WO2019097927A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2019097927A1
WO2019097927A1 PCT/JP2018/038366 JP2018038366W WO2019097927A1 WO 2019097927 A1 WO2019097927 A1 WO 2019097927A1 JP 2018038366 W JP2018038366 W JP 2018038366W WO 2019097927 A1 WO2019097927 A1 WO 2019097927A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
center
thickness
region
tread
Prior art date
Application number
PCT/JP2018/038366
Other languages
English (en)
French (fr)
Inventor
栄星 清水
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to DE112018005919.7T priority Critical patent/DE112018005919T5/de
Priority to US16/765,454 priority patent/US11951772B2/en
Priority to JP2018558783A priority patent/JP6540915B1/ja
Priority to CN201880074564.6A priority patent/CN111356597B/zh
Publication of WO2019097927A1 publication Critical patent/WO2019097927A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0083Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0033Thickness of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2009Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords comprising plies of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding

Definitions

  • the present invention relates to a pneumatic tire.
  • Some conventional pneumatic tires define dimensions at predetermined positions to ensure desired performance.
  • the outer diameter growth of the tread portion is suppressed by defining the ratio of the distance between the end of the belt layer and the outermost end of the carcass and the tread width.
  • the rim separation property is improved by defining the ratio of the overlapping width in the tire axial direction of the maximum width belt layer and the side reinforcing rubber layer to the tire cross sectional height. I am doing it.
  • Patent No. 5567839 gazette Unexamined-Japanese-Patent No. 2015-205583
  • This invention is made in view of the above, Comprising: It aims at providing the pneumatic tire which can make shock-resistant performance and low rolling resistance make compatible.
  • the pneumatic tire according to the present invention is disposed on at least one carcass layer and the tire radial direction outer side of a portion of the carcass layer located in the tread portion.
  • a pneumatic tire comprising: a belt layer; and a tread rubber layer disposed on the tire radial direction outer side of the belt layer in the tread portion, wherein a main groove extending in the tire circumferential direction is formed in the tread portion
  • a plurality of land portions are defined by the main groove, and the tread portion is defined as a region where a center land portion, which is the land portion closest to the tire equatorial plane, is located as a center region.
  • a region between a position of 85% of the width of the belt layer in the tire width direction and an end of the belt layer in the tire width direction is a shoulder region, and the center region
  • an average tire thickness Gc in the center area, an average tire thickness Gsh in the shoulder area, and an average tire thickness Gm in the intermediate area is such that 1.05 ⁇ (Gc / Gsh) ⁇ 1.35, and Gc ⁇ Gm> Gsh.
  • the tread portion has an average thickness Tc of the tread rubber layer on the outer side in the tire radial direction than the belt layer in the center area, and an outer side on the tire radial direction than the belt layer in the shoulder area.
  • the relationship between the average thickness Tsh of the tread rubber layer and the average thickness Tm of the tread rubber layer on the outer side in the tire radial direction from the belt layer in the intermediate region is 1.2 ⁇ (Tc / Tsh) ⁇ 1. It is preferable to satisfy the relationship of Tc ⁇ Tm> Ts within the range of 9.
  • a relationship between an average actual rubber thickness Vc of the tread rubber layer in the center area and an average actual rubber thickness Vsh of the tread rubber layer in the shoulder area is It is preferable to be in the range of 1.6 ⁇ (Vc / Vsh) ⁇ 2.5.
  • At least one of the land portions of the land portions located in the center region and the middle region has a thickness Te at a position of an end in the tire width direction, and a tire width. It is preferable that the relationship with the thickness Tp at the central position in the direction be formed as a convex land portion where Tp> Te.
  • the convex land portion is formed in the shape of a circular arc in which a contact surface showing an outer contour in a tire meridional cross section bulges outward in the tire radial direction, and
  • the relationship between the radius of curvature RR and the radius of curvature TR of the arc forming the tread profile is preferably in the range of 0.1 ⁇ (RR / TR) ⁇ 0.4.
  • the belt layer is provided inward in the tire radial direction at a position radially inward of at least one of the land portions among the land portions located in the center region and the intermediate region. Bulging is preferred.
  • the tread portion has a minimum thickness Tg of the rubber thickness between the groove bottom of the main groove that defines the center land portion and the belt layer, and the tread portion in the center region.
  • the relationship between the average thickness Tc of the tread rubber layer and the outer side in the tire radial direction from the belt layer is preferably in the range of 0.12 ⁇ (Tg / Tc) ⁇ 0.4.
  • the rubber contained in the center region has a modulus at 300% elongation of 10 MPa or more and 16 MPa or less.
  • circumferential narrow grooves extending in the tire circumferential direction are formed in at least one of the shoulder regions located on both sides in the tire width direction.
  • a portion of the carcass layer located in the shoulder region bulges toward the inner surface of the tire in the non-internal pressure filling state.
  • a belt reinforcing layer is disposed on the outer side in the tire radial direction of the belt layer, and the belt reinforcing layer is more at the position of the center area than at positions other than the center area.
  • the number of layers is stacked.
  • the pneumatic tire according to the present invention has an effect of being able to make shock resistance performance and low rolling resistance compatible with each other.
  • FIG. 1 is a meridional sectional view showing the main parts of the pneumatic tire according to the first embodiment.
  • FIG. 2 is a detailed view of part A of FIG.
  • FIG. 3 is an explanatory view of the thickness of the tread rubber layer.
  • FIG. 4 is a perspective view of the main part of the tread portion, and is an explanatory view of the actual rubber thickness of the tread rubber layer.
  • FIG. 5 is an explanatory view showing a state in which a protrusion on a road surface is stepped on by the pneumatic tire according to the first embodiment.
  • FIG. 6 is a detailed cross-sectional view of the main part of the pneumatic tire according to the second embodiment.
  • FIG. 7 is a detailed cross-sectional view of main parts of a pneumatic tire according to a third embodiment.
  • FIG. 8 is a detailed cross-sectional view of main parts of a pneumatic tire according to a fourth embodiment.
  • FIG. 9 is a detailed cross-sectional view of main parts of a pneumatic tire according to a fifth embodiment.
  • FIG. 10 is a detailed cross-sectional view of main parts of a pneumatic tire according to a sixth embodiment.
  • FIG. 11A is a chart showing the results of a performance evaluation test of a pneumatic tire.
  • FIG. 11B is a chart showing the results of a performance evaluation test of a pneumatic tire.
  • FIG. 11C is a chart showing the results of a performance evaluation test of a pneumatic tire.
  • the tire radial direction refers to a direction orthogonal to the rotation axis (not shown) of the pneumatic tire 1
  • the tire radial inner side refers to the side toward the rotation axis in the tire radial direction
  • the tire radial outer side Means the side away from the rotation axis in the tire radial direction.
  • the tire circumferential direction refers to a circumferential direction with the rotation axis as a central axis.
  • the tire width direction means a direction parallel to the rotation axis, the tire width direction inner side in the tire width direction toward the tire equatorial plane (tire equator line) CL, and the tire width direction outer side in the tire width direction It says the side away from tire equatorial plane CL.
  • the tire equatorial plane CL is a plane perpendicular to the rotation axis of the pneumatic tire 1 and passing through the center of the tire width of the pneumatic tire 1, and the tire equatorial plane CL is the center of the pneumatic tire 1 in the tire width direction.
  • the position in the tire width direction coincides with the tire width direction center line which is the position.
  • the tire width is the width in the tire width direction of the portions positioned outermost in the tire width direction, that is, the distance between the portions most distant from the tire equatorial plane CL in the tire width direction.
  • the tire equator line is a line which is on the tire equator plane CL and extends along the circumferential direction of the pneumatic tire 1.
  • FIG. 1 is a meridional sectional view showing the main part of the pneumatic tire 1 according to the first embodiment.
  • the tread portion 2 is disposed at the outermost portion in the tire radial direction, and the tread portion 2 is a tread rubber made of a rubber composition. It has the layer 4.
  • the surface of the tread portion 2, that is, the portion that contacts the road surface during traveling of a vehicle (not shown) to which the pneumatic tire 1 is attached is formed as a ground contact surface 3. It constitutes a part of the contour.
  • a plurality of main grooves 30 extending in the tire circumferential direction is formed in the tread surface 2 in the tread portion 2, and a plurality of land portions 20 are defined on the surface of the tread portion 2 by the plurality of main grooves 30.
  • four main grooves 30 are formed side by side in the tire width direction, and four main grooves 30 are disposed two each on both sides of the tire equatorial plane CL in the tire width direction. ing. That is, in the tread portion 2, the two center main grooves 31 disposed on both sides of the tire equatorial plane CL, and the two center main grooves 31 disposed on the outer side in the tire width direction.
  • a total of four main grooves 30 with the shoulder main grooves 32 are formed.
  • the main groove 30 refers to a vertical groove at least a part of which extends in the tire circumferential direction.
  • main groove 30 has a groove width of 3 mm or more, a groove depth of 6 mm or more, and internally has a tread wear indicator (slip sign) indicating the end of wear.
  • the main groove 30 has a groove width of 9 mm or more and 12 mm or less, a groove depth of 7 mm or more and 8 mm or less, and the tire equator where the tire equatorial plane CL intersects with the contact surface 3 It is substantially parallel to the line (center line).
  • the main groove 30 may extend linearly in the tire circumferential direction, or may be provided in a wave shape or zigzag.
  • the land portion 20 located between the two center main grooves 31 and located on the tire equatorial plane CL is a center land portion 21.
  • the land portion 20 located between the adjacent center main groove 31 and the shoulder main groove 32 and disposed outside the center land portion 21 in the tire width direction is a second land portion 22.
  • the land portion 20 located on the outer side in the tire width direction of the second land portion 22 and adjacent to the second land portion 22 via the shoulder main groove 32 is a shoulder land portion 23.
  • Shoulder portions 5 are positioned at both outer ends of the tread portion 2 in the tire width direction, and sidewall portions 8 are disposed on the inner side in the tire radial direction of the shoulder portions 5.
  • the sidewall portions 8 are disposed at two locations on both sides of the pneumatic tire 1 in the tire width direction, and form a portion of the pneumatic tire 1 exposed to the outermost side in the tire width direction.
  • the bead portion 10 is positioned on the inner side in the tire radial direction of each sidewall portion 8 positioned on both sides in the tire width direction.
  • the bead portion 10 is disposed on two sides of the tire equatorial plane CL in the same manner as the sidewall portion 8, that is, the bead portion 10 is disposed on both sides of the tire equatorial plane CL in the tire width direction. It is done.
  • Each bead portion 10 is provided with a bead core 11, and a bead filler 12 is provided on the outer side of the bead core 11 in the tire radial direction.
  • the bead core 11 is an annular member formed by winding a bead wire, which is a steel wire, in a ring shape, and the bead filler 12 is a rubber member disposed outside the bead core 11 in the tire radial direction.
  • a belt layer 14 is provided on the inner side in the tire radial direction of the tread portion 2.
  • the belt layer 14 is configured by a multilayer structure in which at least two cross belts 141 and 142 are laminated.
  • the cross belts 141 and 142 are formed by coating a plurality of belt cords made of steel or an organic fiber material such as polyester, rayon, nylon or the like with a coat rubber and subjecting the belt cords to an inclination angle with respect to the tire circumferential direction.
  • the belt angle defined is within a predetermined range (for example, 20 ° or more and 55 ° or less).
  • the two-layer cross belts 141 and 142 have different belt angles.
  • the belt layer 14 is configured as a so-called cross-ply structure in which two cross belts 141 and 142 are stacked so that the inclination directions of the belt cords cross each other.
  • the tread rubber layer 4 of the tread portion 2 is disposed on the outer side in the tire radial direction of the belt layer 14 in the tread portion 2.
  • a carcass layer 13 including a cord of a radial ply is continuously provided on the tire radial direction inner side of the belt layer 14 and on the tire equatorial plane CL side of the sidewall portion 8, a carcass layer 13 including a cord of a radial ply is continuously provided.
  • the carcass layer 13 has a single-layer structure formed of one carcass ply or a multilayer structure formed by laminating a plurality of carcass plies, and it is toroidal between a pair of bead portions 10 disposed on both sides in the tire width direction. To form a tire skeleton.
  • the carcass layer 13 is disposed from one bead portion 10 to the other bead portion 10 of the pair of bead portions 10 positioned on both sides in the tire width direction, and wraps the bead core 11 and the bead filler 12 As described above, the bead portion 10 is rewound along the bead core 11 outward in the tire width direction.
  • the bead filler 12 is a rubber material disposed in a space formed on the outer side in the tire radial direction of the bead core 11 by the carcass layer 13 being folded back at the bead portion 10 as described above.
  • the belt layer 14 is disposed on the outer side in the tire radial direction of a portion positioned in the tread portion 2 in the carcass layer 13 bridged between the pair of bead portions 10 in this manner.
  • the carcass ply of the carcass layer 13 is formed by coating a plurality of carcass cords made of steel or an organic fiber material such as aramid, nylon, polyester, rayon or the like with a coated rubber and rolling it.
  • a plurality of carcass cords constituting the carcass ply are juxtaposed at an angle in the tire circumferential direction while the angle with respect to the tire circumferential direction is along the tire meridian direction.
  • a rim cushion rubber 17 constituting a contact surface of the bead portion 10 with respect to the rim flange is disposed on the inner side in the tire radial direction and the tire width direction outer side of the wound portion of the bead core 11 and the carcass layer 13 in the bead portion 10. Further, an inner liner 16 is formed along the carcass layer 13 inside the carcass layer 13 or on the inner side of the carcass layer 13 in the pneumatic tire 1. The inner liner 16 forms a tire inner surface 18 which is an inner surface of the pneumatic tire 1.
  • FIG. 2 is a detailed view of part A of FIG.
  • an area located at the center in the tire width direction is a center area Ac
  • an area located at both ends in the tire width direction is a shoulder area Ash
  • an area located between the center area Ac and the shoulder area Ash is The relative relationship between the tire average thicknesses of the respective regions in the case of the intermediate region Am satisfies a predetermined relationship.
  • the center area Ac is an area where the center land portion 21 which is the land portion 20 closest to the tire equatorial plane CL is located among the plurality of land portions 20.
  • the center region Ac is a groove wall 35 located on the center land portion 21 side among the groove walls 35 of the center main groove 31 that defines the center land portion 21 in the meridional plane sectional view of the pneumatic tire 1;
  • a line extending perpendicularly to the tire inner surface 18 from the intersection point 24 with the contact surface 3 indicating the outer contour of the center land portion 21 in the tire radial direction is used as the center area boundary line Lc, the center land portion 21 It is an area located between two center area boundary lines Lc located on both sides in the tire width direction of the tire.
  • the center area Ac becomes the widest in the tire width direction. It is defined by the scope. That is, when the center main groove 31 oscillates in the tire width direction, the center region boundary line Lc defining the center region Ac is the tire in the groove wall 35 of the center main groove 31 that defines the center land portion 21. It becomes a line extending perpendicularly to the tire inner surface 18 from the intersection point 24 of the portion located on the outermost side in the tire width direction in the circumferential direction and the ground contact surface 3.
  • the shoulder region Ash is a region between a position P of 85% of the width of the belt layer 14 in the tire width direction and the end 144 of the belt layer 14 in the tire width direction.
  • the shoulder region Ash is the widest belt 143 that is the cross belt having the widest width in the tire width direction among the plurality of cross belts 141 and 142 of the belt layer 14 in the meridional cross section of the pneumatic tire 1.
  • a line extending perpendicularly to the tire inner surface 18 from the position P of 85% of the width in the tire width direction and the end 144 of the widest belt 143 is a shoulder region boundary line Lsh, 2 It is an area located between the shoulder area boundary Lsh of the book.
  • the shoulder regions Ash defined as described above are defined on both sides in the tire width direction of the tire equatorial plane CL, and are located on both sides in the tire width direction of the tire equatorial plane CL.
  • the width in the tire width direction of the cross belt 141 positioned on the inner side in the tire radial direction is the width of the other cross belt 142 in the tire width direction.
  • the cross belt 141 which is wider than the width and located on the inner side in the tire radial direction is the widest belt 143.
  • the position P of 85% of the width of the widest belt 143 in the tire width direction is the center of the widest belt 143 in the tire width direction, or the width of the widest belt 143 with respect to the position of the tire equatorial plane CL.
  • the area of 85% of the width in is evenly distributed on both sides in the tire width direction, the end of the 85% area is located. Therefore, the distance between the position P of 85% of the width of the widest belt 143 in the tire width direction and the end 144 of the widest belt 143 has the same size on both sides of the tire equatorial plane CL in the tire width direction. There is.
  • the middle area Am is an area between the center area Ac and the shoulder area Ash. That is, the middle area Am is located on both sides of the center area Ac in the tire width direction, and the inner boundary of the middle area Am in the tire width direction is defined by the center area boundary line Lc, and the tire width direction of the middle area Am is The outer boundary is defined by the shoulder region boundary Lsh.
  • the center area Ac, the shoulder area Ash, and the middle area Am are defined by a shape in which the pneumatic tire 1 is rim-assembled on a regular rim and filled with a regular internal pressure.
  • the normal rim is a “standard rim” defined by JATMA, a “design rim” defined by TRA, or a “measuring rim” defined by ETRTO.
  • the normal internal pressure is the "maximum air pressure" defined by JATMA, the maximum value described in "TIRE LOAD LIMITS AT VARIOUS COLD INFlation PRESSURES" defined by TRA, or "INFLATION PRESSURES" defined by ETRTO.
  • the relative relationship between the tire average thickness of each of the center area Ac, the shoulder area Ash, and the middle area Am satisfies a predetermined relation.
  • the average tire thickness in this case is the thickness of the tire from the contact surface 3 to the tire inner surface 18 showing the outer contour which is the contour in the tire radial direction outer side of the land portion 20 in tire meridional section view It is the average value for each area. That is, the average tire thickness Gc in the center region Ac is an average value of the distance from the contact surface 3 to the tire inner surface 18 in the center region Ac, and the average tire thickness Gsh in the shoulder region Ash is in the shoulder region Ash.
  • the average value of the distance from the ground contact surface 3 to the tire inner surface 18 and the average tire thickness Gm in the middle region Am is the average value of the distance from the ground contact surface 3 to the tire inner surface 18 in the middle region Am .
  • the tire average thickness Gm in the middle area Am is assumed to be one in which these main grooves 30 do not exist. calculate. That is, the tire thickness at the position of the main groove 30 is the distance from the virtual line 25 extending on the main groove 30 to the tire inner surface 18 by extending the ground contact surface 3 of the land portion 20 on both sides of the main groove 30 in the tire width direction. Treated as the tire thickness at the position of the main groove 30, the tire average thickness Gm in the intermediate region Am is calculated.
  • the tire average thickness of each region is obtained by dividing the cross-sectional area of each of the center region Ac, the shoulder region Ash, and the middle region Am of the tread portion 2 in the meridional section of the pneumatic tire 1 by the width of each region. It may be calculated.
  • the tire average thickness Gc of the center area Ac is calculated by dividing the cross-sectional area of the center area Ac by the distance between the two center area boundaries Lc defining the center area Ac.
  • the average tire thickness Gsh of the shoulder region Ash and the average tire thickness Gm of the middle region Am are the same as the cross-sectional area of each region, the distance between the shoulder region boundaries Lsh defining these regions, and the center region boundary It is calculated by dividing by the distance between Lc and the shoulder region boundary Lsh.
  • the tread portion 2 has a relationship of 1.05 ⁇ (Gc / Gsh) ⁇ 1.35 between the tire average thickness Gc in the center area Ac calculated as described above and the tire average thickness Gsh in the shoulder area Ash. It is in the range. Furthermore, in the tread portion 2, the tire average thickness Gc in the center area Ac, the tire average thickness Gsh in the shoulder area Ash, and the tire average thickness Gm in the middle area Am satisfy the relationship of Gc ⁇ Gm> Gsh ing.
  • the relationship between the tire average thickness Gc of the center area Ac and the tire average thickness Gsh of the shoulder area Ash is preferably in the range of 1.08 ⁇ (Gc / Gsh) ⁇ 1.20.
  • FIG. 3 is an explanatory view of the thickness of the tread rubber layer 4.
  • the tread portion 2 not only the average tire thickness for each region but also the relative relationship between the thickness of the tread rubber layer 4 for each region satisfies the predetermined relationship. That is, the tread portion 2 has an average thickness Tc of the tread rubber layer 4 outside in the tire radial direction than the belt layer 14 in the center area Ac, and an average thickness of the tread rubber layer 4 outside in the tire radial direction than the belt layer 14 in the shoulder area Ash.
  • the relationship with the thickness Tsh is in the range of 1.2 ⁇ (Tc / Tsh) ⁇ 1.9.
  • the tread portion 2 has an average thickness Tc of the tread rubber layer 4 outside in the tire radial direction from the belt layer 14 in the center area Ac, and an average thickness of the tread rubber layer 4 outside in the tire radial direction from the belt layer 14 in the shoulder area Ash.
  • the tread rubber layer 4 in each region is shown hatched.
  • the relationship between the average thickness Tc of the tread rubber layer 4 in the center region Ac and the average thickness Tsh of the tread rubber layer 4 in the shoulder region Ash is in the range of 1.4 ⁇ (Tc / Tsh) ⁇ 1.7. It is preferably inside.
  • the average thickness of the tread rubber layer 4 in each region in this case is the distance between the contact belt 3 and the cross belt 142 located on the outer side in the tire radial direction among the plurality of cross belts 141 and 142 that the belt layer 14 has. In the case where the thickness of the rubber layer 4 is used, the average thickness of each region is obtained. Further, the average thickness Tm of the tread rubber layer 4 in the middle area Am is also calculated as that in which the main groove 30 does not exist, similarly to the tire average thickness Gm in the middle area Am.
