WO2018180924A1 - ロータ、およびモータ - Google Patents

ロータ、およびモータ Download PDF

Info

Publication number
WO2018180924A1
WO2018180924A1 PCT/JP2018/011515 JP2018011515W WO2018180924A1 WO 2018180924 A1 WO2018180924 A1 WO 2018180924A1 JP 2018011515 W JP2018011515 W JP 2018011515W WO 2018180924 A1 WO2018180924 A1 WO 2018180924A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
core
bottom plate
magnet
hole
Prior art date
Application number
PCT/JP2018/011515
Other languages
English (en)
French (fr)
Inventor
佳明 山下
剛央 新子
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2019509680A priority Critical patent/JPWO2018180924A1/ja
Priority to US16/487,221 priority patent/US20200014278A1/en
Priority to CN201880022988.8A priority patent/CN110476324A/zh
Publication of WO2018180924A1 publication Critical patent/WO2018180924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the present invention relates to a rotor and a motor.
  • Patent Document 1 describes a motor including such a rotor.
  • the present invention provides a rotor capable of suitably preventing the rotor cover from slipping out of the rotor core while stably holding the magnet in the rotor cover, and a motor including such a rotor.
  • a rotor capable of suitably preventing the rotor cover from slipping out of the rotor core while stably holding the magnet in the rotor cover, and a motor including such a rotor.
  • One aspect of the rotor of the present invention includes a shaft disposed along a central axis extending in the up-down direction, a rotor core fixed to the shaft, a magnet positioned on a radially outer side of the rotor core, the rotor core, and the rotor core
  • a rotor cover that houses a magnet, and a resin portion that fixes the rotor cover and the magnet to each other.
  • the rotor cover includes a cylindrical portion that extends along the axial direction and surrounds the rotor core and the magnet from the radially outer side, and a bottom plate portion that extends radially inward from a lower end portion of the cylindrical portion.
  • the resin part is located on the radially inner side of the cylindrical part and is filled between the cylindrical part and the magnet, and at least a part of the resin part is located below the bottom plate part. And a connecting portion that overlaps the bottom plate portion in the axial direction.
  • the filling part and the retaining part are connected via the connecting part.
  • One aspect of the motor of the present invention includes the rotor described above and a stator that faces the rotor via a gap in the radial direction.
  • a rotor that can suitably prevent the rotor cover from coming out of the rotor core while stably holding the magnet in the rotor cover, and a motor including such a rotor.
  • FIG. 1 is a cross-sectional view of a motor according to an embodiment.
  • FIG. 2 is a cross-sectional view of a rotor according to an embodiment.
  • FIG. 3 is an exploded view of a rotor according to an embodiment.
  • FIG. 4 is a bottom view of the rotor according to the embodiment.
  • FIG. 5 is a cross-sectional view of the rotor taken along line VV in FIG.
  • FIG. 6 is a cross-sectional view of the rotor of the first modification.
  • FIG. 7 is a cross-sectional view of the rotor of the second modification.
  • the Z-axis direction in each figure is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the positive side (+ Z side) in the Z-axis direction is referred to as “upper side”
  • the negative side ( ⁇ Z side) in the Z-axis direction is referred to as “lower side”.
  • the direction parallel to the central axis J (Z-axis direction) is simply referred to as “axial direction” or “vertical direction”
  • the radial direction around the central axis J is simply referred to as “radial direction”.
  • circumferential direction around the central axis J that is, the circumference of the central axis J is simply referred to as “circumferential direction”.
  • plane view means a state viewed from the axial direction.
  • the upper side and the lower side are directions used for explanation only, and do not limit the actual positional relationship and direction.
  • FIG. 1 is a cross-sectional view of the motor 10 of the present embodiment.
  • the motor 10 of the present embodiment includes a housing 11, a stator 12, a rotor 13 including a shaft 20 disposed along a central axis J extending in the vertical direction, a bearing holder 14, and bearings 15 and 16. .
  • the stator 12 faces the rotor 13 in the radial direction on the radially outer side of the rotor 13 via a gap.
  • the shaft 20 is rotatably supported by the bearings 15 and 16.
  • the shaft 20 has a cylindrical shape extending in the axial direction.
  • FIG. 2 is a cross-sectional view of the rotor 13 in a cross section orthogonal to the axial direction.
  • the rotor 13 includes a shaft 20, a rotor core 30, a plurality of magnets 40, a rotor cover 60, and a resin portion 50.
  • FIG. 3 is an exploded view of the rotor 13.
  • the rotor core 30 has a column shape extending in the axial direction. Although illustration is omitted, the rotor core 30 is configured by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the rotor core 30 is a regular octagonal column with the central axis J as the center.
  • the rotor core 30 has a plurality (eight in the present embodiment) of magnet support surfaces 33.
  • the magnet support surface 33 is arranged along the circumferential direction on the outer circumferential surface facing the radially outer side of the rotor core 30.
  • the magnet support surface 33 extends in the axial direction.
  • the magnet support surface 33 is a flat surface orthogonal to the radial direction.
  • the rotor core 30 is provided with one fixed hole 30a, a plurality of first core through holes (core through holes) 31, and a plurality of second core through holes 32.
  • the fixed hole 30a, the first core through hole 31, and the second core through hole 32 penetrate the rotor core 30 in the axial direction.
  • the fixing hole 30a is located at the center of the rotor core 30 when viewed from the axial direction.
  • the shape of the fixing hole 30a viewed along the axial direction is a circular shape centered on the central axis J.
  • the shaft 20 is passed through the fixing hole 30a.
  • the inner peripheral surface of the fixing hole 30 a is fixed to the outer peripheral surface of the shaft 20.
  • the rotor core 30 is fixed to the shaft 20.
  • the plurality of first core through holes 31 are arranged at equal intervals along the circumferential direction.
  • the rotor core 30 is provided with eight first core through holes 31.
  • the first core through-hole 31 has a circular shape when viewed from the axial direction.
  • Each first core through hole 31 is located on the radially inner side of the magnet support surface 33. As described later, the first core through hole 31 is filled with a part of the resin portion 50 (through hole filling portion 52).
  • the plurality of second core through holes 32 are arranged at equal intervals along the circumferential direction.
  • the rotor core 30 is provided with eight second core through holes 32.
  • the second core through hole 32 is circular when viewed from the axial direction.
  • the diameter of the second core through hole 32 is larger than the diameter of the first core through hole 31.
  • Each first core through hole 31 is arranged on the radially inner side of the first core through hole 31.
  • the same number of first core through holes 31, second core through holes 32, and magnet support surfaces 33 are provided in the rotor core 30.
  • the rotor core 30 is configured by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the 2nd core through-hole 32 is used for position alignment of electromagnetic steel plates, when laminating
  • the magnet 40 is located on the radially outer side of the rotor core 30.
  • the magnet 40 has a substantially quadrangular prism shape that is flat in the radial direction and extends in the axial direction.
  • the plurality of magnets 40 are arranged at intervals from each other along the circumferential direction. More specifically, the plurality of magnets 40 are arranged at equal intervals over the entire circumference along the circumferential direction.
  • Each of the plurality of magnets 40 is supported on each of the plurality of magnet support surfaces 33 from the inside in the radial direction.
  • the radially inner side surface of the magnet 40 is a flat surface orthogonal to the radial direction and contacts the magnet support surface 33.
  • the radially outer surface of the magnet 40 is a curved surface that curves in the circumferential direction along the radially inner side surface of a cylindrical portion 61 described later of the rotor cover 60.
  • the center of curvature of the radially outer surface of the magnet 40 coincides with the central axis J.
  • the radially outer surface of the magnet 40 and the inner peripheral surface of the magnet 40 face each other with a gap in the radial direction.
  • the radially outer surface of the magnet 40 may contact the radially inner surface of the rotor cover 60.
  • FIG. 4 is a bottom view of the rotor 13.
  • FIG. 5 is a cross-sectional view of the rotor 13 taken along line VV in FIG.
  • the axial dimension of the magnet 40 is the same as the axial dimension of the rotor core 30.
  • the upper surface of the magnet 40 and the upper surface of the rotor core 30 are disposed on the same plane orthogonal to the axial direction.
  • the lower surface of the magnet 40 and the lower surface of the rotor core 30 are arranged on the same plane orthogonal to the axial direction.
  • the rotor cover 60 accommodates the rotor core 30 and the magnet 40.
  • the rotor cover 60 includes a cylindrical portion 61 and a bottom plate portion 62.
  • the cylindrical portion 61 is a cylindrical shape extending along the axial direction. More specifically, the cylindrical portion 61 is cylindrical with the central axis J as the center. The cylindrical portion 61 opens on both sides in the axial direction.
  • the cylindrical part 61 surrounds the rotor core 30 and the magnet 40 from the radially outer side.
  • the upper end portion of the cylindrical portion 61 substantially coincides with the upper end portion of the magnet 40 and the upper end portion of the rotor core 30.
