WO2018145578A1 - 一种黄芪甲苷的合成方法 - Google Patents

一种黄芪甲苷的合成方法 Download PDF

Info

Publication number
WO2018145578A1
WO2018145578A1 PCT/CN2018/074149 CN2018074149W WO2018145578A1 WO 2018145578 A1 WO2018145578 A1 WO 2018145578A1 CN 2018074149 W CN2018074149 W CN 2018074149W WO 2018145578 A1 WO2018145578 A1 WO 2018145578A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
solvent
group
astragaloside
protecting
Prior art date
Application number
PCT/CN2018/074149
Other languages
English (en)
French (fr)
Inventor
孙建松
廖进喜
刘婷
Original Assignee
江西师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西师范大学 filed Critical 江西师范大学
Publication of WO2018145578A1 publication Critical patent/WO2018145578A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J53/00Steroids in which the cyclopenta(a)hydrophenanthrene skeleton has been modified by condensation with a carbocyclic rings or by formation of an additional ring by means of a direct link between two ring carbon atoms, including carboxyclic rings fused to the cyclopenta(a)hydrophenanthrene skeleton are included in this class
    • C07J53/002Carbocyclic rings fused
    • C07J53/0043 membered carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of chemical synthesis, and more particularly relates to a preparation method of astragaloside IV.
  • Astragalus is the first of the tonics and belongs to the genus Astragalus.
  • Astragalus saponins a large number of triterpenoid saponins, flavonoids and polysaccharides have been isolated from Astragalus.
  • biochemical experiments showed that the medicinal effects of Astragalus membranaceus were mainly expressed by Astragalus saponins.
  • xanthine saponins have shown promising medicinal prospects in immunomodulation, hypoglycemic, insulin resistance, anti-tumor, cardiovascular system regulation, antiviral and antioxidant activities, and in many jaundices.
  • the activity of astragaloside IV and isoflavone is the best.
  • Astragalus saponins Although the wide application prospect of Astragalus saponins has prompted people to deepen their research, the current Astragalus saponins used for activity testing are mostly isolated and extracted from Astragalus membranaceus. Because of the variety of saponins contained in Astragalus membranaceus and similar structure, this provides separation and purification. It brings great difficulties. There are also some astragalosides, which are secondary saponins, which are very low in Astragalus. It is not easy to obtain sufficient amount for the activity test. This has become a bottleneck restricting the activity of Astragalus saponins. Report on the chemical synthesis of astragaloside.
  • Astragaloside IV is particularly low in Astragalus membranaceus, its structural formula is shown in Formula I, and its saponin part is cycloxanthine. It has 4 positions in 6-position, 6-position, 16-position and 25-position of cyclodextrose (Compound 1).
  • the inert OH, especially the hydroxyl group at position 25, has a low activity of the tertiary hydroxyl group, the glycosidation reaction is difficult, and the reactivity of the four inert OHs before each other is indistinguishable, and selective glycosidation of some of the hydroxyl groups is more difficult.
  • the technical problem to be solved by the present invention is to provide a highly efficient and highly selective chemical synthesis method of astragaloside IV, which provides sufficient raw materials for the research and application of astragaloside IV, and provides a reference for the synthesis of baicalin compounds. .
  • a method for synthesizing astragaloside IV comprising the following steps:
  • R 1 is selected from substituted or unsubstituted C 2 -C 6 alkanoyl
  • said R 2 is selected from substituted or unsubstituted C 2 -C 6 alkanoyl
  • said R 3 is selected from substituted or unsubstituted C 1 -C 9 Alkylsilyl
  • said R 4 or R 5 are each independently selected from a C 1 -C 6 aroyl group
  • said X is selected from a substituted or unsubstituted alkynyloxy group, preferably, said R 1 is a Lev
  • R 2 is Ac
  • the R 3 is selected from TBS, TES, TBDMS, TBDPS, DIPS, DPS or TIPDS
  • the R 4 or R 5 is Bz;
  • the method for protecting comprises the steps of: dissolving cycloxanthine 1, DMAP and levulinic acid in a first solvent at 0 ° C, adding DCC, slowly raising the reaction temperature to room temperature, stirring Until the TLC tracking shows that the cycloxanthine reaction is complete;
  • the first solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF, toluene, benzene, dioxane, pyridine, One or more of tetrahydrofuran, triethylamine, ethyl acetate, acetone, methanol, ethanol, DMSO or diethyl ether, preferably dichloromethane; the molar ratio of the cycloxanthine, DMAP, levulinic acid and DCC is 1: 1.2:5:5 to 1:2:10:10, preferably 1:2:5:5 to 1:2:10
  • the method for protecting comprises the steps of: dissolving compound 2 and PPy in a second solvent below 0 ° C, adding acetic anhydride, DIPEA, slowly raising the reaction temperature to room temperature, and then heating to 100. ⁇ 120°C, preferably 105 ⁇ 110°C, stirring is continued until TLC tracking shows that compound 2 is completely reacted;
  • the second solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF
  • the second solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF
  • the second solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF
  • the method for removing the protecting group R 1 comprises the steps of: dissolving the compound 3 in a third solvent below 0 ° C, adding cerium acetate, slowly raising the reaction temperature to room temperature, and stirring until TLC The trace shows that the compound 3 is completely reacted;
  • the third solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF, toluene, benzene, dioxane, pyridine, glacial acetic acid, One or more of tetrahydrofuran, triethylamine, ethyl acetate, acetone, methanol, ethanol, DMSO or diethyl ether, preferably a mixed solvent of pyridine and acetic acid, the volume ratio of the pyridine to acetic acid is 1:1 to 5 :1, preferably from 1.5:1 to 3:1; the molar ratio of the compound 3 to cerium acetate is
  • the method for protecting comprises the steps of: dissolving the compound 4 in a fourth solvent at 0 ° C, adding a halosilane and an imidazole, slowly raising the reaction temperature to room temperature, and stirring until TLC tracking shows Compound 4 is completely reacted;
  • the fourth solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF, toluene, benzene, dioxane, pyridine, glacial acetic acid, tetrahydrofuran, One or more of triethylamine, ethyl acetate, acetone, methanol, ethanol, DMSO or diethyl ether, preferably DMF; the molar ratio of the compound 4, halosilane and imidazole is 1:2:3 ⁇ 1 5:10, preferably 1:2:3 to 1:4:6; the concentration of the compound 4 in the fourth solvent is 0.1 to 1
  • the glycosidation reaction comprises the steps of: dissolving the compound 5 and the glycosyl donor compound 9 in a fifth solvent under the protection of an inert gas, adding a desiccant, and stirring at room temperature for 0.5 to 2 The catalyst was further added in an hour and continued to stir at room temperature until the TLC trace showed that the compound 5 was completely reacted;
  • the fifth solvent was selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF, toluene, One or more of benzene, dioxane, pyridine, glacial acetic acid, tetrahydrofuran, triethylamine, ethyl acetate, acetone, methanol, ethanol, DMSO or diethyl ether, preferably dichloromethane;
  • the catalyst is selected from a monovalent gold complex, preferably PPh 3 AuNTf 2 or PPh 3 Au
  • the reaction of removing the protecting group R 3 comprises the steps of: dissolving the compound 6 in the sixth solvent, adding camphorsulfonic acid at room temperature, stirring until TLC tracking shows that the compound 6 is completely reacted;
  • the solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF, toluene, benzene, dioxane, pyridine, glacial acetic acid, tetrahydrofuran, triethylamine, ethyl acetate, One or more of acetone, methanol, ethanol, DMSO or diethyl ether, preferably methanol; the molar ratio of the compound 6 to camphorsulfonic acid is from 1:1 to 1:10, preferably from 1:1 to 1:4.
  • the concentration of the compound 6 in the sixth solvent is 0.001 to 1 mol/L, preferably 0.001 to 0.004 mol/L.
  • the glycosidation reaction comprises the steps of dissolving the compound 7 and the glycosyl donor compound 10 in a seventh solvent, adding a desiccant, stirring at room temperature for 0.5 to 2 hours, and then adding a catalyst to continue.
  • the seventh solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF, toluene, benzene, dioxane
  • the catalyst is selected from the complexation of monovalent gold a substance, preferably PPh 3 AuNTf 2 or PPh 3 AuOTf
  • the desiccant is selected from the group consisting of molecular sieves, preferably Molecular sieve or pickled More preferably, the molecular sieve is 4A molecular sieve; the molar ratio of the compound 7, the glycosyl donor compound 10 to the catalyst is 1:1:0.1 to
  • the reaction of removing the protecting group comprises the steps of dissolving the compound 8 in the eighth solvent, adding a base, and stirring at room temperature until TLC tracking shows that the compound 8 is completely reacted;
  • the base is selected from the group consisting of methanol Sodium, sodium hydroxide, potassium carbonate, potassium hydroxide, preferably sodium methoxide;
  • the eighth solvent is selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, DMF, toluene, benzene
  • dioxane pyridine, glacial acetic acid, tetrahydrofuran, triethylamine, ethyl acetate, acetone, methanol, ethanol, DMSO or diethyl ether, preferably methanol.
  • any of steps (1) to (8) is carried out under inert gas protection conditions selected from nitrogen, argon or helium.
  • step (1) when the molar ratio of xanthanol, levulinic acid and DCC is 1:2.5:2.5, a mixture of compounds partially or completely protected by the 3-position of the cycloxanthine and the hydroxyl group at the 6-position is obtained.
  • the TLC tracking shows that the reaction of the compound 2 is completed in about 2 hours, and the reaction rate, the reaction yield and the reaction selectivity are greatly improved compared with the prior art.
  • the present invention efficiently and highly stereoselectively prepares astragaloside IV, fills the gap of the prior art, and is a scutellaria saponin, which will greatly advance the activity mechanism of the saponin compound and the progress of drug development.
  • PPy represents 4-pyrrolidinopyridine (English name: 4-(1-pyrrolidino)-pyridine)
  • DMAP represents 4-dimethylaminopyridine
  • DCC represents dicyclohexylcarbodiimide
  • DIPEA represents N. N-diisopropylethylamine; the purity of the product obtained in each of the following steps is relatively high, and no impurity peak is observed in the 400 M nuclear magnetic resonance spectrum.
  • compound 8 was dissolved in dry methanol, then sodium methoxide was added, and stirred at room temperature until TLC tracking showed that the reaction of the starting material was complete.
  • the pH was neutralized with acidic resin to neutral neutral acidity, suction filtration and concentration under reduced pressure.
  • Comparative Example 1 In the step (5) or (7), when the glycosidation reaction was carried out with the trichloroacetimidate ester donor instead of the alkyne ester donor, the reaction system was very mixed and the product was small, indicating that the alkyne ester donor was synthesized in the scutellaria Glycosides are more advantageous.
  • Comparative Example 3 In the step (2), when the concentration of the compound 2 was 0.001 mol/L, the other reaction parameters were the same, and only the 16 hydroxyl group of the compound 2 was protected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Steroid Compounds (AREA)