  • the thickness of the tread rubber layer 4 at the position of the main groove 30 is two layers from an imaginary line 25 obtained by extending the ground contact surface 3 of the land portion 20 on both sides of the main groove 30 in the tire width direction onto the main groove 30
  • the distance between the cross belts 141 and 142 to the cross belt 142 located on the outer side in the tire radial direction is treated as the thickness of the tread rubber layer 4 at the position of the main groove 30, and the average of the tread rubber layer 4 in the middle region Am Calculate the thickness Tm.
  • the thickness of the tread rubber layer 4 defined as above is also the same as the average tire thickness, in each of the center area Ac, the shoulder area Ash, and the middle area Am of the tread portion 2 in the meridional section of the pneumatic tire 1 You may calculate by dividing the cross-sectional area of the tread rubber layer 4 located by the width
  • the rubber contained at least in the center area Ac has a modulus at 300% elongation of 10 MPa to 16 MPa.
  • the modulus at 300% elongation is measured by a tensile test at 23 ° C. in accordance with JIS K6251 (using No. 3 dumbbell), and shows a tensile stress at 300% elongation.
  • the actual rubber thickness which is the thickness of the tread rubber layer 4 in consideration of the grooves formed in the tread portion 2 also has a relative relationship for each region satisfying a predetermined relationship. That is, also the average actual rubber thickness which is the actual rubber thickness calculated for every field, the relative relation for every field satisfies a predetermined relation.
  • FIG. 4 is a perspective view of the main part of the tread portion 2 and an explanatory view of the actual rubber thickness of the tread rubber layer 4.
  • the main groove 30 is formed in the tread portion 2, and in addition to the main groove 30 extending in the tire circumferential direction, grooves such as lug grooves 40 extending in the tire width direction are formed.
  • the average actual rubber thickness of the tread rubber layer 4 is the thickness of the tread rubber layer 4 calculated on the assumption that no grooves exist without considering these grooves
  • the average actual rubber thickness of the tread rubber layer 4 is The thickness is the thickness of the tread rubber layer 4 which is calculated on the assumption that the rubber constituting the tread rubber layer 4 does not exist in the groove portion. For this reason, the average actual rubber thickness of the tread rubber layer 4 in each region is determined by setting the actual volume of the tread rubber layer 4 not including grooves such as the main groove 30 and the lug grooves 40 in each region The thickness is calculated by dividing by the area of the inner surface 18.
  • the average actual rubber thickness Vc of the tread rubber layer 4 in the center area Ac is obtained by dividing the volume of the tread rubber layer 4 not including grooves in the center area Ac by the area of the tire inner surface 18 located in the center area Ac.
  • the area of the tire inner surface 18 located in the center area Ac is the area of a portion of the tire inner surface 18 extending in the circumferential direction of the tire between the two center area boundary lines Lc defining the center area Ac. .
  • the average actual rubber thickness Vsh of the tread rubber layer 4 in the shoulder region Ash is obtained by dividing the volume of the tread rubber layer 4 not including grooves in the shoulder region Ash by the area of the tire inner surface 18 located in the shoulder region Ash.
  • the area of the tire inner surface 18 located in the shoulder area Ash is the area of a portion of the tire inner surface 18 extending in the circumferential direction of the tire between the two shoulder area boundaries Lsh defining the shoulder area Ash. .
  • the relationship between the average actual rubber thickness Vc of the tread rubber layer 4 in the center area Ac calculated as described above and the average actual rubber thickness Vsh of the tread rubber layer 4 in the shoulder area Ash is 1. It is within the range of 6 ⁇ (Vc / Vsh) ⁇ 2.5.
  • region cuts the tread rubber layer 4 for every area
  • the volume may be calculated based on the specific gravity and may be calculated by dividing the calculated volume by the area of the tire inner surface 18 located in each region.
  • the pneumatic tire 1 When mounting the pneumatic tire 1 according to the first embodiment to a vehicle, the pneumatic tire 1 is assembled with the rim wheel R by fitting the rim wheel R (see FIG. 5) to the bead portion 10, The inside is filled with air and mounted on a vehicle in an inflated state.
  • the pneumatic tire 1 according to the first embodiment is used in a state in which the internal pressure at the time of inflation is relatively high. Specifically, the pneumatic tire 1 is used at an internal pressure in the range of 250 kPa to 290 kPa.
  • the pneumatic tire 1 rotates while the contact surface 3 of the portion of the contact surface 3 located below contacts the road surface. The vehicle travels by transmitting a driving force or a braking force to the road surface or generating a turning force by the frictional force between the contact surface 3 and the road surface.
  • the driving force or the braking force is transmitted to the road surface mainly by the frictional force between the contact surface 3 and the road surface, or the turning force Travel by generating or.
  • water between the contact surface 3 and the road surface enters grooves such as the main groove 30 and the lug groove 40, and water between the contact surface 3 and the road surface is generated by these grooves. Run while draining the water.
  • the ground contact surface 3 can easily come in contact with the road surface, and the frictional force between the ground contact surface 3 and the road surface enables the vehicle to travel as desired.
  • the pneumatic tire 1 receives the weight of the vehicle body and the load associated with acceleration and deceleration and turning, so a large load acts in the tire radial direction.
  • This load is mainly received by the air filled in the inside of the pneumatic tire 1, but is received not only by the air inside the pneumatic tire 1 but also by the tread portion 2 and the sidewall portion 8. That is, the sidewall portion 8 transmits the load between the bead portion 10 and the tread portion 2 to which the rim wheel R is fitted, and the tread portion 2 transmits the load between the sidewall portion 8 and the road surface Do. Therefore, a large load acts on the sidewall portion 8 and the tread portion 2 when the vehicle travels, and the sidewall portion 8 and the tread portion 2 receive the load while bending mainly in the tire radial direction.
  • the pneumatic tire 1 rotates when the vehicle travels, the position of the ground contact surface 3 in contact with the road surface continuously moves in the tire circumferential direction, and along with this, the sidewall portion 8 and the tread portion 2 The position bent by the load when the vehicle travels also moves in the tire circumferential direction. For this reason, at the time of traveling of the vehicle, the pneumatic tire 1 rotates while the respective positions in the tire circumferential direction of the sidewall portion 8 and the tread portion 2 are repeatedly bent sequentially.
  • the pneumatic tire 1 works on the pneumatic tire 1 because the internal pressure is used in the range of 250 kPa or more and 290 kPa or less, that is, used in a relatively high internal pressure state. Many loads can be received by the internal pressure. Therefore, the sidewall portion 8 and the tread portion 2 are hardly bent by the load acting on the pneumatic tire 1, and the resistance at the time of rotation of the pneumatic tire 1 due to the bending of the sidewall portion 8 and the tread portion 2 is reduced. be able to. Thereby, rolling resistance at the time of rotation of pneumatic tire 1 can be made small.
  • the vehicle during travel may step on such a protrusion with the tread portion 2 of the pneumatic tire 1 Sometimes.
  • the pneumatic tire 1 can not absorb the change in the shape of the road surface due to the presence of the protrusions, and the protrusions An object may penetrate through the tread portion 2 of the pneumatic tire 1.
  • FIG. 5 is an explanatory view showing a state in which the projection 105 on the road surface 100 is stepped on by the pneumatic tire 1 according to the first embodiment.
  • the breaking strength in the vicinity of the center in the tire width direction of the tread portion 2 can be increased.
  • the relationship between the tire average thickness Gc in the center area Ac and the tire average thickness Gsh in the shoulder area Ash is 1.05 ⁇ Since it is within the range of (Gc / Gsh) ⁇ 1.35, it is possible to suppress the shock burst while reducing the rolling resistance. That is, when the relationship between the average tire thickness Gc of the center region Ac and the average tire thickness Gsh of the shoulder region Ash is (Gc / Gsh) ⁇ 1.05, the average tire thickness Gc of the center region Ac is Since it is too thin, it becomes difficult to increase the breaking strength of the center area Ac.
  • the shoulder area Ash is less likely to be deformed, and when the tread 105 steps on the protrusion 105, the center area Ac nears the shoulder away from the road surface 100 The region Ash becomes difficult to deform.
  • the average tire thickness Gc of the center region Ac is Because the tire thickness is too thin and the average tire thickness Gsh in the shoulder region Ash is too thin, a large difference occurs in the ground contact length between the center and both ends in the tire width direction of the ground contact shape of the ground contact surface 3, and the rolling resistance is large. It becomes easy to become. That is, the fact that the ground contact length near the center in the tire width direction of the ground contact shape is long and the ground contact length near both ends in the tire width direction is short means that the tread portion 2 bends near the center and near both ends in the tire width direction.
  • the tire average thickness Gc in the center area Ac, the tire average thickness Gsh in the shoulder area Ash, and the tire average thickness Gm in the middle area Am satisfy the relationship Gc ⁇ Gm> Gsh Therefore, the tire thickness of the tread portion 2 can be continuously changed from the center area Ac to the middle area Am and the shoulder area Ash. Thereby, since the out-of-plane bending rigidity of the tread portion 2 can be continuously changed over the tire width direction, stress concentration when the tread portion 2 bends by stepping on the protrusion 105 by the tread portion 2 can be obtained. It can be suppressed.
  • the shoulder area Ash is bent because the average tire thickness Gsh of the shoulder area Ash in which the loss energy of the pneumatic tire 1 tends to increase is relatively thin by causing a relatively large deflection when the ground contact surface 3 is in contact with the ground.
  • the resistance at the time of Thereby, the energy loss at the time of rotation of pneumatic tire 1 can be reduced, and rolling resistance can be reduced. As a result of these, it is possible to achieve both shock-resistant performance and low rolling resistance.
  • the relationship between the average thickness Tc of the tread rubber layer 4 in the center region Ac and the average thickness Tsh of the tread rubber layer 4 in the shoulder region Ash is 1.2 ⁇ (Tc / Tsh) ⁇ Since it exists in the range of 1.9, a shock burst can be suppressed, reducing rolling resistance. That is, when the relationship between the average thickness Tc of the tread rubber layer 4 in the center area Ac and the average thickness Tsh of the tread rubber layer 4 in the shoulder area Ash is (Tc / Tsh) ⁇ 1.2, the center Since the average thickness Tc of the tread rubber layer 4 in the area Ac is too thin, the breaking strength of the center area Ac may be difficult to increase.
  • the shoulder area Ash may not be easily deformed when the protrusion 105 is stepped on. If the relationship between the average thickness Tc of the tread rubber layer 4 in the center area Ac and the average thickness Tsh of the tread rubber layer 4 in the shoulder area Ash is (Tc / Tsh)> 1.9, the center Since the average thickness Tc of the tread rubber layer 4 in the area Ac is too thick and the average thickness Tsh of the tread rubber layer 4 in the shoulder area Ash is too thin, the contact length near the center in the tire width direction of the contact surface 3 There is a risk that the contact length near the both ends in the tire width direction may be significantly longer. In this case, when the ground contact surface 3 is in contact with the ground, it is likely to be largely bent only near the center of the tread portion 2 in the tire width direction, and there is a possibility that the rolling resistance tends to be large.
  • the relationship between the average thickness Tc of the tread rubber layer 4 in the center area Ac and the average thickness Tsh of the tread rubber layer 4 in the shoulder area Ash is 1.2 ⁇ (Tc / Tsh) ⁇ 1.9.
  • the tread portion 2 has an average thickness Tc of the tread rubber layer 4 in the center area Ac, an average thickness Tsh of the tread rubber layer 4 in the shoulder area Ash, and an average thickness Tm of the tread rubber layer 4 in the middle area Am. Since T satisfies the relationship of Tc ⁇ Tm> Ts, the thickness of the tread rubber layer 4 can be continuously changed from the center region Ac to the middle region Am and the shoulder region Ash. As a result, the out-of-plane bending rigidity of the tread portion 2 can be continuously changed more reliably continuously in the tire width direction, and the stress when the tread portion 2 bends by stepping on the protrusion 105 in the tread portion 2 Concentration can be suppressed more reliably.
  • the average thickness Tsh of the tread rubber layer 4 in the shoulder area Ash is the thinnest, the resistance when the shoulder area Ash bends can be reduced more reliably. Thereby, the energy loss at the time of rotation of pneumatic tire 1 can be reduced, and rolling resistance can be reduced. As a result of these, it is possible to make the shock burst performance and the low rolling resistance compatible with each other more reliably.
  • the shoulder area Ash may not be easily deformed when the protrusion 105 is stepped on.
  • the relationship between the average actual rubber thickness Vc of the tread rubber layer 4 in the center area Ac and the average actual rubber thickness Vsh of the tread rubber layer 4 in the shoulder area Ash is (Vc / Vsh)> 2.5. If the average real rubber thickness Vc of the tread rubber layer 4 in the center area Ac is too thick, and the average real rubber thickness Vsh of the tread rubber layer 4 in the shoulder area Ash is too thin
  • the contact length near the center in the width direction may be significantly longer than the contact length near both ends in the tire width direction. In this case, when the ground contact surface 3 is in contact with the ground, it is likely to be largely bent only near the center of the tread portion 2 in the tire width direction, and there is a possibility that the rolling resistance tends to be large.
  • the relationship between the average actual rubber thickness Vc of the tread rubber layer 4 in the center area Ac and the average actual rubber thickness Vsh of the tread rubber layer 4 in the shoulder area Ash is 1.6 ⁇ (Vc / Vsh)
  • Vc / Vsh the breaking strength of the center area Ac is secured while suppressing large deflection only at the center in the tire width direction of the tread portion 2 when the ground contact surface 3 is in contact with the ground.
  • the ease of deformation of the shoulder region Ash can be secured. As a result, it is possible to make the shock burst performance and the low rolling resistance compatible with each other more reliably.
  • the rubber contained at least in the center region Ac has a modulus of 10 MPa or more and 16 MPa or less at 300% elongation, so the strength of the tread rubber layer 4 is secured.
  • the tread portion 2 can be bent appropriately. That is, when the modulus at 300% elongation of the rubber contained in the center area Ac in the tread rubber layer 4 is less than 10 MPa, the rubber located in the center area Ac in the tread rubber layer 4 may be too soft When the protrusion 105 is stepped on in the vicinity of the center in the tire width direction of the part 2, the protrusion 105 may penetrate the tread rubber layer 4.
  • the projections 105 penetrating the tread rubber layer 4 may reach the belt layer 14 and damage the belt layer 14.
  • the modulus of the rubber contained in the center area Ac of the tread rubber layer 4 at 300% elongation is greater than 16 MPa
  • the tread portion 2 may not be easily bent when the tread 105 steps on the projection 105.
  • the protrusion of the projection 105 from the road surface 100 can not be absorbed by the bending of the tread portion 2.
  • the projections 105 may penetrate the tread rubber layer 4 and damage the belt layer 14.
  • the modulus at 300% elongation of the rubber contained in the center area Ac in the tread rubber layer 4 is in the range of 10 MPa or more and 16 MPa or less, a tread that can suppress penetration of the protrusion 105
  • the tread portion 2 may be appropriately bent so that the protrusion 105 can be absorbed to some extent from the road surface 100. it can. As a result, the shock burst performance can be more reliably improved.
  • the pneumatic tire 1 according to the second embodiment has substantially the same configuration as the pneumatic tire 1 according to the first embodiment, but is characterized in that at least one land portion 20 is formed as a convex land portion 26. There is.
  • the other configuration is the same as that of the first embodiment, and thus the description thereof is omitted and the same reference numeral is attached.
  • FIG. 6 is a main part detailed cross-sectional view of the pneumatic tire 1 according to the second embodiment.
  • the pneumatic tire 1 according to the second embodiment is the same as the pneumatic tire 1 according to the first embodiment, the tread portion 2 has an average tire thickness Gc in the center area Ac and an average tire thickness Gsh in the shoulder area Ash.
  • the relationship between the intermediate region Am and the average tire thickness Gm satisfies the relationship of 1.05 ⁇ (Gc / Gsh) ⁇ 1.35 and the relationship Gc ⁇ Gm> Gsh.
  • At least one land portion 20 of the land portions 20 located in the center region Ac and the middle region Am has a thickness at an end in the tire width direction.
  • the relationship between Te and the thickness Tp at the center position in the tire width direction is formed as a convex land portion 26 where Tp> Te. That is, the thickness of the convex shaped land portion 26 is greater at the central position in the tire width direction than at the both end portions in the tire width direction.
  • the thickness in this case is the distance between the contact surface 3 and the tire inner surface 18 in the tire meridian cross section.
  • the center land portion 21 is a convex land portion 26.
  • the thickness Te at the end of the center land portion 21 in the tire width direction is the intersection point 24 between the groove wall 35 of the center main groove 31 and the ground contact surface 3 of the center main groove 31 that define the center land portion 21. , And the inner surface 18 of the tire.
  • the thickness Tp at the center position in the tire width direction is the distance between the center position 27 in the tire width direction of the contact surface 3 of the center land portion 21 and the tire inner surface 18.
  • the center land portion 21 which is the convex shaped land portion 26 has a relationship between the thickness Te at the end position in the tire width direction defined as described above and the thickness Tp at the center position in the tire width direction. But Tp> Te.
  • a contact surface 3 showing an outer contour in a tire meridional cross section is formed in a shape of a circular arc which bulges outward in the tire radial direction.
  • the center land portion 21 is provided as a convex land portion 26 which is formed to be thicker at the central position in the tire width direction than the positions of the both end portions in the tire width direction.
  • the center land portion 21 is formed such that the ground contact surface 3 protrudes outward in the tire radial direction more than a tread profile PR which is an outline of the center land portion 21 serving as a reference of the ground contact surface 3.
  • the tread profile PR is a reference contour in the state where the internal pressure is not filled, and the comparison between the contact surface 3 of the center land portion 21 and the tread profile PR is the contact surface of the center land portion 21 in the state where the internal pressure is not filled.
  • the shape of 3 and the tread profile PR are compared.
  • the tread profile PR in this case is at least three of the four open ends E of the two main grooves 30 adjacent to both sides in the tire width direction of the land portion 20 in the tire meridional plane cross-sectional view in a state of no internal pressure filling. It is an arc that can be drawn with the maximum radius of curvature, with the center of the arc being located on the inner side in the tire radial direction of the ground contact surface 3 through one.
  • the tread profile PR of the center land portion 21 passes through at least three of the four opening ends E of the two center main grooves 31 adjacent to both sides of the center land portion 21 in the tire width direction, and the center of the arc is Is located on the inner side in the tire radial direction of the contact surface 3 and is an arc that can be drawn with the maximum radius of curvature.
  • the radius of curvature RR of the arc that is the shape of the ground contact surface 3 in the tire meridian cross section is smaller than the radius of curvature TR of the arc that forms the tread profile PR.
  • the radius of curvature RR of the contact surface 3 of the center land portion 21 in a tire meridional section view is in the range of 0.1 ⁇ (RR / TR) ⁇ 0.4 with respect to the radius of curvature TR of the tread profile PR. It is inside.
  • the tread portion 2 has a minimum thickness Tg of the rubber thickness between the groove bottom 36 of the center main groove 31 defining the center land portion 21 and the belt layer 14 and the tire layer from the belt layer 14 in the center region Ac.
  • the relationship with the average thickness Tc of the radially outer tread rubber layer 4 is in the range of 0.12 ⁇ (Tg / Tc) ⁇ 0.4.
  • the relationship between the minimum thickness Tg of the rubber thickness between the groove bottom 36 of the center main groove 31 and the belt layer 14 and the average thickness Tc of the tread rubber layer 4 in the center region Ac is 0.15 ⁇ ( It is preferable to be within the range of Tg / Tc) ⁇ 0.25.
  • the center land portion 21 is a convex land portion 26 whose thickness is greater at the center position in the tire width direction than at the end portions in the tire width direction. As it is formed, the strength against external obstacles can be more reliably enhanced. Thus, even when the center land portion 21 steps on the protrusion 105 on the road surface 100, penetration of the center land portion 21 by the protrusion 105 can be more reliably suppressed. As a result, the shock burst performance can be more reliably improved.
  • the center land portion 21 which is the convex shaped land portion 26 is formed in an arc shape in which the ground contact surface 3 bulges outward in the tire radial direction, and the curvature radius RR of the ground contact surface 3 and the curvature radius of the tread profile PR Since the relationship with TR is in the range of 0.1 ⁇ (RR / TR) ⁇ 0.4, it is possible to suppress the shock burst while reducing the rolling resistance. That is, when the radius of curvature RR of the contact surface 3 of the center land portion 21 is smaller than the radius of curvature TR of the tread profile PR, the radius of curvature RR of the contact surface 3 is too small.
  • the contact surface 3 of the center land portion 21 may be excessively expanded to the outside in the tire radial direction with respect to the tread profile PR.
  • the ground contact length near the center in the tire width direction in the ground contact shape of the entire ground contact surface 3 of the tread portion 2 becomes significantly longer than the ground contact length near both ends in the tire width direction.
  • the tread portion 2 has a relationship between the minimum thickness Tg of the rubber thickness between the groove bottom 36 of the center main groove 31 and the belt layer 14 and the average thickness Tc of the tread rubber layer 4 in the center region Ac. Since it is in the range of 0.12 ⁇ (Tg / Tc) ⁇ 0.4, the loss energy at the time of rotation of the pneumatic tire 1 is reduced, and the local deformation of the tread portion 2 is suppressed. be able to.
  • the minimum thickness Tg of the rubber thickness between the groove bottom 36 of the center main groove 31 and the belt layer 14 is smaller than the average thickness Tc of the tread rubber layer 4 in the center region Ac (Tg / Tc) ⁇
  • the minimum thickness Tg between the center main groove 31 and the belt layer 14 is too thin, There is a possibility that the deformation at the position of the center main groove 31 becomes too large. In this case, since the deformation of the tread portion 2 is local, the tread portion 2 may be easily damaged, and it may be difficult to improve the shock burst performance.