  • the lower end portion of the cylindrical portion 61 is located below the upper end portion of the magnet 40 and the lower end portion of the rotor core 30.
  • the bottom plate portion 62 extends radially inward from the lower end portion of the tubular portion 61.
  • the bottom plate portion 62 has an annular plate shape extending in the circumferential direction.
  • the bottom plate portion 62 is located below the rotor core 30 and the plurality of magnets 40.
  • the upper surface of the bottom plate portion 62 faces the lower surface of the rotor core 30 and the lower surfaces of the plurality of magnets 40 in the vertical direction.
  • the bottom plate portion 62 has an inner peripheral edge 62b located at the radially inner end.
  • the shaft 20 passes inside the inner peripheral edge 62b.
  • the inner peripheral edge 62 b of the bottom plate part 62 is provided with a plurality of cutout parts 62 a extending outward in the radial direction.
  • the notch 62a overlaps with the first core through hole 31 when viewed from the axial direction.
  • the entire region of the first core through hole 31 is located inside the inner side surface of the notch 62a.
  • eight notches 62a are provided on the inner peripheral edge 62b of the bottom plate 62.
  • the number of the notches 62 a is the same as the number of the first core through holes 31.
  • the eight notches 62a are arranged at equal intervals along the circumferential direction along the entire circumference.
  • the resin portion 50 fixes the rotor cover 60 and the magnet 40 to each other.
  • the resin part 50 fixes the rotor cover 60 and the rotor core 30 to each other. That is, the resin part 50 holds the rotor cover 60, the rotor core 30, and the magnet 40 while being connected to each other. At least a part of the resin portion 50 is located on the radially inner side of the cylindrical portion 61 of the rotor cover 60.
  • the resin portion 50 is formed as a single member by insert molding in which resin is poured into a mold in which the rotor core 30, the magnet 40, and the rotor cover 60 are inserted.
  • the resin portion 50 is joined to the surfaces of the rotor core 30, the magnet 40 and the rotor cover 60 by insert molding with respect to the rotor core 30, the magnet 40 and the rotor cover 60.
  • the resin part 50 includes a filling part 51, a plurality of through-hole filling parts 52, a lid part (first lid part) 53, a retaining part 54, and a connecting part 55.
  • the filling portion 51, the plurality of through-hole filling portions 52, the lid portion 53, the retaining portion 54, and the connecting portion 55 are connected to each other.
  • the filling part 51 is located inside the cylindrical part 61 in the radial direction.
  • the filling part 51 is filled between the cylindrical part 61 and the magnet 40.
  • the filling portion 51 is filled between the rotor cover 60 and the magnet 40 in the radial direction.
  • the filling portion 51 extends in the axial direction along the outer peripheral surface of the magnet 40.
  • the filling portion 51 contacts the outer peripheral surface of the magnet 40 and a part of the outer peripheral surface of the rotor core 30.
  • the filling unit 51 includes a first filling region 51 a and a second filling region 51 b.
  • the first filling region 51a and the second filling region 51b are alternately arranged in the circumferential direction.
  • the first filling region 51 a is located between the outer peripheral surface of the magnet 40 and the inner peripheral surface of the cylindrical portion 61 of the rotor cover 60 in the radial direction.
  • the second filling region 51b is located between the magnets 40 in the circumferential direction.
  • region 51a does not need to be provided.
  • the filling portion 51 (the second filling region 51b in the present embodiment) is located between the magnets 40 arranged in the circumferential direction.
  • the filling unit 51 can hold the magnet 40 and position the magnet 40 with respect to the rotor core 30 and the rotor cover 60.
  • the through-hole filling part 52 is filled in the first core through-hole 31.
  • the through hole filling portion 52 extends in the axial direction along the inner peripheral surface of the first core through hole 31.
  • the through hole filling portion 52 has a cylindrical shape extending in the axial direction. The through hole filling portion 52 is in contact with the inner peripheral surface of the first core through hole 31.
  • the resin part 50 has a plurality of through-hole filling parts 52.
  • the plurality of through-hole filling portions 52 pass through each of the plurality of first core through-holes 34a. Thereby, the resin part 50 and the rotor core 30 can be connected more firmly. Further, according to the present embodiment, since the through-hole filling portion 52 is filled in the first core through-hole 31, it is possible to restrict the resin portion 50 from moving in the circumferential direction with respect to the rotor core 30.
  • the lid 53 is located below the rotor core 30.
  • the lid 53 extends in an annular shape about the central axis J.
  • the lid part 53 is connected to the filling part 51 and the plurality of through-hole filling parts 52. In other words, the filling portion 51 and the plurality of through-hole filling portions 52 extend upward from the lid portion 53.
  • the lid portion 53 is located between the lower surface of the rotor core 30 and the lower surface of the magnet 40 and the upper surface of the bottom plate portion 62. That is, the lid 53 is located between the rotor core 30 and the magnet 40 and the bottom plate 62. The lid 53 contacts the lower surface of the rotor core 30 and the lower surface of the magnet 40. Further, the lid portion 53 contacts the upper surface of the bottom plate portion 62. The lid 53 restricts the magnet 40 from moving downward with respect to the rotor core 30.
  • the outer edge in the radial direction of the lid part 53 is in contact with the inner peripheral surface of the cylindrical part 61.
  • the radially inner edge of the lid portion 53 is located radially inward from the inner peripheral edge 62 b of the bottom plate portion 62.
  • the inner edge in the radial direction of the lid portion 53 is located on the outer side in the radial direction from the second core through hole 32.
  • the lid portion 53 extends radially inward from the inner peripheral surface of the cylindrical portion 61 to the front of the second core through hole 32 beyond the inner peripheral edge 62 b of the bottom plate portion 62.
  • the retaining portion 54 extends in an annular shape around the central axis J.
  • the retaining portion 54 is located below the bottom plate portion 62.
  • the retaining portion 54 contacts the lower surface of the bottom plate portion 62.
  • the radial outer edge of the retaining portion 54 is located outside the radial outer edge of the notch 62 a provided in the bottom plate portion 62.
  • the radial inner edge of the retaining portion 54 coincides with the radial inner edge of the lid portion 53 when viewed from the axial direction.
  • the connecting portion 55 connects the lid portion 53 and the retaining portion 54.
  • the connecting portion 55 is located between the lid portion 53 and the retaining portion 54 on the radially inner side of the bottom plate portion 62. Further, the connecting portion 55 overlaps the bottom plate portion 62 in the axial direction.
  • the connecting portion 55 includes a first connecting region 55a located on the radially inner side of the inner peripheral edge 62b of the bottom plate portion 62, and a plurality of second connecting regions 55b located inside the notch 62a. That is, at least a part of the connecting portion 55 (second connecting region 55b in the present embodiment) is located inside the notch 62a.
  • the first connection region 55a extends in an annular shape around the central axis J.
  • the first connection region 55 a contacts the inner peripheral edge 62 b of the bottom plate portion 62.
  • the radial inner edge of the first connection region 55a coincides with the radial inner edge of the lid portion 53 and the radial inner edge of the retaining portion 54 when viewed from the axial direction.
  • the second connection region 55b extends radially outward from the first connection region 55a.
  • the second connection region 55b contacts the inner surface of the notch 62a.
  • the second connection region 55b overlaps with the through hole filling portion 52 when viewed from the axial direction.
  • the resin portion 50 includes the filling portion 51 filled between the tubular portion 61 and the magnet 40, and the retaining portion 54 located below the bottom plate portion 62. Further, the filling part 51 and the retaining part 54 are connected via a lid part 53 and a connecting part 55. Accordingly, the bottom plate portion 62 is sandwiched between the filling portion 51 and the retaining portion 54 in the axial direction. According to this embodiment, it can restrict
  • the lid portion 53 and the retaining portion 54 sandwich the bottom plate portion 62 in the axial direction. Further, the lid portion 53 and the retaining portion 54 are connected to each other through the first connection region 55a and the second connection region 55b of the connection portion 55. That is, a part of the bottom plate part 62 is embedded in the resin part 50. Thereby, the contact area of the resin part 50 and the baseplate part 62 spreads, and rotation of the resin part 50 with respect to the rotor 13 can be suppressed effectively.
  • the 2nd connection field 55b of connecting part 55 is located inside cutout part 62a.
  • the second connection region 55b is sandwiched between the inner side surfaces of the notch 62a in the circumferential direction. Accordingly, the second connection region 55 b restricts the rotor cover 60 from moving in the circumferential direction with respect to the resin portion 50.
  • a large inertia force is applied to the rotor cover 60.
  • the second connection region 55 b can suppress the relative rotation of the rotor cover 60 with respect to the resin portion 50.
  • the plurality of notches 62a are arranged side by side along the circumferential direction. Moreover, the 2nd connection area
