L ⁇ b> 2.
  • the second assembly layer L2 is wrapped by the presser roll 24.
  • the twisting direction of the optical fiber units 20 included in the first and second collective layers L1 and L2 is a first direction S1.
  • the twisting direction of the optical fibers 21 included in each of the optical fiber units 20 is a second direction S2.
  • the second aggregate layer L2 is the outermost aggregate layer located on the outermost side in the radial direction. Also with the optical fiber cable 1B of the present embodiment, the same effects as those of the first embodiment can be obtained.
  • the core 2 has one aggregation layer L1.
  • the first collective layer L1 is wrapped by the presser roll 24.
  • the twisting direction (second direction S2) of the plurality of first optical fiber units 20A and the twisting direction (first direction S1) of the optical fibers 21 in the first optical fiber unit 20A are different. Thus, it is possible to suppress the retwisting.
  • optical fiber cables of samples A to K shown in Table 1 below were produced.
  • the embodiment described below is only one specific example of the embodiment, and the present invention is not limited to the following embodiment.
  • the column of “twist direction” in Table 1 indicates the twist direction of the optical fiber units 20 in each of the assembly layers L1 to L3.
  • the optical fiber units of the first assembly layer L1 and the second assembly layer L2 are mutually twisted in the second direction S2.
  • the optical fibers 21 of all the optical fiber units 20 included in each of the assembly layers L1 to L3 in Table 1 are twisted together in the second direction S2.
  • twist pitch in Table 1 shows the ratio of twist pitch P of the optical fiber units 20 in each of the assembly layers L1 to L3.
  • the twisting pitch P is equal in each of the assembly layers L1 to L3.
  • the twist pitch P of the first collective layer L1 and the second collective layer L2 is equal, but the twist pitch P of the third collective layer L3 is half the twist pitch P of the first collective layer L1 ( It is 0.5 times).
  • the column of “transmission loss” in Table 1 shows the results of measuring the transmission loss of light by forming the optical fiber cable by covering the core 2 of each of the samples A to K with the sheath 4.
  • the transmission loss at a wavelength of 1550 nm is measured by an OTDR (Optical Time Domain Reflectometer), and “OK” is described as the result is good when the maximum value of the transmission loss is 0.25 dB / km or less.
  • “NG” is described as the result being bad.
  • the maximum value of the optical transmission loss of the optical fiber cable (0.25 dB / km or less at 1550 nm) is set based on the standard of Telcordia Technologies Generic Requirements GR-20-CORE.
  • the core 2 of the sample A to sample C has two assembly layers L1 and L2 as shown in FIG.
  • the first aggregation layer L1 includes three optical fiber units 20, and the second aggregation layer L2 includes nine optical fiber units 20.
  • Each optical fiber unit 20 has 12 intermittent fixed tape cores having 12 optical fibers 21. That is, each optical fiber unit 20 has 144 optical fibers 21. Further, since each of the samples A to C has 12 optical fiber units 20, it has a total of 1728 optical fibers 21.
  • the twisting direction (first direction S1) of the optical fiber units 20 and the twisting direction (second direction S2) of the optical fibers 21 included in the optical fiber unit 20 are different from each other. For this reason, the forces of the optical fiber units 20 and the optical fibers 21 to be untwisted cancel each other, and the occurrence of untwisting can be suppressed. Therefore, since the occurrence of the phenomenon as described in the sample A is also suppressed, it is considered that good results are obtained for both the “exposure of optical fiber” and the “transmission loss”.
  • the core 2 of the samples D to K has three aggregation layers L1 to L3 as shown in FIG.
  • the first collective layer L1 includes three optical fiber units 20, the second collective layer L2 includes nine optical fiber units 20, and the third collective layer L3 includes twelve optical fiber units 20. It is included.
  • Each of the optical fiber units 20 has the same configuration as that of the samples A to C, and has 144 optical fibers 21 each. Further, since each of the samples D to K has 24 optical fiber units 20, it has a total of 3456 optical fibers 21.
  • sample D the results of “exposure of optical fiber” and “transmission loss” are poor. This is considered to be because the twisting direction of the optical fiber units 20 and the twisting direction of the optical fibers 21 coincide with each other in all of the assembly layers L1 to L3, as in the sample A.
  • sample E the results of “exposure of optical fiber” and “transmission loss” are good. This is considered to be because the twisting direction of the optical fiber units 20 and the twisting direction of the optical fibers 21 are different in all of the assembly layers L1 to L3 similarly to the sample B, and therefore the occurrence of twisting back is suppressed.
  • the twisting direction of the optical fiber units 20 and the twisting direction of the optical fibers 21 are different in all of the assembly layers L1 to L3, and the result of “exposure of optical fibers” is good.
  • the result of "transmission loss” is bad. This is considered to be because the twist pitch P of the third assembly layer L3 is half of the twist pitch P of the other assembly layers L1 and L2 and is excessively small. That is, since the third optical fiber units 20C are twisted at a small twisting pitch P, the side pressure that the third optical fiber units 20C give to the inner optical fiber units 20B and 20A becomes large, and the optical transmission loss increases. It is thought that it led to
  • the twisting direction of the optical fiber units 20 and the twisting direction of the optical fibers 21 are different in all of the assembly layers L1 to L3, but both of “exposure of optical fiber” and “transmission loss” The result is bad. This is considered to be because the twisting pitch P of the third aggregated layer L3 is twice as large as the twisted pitch P of the other aggregated layers L1 and L2.
  • the third optical fiber units 20C are twisted at a large twist pitch P, the effect of the third optical fiber unit 20C to retain the shape of the second optical fiber unit 20B is reduced, and the second optical fiber unit It is believed that 20B has been exposed.
  • the optical fiber 21 included in the second optical fiber unit 20B is unnaturally bent, leading to an increase in transmission loss of light. .
  • the optical fiber unit 20 is twisted and twisted in all the assembly layers L1 to L3.
  • the side pressure acting on the optical fiber 21 included in each optical fiber unit 20 is increased, which leads to an increase in the transmission loss of light. As a result, it is considered that the result of "transmission loss" has become poor.
  • the twisting direction of the optical fiber units 20 and the twisting direction of the optical fibers 21 are different in all the assembly layers L1 to L3 included in the core 2. Further, from the results of the samples H and I, it is preferable that the twisting pitch P of the optical fiber units 20 included in each of the assembly layers L1 to L3 be equal to each other. Further, from the results of Samples J and K, it is preferable that the optical fiber units 20 are twisted without being twisted back. The above results are considered to be the same even when the core 2 includes four or more aggregate layers.
  • Ao is the sum of the cross-sectional areas of the optical fiber units 20 included in the outermost assembly layer.
  • Ai is the sum of the cross-sectional areas of the optical fiber units 20 included in the assembly layers other than the outermost assembly layer.
  • the optical fiber units 20 included in each of the assembly layers L1 to L3 have the same configuration as each other, and have the same cross-sectional area. Therefore, the “cross-sectional area ratio R” can be calculated by the number of optical fiber units 20 included in each assembly layer.
  • the number of optical fiber units 20 included in the outermost aggregation layer (aggregation layer L3) is 11, and a plurality of lights included in the aggregation layers (aggregation layers L1 and L2) other than the outermost aggregation layer
  • the number of fiber units 20 is thirteen. Therefore, the cross-sectional area ratio R can be calculated as 11 ⁇ 13 ⁇ 0.8.
  • the optical fiber units 20A and 20B included in the aggregation layers L1 and L2 are untwisted from the aggregation layers L1 and L2.
  • the cross-sectional area ratio R is 1.0 to 1.4
  • the result of “exposure of optical fiber” is good. This is because the cross-sectional area of the optical fiber unit 20 that constitutes the outermost aggregation layer L3 is sufficient to cover the aggregation layers L1 and L2 inside thereof.
  • the cross-sectional area ratio R (value of Ao ⁇ Ai) is preferably 1.0 or more and 1.4 or less.
  • the first direction S1 is clockwise and the second direction S2 is counterclockwise, but this relationship may be reversed. That is, even when the second direction S1 is counterclockwise and the second direction S2 is clockwise, the same operation and effect can be obtained. Further, the number of optical fiber units 20 included in the aggregation layers L1 to L3 may be changed as appropriate.
  • the core 2 is provided with three aggregation layers L1 to L3, but the core 2 may be provided with four or more aggregation layers.
  • optical fiber cable 2 core 20A: first optical fiber unit 20B: second optical fiber unit 20C: third optical fiber unit 21: optical fiber L1: first assembly layer L2: second assembly layer L3 ... third assembly layer 4 ... sheath S1 ... first direction, S2 ... second direction, P ... twist pitch

