WO2018120012A1 - 云台控制方法、装置及云台 - Google Patents

云台控制方法、装置及云台 Download PDF

Info

Publication number
WO2018120012A1
WO2018120012A1 PCT/CN2016/113475 CN2016113475W WO2018120012A1 WO 2018120012 A1 WO2018120012 A1 WO 2018120012A1 CN 2016113475 W CN2016113475 W CN 2016113475W WO 2018120012 A1 WO2018120012 A1 WO 2018120012A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
tilt
threshold
preset
torque
Prior art date
Application number
PCT/CN2016/113475
Other languages
English (en)
French (fr)
Inventor
王岩
苏铁
Original Assignee
深圳市大疆灵眸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆灵眸科技有限公司 filed Critical 深圳市大疆灵眸科技有限公司
Priority to CN201680007138.1A priority Critical patent/CN107223220B/zh
Priority to PCT/CN2016/113475 priority patent/WO2018120012A1/zh
Priority to CN201910196047.2A priority patent/CN109885105B/zh
Priority to EP16925751.6A priority patent/EP3564574B1/en
Priority to EP21200085.5A priority patent/EP3954934A1/en
Publication of WO2018120012A1 publication Critical patent/WO2018120012A1/zh
Priority to US16/457,123 priority patent/US11086202B2/en
Priority to US17/397,641 priority patent/US11852958B2/en
Priority to US18/390,998 priority patent/US20240118594A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41112Control parameter such as motor controlled by a torque signal

Definitions

  • the invention relates to the field of cloud platform technology, in particular to a cloud platform control method, device and cloud platform.
  • the pan/tilt is a carrying device for mounting and fixing the camera device, and can cooperate with the motor through the arm of the pan/tilt to drive the camera device to move in one or more directions, thereby capturing images in a wide range.
  • the PTZ has been widely used in various special industries. For example, in the field of aerial photography, when the camera equipment is fixed on the PTZ, it can be photographed by the aircraft carrying the PTZ to the sky.
  • the movement of the gimbal is usually controlled by a remote controller, and a joystick or a pulsator is disposed on the remote controller, and the user issues a motion instruction to the gimbal by manipulating the joystick or the pulsator, and the pan-tilt according to the received motion instruction.
  • the drive motor drives the corresponding arm to rotate, shift, and the like.
  • the invention provides a cloud platform control method, device and cloud platform.
  • a pan/tilt control method is provided, the pan/tilt head includes a shaft arm and a motor, and the motor is used to drive the arm arm to rotate, thereby driving an image pickup device mounted on the pan/tilt head Moving in one or more directions, the method comprising:
  • the motor is controlled to drive the arm to rotate to the target posture when the manpower stops the pan/tilt.
  • a pan/tilt control device configured to drive the arm arm to rotate, thereby driving an image pickup device mounted on the pan/tilt head Moving in one or more directions, the device includes:
  • An obtaining module configured to acquire working parameters of the pan/tilt
  • a detecting module configured to detect that the working parameter matches a preset human-powered pan/tilt head condition
  • the control module is configured to control the direction in which the motor drives the arm to rotate until the manpower stops the pan/tilt according to the direction of the manpower panning the pan/tilt.
  • a cloud platform includes: a fixing mechanism, one or more axle arms, a motor, an IMU, and a controller, wherein
  • the fixing mechanism is configured to fix an imaging device mounted on the pan/tilt;
  • the motor is configured to drive the corresponding axial arm to rotate, thereby driving the imaging device to move in one or more directions;
  • the controller is configured to acquire the working parameters of the pan/tilt. If the working parameter is detected to match the preset human-powered pan/tilt head condition, the motor drive is controlled according to the direction of the human-powered pan/tilt head.
  • the arm arm rotates to a target posture when the manpower stops moving the pan/tilt.
  • the pan/tilt is controlled according to the direction of the human-powered pan/tilt.
  • the operation process is simple and intuitive, and the positioning accuracy is high.
  • FIG. 1 is a schematic diagram of the working principle of a three-axis pan/tilt
  • FIG. 2 is a flow chart of an embodiment of a pan/tilt control method of the present invention
  • FIG. 3 is a flow chart of another embodiment of a pan/tilt control method of the present invention.
  • FIG. 4 is a flow chart showing another embodiment of the pan/tilt control method of the present invention.
  • FIG. 5 is a flow chart showing another embodiment of the pan/tilt control method of the present invention.
  • Figure 6A is a block diagram showing an embodiment of a pan/tilt control apparatus of the present invention.
