WO2018161952A1 - 浸渍法制备加氢处理催化剂的方法 - Google Patents

浸渍法制备加氢处理催化剂的方法 Download PDF

Info

Publication number
WO2018161952A1
WO2018161952A1 PCT/CN2018/078546 CN2018078546W WO2018161952A1 WO 2018161952 A1 WO2018161952 A1 WO 2018161952A1 CN 2018078546 W CN2018078546 W CN 2018078546W WO 2018161952 A1 WO2018161952 A1 WO 2018161952A1
Authority
WO
WIPO (PCT)
Prior art keywords
impregnation
preparing
temperature
hydrotreating catalyst
acid
Prior art date
Application number
PCT/CN2018/078546
Other languages
English (en)
French (fr)
Inventor
王杰华
石友良
冯春峰
张然
许莉
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2018161952A1 publication Critical patent/WO2018161952A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to a hydrotreating catalyst, and more particularly to a method for preparing a hydrotreating catalyst by an impregnation method.
  • Distillate hydrotreating refers to the catalytic reaction of feedstock oil and hydrogen on the surface of the catalyst such as hydrodesulfurization, hydrodenitrogenation, hydrodeoxygenation, hydrodemetallization and hydrogenation of unsaturated hydrocarbons under high temperature and high pressure.
  • the hydrotreating catalysts used in the industry usually carry inorganic hydrogen oxides (such as alumina, silica, alumina-silica, etc.) as carriers and carry some hydrogenation active metal components in a certain manner (generally It is a Group VIB metal and a Group VIII metal such as Mo, W and Ni, Co, etc.).
  • inorganic hydrogen oxides such as alumina, silica, alumina-silica, etc.
  • some hydrogenation active metal components in a certain manner generally It is a Group VIB metal and a Group VIII metal such as Mo, W and Ni, Co, etc.
  • Common methods for supporting the active metal component include a dipping method, a kneading method, and the like. In view of the high hydrogenation activity and the full utilization of the active metal, the preparation of the hydrogenation catalyst by the impregnation method is extensive.
  • the nature of the impregnation solution is critical when preparing the hydrogenation catalyst by impregnation.
  • the pH of the impregnation solution has a large effect on the structure, dispersion and interaction of the active metal (e.g., Mo) on the surface of the catalyst with a support such as Al 2 O 3 .
  • the active metal e.g., Mo
  • the first type is an alkaline solution of Group VIB and Group VIII elements, such as an aqueous ammonia solution containing both molybdenum and cobalt (nickel).
  • the impregnation solution is alkaline. If it is to be impregnated once to form a catalyst, it needs to be formulated to a high concentration. Molybdenum-cobalt (nickel)-ammonia solution, which is unstable, causes difficulties in the impregnation operation, and it is difficult to prepare a high metal content catalyst with such an impregnation solution in a single load.
  • the second type is an acidic solution of Group VIB and Group VIII elements, such as a Mo-Ni-P impregnation solution.
  • a Mo-Ni-P impregnation solution such as a Mo-Ni-P impregnation solution.
  • the phosphoric acid is mixed with the molybdenum salt and the nickel salt in a certain ratio, and heated under reflux to finally obtain a Mo-Ni-P solution.
  • Most of the hydrotreating catalysts use ⁇ -Al 2 O 3 as the carrier, and the isoelectric point is 7-9, while the pH of the Mo-Ni-P immersion liquid is generally below 2, and the too low pH value will not only make the specific surface area of the carrier. Loss occurs during the impregnation process to reduce the specific surface area of the catalyst; it also causes the active component to interact too strongly with the support, which reduces the dispersibility of the active metal, resulting in a decrease in the activity of the hydrotreating catalyst.
  • the industry has added a basic nitrogen-containing compound (for example, an aqueous ammonia solution) to the acidic immersion liquid to change the pH between 2 and 6.
  • a basic nitrogen-containing compound for example, an aqueous ammonia solution
  • the pH of the impregnation solution can be increased, a large amount of the nitrogen-containing compound is added when the pH of the solution is adjusted, so that the active metal content in the impregnation solution is greatly reduced. Therefore, when the impregnation solution is prepared by the method and a high-load hydrogenation catalyst is prepared, the initial active metal content of the impregnation solution is too high to be easily realized.
  • the object of the present invention is to provide a method for preparing a hydrotreating catalyst by a dipping method having a specific surface area, a large pore volume and a high hydrogenation activity.
  • a method for preparing a hydrotreating catalyst by the impregnation method provided by the present invention comprises the following steps:
  • the molybdenum-containing compound is 10 to 80 g/100 ml in terms of MoO 3
  • the nickel-containing compound is 1 to 15 g/100 ml in terms of NiO
  • the phosphorus-containing compound is 0.5 to 5 g/100 ml in terms of P element.
  • carbonate concentration is 0.7 ⁇ 3.2g / 100ml
  • solution pH is 2 ⁇ 6;