  • the minimum thickness Tg of the rubber thickness between the groove bottom 36 of the center main groove 31 and the belt layer 14 is relative to the average thickness Tc of the tread rubber layer 4 in the center region Ac (Tg / Tc)>
  • Tg / Tc the average thickness of the tread rubber layer 4 in the center region Ac
  • the relationship between the minimum thickness Tg of the rubber thickness between the groove bottom 36 of the center main groove 31 and the belt layer 14 and the average thickness Tc of the tread rubber layer 4 in the center region Ac is 0.
  • the tread portion 2 is stepped when the tread 105 steps on the projection 105 while reducing the energy loss during the rotation of the pneumatic tire 1.
  • Large local deformation at the position of the center main groove 31 can be suppressed. As a result of these, it is possible to make the shock burst performance and the low rolling resistance compatible with each other more reliably.
  • the pneumatic tire 1 according to the third embodiment has substantially the same configuration as the pneumatic tire 1 according to the second embodiment, but is characterized in that a part of the belt layer 14 bulges inward in the tire radial direction.
  • the other configuration is the same as that of the second embodiment, and thus the description thereof is omitted and the same reference numeral is attached.
  • FIG. 7 is a main part detailed cross-sectional view of the pneumatic tire 1 according to the third embodiment.
  • the pneumatic tire 1 according to the third embodiment is the same as the pneumatic tire 1 according to the second embodiment, the tread portion 2 has an average tire thickness Gc in the center area Ac and an average tire thickness Gsh in the shoulder area Ash.
  • the relationship between the intermediate region Am and the average tire thickness Gm satisfies the relationship of 1.05 ⁇ (Gc / Gsh) ⁇ 1.35 and the relationship Gc ⁇ Gm> Gsh.
  • the center land portion 21 is formed as a convex shaped land portion 26 that bulges outward in the tire radial direction.
  • the belt layer 14 is located at the inner side in the tire radial direction of at least one land portion 20 of the land portions 20 located in the center region Ac and the middle region Am. It bulges inward in the tire radial direction in the state of no internal pressure filling.
  • the belt layer 14 bulges inward in the tire radial direction at a position on the inner side in the tire radial direction of the center land portion 21 in a state where the internal pressure is not filled. That is, the belt layer 14 is formed to be convex on the tire inner surface 18 side in a state where the internal pressure is not filled, at a position on the inner side in the tire radial direction of the center land portion 21.
  • the carcass layer 13 and the inner liner 16 disposed along the belt layer 14 inside the tire radial direction of the belt layer 14 also form the center land portion 21. It bulges inward in the tire radial direction at a position inward of the tire radial direction.
  • the belt layer 14 bulges inward in the tire radial direction in the state where the internal pressure is not filled at the position inward of the center land portion 21 in the tire radial direction.
  • the rubber thickness of the tread rubber layer 4 located in the area Ac can be ensured larger reliably.
  • the breaking strength of the center area Ac can be more reliably increased.
  • the shock burst resistance performance can be more reliably improved.
  • the pneumatic tire 1 according to the fourth embodiment has substantially the same configuration as the pneumatic tire 1 according to the first embodiment, but is characterized in that the belt reinforcing layer 15 is disposed on the outer side in the tire radial direction of the belt layer 14. There is.
  • the other configuration is the same as that of the first embodiment, and thus the description thereof is omitted and the same reference numeral is attached.
  • FIG. 8 is a main part detailed cross-sectional view of the pneumatic tire 1 according to a fourth embodiment.
  • the pneumatic tire 1 according to the fourth embodiment is the same as the pneumatic tire 1 according to the first embodiment, the tread portion 2 has an average tire thickness Gc in the center area Ac and an average tire thickness Gsh in the shoulder area Ash.
  • the relationship between the intermediate region Am and the average tire thickness Gm satisfies the relationship of 1.05 ⁇ (Gc / Gsh) ⁇ 1.35 and the relationship Gc ⁇ Gm> Gsh.
  • the belt reinforcing layer 15 is disposed on the outer side in the tire radial direction of the belt layer 14.
  • the belt reinforcing layer 15 is disposed on the outer side in the tire radial direction of the belt layer 14 and covers the belt layer 14 in the tire circumferential direction.
  • the belt reinforcing layer 15 is formed by coating a plurality of cords (not shown) substantially parallel to the tire circumferential direction and arranged in the tire width direction with a coat rubber.
  • the cords of the belt reinforcing layer 15 are made of, for example, steel, or organic fibers such as polyester, rayon, nylon, etc., and the angle of the cords is in the range of ⁇ 5 ° with respect to the tire circumferential direction.
  • the belt reinforcing layer 15 is disposed over the entire range in the tire width direction in which the belt layer 14 is disposed, and covers the tire width direction end of the belt layer 14.
  • the belt reinforcing layer 15 disposed on the outer side in the tire radial direction of the belt layer 14 is provided by, for example, winding a strip material having a width of about 10 mm in the tire circumferential direction. That is, the belt reinforcing layer 15 is disposed by spirally winding a strip-shaped strip on the outer side of the belt layer 14 in the tire radial direction. At that time, the strip material is wound in a single layer at a position radially inward of the second land portion 22 and the shoulder land portion 23, while 2 at a position radially inward of the center land portion 21. The layers are stacked and wound in the tire radial direction.
  • the strip material is wound in a spiral shape without being overlapped in the tire radial direction at a position radially inward of the second land portion 22 and the shoulder land portion 23, while the center land portion 21 is wound.
  • the strip materials are overlapped and wound in the tire radial direction.
  • a greater number of strip materials are stacked at the position of the center area Ac than at positions other than the center area Ac.
  • the belt reinforcing layer 15 is disposed on the outer side in the tire radial direction of the belt layer 14 as described above, the tread portion 2 is improperly bent when the ground contact surface 3 is in contact with the ground. Can be suppressed. This makes it possible to reduce the difference between the ground contact length near the center in the tire width direction at the time of ground contact on the ground contact surface 3 and the ground contact length near the end in the tire width direction. It can suppress that rolling resistance becomes large resulting from having differed greatly.
  • the breaking strength of the center area Ac can be more reliably increased. It is possible to more reliably suppress damage to the belt layer 14 by the protrusion 105 when the protrusion 105 is stepped on. As a result of these, it is possible to make the shock burst performance and the low rolling resistance compatible with each other more reliably.
  • the pneumatic tire 1 according to the fifth embodiment has substantially the same configuration as the pneumatic tire 1 according to the first embodiment, but is characterized in that circumferential narrow grooves 45 are formed in the shoulder region Ash.
  • the other configuration is the same as that of the first embodiment, and thus the description thereof is omitted and the same reference numeral is attached.
  • FIG. 9 is a detailed cross-sectional view of main parts of the pneumatic tire 1 according to a fifth embodiment.
  • the pneumatic tire 1 according to the fifth embodiment is the same as the pneumatic tire 1 according to the first embodiment, the tread portion 2 has an average tire thickness Gc in the center area Ac and an average tire thickness Gsh in the shoulder area Ash.
  • the relationship between the intermediate region Am and the average tire thickness Gm satisfies the relationship of 1.05 ⁇ (Gc / Gsh) ⁇ 1.35 and the relationship Gc ⁇ Gm> Gsh.
  • circumferential narrow grooves 45 extending in the tire circumferential direction are formed in at least one of the shoulder land portions 23 positioned on both sides in the tire width direction.
  • the circumferential narrow groove 45 is disposed in the shoulder region Ash in the shoulder land portion 23. That is, the circumferential narrow groove 45 is formed in at least one shoulder region Ash of the shoulder regions Ash located on both sides in the tire width direction.
  • the circumferential narrow groove 45 formed in the shoulder region Ash is formed within a range where the groove width of the opening to the ground surface 3 is 0.6 mm or more and 2 mm or less and the groove depth is 3 mm or more and 5 mm or less ing.
  • a portion of the carcass layer 13 located in the shoulder region Ash bulges toward the tire inner surface 18 in the non-internal pressure filling state. That is, in the internal pressure non-filling state, most of the portion located in the tread portion 2 bulges outward in the tire radial direction, and most of the portion located in the sidewall portion 8 is the tire width Bulging outward in the direction. That is, in most parts other than the bead portion 10, the carcass layer 13 bulges toward the outer surface of the pneumatic tire 1 in the non-filled state, while the carcass layer 13 bulges toward the outer surface of the tire.
  • the portion of the layer 13 located in the shoulder region Ash is formed to bulge toward the tire inner surface 18 side.
  • the carcass layer 13 has an inward bulging portion 13a that bulges toward the tire inner surface 18 in a state where the internal pressure is not filled as described above in a portion located in the shoulder region Ash.
  • the pneumatic tire 1 When using the pneumatic tire 1 according to the fifth embodiment, as in the first embodiment, the pneumatic tire 1 is rim-assembled on the rim wheel R by fitting the rim wheel R to the bead portion 10, and the inside Fill the air and inflate.
  • the internal pressure exerts a tension on the entire pneumatic tire 1, but this tension is mainly received by the carcass layer 13. That is, since the carcass layer 13 is bridged between the pair of bead portions 10 and has a role as a skeleton of the pneumatic tire 1, the tension due to the internal pressure is mainly received by the carcass layer 13. Therefore, a large tension acts on the carcass layer 13 at the time of the internal pressure filling.
  • the carcass layer 13 provided in the pneumatic tire 1 according to the fifth embodiment has the inward direction bulging portion 13a in a portion located in the shoulder region Ash.
  • the inward direction bulging portion 13a of the carcass layer 13 has a shape in which the internal pressure is filled in the pneumatic tire 1, tension is applied to the carcass layer 13, and then the internal pressure is expanded toward the outer surface side of the tire by the internal pressure. Thereafter, a tension acts on the inward direction bulging portion 13a. Therefore, even after the internal pressure is filled, the inward-directed bulging portion 13a of the carcass layer 13 can suppress the tension acting by the internal pressure to a low level, and can reduce the bending rigidity in the vicinity of the shoulder region Ash.
  • the shoulder region Ash can be more preferentially deformed, and the pressure from the protrusion 105 on the tread portion 2 is reduced. be able to. As a result, the shock burst resistance performance can be more reliably improved.
  • the rigidity of the shoulder region Ash in the shoulder land portion 23 can be lowered. For this reason, it is possible to release the strain when the load acts on the shoulder area Ash, so that the loss energy of the shoulder area Ash in which the loss energy at the time of rotation of the pneumatic tire 1 tends to increase during traveling of the vehicle It can be reliably reduced. As a result, the resistance at the time of bending of the shoulder region Ash can be reduced more reliably, so that the energy loss at the time of rotation of the pneumatic tire 1 can be reduced, and the rolling resistance can be reduced.
  • the shoulder area Ash can be more preferentially deformed preferentially. Since the entire tread portion 2 can be bent, the pressure from the protrusion 105 on the tread portion 2 can be reduced. Thereby, the shock burst can be suppressed more reliably. As a result of these, it is possible to make the shock burst performance and the low rolling resistance compatible with each other more reliably.
  • the pneumatic tire 1 according to the sixth embodiment has substantially the same configuration as the pneumatic tire 1 according to the first embodiment, but is characterized in that the sidewall portion 8 is provided with the side reinforcing rubber 50.
  • the other configuration is the same as that of the first embodiment, and thus the description thereof is omitted and the same reference numeral is attached.
  • FIG. 10 is a detailed cross-sectional view of main parts of a pneumatic tire 1 according to a sixth embodiment.
  • the pneumatic tire 1 according to the sixth embodiment is the same as the pneumatic tire 1 according to the first embodiment, the tread portion 2 has an average tire thickness Gc in the center area Ac and an average tire thickness Gsh in the shoulder area Ash.
  • the relationship between the intermediate region Am and the average tire thickness Gm satisfies the relationship of 1.05 ⁇ (Gc / Gsh) ⁇ 1.35 and the relationship Gc ⁇ Gm> Gsh.
  • the pneumatic tire 1 according to the sixth embodiment includes the side reinforcing rubber 50 in the sidewall portion 8 and is used as a so-called run flat tire which can travel even when air leaks due to a puncture or the like.
  • the side reinforcing rubber 50 disposed in the sidewall portion 8 is a rubber member provided inside the sidewall portion 8 and is disposed without being exposed to the inner surface of the tire or the outer surface of the tire.
  • the side reinforcing rubber 50 is mainly located inward in the tire width direction of a portion of the carcass layer 13 located in the sidewall portion 8, and between the carcass layer 13 and the inner liner 16 in the sidewall portion 8. It arrange
  • the outer end 51 which is the outer end in the tire radial direction is positioned on the inner side in the tire radial direction of the belt layer 14 in the tread portion 2.
  • a portion of the belt layer 14 and the belt layer 14 overlap each other in the tire radial direction with a wrap amount within a predetermined range. For this reason, at least a part of the side reinforcing rubber 50 in the vicinity of the outer end portion 51 is located in the shoulder region Ash.
  • the side reinforcing rubber 50 disposed in this manner is formed of a rubber forming the sidewall portion 8 or a rubber material having higher strength than the rim cushion rubber 17 disposed on the bead portion 10.
  • the side reinforcing rubber 50 may be located not only in the shoulder area Ash but also in the middle area Am.
  • the tire average thickness Gsh in the shoulder region Ash and the tire average thickness Gm in the middle region Am in the case where a part of the side reinforcement rubber 50 is positioned in the shoulder region Ash or the middle region Am include the side reinforcement rubber 50. It is thick.
  • the side reinforcing rubber 50 is disposed inside the sidewall portion 8 as described above, the bending rigidity of the sidewall portion 8 is high. Thereby, even when air leaks out due to a puncture or the like and a large load acts on the sidewall portion 8, the deformation of the sidewall portion 8 can be reduced, and the vehicle travels at a speed below a predetermined speed. Can.
  • the side reinforcing rubber 50 is disposed in the sidewall portion 8, so that the bending rigidity of the sidewall portion 8 is high. Therefore, the projection 105 is stepped on while the internal pressure is filled. In this case, the sidewall 8 is difficult to bend. For this reason, the stress at the time of stepping on the protrusion 105 is easily concentrated on the tread portion 2 and a shock burst is easily generated.
  • the tire average thickness Gc in the center area Ac is large, and the tire average thickness Gsh in the shoulder area Ash is thin.
  • the shoulder area Ash is easily deformed.
  • the pressure from the projection 105 on the tread portion 2 can be reduced when the projection 105 is stepped on, and the projection 105 can be prevented from penetrating the tread portion 2 to generate a shock burst.
  • Can As a result, it is possible to achieve both run flat performance and shock burst resistance performance.
  • center area Ac corresponds with the range in the tire width direction of center land part 21 which is land part 20 located on tire equatorial plane CL
  • center area Ac is a tire. It does not have to be located on the equatorial plane CL.
  • the center area Ac is a main groove 30 located on the tire equatorial plane CL, and a main area near the tire equatorial plane CL next to the main groove 30. It may be a range in the tire width direction of the land portion 20 defined by the groove 30.
  • an area closest to the tire equatorial plane CL in the area sandwiched by the two adjacent main grooves 30 may be used as the center area Ac.
  • the middle area Am when the center of the center area Ac in the tire width direction and the position in the tire width direction of the tire equatorial plane CL are different, the middle area Am located on both sides in the tire width direction of the tire equatorial plane CL The widths in the tire width direction may be different from each other.
  • the tire average thickness Gm in the intermediate area Am is an average value of the respective intermediate areas Am located on both sides in the tire width direction of the tire equatorial plane CL.
  • the lug grooves 40 are not formed between the adjacent main grooves 30. However, even if the lug grooves 40 are formed between the adjacent main grooves 30. Good. That is, the land portions 20 in each region may be formed in a rib shape extending in the tire width direction, and the land portions 20 are drawn by the main grooves 30 adjacent in the tire width direction and the lug grooves 40 adjacent in the tire circumferential direction. It may be formed in a block shape.
  • the modulus at 300% elongation of the rubber of the tread rubber layer 4 located in the center region Ac is in the range of 10 MPa to 16 MPa
  • the rubber forming the tread rubber layer 4 The modulus at 300% elongation of rubber located outside the center area Ac may also be in the range of 10 MPa or more and 16 MPa or less.
  • center land part 21 is the convex-shaped land part 26 in Embodiment 2 mentioned above
  • land parts 20 other than the center land part 21 may be formed as the convex-shaped land part 26.
  • the second land portion 22 located in the middle region Am may be formed as a convex land portion 26, and the center land portion 21 located in the center region Ac and the second land portion 22 located in the middle region Am Both may be formed as convex lands 26.
  • at least one land portion 20 of the land portions 20 located in the center region Ac and the middle region Am may be formed as a convex shaped land portion 26.
  • the belt layer 14 bulges inward in the tire radial direction at a position on the inner side in the tire radial direction of the center land portion 21.
  • the belt layer 14 is in the tire radial direction other than the center land portion 21. It may be bulged inward in the tire radial direction at an inner position.
  • the belt layer 14 may bulge inward in the tire radial direction at a position on the inner side in the tire radial direction of the second land part 22 located in the intermediate area Am, and the center land part 21 and the intermediate area located in the center area Ac It may be bulged inward in the tire radial direction at both tire radial direction inner positions with the second land portion 22 located at Am.
  • the belt layer 14 may be bulged inward in the tire radial direction at a position radially inward of at least one land portion 20 of the land portions 20 located in the center region Ac and the middle region Am.
  • the circumferential narrow grooves 45 formed in the shoulder area Ash in the fifth embodiment described above may be formed in the shoulder areas Ash on both sides in the tire width direction, and are formed in any one of the shoulder areas Ash It is also good.
  • the circumferential narrow groove 45 may not necessarily be formed continuously over one round, and the circumferential direction is within a range in which the function of reducing the rigidity of the shoulder region Ash by the circumferential narrow groove 45 is not reduced.
  • the narrow groove 45 may be discontinuous in the tire circumferential direction.
  • the carcass layer 13 has the inward bulging portion 13a in the portion located in the shoulder region Ash, but the inward bulging portion 13a is clear in the state where the internal pressure is not filled. It does not have to bulge toward the tire inner surface 18 side.
  • the inward direction bulging portion 13a may have, for example, a linear shape or a wavy shape in a tire meridional sectional view in a state where the internal pressure is not filled.
  • the inward-direction bulging portion 13a of the carcass layer 13 has a shape which bulges toward the outer surface side of the tire by the tension acting on the carcass layer 13 at the time of internal pressure filling, but at that time, the shoulder region in the carcass layer 13
  • the shape is not limited as long as it can reduce the tension of the portion located in Ash.
  • the first to sixth embodiments and the modifications described above may be combined as appropriate.
  • the configurations shown in the second to fifth embodiments may be combined with the side reinforcing rubber 50 shown in the sixth embodiment.
  • the tread portion 2 has a relationship of a tire average thickness Gc in the center area Ac, a tire average thickness Gsh in the shoulder area Ash, and a tire average thickness Gm in the middle area Am.
  • Example 11A to 11C are charts showing the results of performance evaluation tests of pneumatic tires.
  • the performance of the pneumatic tire 1 described above is performed for the pneumatic tire of the conventional example, the pneumatic tire 1 according to the present invention, and the pneumatic tire of the comparative example to be compared with the pneumatic tire 1 according to the present invention
  • the evaluation test of Performance evaluation tests were conducted on shock burst resistance, which is durability against shock bursts, and rolling resistance performance, which is the performance on rolling resistance.
  • the performance evaluation test was performed using a pneumatic tire 1 of 245/50 R19 105 W size, which is specified as a JATMA-designated tire, rim-assembled with a JATMA standard rim wheel having a rim size of 19 ⁇ 7.5 J.
  • the evaluation method of each test item is, for shock burst resistance, the air pressure of the test tire is filled with 220 kPa, and the plunger breaking test according to JIS K6302 is performed with a plunger diameter of 19 mm and a pushing speed of 50 mm / min. It was evaluated by measuring the destructive energy.
  • the shock burst resistance is expressed by an index based on the conventional example described later being 100. The larger the index value, the better the tire strength and the better the shock burst resistance.
  • the pneumatic pressure of the test tire was filled with 250 kPa, and the rolling resistance after performing 30 minutes preliminary
  • the reciprocal of the measured rolling resistance is represented by an index where a conventional example described later is 100, and the larger the index value, the smaller the rolling resistance.
  • the performance evaluation test compares the pneumatic tire according to the conventional example, which is an example of the conventional pneumatic tire, with Examples 1 to 17 which are the pneumatic tire 1 according to the present invention, with the pneumatic tire 1 according to the present invention. It carried out about 21 types of pneumatic tires with comparative examples 1-3 which are pneumatic tires. Among these, in the pneumatic tire of the conventional example, the tire average thickness Gc in the center region Ac of the tread portion 2 is smaller than the tire average thickness Gsh in the shoulder region Ash.
  • the relationship between the average tire thickness Gc in the center region Ac, the average tire thickness Gsh in the shoulder region Ash, and the average tire thickness Gm in the middle region Am is 1 .05 ⁇ (Gc / Gsh) ⁇ 1.35 or does not satisfy the relationship Gc ⁇ Gm> Gsh.
  • the average tire thickness Gc of the center area Ac with respect to the average tire thickness Gsh of the shoulder area Ash is 1.05 ⁇ (Gc In the range of (Gsh) ⁇ 1.35, the tire average thickness Gc in the center area Ac, the tire average thickness Gsh in the shoulder area Ash, and the tire average thickness Gm in the middle area Am satisfy Gc ⁇ Gm> Meets the relationship of Gsh.
  • the pneumatic tires 1 according to Examples 1 to 17 have either shock resistance or rolling resistance. It has been found that both performances can be improved over the conventional example without deteriorating the conventional example. That is, the pneumatic tires 1 according to Examples 1 to 17 can achieve both shock-resistant performance and low rolling resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