Abstract

本发明公开了一种黄芪甲苷的合成方法,包括以下步骤:将环黄芪醇的3位和6位羟基以保护基R 1保护;16位和25位羟基以保护基R 2保护后脱除3位和6位保护基R 1,得到化合物4;将化合物4的3位羟基以保护基R 3保护,得到化合物5;将化合物5进有糖苷化反应,后脱除3位保护基R 3,继续进行发生糖苷化反应,得到化合物8;所有保护基脱除,得到黄芪甲苷;本发明高效高立体选择性的制备了黄芪甲苷,填补现有技术的空白,将大大推进黄瓦皂苷类化合物的活性机理研究及其药物开发的进程。

Description

一种黄芪甲苷的合成方法 技术领域
本发明属于化学合成领域,更具体的涉及一种黄芪甲苷的制备方法。
背景技术
黄芪为补药之首,属于豆科黄芪属植物。近年来随着现代分离和鉴定技术的发展,从黄芪中分离出了大量三萜皂苷、黄酮类化合物以及多糖类成分。后期的生物生化实验表明黄芪的药用功效主要通过黄芪皂苷表现出来。近期研究表明,黄芪皂苷在免疫调节,降糖,改善胰岛素抵抗活性,抗肿瘤,对心血管***调节以及抗病毒,抗氧化活性等方面都表现出了极为可喜的药用前景,并且在众多黄芪皂苷中,以黄芪甲苷和异黄芪甲苷的活性最好。
尽管黄芪皂苷广泛的应用前景促使人们对其研究不断深入,但目前用于活性测试的黄芪皂苷多为从黄芪中分离提取所得,由于黄芪中所含皂苷种类繁多,且结构类似,这给分离提纯带来很大困难。还有一些黄芪皂苷为次生皂苷,在黄芪中的含量很低,要得到足够量以供活性测试之用更是不易,这已成为制约黄芪皂苷活性研究深入的瓶颈,到目前为止几乎没有关于黄芪皂苷的化学合成研究报道。
黄芪甲苷在黄芪中的含量特别少,其结构式如式I所示,其皂苷部分为环黄芪醇,由于环黄芪醇(化合物1)的3位,6位,16位及25位含有4个惰性OH,特别是25位羟基为叔羟基活性低,糖苷化反应困难,并且4个惰性OH相互之前的反应活性难以区分,选择性的糖苷化其中部分羟基更为困难。
Figure PCTCN2018074149-appb-000001
环黄芪醇的羟基保护反应进行困难且产物复杂多变,有文献报道,在过量乙酰化试剂作用下,60℃,长达50天的反应时间下,仅能得到56%收率的全乙酰化的环黄 芪醇。缩短反应时间或降低反应温度导致反应产物十分复杂,为4个羟基中随机的1或2个羟基被保护的环黄芪醇。
文献中常用的对大位阻、惰性的羟基保护的方法在环黄芪醇保护中也不起作用,例如路易斯酸催化的乙酰化反应得不到选择性保护的环黄芪醇。
由此可见黄芪甲苷合成困难,国内外至今未见成功的报道。
参考文献:a)Mamedova,R.P.;Agzamova,M.A.;Isaev,M.I.Chem.Nat.Compd.2001,37,533-536.b)Isaev,I.M.;Iskenderov,D.A.;Isaev,M.I.Chem.Nat.Compd.2009,45,381-384.c)Isaev,I.M.;Iskenderov,D.A.;Isaev,M.I.Chem.Nat.Compd.2010,46,407-411.d)Procopiou,P.A.;Baugh,S.P.D.;Flack,S.S.;Inglis,G.G.J.Org.Chem.1998,63,2342-2347.
发明内容
发明目的:本发明要解决的技术问题是:提供一种高效高选择性的化学合成黄芪甲苷的方法,为黄芪甲苷的研究及应用提供足够的原料,为黄芪苷类化合物的合成提供参考。
技术方案:为解决上述技术问题,本发明采取的技术方案是:
一种黄芪甲苷的合成方法,包括以下步骤:
(1)将环黄芪醇1的3位和6位羟基以保护基R1保护,得到化合物2;
(2)将化合物2的16位和25位羟基以保护基R 2保护,得到化合物3;
(3)将化合物3的3位和6位保护基R 1脱除,得到化合物4;
(4)将化合物4的3位羟基以保护基R 3保护,得到化合物5;
(5)将化合物5与糖基给体化合物9发生糖苷化反应,得到化合物6;
(6)将化合物6的3位保护基R 3脱除,得到化合物7;
(7)将化合物7与糖基给体化合物10发生糖苷化反应,得到化合物8;
(8)将化合物8的所有保护基脱除,得到黄芪甲苷;
Figure PCTCN2018074149-appb-000002
其中,所述R 1选自取代或非取代的C2-C6烷酰基;所述R 2选自取代或非取代的C2-C6烷酰基;所述R 3选自取代或非取代的C1-C9烷硅基;所述R 4或R 5各自独立的选自C1-C6芳酰基;所述X选自取代或非取代的炔苯甲酰氧基,优选的,所述R 1为Lev;所述R 2为Ac;所述R 3选自TBS、TES、TBDMS、TBDPS、DIPS、DPS或TIPDS;所述R 4或R 5为Bz;所述X为
Figure PCTCN2018074149-appb-000003
步骤(1)中,所述保护的方法包括以下步骤:0℃下,将环黄芪醇1、DMAP和乙酰丙酸溶于第一溶剂中,再加入DCC,将反应温度缓慢升至室温,搅拌直到TLC跟踪显示环黄芪醇反应完全;所述第一溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,优选为二氯甲烷;所述环黄芪醇、DMAP、乙酰 丙酸和DCC的摩尔比为1∶1.2∶5∶5~1∶2∶10∶10,优选为1∶2∶5∶5~1∶2∶10∶10;所述环黄芪醇在第一溶剂中的浓度为0.05~1mol/L,优选为0.05~0.068mol/L。
步骤(2)中,所述保护的方法包括以下步骤:0℃以下,将化合物2和PPy溶于第二溶剂中,再加入乙酸酐,DIPEA,将反应温度缓慢升至室温后再加热到100~120℃,优选为105~110℃,继续搅拌直到TLC跟踪显示化合物2反应完全;所述第二溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,优选为甲苯;所述化合物2、PPy、乙酸酐和DIPEA的摩尔比为1∶1.5∶8∶12~1∶2∶15∶20,优选为1∶2∶10∶15~1∶2∶15∶20;所述化合物2在第二溶剂中的浓度为0.1~1mol/L,优选的为,0.108~0.5mol/L。
步骤(3)中,所述保护基R 1脱除的方法包括以下步骤:0℃以下,将化合物3溶于第三溶剂中,再加入醋酸肼,将反应温度缓慢升至室温后搅拌直到TLC跟踪显示化合物3反应完全;所述第三溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,优选为吡啶和醋酸的混合溶剂,所述吡啶和醋酸的体积比为1∶1~5∶1,优选为1.5∶1~3∶1;所述化合物3和醋酸肼的摩尔比1∶15~1∶40,优选为1∶20~1∶27;所述化合物3在第三溶剂中的浓度为0.05~1.5mol/L,优选为0.092~0.2mol/L。