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

光ファイバケーブルは、複数の第1光ファイバユニットを、第1方向で螺旋状に撚り返し無しで撚り合わせることで構成された第1集合層を備える。複数の第1光ファイバユニットはそれぞれ、第2方向で撚り合わされた複数の光ファイバを有している。第1方向と第2方向とは互いに異なっている。

Description

光ファイバケーブル
 本発明は、光ファイバケーブルに関する。
 本願は、2017年12月19日に、日本に出願された特願2017-243186号に基づき優先権を主張し、その内容をここに援用する。
 従来から、特許文献1に示されるような光ファイバケーブルが知られている。この光ファイバケーブルは、第1ケーブルコア、第2ケーブルコア、およびこれらのケーブルコアを収容するシースを備えている。第1ケーブルコアは、複数の光ファイバをSZ撚りすることで形成されている。第2ケーブルコアは、第1ケーブルコアの周囲に複数の光ファイバを螺旋状に撚り合わせることで形成されている。
日本国特開2014-106380号公報
 この種の光ファイバケーブルでは、複数の光ファイバユニット同士の撚り戻りや、これらの光ファイバユニットに含まれる複数の光ファイバ同士の撚り戻りを抑止することが求められている。
 本発明はこのような事情を考慮してなされたもので、複数の光ファイバユニット同士の撚り戻りや、これらの光ファイバユニットに含まれる複数の光ファイバ同士の撚り戻りを抑止した光ファイバケーブルを提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係る光ファイバケーブルは、複数の第1光ファイバユニットを、第1方向で螺旋状に撚り返し無しで撚り合わせることで構成された第1集合層を備え、前記複数の第1光ファイバユニットはそれぞれ、第2方向で撚り合わされた複数の光ファイバを有し、前記第1方向と前記第2方向とが互いに異なっている。
 本発明の上記態様によれば、複数の光ファイバユニット同士の撚り戻りや、これらの光ファイバユニットに含まれる複数の光ファイバ同士の撚り戻りを抑止した光ファイバケーブルを提供することができる。
第1実施形態に係る光ファイバケーブルの構造を示す横断面図である。 図1に示すII-II断面から、第1集合層に含まれる1つの第1光ファイバユニットを見たときの説明図である。 (a)部は図2のA-A断面矢視図、(b)部はB-B断面矢視図、(c)部はC-C断面矢視図、(d)部はD-D断面矢視図である。 第2実施形態に係る光ファイバケーブルの構造を示す横断面図である。 第3実施形態に係る光ファイバケーブルの構造を示す横断面図である。
(第1実施形態)
 以下、第1実施形態の光ファイバケーブルの構成を、図1を参照しながら説明する。なお、本発明は以下の実施形態に限定されない。
 図1に示すように、光ファイバケーブル1Aは、複数本の光ファイバ21を集合したコア2と、コア2を内部に収容するシース4と、シース4に埋設された一対の引き裂き紐6および一対の抗張力体7(テンションメンバ)と、を備える。
(方向定義)
 ここで本実施形態では、シース4は、中心軸線Oを有する筒状に形成されており、この中心軸線Oに沿って光ファイバ21が延びている。
 本実施形態では、中心軸線Oに沿う方向を長手方向という。また、中心軸線Oに直交する断面を横断面という。また、横断面視において、中心軸線Oに交差する方向を径方向といい、中心軸線O周りに周回する方向を周方向という。
 シース4の材質としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンエチルアクリレート共重合体(EEA)、エチレン酢酸ビニル共重合体(EVA)、エチレンプロピレン共重合体(EP)などのポリオレフィン(PO)樹脂、ポリ塩化ビニル(PVC)などを用いることができる。
 横断面視において、シース4の内周面および外周面は、中心軸線Oを中心とした同心円状に形成されている。これにより、シース4の径方向における厚みは、周方向で略均一になっている。
 一対の引き裂き紐6は、コア2を径方向で挟んで配設され、コア2と平行に長手方向に延びている。なお、シース4に埋設される引き裂き紐6の数は、1または3以上であってもよい。
 引き裂き紐6の材質としては、例えばPPやナイロン製の円柱状ロッドなどを用いることができる。また、PPやポリエステルなどの繊維を撚り合わせた糸(ヤーン)により引き裂き紐6を形成し、引き裂き紐6に吸水性を持たせてもよい。
 抗張力体7は、コア2を径方向で挟んで一対配設され、コア2と平行に長手方向に延びている。なお、シース4に埋設される抗張力体7の数は、適宜変更可能である。
 抗張力体7の材質としては、例えば金属線(鋼線など)、抗張力繊維(アラミド繊維など)、およびFRPなどを用いることができる。
(コア)
 コア2は、径方向の中央部に位置する第1集合層L1と、第1集合層L1の径方向外側に位置する第2集合層L2と、第2集合層L2の径方向外側に位置する第3集合層L3と、を有している。すなわち、コア2は、複数の集合層L1~L3を有している。本実施形態では、第3集合層L3が、複数の集合層L1~L3のうち、最も径方向外側に位置する最外集合層である。
 複数の集合層L1~L3にはそれぞれ、複数の光ファイバユニット20が含まれている。以下、集合層L1~L3に含まれる光ファイバユニット20をそれぞれ、第1光ファイバユニット20A、第2光ファイバユニット20B、第3光ファイバユニット20Cという場合がある。
 コア2は、第3集合層L3を包む押さえ巻き24を有している。押さえ巻き24は、例えば吸水テープなどの吸水性を有する材質により形成されていてもよい。
 なお、本実施形態におけるコア2および各光ファイバユニット20の断面形状は円形であるが、これに限られず、楕円形などの非円形であってもよい。また、コア2は押さえ巻き24を備えていなくてもよい。
(光ファイバユニット)
 図1および図2に示すように、コア2に含まれる光ファイバユニット20はそれぞれ、複数の光ファイバ21と、複数の光ファイバ21を束ねる結束材22と、を有している。本実施形態では、第1光ファイバユニット20A、第2光ファイバユニット20B、および第3光ファイバユニット20Cの構成が互いに同様である。ただし、これら光ファイバユニット20A~20Cの構成は互いに異なっていてもよい。
 光ファイバ21としては、光ファイバ心線や光ファイバ素線などを用いることができる。本実施形態では、複数の光ファイバ21として、いわゆる間欠固定テープ心線を採用している。間欠固定テープ心線は、複数の光ファイバ21が複数の連結部によって間欠的に連結された構造となっている。間欠固定テープ心線は、光ファイバ21の延在方向に対して直交する方向に引っ張ると、網目状(蜘蛛の巣状)に広がるように、光ファイバ21同士が互いに固定されている。
 なお、光ファイバユニット20に含まれる光ファイバ21の態様は間欠固定テープ心線に限られず、適宜変更してもよい。また、光ファイバユニット20に含まれる光ファイバ21の本数は適宜変更可能である。