  • the notch 62a overlaps the first core through hole 31 when viewed from the axial direction. Therefore, when the resin part 50 is insert-molded, the resin part 50 can flow smoothly from the notch part 62 a toward the first core through hole 31. Thereby, the resin part 50 can be filled in the first core through hole 31 without a gap, and the connection between the resin part 50 and the rotor core 30 can be further strengthened.
  • the resin portion 50 is formed by insert molding including the rotor cover 60, the magnet 40 and the rotor core 30. Therefore, it is easy to make the resin part 50 that contacts the magnet 40 regardless of the dimensional error of the magnet 40. Thereby, it can suppress that a clearance gap arises between the resin part 50 and the magnet 40, and the magnet 40 can be stably hold
  • the resin portion 50 suppresses the rotor cover 60 from rotating relative to the rotor core 30 while stably holding the magnet 40 in the rotor cover 60.
  • the rotor 13 which can suppress that the rotor cover 60 rotates relatively with respect to the rotor core 30 is obtained.
  • vibrations generated from the motor 10 can be reduced. Therefore, noise generated from the motor 10 can be reduced, and the motor 10 can be driven efficiently.
  • both the stable holding of the magnet 40 and the suitable rotation stop of the rotor cover 60 can be realized by making the resin portion 50 by the above-described insert molding. Therefore, according to this embodiment, the assembly process of the rotor 13 can be facilitated. Further, according to the present embodiment, it is not necessary to use an adhesive to hold the magnet 40, and a process and equipment for curing the adhesive are not necessary.
  • the rotor cover 60 has a bottom plate portion 62 only on one side (lower side) in the axial direction of the cylindrical portion 61.
  • the rotor cover 60 may have bottom plate portions on both axial sides of the cylindrical portion 61.
  • one bottom plate portion is formed by, for example, a caulking process.
  • the resin portion 50 has a lid portion only on one side (lower side) of the rotor core 30 in the axial direction.
  • the resin portion 50 has lid portions on both sides in the axial direction of the rotor core 30.
  • the retaining portion and the connecting portion may be provided on both sides of the rotor core 30.
  • FIG. 6 is a cross-sectional view of the rotor 113 of Modification 1 of the above-described embodiment.
  • FIG. 6 is a diagram corresponding to FIG. 4 in the above-described embodiment.
  • the rotor 113 of the first modification will be described with reference to FIG.
  • the rotor 113 of this modification is mainly different from the above-described embodiment in that a cover through hole 162a is provided instead of the notch 62a.
  • symbol is attached
  • the rotor 113 includes the shaft 20, the rotor core 30, the plurality of magnets 40, the rotor cover 160, and the resin portion 150.
  • the rotor core 30 is provided with a first core through hole 31 and a second core through hole 32.
  • the rotor cover 160 has a cylindrical portion 61 and a bottom plate portion 162.
  • the bottom plate portion 162 extends radially inward from the lower end portion of the tubular portion 61.
  • the bottom plate portion 162 has an annular plate shape extending in the circumferential direction.
  • the bottom plate portion 162 is located below the rotor core 30 and the plurality of magnets 40.
  • the bottom plate portion 162 has an inner peripheral edge 162b located at the radially inner edge.
  • the bottom plate part 162 is provided with a plurality of cover through-holes 162a penetrating in the axial direction.
  • the cover through-hole 162a is, for example, circular when viewed from the axial direction.
  • the cover through hole 162a overlaps with the first core through hole 31 when viewed from the axial direction.
  • the first core through hole 31 is located inside the inner side surface of the cover through hole 162a.
  • cover through holes 162a are provided in the bottom plate portion 162. That is, the number of cover through holes 162 a is the same as the number of first core through holes 31.
  • the eight cover through-holes 162a are arranged at equal intervals in a line along the circumferential direction.
  • the resin part 150 includes a filling part 51, a plurality of through-hole filling parts 52, a lid part 53, a retaining part 154, and a connecting part 155.
  • the lid portion 53 is located between the rotor core 30 and the magnet 40 and the bottom plate portion 162.
  • the retaining portion 154 extends in an annular shape around the central axis J.
  • the retaining portion 154 is located below the bottom plate portion 162.
  • the retaining portion 154 contacts the lower surface of the bottom plate portion 162.
  • the connecting portion 155 overlaps the bottom plate portion 162 in the axial direction.
  • the connecting portion 155 connects the lid portion 53 and the retaining portion 154.
  • the connecting portion 155 is located inside the cover through hole 162a. That is, at least a part of the connecting portion 155 (all regions in the present modification) is located inside the cover through-hole 162a.
  • the connecting portion 155 contacts the inner side surface of the cover through hole 162a.
  • the connecting portion 155 overlaps with the through hole filling portion 52 when viewed from the axial direction.
  • the lid portion 53 and the retaining portion 154 sandwich the bottom plate portion 162 in the axial direction. Further, the lid portion 53 and the retaining portion 154 are connected to each other via a connecting portion 155. That is, a part of the bottom plate portion 162 is embedded in the resin portion 150. For this reason, the resin part 150 restricts the bottom plate part 162 from moving in the axial direction with respect to the resin part 150. As a result, the rotor cover 160 can be prevented from being detached from the resin portion 150 in the rotor 113 in the axial direction.
  • the connecting portion 155 is located inside the cover through hole 162a.
  • the connecting portion 155 is sandwiched between the inner side surfaces of the cover through-hole 162a in the circumferential direction. Accordingly, the connecting portion 155 restricts the rotor cover 160 from moving in the circumferential direction with respect to the resin portion 150. According to this modification, even when a large inertia force is applied to the rotor cover 160, the connecting portion 155 can suppress the relative rotation of the rotor cover 160 with respect to the resin portion 150.
  • the plurality of cover through holes 162a are arranged side by side along the circumferential direction.
  • the connection part 155 is each arrange
  • the cover through-hole 162a overlaps with the first core through-hole 31 when viewed from the axial direction. Therefore, when the resin part 150 is insert-molded, the resin part 150 can flow smoothly from the cover through-hole 162a toward the first core through-hole 31. Thereby, the resin part 150 can be filled in the first core through-hole 31 without a gap, and the connection between the resin part 150 and the rotor core 30 can be further strengthened.
  • FIG. 7 is a cross-sectional view of the rotor 213 of Modification 2 of the above-described embodiment.
  • FIG. 7 is a diagram corresponding to FIG. 4 in the above-described embodiment.
  • the rotor 213 of the second modification will be described with reference to FIG.
  • the rotor 213 of this modification is mainly different from the above-described embodiment in that the resin portion 250 has a lid portion 256, a point that does not have a first lid portion, and the like.
  • symbol is attached
  • the rotor 213 includes the shaft 20, the rotor core 30, the plurality of magnets 40, the rotor cover 260, and the resin portion 250.
  • the rotor core 30 is provided with a first core through hole 31 and a second core through hole 32.
  • the rotor cover 260 has a cylindrical portion 61 and a bottom plate portion 262.
  • the bottom plate portion 262 extends radially inward from the lower end portion of the tubular portion 61.
  • the bottom plate portion 262 has an annular plate shape extending in the circumferential direction.
  • the bottom plate portion 262 is located below the rotor core 30 and the plurality of magnets 40.
  • the bottom plate portion 262 has an inner peripheral edge 262b located at the radially inner edge. In the present modification, the upper surface of the bottom plate portion 262 is in contact with the rotor core 30.
  • the resin part 250 includes a filling part 51, a plurality of through-hole filling parts 52, a lid part (second lid part) 256, a retaining part 254, and a connecting part 255.
  • the retaining portion 254 extends in an annular shape around the central axis J. At least a part of the retaining portion 254 is located below the bottom plate portion 262. Accordingly, a part of the retaining portion 254 contacts the lower surface of the bottom plate portion 262. In addition, a part of the retaining portion 254 contacts the lower surface of the rotor core 30 on the upper surface.
  • the connecting portion 255 overlaps the bottom plate portion 262 in the axial direction.
  • the connecting portion 255 connects the retaining portion 254 and the filling portion 51 together. That is, the filling part 51 and the retaining part 254 are connected via the connecting part 255.
  • the bottom plate portion 262 is sandwiched between the filling portion 51 and the retaining portion 254 in the axial direction. Therefore, the resin part 250 restricts the bottom plate part 262 from moving in the axial direction with respect to the resin part 250. According to this modification, it can restrict
  • the lid portion 256 is positioned above the rotor core 30.
  • the lower surface of the lid portion 256 is in contact with the upper surface of the rotor core 30.
  • the lid part 256 is connected to the filling part 51.
  • the lower surface of the rotor core 30 is in contact with the retaining portion 254. Therefore, the rotor core 30 is sandwiched between the lid portion 256 and the retaining portion 254 in the axial direction. Further, the lid 256 and the retaining portion 254 are connected via the filling portion 51. For this reason, it is possible to suppress the resin portion 250 from slipping out of the rotor core 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Power Steering Mechanism (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