步骤(4)中,所述保护的方法包括以下步骤:0℃下,将化合物4溶于第四溶剂中,再加入卤代硅烷和咪唑,将反应温度缓慢升至室温后搅拌直到TLC跟踪显示化合物4反应完全;所述第四溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,优选为DMF;所述化合物4、卤代硅烷和咪唑的摩尔比为1∶2∶3~1∶5∶10,优选为1∶2∶3~1∶4∶6;所述化合物4在第四溶剂中的浓度为0.1~1mol/L,优选为0.45~0.5mol/L,所述卤代硅烷选自TBSCl、TESCl、TBDMSCl、TBDPSCl、DIPSCl、DPSCl或TIPDSCl。
步骤(5)中,所述糖苷化反应包括以下步骤:在惰性气体保护下,将化合物5和糖基给体化合物9溶于第五溶剂中,并加入干燥剂,在室温下搅拌0.5~2小时再加入催化剂,继续在室温下搅拌直到TLC跟踪显示化合物5反应完全;所述第五溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、 四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,优选为二氯甲烷;所述催化剂选自一价金的络合物,优选为PPh 3AuNTf 2或PPh 3AuOTf;所述干燥剂选自分子筛,优选的为
Figure PCTCN2018074149-appb-000004
分子筛或酸洗的
Figure PCTCN2018074149-appb-000005
分子筛,更优选的为4A分子筛;化合物5、糖基给体化合物9和所述催化剂的摩尔比为1∶1∶0.1~1∶5∶0.8,优选为1∶1∶0.1~1∶2∶0.5,所述化合物5在第五溶剂中的浓度为0.001~1mol/L,优选为0.006~0.05mol/L。
步骤(6)中,所述保护基R 3脱除的反应包括以下步骤:化合物6溶于第六溶剂中,在室温下加入樟脑磺酸,搅拌直到TLC跟踪显示化合物6反应完全;所述第六溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,优选为甲醇;所述化合物6与樟脑磺酸的摩尔比为1∶1~1∶10,优选为1∶1~1∶4,所述化合物6在第六溶剂中的浓度为0.001~1mol/L,优选为0.001~0.004mol/L。
步骤(7)中,所述糖苷化反应包括以下步骤:将化合物7和糖基给体化合物10溶于第七溶剂中,并加入干燥剂,在室温下搅拌0.5~2小时再加入催化剂,继续在室温下搅拌直到TLC跟踪显示化合物7反应完全;所述第七溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,优选为二氯甲烷;所述催化剂选自一价金的络合物,优选为PPh 3AuNTf 2或PPh 3AuOTf;所述干燥剂选自分子筛,优选的为
Figure PCTCN2018074149-appb-000006
分子筛或酸洗的
Figure PCTCN2018074149-appb-000007
分子筛,更优选的为4A分子筛;化合物7、糖基给体化合物10和所述催化剂的摩尔比为1∶1∶0.1~1∶5∶0.8,优选为1∶1∶0.1~1∶2.5∶1;所述化合物7在第七溶剂中的浓度为0.001~1mol/L,优选为0.001~0.003mol/L。
步骤(8)中,所述保护基脱除的反应包括以下步骤:将化合物8溶于第八溶剂中,再加入碱,室温下搅拌直到TLC跟踪显示化合物8反应完全;所述碱选自甲醇钠、氢氧化钠、碳酸钾、氢氧化钾,优选为甲醇钠;所述第八溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,优选为甲醇。
优选的,步骤(1)~(8)中的任一步骤在惰性气体保护条件下进行,所述惰性气体选自氮气、氩气或氦气。
步骤(1)中,当黄芪醇、乙酰丙酸和DCC的摩尔比为1∶2.5∶2.5时,得到的是环黄芪醇3位和6位羟基部分或全部保护的化合物的混合物。
步骤(2)中,TLC跟踪显示2小时左右化合物2反应完全,相比现有技术,反应速度、反应收率及反应选择性都大大提高,
有益效果:本发明高效高立体选择性的制备了黄芪甲苷,填补现有技术的空白,为黄芪甲苷,将大大推进黄芪皂苷类化合物的活性机理研究及其药物开发的进程。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
本发明中PPy表示4-吡咯烷基吡啶(英文名:4-(1-pyrrolidino)-pyridine)),DMAP表示4-二甲氨基吡啶,DCC表示二环己基碳二亚胺,DIPEA表示N,N-二异丙基乙胺;以下每步反应得到的产物纯度较高,在400兆核磁共振氢谱中见不到杂质峰。
Bz保护的糖11和12按照本领域常规方法合成:
化合物9-1的合成方法如下:
Figure PCTCN2018074149-appb-000008
在氮气保护,将异头位羟基裸露的全Bz葡萄糖(100mg,0.17mmol)溶于干燥的二氯甲烷(4mL)中,再向体系中加入邻炔基苯甲酸(37.4mg,0.2mmol),DMAP(28.1mg,0.23mmol),EDCI(43.9mg,0.23mmol),DIPEA(74μL),室温下搅拌过夜直到TLC跟踪显示原料反应完全,将反应体系用二氯甲烷萃取,并依次用1mol/l HCl、饱和碳酸氢钠、饱和NaCl洗,无水硫酸钠干燥,抽滤,减压浓缩粗产品,然后柱层析得到白色固体化合物9-1(121mg,93%): 1H NMR(400MHz,CDCl 31H NMR(400MHz,CDCl 3)δ8.07(d,J=7.5Hz,2H),7.92-7.87(m,6H),7.44-7.28(m,17H),6.94(d,J=3.3Hz,1H),6.38(dd,J=9.6,9.9Hz,1H),5.94(dd,J=9.9,10.2Hz,1H),5.76(dd,J=3.3,9.9Hz,1H),4.80-4.66(m,2H),4.54(dd,J=3.3,6.0Hz,1H),1.56(m,1H),0.84(d,J=6.6Hz,4H).
化合物10-1的合成方法如下:
Figure PCTCN2018074149-appb-000009