(第1集合層)
 第1集合層L1は、3個の第1光ファイバユニット20Aを、後述する「撚り返し無し(without strand-back)」で、第1方向S1で螺旋状に互いに撚り合わせることで構成されている。図1の例では、第1方向S1は時計回りである。第1光ファイバユニット20Aに含まれる複数の光ファイバ21は、第2方向S2で互いに撚り合わされている。図1の例では、第2方向S2は反時計回りである。
 このように本実施形態では、第1方向S1と第2方向S2とが互いに異なっている。
 次に、いわゆる「撚り返し無し」での撚り合わせ状態について、図2および図3の(a)~(d)部を用いて説明する。
 図2は、図1のII-II断面から1つの第1光ファイバユニット20Aを見たときの説明図である。図3の(a)~(d)部はそれぞれ、光ファイバユニット20の断面図であり、対応する長手方向の位置が、撚りピッチPの1/4ずつ異なっている。なお、図2では、1つの第1光ファイバユニット20A以外の構成要素の図示を省略している。図3の(a)~(d)部では、それぞれの集合層Lの1つの光ファイバユニット20以外の構成要素の図示を省略している。
 図2に示すように、第1光ファイバユニット20Aに含まれる複数の光ファイバ21は、互いに螺旋状に撚り合わされている。第1光ファイバユニット20Aは、長手方向に沿って周方向の位置を変化させながら(図3の(a)~(d)部参照)、中心軸線Oを中心として螺旋状に延びている。第1光ファイバユニット20Aの周方向における位置が360°変化するときの、長手方向の間隔が、第1光ファイバユニット20Aの撚りピッチPである。図2に示す長手方向の寸法Pは、第1光ファイバユニット20Aの撚りピッチPを示している。撚りピッチPは、例えば700mm程度である。
 図3において、まず1つの第1光ファイバユニット20Aに注目して説明する。図3の(a)~(d)部では、第1光ファイバユニット20A同士を撚り合わせる前の状態を基準として、第1光ファイバユニット20Aの径方向外側の部分を黒丸で示し、第1光ファイバユニット20Aの径方向内側の部分を白丸で示している。
 図3の(a)部と(b)部とを比較すると、第1光ファイバユニット20Aの位置が周方向で90°異なっているが、黒丸の位置は径方向外側で変わらず、白丸の位置は径方向内側で変わっていない。同様に、図3の(c)部、(d)部においても、第1光ファイバユニット20Aの周方向における位置は異なっているが、黒丸および白丸の径方向の位置は変化していない。つまり、撚りピッチPの1周期の中で、第1光ファイバユニット20Aに360°捻じれが加わっている。これは、第1光ファイバユニット20A同士を撚り合わせる際に、第1光ファイバユニット20Aが中心軸線Oを中心として周回するピッチ(公転周期)と、第1光ファイバユニット20A自身がその中心軸線を中心として捻回されるピッチ(自転周期)と、が略一致しており、かつ公転と自転の回転方向が一致していることによる。また、図3の(a)~(d)部において、第2光ファイバユニット20B、および第3光ファイバユニット20Cも、第1光ファイバユニット20Aと同様に、公転周期と自転周期とが略一致しており、かつ公転と自転の回転方向が一致している。
 このように、螺旋状に撚られた複数の光ファイバユニット20において、公転周期と自転周期とが略一致し、かつ公転と自転の回転方向が一致した撚り状態を「撚り返し無し」という。逆に、公転周期と自転周期とが一致しない撚り状態を「撚り返し有り(with strand-back)」という。
(第2集合層)
 図1に示すように、第2集合層L2は、第1集合層L1を囲繞するように、第1方向S1で螺旋状に撚られた9個の第2光ファイバユニット20Bによって構成されている。第2光ファイバユニット20B同士は、撚り返し無しで撚られている。
 なお、第2集合層L2に含まれる第2光ファイバユニット20Bの数は、適宜変更してもよい。第2光ファイバユニット20Bに含まれる複数の光ファイバ21は、第2方向S2で互いに撚り合わされている。
(第3集合層)
 図1に示すように、第3集合層L3は、第2集合層L2を囲繞するように、第1方向S1で螺旋状に撚られた12個の第3光ファイバユニット20Cによって構成されている。
第3光ファイバユニット20C同士は、撚り返し無しで撚られている。
 なお、第3集合層L3に含まれる第3光ファイバユニット20Cの数は、適宜変更してもよい。第3光ファイバユニット20Cに含まれる複数の光ファイバ21は、第2方向S2で互いに撚り合わされている。
 以上説明したように、本実施形態の光ファイバケーブル1Aでは、第1方向S1(時計回り)で螺旋状に撚り返し無しで撚り合わされた複数の第1光ファイバユニット20Aを有している。このため、第1光ファイバユニット20A同士は、反時計回りに撚り戻ろうとする。一方、第1光ファイバユニット20A内では、複数の光ファイバ21が第2方向S2(反時計回り)で螺旋状に撚り合わされている。このため、第1光ファイバユニット20A内では、光ファイバ21が時計回りに撚り戻ろうとする。
 このように、本実施形態では、第1光ファイバユニット20A内で光ファイバ21が撚り戻ろうとする方向と、第1光ファイバユニット20A同士が撚り戻ろうとする方向と、が逆になる。従って、第1集合層L1内で、光ファイバ21同士が撚り戻ろうとする力と、第1光ファイバユニット20A同士が撚り戻ろうとする力と、が互いに打ち消し合う。これにより、第1光ファイバユニット20A同士の撚り戻り、若しくは第1光ファイバユニット20A内の光ファイバ21同士の撚り戻りを抑止することができる。
 同様に、第2集合層L2および第3集合層L3においても、光ファイバユニット20同士の撚り方向と光ファイバ21同士の撚り方向とが逆であるため、撚り戻りを抑止することができる。
 また、第2集合層L2に含まれる第2光ファイバユニット20Bの撚り戻りが抑止されることで、第2集合層L2が第1集合層L1を覆った状態を維持し易くなる。これにより、例えば第1光ファイバユニット20Aが第2集合層L2の径方向外側に露出してしまい、シース4を形成する際若しくはその後で、第1光ファイバユニット20Aに含まれる光ファイバ21が局所的に曲げられて伝送損失が増大することが抑えられる。
 また、光ファイバユニット20内で光ファイバ21同士が撚り戻ろうとする力は、光ファイバユニット20同士の撚りを引き締める力として作用する。このため、集合層L1~L3の全体で、光ファイバユニット20同士の撚りが引き締まった構造となる。従って、シース4内に光ファイバ21を高密度に収容することが可能となり、光ファイバケーブル1Aの細径化を図ることができる。
 また、光ファイバユニット20同士の撚り戻りが生じにくいことから、光ファイバケーブル1Aの製造時に、押さえ巻き24の巻き付け状態を厳密に管理しなくても、撚り状態を良好に保つことができる。従って、光ファイバケーブル1Aの製造効率の向上を図ることができる。
(第2実施形態)
 次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図4に示すように、本実施形態の光ファイバケーブル1Bでは、コア2が、2つの集合層L1、L2を有している。第2集合層L2は、押さえ巻き24によって包まれている。