本発明のロータの一つの態様は、上下方向に延びる中心軸に沿って配置されるシャフトと、シャフトに固定されるロータコアと、ロータコアの径方向外側に位置するマグネットと、ロータコアおよびマグネットを収容するロータカバーと、ロータカバーとマグネットとを互いに固定する樹脂部と、を備える。ロータカバーは、軸方向に沿って延びてロータコアおよびマグネットを径方向外側から囲む筒状部と、筒状部の下端部から径方向内側に延びる底板部と、を有する。樹脂部は、筒状部の径方向内側に位置し筒状部とマグネットとの間に充填される充填部と、少なくとも一部が底板部の下側に位置する抜け止め部と、軸方向において底板部と重なる連結部と、を有する。充填部と抜け止め部とは、連結部を介して繋がる。

Description

ロータ、およびモータ
 本発明は、ロータ、およびモータに関する。
 ロータコアおよび永久磁石を覆うロータカバーを備えるロータが知られる。例えば、特許文献1には、そのようなロータを備えるモータが記載される。
国際公開第2013/138406号号公報
 上記のようなロータにおいては、例えば、ロータカバーから永久磁石が軸方向に抜け出ることを抑制する必要がある。
 本発明は、上記事情に鑑みて、マグネットをロータカバー内に安定して保持しつつ、ロータカバーがロータコアから抜け出ることを好適に抑制できるロータ、およびそのようなロータを備えるモータを提供することを目的の一つとする。
 本発明のロータの一つの態様は、上下方向に延びる中心軸に沿って配置されるシャフトと、前記シャフトに固定されるロータコアと、前記ロータコアの径方向外側に位置するマグネットと、前記ロータコアおよび前記マグネットを収容するロータカバーと、前記ロータカバーと前記マグネットとを互いに固定する樹脂部と、を備える。前記ロータカバーは、軸方向に沿って延びて前記ロータコアおよび前記マグネットを径方向外側から囲む筒状部と、前記筒状部の下端部から径方向内側に延びる底板部と、を有する。前記樹脂部は、前記筒状部の径方向内側に位置し前記筒状部と前記マグネットとの間に充填される充填部と、少なくとも一部が前記底板部の下側に位置する抜け止め部と、軸方向において前記底板部と重なる連結部と、を有する。前記充填部と前記抜け止め部とは、前記連結部を介して繋がる。
 本発明のモータの一つの態様は、上記のロータと、前記ロータと径方向に隙間を介して対向するステータと、を備える。
 本発明の一つの態様によれば、マグネットをロータカバー内に安定して保持しつつ、ロータカバーがロータコアから抜け出ることを好適に抑制できるロータ、およびそのようなロータを備えるモータが提供される。
図1は、一実施形態のモータの断面図である。 図2は、一実施形態のロータの断面図である。 図3は、一実施形態のロータの分解図である。 図4は、一実施形態のロータの底面図である。 図5は、図4のV-V線に沿うロータの断面図である。 図6は、変形例1のロータの断面図である。 図7は、変形例2のロータの断面図である。
 以下、図面を参照しながら、本発明の実施形態に係るモータおよびロータについて説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
 各図には、適宜Z軸を示す。各図のZ軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。また、以下の説明においては、Z軸方向の正の側(+Z側)を「上側」と呼び、Z軸方向の負の側(-Z側)を「下側」と呼ぶ。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」又は「上下方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。なお、上側および下側とは、単に説明のために用いられる方向であって、実際の位置関係や方向を限定しない。
 図1は、本実施形態のモータ10の断面図である。
 本実施形態のモータ10は、ハウジング11と、ステータ12と、上下方向に延びる中心軸Jに沿って配置されるシャフト20を備えるロータ13と、ベアリングホルダ14と、ベアリング15,16と、を備える。ステータ12は、ロータ13の径方向外側においてロータ13と径方向に隙間を介して対向する。シャフト20は、ベアリング15,16に回転可能に支持される。シャフト20は、軸方向に延びる円柱状である。
 図2は、軸方向と直交する断面におけるロータ13の断面図である。
 ロータ13は、シャフト20と、ロータコア30と、複数のマグネット40と、ロータカバー60と、樹脂部50と、を備える。
 図3は、ロータ13の分解図である。なお、図3において、シャフト20および樹脂部50を省略する。
 ロータコア30は、軸方向に延びる柱状である。図示は省略するが、ロータコア30は、複数の電磁鋼板を軸方向に積層することで構成される。ロータコア30は、中心軸Jを中心とする正八角柱状である。ロータコア30は、複数(本実施形態において8つ)のマグネット支持面33を有する。マグネット支持面33は、ロータコア30の径方向外側を向く外周面において、周方向に沿って並ぶ。マグネット支持面33は、軸方向に延びる。マグネット支持面33は、径方向と直交する平坦な面である。
 ロータコア30には、1つの固定孔30aと、複数の第1のコア貫通孔(コア貫通孔)31と、複数の第2のコア貫通孔32と、が設けられる。固定孔30a、第1のコア貫通孔31および第2のコア貫通孔32は、ロータコア30を軸方向に貫通する。
 図2に示すように、固定孔30aは、軸方向から見てロータコア30の中央に位置する。固定孔30aの軸方向に沿って視た形状は、中心軸Jを中心とする円形状である。固定孔30aには、シャフト20が通される。固定孔30aの内周面は、シャフト20の外周面に固定される。これにより、ロータコア30は、シャフト20に固定される。
 複数の第1のコア貫通孔31は、周方向に沿って等間隔に並んで配置される。本実施形態において、ロータコア30には、8つの第1のコア貫通孔31が設けられる。第1のコア貫通孔31は、軸方向から見て円形状である。それぞれの第1のコア貫通孔31は、マグネット支持面33の径方向内側に位置する。後段において説明するように、第1のコア
貫通孔31の内部には、樹脂部50の一部(貫通孔充填部52)が充填される。
 複数の第2のコア貫通孔32は、周方向に沿って等間隔に並んで配置される。本実施形態において、ロータコア30には、8つの第2のコア貫通孔32が設けられる。第2のコア貫通孔32は、軸方向から見て円形状である。本実施形態において、第2のコア貫通孔32の直径は、第1のコア貫通孔31の直径より大きい。それぞれの第1のコア貫通孔31は、第1のコア貫通孔31の径方向内側に配置される。本実施形態において、ロータコア30に設けられる第1のコア貫通孔31、第2のコア貫通孔32およびマグネット支持面33は、同数である。
 上述したように、ロータコア30は、複数の電磁鋼板を軸方向に積層することで構成される。第2のコア貫通孔32は、それぞれの電磁鋼鈑を積層する際に、電磁鋼板同士の位置合わせに用いられる。
 また、ロータコア30に第2のコア貫通孔32が設けられることで、ロータコア30の重量を低減することができる。
 図3に示すように、マグネット40は、ロータコア30の径方向外側に位置する。マグネット40は、径方向に扁平で軸方向に延びる略四角柱状である。複数のマグネット40は、周方向に沿って互いに間隔を空けて配置される。より詳細には、複数のマグネット40は、周方向に沿って一周に亘って等間隔に配置される。
 複数のマグネット40のそれぞれは、複数のマグネット支持面33のそれぞれに径方向内側から支持される。マグネット40の径方向内側面は、径方向と直交する平坦な面であり、マグネット支持面33に接触する。マグネット40の径方向外側面は、ロータカバー60の後述する筒状部61の径方向内側面に沿って周方向に湾曲する曲面である。マグネット40の径方向外側面の曲率中心は、中心軸Jと一致する。マグネット40の径方向外側面をこのような曲面とすることで、モータ10の磁気特性を向上できる。
 本実施形態において、マグネット40の径方向外側面と、マグネット40の内周面とは、径方向に隙間を介して対向する。なお、マグネット40の径方向外側面は、ロータカバー60の径方向内側面に接触してもよい。
 図4は、ロータ13の底面図である。図5は、図4のV-V線に沿うロータ13の断面図である。
 図5に示すように、マグネット40の軸方向の寸法は、ロータコア30の軸方向の寸法と同じである。マグネット40の上面とロータコア30の上面とは、軸方向と直交する同一平面上に配置される。マグネット40の下面とロータコア30の下面とは、例えば、軸方向と直交する同一平面上に配置される。
 図3に示すように、ロータカバー60は、ロータコア30およびマグネット40を収容する。ロータカバー60は、筒状部61と、底板部62と、を有する。筒状部61は、軸方向に沿って延びる筒状である。より詳細には、筒状部61は、中心軸Jを中心とする円筒状である。筒状部61は、軸方向の両側に開口する。
 図2に示すように、筒状部61は、ロータコア30およびマグネット40を径方向外側から囲む。図5に示すように、筒状部61の上端部は、マグネット40の上端部およびロータコア30の上端部と略一致する。筒状部61の下端部は、マグネット40の上端部およびロータコア30の下端部よりも下側に位置する。
 図5に示すように、底板部62は、筒状部61の下端部から径方向内側に延びる。底板