空気入りタイヤ1の耐ショックバースト性能と低転がり抵抗とを両立させるために、トレッド部2には、タイヤ周方向に延びる主溝30が形成されると共に、主溝30によって複数の陸部20が画成されており、トレッド部2は、陸部20のうちタイヤ赤道面CLに最も近い陸部20であるセンター陸部21が位置する領域をセンター領域Acとし、ベルト層14のタイヤ幅方向における幅の85%の位置Pとベルト層14のタイヤ幅方向における端部144との間の領域をショルダー領域Ashとし、センター領域Acとショルダー領域Ashとの間の領域を中間領域Amとする場合に、センター領域Acのタイヤ平均厚さGcと、ショルダー領域Ashのタイヤ平均厚さGshと、中間領域Amのタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たす。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関する。
 従来の空気入りタイヤの中には、所望の性能を確保するために、所定の位置での寸法を規定しているものがある。例えば、特許文献1に記載された空気入りタイヤでは、ベルト層の端部とカーカスの最外端との距離とトレッド幅との比を規定することにより、トレッド部の外径成長を抑制している。また、特許文献2に記載されたランフラットラジアルタイヤでは、最大幅ベルト層とサイド補強ゴム層とのタイヤ軸方向の重複幅とタイヤ断面高さとの比を規定することにより、リム外れ性を向上させている。
特許第5567839号公報 特開2015-205583号公報
 ここで、近年では、空気入りタイヤの転がり抵抗の低減を目的として、指定内圧を高めるニーズが増えている。一方で、空気入りタイヤの内圧が高まると接地面の剛性が増加するため、異物を踏んだ際に接地面が変形し難くなり、異物を踏み込むことに起因して発生するショックバーストに対する耐性である耐ショックバースト性能が低下し易くなる。このため、耐ショックバースト性能を低下させることなく転がり抵抗を低減させるのは、大変困難なものとなっていた。
 本発明は、上記に鑑みてなされたものであって、耐ショックバースト性能と低転がり抵抗とを両立させることのできる空気入りタイヤを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る空気入りタイヤは、少なくとも1層のカーカス層と、前記カーカス層におけるトレッド部に位置する部分のタイヤ径方向外側に配置されるベルト層と、前記トレッド部における前記ベルト層のタイヤ径方向外側に配置されるトレッドゴム層とを備える空気入りタイヤであって、前記トレッド部には、タイヤ周方向に延びる主溝が形成されると共に、前記主溝によって複数の陸部が画成されており、前記トレッド部は、前記陸部のうちタイヤ赤道面に最も近い前記陸部であるセンター陸部が位置する領域をセンター領域とし、前記ベルト層のタイヤ幅方向における幅の85%の位置と前記ベルト層のタイヤ幅方向における端部との間の領域をショルダー領域とし、前記センター領域と前記ショルダー領域との間の領域を中間領域とする場合に、前記センター領域におけるタイヤ平均厚さGcと、前記ショルダー領域におけるタイヤ平均厚さGshと、前記中間領域におけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たすことを特徴とする。
 また、上記空気入りタイヤにおいて、前記トレッド部は、前記センター領域における前記ベルト層よりタイヤ径方向外側の前記トレッドゴム層の平均厚さTcと、前記ショルダー領域における前記ベルト層よりタイヤ径方向外側の前記トレッドゴム層の平均厚さTshと、前記中間領域における前記ベルト層よりタイヤ径方向外側の前記トレッドゴム層の平均厚さTmとの関係が、1.2≦(Tc/Tsh)≦1.9の範囲内で、且つ、Tc≧Tm>Tsの関係を満たすことが好ましい。
 また、上記空気入りタイヤにおいて、前記トレッド部は、前記センター領域における前記トレッドゴム層の平均実ゴム厚さVcと、前記ショルダー領域における前記トレッドゴム層の平均実ゴム厚さVshとの関係が、1.6≦(Vc/Vsh)≦2.5の範囲内であることが好ましい。
 また、上記空気入りタイヤにおいて、前記センター領域と前記中間領域とに位置する前記陸部のうち、少なくとも1つの前記陸部は、タイヤ幅方向における端部の位置での厚さTeと、タイヤ幅方向における中央の位置での厚さTpとの関係が、Tp>Teとなる凸形状陸部となって形成されることが好ましい。
 また、上記空気入りタイヤにおいて、前記凸形状陸部は、タイヤ子午断面視における外輪郭線を示す接地面がタイヤ径方向外側に膨出する円弧の形状で形成されており、且つ、前記円弧の曲率半径RRとトレッドプロファイルを成す円弧の曲率半径TRとの関係が、0.1≦(RR/TR)≦0.4の範囲内であることが好ましい。
 また、上記空気入りタイヤにおいて、前記ベルト層は、前記センター領域と前記中間領域とに位置する前記陸部のうちの少なくとも1つの前記陸部のタイヤ径方向内側の位置で、タイヤ径方向内側に膨出することが好ましい。
 また、上記空気入りタイヤにおいて、前記トレッド部は、前記センター陸部を画成する前記主溝の溝底と前記ベルト層との間のゴム厚さの最小厚さTgと、前記センター領域における前記ベルト層よりタイヤ径方向外側の前記トレッドゴム層の平均厚さTcとの関係が、0.12≦(Tg/Tc)≦0.4の範囲内であることが好ましい。
 また、上記空気入りタイヤにおいて、前記トレッドゴム層を成すゴムのうち、前記センター領域に含まれるゴムは、300%伸張時のモジュラスが10MPa以上16MPa以下の範囲内であることが好ましい。
 また、上記空気入りタイヤにおいて、タイヤ幅方向両側に位置する前記ショルダー領域のうち少なくとも一方の前記ショルダー領域には、タイヤ周方向に延在する周方向細溝が形成されることが好ましい。
 また、上記空気入りタイヤにおいて、前記カーカス層は、前記ショルダー領域に位置する部分が、内圧非充填の状態においてタイヤ内面側に向かって膨出することが好ましい。
 また、上記空気入りタイヤにおいて、前記ベルト層のタイヤ径方向外側にはベルト補強層が配設されており、前記ベルト補強層は、前記センター領域の位置では、前記センター領域以外の位置よりも多くの枚数が積層されることが好ましい。
 本発明に係る空気入りタイヤは、耐ショックバースト性能と低転がり抵抗とを両立させることができる、という効果を奏する。
図1は、実施形態1に係る空気入りタイヤの要部を示す子午断面図である。 図2は、図1のA部詳細図である。 図3は、トレッドゴム層の厚さについての説明図である。 図4は、トレッド部の要部斜視図であり、トレッドゴム層の実ゴム厚さについての説明図である。 図5は、実施形態1に係る空気入りタイヤで路面上の突起物を踏んだ状態を示す説明図である。 図6は、実施形態2に係る空気入りタイヤの要部詳細断面図である。 図7は、実施形態3に係る空気入りタイヤの要部詳細断面図である。 図8は、実施形態4に係る空気入りタイヤの要部詳細断面図である。 図9は、実施形態5に係る空気入りタイヤの要部詳細断面図である。 図10は、実施形態6に係る空気入りタイヤの要部詳細断面図である。 図11Aは、空気入りタイヤの性能評価試験の結果を示す図表である。 図11Bは、空気入りタイヤの性能評価試験の結果を示す図表である。 図11Cは、空気入りタイヤの性能評価試験の結果を示す図表である。
 以下に、本発明に係る空気入りタイヤの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能、且つ、容易に想到できるもの、或いは実質的に同一のものが含まれる。
[実施形態1]
 以下の説明において、タイヤ径方向とは、空気入りタイヤ1の回転軸(図示省略)と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸から離れる側をいう。また、タイヤ周方向とは、回転軸を中心軸とする周り方向をいう。また、タイヤ幅方向とは、回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面(タイヤ赤道線)CLに向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。タイヤ赤道面CLとは、空気入りタイヤ1の回転軸に直交すると共に、空気入りタイヤ1のタイヤ幅の中心を通る平面であり、タイヤ赤道面CLは、空気入りタイヤ1のタイヤ幅方向における中心位置であるタイヤ幅方向中心線と、タイヤ幅方向における位置が一致する。タイヤ幅は、タイヤ幅方向において最も外側に位置する部分同士のタイヤ幅方向における幅、つまり、タイヤ幅方向においてタイヤ赤道面CLから最も離れている部分間の距離である。タイヤ赤道線とは、タイヤ赤道面CL上にあって空気入りタイヤ1のタイヤ周方向に沿う線をいう。
 図1は、実施形態1に係る空気入りタイヤ1の要部を示す子午断面図である。図1に示す空気入りタイヤ1は、子午面断面で見た場合、タイヤ径方向の最も外側となる部分にトレッド部2が配設されており、トレッド部2は、ゴム組成物から成るトレッドゴム層4を有している。また、トレッド部2の表面、即ち、当該空気入りタイヤ1を装着する車両(図示省略)の走行時に路面と接触する部分は、接地面3として形成され、接地面3は、空気入りタイヤ1の輪郭の一部を構成している。トレッド部2には、接地面3にタイヤ周方向に延びる主溝30が複数形成されており、この複数の主溝30により、トレッド部2の表面には複数の陸部20が画成されている。本実施形態1では、主溝30は4本がタイヤ幅方向に並んで形成されており、4本の主溝30は、タイヤ幅方向におけるタイヤ赤道面CLの両側にそれぞれ2本ずつ配設されている。つまり、トレッド部2には、タイヤ赤道面CLの両側に配設される2本のセンター主溝31と、2本のセンター主溝31のそれぞれのタイヤ幅方向外側に配設される2本のショルダー主溝32との、計4本の主溝30が形成されている。
 なお、主溝30とは、少なくとも一部がタイヤ周方向に延在する縦溝をいう。一般に主溝30は、3mm以上の溝幅を有し、6mm以上の溝深さを有し、摩耗末期を示すトレッドウェアインジケータ(スリップサイン)を内部に有する。本実施形態1では、主溝30は、9mm以上12mm以下の溝幅を有し、7mm以上8mm以下の溝深さを有しており、タイヤ赤道面CLと接地面3とが交差するタイヤ赤道線(センターライン)と実質的に平行である。主溝30は、タイヤ周方向に直線状に延在してもよいし、波形状又はジグザグ状に設けられてもよい。
 主溝30によって画成される陸部20のうち、2本のセンター主溝31同士の間に位置し、タイヤ赤道面CL上に位置する陸部20は、センター陸部21になっている。また、隣り合うセンター主溝31とショルダー主溝32との間に位置し、センター陸部21のタイヤ幅方向外側に配置される陸部20はセカンド陸部22になっている。また、セカンド陸部22のタイヤ幅方向外側に位置し、ショルダー主溝32を介してセカンド陸部22に隣り合う陸部20はショルダー陸部23になっている。
 タイヤ幅方向におけるトレッド部2の両外側端にはショルダー部5が位置しており、ショルダー部5のタイヤ径方向内側には、サイドウォール部8が配設されている。つまり、サイドウォール部8は、タイヤ幅方向における空気入りタイヤ1の両側2箇所に配設されており、空気入りタイヤ1におけるタイヤ幅方向の最も外側に露出した部分を形成している。
 タイヤ幅方向における両側に位置するそれぞれのサイドウォール部8のタイヤ径方向内側には、ビード部10が位置している。ビード部10は、サイドウォール部8と同様に、タイヤ赤道面CLの両側2箇所に配設されており、即ち、ビード部10は、一対がタイヤ赤道面CLのタイヤ幅方向における両側に配設されている。各ビード部10にはビードコア11が設けられており、ビードコア11のタイヤ径方向外側にはビードフィラー12が設けられている。ビードコア11は、スチールワイヤであるビードワイヤをリング状に巻くことにより形成される環状部材になっており、ビードフィラー12は、ビードコア11のタイヤ径方向外側に配置されるゴム部材になっている。
 また、トレッド部2のタイヤ径方向内側には、ベルト層14が設けられている。ベルト層14は、少なくとも2層の交差ベルト141、142が積層される多層構造によって構成されている。この交差ベルト141、142は、スチール、またはポリエステルやレーヨンやナイロン等の有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、タイヤ周方向に対するベルトコードの傾斜角として定義されるベルト角度が、所定の範囲内(例えば、20°以上55°以下)になっている。また、2層の交差ベルト141、142は、ベルト角度が互いに異なっている。このため、ベルト層14は、2層の交差ベルト141、142が、ベルトコードの傾斜方向を相互に交差させて積層される、いわゆるクロスプライ構造として構成される。トレッド部2が有するトレッドゴム層4は、トレッド部2におけるベルト層14のタイヤ径方向外側に配置されている。
 ベルト層14のタイヤ径方向内側、及びサイドウォール部8のタイヤ赤道面CL側には、ラジアルプライのコードを内包するカーカス層13が連続して設けられている。カーカス層13は、1枚のカーカスプライから成る単層構造、或いは複数のカーカスプライを積層して成る多層構造を有し、タイヤ幅方向の両側に配設される一対のビード部10間にトロイダル状に架け渡されてタイヤの骨格を構成する。詳しくは、カーカス層13は、タイヤ幅方向における両側に位置する一対のビード部10のうち、一方のビード部10から他方のビード部10にかけて配設されており、ビードコア11及びビードフィラー12を包み込むようにビード部10でビードコア11に沿ってタイヤ幅方向外側に巻き返されている。ビードフィラー12は、このようにカーカス層13がビード部10で折り返されることにより、ビードコア11のタイヤ径方向外側に形成される空間に配置されるゴム材になっている。また、ベルト層14は、このように一対のビード部10間に架け渡されるカーカス層13における、トレッド部2に位置する部分のタイヤ径方向外側に配置されている。また、カーカス層13のカーカスプライは、スチール、或いはアラミド、ナイロン、ポリエステル、レーヨン等の有機繊維材から成る複数のカーカスコードを、コートゴムで被覆して圧延加工することによって構成されている。カーカスプライを構成するカーカスコードは、タイヤ周方向に対する角度がタイヤ子午線方向に沿いつつ、タイヤ周方向にある角度を持って複数並設されている。
 ビード部10における、ビードコア11及びカーカス層13の巻き返し部のタイヤ径方向内側やタイヤ幅方向外側には、リムフランジに対するビード部10の接触面を構成するリムクッションゴム17が配設されている。また、カーカス層13の内側、或いは、当該カーカス層13の、空気入りタイヤ1における内部側には、インナーライナ16がカーカス層13に沿って形成されている。インナーライナ16は、空気入りタイヤ1の内側の表面であるタイヤ内面18を形成している。
 図2は、図1のA部詳細図である。トレッド部2は、タイヤ幅方向における中央に位置する領域をセンター領域Acとし、タイヤ幅方向における両端に位置する領域をショルダー領域Ashとし、センター領域Acとショルダー領域Ashとの間に位置する領域を中間領域Amとする場合における、それぞれの領域のタイヤ平均厚さの相対関係が、所定の関係を満たしている。これらの領域のうち、センター領域Acは、複数の陸部20のうち、タイヤ赤道面CLに最も近い陸部20であるセンター陸部21が位置する領域になっている。詳しくは、センター領域Acは、空気入りタイヤ1の子午面断面視において、センター陸部21を画成するセンター主溝31の溝壁35のうちセンター陸部21側に位置する溝壁35と、センター陸部21のタイヤ径方向外側の外輪郭線を示す接地面3との交点24から、タイヤ内面18に対して垂直に延ばした線をセンター領域境界線Lcとする場合に、センター陸部21のタイヤ幅方向両側に位置する2本のセンター領域境界線Lcの間に位置する領域になっている。
 なお、センター主溝31が、タイヤ周方向に延びつつタイヤ幅方向に屈曲したり湾曲したりすることによりタイヤ幅方向に振幅している場合は、センター領域Acは、タイヤ幅方向に最も広くなる範囲で規定される。つまり、センター主溝31がタイヤ幅方向に振幅している場合は、センター領域Acを規定するセンター領域境界線Lcは、センター陸部21を画成するセンター主溝31の溝壁35における、タイヤ周方向上において最もタイヤ幅方向外側に位置する部分と接地面3との交点24からタイヤ内面18に対して垂直に延ばした線になる。
 また、ショルダー領域Ashは、ベルト層14のタイヤ幅方向における幅の85%の位置Pとベルト層14のタイヤ幅方向における端部144との間の領域になっている。詳しくは、ショルダー領域Ashは、空気入りタイヤ1の子午面断面視において、ベルト層14が有する複数の交差ベルト141、142のうち、タイヤ幅方向における幅が最も広い交差ベルトである最幅広ベルト143のタイヤ幅方向における幅の85%の位置Pと、最幅広ベルト143の端部144とから、タイヤ内面18に対して垂直に延ばした線を、それぞれショルダー領域境界線Lshとする場合に、2本のショルダー領域境界線Lshの間に位置する領域になっている。これらのように規定されるショルダー領域Ashは、タイヤ赤道面CLのタイヤ幅方向における両側で規定され、タイヤ赤道面CLのタイヤ幅方向における両側にそれぞれ位置している。
 本実施形態1では、ベルト層14が有する2層の交差ベルト141、142のうち、タイヤ径方向内側に位置する交差ベルト141のタイヤ幅方向における幅が、他方の交差ベルト142のタイヤ幅方向における幅よりも広くなっており、このタイヤ径方向内側に位置する交差ベルト141が、最幅広ベルト143になっている。
 また、最幅広ベルト143のタイヤ幅方向における幅の85%の位置Pは、最幅広ベルト143のタイヤ幅方向における中心、或いはタイヤ赤道面CLの位置を中心として、最幅広ベルト143のタイヤ幅方向における幅の85%の領域がタイヤ幅方向両側に均等に振り分けられた際における、85%の領域の端部の位置になっている。このため、最幅広ベルト143のタイヤ幅方向における幅の85%の位置Pと、最幅広ベルト143の端部144との間隔は、タイヤ赤道面CLのタイヤ幅方向両側で同じ大きさになっている。
 また、中間領域Amは、センター領域Acとショルダー領域Ashとの間の領域になっている。つまり、中間領域Amは、センター領域Acのタイヤ幅方向における両側に位置しており、中間領域Amのタイヤ幅方向内側の境界は、センター領域境界線Lcによって規定され、中間領域Amのタイヤ幅方向外側の境界は、ショルダー領域境界線Lshによって規定される。
 これらのセンター領域Ac、ショルダー領域Ash、中間領域Amは、空気入りタイヤ1を正規リムにリム組みして正規内圧を充填した状態における形状で規定される。ここでいう正規リムとは、JATMAで規定する「標準リム」、TRAで規定する「Design Rim」、或いは、ETRTOで規定する「Measuring Rim」である。また、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、或いはETRTOで規定する「INFLATION PRESSURES」である。
 トレッド部2は、センター領域Acとショルダー領域Ashと中間領域Amとの、それぞれの領域のタイヤ平均厚さの相対関係が、所定の関係を満たしている。この場合におけるタイヤ平均厚さは、タイヤ子午断面視における陸部20のタイヤ径方向外側の輪郭線である外輪郭線を示す接地面3からタイヤ内面18までの厚さであるタイヤ厚さの、領域ごとの平均値になっている。つまり、センター領域Acにおけるタイヤ平均厚さGcは、センター領域Acにおける接地面3からタイヤ内面18までの距離の平均値になっており、ショルダー領域Ashにおけるタイヤ平均厚さGshは、ショルダー領域Ashにおける接地面3からタイヤ内面18までの距離の平均値になっており、中間領域Amにおけるタイヤ平均厚さGmは、中間領域Amにおける接地面3からタイヤ内面18までの距離の平均値になっている。
 なお、トレッド部2の中間領域Amには、センター主溝31とショルダー主溝32とが位置しているが、中間領域Amにおけるタイヤ平均厚さGmは、これらの主溝30が存在しないものとして算出する。つまり、主溝30の位置でのタイヤ厚さは、タイヤ幅方向における主溝30の両側の陸部20の接地面3を主溝30上に延長した仮想線25からタイヤ内面18までの距離を、主溝30の位置でのタイヤ厚さとして扱い、中間領域Amにおけるタイヤ平均厚さGmを算出する。
 各領域のタイヤ平均厚さは、空気入りタイヤ1の子午面断面における、トレッド部2のセンター領域Ac、ショルダー領域Ash、中間領域Amのそれぞれの断面積を、各領域の幅で除算することによって算出してもよい。例えば、センター領域Acのタイヤ平均厚さGcは、センター領域Acの断面積を、センター領域Acを規定する2本のセンター領域境界線Lc同士の距離で除算することによって算出する。2本のセンター領域境界線Lc同士が、互いに傾斜している場合には、それぞれのセンター領域境界線Lc上における接地面3の位置とタイヤ内面18の位置との中間の位置での距離によって、センター領域Acの断面積を割ってセンター領域Acのタイヤ平均厚さGcを算出する。ショルダー領域Ashのタイヤ平均厚さGshや中間領域Amのタイヤ平均厚さGmも同様に、各領域の断面積を、これらの領域を規定するショルダー領域境界線Lsh同士の距離や、センター領域境界線Lcとショルダー領域境界線Lshとの距離で除算することにより算出する。
 トレッド部2は、これらのように算出するセンター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内になっている。さらに、トレッド部2は、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとが、Gc≧Gm>Gshの関係を満たしている。なお、センター領域Acのタイヤ平均厚さGcと、ショルダー領域Ashのタイヤ平均厚さGshとの関係は、1.08≦(Gc/Gsh)≦1.20の範囲内であるのが好ましい。
 図3は、トレッドゴム層4の厚さについての説明図である。トレッド部2は、領域ごとのタイヤ平均厚さのみでなく、領域ごとのトレッドゴム層4の厚さの相対関係も、所定の関係を満たしている。つまり、トレッド部2は、センター領域Acにおけるベルト層14よりタイヤ径方向外側のトレッドゴム層4の平均厚さTcと、ショルダー領域Ashにおけるベルト層14よりタイヤ径方向外側のトレッドゴム層4の平均厚さTshとの関係が、1.2≦(Tc/Tsh)≦1.9の範囲内になっている。さらに、トレッド部2は、センター領域Acにおけるベルト層14よりタイヤ径方向外側のトレッドゴム層4の平均厚さTcと、ショルダー領域Ashにおけるベルト層14よりタイヤ径方向外側のトレッドゴム層4の平均厚さTshと、中間領域Amにおけるベルト層14よりタイヤ径方向外側のトレッドゴム層4の平均厚さTmとが、Tc≧Tm>Tsの関係を満たしている。なお、図3では、各領域のトレッドゴム層4は、ハッチングを付して図示している。また、センター領域Acのトレッドゴム層4の平均厚さTcと、ショルダー領域Ashのトレッドゴム層4の平均厚さTshとの関係は、1.4≦(Tc/Tsh)≦1.7の範囲内であるのが好ましい。
 この場合における各領域のトレッドゴム層4の平均厚さは、ベルト層14が有する複数の交差ベルト141、142のうち、タイヤ径方向外側に位置する交差ベルト142と接地面3との距離をトレッドゴム層4の厚さとした場合における、領域ごとの平均の厚さになっている。また、中間領域Amのトレッドゴム層4の平均厚さTmも、中間領域Amのタイヤ平均厚さGmと同様に、主溝30が存在しないものとして算出する。つまり、主溝30の位置でのトレッドゴム層4の厚さは、タイヤ幅方向における主溝30の両側の陸部20の接地面3を主溝30上に延長した仮想線25から、2層の交差ベルト141、142のうちタイヤ径方向外側に位置する交差ベルト142までの距離を、主溝30の位置でのトレッドゴム層4の厚さとして扱い、中間領域Amのトレッドゴム層4の平均厚さTmを算出する。
 これらのように規定されるトレッドゴム層4の厚さも、タイヤ平均厚さと同様に、空気入りタイヤ1の子午面断面における、トレッド部2のセンター領域Ac、ショルダー領域Ash、中間領域Amのそれぞれに位置するトレッドゴム層4の断面積を、各領域の幅で除算することによって算出してもよい。
 また、トレッドゴム層4を成すゴムのうち、少なくともセンター領域Acに含まれるゴムは、300%伸張時のモジュラスが、10MPa以上16MPa以下の範囲内になっている。なお、300%伸張時のモジュラスは、JIS K6251(3号ダンベル使用)に準拠した23℃での引張試験により測定され、300%伸長時の引張り応力を示す。