类似于合成化合物9-1,从异头位羟基裸露的全Bz葡萄糖得到白色固体化合物10-1(612mg,89%):[α] D 25=0.02(c 1.0,CHCl 3); 1H NMR(400MHz,CDCl 3)δ8.04-7.98(m,6H),7.90(dd,J=1.2,8.0Hz,1H),7.58-7.51(m,3H),7.49-7.42(m,2H),7.38-7.30(m,6H),7.21(td,J=1.6,7.6Hz,1H),6.42(d,J=7.6Hz,1H),5.81(t,J=5.2Hz,1H),5.58(dd,J=4.0,5.2Hz,1H),5.36-5.32(m,1H),4.63(dd,J=3.6,12.8Hz,1H),4.06(dd,J=4.8,12.4Hz,1H),1.54-1.47(m,1H),0.90-0.84(m,4H); 13C NMR(100MHz,CDCl 3)δ164.9,164.4,164.3,163.3,133.7,132.8,129.9,129.7,129.4,129.3,128.5,128.3,127.8(2C),126.3,124.7,99.7,91.4,73.6,67.8,67.6,67.2,60.9,8.2,-0.0;HRMS(ESI-TOF)m/z:[M+H] + calcd for C 38H 31O 9 631.1968;found 631.1966.
实例1、黄芪甲苷的合成
Figure PCTCN2018074149-appb-000010
(1)3、6位羟基保护的环黄芪醇衍生物2的合成
Figure PCTCN2018074149-appb-000011
在氮气保护,0摄氏度条件下,将环黄芪醇(300mg,0.61mmol),DMAP(160mg,1.22mmol)和乙酰丙酸(350mg,3.06mmol)溶于干燥的二氯甲烷(9mL)中,再向体系中加入 DCC(630mg,3.06mmol),体系缓慢升至室温,搅拌直到TLC跟踪显示原料反应完全,将反应体系用乙酸乙酯萃取,并依次用1mol/l HCl、饱和碳酸氢钠、饱和NaCl洗,无水硫酸钠干燥,抽滤,减压浓缩粗产品,然后柱层析得到白色固体化合物2(413mg,98.3%):[α] D 25=39.6(c=1,CHCl 3); 1H NMR(400MHz,CDCl 3)δ4.78(td,J=4.8,9.2Hz,1H),4.71(dd,J=7.6,14.4Hz,1H),4.60(dd,J=4.4,10.8Hz,1H),3.77(t,J=7.2Hz,1H),3.52-3.45(m,1H),2.77-2.70(m,4H),2.59(t,J=6.4Hz,2H),2.51(t,J=6.8Hz,2H),2.34(d,J=7.6Hz,1H),2.19(s,3H),2.18(s,3H),2.01-1.88(m,6H),1.30(s,3H),1.24(s,3H),1.22(s,3H),1.15(s,3H),0.99(s,3H),0.94(s,3H),0.87(s,3H),0.60(d,J=4.8Hz,1H),0.34(d,J=4.4Hz,1H); 13C NMR(100MHz,CDCl 3)δ206.6,206.4,172.4,172.0,87.0,81.4,79.9,73.3,71.7,70.7,57.3,49.7,49.2,45.9,45.8,45.1,44.7,40.2,38.1,37.8,34.4,33.9,33.0,32.7,31.4,29.8,28.8,28.4,28.2,27.8,27.7,26.5(2C),25.8,25.6(2C),24.9,20.8,20.7,19.7,16.3;HRMS(ESI)calcd for C 40H 62O 9Na[M+Na] + 709.4286,found 709.4288.
(2)全羟基保护的环黄芪醇衍生物3的合成
Figure PCTCN2018074149-appb-000012
在氮气保护,0摄氏度条件下,化合物2,PPy溶于干燥的甲苯中,再向体系中加入乙酸酐,DIPEA,体系缓慢升至室温然后在加热到105摄氏度,搅拌直到TLC跟踪显示原料反应完全,将反应体系用乙酸乙酯萃取,并依次用1mol/l HCl、饱和碳酸氢钠、饱和NaCl洗,无水硫酸钠干燥,抽滤,减压浓缩粗产品,然后柱层析得到白色固体化合物3(收率:84%):[α] D 25=63.2(c=1,CHCl 3); 1H NMR(400MHz,CDCl 3)δ5.35-5.30(m,1H),4.74(td,J=4.4,9.2Hz,1H),4.60(dd,J=4.8,11.2Hz,1H),4.02(t,J=7.6Hz,1H),2.77-2.69(m,4H),2.59(t,J=6.4Hz,2H),2.50(t,J=6.8Hz,2H),2.43(d,J=8.0Hz,1H),2.19(s,3H),2.18(s,3H),2.01(s,3H),1.96(s,3H),1.43(s,3H),1.41(s,3H),1.323(s,3H),1.316(s,3H),0.98(s,3H),0.96(s,3H),0.88(s,3H),0.60(d,J=4.8Hz,1H),0.37(d,J=4.8Hz,1H); 13C NMR(100MHz,CDCl 3)δ206.5,206.3,172.3,172.1,170.4,170.2,85.5,83.0,81.2,79.8,75.8,70.7,57.4,49.8,46.4,46.2,45.4,45.1,40.2,38.0,37.8,37.3,32.8,32.2,31.3,29.8,29.3,28.7,28.4,28.3,26.9,26.6,26.5,26.1,26.0,22.8,22.5,21.6,21.5,20.7,20.3,20.0,16.2;HRMS(ESI)calcd for C 44H 66O 11Na [M+Na] + 793.4497, found 793.4496.
(3)16、25位羟基保护的环黄芪醇衍生物4的合成
Figure PCTCN2018074149-appb-000013