  • FIG. 6B is a block diagram of an embodiment of the acquisition module of FIG. 6A;
  • FIG. 6C is a block diagram of another embodiment of the acquisition module of FIG. 6A;
  • Figure 6D is a block diagram of an embodiment of the control module of Figure 6A;
  • Figure 7 is a block diagram of an embodiment of a gimbal of the present invention.
  • the pan/tilt in the embodiment of the present invention may be a handheld cloud platform or a cloud platform carried by an aircraft.
  • the pan/tilt head generally includes a shaft arm and a motor for driving the shaft arm to rotate.
  • the three-axis pan/tilt includes three axial arms, and motors for driving three axial arms respectively, wherein the three axial arms are a pitch axis, a roll axis, and a lateral axis, respectively.
  • the imaging device mounted on the pan/tilt can be driven, for example, the camera or the camera moves in one or more directions, thereby achieving wide-range shooting.
  • the user controls the pan/tilt to change the target posture through a remote control device, such as a remote control rocker or a pulsator, etc.
  • the operation process is relatively cumbersome, and the positioning accuracy is not high enough. Therefore, in the embodiment of the present invention, the manner in which the user shakes the pan/tilt by the human hand is provided, so that the pan/tilt can be quickly and accurately moved to the target posture.
  • a three-axis pan/tilt head shown in Fig. 1 includes a controller, a three-axis motor, a three-axis shaft arm, an IMU (Inertial Measurement Unit), and an integrator.
  • the above three-axis pan/tilt can be used as a feedback original by a gyroscope that constitutes an IMU, and a three-axis motor is used as an output original to form a closed-loop PI (proportional, integral) control system.
  • PI Proportional, integral
  • the measurement attitude of the gimbal is obtained by the IMU, and the difference between the attitude and the target attitude is measured as the control deviation.
  • the controller controls the input current of the three-axis motor according to the input control deviation, thereby driving the three-axis motor to work, and the three-axis motor works.
  • the output torque drives the rotation of the three-axis arm.
  • the measurement attitude of the gimbal changes further.
  • the gimbal moves to the target attitude.
  • FIG. 2 is a flow chart of an embodiment of a pan/tilt control method according to the present invention:
  • Step 201 Obtain the working parameters of the pan/tilt.
  • the operating parameters of the pan/tilt in the embodiment of the present invention may include: a current value of the motor, or a torque value of the motor, or a control deviation of the pan/tilt.
  • the above control deviation, current value and torque value are usually proportional to each other.
  • Step 202 It is detected that the working parameter matches the preset human-powered pan/tilt head condition.
  • the parameter values of the detected working parameters are greatly different, so the working parameters can be used as the basis for judging the manpower to shake the gimbal.
  • the working parameters of the gimbal are usually larger than the working parameters when the pan/tilt is controlled by the remote controller.
  • the working parameters of the gimbal are usually larger than those of the remote control.
  • the working parameters when controlling the gimbal, but the difference between the human hand and the manpower moving the gimbal is that the detected parameter value of the former is less than the latter.
  • step 201 corresponding to the working parameter in step 201 being a current value, in this step, whether the current value is greater than a preset current threshold may be detected, and if the current threshold is greater than the current threshold, it may be determined that the human power is detected. Yuntai.
  • corresponding to the working parameter in step 202 is the torque value
  • the torque value of the motor can be measured according to the proportional relationship between the current and the torque, then in this step It can be detected whether the torque value is greater than a preset torque threshold, and if greater than the torque threshold, it can be determined that the human power pan/tilt is detected.
  • the control deviation can be obtained by the IMU in the feedback control process of the IMU collected on the pan/tilt, and obtained according to the measurement posture of the gimbal. If the control deviation of the pan/tilt is detected, in this step, it can be detected whether the control deviation is greater than a preset deviation threshold. If it is greater than the deviation threshold, it can be determined that the human-powered pan/tilt is detected.
  • control deviation is greater than the deviation threshold within a preset time period, and if both are greater than the deviation threshold, it may be determined that the human-powered pan/tilt is detected.
  • Step 203 According to the direction of the manpower to shake the pan/tilt, control the motor drive shaft arm to rotate to the target posture when the manpower stops the pan/tilt head.
  • the IMU that is set on the pan/tilt can measure the tilting direction when the manpower moves the pan/tilt, and then the target speed for changing the target posture of the gimbal is obtained, wherein the target speed is greater than
  • the manpower swayes the turbulent speed of the gimbal.
  • the motor drive shaft arm is rotated to the manpower to stop the turbulent cloud according to the above target speed.
  • the target posture of Taiwan The target posture of Taiwan.