  • the alumina carrier obtained in the step 2) is impregnated with the impregnation solution obtained in the step 1), and then dried and calcined to obtain a final hydrotreating catalyst.
  • the impregnation may be an equal volume impregnation or an excess impregnation, either a stepwise impregnation or a co-impregnation. It is preferably an equal volume co-impregnation.
  • the carbonate is an alkali metal carbonate normal or acid salt, such as Na 2 CO 3 , NaHCO 3 ; or ammonium carbonate normal or acid salt, such as (NH 4 ) 2 CO 3 , NH 4 HCO 3 , preferably (NH 4 ) 2 CO 3 .
  • alkali metal carbonate normal or acid salt such as Na 2 CO 3 , NaHCO 3
  • ammonium carbonate normal or acid salt such as (NH 4 ) 2 CO 3 , NH 4 HCO 3 , preferably (NH 4 ) 2 CO 3 .
  • the molybdenum-containing compound is one or more of molybdenum oxide, ammonium molybdate, and ammonium paramolybdate;
  • the nickel-containing compound is nickel nitrate, nickel acetate, basic nickel carbonate, One or more of nickel carbonate and nickel chloride;
  • the phosphorus-containing compound is one or more of phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, sodium dihydrogen phosphate, and disodium hydrogen phosphate.
  • the molybdenum-containing compound is preferably molybdenum oxide
  • the nickel-containing compound is preferably basic nickel carbonate
  • the phosphorus-containing compound is preferably phosphoric acid.
  • the alumina carrier is prepared by using a macroporous pseudo-boehmite as a raw material, adding a squeezing agent, an auxiliary agent and a peptizing agent, and kneading, rolling, forming, drying, and roasting steps. .
  • the method of forming, drying and calcining the carrier is a conventional method.
  • the carrier is formed into various easy-to-operate shaped carriers, such as spheres, honeycombs, nests, tablets or strips (clover, butterfly, cylindrical, etc.), depending on various requirements.
  • the molding can be carried out in a conventional manner, and the molding method is preferably extrusion molding.
  • the conditions for drying and calcining the carrier are conventional, for example, the drying temperature is 70 ° C to 200 ° C, preferably 100 ° C to 150 ° C, the drying time is 0.5 h to 20 h, preferably 1 h to 6 h; and the calcination temperature is 300 ° C.
  • the temperature is 600 ° C, preferably 450 ° C to 550 ° C, and the calcination time is 0.5 h to 20 h, preferably 1 h to 6 h.
  • the extrusion aid is a phthalocyanine powder, a polycarboxylic acid squeezing agent or a phthalocyanine powder and a polycarboxylic acid composite squeezing agent, preferably a phthalocyanine powder and a polycarboxylic acid composite squeezing agent, the polycarboxylate
  • the acid is preferably one or more of citric acid, tartaric acid, and oxalic acid.
  • the auxiliary agent is one or more of phosphorus, fluorine, boron, zirconium, and silicon compound, and the auxiliary agent is introduced in an amount of 5.5% or less based on the total mass of the shaped carrier. Preferably, it is 0.5% to 4%; the auxiliary agent can be introduced by directly adding the raw material powder or mixing with the peptizing agent solution, and then adding the raw material powder and kneading.
  • the peptizer is an inorganic acid and/or an organic acid, and the inorganic acid is nitric acid or hydrochloric acid; the organic acid is one or more of formic acid, acetic acid, citric acid, trichloroacetic acid or malonic acid.
  • the peptizing agent is preferably nitric acid; the peptizing agent is introduced in an amount of 0.5% to 10%, preferably 1% to 5%, based on the total mass of the shaped support.
  • the impregnation process is performed by equal volume co-impregnation;
  • the drying temperature is 70 ° C to 200 ° C, preferably 100 ° C to 160 ° C, and the drying time is 0.5 h to 20 h, preferably 1 h to 6 h;
  • the calcination temperature is The temperature is from 300 ° C to 600 ° C, preferably from 400 ° C to 500 ° C, and the calcination time is from 0.5 h to 20 h, preferably from 1 h to 6 h.
  • the impregnation solution is prepared as follows: 1.1) adding a molybdenum-containing compound, a nickel-containing compound, and a phosphorus-containing compound to the water, and uniformly mixing; 1.2) heating in two steps, and heating the temperature to a temperature of 35 in the first step. ⁇ 60 ° C, and constant temperature reaction 0 ⁇ 1.5h; the second step continues to raise the temperature to 90 ⁇ 110 ° C, and constant temperature reflux 0 ⁇ 3h, so that the solute added in step 1) is completely dissolved, to obtain a clear green transparent solution; After one step of constant temperature or after the second step of constant temperature, carbonate is added to adjust the pH of the impregnation solution to 2-6.
  • step 1.2 the first step is heated to a temperature of 40 to 50 ° C, and the reaction is carried out at a constant temperature for 0.5 to 1 h; the second step is continued to raise the temperature to a temperature of 90 to 100 ° C, and is refluxed at a constant temperature for 1 to 2 hours.
  • the invention has the beneficial effects that the method adjusts the pH of the immersion liquid by introducing carbonate in the preparation reaction of the immersion liquid or after the reaction, so that the pH of the immersion liquid is high and adjustable, the content of the active metal is high, and the stability is good.