在氮气保护,0摄氏度条件下,将化合物3(530mg,0.69mmol)溶于干燥的吡啶和醋酸中(7.5mL,v/v=1.5∶1),再向体系中加入醋酸肼(0.9mL,18.6mmol),体系缓慢升至室温然后搅拌直到TLC跟踪显示原料反应完全,将反应体系用乙酸乙酯萃取,并依次用1mol/l HCl、饱和碳酸氢钠、饱和NaCl洗,无水硫酸钠干燥,抽滤,减压浓缩粗产品,然后柱层析得到白色固体化合物4(收率:99%):[α] D 25=59.0(c=1,CHCl 3); 1H NMR(400MHz,CDCl 3)δ5.36-5.30(m,1H),4.02(t,J=7.2Hz,1H),3.56(td,J=3.2,9.2Hz,1H),3.33(dd,J=4.8,11.2Hz,1H),2.43(d,J=8.0Hz,1H),2.26-2.13(m,2H),2.02(s,3H),1.97(s,3H),1.43(s,3H),1.42(s,3H),1.34(s,3H),1.33(s,3H),1.25(s,3H),0.98(s,3H),0.96(s,3H),0.52(d,J=4.0Hz,1H),0.37(d,J=4.4Hz,1H); 13C NMR(100MHz,CDCl 3)δ170.5,170.3,85.6,83.1,81.3,78.3,75.9,68.8,57.6,53.6,46.6,46.4,46.3,41.5,37.6,37.3,32.3,32.0,30.8,30.2,29.4,28.0,27.0,26.2,26.0,22.8,22.5,21.6,20.8,20.6,20.2,15.2;HRMS(ESI)calcd for C 34H 54O 7Na[M+Na] + 597.3762,found 597.3764.
(4)位羟基裸露的环黄芪醇衍生物5的合成
Figure PCTCN2018074149-appb-000014
在氮气保护,0摄氏度条件下,将化合物4溶于干燥的DMF,再向体系中加入TBSCl,咪唑,体系缓慢升至室温搅拌直到TLC跟踪显示原料反应完全,将反应体系用乙酸乙酯萃取,并依次用1mol/l HCl、饱和碳酸氢钠、饱和NaCl洗,无水硫酸钠干燥,抽滤,减压浓缩粗产品,然后柱层析得到白色固体化合物5(收率:87.1%):[α] D 25=81.8(c=1,CHCl 3); 1H NMR(400MHz,CDCl 3)δ5.36-5.31(m,1H),4.02(t,J=7.2Hz,1H), 3.55(td,J=4.0,9.2Hz,1H),3.28(dd,J=4.8,10.0Hz,1H),2.44(dd,J=7.6Hz,1H),2.58-2.15(m,2H),2.02(s,3H),1.97(s,3H),1.43(s,3H),1.42(s,3H),1.33(s,6H),1.15(s,3H),0.98(s,3H),0.92(s,3H),0.89(s,9H),0.50(d,J=4.4Hz,1H),0.33(d,J=4.4Hz,1H); 13C NMR(100MHz,CDCl 3)δ170.5,170.2,85.6,83.1,81.4,78.8,75.9,68.6,57.6,53.7,46.5,46.3,46.2,45.6,42.0,37.4,37.2,32.3,31.9,30.8,30.4,29.7,29.2,28.4,26.9,26.1,26.0,25.9,22.8,22.5,21.6,20.7,20.5,20.1,18.1,15.7,-3.8,-4.9;HRMS(ESI)calcd for C 40H 69O 7Si[M+H] +689.4807,found 689.4808.
(5)6位羟基糖苷化产物6的合成
Figure PCTCN2018074149-appb-000015
在氮气保护下,将化合物5和葡萄糖炔酯给体溶于干燥的二氯甲烷中,并加入4A分子筛,在室温下搅拌半个小时再加入催化剂Ph 3PAuOTf,继续在室温下搅拌直到TLC跟踪显示原料反应完全,减压浓缩粗产品,然后柱层析得到白色固体化合物6(收率:79.6%):[α] D 25=72.6(c=1,CHCl 3); 1H NMR(400MHz,CDCl 3)δ8.00-7.95(m,4H),7.91(dd,J=1.2,8.4Hz,2H),7.85(dd,J=1.2,8.0Hz,2H),7.56-7.48(m,3H),7.44-7.33(m,7H),7.30-7.27(m,2H),5.92(t,J=9.6Hz,1H),5.58(t,J=10.0Hz,1H),5.50(dd,J=8.0,10.0Hz,1H),5.29-5.26(m,1H),5.20(d,J=8.0Hz,1H),4.74(td,J=4.0,9.2Hz,1H),4.60-4.56(m,2H),4.47(dd,J=6.8,12.0Hz,1H),4.16-4.11(m,1H),3.70(t,J=7.2Hz,1H),2.41(d,J=8.0Hz,1H),2.18(dd,J=8.0,14.0Hz,1H),2.05(s,3H),2.00(s,3H),1.97(s,3H),1.30(s,3H),1.22(s,3H),1.16(s,3H),1.12(s,3H),0.98(s,3H),0.97(s,3H),0.86(s,3H),0.60(d,J=4.8Hz,1H),0.38(d,J=4.8Hz,1H); 13C NMR(100MHz,CDCl 3)δ170.8,170.4,170.2,166.0,165.9,165.3,164.9,133.4,133.2,133.1,129.8(2C),129.7(2C),129.6,128.9(2C),128.4(2C),128.3,96.1,85.8,82.7,80.0,79.6,76.0,73.2,72.1,72.0,70.5,70.3,63.8,57.6,49.8,46.4,46.3,45.6,45.4,40.1,37.4,33.2,32.2,31.4,29.8,29.7,28.6,26.7,26.6(2C),25.9,23.2,22.2,21.8,21.5,21.2,20.6,20.4,20.1,16.3;HRMS(ESI)calcd for C 70H 82O 17Na[M+Na] + 1217.5444,found 1217.5447.
(6)3位羟基裸露的化合物7的合成
Figure PCTCN2018074149-appb-000016
在氮气保护下,将化合物6溶于干燥的甲醇中,在室温下加入樟脑磺酸,搅拌直到TLC跟踪显示原料反应完全,减压浓缩粗产品,然后柱层析得到白色固体化合物7(收率:83.5%):[α] D 25=21.5(c=1,CHCl 3); 1H NMR(400MHz,CDCl 3)δ7.57-7.46(m,4H),7.43-7.32(m,7H),7.28(m,1H),5.90(t,J=9.6Hz,1H),5.62(t,J=10.0Hz,1H),5.54(dd,J=8.0,9.6Hz,1H),5.36-5.31(m,1H),4.98(d,J=8.0Hz,1H),4.60(dd,J=2.8,12.0Hz,1H),4.50(dd,J=6.8,12.0Hz,1H),4.19-4.14(m,1H),3.99(t,J=7.2Hz,1H),3.56-3.51(m,1H),3.11(dd,J=4.4,10.4Hz,1H),2.38(d,J=8.0Hz,1H),2.26(dd,J=8.0,13.6Hz,1H),1.98(s,3H),1.97(s,3H),1.43(s,3H),1.41(s,3H),1.29(s,3H),1.26(s,3H),1.14(s,3H),0.92(s,3H),0.78(s,3H),0.76(s,3H),0.45(d,J=4.4Hz,1H),0.15(d,J=4.4Hz,1H); 