 さらに、トレッド部2は、当該トレッド部2に形成された溝を考慮したトレッドゴム層4の厚さである実ゴム厚さも、領域ごとの相対関係が所定の関係を満たしている。つまり、領域ごとに算出する実ゴム厚さである平均実ゴム厚さも、領域ごとの相対関係が所定の関係を満たしている。図4は、トレッド部2の要部斜視図であり、トレッドゴム層4の実ゴム厚さについての説明図である。トレッド部2には、主溝30が形成されており、タイヤ周方向に延びる主溝30の他にも、タイヤ幅方向に延びるラグ溝40等の溝が形成されている。上述したトレッドゴム層4の平均厚さは、これらの溝を考慮せず、溝が存在しないものとして算出するトレッドゴム層4の厚さであるのに対し、トレッドゴム層4の平均実ゴム厚さは、溝の部分にはトレッドゴム層4を構成するゴムが存在しないものとして算出するトレッドゴム層4の厚さになっている。このため、各領域のトレッドゴム層4の平均実ゴム厚さは、各領域において主溝30やラグ溝40等の溝を含まないトレッドゴム層4の実際の体積を、各領域に位置するタイヤ内面18の面積で除算することによって算出する厚さになっている。
 例えば、センター領域Acにおけるトレッドゴム層4の平均実ゴム厚さVcは、センター領域Acにおいて溝を含まないトレッドゴム層4の体積を、センター領域Acに位置するタイヤ内面18の面積で除算することによって算出する。センター領域Acに位置するタイヤ内面18の面積は、タイヤ内面18における、センター領域Acを規定する2本のセンター領域境界線Lcで挟まれてタイヤ周方向に延在する部分の面積になっている。
 また、ショルダー領域Ashにおけるトレッドゴム層4の平均実ゴム厚さVshは、ショルダー領域Ashにおいて溝を含まないトレッドゴム層4の体積を、ショルダー領域Ashに位置するタイヤ内面18の面積で除算することによって算出する。ショルダー領域Ashに位置するタイヤ内面18の面積は、タイヤ内面18における、ショルダー領域Ashを規定する2本のショルダー領域境界線Lshで挟まれてタイヤ周方向に延在する部分の面積になっている。
 トレッド部2は、これらのように算出するセンター領域Acにおけるトレッドゴム層4の平均実ゴム厚さVcと、ショルダー領域Ashにおけるトレッドゴム層4の平均実ゴム厚さVshとの関係が、1.6≦(Vc/Vsh)≦2.5の範囲内になっている。
 なお、各領域のトレッドゴム層4の平均実ゴム厚さは、空気入りタイヤ1から領域ごとにトレッドゴム層4を切り出し、切り出したトレッドゴム層4の質量とトレッドゴム層4を構成するゴムの比重とに基づいて体積を算出し、算出した体積を、各領域に位置するタイヤ内面18の面積で除算することによって算出してもよい。
 本実施形態1に係る空気入りタイヤ1を車両に装着する際には、ビード部10にリムホイールR(図5参照)を嵌合することによってリムホイールRに空気入りタイヤ1をリム組みし、内部に空気を充填してインフレートした状態で車両に装着する。本実施形態1に係る空気入りタイヤ1は、インフレート時の内圧が比較的高い状態で使用され、具体的には、250kPa以上290kPa以下の範囲内の内圧で使用される。空気入りタイヤ1を装着した車両が走行すると、接地面3のうち下方に位置する部分の接地面3が路面に接触しながら当該空気入りタイヤ1は回転する。車両は、接地面3と路面との間の摩擦力により、駆動力や制動力を路面に伝達したり、旋回力を発生させたりすることにより走行する。
 例えば、空気入りタイヤ1を装着した車両で乾燥した路面を走行する場合には、主に接地面3と路面との間の摩擦力により、駆動力や制動力を路面に伝達したり、旋回力を発生させたりすることにより走行する。また、濡れた路面を走行する際には、接地面3と路面との間の水が主溝30やラグ溝40等の溝に入り込み、これらの溝で接地面3と路面との間の水を排水しながら走行する。これにより、接地面3は路面に接地し易くなり、接地面3と路面との間の摩擦力により、車両は所望の走行をすることが可能になる。
 また、車両の走行時は、空気入りタイヤ1は車体の重量や、加減速、旋回に伴う荷重を受けるため、タイヤ径方向に大きな荷重が作用する。この荷重は、空気入りタイヤ1の内部に充填される空気によって主に受けるが、空気入りタイヤ1の内部の空気のみでなく、トレッド部2やサイドウォール部8によっても受ける。即ち、サイドウォール部8は、リムホイールRが嵌合されるビード部10とトレッド部2との間で荷重を伝達し、トレッド部2は、サイドウォール部8と路面との間で荷重を伝達する。このため、サイドウォール部8やトレッド部2には、車両の走行時には大きな荷重が作用し、サイドウォール部8やトレッド部2は、主にタイヤ径方向に撓みながらこの荷重を受ける。
 また、車両の走行時には、空気入りタイヤ1は回転をするため、接地面3における路面に接地する位置は継続的にタイヤ周方向に移動し、これに伴い、サイドウォール部8やトレッド部2における、車両の走行時の荷重によって撓む位置も、タイヤ周方向に移動する。このため、車両の走行時は、サイドウォール部8やトレッド部2のタイヤ周方向上における各位置が、順次撓むことを繰り返しながら空気入りタイヤ1は回転をする。
 ここで、このようにサイドウォール部8やトレッド部2が撓むことは、空気入りタイヤ1が路面に接地しながら回転する際における回転の妨げになり、空気入りタイヤ1の回転時における大きな抵抗として作用する。このため、空気入りタイヤ1の回転時における撓みが大きい場合は、空気入りタイヤ1の回転時における抵抗である、いわゆる転がり抵抗が大きくなる。
 これに対し、本実施形態1に係る空気入りタイヤ1は、内圧が250kPa以上290kPa以下の範囲内で使用され、即ち、内圧が比較的高い状態で使用されるため、空気入りタイヤ1に作用する多くの荷重を、内圧によって受けることができる。このため、サイドウォール部8やトレッド部2は、空気入りタイヤ1に作用する荷重によって撓み難くなり、サイドウォール部8やトレッド部2の撓みによる、空気入りタイヤ1の回転時の抵抗を小さくすることができる。これにより、空気入りタイヤ1の回転時における転がり抵抗を小さくすることができる。
 また、車両が走行する路面には、石等の路面から突出する突起物が存在することがあり、走行中の車両は、このような突起物を空気入りタイヤ1のトレッド部2で踏んでしまうことがある。その際に、内圧が高いことによりサイドウォール部8やトレッド部2の撓みが小さいと、空気入りタイヤ1は、突起物が存在することによる路面の形状の変化を吸収することができず、突起物は、空気入りタイヤ1のトレッド部2を貫通してしまう虞がある。即ち、内圧を高くした空気入りタイヤ1は、路面上の突起物を踏んだ際に、サイドウォール部8やトレッド部2の撓みが小さいことに起因して突起物がトレッド部2を貫通し、ショックバーストが発生する虞がある。
 これに対し、本実施形態1に係る空気入りタイヤ1は、センター領域Acにおけるタイヤ平均厚さGcが厚く、ショルダー領域Ashにおけるタイヤ平均厚さGshが薄くなっているため、内圧を高くした場合におけるショックバーストを抑制することができる。図5は、実施形態1に係る空気入りタイヤ1で路面100上の突起物105を踏んだ状態を示す説明図である。本実施形態1に係る空気入りタイヤ1では、センター領域Acにおけるタイヤ平均厚さGcを厚くすることにより、トレッド部2のタイヤ幅方向における中央付近の破断強度を増加させることができるため、路面100上の突起物105をセンター領域Ac付近で踏んだ場合でも、突起物105がトレッド部2を貫通することを抑制することができる。また、ショルダー領域Ashのタイヤ平均厚さGshを薄くすることにより、トレッド部2のセンター領域Ac付近で突起物105を踏んだ際に、ショルダー領域Ashを優先的に変形させることができ、センター領域Ac付近が路面100から離れる方向に、ショルダー領域Ashを変形させ易くすることができる。これにより、トレッド部2に対する突起物105からの圧力を低減することができ、突起物105がトレッド部2を貫通することを抑制することができる。従って、車両の走行中に突起物105を踏むことに起因するショックバーストを抑制することができる。
 具体的には、本実施形態1に係る空気入りタイヤ1のトレッド部2は、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内になっているため、転がり抵抗を低減しつつ、ショックバーストを抑制することができる。つまり、センター領域Acのタイヤ平均厚さGcとショルダー領域Ashのタイヤ平均厚さGshとの関係が、(Gc/Gsh)<1.05である場合は、センター領域Acのタイヤ平均厚さGcが薄過ぎるため、センター領域Acの破断強度が増加し難くなる。または、ショルダー領域Ashのタイヤ平均厚さGshが厚過ぎるため、ショルダー領域Ashが変形し難くなり、トレッド部2で突起物105を踏んだ際に、センター領域Ac付近が路面100から離れる方向にショルダー領域Ashが変形し難くなる。
 また、センター領域Acのタイヤ平均厚さGcとショルダー領域Ashのタイヤ平均厚さGshとの関係が、(Gc/Gsh)>1.35である場合は、センター領域Acのタイヤ平均厚さGcが厚過ぎ、ショルダー領域Ashのタイヤ平均厚さGshが薄過ぎるため、接地面3の接地形状のタイヤ幅方向おける中央付近と両端付近とで、接地長さに大きな差がついてしまい、転がり抵抗が大きくなり易くなる。つまり、接地形状のタイヤ幅方向における中央付近の接地長さが長く、タイヤ幅方向における両端付近の接地長さが短いということは、タイヤ幅方向における中央付近と両端付近とでトレッド部2の撓み方が異なることになり、タイヤ幅方向における中央付近の撓み方が、両端付近の撓み方よりも大きくなる。これにより、接地面3の接地時のトレッド部2の撓みは、トレッド部2のタイヤ幅方向における中央付近に集中し、この部分だけ大きく撓むため、トレッド部2のタイヤ幅方向における中央付近が大きく撓むことに起因して転がり抵抗が大きくなり易くなる。
 これに対し、センター領域Acのタイヤ平均厚さGcと、ショルダー領域Ashのタイヤ平均厚さGshとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内である場合は、接地面3の接地時に、トレッド部2のタイヤ幅方向における中央付近のみが大きく撓むことを抑制しつつ、センター領域Acの破断強度を確保し、ショルダー領域Ashの変形のし易さを確保することができる。これにより、転がり抵抗を低減しつつ、ショックバーストを抑制することができ、耐ショックバースト性能を向上させることができる。
 さらに、トレッド部2は、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとが、Gc≧Gm>Gshの関係を満たすため、トレッド部2のタイヤ厚さを、センター領域Acから中間領域Am、ショルダー領域Ashにかけて、連続的に変化させることができる。これにより、トレッド部2の面外曲げ剛性を、タイヤ幅方向に亘って連続的に変化させることができるため、トレッド部2で突起物105を踏んでトレッド部2が撓む際における応力集中を抑制することができる。また、接地面3の接地時に比較的大きく撓むことにより、空気入りタイヤ1の回転時の損失エネルギーが大きくなり易いショルダー領域Ashのタイヤ平均厚さGshが最も薄いため、ショルダー領域Ashが撓む際における抵抗を小さくすることができる。これにより、空気入りタイヤ1の回転時の損失エネルギーを低減することができ、転がり抵抗を低減することができる。これらの結果、耐ショックバースト性能と低転がり抵抗とを両立させることができる。
 また、トレッド部2は、センター領域Acのトレッドゴム層4の平均厚さTcと、ショルダー領域Ashのトレッドゴム層4の平均厚さTshとの関係が、1.2≦(Tc/Tsh)≦1.9の範囲内であるため、転がり抵抗を低減しつつ、ショックバーストを抑制することができる。つまり、センター領域Acのトレッドゴム層4の平均厚さTcと、ショルダー領域Ashのトレッドゴム層4の平均厚さTshとの関係が、(Tc/Tsh)<1.2である場合は、センター領域Acのトレッドゴム層4の平均厚さTcが薄過ぎるため、センター領域Acの破断強度が増加し難くなる虞がある。または、ショルダー領域Ashのトレッドゴム層4の平均厚さTshが厚過ぎるため、突起物105を踏んだ際にショルダー領域Ashが変形し難くなったりする虞がある。また、センター領域Acのトレッドゴム層4の平均厚さTcと、ショルダー領域Ashのトレッドゴム層4の平均厚さTshとの関係が、(Tc/Tsh)>1.9である場合は、センター領域Acのトレッドゴム層4の平均厚さTcが厚過ぎ、ショルダー領域Ashのトレッドゴム層4の平均厚さTshが薄過ぎるため、接地面3の接地形状のタイヤ幅方向における中央付近の接地長さが、タイヤ幅方向における両端付近の接地長さに対して大幅に長くなる虞がある。この場合、接地面3の接地時に、トレッド部2のタイヤ幅方向における中央付近だけ大きく撓み易くなり、これに起因して転がり抵抗が大きくなり易くなる虞がある。
 これに対し、センター領域Acのトレッドゴム層4の平均厚さTcと、ショルダー領域Ashのトレッドゴム層4の平均厚さTshとの関係が、1.2≦(Tc/Tsh)≦1.9の範囲内である場合は、接地面3の接地時に、トレッド部2のタイヤ幅方向における中央付近のみが大きく撓むことを抑制しつつ、センター領域Acの破断強度を確保し、ショルダー領域Ashの変形のし易さを確保することができる。これにより、転がり抵抗を低減しつつ、ショックバーストを抑制することができ、耐ショックバースト性能を向上させることができる。
 さらに、トレッド部2は、センター領域Acのトレッドゴム層4の平均厚さTcと、ショルダー領域Ashのトレッドゴム層4の平均厚さTshと、中間領域Amのトレッドゴム層4の平均厚さTmとが、Tc≧Tm>Tsの関係を満たすため、トレッドゴム層4の厚さを、センター領域Acから中間領域Am、ショルダー領域Ashにかけて連続的に変化させることができる。これにより、トレッド部2の面外曲げ剛性を、タイヤ幅方向に亘ってより確実に連続的に変化させることができ、トレッド部2で突起物105を踏んでトレッド部2が撓む際における応力集中を、より確実に抑制することができる。また、ショルダー領域Ashのトレッドゴム層4の平均厚さTshが最も薄いため、ショルダー領域Ashが撓む際における抵抗をより確実に小さくすることができる。これにより、空気入りタイヤ1の回転時の損失エネルギーを低減することができ、転がり抵抗を低減することができる。これらの結果、耐ショックバースト性能と低転がり抵抗とを、より確実に両立させることができる。
 また、トレッド部2は、センター領域Acにおけるトレッドゴム層4の平均実ゴム厚さVcと、ショルダー領域Ashにおけるトレッドゴム層4の平均実ゴム厚さVshとの関係が、1.6≦(Vc/Vsh)≦2.5の範囲内であるため、転がり抵抗を低減しつつ、ショックバーストを抑制することができる。つまり、センター領域Acのトレッドゴム層4の平均実ゴム厚さVcと、ショルダー領域Ashのトレッドゴム層4の平均実ゴム厚さVshとの関係が、(Vc/Vsh)<1.6である場合は、センター領域Acのトレッドゴム層4の平均実ゴム厚さVcが薄過ぎるため、センター領域Acの破断強度が増加し難くなる虞がある。または、ショルダー領域Ashのトレッドゴム層4の平均実ゴム厚さVshが厚過ぎるため、突起物105を踏んだ際にショルダー領域Ashが変形し難くなったりする虞がある。また、センター領域Acのトレッドゴム層4の平均実ゴム厚さVcと、ショルダー領域Ashのトレッドゴム層4の平均実ゴム厚さVshとの関係が、(Vc/Vsh)>2.5である場合は、センター領域Acのトレッドゴム層4の平均実ゴム厚さVcが厚過ぎ、ショルダー領域Ashのトレッドゴム層4の平均実ゴム厚さVshが薄過ぎるため、接地面3の接地形状のタイヤ幅方向における中央付近の接地長さが、タイヤ幅方向における両端付近の接地長さに対して大幅に長くなる虞がある。この場合、接地面3の接地時に、トレッド部2のタイヤ幅方向における中央付近だけ大きく撓み易くなり、これに起因して転がり抵抗が大きくなり易くなる虞がある。
 これに対し、センター領域Acのトレッドゴム層4の平均実ゴム厚さVcと、ショルダー領域Ashのトレッドゴム層4の平均実ゴム厚さVshとの関係が、1.6≦(Vc/Vsh)≦2.5の範囲内である場合は、接地面3の接地時に、トレッド部2のタイヤ幅方向における中央付近のみが大きく撓むことを抑制しつつ、センター領域Acの破断強度を確保し、ショルダー領域Ashの変形のし易さを確保することができる。この結果、耐ショックバースト性能と低転がり抵抗とを、より確実に両立させることができる。
 また、トレッドゴム層4を成すゴムのうち、少なくともセンター領域Acに含まれるゴムは、300%伸張時のモジュラスが10MPa以上16MPa以下の範囲内になっているため、トレッドゴム層4の強度を確保しつつ、トレッド部2を適度に度撓ませることができる。つまり、トレッドゴム層4におけるセンター領域Acに含まれるゴムの300%伸張時のモジュラスが、10MPa未満である場合は、トレッドゴム層4におけるセンター領域Acに位置するゴムが柔らか過ぎる虞があり、トレッド部2のタイヤ幅方向における中央付近で突起物105を踏んだ際、突起物105がトレッドゴム層4を貫通する虞がある。この場合、トレッドゴム層4を貫通した突起物105がベルト層14に到達し、ベルト層14を損傷する虞がある。また、トレッドゴム層4におけるセンター領域Acに含まれるゴムの300%伸張時のモジュラスが、16MPaより大きい場合は、トレッド部2で突起物105を踏んだ際にトレッド部2が撓み難くなり過ぎる虞があり、路面100から突起物105が突出していることをトレッド部2が撓むことによって吸収できなくなる虞がある。この場合、トレッドゴム層4の強度が高くても突起物105がトレッドゴム層4を貫通してベルト層14を損傷する虞がある。
 これに対し、トレッドゴム層4におけるセンター領域Acに含まれるゴムの300%伸張時のモジュラスが、10MPa以上16MPa以下の範囲内である場合は、突起物105の貫通を抑えることができる程度のトレッドゴム層4の強度を確保しつつ、トレッド部2で突起物105を踏んだ際に、路面100から突起物105が突出していることをある程度吸収できるようにトレッド部2を適度に撓ませることができる。この結果、耐ショックバースト性能をより確実に向上させることができる。
[実施形態2]
 実施形態2に係る空気入りタイヤ1は、実施形態1に係る空気入りタイヤ1と略同様の構成であるが、少なくとも1つの陸部20が凸形状陸部26となって形成される点に特徴がある。他の構成は実施形態1と同様なので、その説明を省略すると共に、同一の符号を付す。
 図6は、実施形態2に係る空気入りタイヤ1の要部詳細断面図である。実施形態2に係る空気入りタイヤ1は、実施形態1に係る空気入りタイヤ1と同様に、トレッド部2は、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たしている。
 さらに、実施形態2に係る空気入りタイヤ1は、センター領域Acと中間領域Amとに位置する陸部20のうち、少なくとも1つの陸部20は、タイヤ幅方向における端部の位置での厚さTeと、タイヤ幅方向における中央の位置での厚さTpとの関係が、Tp>Teとなる凸形状陸部26となって形成されている。つまり、凸形状陸部26は、タイヤ幅方向における両端部の位置よりも、タイヤ幅方向における中央の位置の方が、厚さが厚くなっている。この場合における厚さは、タイヤ子午断面視における接地面3とタイヤ内面18との距離である。
 本実施形態2では、センター陸部21が凸形状陸部26になっている。センター陸部21のタイヤ幅方向における端部の位置での厚さTeは、センター陸部21を画成するセンター主溝31の溝壁35とセンター主溝31の接地面3との交点24と、タイヤ内面18との距離になっている。また、タイヤ幅方向における中央の位置での厚さTpは、センター陸部21の接地面3のタイヤ幅方向における中央位置27とタイヤ内面18との距離になっている。凸形状陸部26であるセンター陸部21は、これらのように定義されるタイヤ幅方向における端部の位置での厚さTeと、タイヤ幅方向における中央の位置での厚さTpとの関係が、Tp>Teになっている。
 また、センター陸部21は、タイヤ子午断面視における外輪郭線を示す接地面3が、タイヤ径方向外側に膨出する円弧の形状で形成されている。これにより、センター陸部21は、タイヤ幅方向における両端部の位置よりも、タイヤ幅方向における中央の位置の方が厚さが厚くなって形成される凸形状陸部26として設けられている。
 また、センター陸部21は、接地面3が、センター陸部21の当該接地面3の基準となる輪郭線であるトレッドプロファイルPRよりもタイヤ径方向外側に突出して形成されている。なお、トレッドプロファイルPRは、内圧非充填の状態での基準輪郭線であり、センター陸部21の接地面3とトレッドプロファイルPRとの比較は、内圧非充填の状態におけるセンター陸部21の接地面3の形状とトレッドプロファイルPRとが比較される。
 この場合におけるトレッドプロファイルPRは、内圧非充填の状態のタイヤ子午面断面視において、陸部20のタイヤ幅方向における両側に隣接する2本の主溝30における4つの開口端Eのうちの少なくとも3つを通り、円弧の中心が接地面3のタイヤ径方向内側に位置して最大曲率半径で描ける円弧をいう。つまり、センター陸部21のトレッドプロファイルPRは、センター陸部21のタイヤ幅方向における両側に隣接する2本のセンター主溝31における4つの開口端Eのうちの少なくとも3つを通り、円弧の中心が接地面3のタイヤ径方向内側に位置して最大曲率半径で描ける円弧になっている。
 また、センター陸部21の接地面3は、タイヤ子午断面視における当該接地面3の形状である円弧の曲率半径RRが、トレッドプロファイルPRを成す円弧の曲率半径TRよりも小さくなっている。具体的には、タイヤ子午断面視におけるセンター陸部21の接地面3の曲率半径RRは、トレッドプロファイルPRの曲率半径TRに対して、0.1≦(RR/TR)≦0.4の範囲内になっている。
 さらに、トレッド部2は、センター陸部21を画成するセンター主溝31の溝底36とベルト層14との間のゴム厚さの最小厚さTgと、センター領域Acにおけるベルト層14よりタイヤ径方向外側のトレッドゴム層4の平均厚さTcとの関係が、0.12≦(Tg/Tc)≦0.4の範囲内になっている。なお、センター主溝31の溝底36とベルト層14との間のゴム厚さの最小厚さTgと、センター領域Acのトレッドゴム層4の平均厚さTcの関係は、0.15≦(Tg/Tc)≦0.25の範囲内であるのが好ましい。
 本実施形態2に係る空気入りタイヤ1は、センター陸部21が、タイヤ幅方向における両端部の位置よりもタイヤ幅方向における中央の位置の方が厚さが厚い凸形状陸部26となって形成されるため、外部からの障害物に対する強度を、より確実に高めることができる。これにより、路面100上の突起物105をセンター陸部21で踏んだ場合でも、突起物105がセンター陸部21を貫通することを、より確実に抑制することができる。この結果、耐ショックバースト性能をより確実に向上させることができる。
 また、凸形状陸部26であるセンター陸部21は、接地面3がタイヤ径方向外側に膨出する円弧の形状で形成されており、接地面3の曲率半径RRとトレッドプロファイルPRの曲率半径TRとの関係が、0.1≦(RR/TR)≦0.4の範囲内であるため、転がり抵抗を低減しつつ、ショックバーストを抑制することができる。つまり、センター陸部21の接地面3の曲率半径RRが、トレッドプロファイルPRの曲率半径TRに対して(RR/TR)<0.1である場合は、接地面3の曲率半径RRが小さ過ぎるため、センター陸部21の接地面3がトレッドプロファイルPRに対してタイヤ径方向外側に大幅に膨出し過ぎる虞がある。この場合、トレッド部2の接地面3全体の接地形状におけるタイヤ幅方向の中央付近の接地長さが、タイヤ幅方向における両端付近の接地長さに対して大幅に長くなり、トレッド部2の接地時にタイヤ幅方向における中央付近だけ大きく撓み易くなるため、これに起因して転がり抵抗が大きくなり易くなる虞がある。また、センター陸部21の接地面3の曲率半径RRが、トレッドプロファイルPRの曲率半径TRに対して(RR/TR)>0.4である場合は、接地面3の曲率半径RRが大き過ぎるため、センター陸部21の接地面3のタイヤ径方向外側への膨出が小さ過ぎる虞がある。この場合、センター領域Acのタイヤ厚さを適切に確保するのが困難になり、センター領域Acの破断強度が増加し難くなる虞があるため、耐ショックバースト性能を適切に向上させるのが困難になる虞がある。
 これに対し、センター陸部21の接地面3の曲率半径RRとトレッドプロファイルPRの曲率半径TRとの関係が、0.1≦(RR/TR)≦0.4の範囲内である場合は、トレッド部2の接地時に、トレッド部2のタイヤ幅方向における中央付近のみが大きく撓むことを抑制しつつ、センター領域Acの破断強度を確保することができる。この結果、耐ショックバースト性能と低転がり抵抗とを、より確実に両立させることができる。
 また、トレッド部2は、センター主溝31の溝底36とベルト層14との間のゴム厚さの最小厚さTgと、センター領域Acのトレッドゴム層4の平均厚さTcとの関係が、0.12≦(Tg/Tc)≦0.4の範囲内であるため、空気入りタイヤ1の回転時の損失エネルギーを低減しつつ、トレッド部2が局所的に大きく変形することを抑制することができる。つまり、センター主溝31の溝底36とベルト層14との間のゴム厚さの最小厚さTgが、センター領域Acのトレッドゴム層4の平均厚さTcに対して(Tg/Tc)<0.12である場合は、トレッド部2で突起物105を踏んでトレッド部2が曲げ変易する際に、センター主溝31とベルト層14との間の最小厚さTgが薄過ぎるため、センター主溝31の位置での変形が大きくなり過ぎる虞がある。この場合、トレッド部2の変形が局所的になるため、トレッド部2が損傷し易くなる虞があり、耐ショックバースト性能を向上させ難くなる虞がある。また、センター主溝31の溝底36とベルト層14との間のゴム厚さの最小厚さTgが、センター領域Acのトレッドゴム層4の平均厚さTcに対して(Tg/Tc)>0.4である場合は、センター主溝31とベルト層14との間のゴム厚さの最小厚さTgが厚過ぎるため、空気入りタイヤ1の回転時の損失エネルギーが大きくなり易くなり、転がり抵抗を低減し難くなる虞がある。