 第1、第2集合層L1、L2に含まれる光ファイバユニット20同士の撚り方向は、第1方向S1である。各光ファイバユニット20に含まれる光ファイバ21同士の撚り方向は第2方向S2である。本実施形態では、第2集合層L2が、最も径方向外側に位置する最外集合層である。
 本実施形態の光ファイバケーブル1Bでも、第1実施形態と同様の作用効果を得ることができる。
(第3実施形態)
 次に、本発明に係る第3実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図5に示すように、本実施形態の光ファイバケーブル1Cでは、コア2が、1つの集合層L1を有している。第1集合層L1は、押さえ巻き24によって包まれている。
 本実施形態でも、複数の第1光ファイバユニット20A同士の撚り方向(第2方向S2)と、第1光ファイバユニット20A内における光ファイバ21同士の撚り方向(第1方向S1)と、が異なることで、撚り戻りを抑止することができる。
 次に、光ファイバユニット20の撚りの状態が、光の伝送損失などに及ぼす影響について検討した結果を説明する。本実施例では、下記表1に示すサンプルA~Kの光ファイバケーブルを作成した。なお、以下で説明する実施例は前記実施形態の一つの具体例に過ぎず、本発明は以下の実施例に限定されない。
Figure JPOXMLDOC01-appb-T000001
 表1の「撚り方向」の欄には、各集合層L1~L3における光ファイバユニット20同士の撚り方向が示されている。例えばサンプルAでは、第1集合層L1および第2集合層L2の光ファイバユニット同士が第2方向S2で互いに撚られている。
 表1における各集合層L1~L3に含まれる光ファイバユニット20は全て、光ファイバ21同士が、第2方向S2で互いに撚り合わされている。
 表1の「撚り返し」の欄には、各集合層L1~L3における、先述した撚り返しの有無が示されている。「N」は撚り返し無しを示しており、「Y」は撚り返し有りを示している。
 表1の「撚りピッチ」の欄には、各集合層L1~L3における光ファイバユニット20同士の撚りピッチPの比率が示されている。例えばサンプルDでは、各集合層L1~L3で撚りピッチPが同等である。一方、サンプルHでは、第1集合層L1および第2集合層L2の撚りピッチPが同等であるが、第3集合層L3の撚りピッチPが、第1集合層L1の撚りピッチPの半分(0.5倍)となっている。
 表1の「光ファイバの露出」の欄には、各集合層L1~L3を形成した際に、最外集合層の外側に、その内側の集合層の光ファイバユニットが露出したか否かを示している。内側の集合層が露出しなかった場合には、結果が良好であるとして「OK」を記載し、内側の集合層が露出した場合には、結果が不良であるとして「NG」を記載している。なお、サンプルA~Cの場合は、第2集合層L2が最外集合層であり、第1集合層L1が第2集合層L2の外側に露出したか否かを判定している。サンプルD~Kの場合は、第3集合層L3が最外集合層であり、第2集合層L2が第3集合層L3の外側に露出したか否かを判定している。
 表1の「伝送損失」の欄には、各サンプルA~Kのコア2をシース4で被覆して光ファイバケーブルを作成し、光の伝送損失を測定した結果を示している。本実施例では、波長1550nmでの伝送損失をOTDR(Optical Time Domain Reflectometer)によって測定し、伝送損失の最大値が0.25dB/km以下の場合に結果が良好であるとして「OK」を記載し、最大値が0.25dB/kmを超えた場合に結果が不良であるとして「NG」を記載している。なお、光ファイバケーブルの光の伝送損失の最大値(1550nmで0.25dB/km以下)は、Telcordia Technologies Generic Requirements GR-20-COREの規格に基づいて設定されている。
<サンプルA~サンプルC>
 サンプルA~サンプルCのコア2は、図4に示すような2つの集合層L1、L2を有している。第1集合層L1には3個の光ファイバユニット20が含まれ、第2集合層L2には9個の光ファイバユニット20が含まれている。各光ファイバユニット20は、12本の光ファイバ21を有する間欠固定テープ心線を12個有している。つまり、各光ファイバユニット20は、144本の光ファイバ21を有している。また、各サンプルA~Cは、12個の光ファイバユニット20を有しているため、合計で1728本の光ファイバ21を有している。
 表1に示すように、サンプルAについては、「光ファイバの露出」および「伝送損失」の結果が不良となっている。これは、各集合層L1、L2における光ファイバユニット20同士の撚り方向(第2方向S2)と、光ファイバユニット20に含まれる光ファイバ21同士の撚り方向(第2方向S2)と、が一致していることで、撚り戻りが発生したためであると考えられる。つまり、第2集合層L2で撚り戻りが発生することで、第2光ファイバユニット20B同士の間に大きな隙間が生じる。そして、第1集合層L1で撚り戻りが発生することで、緩んだ第1光ファイバユニット20Aが、第2光ファイバユニット20B同士の隙間から露出してしまう。このとき、第1光ファイバユニット20Aの形状は、部分的に不自然に撓んだ状態となる。この状態のコア2をシース4で被覆すると、第1光ファイバユニット20Aに含まれる光ファイバ21が曲げられてしまい、光の伝送損失が増大する。
 一方、サンプルBでは、光ファイバユニット20同士の撚り方向(第1方向S1)と、光ファイバユニット20に含まれる光ファイバ21同士の撚り方向(第2方向S2)と、が互いに異なっている。このため、光ファイバユニット20同士および光ファイバ21同士の撚り戻ろうとする力が打ち消し合い、撚り戻りの発生を抑えることができる。従って、サンプルAで説明したような現象の発生も抑えられるため、「光ファイバの露出」および「伝送損失」の双方で良好な結果が得られたと考えられる。
 サンプルCについては、第1集合層L1で、光ファイバユニット20同士の撚り方向(第2方向S2)と光ファイバ21同士の撚り方向(第2方向S2)とが一致している。このため、撚り戻りの発生を抑える効果が不充分となり、「光ファイバの露出」および「伝送損失」で良好な結果が得られなかったと考えられる。
<サンプルD~K>
 サンプルD~Kのコア2は、図1に示すような3つの集合層L1~L3を有している。
第1集合層L1には3個の光ファイバユニット20が含まれ、第2集合層L2には9個の光ファイバユニット20が含まれ、第3集合層L3には12個の光ファイバユニット20が含まれている。各光ファイバユニット20は、サンプルA~Cと同様の構成であり、それぞれ144本の光ファイバ21を有している。また、各サンプルD~Kは24個の光ファイバユニット20を有しているため、合計で3456本の光ファイバ21を有している。
 サンプルDについては、「光ファイバの露出」および「伝送損失」の結果が不良となっている。これは、サンプルAと同様に、全ての集合層L1~L3で光ファイバユニット20同士の撚り方向と光ファイバ21同士の撚り方向とが一致しているためであると考えられる。