13C NMR(100MHz,CDCl 3)δ170.5,170.0,165.8,165.2,165.0,133.4,133.1(2C),129.9,129.8,129.7(2C),129.4,128.9,128.4,128.2,101.3,85.6,83.2,81.7,78.8,78.0,75.5,73.8,72.5,72.4,70.0,63.8,57.5,50.7,46.5,46.1,44.5,44.0,41.2,38.8,32.8,32.4,31.3,29.8,29.7,28.3,27.4,26.7,26.9,26.7,26.0(2C),22.9,22.6,21.6,21.5,21.0,19.6,19.5,15.3;HRMS(ESI)calcd for C 68H 81O 16[M+H] +1153.5519,found 1153.5523.
(7)3,6位羟基糖苷化产物8的合成
Figure PCTCN2018074149-appb-000017
在氮气保护下,将化合物7和木糖炔酯给体溶于干燥的二氯甲烷中,并加入4A分子筛,在室温下搅拌半个小时再加入催化剂Ph 3PAuOTf,继续在室温下搅拌直到TLC跟踪显示原料反应完全,减压浓缩粗产品,然后柱层析得到白色固体化合物8(收率: 79.5%):[α] D 25=-4.1(c=1,CHCl 3); 1H NMR(400MHz,CDCl 3)δ8.00-7.90(m,12H),7.84(dd,J=1.2,8.0Hz,2H),7.67-7.63(m,1H),7.61(m,1H),7.56-7.51(m,4H),7.48-7.33(m,13H),7.30(m,2H),5.90(t,J=9.6Hz,1H),5.65(t,J=8.0Hz,1H),5.60(t,J=10.0Hz,1H),5.55(dd,J=8.0,10.0Hz,1H),5.40-5.34(m,1H),5.30(dd,J=6.4,8.0Hz,1H),5.25-5.20(m,1H),4.86(d,J=7.6Hz,1H),4.58(dd,J=3.2,12.0Hz,1H),4.49(dd,J=7.2,12.0Hz,1H),4.35(dd,J=4.8,11.6Hz,1H),4.20(d,J=6.4Hz,1H),4.16-4.11(m,1H),3.99(t,J=7.2Hz,1H),3.40(dd,J=8.0,11.6Hz,1H),3.01(dd,J=4.4,11.2Hz,1H),2.43(d,J=8.0Hz,1H),2.31(dd,J=8.0,13.6Hz,1H),1.98(s,3H),1.96(s,3H),1.43(s,3H),1.41(s,3H),1.30(s,3H),1.12(s,3H),0.98(s,3H),0.56(s,3H),0.55(s,3H),0.37(d,J=4.4Hz,1H),0.03(d,J=4.8Hz,1H); 13C NMR(100MHz,CDCl 3)δ170.5,170.0,165.9,165.8,165.6,165.5,165.2,164.9(2C),102.4,101.6,87.3,85.8,83.2,81.8,77.7,75.5,73.1,72.2,70.9,70.7,70.2,69.7,63.9,61.7,57.4,50.6,46.6,46.0,43.8,41.6,37.8,32.5,31.9,31.1,31.0,29.7(2C),29.4,28.7,27.1,26.9,26.7,26.0,23.9,22.9,22.7,22.6,21.6,21.5,21.0,19.0,18.9,15.6,14.1;HRMS(ESI)calcd for C 94H 104O 23N[M+NH 4] +1614.69937.found 1614.70085.
(8)黄芪甲苷的合成
Figure PCTCN2018074149-appb-000018
在氮气保护下,将化合物8溶于干燥的甲醇中,再加入甲醇钠,室温下搅拌直到TLC跟踪显示原料反应完全,先用酸性树脂中和PH至中性偏酸性,抽滤,减压浓缩粗产品,然后柱层析得到白色固体化合物黄芪甲苷(收率:75.6%):[α] D 25=16.3(c=0.4,CH 3OH); 1H NMR(400MHz,C 5D 5N)δ6.55(bs,1H),5.81(d,J=2.8Hz,1H),4.93(d,J=8.0Hz,1H),4.88(d,J=7.2Hz,1H),4.52(dd,J=2.8,11.6Hz,1H),4.39-4.31(m,2H),4.27-4.21(m,3H),4.19(t,J=8.8Hz,1H),4.06(m,2H),3.94-3.87(m,2H),3.83(td,J=3.6,8.4Hz,1H),3.74(t,J=10.4Hz,1H),3.56(dd,J=4.0,11.6Hz,1H),3.18(dd,J=11.2,20.8Hz,1H),2.55(d,J=7.6Hz,1H),2.41-2.27(m,4H),2.06(s,3H),1.60(s,3H),1.43(s,3H),1.39(s,3H),1.31(s,6H),0.95(s,3H),0.61(d,J=3.6Hz,1H),0.22(d,4.0Hz,1H); 13C NMR(100MHz,C 5D 5N)δ107.5,105.0,88.3,87.0,81.4,79.1,79.0,78.3,77.9, 75.4,73.2,71.6,71.0,66.8,62.9,58.0,52.3,46.0,45.5,44.8,42.4,34.7,34.4,33.2,32.0,30.0,28.8,28.6,28.4,28.0,26.9,26.2,26.0,20.9,19.6,16.4;HRMS(ESI)calcd for C 41H 69O 14[M+H] +785.46818,found 785.46748.
对比例1:步骤(5)或(7)中,用三氯乙酰亚胺酯给体代替炔酯给体进行糖苷化反应时反应体系很杂,产物少,说明炔酯给体在合成黄芪甲苷时更具优越性。
对比例2:步骤(4)中,所述化合物3、卤代硅烷和咪唑的摩尔比为1∶1.2∶2时,其他反应参数相同,反应收率为40%。
对比例3:步骤(2)中,所述化合物2的浓度为0.001mol/L时,其他反应参数相同,化合物2只有16羟基得到保护。