  • the preparation of the hydrotreating catalyst by the impregnation liquid has different degrees of specific surface area and pore volume, and is favorable for the uniform distribution of the active metal on the surface of the carrier, and the interaction between the active metal and the carrier is uniform, so that the catalyst is hydrogenated. Both desulfurization and hydrodenitrogenation performance have been greatly improved.
  • This embodiment describes the preparation of the carrier. Weighed 275 g of large-hole pseudo-boehmite (Yantai Henghui Chemical Co., Ltd., specific surface 350 m 2 /g, pore volume 0.92 ml/g, dry basis 72.8%), and added citric acid (Hubei 798 Chemical) 6 g.
  • This comparative example describes a preparation method of a conventional Mo-Ni-P impregnation solution without carbonate.
  • 9.3 g of phosphoric acid (mass concentration: 85.0%) and 150 ml of water were mixed and added to a three-necked flask, and 105.1 g of molybdenum trioxide (industrial grade) and basic nickel carbonate (44.0 wt% by weight of Ni) were added while stirring, and the temperature was raised to 40 to 50 ° C, the reaction was 0.5 h, the temperature was raised to 90-100 ° C, the reaction was stopped for 1 h, the heating was stopped, and after cooling to room temperature, the obtained solution was filtered to a volume of 250 ml to obtain a dark green clear transparent solution A.
  • the pH of the solution was measured to be 2.63.
  • the concentration of each substance in the solution (metal concentration in terms of oxide) was: MoO 3 was 42 g/ml, NiO was 7 g/ml, and P was 1 g/100 ml.
  • This example describes the method of adjusting the pH of the impregnation solution to about 4-6 by adding ammonium carbonate to the solution A prepared in Comparative Example 1.
  • 50 ml of solution A was placed in a beaker, and under constant stirring, ammonium carbonate (40.0% by weight based on NH 3 ) was slowly added to control the rate of addition.
  • the pH value of the solution was measured in time by a pH meter, and when the pH reached the target value, the addition of ammonium carbonate was stopped, and stirring was continued until the solution was uniformly stable.
  • This embodiment describes a method of adding a carbonate to a Mo-Ni-P impregnation solution to a pH of about 4 to 6 in the reaction.
  • 9.3 g of phosphoric acid (mass concentration: 85.0%) and 150 ml of water were mixed and added to a three-necked flask, and 105.1 g of molybdenum trioxide (industrial grade) and basic nickel carbonate (44.0 wt% by weight of Ni) were added while stirring, and the temperature was raised to 40 ⁇ 50°C, reaction 0.5h, slowly add a certain amount of ammonium carbonate (40.0% by weight based on NH 3 ), the amount of ammonium carbonate is adjusted according to the desired pH, and the temperature is raised to 90-100 ° C, the reaction is 1 h, heating is stopped, cooling After the reaction to room temperature, the resulting solution was filtered to a volume of 250 ml to give a dark green clear clear solution.
  • This example describes the preparation of a catalyst by impregnation with solutions B to G adjusted to a higher pH by ammonium carbonate.
  • the carrier Z 1 prepared in Example 1 was subjected to an equal volume impregnation with Solution B, and after drying, the mixture was dried at 110 ° C for 2 h and calcined at 460 ° C for 3 h to obtain a catalyst C 1 .
  • Catalyst C was prepared with the same conditions 1 were impregnated with a solution of C, D, E, F, G Preparation of catalyst C 2, C 3, C 4 , C 5, C 6.
  • This comparative example describes the preparation of a catalyst using an impregnation solution A which is not pH adjusted with ammonium carbonate.
  • the carrier Z 1 prepared in Example 1 was subjected to an equal volume impregnation with Solution A. After the completion of the impregnation, the mixture was dried at 110 ° C for 2 h and calcined at 460 ° C for 3 h to obtain a catalyst DC 1 .
  • This test example is a catalyst activity evaluation test.
  • the catalyst activity evaluation test was carried out on a small 30 ml apparatus, and the catalyst was pre-vulcanized before the activity evaluation.
  • the catalyst evaluation conditions were a total reaction pressure of 8.0 MPa, a volume space velocity of 1.0 h -1 , a hydrogen oil ratio of 1000:1, and a reaction temperature of 380 °C.
  • the properties of the raw material oil for the activity evaluation test are shown in Table 3, and the results of the activity evaluation are shown in Table 4.
  • the present invention improves the specific surface area and pore volume of the catalyst by preparing a catalyst by a specific method with a higher pH and adjustable pH, high active metal content, and good stability impregnation solution. Both hydrodesulfurization and hydrodenitrogenation performance have been greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种浸渍法制备加氢处理催化剂的方法,包括如下步骤:1)配制浸渍溶液,溶液中含有:含钼化合物以MoO 3计为10~80g/100ml,含镍化合物以NiO计为1~15g/100ml,含磷化合物以P元素计为0.5~5g/100ml,碳酸盐浓度为0~20g/100ml,溶液pH为2~6;2)制备氧化铝载体;3)用步骤1)所得浸渍溶液浸渍步骤2)所得氧化铝载体,然后干燥、焙烧得到最终加氢处理催化剂。该方法制备的加氢处理催化剂,比表面积与孔容都有不同程度的提高,且有利于活性金属在载体表面分布均匀,同时活性金属与载体之间相互作用力均匀,使该催化剂加氢脱硫与加氢脱氮性能都有较大提升。