 一方、サンプルEについては、「光ファイバの露出」および「伝送損失」の結果が良好となっている。これは、サンプルBと同様に、全ての集合層L1~L3で光ファイバユニット20同士の撚り方向と光ファイバ21同士の撚り方向とが異なるため、撚り戻りの発生が抑えられたためであると考えられる。
 サンプルF、Gについては、一部の集合層で光ファイバユニット20同士の撚り方向と光ファイバ21同士の撚り方向とが一致している。このため、サンプルCと同様に、撚り戻りの抑制効果が不充分となり、「光ファイバの露出」および「伝送損失」の結果が不良となったと考えられる。
 サンプルHについては、全ての集合層L1~L3で光ファイバユニット20同士の撚り方向と光ファイバ21同士の撚り方向とが異なっており、「光ファイバの露出」の結果は良好となっている。しかしながら、「伝送損失」の結果が不良となっている。これは、第3集合層L3の撚りピッチPが、他の集合層L1、L2の撚りピッチPの半分であり、過度に小さいためであると考えられる。つまり、第3光ファイバユニット20C同士が小さい撚りピッチPで撚られていることで、第3光ファイバユニット20Cが内側の光ファイバユニット20B、20Aに与える側圧が大きくなり、光の伝送損失の増大につながったと考えられる。
 サンプルIについては、全ての集合層L1~L3で光ファイバユニット20同士の撚り方向と光ファイバ21同士の撚り方向とが異なっているが、「光ファイバの露出」および「伝送損失」の双方の結果が不良となっている。これは、第3集合層L3の撚りピッチPが、他の集合層L1、L2の撚りピッチPの2倍であり、過度に大きいためであると考えられる。
 つまり、第3光ファイバユニット20C同士が大きな撚りピッチPで撚られていることで、第3光ファイバユニット20Cが第2光ファイバユニット20Bの形状を保持する効果が小さくなり、第2光ファイバユニット20Bが露出してしまったと考えられる。また、第2光ファイバユニット20Bが露出した状態でシース4を形成した結果、第2光ファイバユニット20Bに含まれる光ファイバ21が不自然に曲げられ、光の伝送損失の増大につながったと考えられる。
 サンプルJ、Kについては、全ての集合層L1~L3で、光ファイバユニット20が撚り返し有りで撚られている。撚り返し有りで光ファイバユニット20を撚った場合、各光ファイバユニット20に含まれる光ファイバ21に作用する側圧が増大することで、光の伝送損失の増大につながる。この結果、「伝送損失」の結果が不良になったと考えられる。
 以上の結果を整理する。
 サンプルA~Gの結果から、コア2に含まれる全ての集合層L1~L3において、光ファイバユニット20同士の撚り方向と光ファイバ21同士の撚り方向とが異なっていることが好ましい。
 また、サンプルH、Iの結果から、各集合層L1~L3に含まれる光ファイバユニット20同士の撚りピッチPは、互いに同等であることが好ましい。
 また、サンプルJ、Kの結果から、光ファイバユニット20同士は、撚り返し無しで撚られていることが好ましい。
 以上の結果は、コア2に4つ以上の集合層が含まれる場合も同様であると考えられる。
 次に、各集合層L1~L3に含まれる光ファイバユニット20の断面積の比が、光ファイバの露出に及ぼす影響について検討した結果を説明する。本実施例では、下記表2に示すように、各集合層L1~L3に含まれる光ファイバユニット20の個数を異ならせたサンプルL~Pを作成した。
Figure JPOXMLDOC01-appb-T000002
 表2に示す「断面積比R」は、R=Ao÷Aiにより算出される。Aoは、最外集合層に含まれる光ファイバユニット20の断面積の合計である。Aiは、最外集合層以外の集合層に含まれる光ファイバユニット20の断面積の合計である。ここで、各集合層L1~L3に含まれる光ファイバユニット20は、互いに同様の構成を有しており、同等の断面積を有する。このため、上記「断面積比R」は、各集合層が有する光ファイバユニット20の数によって算出できる。
 例えば、サンプルLでは、最外集合層(集合層L3)に含まれる光ファイバユニット20の数は11であり、最外集合層以外の集合層(集合層L1、L2)に含まれる複数の光ファイバユニット20の数は13である。従って、断面積比Rは、11÷13≒0.8と算出することができる。
 同様に、サンプルMの断面積比Rは12÷(3+9)=1.0であり、サンプルOの断面積比Rは14÷(3+7)=1.4となる。
 表2に示す「光ファイバの露出」については、表1と同様であるため、説明を省略する。
 表2に示すように、断面積比Rが0.8であるサンプルLについては、「光ファイバの露出」が不良となった。これは、最外集合層L3を構成する光ファイバユニット20の断面積が小さく、その内側の集合層L1、L2を充分に覆うことが出来なかったためである。
 断面積比Rが1.7であるサンプルPについては、「光ファイバの露出」が不良となった。これは、最外集合層L3の体積(断面積)が、その内側に位置する集合層L1、L2に対して大きすぎて、コア2の状態がアンバランスになったことによる。より詳しくは、最外集合層L3を構成する光ファイバユニット20Cの数が過剰に多い場合、最外集合層L3の内径が大きくなりすぎて、その内側の集合層L1、L2との間に隙間(空洞)が生じる。この結果、最外集合層L3によって集合層L1、L2の撚りを保持することが困難になるため、集合層L1、L2の撚りがほどけ、集合層L1、L2に含まれる光ファイバユニット20A、20Bが光ファイバユニット20C同士の隙間から露出しやすくなる。
 一方で、断面積比Rが1.0~1.4であるサンプルM~Oについては、「光ファイバの露出」の結果が良好になっている。これは、最外集合層L3を構成する光ファイバユニット20の断面積が、その内側の集合層L1、L2を覆うために充分であったためである。
 以上の結果から、断面積比R(Ao÷Aiの値)は1.0以上1.4以下であることが好ましい。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記第1~第3実施形態では、横断面視において、第1方向S1が時計回りであり、第2方向S2が反時計回りであったが、この関係は逆であってもよい。つまり、第2方向S1が反時計回りであり、第2方向S2が時計回りである場合も、同様の作用効果を得ることができる。
 また、集合層L1~L3に含まれる光ファイバユニット20の数は適宜変更してもよい。
 また、前記第1実施形態では、コア2が3つの集合層L1~L3を備えていたが、コア2が4つ以上の集合層を備えていてもよい。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
 1A、1B、1C…光ファイバケーブル 2…コア 20A…第1光ファイバユニット 20B…第2光ファイバユニット 20C…第3光ファイバユニット 21…光ファイバ L1…第1集合層 L2…第2集合層 L3…第3集合層 4…シース S1…第1方向、S2…第2方向、P…撚りピッチ