  • the gimbal when the working parameters of the gimbal are detected to match the preset human-powered pan/tilt head conditions, the gimbal is controlled according to the direction of the manpower to move the gimbal to change its target posture, and the existing pass Compared with the way in which the remote control controls the target posture of the gimbal, the operation process is simple and intuitive, and the positioning accuracy is high.
  • FIG. 3 a flow chart of another embodiment of a pan/tilt control method according to the present invention is shown.
  • the embodiment shows a process of detecting a human-powered pan/tilt by detecting a motor torque value:
  • Step 301 Acquire a current value of the motor.
  • the controller when the controller obtains the control deviation, the input current of the motor can be controlled according to the control deviation.
  • the controller can respectively control the input currents of the three motors according to the control deviation.
  • the control deviation of the gimbal is relatively small.
  • the control deviation of the gimbal when the manpower is shaking the pan/tilt, the control deviation of the gimbal is instantaneously increased, and the input current of the motor obtained according to the control deviation is also increased accordingly. Big.
  • Step 302 Measure the torque value corresponding to the current value according to a proportional relationship between the current and the torque.
  • the torque of the motor refers to the torque that the motor outputs from its crankshaft end.
  • the torque is the force that allows the corresponding arm of the motor to rotate.
  • the current of the motor is proportional to the torque, as shown in the following formula:
  • M Ca ⁇ I; wherein M represents torque, Ca represents a constant, and I represents current;
  • the torque value of the motor can be calculated according to the above formula.
  • Step 303 Determine whether the measured torque value is greater than a preset torque threshold. If yes, execute step 304; otherwise, end the current flow.
  • a torque threshold value may be set in advance, and the torque threshold value is a lower limit value for determining a torque value when the human power pans the pan/tilt head.
  • step 304 when the torque value corresponding to the current value of the motor is measured in real time, the torque value is compared with the torque threshold. If the torque value is not greater than the torque threshold, the current non-human-powered pan/tilt can be determined, and the current state can be ended. Flow, if the torque value is greater than the torque threshold, step 304 is performed.
  • Step 304 Determine whether a preset time period is reached. If yes, execute step 305; otherwise, return to step 301.
  • a time period may be preset to determine whether the torque value of the pan/tilt continues to be greater than the torque threshold for a continuous period of time, thereby avoiding that the human hand is mistakenly touched by the cloud platform and is also determined to be a human-powered pan/tilt. In order to improve the accuracy of manpower detection and pan/tilt detection.
  • Step 305 It is determined that the human hand is detected to move the gimbal, and the current process is ended.
  • FIG. 4 a flow chart of another embodiment of a pan/tilt control method according to the present invention is shown.
  • the embodiment shows a process of detecting a human-powered pan/tilt by controlling a deviation value:
  • Step 401 Collect the measurement posture of the pan/tilt head through the IMU set on the pan/tilt.
  • Step 402 Obtain a control deviation of the pan/tilt according to the measurement posture of the pan/tilt.
  • the measurement posture of the pan/tilt can be acquired by the IMU on the pan/tilt, and the control deviation of the gimbal is obtained according to the measurement posture.
  • the initial target attitude is 0, and the control deviation is the largest at this time.
  • the control deviation is gradually reduced.
  • Step 403 Determine whether the control deviation is greater than a preset deviation threshold. If yes, execute step 404; otherwise, end the current process.
  • a deviation threshold value may be set in advance, and the deviation threshold value is a lower limit value for determining a control deviation when the human power is tilting the pan/tilt.
  • step 404 is performed.
  • Step 404 Determine whether the preset time period is reached. If yes, execute step 405; otherwise, return to step 401.
  • a time period may be set in advance to determine whether the control deviation of the pan/tilt continues to be greater than the deviation threshold for a continuous period of time, thereby avoiding that the human hand is mistakenly touched by the cloud platform and is also determined to be a human-powered pan/tilt. In order to improve the accuracy of manpower detection and pan/tilt detection.
  • Step 405 It is determined that the human hand is detected to move the gimbal, and the current process is ended.
  • FIG. 5 it is a flowchart of another embodiment of a pan/tilt control method according to the present invention, which shows The process of moving the direction of the gimbal to change the target posture of the gimbal:
  • Step 501 Measure the tilting direction when the manpower moves the pan/tilt head through the IMU set on the pan/tilt.
  • the IMU can be used to measure the attitude information of the object.
  • the IMU can measure the tilting direction when the manpower moves the pan/tilt. For example, for the three-axis pan/tilt, it can be measured.
  • Step 502 retrieve a target speed for changing a target posture of the gimbal, and the target speed is greater than a moving speed of the human-powered pan/tilt.