Description

浸渍法制备加氢处理催化剂的方法 技术领域
本发明涉及一种加氢处理催化剂,特别是指一种浸渍法制备加氢处理催化剂的方法。
背景技术
随着原油质量逐年变重变差,环保法规日趋严格,市场对清洁油品的需求量不断增长,使得生产清洁燃料的加氢技术获得越来越广泛得应用。馏分油加氢处理是指高温高压下,原料油和氢气在催化剂表面上发生加氢脱硫、加氢脱氮、加氢脱氧、加氢脱金属以及不饱和烃加氢饱和等催化反应。
目前,工业上所用的加氢处理催化剂,通常是以无机氧化物(如氧化铝、二氧化硅、氧化铝-二氧化硅等)为载体,按一定方式负载一些加氢活性金属组分(一般为ⅥB族金属和Ⅷ族金属,如Mo、W和Ni、Co等)。常见的负载活性金属组分的方法有浸渍法、混捏法等。考虑到高加氢活性以及对活性金属的充分利用,使用浸渍法制备加氢催化剂较为广泛。
用浸渍法制备加氢催化剂时,浸渍溶液的性质至关重要。特别是浸渍溶液pH值对催化剂表面上活性金属(如Mo)的结构、分散度及其与载体(如Al 2O 3)的相互作用有很大影响。根据pH值的不同,目前常用的加氢处理催化剂浸渍溶液有两种类型:
第一类为ⅥB族、Ⅷ族元素的碱性溶液,例如同时含有钼和钴(镍)的氨水溶液,此浸渍溶液为碱性,如果要一次浸渍制成催化剂,需要配成浓度很高的钼-钴(镍)-氨溶液,这种溶液不稳定,给浸渍操作带来困难,很难用这种浸渍溶液一次性负载制备高金属含量催化剂。
第二类为ⅥB族、Ⅷ族元素的酸性溶液,例如Mo-Ni-P浸渍溶液,制备时将磷酸与钼盐及镍盐以一定比例混合,加热回流,最终制得Mo-Ni-P溶液。加氢处理催化剂大多以γ-Al 2O 3为载体,其等电点为7~9,而Mo-Ni-P浸渍液的pH一般在2以下,过低的pH值不仅会使载体比表面积在浸渍过程中产生损失从而使催化剂比表面积有所降低;还会引起活性组分与载体相互作用过强,使活性金属分散性降低,导致加氢处理催化剂的活性降低。
针对Mo-Ni-P浸渍液pH偏低的问题,行业中有在酸性浸渍液中添加碱性含氮化合物(例如氨水溶液),使其pH值在2~6之间变化。这样虽然可以使浸渍溶液pH提高,但在调整溶液pH时加入大量的含氮化合物,使浸渍溶液中活性金属含量大大降低。因此,利用该方法制备浸渍溶液并制备高负载量加氢催化剂时,对于浸渍溶液初始活性金属含量要求过高,不易实现。
发明内容
本发明的目的在于提供一种催化剂比表面积和孔容较大、加氢活性较高的浸渍法制备加氢处理催化剂的方法。
为实现上述目的,本发明所提供的浸渍法制备加氢处理催化剂的方法,包括如下步骤:
1)配制浸渍溶液,溶液中含有:含钼化合物以MoO 3计为10~80g/100ml,含镍化合物以NiO计为1~15g/100ml,含磷化合物以P元素计为0.5~5g/100ml,碳酸盐浓度为0.7~3.2g/100ml,溶液pH为2~6;
2)制备氧化铝载体;
3)采用步骤1)所得浸渍溶液浸渍步骤2)所得氧化铝载体,然后干燥、焙烧得到最终加氢处理催化剂。浸渍可以是等体积浸渍,也可以是过量浸渍,可以是分步浸渍,也可是共浸渍。优选为等体积共浸渍。
优选地,步骤1)中,所述碳酸盐为碱金属的碳酸正盐或酸式盐,如Na 2CO 3、NaHCO 3;或者铵的碳酸正盐或酸式盐,如(NH 4) 2CO 3、NH 4HCO 3,优选为(NH 4) 2CO 3
优选地,步骤1)中,所述含钼化合物为氧化钼、钼酸铵、仲钼酸铵中的一种或几种;所述含镍化合物为硝酸镍、醋酸镍、碱式碳酸镍、碳酸镍、氯化镍中的一种或几种;所述含磷化合物为磷酸、磷酸二氢铵、磷酸氢二铵、磷酸二氢钠及磷酸氢二钠中的一种及几种。所述含钼化合物优选为氧化钼,所述含镍化合物优选为碱式碳酸镍,所述含磷化合物优选为磷酸。
优选地,步骤2)中,所述氧化铝载体以大孔拟薄水铝石为原料,加入助挤剂、助剂与胶溶剂,经混捏、碾压、成型、干燥、焙烧步骤后制得。载体的成型、干燥和焙烧的方法为常规方法。载体成型,视不同要求可制成各种易于操作的成型载体,例如球形、蜂窝状、鸟巢状、片剂或条形(三叶草、蝶形、圆柱形等)。成型可按常规方法进行, 成型方式优选为挤出成型。载体干燥和焙烧的条件均是常规的,例如,干燥温度为70℃~200℃,优选为100℃~150℃,干燥时间为0.5h~20h,优选为1h~6h;焙烧温度为300℃~600℃,优选为450℃~550℃,焙烧时间为0.5h~20h,优选为1h~6h。
优选地,所述助挤剂为田菁粉、多元羧酸助挤剂或者田菁粉与多元羧酸复合助挤剂,优选为田菁粉与多元羧酸复合助挤剂,所述多元羧酸优选为柠檬酸、酒石酸、草酸中一种或几种。
优选地,所述助剂为磷、氟、硼、锆、硅各元素的化合物中的一种或几种,所述助剂的引入量以氧化物计为成型载体总质量的5.5%以下,优选为0.5%~4%;助剂的引入方式可为直接加入与原料粉混合或者与胶溶剂溶液混合均匀后再加入原料粉中混捏。
优选地,所述胶溶剂为无机酸和/或有机酸,所述无机酸为硝酸或盐酸;所述有机酸为甲酸、乙酸、柠檬酸、三氯乙酸或丙二酸中一种或几种;所述胶溶剂优选为硝酸;所述胶溶剂的引入量为成型载体总质量的0.5%~10%,优选为1%~5%。
优选地,步骤3)中,浸渍过程采用等体积共浸渍;干燥温度为70℃~200℃,优选为100℃~160℃,干燥时间为0.5h~20h,优选为1h~6h;焙烧温度为300℃~600℃,优选为400℃~500℃,焙烧时间为0.5h~20h,优选为1h~6h。
优选地,步骤1)中,浸渍溶液按如下方式配制:1.1)向水中加入含钼化合物、含镍化合物、含磷化合物,混合均匀;1.2)采用两步加热升温,第一步升温至温度35~60℃,并恒温反应0~1.5h;第二步继续升温至温度90~110℃,并恒温回流0~3h,使步骤1)中加入的溶质全部溶解,得墨绿澄清透明溶液;在第一步恒温后或第二步恒温后加入碳酸盐,调节浸渍溶液的pH至2~6。
优选地,步骤1.2)中,第一步升温至温度40~50℃,并恒温反应0.5~1h;第二步继续升温至温度90~100℃,并恒温回流1~2h。