Claims (4)

  1.  複数の第1光ファイバユニットを、第1方向で螺旋状に撚り返し無しで撚り合わせることで構成された第1集合層を備え、
     前記複数の第1光ファイバユニットはそれぞれ、第2方向で撚り合わされた複数の光ファイバを有し、
     前記第1方向と前記第2方向とが互いに異なる、光ファイバケーブル。
  2.  前記第1集合層を囲繞する第2集合層をさらに備え、
     前記第2集合層は、前記第1方向で螺旋状に撚り返し無しで撚られた複数の第2光ファイバユニットにより構成され、
     前記複数の第2光ファイバユニットはそれぞれ、前記第2方向で撚り合わされた複数の光ファイバを有している、請求項1に記載の光ファイバケーブル。
  3.  前記第1集合層を囲繞する第2集合層をさらに備え、
     前記第2集合層は、前記第1方向で螺旋状に撚り返し無しで撚られた複数の第2光ファイバユニットにより構成され、
     前記複数の第1光ファイバユニット同士の撚りピッチと、前記複数の第2光ファイバユニット同士の撚りピッチと、が互いに同等である、請求項1または2に記載の光ファイバケーブル。
  4.  複数の光ファイバユニットをそれぞれ含む複数の集合層を有し、
     横断面視において、前記複数の集合層のうち最も径方向外側に位置する最外集合層に含まれる複数の光ファイバユニットの断面積の合計をAoとし、前記最外集合層以外の集合層に含まれる複数の光ファイバユニットの断面積の合計をAiとするとき、Ao÷Aiの値が1.0以上1.4以下である、請求項1から3のいずれか1項に記載の光ファイバケーブル。
PCT/JP2018/044747 2017-12-19 2018-12-05 光ファイバケーブル WO2019124077A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880034650.4A CN110662992B (zh) 2017-12-19 2018-12-05 光纤线缆
US16/612,199 US11181706B2 (en) 2017-12-19 2018-12-05 Optical fiber cable
AU2018387943A AU2018387943B2 (en) 2017-12-19 2018-12-05 Optical fiber cable
EP18891577.1A EP3730985A4 (en) 2017-12-19 2018-12-05 FIBER CABLE
CA3063028A CA3063028C (en) 2017-12-19 2018-12-05 Optical fiber cable
KR1020197031868A KR102397065B1 (ko) 2017-12-19 2018-12-05 광섬유 케이블