 これに対し、センター主溝31の溝底36とベルト層14との間のゴム厚さの最小厚さTgと、センター領域Acのトレッドゴム層4の平均厚さTcとの関係が、0.12≦(Tg/Tc)≦0.4の範囲内である場合は、空気入りタイヤ1の回転時の損失エネルギーを低減しつつ、トレッド部2で突起物105を踏んだ際にトレッド部2がセンター主溝31の位置で局所的に大きく変形することを抑制することができる。これらの結果、耐ショックバースト性能と低転がり抵抗とを、より確実に両立させることができる。
[実施形態3]
 実施形態3に係る空気入りタイヤ1は、実施形態2に係る空気入りタイヤ1と略同様の構成であるが、ベルト層14の一部がタイヤ径方向内側に膨出する点に特徴がある。他の構成は実施形態2と同様なので、その説明を省略すると共に、同一の符号を付す。
 図7は、実施形態3に係る空気入りタイヤ1の要部詳細断面図である。実施形態3に係る空気入りタイヤ1は、実施形態2に係る空気入りタイヤ1と同様に、トレッド部2は、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たしている。また、センター陸部21が、タイヤ径方向外側に膨出する凸形状陸部26として形成されている。
 さらに、実施形態3に係る空気入りタイヤ1では、ベルト層14は、センター領域Acと中間領域Amとに位置する陸部20のうちの少なくとも1つの陸部20のタイヤ径方向内側の位置で、内圧非充填の状態においてタイヤ径方向内側に膨出している。本実施形態3では、センター陸部21のタイヤ径方向内側の位置で、ベルト層14は内圧非充填の状態においてタイヤ径方向内側に膨出している。つまり、ベルト層14は、センター陸部21のタイヤ径方向内側の位置で、内圧非充填の状態においてタイヤ内面18側に凸となって形成されている。
 なお、ベルト層14がタイヤ径方向内側に膨出するのに伴い、ベルト層14のタイヤ径方向内側でベルト層14に沿って配設されるカーカス層13とインナーライナ16も、センター陸部21のタイヤ径方向内側の位置でタイヤ径方向内側に膨出している。
 本実施形態3に係る空気入りタイヤ1は、このようにセンター陸部21のタイヤ径方向内側の位置で、内圧非充填の状態においてベルト層14がタイヤ径方向内側に膨出しているため、センター領域Acに位置するトレッドゴム層4のゴム厚さを、より確実に大きく確保することができる。これにより、センター領域Acの破断強度を、より確実に増加させることができる。この結果、より確実に耐ショックバースト性能を向上させることができる。
[実施形態4]
 実施形態4に係る空気入りタイヤ1は、実施形態1に係る空気入りタイヤ1と略同様の構成であるが、ベルト層14のタイヤ径方向外側にベルト補強層15が配設される点に特徴がある。他の構成は実施形態1と同様なので、その説明を省略すると共に、同一の符号を付す。
 図8は、実施形態4に係る空気入りタイヤ1の要部詳細断面図である。実施形態4に係る空気入りタイヤ1は、実施形態1に係る空気入りタイヤ1と同様に、トレッド部2は、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たしている。
 さらに、実施形態4に係る空気入りタイヤ1では、ベルト層14のタイヤ径方向外側にはベルト補強層15が配設されている。ベルト補強層15は、ベルト層14のタイヤ径方向外側に配設されてベルト層14をタイヤ周方向に覆っている。ベルト補強層15は、タイヤ周方向に略平行でタイヤ幅方向に複数並設されたコード(図示省略)がコートゴムで被覆されることにより形成されている。ベルト補強層15が有するコードは、例えば、スチール、またはポリエステルやレーヨンやナイロン等の有機繊維からなり、コードの角度はタイヤ周方向に対して±5°の範囲内になっている。本実施形態4では、ベルト補強層15は、ベルト層14が配設されるタイヤ幅方向における範囲の全域に亘って配設されており、ベルト層14のタイヤ幅方向端部を覆っている。
 ベルト層14のタイヤ径方向外側に配設されるベルト補強層15は、例えば幅が10mm程度の帯状のストリップ材をタイヤ周方向に巻き付けて設けられている。即ち、ベルト補強層15は、帯状のストリップ材がベルト層14のタイヤ径方向外側に螺旋状に巻かれることによって配設されている。その際に、帯状のストリップ材は、セカンド陸部22やショルダー陸部23のタイヤ径方向内側の位置では、一層で巻かれるのに対し、センター陸部21のタイヤ径方向内側の位置では、2層がタイヤ径方向に重ねられて巻き付けられる。つまり、帯状のストリップ材は、セカンド陸部22やショルダー陸部23のタイヤ径方向内側の位置では、ストリップ材がタイヤ径方向に重ねられることなく螺旋状に巻かれるのに対し、センター陸部21のタイヤ径方向内側の位置では、螺旋状に巻く際にストリップ材同士をタイヤ径方向に重ねて巻き付けられる。これにより、ベルト補強層15は、センター領域Acの位置では、センター領域Ac以外の位置よりも多くの枚数のストリップ材が積層される。
 本実施形態4に係る空気入りタイヤ1は、このようにベルト層14のタイヤ径方向外側にベルト補強層15を配設するため、接地面3の接地時にトレッド部2が不適切に撓むことを抑制することができる。これにより、接地面3の接地時におけるタイヤ幅方向の中央付近の接地長と、タイヤ幅方向の端部付近の接地長との差を低減することができ、タイヤ幅方向における位置によって接地長が大幅に異なることに起因して転がり抵抗が大きくなることを抑制することができる。
 また、ベルト補強層15は、センター領域Acの位置では、センター領域Ac以外の位置よりも多くの枚数が積層されるため、センター領域Acの破断強度をより確実に高めることができ、トレッド部2で突起物105を踏んだ際に突起物105によってベルト層14が損傷することを、より確実に抑制することができる。これらの結果、耐ショックバースト性能と低転がり抵抗とを、より確実に両立させることができる。
[実施形態5]
 実施形態5に係る空気入りタイヤ1は、実施形態1に係る空気入りタイヤ1と略同様の構成であるが、ショルダー領域Ashに周方向細溝45が形成される点に特徴がある。他の構成は実施形態1と同様なので、その説明を省略すると共に、同一の符号を付す。
 図9は、実施形態5に係る空気入りタイヤ1の要部詳細断面図である。実施形態5に係る空気入りタイヤ1は、実施形態1に係る空気入りタイヤ1と同様に、トレッド部2は、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たしている。
 また、実施形態5に係る空気入りタイヤ1は、タイヤ幅方向両側に位置するショルダー陸部23のうち少なくとも一方に、タイヤ周方向に延在する周方向細溝45が形成されている。具体的には、周方向細溝45は、ショルダー陸部23におけるショルダー領域Ash内に配設されている。つまり、周方向細溝45は、タイヤ幅方向両側に位置するショルダー領域Ashのうち少なくとも一方のショルダー領域Ashに形成されている。ショルダー領域Ashに形成される周方向細溝45は、接地面3への開口部の溝幅が0.6mm以上2mm以下の範囲内で、溝深さが3mm以上5mm以下の範囲内で形成されている。
 さらに、実施形態5に係る空気入りタイヤ1では、カーカス層13は、ショルダー領域Ashに位置する部分が、内圧非充填の状態においてタイヤ内面18側に向かって膨出している。つまり、内圧非充填の状態におけるカーカス層13は、トレッド部2に位置する部分の大部分はタイヤ径方向外側に向かって膨出しており、サイドウォール部8に位置する部分の大部分はタイヤ幅方向外側に向かって膨出している。即ち、カーカス層13は、ビード部10以外の部分の大部分では、空気入りタイヤ1に対して内圧を非充填の状態では、タイヤ外側の表面側に向かって膨出しているのに対し、カーカス層13におけるショルダー領域Ashに位置する部分はタイヤ内面18側に向かって膨出して形成されている。カーカス層13は、ショルダー領域Ashに位置する部分に、このように内圧非充填の状態においてタイヤ内面18側に向かって膨出する内側方向膨出部13aを有している。
 実施形態5に係る空気入りタイヤ1を使用する際には、実施形態1と同様に、ビード部10にリムホイールRを嵌合することによってリムホイールRに空気入りタイヤ1をリム組みし、内部に空気を充填してインフレートする。内部に空気を充填すると、内圧によって空気入りタイヤ1全体に張力が作用するが、この張力は、主にカーカス層13によって受ける。つまり、カーカス層13は、一対のビード部10間に架け渡され、空気入りタイヤ1の骨格としての役割を有しているため、内圧による張力は、主にカーカス層13で受ける。このため、内圧充填時には、カーカス層13には大きな張力が作用する。
 これに対し、本実施形態5に係る空気入りタイヤ1が備えるカーカス層13は、ショルダー領域Ashに位置する部分に内側方向膨出部13aを有している。カーカス層13の内側方向膨出部13aは、空気入りタイヤ1に内圧が充填され、カーカス層13に張力が作用してから、内圧によってタイヤ外側の表面側に向かって膨出する形状になり、その後に内側方向膨出部13aに対して張力が作用する。このため、カーカス層13における内側方向膨出部13aは、内圧充填後でも、内圧によって作用する張力を低く抑えることができ、ショルダー領域Ash付近の曲げ剛性を低減することができる。これにより、トレッド部2のセンター領域Ac付近で突起物105を踏んだ際に、より確実にショルダー領域Ashを優先的に変形させることができ、トレッド部2に対する突起物105からの圧力を低減することができる。この結果、より確実に耐ショックバースト性能を向上させることができる。
 また、本実施形態5に係る空気入りタイヤ1は、ショルダー領域Ashに周方向細溝45が形成されているため、ショルダー陸部23におけるショルダー領域Ashの剛性を低くすることができる。このため、ショルダー領域Ashに荷重が作用する際における歪みを逃がすことができるため、車両の走行時において、空気入りタイヤ1の回転時の損失エネルギーが大きくなり易いショルダー領域Ashの損失エネルギーを、より確実に低減することができる。これにより、ショルダー領域Ashが撓む際における抵抗を、より確実に小さくすることができるため、空気入りタイヤ1の回転時の損失エネルギーを低減することができ、転がり抵抗を低減することができる。
 また、ショルダー領域Ashに周方向細溝45を形成することにより、トレッド部2のセンター領域Ac付近で突起物105を踏んだ際に、より確実にショルダー領域Ashを優先的に変形させることができ、トレッド部2全体を撓ませることができるため、トレッド部2に対する突起物105からの圧力を低減することができる。これにより、より確実にショックバーストを抑制することができる。これらの結果、耐ショックバースト性能と低転がり抵抗とを、より確実に両立させることができる。
[実施形態6]
 実施形態6に係る空気入りタイヤ1は、実施形態1に係る空気入りタイヤ1と略同様の構成であるが、サイドウォール部8にサイド補強ゴム50を備える点に特徴がある。他の構成は実施形態1と同様なので、その説明を省略すると共に、同一の符号を付す。
 図10は、実施形態6に係る空気入りタイヤ1の要部詳細断面図である。実施形態6に係る空気入りタイヤ1は、実施形態1に係る空気入りタイヤ1と同様に、トレッド部2は、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たしている。
 また、実施形態6に係る空気入りタイヤ1は、サイドウォール部8にサイド補強ゴム50を備えており、パンク等によって空気が漏出した場合でも走行可能な、いわゆるランフラットタイヤとして用いられる。サイドウォール部8に配設されるサイド補強ゴム50は、サイドウォール部8の内部に設けられるゴム部材になっており、タイヤ内表面やタイヤ外表面には露出することなく配設されている。詳しくは、サイド補強ゴム50は、主にカーカス層13におけるサイドウォール部8に位置する部分のタイヤ幅方向内側に位置しており、サイドウォール部8においてカーカス層13とインナーライナ16との間に配置され、空気入りタイヤ1の子午断面における形状が、タイヤ幅方向外側に凸となる三日月形状に形成されている。
 三日月形状に形成されるサイド補強ゴム50は、タイヤ径方向における外側の端部である外側端部51が、トレッド部2におけるベルト層14のタイヤ径方向内側に位置しており、サイド補強ゴム50とベルト層14とは、所定の範囲内のラップ量で、一部がタイヤ径方向に重なって配設されている。このため、サイド補強ゴム50は、外側端部51近傍の少なくとも一部が、ショルダー領域Ashに位置している。このように配設されるサイド補強ゴム50は、サイドウォール部8を形成するゴムやビード部10に配設されるリムクッションゴム17よりも、強度が高いゴム材料により形成されている。
 サイド補強ゴム50は、ショルダー領域Ashのみでなく、一部が中間領域Amに位置していてもよい。また、サイド補強ゴム50の一部がショルダー領域Ashや中間領域Amに位置する場合のショルダー領域Ashにおけるタイヤ平均厚さGshや、中間領域Amにおけるタイヤ平均厚さGmは、サイド補強ゴム50を含んだ厚さになっている。
 本実施形態6に係る空気入りタイヤ1は、これらのようにサイドウォール部8の内側にサイド補強ゴム50が配設されるため、サイドウォール部8の曲げ剛性が高くなっている。これにより、パンク等によって空気が漏出して大きな荷重がサイドウォール部8に作用する場合でも、サイドウォール部8の変形を低減することができ、所定の速度以下の速度であれば走行を行うことができる。
 一方で、ランフラットタイヤでは、サイドウォール部8にサイド補強ゴム50が配設されることにより、サイドウォール部8の曲げ剛性が高くなっているため、内圧を充填した状態で突起物105を踏んだ場合、サイドウォール部8は撓み難くなっている。このため、突起物105を踏んだ際における応力は、トレッド部2に集中し易くなっており、ショックバーストが発生し易くなる。
 これに対し、本実施形態6に係る空気入りタイヤ1は、センター領域Acにおけるタイヤ平均厚さGcが厚く、ショルダー領域Ashにおけるタイヤ平均厚さGshが薄くなっているため、トレッド部2で突起物105を踏んだ場合に、ショルダー領域Ashが変形し易くなっている。これにより、突起物105を踏んだ場合における、トレッド部2に対する突起物105からの圧力を低減することができ、突起物105がトレッド部2を貫通してショックバーストが発生することを抑制することができる。この結果、ランフラット性能と耐ショックバースト性能とを両立させることができる。
[変形例]
 なお、上述した実施形態1では、主溝30は4本が形成されているが、主溝30は4本以外であってもよい。また、上述した実施形態1では、センター領域Acは、タイヤ赤道面CL上に位置する陸部20であるセンター陸部21のタイヤ幅方向における範囲と一致しているが、センター領域Acは、タイヤ赤道面CL上に位置していなくてもよい。例えば、タイヤ赤道面CL上に主溝30が位置している場合、センター領域Acは、タイヤ赤道面CL上に位置する主溝30と、当該主溝30の次にタイヤ赤道面CLに近い主溝30とによって画成される陸部20のタイヤ幅方向における範囲であってもよい。換言すると、センター領域Acは、隣り合う2本の主溝30によって挟まれた領域のうち、タイヤ赤道面CLに最も近い領域がセンター領域Acとして用いられればよい。
 また、中間領域Amは、センター領域Acのタイヤ幅方向における中心とタイヤ赤道面CLとのタイヤ幅方向における位置が異なっている場合は、タイヤ赤道面CLのタイヤ幅方向両側に位置する中間領域Am同士で、タイヤ幅方向における幅が異なっていてもよい。この場合、中間領域Amにおけるタイヤ平均厚さGmは、タイヤ赤道面CLのタイヤ幅方向両側に位置するそれぞれの中間領域Amの平均値とする。
 また、上述した実施形態1では、ラグ溝40は隣り合う主溝30同士の間に亘って形成されていないが、ラグ溝40は隣り合う主溝30同士の間に亘って形成されていてもよい。つまり、各領域の陸部20は、タイヤ幅方向に延びるリブ状に形成されていてもよく、陸部20がタイヤ幅方向に隣り合う主溝30とタイヤ周方向に隣り合うラグ溝40によって画成される、ブロック状に形成されていてもよい。
 また、上述した実施形態1では、センター領域Acに位置するトレッドゴム層4のゴムの300%伸張時のモジュラスが、10MPa以上16MPa以下の範囲内になっているが、トレッドゴム層4を成すゴムは、センター領域Ac以外に位置するゴムの300%伸張時のモジュラスも、10MPa以上16MPa以下の範囲内であってもよい。
 また、上述した実施形態2では、センター陸部21が凸形状陸部26になっているが、センター陸部21以外の陸部20が凸形状陸部26となって形成されていてもよい。例えば、中間領域Amに位置するセカンド陸部22が凸形状陸部26となって形成されていてもよく、センター領域Acに位置するセンター陸部21と中間領域Amに位置するセカンド陸部22との双方が凸形状陸部26となって形成されていてもよい。トレッド部2は、センター領域Acと中間領域Amとに位置する陸部20のうち、少なくとも1つの陸部20が凸形状陸部26となって形成されていればよい。
 また、上述した実施形態3では、センター陸部21のタイヤ径方向内側の位置でベルト層14がタイヤ径方向内側に膨出しているが、ベルト層14は、センター陸部21以外のタイヤ径方向内側の位置でタイヤ径方向内側に膨出していてもよい。ベルト層14は、例えば、中間領域Amに位置するセカンド陸部22のタイヤ径方向内側の位置でタイヤ径方向内側に膨出していてもよく、センター領域Acに位置するセンター陸部21と中間領域Amに位置するセカンド陸部22との双方のタイヤ径方向内側の位置で、タイヤ径方向内側に膨出していてもよい。ベルト層14は、センター領域Acと中間領域Amとに位置する陸部20のうち、少なくとも1つの陸部20のタイヤ径方向内側の位置で、タイヤ径方向内側に膨出していればよい。
 また、上述した実施形態5においてショルダー領域Ashに形成される周方向細溝45は、タイヤ幅方向両側のショルダー領域Ashに形成されていてもよく、いずれか一方のショルダー領域Ashに形成されていてもよい。また、周方向細溝45は、必ずしも1周に亘って連続して形成されていなくてもよく、周方向細溝45によってショルダー領域Ashの剛性を低下させる機能が低減しない範囲内で、周方向細溝45はタイヤ周方向に不連続であってもよい。
 また、上述した実施形態5では、カーカス層13は、ショルダー領域Ashに位置する部分に内側方向膨出部13aを有しているが、内側方向膨出部13aは、内圧非充填の状態において明確にタイヤ内面18側に向かって膨出していなくてもよい。内側方向膨出部13aは、例えば、内圧非充填の状態のタイヤ子午断面視における形状が直線状に形成されていたり、波状に形成されていたりしてもよい。カーカス層13の内側方向膨出部13aは、内圧充填時には、カーカス層13に作用する張力によってタイヤ外側の表面側に向かって膨出する形状になるが、その際に、カーカス層13におけるショルダー領域Ashに位置する部分の張力を低減することができる形状であれば、その形状は問わない。
 また、上述した実施形態1~6や変形例は、適宜組み合わせてもよい。例えば、実施形態2~5に示す構成と、実施形態6に示すサイド補強ゴム50とを組み合わせてもよい。空気入りタイヤ1は、少なくともトレッド部2が、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たすことにより、耐ショックバースト性能と低転がり抵抗とを両立させることができる。
[実施例]
 図11A~図11Cは、空気入りタイヤの性能評価試験の結果を示す図表である。以下、上記の空気入りタイヤ1について、従来例の空気入りタイヤと、本発明に係る空気入りタイヤ1と、本発明に係る空気入りタイヤ1と比較する比較例の空気入りタイヤとについて行なった性能の評価試験について説明する。性能評価試験は、ショックバーストに対する耐久性である耐ショックバースト性と、転がり抵抗についての性能である転がり抵抗性能とについての試験を行った。
 性能評価試験は、JATMAで規定されるタイヤの呼びが245/50R19 105Wサイズの空気入りタイヤ1を、リムサイズ19×7.5JのJATMA標準のリムホイールにリム組みしたものを用いて行った。各試験項目の評価方法は、耐ショックバースト性については、試験タイヤの空気圧を220kPaで充填し、プランジャー径19mm、押し込み速度50mm/分にてJIS K6302に準じたプランジャー破壊試験を行い、タイヤ破壊エネルギーを測定することによって評価した。耐ショックバースト性は、後述する従来例を100とした指数で表し、指数値が大きいほどタイヤ強度が優れ、耐ショックバースト性が優れていることを示している。
 また、転がり抵抗性能については、試験タイヤの空気圧を250kPaで充填し、ドラム半径854mm、速度80km/h、負荷荷重7.26kNにて30minの予備走行を行った後の転がり抵抗を測定した。転がり抵抗性能は、測定した転がり抵抗の逆数を、後述する従来例を100とする指数で表し、指数値が大きいほど転がり抵抗が小さいことを示している。
 性能評価試験は、従来の空気入りタイヤの一例である従来例の空気入りタイヤと、本発明に係る空気入りタイヤ1である実施例1~17と、本発明に係る空気入りタイヤ1と比較する空気入りタイヤである比較例1~3との21種類の空気入りタイヤについて行った。このうち、従来例の空気入りタイヤは、トレッド部2のセンター領域Acにおけるタイヤ平均厚さGcが、ショルダー領域Ashにおけるタイヤ平均厚さGshよりも小さくなっている。また、比較例1~3の空気入りタイヤは、センター領域Acにおけるタイヤ平均厚さGcと、ショルダー領域Ashにおけるタイヤ平均厚さGshと、中間領域Amにおけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内に入っていないか、Gc≧Gm>Gshの関係を満たしていない。
 これに対し、本発明に係る空気入りタイヤ1の一例である実施例1~17は、全てショルダー領域Ashのタイヤ平均厚さGshに対するセンター領域Acのタイヤ平均厚さGcが1.05≦(Gc/Gsh)≦1.35の範囲内で、センター領域Acのタイヤ平均厚さGcと、ショルダー領域Ashのタイヤ平均厚さGshと、中間領域Amのタイヤ平均厚さGmとが、Gc≧Gm>Gshの関係を満たしている。さらに、実施例1~17に係る空気入りタイヤ1は、ショルダー領域Ashにおけるトレッドゴム層4の平均厚さTshに対するセンター領域Acにおけるトレッドゴム層4の平均厚さTc(Tc/Tsh)、ショルダー領域Ashにおけるトレッドゴム層4の平均厚さTshに対する中間領域Amにおけるトレッドゴム層4の平均厚さTm(Tm/Tsh)、ショルダー領域Ashにおけるトレッドゴム層4の平均実ゴム厚さVshに対するセンター領域Acにおけるトレッドゴム層4の平均実ゴム厚さVc(Vc/Vsh)、凸形状陸部26の有無、トレッドプロファイルPRの曲率半径TRに対する凸形状陸部26の接地面3の曲率半径RR(RR/TR)、ベルト層14のタイヤ径方向内側に膨出する部分の有無、センター領域Acにおけるトレッドゴム層4の平均厚さTcに対する、センター主溝31の溝底36とベルト層14との間のゴム厚さの最小厚さTg(Tg/Tc)、センター領域Acのトレッドゴム層4の300%伸長時のモジュラス[MPa]、ショルダー領域Ashの周方向細溝45の有無、カーカス層13の内側方向膨出部13aの有無、ベルト補強層15の有無、ベルト補強層15はセンター領域Acで多くの枚数が積層されているか否か、サイド補強ゴム50の有無が、それぞれ異なっている。
 これらの空気入りタイヤ1を用いて性能評価試験を行った結果、図11A~図11Cに示すように、実施例1~17に係る空気入りタイヤ1は、耐ショックバースト性と転がり抵抗とのいずれも従来例に対して悪化させることなく、双方の性能を従来例に対して向上させることができることが分かった。つまり、実施例1~17に係る空気入りタイヤ1は、耐ショックバースト性能と低転がり抵抗とを両立させることができる。
 1 空気入りタイヤ
 2 トレッド部
 3 接地面
 4 トレッドゴム層
 5 ショルダー部
 8 サイドウォール部
 10 ビード部
 13 カーカス層
 13a 内側方向膨出部
 14 ベルト層
 141、142 交差ベルト
 143 最幅広ベルト
 144 端部
 15 ベルト補強層
 16 インナーライナ
 18 タイヤ内面
 20 陸部
 21 センター陸部
 22 セカンド陸部
 23 ショルダー陸部
 24 交点
 25 仮想線
 26 凸形状陸部
 27 中央位置
 30 主溝
 31 センター主溝
 32 ショルダー主溝
 35 溝壁
 36 溝底
 40 ラグ溝
 45 周方向細溝
 50 サイド補強ゴム
 100 路面
 105 突起物