本发明的有益效果是:该方法通过在浸渍液配制反应中或者反应后引入碳酸盐,调节浸渍液pH,使该浸渍液pH较高且可调、活性金属含量高、稳定性好,用此浸渍液制备加氢处理催化剂,催化剂比表面积与孔容都有不同程度的提高,且有利于活性金属在载体表面分布均匀,同时活性金属与载体之间相互作用力均匀,使该催化剂加氢脱硫与加氢脱氮性能都有较大提升。
具体实施方式
下面通过具体实施例对本发明作进一步的详细说明。以下除特别说明外,涉及的百分含量为重量百分含量,干基测定方式为550℃下焙烧4h。
实施例1
本实施例介绍载体的制备方式。称取大孔拟薄水铝石(烟台恒辉化工有限公司,比表面350m 2/g,孔容0.92ml/g,干基72.8%)275g,加入柠檬酸(湖北七八九化工)6g,田菁粉(武汉陌兴生物科技有限公司)4g,加入8.80g HNO 3(65~68wt%)、7.2g H 3BO 3(99.5wt%)和220ml H 2O混合均匀溶液,碾压20min,用两叶最大间距1.6mm三叶草孔板挤条成型,120℃干燥4h,500℃焙烧4h。焙烧后载体记为Z 1
对比例1
本对比例介绍不加碳酸盐常规Mo-Ni-P浸渍溶液制备方法。取9.3g磷酸(质量浓度85.0%)与150ml水混合加入三口烧瓶,在搅拌中加入三氧化钼(工业级)105.1g和碱式碳酸镍(以Ni计,44.0重量%)29.4g,升温至40~50℃,反应0.5h,升温至90~100℃,反应1h,停止加热,冷却至室温后对所得溶液过滤,定容至250ml,即得墨绿色澄清透明溶液A。测溶液pH为2.63。溶液中各物质浓度(金属浓度以氧化物计)为:MoO 3为42g/ml,NiO为7g/ml,P为1g/100ml。
实施例2
本实施例介绍用对比例1中所制备溶液A加入碳酸铵调节浸渍溶液pH至4~6左右方法。取50ml溶液A放入烧杯,在不断搅拌条件下,缓慢加入碳酸铵(以NH 3计,40.0重量%),控制加入速度。通过pH计及时测量溶液pH值,当pH达到目标值时停止加入碳酸铵,继续搅拌至溶液均匀稳定。在本实施例中,共制备三份溶液,分别调整pH值到4.10、4.99、6.04,所加碳酸铵量为0.38g、0.66g、1.1g,所得浸渍溶液分别为B、C、D。溶液中各物质浓度(金属浓度以氧化物计)都为:MoO 3为42g/ml,NiO为7g/ml,P为1g/100ml。
实施例3
本实施例介绍在反应中加入碳酸盐制备Mo-Ni-P浸渍溶液pH值至4~6左右方法。取9.3g磷酸(质量浓度85.0%)与150ml水混合加入三口烧瓶,在搅拌中加入三氧化钼(工业级)105.1g和碱式碳酸镍(以Ni计,44.0重量%)29.4g,升温至40~50℃,反应0.5h,缓慢加入一定量碳酸铵(以NH 3计,40.0重量%),碳酸铵量根据所需pH 进行调整,升温至90~100℃,反应1h,停止加热,冷却至室温后对所得溶液过滤,定容至250ml,即得墨绿色澄清透明溶液。在本实施例中,共制备三份溶液,分别调整pH值到4.07、5.10、6.02,所加碳酸铵量为3.0g、5.1g、8.0g,所得浸渍溶液分别为E、F、G。溶液中各物质浓度(金属浓度以氧化物计)都为:MoO 3为42g/ml,NiO为7g/ml,P为1g/100ml。
试验例1
本试验例列出浸渍溶液A~G主要性质,具体见表1。
表1浸渍溶液A~G主要性质
Figure PCTCN2018078546-appb-000001
实施例4
本实施例介绍用通过碳酸铵调节至较高pH值的溶液B~G浸渍制备催化剂。
取实施例1中所制备载体Z 1,用溶液B进行等体积浸渍,浸渍完成后110℃干燥2h,460℃焙烧3h,制得催化剂C 1
与催化剂C 1制备条件相同,分别用浸渍溶液C、D、E、F、G制备催化剂C 2、C 3、C 4、C 5、C 6
对比例2
本对比例介绍用未经碳酸铵调节pH的浸渍溶液A制备催化剂。
取实施例1中所制备载体Z 1,用溶液A进行等体积浸渍,浸渍完成后110℃干燥 2h,460℃焙烧3h,制得催化剂DC 1
试验例2
本试验例列出上述制备催化剂主要性质,具体见表2。
表2制备催化剂主要性质
编号 C 1 C 2 C 3 C 4 C 5 C 6 DC 1
MoO 3,% 23.31 23.65 23.88 23.28 23.60 23.82 23.11
NiO,% 3.88 3.94 3.99 3.87 3.95 4.01 3.81
P,% 1.01 1.01 1.05 1.00 1.02 1.02 1.00
B 2O 3,% 2.89 2.89 2.89 2.89 2.89 2.89 2.89
比表面积/m 2·g -1 188 195 203 185 190 199 177
孔容/ml·g -1 0.38 0.39 0.41 0.37 0.37 0.40 0.35
平均孔径/nm 7.1 7.1 7.2 7.1 7.2 7.2 7.1
试验例3
本试验例为催化剂活性评价试验。催化剂活性评价试验在30ml小型装置上进行,活性评价前需要对催化剂进行预硫化。催化剂评价条件为在反应总压8.0MPa,体积空速1.0h -1,氢油比1000:1,反应温度380℃。活性评价试验用原料油性质见表3,活性评价结果见表4。
表3原料油性质
原料油 伊朗VGO
密度(20℃),g·cm -3 0.9168
馏程,℃  
IBP 336
EBP 542
S,% 1.59
N,% 1681
表4活性评价结果
催化剂 C 1 C 2 C 3 C 4 C 5 C 6 DC 1
相对脱硫活性,% 130 137 145 128 133 140 100
相对脱氮活性,% 127 136 140 125 133 136 100
由上表可知,本发明通过用特定方法所制备的pH较高且可调、活性金属含量高、稳定性好浸渍溶液来制备催化剂,使催化剂比表面积和孔容都有所提高,对于该催化剂的加氢脱硫与加氢脱氮性能都有较大的提升。