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017243186A JP6840659B2 (ja) 2017-12-19 2017-12-19 光ファイバケーブル
JP2017-243186 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124077A1 true WO2019124077A1 (ja) 2019-06-27

Family

ID=66993456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044747 WO2019124077A1 (ja) 2017-12-19 2018-12-05 光ファイバケーブル

Country Status (8)

Country Link
US (1) US11181706B2 (ja)
EP (1) EP3730985A4 (ja)
JP (1) JP6840659B2 (ja)
KR (1) KR102397065B1 (ja)
CN (1) CN110662992B (ja)
AU (1) AU2018387943B2 (ja)
CA (1) CA3063028C (ja)
WO (1) WO2019124077A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120727A1 (ja) * 2021-12-24 2023-06-29 住友電気工業株式会社 光ケーブル及び光ケーブルの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426873B2 (ja) * 2020-03-27 2024-02-02 古河電気工業株式会社 光ファイバケーブル
WO2021241485A1 (ja) * 2020-05-25 2021-12-02 住友電気工業株式会社 光ファイバユニット、光ファイバケーブル、コネクタ付きケーブル及び光ファイバユニットの接続方法
EP4390488A1 (en) * 2021-08-19 2024-06-26 Nippon Telegraph And Telephone Corporation Optical fiber cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122594A (ja) * 1994-10-25 1996-05-17 Fujikura Ltd 光ファイバケーブルおよびその製造方法
US6205277B1 (en) * 1999-02-19 2001-03-20 Lucent Technologies Inc. Dry core optical fiber cables for premises applications and methods of manufacture
JP2004014181A (ja) * 2002-06-04 2004-01-15 Fujikura Ltd 分線盤
JP2007226051A (ja) * 2006-02-24 2007-09-06 Sumitomo Electric Ind Ltd 光ケーブル
JP2014106380A (ja) 2012-11-28 2014-06-09 Fujikura Ltd 光ファイバケーブル及びその製造方法並びにその製造装置
JP2017058593A (ja) * 2015-09-18 2017-03-23 株式会社フジクラ 光ファイバケーブル、光ファイバケーブルの製造方法および製造装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147406A (en) * 1976-10-26 1979-04-03 Belden Corporation Fiber optic cable
JPS6075811A (ja) 1983-09-30 1985-04-30 Fujikura Ltd 光フアイバケ−ブルの製造方法
JPS61223812A (ja) 1985-03-29 1986-10-04 Sumitomo Electric Ind Ltd 光フアイバケ−ブルの製造方法
FI78576C (fi) * 1986-04-01 1989-08-10 Nokia Oy Ab Foerfarande och anordning foer vaexelriktningstvinning.
DE3874557T2 (de) * 1987-01-16 1993-02-04 Sumitomo Electric Industries Optisches kabel.
JPH0754367B2 (ja) * 1987-01-23 1995-06-07 住友電気工業株式会社 光フアイバユニツト
JP2910306B2 (ja) * 1991-04-16 1999-06-23 住友電気工業株式会社 空気圧送光ケーブル
JP2680943B2 (ja) * 1991-06-03 1997-11-19 住友電気工業株式会社 光ケーブル
JPH06265761A (ja) 1993-03-12 1994-09-22 Fujikura Ltd 高密度多心光ケーブル及びその製造方法
JP3247537B2 (ja) 1994-02-22 2002-01-15 住友電気工業株式会社 光ケーブル
JP3354325B2 (ja) 1994-11-30 2002-12-09 古河電気工業株式会社 多心光ファイバケーブル
EP1023734B1 (en) * 1996-04-29 2004-03-31 NK Cables Oy Multi-layer reinforced and stabilized cable construction
JPH1172664A (ja) 1997-08-27 1999-03-16 Fujikura Ltd 光ファイバケーブル
US6295401B1 (en) 1999-12-21 2001-09-25 Siecor Operations, Llc Optical fiber ribbon cables
US6185352B1 (en) 2000-02-24 2001-02-06 Siecor Operations, Llc Optical fiber ribbon fan-out cables
DE10020912A1 (de) * 2000-04-28 2001-10-31 Scc Special Comm Cables Gmbh Optische Übertragungselemente enthaltendes Kabel und Verfahren zu dessen Herstellung
JP2003303515A (ja) * 2002-04-09 2003-10-24 Furukawa Electric Co Ltd:The 通電用複合撚線導体
CN2648464Y (zh) * 2003-09-09 2004-10-13 四川汇源光通信股份有限公司 组合式光纤带层叠体光缆
JP4670523B2 (ja) * 2005-07-19 2011-04-13 住友電気工業株式会社 光ケーブル
JP2007108424A (ja) * 2005-10-13 2007-04-26 Sumitomo Electric Ind Ltd 光ケーブル
JP5238620B2 (ja) 2009-06-12 2013-07-17 日本電信電話株式会社 光ファイバケーブル及びその心線識別方法
KR20130008018A (ko) * 2010-02-01 2013-01-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 연선 열가소성 중합체 복합 케이블, 그 제조 및 사용 방법
CN102339662B (zh) * 2010-07-16 2013-12-25 住友电气工业株式会社 双绞电缆及其制造方法
BR112013006116B1 (pt) * 2010-09-17 2021-01-05 3M Innovative Properties Company método, fio compósito de polímero termofixo e cabo entrelaçado