部62は、周方向に延びる円環板状である。底板部62は、ロータコア30および複数のマグネット40の下側に位置する。底板部62の上面は、ロータコア30の下面および複数のマグネット40の下面と上下方向に対向する。
 底板部62は、径方向内端に位置する内周縁62bを有する。内周縁62bの内側には、シャフト20が通過する。図4に示すように、底板部62の内周縁62bには、径方向外側に向かって延びる複数の切欠部62aが設けられる。
 切欠部62aは、軸方向から見て、第1のコア貫通孔31と重なる。本実施形態において、軸方向から見て、第1のコア貫通孔31の全域は、切欠部62aの内側面の内側に位置する。しかしながら、軸方向から見て、切欠部62aの少なくとも一部が、第1のコア貫通孔31に重なっていればよい。
 本実施形態において、切欠部62aは、底板部62の内周縁62bに8つ設けられる。切欠部62aの数は、第1のコア貫通孔31と同数である。8つの切欠部62aは、周方向に沿って一周に亘って並んで等間隔に配置される。
 図5に示すように、樹脂部50は、ロータカバー60とマグネット40とを互いに固定する。また、樹脂部50は、ロータカバー60とロータコア30とを互いに固定する。すなわち、樹脂部50は、ロータカバー60とロータコア30とマグネット40とを互いに連結させて保持する。樹脂部50は、少なくとも一部がロータカバー60の筒状部61の径方向内側に位置する。
 樹脂部50は、ロータコア30とマグネット40とロータカバー60とを挿入した金型に樹脂を流し込むインサート成形によって単一の部材として成形される。樹脂部50は、ロータコア30、マグネット40およびロータカバー60に対してインサート成型されることで、ロータコア30、マグネット40およびロータカバー60の表面に接合される。
 樹脂部50は、充填部51と、複数の貫通孔充填部52と、蓋部(第1の蓋部)53と、抜け止め部54と、連結部55と、を有する。充填部51、複数の貫通孔充填部52、蓋部53、抜け止め部54および連結部55は、互いに繋がっている。
 充填部51は、筒状部61の径方向内側に位置する。充填部51は、筒状部61とマグネット40との間に充填される。充填部51は、径方向においてロータカバー60とマグネット40との間に充填される。充填部51は、マグネット40の外周面に沿って軸方向に延びる。充填部51は、マグネット40の外周面およびロータコア30の外周面の一部に接触する。
 図2に示すように、充填部51は、第1充填領域51aと第2充填領域51bと、を有する。第1充填領域51aと第2充填領域51bとは、周方向において交互に並ぶ。第1充填領域51aは、径方向において、マグネット40の外周面とロータカバー60の筒状部61の内周面との間に位置する。第2充填領域51bは、周方向において、マグネット40同士の間に位置する。
 なお、マグネット40の外周面と筒状部61の内周面とが接触する場合には、第1充填領域51aが設けられていなくてもよい。
 本実施形態によれば、充填部51の少なくとも一部(本実施形態における第2充填領域51b)は、周方向に沿って並ぶマグネット40同士の間に位置する。これにより、充填部51が、マグネット40を保持し、マグネット40をロータコア30およびロータカバー60に対して位置決めすることができる。
 貫通孔充填部52は、第1のコア貫通孔31に充填される。貫通孔充填部52は、第1のコア貫通孔31の内周面に沿って軸方向に延びる。貫通孔充填部52は、軸方向に延びる円柱状である。貫通孔充填部52は、第1のコア貫通孔31の内周面に接触する。
 本実施形態において樹脂部50は、複数の貫通孔充填部52を有する。複数の貫通孔充填部52は、複数の第1コア貫通孔34aのそれぞれを通る。これにより、樹脂部50とロータコア30とをより強固に連結できる。また、本実施形態によれば、貫通孔充填部52が第1のコア貫通孔31に充填されるため、ロータコア30に対して樹脂部50が周方向に移動することを規制できる。
 図5に示すように、蓋部53は、ロータコア30の下側に位置する。蓋部53は、中心軸Jを中心として円環状に延びる。蓋部53は、充填部51および複数の貫通孔充填部52に繋がる。言い換えると、充填部51および複数の貫通孔充填部52は、蓋部53から上側に向かって延びる。
 蓋部53は、ロータコア30の下面およびマグネット40の下面と、底板部62の上面との間に位置する。すなわち、蓋部53は、ロータコア30およびマグネット40と底板部62との間に位置する。蓋部53は、ロータコア30の下面およびマグネット40の下面に接触する。また、蓋部53は、底板部62の上面に接触する。蓋部53は、マグネット40が、ロータコア30に対して下側に移動することを規制する。
 蓋部53の径方向外縁は、筒状部61の内周面に接触する。蓋部53の径方向内縁は、底板部62の内周縁62bより径方向内側に位置する。また、蓋部53の径方向内縁は、第2のコア貫通孔32より径方向外側に位置する。蓋部53は、筒状部61の内周面から底板部62の内周縁62bを超えて第2のコア貫通孔32の手前まで径方向内側に延びる。
 抜け止め部54は、中心軸Jを中心として円環状に延びる。抜け止め部54は、底板部62の下側に位置する。抜け止め部54は、底板部62の下面に接触する。
 図4に示すように、抜け止め部54の径方向外縁は、底板部62に設けられた切欠部62aの径方向外縁より外側に位置する。抜け止め部54の径方向内縁は、軸方向から見て蓋部53の径方向内縁と一致する。
 図5に示すように、連結部55は、蓋部53と抜け止め部54とを連結する。連結部55は、底板部62の径方向内側において、蓋部53と抜け止め部54との間に位置する。また、連結部55は、軸方向において底板部62と重なる。
 連結部55は、底板部62の内周縁62bの径方向内側に位置する第1連結領域55aと、切欠部62aの内側に位置する複数の第2連結領域55bと、を有する。すなわち、連結部55の少なくとも一部(本実施形態における第2連結領域55b)は、切欠部62aの内側に位置する。
 第1連結領域55aは、中心軸Jを中心として円環状に延びる。第1連結領域55aは、底板部62の内周縁62bに接触する。第1連結領域55aの径方向内縁は、軸方向から見て蓋部53の径方向内縁および抜け止め部54の径方向内縁と一致する。
 第2連結領域55bは、第1連結領域55aから径方向外側に延びる。第2連結領域55bは、切欠部62aの内側面に接触する。第2連結領域55bは、軸方向から見て、貫
通孔充填部52と重なる。
 本実施形態によれば、樹脂部50は、筒状部61とマグネットと40の間に充填される充填部51と、底板部62の下側に位置する抜け止め部54と、を有する。また、充填部51と抜け止め部54とは、蓋部53および連結部55を介して繋がる。したがって、底板部62は、軸方向において、充填部51と抜け止め部54とに挟み込まれる。本実施形態によれば、底板部62が樹脂部50に対して軸方向に移動することを制限できる。結果的に、ロータ13において樹脂部50からロータカバー60が軸方向に離脱することを抑制できる。
 本実施形態によれば、蓋部53と抜け止め部54とが、軸方向において底板部62を挟み込む。また、蓋部53と抜け止め部54とは、連結部55の第1連結領域55aおよび第2連結領域55bを介して互いに連結される。すなわち、底板部62の一部は、樹脂部50に埋め込まれる。これにより、樹脂部50と底板部62との接触面積が広がり、ロータ13に対する樹脂部50の回転を効果的に抑制できる。
 本実施形態によれば、連結部55の第2連結領域55bが、切欠部62aの内側に位置する。第2連結領域55bは、周方向において切欠部62aの内側面の間に挟み込まれる。したがって、第2連結領域55bは、樹脂部50に対してロータカバー60が周方向に移動することを規制する。ロータ13の回転数を急速に高める場合、又は回転するロータ13を急停止させる場合、ロータカバー60には、大きな慣性力が加わる。本実施形態によれば、ロータカバー60に大きな慣性力が加わった場合であっても、第2連結領域55bが、樹脂部50に対するロータカバー60の相対回転を抑制できる。
 本実施形態によれば、複数の切欠部62aは周方向に沿って並んで配置される。また、複数の切欠部62aの内側には、それぞれ第2連結領域55bが配置される。このため、複数の第2連結領域55bは、底板部62を周方向の複数か所でバランスよくロータカバー60の回転を抑制することができる。
 本実施形態によれば、切欠部62aは、軸方向から見て第1のコア貫通孔31と重なる。したがって、樹脂部50をインサート成形する際に、切欠部62aから第1のコア貫通孔31に向かって樹脂部50を円滑に流すことができる。これにより、第1のコア貫通孔31の内部に隙間なく樹脂部50を充填することができ、樹脂部50とロータコア30との結合をより強固にすることができる。
 また、本実施形態によれば、樹脂部50は、ロータカバー60、マグネット40およびロータコア30を内包するインサート成形によって形成される。そのため、マグネット40の寸法誤差によらず、マグネット40に接触する樹脂部50を作りやすい。これにより、樹脂部50とマグネット40との間に隙間が生じることを抑制でき、マグネット40をロータカバー60内に安定して保持することができる。