Claims (10)

  1. 一种浸渍法制备加氢处理催化剂的方法,其特征在于:包括如下步骤:
    1)配制浸渍溶液,溶液中含有:含钼化合物以MoO 3计为10~80g/100ml,含镍化合物以NiO计为1~15g/100ml,含磷化合物以P元素计为0.5~5g/100ml,碳酸盐浓度为0.7~3.2g/100ml,溶液pH为2~6;
    2)制备氧化铝载体;
    3)采用步骤1)所得浸渍溶液浸渍步骤2)所得氧化铝载体,然后干燥、焙烧得到最终加氢处理催化剂。
  2. 根据权利要求1所述的浸渍法制备加氢处理催化剂的方法,其特征在于:步骤1)中,所述碳酸盐为碱金属的碳酸正盐或酸式盐,或者铵的碳酸正盐或酸式盐。
  3. 根据权利要求1所述的浸渍法制备加氢处理催化剂的方法,其特征在于:步骤1)中,所述含钼化合物为氧化钼、钼酸铵、仲钼酸铵中的一种或几种;所述含镍化合物为硝酸镍、醋酸镍、碱式碳酸镍、碳酸镍、氯化镍中的一种或几种;所述含磷化合物为磷酸、磷酸二氢铵、磷酸氢二铵、磷酸二氢钠及磷酸氢二钠中的一种及几种。
  4. 根据权利要求1所述的浸渍法制备加氢处理催化剂的方法,其特征在于:步骤2)中,所述氧化铝载体以大孔拟薄水铝石为原料,加入助挤剂、助剂与胶溶剂,经混捏、碾压、成型、干燥、焙烧步骤后制得。
  5. 根据权利要求4所述的浸渍法制备加氢处理催化剂的方法,其特征在于:所述助挤剂为田菁粉、多元羧酸助挤剂或田菁粉与多元羧酸复合助挤剂。
  6. 根据权利要求4所述的浸渍法制备加氢处理催化剂的方法,其特征在于:所述助剂为磷、氟、硼、锆、硅各元素的化合物中的一种或几种,所述助剂的引入量以氧化物计为成型载体总质量的5.5%以下。
  7. 根据权利要求4所述的浸渍法制备加氢处理催化剂的方法,其特征在于:所述胶溶剂为无机酸和/或有机酸,所述无机酸为硝酸或盐酸;所述有机酸为甲酸、乙酸、柠檬酸、三氯乙酸或丙二酸中一种或几种;所述胶溶剂的引入量为成型载体总质量的0.5%~10%。
  8. 根据权利要求1所述的浸渍法制备加氢处理催化剂的方法,其特征在于:步骤 3)中,浸渍过程采用等体积共浸渍;干燥温度为70℃~200℃,干燥时间为0.5h~20h;焙烧温度为300℃~600℃,焙烧时间为0.5h~20h。
  9. 根据权利要求1所述的浸渍法制备加氢处理催化剂的方法,其特征在于:步骤1)中,浸渍溶液按如下方式配制:
    1.1)向水中加入含钼化合物、含镍化合物、含磷化合物,混合均匀;
    1.2)采用两步加热升温,第一步升温至温度35~60℃,并恒温反应0~1.5h;第二步继续升温至温度90~110℃,并恒温回流0~3h,使步骤1)中加入的溶质全部溶解,得墨绿澄清透明溶液;在第一步恒温后或第二步恒温后加入碳酸盐,调节浸渍溶液的pH至2~6。
  10. 根据权利要求9所述的浸渍法制备加氢处理催化剂的方法,其特征在于:步骤1.2)中,第一步升温至温度40~50℃,并恒温反应0.5~1h;第二步继续升温至温度90~100℃,并恒温回流1~2h。
PCT/CN2018/078546 2017-03-09 2018-03-09 浸渍法制备加氢处理催化剂的方法 WO2018161952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710137221.7A CN106807419B (zh) 2017-03-09 2017-03-09 浸渍法制备加氢处理催化剂的方法
CN201710137221.7 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018161952A1 true WO2018161952A1 (zh) 2018-09-13

Family

ID=59116093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078546 WO2018161952A1 (zh) 2017-03-09 2018-03-09 浸渍法制备加氢处理催化剂的方法

Country Status (2)