JP2014116254A (ja) * 2012-12-12 2014-06-26 Hitachi Metals Ltd 多芯電源光複合ケーブル
JP6496478B2 (ja) * 2013-10-17 2019-04-03 矢崎総業株式会社 シールド電線及びシールド電線の製造方法
CA3147826A1 (en) * 2013-10-23 2015-04-30 Belden Inc. Improved high performance data communications cable
DE102014000897A1 (de) * 2014-01-23 2015-07-23 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Kabelanordnung
US9557503B2 (en) * 2014-08-08 2017-01-31 Corning Optical Communications LLC Optical fiber cable
CA3146345A1 (en) * 2014-09-22 2016-03-31 Corning Optical Communications LLC Optical fiber cable
US9697160B2 (en) * 2014-12-23 2017-07-04 Intel Corporation Midplane interconnect system with conductor twist mitigation
CN104795184A (zh) * 2015-04-10 2015-07-22 中山市鸿程科研技术服务有限公司 一种电缆生产工艺
JP6078586B2 (ja) * 2015-05-26 2017-02-08 株式会社フジクラ 光ファイバユニット及び光ファイバケーブル
CN205428521U (zh) * 2015-08-12 2016-08-03 江苏中煤电缆有限公司 一种多芯中压风力发电用耐扭曲橡套软电缆
US10386594B2 (en) * 2015-09-11 2019-08-20 Afl Telecommunications Llc Tactical deployable cables
CN205176350U (zh) * 2015-12-09 2016-04-20 上海电缆研究所 一种超细光缆
CN105390213A (zh) * 2015-12-10 2016-03-09 季桂金 一种电缆生产工艺
CN105825934A (zh) * 2016-03-30 2016-08-03 苏珩线缆南通有限公司 一种医疗设备用电缆及其制备方法
CN106128644A (zh) * 2016-08-28 2016-11-16 湖南省酒江电线电缆有限公司 一种线缆铜丝绞合成缆的方法
US10345544B1 (en) * 2018-05-11 2019-07-09 Sure-Fire Electrical Corporation Composite optoelectronic HDMI cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122594A (ja) * 1994-10-25 1996-05-17 Fujikura Ltd 光ファイバケーブルおよびその製造方法
US6205277B1 (en) * 1999-02-19 2001-03-20 Lucent Technologies Inc. Dry core optical fiber cables for premises applications and methods of manufacture
JP2004014181A (ja) * 2002-06-04 2004-01-15 Fujikura Ltd 分線盤
JP2007226051A (ja) * 2006-02-24 2007-09-06 Sumitomo Electric Ind Ltd 光ケーブル
JP2014106380A (ja) 2012-11-28 2014-06-09 Fujikura Ltd 光ファイバケーブル及びその製造方法並びにその製造装置
JP2017058593A (ja) * 2015-09-18 2017-03-23 株式会社フジクラ 光ファイバケーブル、光ファイバケーブルの製造方法および製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730985A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120727A1 (ja) * 2021-12-24 2023-06-29 住友電気工業株式会社 光ケーブル及び光ケーブルの製造方法

Also Published As

Publication number Publication date
AU2018387943A1 (en) 2019-11-28
US11181706B2 (en) 2021-11-23
CA3063028A1 (en) 2019-12-02
JP6840659B2 (ja) 2021-03-10
KR20190128729A (ko) 2019-11-18
AU2018387943B2 (en) 2021-01-28
EP3730985A4 (en) 2021-08-18
JP2019109400A (ja) 2019-07-04
US20210141178A1 (en) 2021-05-13
EP3730985A1 (en) 2020-10-28
CN110662992A (zh) 2020-01-07
KR102397065B1 (ko) 2022-05-11
CA3063028C (en) 2021-12-07
CN110662992B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2019124077A1 (ja) 光ファイバケーブル
CA3061885C (en) Optical fiber cable and method of manufacturing optical fiber cable
JP2022100376A (ja) 光ファイバケーブル
AU2022202391B2 (en) Optical fiber cable
CA2960325C (en) Optical fiber cable, and method and apparatus for manufacturing optical fiber cable
JP7068114B2 (ja) 光ファイバケーブル
JP2008191209A (ja) ルース型光ファイバコード
JPWO2019059251A1 (ja) 光ファイバケーブル
JP7068131B2 (ja) 光ファイバケーブル
WO2023007881A1 (ja) 光ケーブル及び光ケーブル製造方法
WO2023127420A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
WO2021192953A1 (ja) 光ファイバケーブル
JP2009080346A (ja) 光ケーブル
JP2021196567A (ja) 光ファイバケーブル
JP2009198779A (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031868

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018387943

Country of ref document: AU

Date of ref document: 20181205

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018891577

Country of ref document: EP

Effective date: 20200720