 本実施形態によれば、樹脂部50がマグネット40をロータカバー60内に安定して保持しつつロータカバー60がロータコア30に対して相対回転することを抑制する。これにより、ロータカバー60がロータコア30に対して相対回転することを抑制できるロータ13が得られる。ロータ13における各部分同士の相対移動を抑制できることで、モータ10から生じる振動を低減することができる。したがって、モータ10から生じる騒音を低減することができ、モータ10を効率よく駆動させることができる。
 また、樹脂部50がマグネット40の保持とロータカバー60の回転止めとの両方の機能を有するため、ロータ13の組み立て工数を低減しやすい。具体的には、樹脂部50を
上述したインサート成形によって作ることで、マグネット40の安定した保持とロータカバー60の好適な回転止めとの両方を実現することができる。したがって、本実施形態によれば、ロータ13の組み立て工程を容易とすることができる。また、本実施形態によれば、マグネット40を保持するために接着剤を用いる必要がなく、接着剤を硬化させる工程および設備が必要ない。
 本実施形態において、ロータカバー60は、筒状部61の軸方向一方側(下側)のみに底板部62を有する。しかしながら、ロータカバー60は、筒状部61の軸方向両側に底板部を有していてもよい。この場合、一方の底板部は、例えばかしめ工程により成形される。
 本実施形態において、樹脂部50は、ロータコア30の軸方向一方側(下側)のみに蓋部を有する。しかしながら、樹脂部50は、ロータコア30の軸方向両側に、蓋部を有する。抜け止め部および連結部についても、同様に、ロータコア30の両側に設けられていてもよい。
 (変形例1)
 図6は、上述の実施形態の変形例1のロータ113の断面図である。図6は、上述の実施形態における図4に対応する図である。以下図6を基に、変形例1のロータ113について説明する。本変形例のロータ113は、上述の実施形態と比較して、切欠部62aに代えてカバー貫通孔162aが設けられる点が主に異なる。
 なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 上述の実施形態と同様に、ロータ113は、シャフト20と、ロータコア30と、複数のマグネット40と、ロータカバー160と、樹脂部150と、を備える。ロータコア30には、第1のコア貫通孔31と第2のコア貫通孔32とが設けられる。
 ロータカバー160は、筒状部61と、底板部162と、を有する。底板部162は、筒状部61の下端部から径方向内側に延びる。底板部162は、周方向に延びる円環板状である。底板部162は、ロータコア30および複数のマグネット40の下側に位置する。底板部162は、径方向内縁に位置する内周縁162bを有する。
 底板部162には、軸方向に貫通する複数のカバー貫通孔162aが設けられる。カバー貫通孔162aは、軸方向から見て、例えば円形である。
 カバー貫通孔162aは、軸方向から見て、第1のコア貫通孔31と重なる。本変形例において、軸方向から見て、第1のコア貫通孔31は、カバー貫通孔162aの内側面の内側に位置する。しかしながら、軸方向から見て、カバー貫通孔162aの少なくとも一部が、第1のコア貫通孔31に重なっていればよい。
 本変形例において、カバー貫通孔162aは、底板部162に8つ設けられる。すなわち、カバー貫通孔162aの数は、第1のコア貫通孔31と同数である。8つのカバー貫通孔162aは、周方向に沿って一周に亘って並んで等間隔に配置される。
 樹脂部150は、充填部51と、複数の貫通孔充填部52と、蓋部53と、抜け止め部154と、連結部155と、を有する。上述の実施形態と同様に、蓋部53は、ロータコア30およびマグネット40と底板部162との間に位置する。
 抜け止め部154は、中心軸Jを中心として円環状に延びる。抜け止め部154は、底
板部162の下側に位置する。抜け止め部154は、底板部162の下面に接触する。
 連結部155は、軸方向において底板部162と重なる。連結部155は、蓋部53と抜け止め部154とを連結する。連結部155は、カバー貫通孔162aの内側に位置する。すなわち、連結部155の少なくとも一部(本変形例では全ての領域)は、カバー貫通孔162aの内側に位置する。連結部155は、カバー貫通孔162aの内側面に接触する。連結部155は、軸方向から見て、貫通孔充填部52と重なる。
 本変形例によれば、蓋部53と抜け止め部154とが、軸方向において底板部162を挟み込む。また、蓋部53と抜け止め部154とは、連結部155を介して互いに連結される。すなわち、底板部162の一部は、樹脂部150に埋め込まれる。このため、樹脂部150は、底板部162が樹脂部150に対して軸方向に移動することを規制する。結果的に、ロータ113において樹脂部150からロータカバー160が軸方向に離脱することを抑制できる。
 本変形例によれば、連結部155が、カバー貫通孔162aの内側に位置する。連結部155は、周方向においてカバー貫通孔162aの内側面の間に挟み込まれる。したがって、連結部155は、樹脂部150に対してロータカバー160が周方向に移動することを規制する。本変形例によれば、ロータカバー160に大きな慣性力が加わった場合であっても、連結部155が、樹脂部150に対するロータカバー160の相対回転を抑制できる。
 本変形例によれば、複数のカバー貫通孔162aは周方向に沿って並んで配置される。また、複数のカバー貫通孔162aの内側には、それぞれ連結部155が配置される。このため、連結部155が底板部162を周方向の複数か所でバランスよく底板部162の回転を抑制することができる。
 本変形例によれば、カバー貫通孔162aは、軸方向から見て第1のコア貫通孔31と重なる。したがって、樹脂部150をインサート成形する際に、カバー貫通孔162aから第1のコア貫通孔31に向かって樹脂部150を円滑に流すことができる。これにより、第1のコア貫通孔31の内部に隙間なく樹脂部150を充填することができ、樹脂部150とロータコア30との結合をより強固にすることができる。
 (変形例2)
 図7は、上述の実施形態の変形例2のロータ213の断面図である。図7は、上述の実施形態における図4に対応する図である。以下図7を基に、変形例2のロータ213について説明する。本変形例のロータ213は、上述の実施形態と比較して、樹脂部250が、蓋部256を有する点および第1の蓋部を有していない点などが主に異なる。
 なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 上述の実施形態と同様に、ロータ213は、シャフト20と、ロータコア30と、複数のマグネット40と、ロータカバー260と、樹脂部250と、を備える。ロータコア30には、第1のコア貫通孔31と第2のコア貫通孔32とが設けられる。
 ロータカバー260は、筒状部61と、底板部262と、を有する。底板部262は、筒状部61の下端部から径方向内側に延びる。底板部262は、周方向に延びる円環板状である。底板部262は、ロータコア30および複数のマグネット40の下側に位置する。底板部262は、径方向内縁に位置する内周縁262bを有する。本変形例において、底板部262の上面は、ロータコア30と接触する。
 樹脂部250は、充填部51と、複数の貫通孔充填部52と、蓋部(第2の蓋部)256と、抜け止め部254と、連結部255と、を有する。
 抜け止め部254は、中心軸Jを中心として円環状に延びる。抜け止め部254の少なくとも一部は、底板部262の下側に位置する。したがって、抜け止め部254の一部は、底板部262の下面に接触する。また、抜け止め部254の一部は、上面においてロータコア30の下面に接触する。
 連結部255は、軸方向において底板部262と重なる。連結部255は、抜け止め部254と充填部51とを繋げる。すなわち、充填部51と抜け止め部254とは、連結部255を介して繋がる。本変形例によれば、底板部262は、軸方向において、充填部51と抜け止め部254とに挟み込まれる。したがって、樹脂部250は、底板部262が樹脂部250に対して軸方向に移動することを規制する。本変形例によれば、底板部262が樹脂部250に対して軸方向に移動することを制限できる。結果的に、ロータ213において樹脂部250からロータカバー260が軸方向に離脱することを抑制できる。
 本変形例において、蓋部256は、ロータコア30の上側に位置する。蓋部256の下面は、ロータコア30の上面に接触する。蓋部256は、充填部51に繋がる。上述したようにロータコア30の下面は、抜け止め部254と接触する。したがって、ロータコア30は、軸方向において、蓋部256と抜け止め部254とにより挟み込まれる。また、蓋部256と抜け止め部254とは充填部51を介して繋がる。このため、樹脂部250がロータコア30に対して抜け出ることを抑制できる。
 以上に、本発明の実施形態およびその変形例を説明したが、実施形態およびその変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
10…モータ、12…ステータ、13,113…ロータ、20…シャフト、30…ロータコア、31…第1のコア貫通孔(コア貫通孔)、40…マグネット、50,150…樹脂部、51…充填部、52…貫通孔充填部、53…蓋部(第1の蓋部)、54,154…抜け止め部、55,155…連結部、256…蓋部(第2の蓋部)、60,160…ロータカバー、61…筒状部、62,162…底板部、62a…切欠部、62b,162b…内周縁、162a…カバー貫通孔、J…中心軸