Country Link
CN (1) CN106807419B (zh)
WO (1) WO2018161952A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112717923A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种蒽醌法生产双氧水催化剂及其制备方法和应用
WO2021127765A1 (pt) * 2019-12-27 2021-07-01 Petróleo Brasileiro S.A. - Petrobras Método de obtenção de um suporte para catalisadores de hidrorrefino, suporte de catalisadores de hidroreffino, catalisadores de hidrorrefino, processo de obtenção de catalisadores de hidrorrefino e uso do suporte em catalisadores de hidrorrefino
CN115121236A (zh) * 2022-05-11 2022-09-30 常州瑞华化工工程技术股份有限公司 含镁介孔γ-氧化铝脱水催化剂的制备方法及其用途
CN115920910A (zh) * 2021-08-20 2023-04-07 中国石油化工股份有限公司 一种金属负载型催化剂制备方法
CN115945199A (zh) * 2021-10-09 2023-04-11 中国石油化工股份有限公司 一种金属沉积失活催化剂的活化方法及含碳加氢催化剂
CN115957827A (zh) * 2021-10-08 2023-04-14 中国石油化工股份有限公司 一种沸腾床渣油加氢催化剂的活化再生方法
CN115957770A (zh) * 2021-10-08 2023-04-14 中国石油化工股份有限公司 一种沸腾床渣油加氢催化剂的制备方法
CN116020498A (zh) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 加氢催化剂的制备方法、由该方法制备的催化剂及应用
CN116020497A (zh) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 复合载体、加氢催化剂及其制备方法和应用
CN116020501A (zh) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和应用
CN116037218A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种硼改性氧化铝载体、加氢脱残炭催化剂及其制备方法
CN116037137A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种加氢脱金属催化剂及其制备方法
CN116037139A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 加氢脱金属催化剂及其制备方法
CN116060059A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢脱硫催化剂及其制备方法和应用
CN116060057A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 渣油加氢脱金属催化剂及其制备方法
CN116060140A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种废旧加氢催化剂回收再利用的方法
CN116060055A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种渣油加氢脱金属催化剂及其制备方法
CN116393161A (zh) * 2023-03-01 2023-07-07 中海油天津化工研究设计院有限公司 一种液化石油气脱硫醇与降二烯烃催化剂的制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106807419B (zh) * 2017-03-09 2019-07-02 武汉凯迪工程技术研究总院有限公司 浸渍法制备加氢处理催化剂的方法
CN106807418B (zh) * 2017-03-09 2019-07-02 武汉凯迪工程技术研究总院有限公司 加氢处理催化剂浸渍溶液及其制备方法
CN106994362A (zh) * 2017-04-10 2017-08-01 武汉凯迪工程技术研究总院有限公司 高氮原料油加氢精制催化剂及其制备方法和其载体的制备方法
CN109926076B (zh) * 2017-12-15 2021-08-31 中国石油化工股份有限公司 一种煤液化油加氢催化剂及其制备方法
CN109590015A (zh) * 2018-12-26 2019-04-09 榆林煤化工产业促进中心 加氢催化剂及其制备方法、煤焦油加氢工艺
CN112439435A (zh) * 2019-08-28 2021-03-05 中国石油化工股份有限公司 苯氧化制顺酐的催化剂、制备方法及应用
CN114555229B (zh) * 2019-10-18 2024-04-26 国际壳牌研究有限公司 具有有机添加剂以及使用螯合剂的覆盖金属的加氢处理催化剂以及制备和使用此类催化剂的方法
CN112717963B (zh) * 2019-10-28 2022-03-04 中国石油化工股份有限公司 一种加氢预处理催化剂及其制备方法和应用
CN112717910B (zh) * 2019-10-28 2023-01-10 中国石油化工股份有限公司 一种氧化铝载体及其制备方法和应用
CN111437823A (zh) * 2020-04-01 2020-07-24 深圳泰利能源有限公司 一种动植物油加氢催化剂组合物及其应用
CN114471643B (zh) * 2020-10-27 2023-09-01 中国石油化工股份有限公司 一种制氢的催化剂及其制备方法和应用
CN113908865A (zh) * 2021-10-25 2022-01-11 中国海洋石油集团有限公司 一种选择性加氢脱芳催化剂及其制备方法与应用
CN114073974A (zh) * 2021-12-08 2022-02-22 东营市东滨石油技术服务有限公司 助剂改性的钴钼加氢脱硫制备方法、催化剂、催化剂的应用及使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392985A (en) * 1981-07-27 1983-07-12 Union Oil Company Of California Hydrocarbon conversion catalyst and method of preparation
CN1172692A (zh) * 1996-08-02 1998-02-11 中国石油化工总公司 一种催化剂浸渍液及其配制方法
CN103120940A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 加氢精制催化剂的制备方法
CN105013497A (zh) * 2014-04-24 2015-11-04 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN106807419A (zh) * 2017-03-09 2017-06-09 武汉凯迪工程技术研究总院有限公司 浸渍法制备加氢处理催化剂的方法
CN106807418A (zh) * 2017-03-09 2017-06-09 武汉凯迪工程技术研究总院有限公司 加氢处理催化剂浸渍溶液及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211460C (zh) * 2002-10-10 2005-07-20 中国石油化工股份有限公司 一种加氢催化剂的制备方法
JP5060044B2 (ja) * 2005-12-08 2012-10-31 日本ケッチェン株式会社 炭化水素油の水素化処理触媒およびその製造方法、並びに炭化水素油の水素化処理方法
CN101491764B (zh) * 2008-01-23 2011-09-21 中国石油化工股份有限公司 一种渣油加氢催化剂及其制备方法和应用
CN104646048B (zh) * 2013-11-20 2017-06-20 中国石油化工股份有限公司 一种加氢催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392985A (en) * 1981-07-27 1983-07-12 Union Oil Company Of California Hydrocarbon conversion catalyst and method of preparation
CN1172692A (zh) * 1996-08-02 1998-02-11 中国石油化工总公司 一种催化剂浸渍液及其配制方法
CN103120940A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 加氢精制催化剂的制备方法
CN105013497A (zh) * 2014-04-24 2015-11-04 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN106807419A (zh) * 2017-03-09 2017-06-09 武汉凯迪工程技术研究总院有限公司 浸渍法制备加氢处理催化剂的方法
CN106807418A (zh) * 2017-03-09 2017-06-09 武汉凯迪工程技术研究总院有限公司 加氢处理催化剂浸渍溶液及其制备方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112717923A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 一种蒽醌法生产双氧水催化剂及其制备方法和应用
CN112717923B (zh) * 2019-10-28 2024-05-31 中国石油化工股份有限公司 一种蒽醌法生产双氧水催化剂及其制备方法和应用
WO2021127765A1 (pt) * 2019-12-27 2021-07-01 Petróleo Brasileiro S.A. - Petrobras Método de obtenção de um suporte para catalisadores de hidrorrefino, suporte de catalisadores de hidroreffino, catalisadores de hidrorrefino, processo de obtenção de catalisadores de hidrorrefino e uso do suporte em catalisadores de hidrorrefino
CN115515709A (zh) * 2019-12-27 2022-12-23 巴西石油公司 获得用于加氢精制催化剂的载体的方法、用于加氢精制催化剂的载体、加氢精制催化剂、获得加氢精制催化剂的方法和载体在加氢精制催化剂中的用途
CN115920910A (zh) * 2021-08-20 2023-04-07 中国石油化工股份有限公司 一种金属负载型催化剂制备方法
CN115957827A (zh) * 2021-10-08 2023-04-14 中国石油化工股份有限公司 一种沸腾床渣油加氢催化剂的活化再生方法
CN115957770A (zh) * 2021-10-08 2023-04-14 中国石油化工股份有限公司 一种沸腾床渣油加氢催化剂的制备方法
CN115945199A (zh) * 2021-10-09 2023-04-11 中国石油化工股份有限公司 一种金属沉积失活催化剂的活化方法及含碳加氢催化剂
CN116020501A (zh) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和应用
CN116020497A (zh) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 复合载体、加氢催化剂及其制备方法和应用
CN116020498A (zh) * 2021-10-27 2023-04-28 中国石油化工股份有限公司 加氢催化剂的制备方法、由该方法制备的催化剂及应用
CN116037218A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种硼改性氧化铝载体、加氢脱残炭催化剂及其制备方法
CN116037137A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种加氢脱金属催化剂及其制备方法
CN116037139A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 加氢脱金属催化剂及其制备方法
CN116037139B (zh) * 2021-10-28 2024-05-31 中国石油化工股份有限公司 加氢脱金属催化剂及其制备方法
CN116060059A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢脱硫催化剂及其制备方法和应用
CN116060057A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 渣油加氢脱金属催化剂及其制备方法
CN116060140A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种废旧加氢催化剂回收再利用的方法
CN116060055A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种渣油加氢脱金属催化剂及其制备方法
CN115121236A (zh) * 2022-05-11 2022-09-30 常州瑞华化工工程技术股份有限公司 含镁介孔γ-氧化铝脱水催化剂的制备方法及其用途
CN116393161A (zh) * 2023-03-01 2023-07-07 中海油天津化工研究设计院有限公司 一种液化石油气脱硫醇与降二烯烃催化剂的制备方法