Claims (10)

  1. 一种黄芪甲苷的合成方法,其特征在于,包括以下步骤:
    (1)将环黄芪醇的3位和6位羟基以保护基R 1保护,得到化合物2;
    (2)将化合物2的16位和25位羟基以保护基R 2保护,得到化合物3;
    (3)将化合物3的3位和6位保护基R 1脱除,得到化合物4;
    (4)将化合物4的3位羟基以保护基R 3保护,得到化合物5;
    (5)将化合物5与糖基给体化合物9发生糖苷化反应,得到化合物6;
    (6)将化合物6的3位保护基R 3脱除,得到化合物7;
    (7)将化合物7与糖基给体化合物10发生糖苷化反应,得到化合物8;
    (8)将化合物8的所有保护基脱除,得到黄芪甲苷;
    Figure PCTCN2018074149-appb-100001
    其中,所述R 1为Lev;所述R 2为Ac;所述R 3选自TBS、TES、TBDMS、TBDPS、DIPS、DPS或TIPDS;所述R 4或R 5为Bz;X为
    Figure PCTCN2018074149-appb-100002
    步骤(1)中,所述保护的方法包括以下步骤:0℃以下,将环黄芪醇、DMAP和乙酰丙酸溶于第一溶剂中,再加入DCC,将反应温度缓慢升至室温,搅拌直到TLC跟踪显示环黄芪醇1反应完全;
    步骤(2)中,所述保护的方法包括以下步骤:0℃以下,将化合物2和PPy溶于 第二溶剂中,再加入乙酸酐,DIPEA,将反应温度缓慢升至室温后再加热到100~120℃,继续搅拌直到TLC跟踪显示化合物2反应完全,所述化合物2在第二溶剂中的浓度为0.1~1mol/L;
    步骤(3)中,所述保护基R 1脱除的方法包括以下步骤:0℃以下,将化合物3溶于第三溶剂中,再加入醋酸肼,将反应温度缓慢升至室温后搅拌直到TLC跟踪显示化合物3反应完全;
    步骤(4)中,所述保护的方法包括以下步骤:0℃下,将化合物4溶于第四溶剂中,再加入卤代硅烷和咪唑,将反应温度缓慢升至室温后搅拌直到TLC跟踪显示化合物4反应完全;
    步骤(5)中,所述糖苷化反应包括以下步骤:在惰性气体保护下,将化合物5和糖基给体化合物9溶于第五溶剂中,并加入干燥剂,在室温下搅拌0.5~2小时再加入催化剂,继续在室温下搅拌直到TLC跟踪显示化合物5反应完全;
    步骤(6)中,所述保护基R 3脱除的反应包括以下步骤:化合物6溶于第六溶剂中,在室温下加入樟脑磺酸,搅拌直到TLC跟踪显示化合物6反应完全;
    步骤(7)中,所述糖苷化反应包括以下步骤:将化合物7和糖基给体化合物10溶于第七溶剂中,并加入干燥剂,在室温下搅拌后再加入催化剂,继续在室温下搅拌直到TLC跟踪显示化合物7反应完全;
    步骤(8)中,所述保护基脱除的反应包括以下步骤:将化合物8溶于第八溶剂中,再加入碱,室温下搅拌直到TLC跟踪显示化合物8反应完全即可。
  2. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(1)中,所述第一溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种;所述环黄芪醇、DMAP、乙酰丙酸和DCC的摩尔比为1∶1.2∶5∶5~1∶2∶10∶10,所述环黄芪醇在第一溶剂中的浓度为0.05~1mol/L。
  3. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(2)中,所述第二溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种;所述化合物2、PPy、乙酸酐和DIPEA的摩尔比为1∶1.5∶8∶12~1∶2∶15∶20。
  4. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(3)中,所述第三溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、 吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种;所述化合物3和醋酸肼的摩尔比1∶15~1∶40;所述化合物3在第三溶剂中的浓度为0.05~1.5mol/L。
  5. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(4)中,所述第四溶剂选自二氯甲烷、二氯乙烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,所述化合物4、卤代硅烷和咪唑的摩尔比为1∶2~3~1∶5∶10;所述化合物4在第四溶剂中的浓度为0.1~1mol/L。
  6. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(5)中,所述第五溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种,化合物5、糖基给体化合物9和所述催化剂的摩尔比为1∶1∶0.1~1∶5∶0.8;所述化合物5在第五溶剂中的浓度为0.001~1mol/L;所述催化剂选自一价金的络合物;所述干燥剂选自分子筛。
  7. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(6)中,所述第六溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种;所述化合物6与樟脑磺酸的摩尔比为1∶1~1∶10,所述化合物6在第六溶剂中的浓度为0.001~1mol/L。
  8. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(7)中,所述加入干燥剂后在室温下搅拌的时间为0.5~2小时;所述第七溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种;所述化合物7、糖基给体化合物10和所述催化剂的摩尔比为1∶1∶0.1~1∶5∶0.8;所述化合物7在第七溶剂中的浓度为0.001~1mol/L;所述催化剂选自一价金的络合物;所述干燥剂选自分子筛。
  9. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(8)中,所述碱选自甲醇钠、氢氧化钠、碳酸钾、氢氧化钾;所述第八溶剂选自二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、DMF、甲苯、苯、二氧六环、吡啶、冰醋酸、四氢呋喃、三乙胺、乙酸乙酯、丙酮、甲醇、乙醇、DMSO或***中的一种或多种。
  10. 根据权利要求1所述黄芪甲苷的合成方法,其特征在于,步骤(1)~(8)中 的任一步骤在惰性气体保护条件下进行。
PCT/CN2018/074149 2017-02-07 2018-01-25 一种黄芪甲苷的合成方法 WO2018145578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710066875.5 2017-02-07
CN201710066875.5A CN106831927B (zh) 2017-02-07 2017-02-07 一种黄芪甲苷的合成方法