Claims (10)

  1.  上下方向に延びる中心軸に沿って配置されるシャフトと、
     前記シャフトに固定されるロータコアと、
     前記ロータコアの径方向外側に位置するマグネットと、
     前記ロータコアおよび前記マグネットを収容するロータカバーと、
     前記ロータカバーと前記マグネットとを互いに固定する樹脂部と、を備え、
     前記ロータカバーは、
      軸方向に沿って延びて前記ロータコアおよび前記マグネットを径方向外側から囲む筒状部と、
      前記筒状部の下端部から径方向内側に延びる底板部と、を有し、
     前記樹脂部は、
      前記筒状部の径方向内側に位置し前記筒状部と前記マグネットとの間に充填される充填部と、
      少なくとも一部が前記底板部の下側に位置する抜け止め部と、
      軸方向において前記底板部と重なる連結部と、を有し、
     前記充填部と前記抜け止め部とは、前記連結部を介して繋がる、
    ロータ。
  2.  前記ロータコアには、軸方向に貫通するコア貫通孔が設けられ、
     前記樹脂部は、前記コア貫通孔に充填される貫通孔充填部を有する、
    請求項1に記載のロータ。
  3.  前記底板部の内周縁には、径方向外側に向かって延びる切欠部が設けられ、
     前記切欠部は、軸方向から見て前記コア貫通孔と重なり、
     前記連結部の少なくとも一部は、前記切欠部の内側に位置する、
    請求項2に記載のロータ。
  4.  前記底板部には、複数の前記切欠部が設けられ、
     複数の前記切欠部は、周方向に沿って一周に亘って並んで配置される、
    請求項3に記載のロータ。
  5.  前記底板部には、軸方向に貫通するカバー貫通孔が設けられ、
     前記カバー貫通孔は、軸方向から見て前記コア貫通孔と重なり、
     前記連結部の少なくとも一部が、前記カバー貫通孔の内側に位置する、
    請求項2に記載のロータ。
  6.  前記底板部には、複数の前記カバー貫通孔が設けられ、
     複数の前記カバー貫通孔は、周方向に沿って一周に亘って並んで配置される、請求項5に記載のロータ。
  7.  前記充填部の少なくとも一部は、周方向に沿って並ぶ前記マグネット同士の間に位置する、
    請求項1~4の何れか一項に記載のロータ。
  8.  前記樹脂部は、
      軸方向において前記ロータコアと前記底板部との間に位置する第1の蓋部を有し、
     前記第1の蓋部と前記抜け止め部とは、軸方向において前記底板部を挟み込む、
    請求項1~7の何れか一項に記載のロータ。
  9.  前記樹脂部は、前記ロータコアの上側に位置する第2の蓋部を有し、
     前記第2の蓋部は、前記充填部に繋がる、
    請求項1~8の何れか一項に記載のロータ。
  10.  請求項1~9のいずれか一項に記載のロータと、
     前記ロータと径方向に隙間を介して対向するステータと、
     を備える、モータ。
PCT/JP2018/011515 2017-03-31 2018-03-22 ロータ、およびモータ WO2018180924A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019509680A JPWO2018180924A1 (ja) 2017-03-31 2018-03-22 ロータ、およびモータ
US16/487,221 US20200014278A1 (en) 2017-03-31 2018-03-22 Rotor and motor
CN201880022988.8A CN110476324A (zh) 2017-03-31 2018-03-22 转子和马达

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762479488P 2017-03-31 2017-03-31
US62/479,488 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180924A1 true WO2018180924A1 (ja) 2018-10-04