Claims (11)

  1.  少なくとも1層のカーカス層と、前記カーカス層におけるトレッド部に位置する部分のタイヤ径方向外側に配置されるベルト層と、前記トレッド部における前記ベルト層のタイヤ径方向外側に配置されるトレッドゴム層とを備える空気入りタイヤであって、
     前記トレッド部には、タイヤ周方向に延びる主溝が形成されると共に、前記主溝によって複数の陸部が画成されており、
     前記トレッド部は、
     前記陸部のうちタイヤ赤道面に最も近い前記陸部であるセンター陸部が位置する領域をセンター領域とし、
     前記ベルト層のタイヤ幅方向における幅の85%の位置と前記ベルト層のタイヤ幅方向における端部との間の領域をショルダー領域とし、
     前記センター領域と前記ショルダー領域との間の領域を中間領域とする場合に、
     前記センター領域におけるタイヤ平均厚さGcと、前記ショルダー領域におけるタイヤ平均厚さGshと、前記中間領域におけるタイヤ平均厚さGmとの関係が、1.05≦(Gc/Gsh)≦1.35の範囲内で、且つ、Gc≧Gm>Gshの関係を満たすことを特徴とする空気入りタイヤ。
  2.  前記トレッド部は、前記センター領域における前記ベルト層よりタイヤ径方向外側の前記トレッドゴム層の平均厚さTcと、前記ショルダー領域における前記ベルト層よりタイヤ径方向外側の前記トレッドゴム層の平均厚さTshと、前記中間領域における前記ベルト層よりタイヤ径方向外側の前記トレッドゴム層の平均厚さTmとの関係が、1.2≦(Tc/Tsh)≦1.9の範囲内で、且つ、Tc≧Tm>Tsの関係を満たす請求項1に記載の空気入りタイヤ。
  3.  前記トレッド部は、前記センター領域における前記トレッドゴム層の平均実ゴム厚さVcと、前記ショルダー領域における前記トレッドゴム層の平均実ゴム厚さVshとの関係が、1.6≦(Vc/Vsh)≦2.5の範囲内である請求項1または2に記載の空気入りタイヤ。
  4.  前記センター領域と前記中間領域とに位置する前記陸部のうち、少なくとも1つの前記陸部は、タイヤ幅方向における端部の位置での厚さTeと、タイヤ幅方向における中央の位置での厚さTpとの関係が、Tp>Teとなる凸形状陸部となって形成される請求項1~3のいずれか1項に記載の空気入りタイヤ。
  5.  前記凸形状陸部は、タイヤ子午断面視における外輪郭線を示す接地面がタイヤ径方向外側に膨出する円弧の形状で形成されており、且つ、前記円弧の曲率半径RRとトレッドプロファイルを成す円弧の曲率半径TRとの関係が、0.1≦(RR/TR)≦0.4の範囲内である請求項4に記載の空気入りタイヤ。
  6.  前記ベルト層は、前記センター領域と前記中間領域とに位置する前記陸部のうちの少なくとも1つの前記陸部のタイヤ径方向内側の位置で、タイヤ径方向内側に膨出する請求項1~5のいずれか1項に記載の空気入りタイヤ。
  7.  前記トレッド部は、前記センター陸部を画成する前記主溝の溝底と前記ベルト層との間のゴム厚さの最小厚さTgと、前記センター領域における前記ベルト層よりタイヤ径方向外側の前記トレッドゴム層の平均厚さTcとの関係が、0.12≦(Tg/Tc)≦0.4の範囲内である請求項1~6のいずれか1項に記載の空気入りタイヤ。
  8.  前記トレッドゴム層を成すゴムのうち、前記センター領域に含まれるゴムは、300%伸張時のモジュラスが10MPa以上16MPa以下の範囲内である請求項1~7のいずれか1項に記載の空気入りタイヤ。
  9.  タイヤ幅方向両側に位置する前記ショルダー領域のうち少なくとも一方の前記ショルダー領域には、タイヤ周方向に延在する周方向細溝が形成される請求項1~8のいずれか1項に記載の空気入りタイヤ。
  10.  前記カーカス層は、前記ショルダー領域に位置する部分が、内圧非充填の状態においてタイヤ内面側に向かって膨出する請求項1~9のいずれか1項に記載の空気入りタイヤ。
  11.  前記ベルト層のタイヤ径方向外側にはベルト補強層が配設されており、
     前記ベルト補強層は、前記センター領域の位置では、前記センター領域以外の位置よりも多くの枚数が積層される請求項1~10のいずれか1項に記載の空気入りタイヤ。
PCT/JP2018/038366 2017-11-20 2018-10-15 空気入りタイヤ WO2019097927A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018005919.7T DE112018005919T5 (de) 2017-11-20 2018-10-15 Luftreifen
US16/765,454 US11951772B2 (en) 2017-11-20 2018-10-15 Pneumatic tire
JP2018558783A JP6540915B1 (ja) 2017-11-20 2018-10-15 空気入りタイヤ
CN201880074564.6A CN111356597B (zh) 2017-11-20 2018-10-15 充气轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222674 2017-11-20
JP2017222674 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019097927A1 true WO2019097927A1 (ja) 2019-05-23