Publications (1)

Publication Number Publication Date
WO2018145578A1 true WO2018145578A1 (zh) 2018-08-16

Family

ID=59121537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074149 WO2018145578A1 (zh) 2017-02-07 2018-01-25 一种黄芪甲苷的合成方法

Country Status (2)

Country Link
CN (1) CN106831927B (zh)
WO (1) WO2018145578A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106831927B (zh) * 2017-02-07 2018-02-09 江西师范大学 一种黄芪甲苷的合成方法
CN107629107B (zh) * 2017-11-10 2020-06-09 广州市桐晖药业有限公司 一种醋酸乌利司他的合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000248A2 (en) * 2003-06-25 2005-01-06 Geron Corporation Compositions and methods for skin conditioning
WO2005000245A2 (en) * 2003-06-23 2005-01-06 Geron Corporation Compositions and methods for increasing telomerase activity
CN1793132A (zh) * 2006-01-12 2006-06-28 天津药物研究院 环黄芪醇类衍生物以及用途
CN101775056A (zh) * 2010-01-28 2010-07-14 东北林业大学 一种从黄芪中提取、分离和纯化黄芪甲苷的方法
CN104817610A (zh) * 2015-03-15 2015-08-05 北京化工大学 利用硫酸水解制备环黄芪醇的方法
CN106831927A (zh) * 2017-02-07 2017-06-13 江西师范大学 一种黄芪甲苷的合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000245A2 (en) * 2003-06-23 2005-01-06 Geron Corporation Compositions and methods for increasing telomerase activity
WO2005000248A2 (en) * 2003-06-25 2005-01-06 Geron Corporation Compositions and methods for skin conditioning
CN1793132A (zh) * 2006-01-12 2006-06-28 天津药物研究院 环黄芪醇类衍生物以及用途
CN101775056A (zh) * 2010-01-28 2010-07-14 东北林业大学 一种从黄芪中提取、分离和纯化黄芪甲苷的方法
CN104817610A (zh) * 2015-03-15 2015-08-05 北京化工大学 利用硫酸水解制备环黄芪醇的方法
CN106831927A (zh) * 2017-02-07 2017-06-13 江西师范大学 一种黄芪甲苷的合成方法

Also Published As

Publication number Publication date
CN106831927A (zh) 2017-06-13
CN106831927B (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN110776544B (zh) 一类2,3-不饱和半乳糖硫苷类化合物及其合成方法
CN113439086B (zh) 用于制备氟维司群3-硼酸的方法
Mishra et al. First noscapine glycoconjugates inspired by click chemistry
WO2018145578A1 (zh) 一种黄芪甲苷的合成方法
CN105263945A (zh) 一种皂苷的合成方法
CN103396464B (zh) 一种伊维菌素的制备方法
Fu et al. An efficient synthesis of methyl 2-cyano-3, 12-dioxoursol-1, 9-dien-28-oate (CDDU-methyl ester): Analogues, biological activities, and comparison with oleanolic acid derivatives
CN104693266A (zh) 一种皂苷的合成方法
CN110872317A (zh) 一种抗肿瘤药物分子(+)-Preussin中间体的制备方法
CN114409725B (zh) 一种具有抗肿瘤活性齐墩果酸a环衍生物及其制备方法
EP2588482B1 (en) Preparation of tesetaxel and related compounds and corresponding synthesis intermediate
CN109265424A (zh) 一种黄酮类衍生物及其制备方法和鉴定方法
CN107216361B (zh) 索利霉素的制备方法
EP0202111B1 (en) Antibacterial mycaminosyl tylonolide derivatives and their production
CN114380884A (zh) 一种具有抗肿瘤活性的齐墩果酸衍生物及其制备方法
CN106946968B (zh) 一种异黄芪甲苷的合成方法
CN114057710A (zh) 一种具有抗肿瘤活性的水飞蓟宾化学修饰物及其制备方法
CN108822171B (zh) 一类蒽醌并三氮唑抗生素核苷类似物、合成方法及其在制备抗肿瘤或抗病毒药物中的应用
CN108125962B (zh) 苯并[d]氮杂*基喹唑啉类化合物在制备治疗肺癌药物中的应用
CN114671891A (zh) 一种依维莫司乙基化杂质的制备方法
CN113372375A (zh) 一种坦西莫司中间体的制备方法
JP2004536075A (ja) O−アリルエリスロマイシン誘導体を機能化するためのアリール化方法
JP4267448B2 (ja) ソラナムグリコシドの合成方法
CN107216360B (zh) 一种制备索利霉素的方法
CN109651325B (zh) 一种萘并[1,2,3-de]苯并吡喃-2,7-二酮类化合物的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751483

Country of ref document: EP

Kind code of ref document: A1