Family

ID=63397896

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/006223 WO2018180038A1 (ja) 2017-03-31 2018-02-21 モータ及び電動パワーステアリング装置
PCT/JP2018/011514 WO2018180923A1 (ja) 2017-03-31 2018-03-22 モータ
PCT/JP2018/011515 WO2018180924A1 (ja) 2017-03-31 2018-03-22 ロータ、およびモータ

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/006223 WO2018180038A1 (ja) 2017-03-31 2018-02-21 モータ及び電動パワーステアリング装置
PCT/JP2018/011514 WO2018180923A1 (ja) 2017-03-31 2018-03-22 モータ

Country Status (4)

Country Link
US (1) US20200014278A1 (ja)
JP (2) JPWO2018180924A1 (ja)
CN (4) CN207835199U (ja)
WO (3) WO2018180038A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162997A1 (ja) * 2022-02-28 2023-08-31 ニデック株式会社 ロータ、ロータ製造装置及びロータ製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124015A (ja) * 2019-01-29 2020-08-13 本田技研工業株式会社 回転電機ユニット及びレゾルバステータ
JP2023099246A (ja) * 2020-06-05 2023-07-12 パナソニックIpマネジメント株式会社 モータ部品及びモータ
CN111725923B (zh) * 2020-07-27 2021-07-02 威灵(芜湖)电机制造有限公司 电机及家用电器
CN114301195A (zh) * 2021-12-30 2022-04-08 贵阳万江航空机电有限公司 一种无刷电机定子、无刷电机定子的固定方法及无刷电机
CN117691778B (zh) * 2024-02-04 2024-04-05 深圳市鑫昌泰科技有限公司 一种新型转子铁芯、转子、新能源电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299282A (ja) * 2002-04-03 2003-10-17 Toshiba Corp 電動機の回転子
JP2010206939A (ja) * 2009-03-03 2010-09-16 Nsk Ltd ブラシレスモータ用ロータ、ブラシレスモータ及び電動パワーステアリング装置、並びにブラシレスモータ用ロータの製造方法
JP2013169103A (ja) * 2012-02-16 2013-08-29 Fanuc Ltd 磁石を鉄心の外周面に確実に取付けるための構造を有する電動機の回転子及びその製造方法
JP2016067190A (ja) * 2014-04-14 2016-04-28 アスモ株式会社 液体ポンプ用ロータ構造

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166246U (ja) * 1984-04-10 1985-11-05 株式会社東芝 回転電機
JPS6477450A (en) * 1987-09-18 1989-03-23 Hitachi Ltd Permanent magnet rotor
JPH0295150A (ja) * 1988-09-27 1990-04-05 Matsushita Electric Works Ltd 永久磁石回転子
JPH03243155A (ja) * 1990-02-20 1991-10-30 Sankyo Seiki Mfg Co Ltd 回転電機
JP3188189B2 (ja) * 1996-05-20 2001-07-16 東芝テック株式会社 電動送風機
DE29717415U1 (de) * 1997-09-30 1999-02-04 Robert Bosch Gmbh, 70469 Stuttgart Elektrische Maschine, insbesondere schleifringloser Drehstrom-Generator
JP3701183B2 (ja) * 2000-08-31 2005-09-28 三菱電機株式会社 モータ回転子
JP2002136003A (ja) * 2000-10-24 2002-05-10 Mitsubishi Electric Corp 回転電機の固定子
US6744171B1 (en) * 2001-10-09 2004-06-01 Valeo Electrical Systems, Inc. Rotating electric machine with sloped tooth surfaces for cogging torque reduction
JP2004135380A (ja) * 2002-10-08 2004-04-30 Daikin Ind Ltd 電動機及び回転式圧縮機
JP2005168153A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd モータ
JP2007082371A (ja) * 2005-09-16 2007-03-29 Mitsuba Corp ブラシレスモータ
JP2007209186A (ja) * 2006-02-06 2007-08-16 Mitsubishi Electric Corp 同期電動機及び同期電動機の製造方法
JP2008011638A (ja) * 2006-06-29 2008-01-17 Mitsubishi Electric Corp モータ及びこのモータを組み込んだ電動パワーステアリングシステム
JP5267772B2 (ja) * 2008-02-20 2013-08-21 株式会社ジェイテクト モータロータ及びその製造方法及び電動パワーステアリング装置
JP2010068595A (ja) * 2008-09-09 2010-03-25 Mitsubishi Electric Corp 同期電動機の固定子
CN101478210A (zh) * 2009-01-22 2009-07-08 南京埃斯顿自动控制技术有限公司 非对称槽形永磁同步电动机
DE102009048116A1 (de) * 2009-10-02 2011-04-07 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Bürstenloser Synchronmotor
JP2011205845A (ja) * 2010-03-26 2011-10-13 Toyota Industries Corp 回転電機及び固定子の固定方法
JP5945743B2 (ja) * 2012-03-09 2016-07-05 日立オートモティブシステムズ株式会社 電動パワーステアリング装置用モータ及びこれを用いた電動パワーステアリング装置
CN102891546A (zh) * 2012-10-24 2013-01-23 浙江联宜电机股份有限公司 具有不对称齿靴的定子铁芯结构
CN106505767B (zh) * 2016-12-07 2019-03-15 哈尔滨工业大学 具有叠片式金属磁极间隔的表贴式高速永磁同步电机转子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299282A (ja) * 2002-04-03 2003-10-17 Toshiba Corp 電動機の回転子
JP2010206939A (ja) * 2009-03-03 2010-09-16 Nsk Ltd ブラシレスモータ用ロータ、ブラシレスモータ及び電動パワーステアリング装置、並びにブラシレスモータ用ロータの製造方法
JP2013169103A (ja) * 2012-02-16 2013-08-29 Fanuc Ltd 磁石を鉄心の外周面に確実に取付けるための構造を有する電動機の回転子及びその製造方法
JP2016067190A (ja) * 2014-04-14 2016-04-28 アスモ株式会社 液体ポンプ用ロータ構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162997A1 (ja) * 2022-02-28 2023-08-31 ニデック株式会社 ロータ、ロータ製造装置及びロータ製造方法

Also Published As

Publication number Publication date
US20200014278A1 (en) 2020-01-09
CN110546857B (zh) 2021-07-13
CN110462989B (zh) 2021-07-09
JPWO2018180924A1 (ja) 2020-02-06
CN207835199U (zh) 2018-09-07
CN110462989A (zh) 2019-11-15
JPWO2018180923A1 (ja) 2020-02-06
CN110476324A (zh) 2019-11-19
WO2018180038A1 (ja) 2018-10-04
WO2018180923A1 (ja) 2018-10-04
CN110546857A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2018180924A1 (ja) ロータ、およびモータ
JP4706339B2 (ja) アキシャルエアギャップ型電動機
JP5773164B2 (ja) 電機子およびモータ
JP6429115B2 (ja) モータ
JP2013042635A (ja) 回転電機の回転子、回転電機および回転子の端面部材
CN110971034B (zh) 马达
JP2017225337A (ja) モータ
WO2019003801A1 (ja) ロータ、およびモータ
KR102622136B1 (ko) 회전자 분할형 모터
JP6745674B2 (ja) ロータおよび回転電機
KR20140077556A (ko) 모터
JP2019068517A (ja) 電動アクチュエータ
JPWO2019003800A1 (ja) ロータ、およびモータ
US20220181933A1 (en) Rotor, motor, and electric power steering device
JP2021057996A (ja) モータユニット
WO2019123950A1 (ja) ロータおよびモータ
CN110168879B (zh) 传感器磁铁组件和马达
WO2020195398A1 (ja) モータ
JP2019062688A (ja) モータ
JP2018133948A (ja) モータ
WO2018047603A1 (ja) ポンプ用モータ
JP2020178386A (ja) ロータ及び表面磁石型回転電機
JP6788958B2 (ja) モータ
JP2018067991A (ja) モータ
KR102587281B1 (ko) 외전형 bldc 전동기용 회전자 및 이를 구비하는 외전형 bldc 전동기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775450

Country of ref document: EP

Kind code of ref document: A1