Family

ID=66539506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038366 WO2019097927A1 (ja) 2017-11-20 2018-10-15 空気入りタイヤ

Country Status (5)

Country Link
US (1) US11951772B2 (ja)
JP (1) JP6540915B1 (ja)
CN (1) CN111356597B (ja)
DE (1) DE112018005919T5 (ja)
WO (1) WO2019097927A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124598A1 (ja) * 2019-12-19 2021-06-24 株式会社ブリヂストン タイヤ・ホイール組立体
US20220371368A1 (en) * 2019-10-21 2022-11-24 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095329B2 (ja) * 2018-03-15 2022-07-05 横浜ゴム株式会社 空気入りタイヤ
JP7091912B2 (ja) * 2018-07-25 2022-06-28 横浜ゴム株式会社 空気入りタイヤ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124406A (ja) * 1982-12-30 1984-07-18 Yokohama Rubber Co Ltd:The ラジアルタイヤ
JPH0379404A (ja) * 1989-08-17 1991-04-04 Sumitomo Rubber Ind Ltd 高速走行用ラジアルタイヤ
JPH03200402A (ja) * 1989-12-27 1991-09-02 Sumitomo Rubber Ind Ltd 高速重荷重用タイヤ
JP2002002216A (ja) * 2000-06-26 2002-01-08 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2002301914A (ja) * 2001-04-03 2002-10-15 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2004345557A (ja) * 2003-05-23 2004-12-09 Sumitomo Rubber Ind Ltd Atv用ラジアルタイヤ
JP2009262808A (ja) * 2008-04-25 2009-11-12 Bridgestone Corp 空気入りタイヤ
JP2010247780A (ja) * 2009-04-20 2010-11-04 Bridgestone Corp 空気入りタイヤ

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567839U (ja) 1978-11-02 1980-05-10
JPS63180506A (ja) * 1987-01-22 1988-07-25 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
JP2588064B2 (ja) 1991-01-25 1997-03-05 株式会社ブリヂストン 空気入り偏平タイヤ
JPH0781313A (ja) * 1993-09-20 1995-03-28 Bridgestone Corp 空気入りタイヤ
JPH07228106A (ja) * 1994-02-17 1995-08-29 Bridgestone Corp 空気入りタイヤ
JP3138404B2 (ja) * 1995-02-27 2001-02-26 住友ゴム工業株式会社 トラック、バス用の更生タイヤの製造方法
US6016858A (en) * 1997-06-09 2000-01-25 The Goodyear Tire & Rubber Company Light weight fiberglass belted radial tire
JP4097000B2 (ja) * 1998-02-04 2008-06-04 横浜ゴム株式会社 乗用車用空気入りタイヤ
JP3527673B2 (ja) * 1999-12-29 2004-05-17 住友ゴム工業株式会社 空気入りタイヤ
DE10311430A1 (de) * 2003-03-13 2004-09-23 Manfred Schildhauer Luftreifen für Kraftfahrzeuge
FR2857621B1 (fr) * 2003-07-18 2005-08-19 Michelin Soc Tech Pneumatique pour vehicules lourds
JP4184349B2 (ja) * 2005-01-24 2008-11-19 住友ゴム工業株式会社 ランフラットタイヤ
JP4631496B2 (ja) 2005-03-25 2011-02-16 横浜ゴム株式会社 空気入りタイヤ
DE102006015000A1 (de) * 2005-04-15 2006-10-26 The Goodyear Tire & Rubber Co., Akron Reifen, insbesondere Lastwagenrennreifen
US7784510B2 (en) * 2005-10-17 2010-08-31 Sumitomo Rubber Industries, Ltd. Heavy duty tire having cap and base rubber layers, belt cushion rubber and sidewall rubber
JP4907976B2 (ja) * 2005-12-21 2012-04-04 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
JP4952003B2 (ja) * 2006-03-06 2012-06-13 横浜ゴム株式会社 空気入りタイヤ
JP5023867B2 (ja) * 2007-07-31 2012-09-12 横浜ゴム株式会社 空気入りタイヤ
FR2933031B1 (fr) * 2008-06-30 2011-08-19 Michelin Soc Tech Sommet pour pneumatique d'avion
FR2943951B1 (fr) * 2009-04-07 2012-12-14 Michelin Soc Tech Pneumatique pour vehicules lourds comportant une couche d'elements de renforcement circonferentiels.
JP4527180B1 (ja) * 2009-05-29 2010-08-18 東洋ゴム工業株式会社 空気入りタイヤ
JP5567839B2 (ja) 2010-01-18 2014-08-06 住友ゴム工業株式会社 空気入りタイヤ
US9022084B2 (en) * 2010-11-10 2015-05-05 The Goodyear Tire & Rubber Company Passenger tire having low rolling resistance with improved wet traction and treadwear
JP2013220718A (ja) * 2012-04-16 2013-10-28 Yokohama Rubber Co Ltd:The 空気入りタイヤ
KR101741054B1 (ko) 2012-07-13 2017-06-15 요코하마 고무 가부시키가이샤 공기입 타이어
WO2014010091A1 (ja) 2012-07-13 2014-01-16 横浜ゴム株式会社 空気入りタイヤ
KR101741058B1 (ko) 2012-07-13 2017-05-29 요코하마 고무 가부시키가이샤 공기입 타이어
KR101730943B1 (ko) * 2012-10-10 2017-05-11 요코하마 고무 가부시키가이샤 공기입 타이어
US10821779B2 (en) * 2012-10-10 2020-11-03 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11453250B2 (en) * 2013-08-12 2022-09-27 The Yokohama Rubber Co., Ltd. Pneumatic tire for passenger vehicle
JP6138663B2 (ja) * 2013-10-29 2017-05-31 株式会社ブリヂストン タイヤ
JP5809305B2 (ja) * 2014-03-11 2015-11-10 株式会社ブリヂストン 空気入りタイヤ
JP6347979B2 (ja) 2014-04-18 2018-06-27 株式会社ブリヂストン サイド補強型ランフラットラジアルタイヤ
JP6032242B2 (ja) * 2014-05-12 2016-11-24 横浜ゴム株式会社 更生タイヤ
JP6269306B2 (ja) * 2014-05-12 2018-01-31 横浜ゴム株式会社 更生タイヤ
JP6292067B2 (ja) * 2014-07-25 2018-03-14 横浜ゴム株式会社 空気入りタイヤ
JP6526402B2 (ja) * 2014-10-27 2019-06-05 株式会社ブリヂストン 空気入りタイヤ
JP6302861B2 (ja) 2015-03-17 2018-03-28 横浜ゴム株式会社 空気入りタイヤ
JP6491564B2 (ja) * 2015-07-29 2019-03-27 Toyo Tire株式会社 空気入りタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124406A (ja) * 1982-12-30 1984-07-18 Yokohama Rubber Co Ltd:The ラジアルタイヤ
JPH0379404A (ja) * 1989-08-17 1991-04-04 Sumitomo Rubber Ind Ltd 高速走行用ラジアルタイヤ
JPH03200402A (ja) * 1989-12-27 1991-09-02 Sumitomo Rubber Ind Ltd 高速重荷重用タイヤ
JP2002002216A (ja) * 2000-06-26 2002-01-08 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2002301914A (ja) * 2001-04-03 2002-10-15 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2004345557A (ja) * 2003-05-23 2004-12-09 Sumitomo Rubber Ind Ltd Atv用ラジアルタイヤ
JP2009262808A (ja) * 2008-04-25 2009-11-12 Bridgestone Corp 空気入りタイヤ
JP2010247780A (ja) * 2009-04-20 2010-11-04 Bridgestone Corp 空気入りタイヤ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220371368A1 (en) * 2019-10-21 2022-11-24 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2021124598A1 (ja) * 2019-12-19 2021-06-24 株式会社ブリヂストン タイヤ・ホイール組立体
CN114829165A (zh) * 2019-12-19 2022-07-29 株式会社普利司通 轮胎和车轮组装体
CN114829165B (zh) * 2019-12-19 2024-03-01 株式会社普利司通 轮胎和车轮组装体

Also Published As

Publication number Publication date
CN111356597B (zh) 2022-05-24
JPWO2019097927A1 (ja) 2019-11-21
JP6540915B1 (ja) 2019-07-10
US11951772B2 (en) 2024-04-09
CN111356597A (zh) 2020-06-30
US20200276867A1 (en) 2020-09-03
DE112018005919T5 (de) 2020-07-30

Similar Documents

Publication Publication Date Title
JP6540915B1 (ja) 空気入りタイヤ
JP6859825B2 (ja) 空気入りタイヤ
WO2011016215A1 (ja) 空気入りタイヤ
JP5858181B1 (ja) 空気入りタイヤ
JP5931331B2 (ja) 空気入りタイヤ
JP7035637B2 (ja) 空気入りタイヤ
JP7095329B2 (ja) 空気入りタイヤ
CN112004692B (zh) 缺气保用轮胎
JP6935770B2 (ja) ランフラットタイヤ
JP7091912B2 (ja) 空気入りタイヤ
JP7159676B2 (ja) 空気入りタイヤ
JP7155768B2 (ja) 空気入りタイヤ及び空気入りタイヤの製造方法
WO2020101003A1 (ja) ランフラットタイヤ
JP5321104B2 (ja) 空気入りタイヤ
JP7135867B2 (ja) ランフラットタイヤ
JP7180167B2 (ja) 空気入りタイヤ
JP7381869B2 (ja) 空気入りタイヤ及び空気入りタイヤの製造方法
JP2020131873A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558783

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878787

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18878787

Country of ref document: EP

Kind code of ref document: A1