Also Published As

Publication number Publication date
CN106807419B (zh) 2019-07-02
CN106807419A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
WO2018161952A1 (zh) 浸渍法制备加氢处理催化剂的方法
WO2018019203A1 (zh) 高负载量硼改性加氢精制催化剂及其制备方法
WO2018161949A1 (zh) 加氢处理催化剂浸渍溶液及其制备方法
CN102441437B (zh) 大孔氧化铝载体及加氢脱金属催化剂的制备方法
CN107961795B (zh) 一种加氢脱硫催化剂及其制备方法和硫化态加氢脱硫催化剂的制备方法
CN103100397B (zh) 一种加氢处理催化剂的制备方法
CN102451722B (zh) 一种蛋壳型加氢催化剂的制备方法
CN101491768B (zh) 一种含硅和锆加氢催化剂的制备方法
CN110201691B (zh) 一种渣油加氢脱金属脱硫催化剂及其制备方法
CN108745392A (zh) 一种加氢脱金属催化剂及其制备方法
CN104549539B (zh) 一种渣油加氢脱金属催化剂氧化铝载体的制备方法
CN106140182A (zh) 一种重油加氢处理催化剂的制备方法
CN102861589A (zh) 一种高活性加氢脱金属催化剂及其制备方法
CN103785396A (zh) 一种重油加氢脱金属催化剂的制备方法
CN103041870B (zh) 一种氧化铝载体及其制备方法和应用
CN102861588B (zh) 一种渣油加氢脱金属催化剂及其制备方法
CN112717965B (zh) 一种加氢预处理催化剂及其制备方法和应用
CN107961771B (zh) 一种氧化铝载体及其制备方法以及加氢精制催化剂及其制备方法
CN105983415B (zh) 加氢处理催化剂的制备方法
CN103785433B (zh) 一种加氢处理催化剂及其制备方法
CN109718766B (zh) 加氢精制催化剂及其制备方法和应用以及馏分油的加氢精制方法
CN103785432B (zh) 一种馏分油加氢催化剂及其制备方法
CN109772400B (zh) 一种加氢处理催化剂及其制备方法和应用
CN112717949B (zh) 一种加氢精制催化剂及其制备方法和应用
CN115608371B (zh) 一种蛋壳型渣油加氢催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763861

Country of ref document: EP

Kind code of ref document: A1