  • the pan/tilt After detecting the direction of the manpower to shake the gimbal, if the gimbal is to be moved to the target position of the manpower, the pan/tilt can be controlled to move at the target speed, which is usually greater than the swaying speed of the manpower moving the gimbal. .
  • an angle sensor is provided on the three-axis motor, and the angle sensor can measure the swaying speed of different axial arms when the manpower moves the pan/tilt.
  • the conventional swaying speed when the manpower moves the gimbal can be tested in advance through multiple sets of test experiments, and the target speed for changing the target posture of the gimbal, such as the target speed, is determined according to the swaying speed. Slightly greater than the swaying speed.
  • the pan/tilt controller can save the above target speed.
  • Step 503 In the swaying direction, the target speed of the motor drive shaft arm is controlled according to the target speed to the target posture when the manpower stops the pan/tilt head.
  • the target attitude of the pan-tilt is changed according to the target speed, that is, the feedback control is performed according to the target speed, so that the motor-driven shaft arm is rotated until the rotation is turned to the human Stop the posture when shaking the gimbal.
  • the target speed is greater than the swaying speed, it can be ensured that when the manpower stops moving the pan/tilt, the target posture of the gimbal has changed to the actual posture of the human turbulence.
  • the present invention also provides an embodiment of the pan/tilt control device and the pan/tilt.
  • FIG. 6A a block diagram of an embodiment of a pan/tilt control apparatus according to the present invention is shown:
  • the pan/tilt control device includes an acquisition module 610, a detection module 620, and a control module 630.
  • the obtaining module 610 is configured to obtain the working parameters of the cloud platform.
  • the detecting module 620 is configured to detect that the working parameter matches a preset human-powered pan/tilt condition
  • the control module 630 is configured to control the direction in which the motor drives the arm to rotate until the manpower stops the pan/tilt according to the direction in which the manpower is tilted.
  • FIG. 6B is a block diagram of an embodiment of the acquisition module of FIG. 6A:
  • the acquisition module 610 can include a current value acquisition sub-module 611 and a torque measurement sub-module 612.
  • the current value acquisition sub-module 611 is configured to acquire a current value of the motor
  • the torque measurement sub-module 612 is configured to measure a torque value corresponding to the current value according to a proportional relationship between the current and the torque, and determine the torque value as an operating parameter of the pan-tilt.
  • the detecting module 620 may be specifically configured to detect whether the measured torque value is greater than a preset torque threshold, and if greater than the torque threshold, detecting the torque value and a preset human-powered pan/tilt The conditions match.
  • the detecting module 620 may be specifically configured to detect whether the measured torque values are greater than the torque threshold within a preset time period.
  • FIG. 6C is a block diagram of another embodiment of the acquisition module of FIG. 6A:
  • the acquisition module 610 can include a measurement gesture acquisition sub-module 613 and a control deviation acquisition sub-module 614.
  • the measurement posture obtaining sub-module 613 is configured to collect the measurement posture of the cloud platform by an IMU disposed on the cloud platform;
  • the control deviation obtaining sub-module 614 is configured to obtain a control deviation of the PTZ according to the measurement posture of the PTZ, and determine the control deviation as an operating parameter of the PTZ.
  • the detecting module 620 may be specifically configured to detect whether the control deviation is greater than a preset deviation threshold, and if greater than the deviation threshold, detecting the control deviation and a preset human-powered pan/tilt condition Match.
  • the detecting module 620 may be specifically configured to detect whether the control deviation is greater than the deviation threshold in a preset time period.
  • the detecting module 620 may be specifically configured to: when the operating parameter acquired by the acquiring module 610 is a current value of the motor, detecting whether the current value is greater than a preset current. The threshold, if greater than the current threshold, detects that the current value matches a preset human-powered pan/tilt condition.
  • the detecting module 620 may be specifically configured to detect whether the current value is greater than the current threshold in a preset time period.
  • FIG. 6D is a block diagram of an embodiment of the control module of FIG. 6A:
  • the control module 630 can include: a tilt direction measurement sub-module 631, a target speed adjustment sub-module 632, and a target attitude control sub-module 633.
  • the swaying direction measuring sub-module 631 is configured to measure a swaying direction when the manpower is tilting the pan/tilt head by using an IMU disposed on the pan/tilt head;
  • a target speed retrieving sub-module 632 configured to retrieve a target speed for changing the target posture of the gimbal, the target speed being greater than a swaying speed of the pan/tilt;
  • the target attitude control sub-module 633 is configured to control, according to the target speed, the target attitude when the motor drives the axle arm to rotate to manually stop the pan/tilt head in the tilting direction.
  • the control module controls the pan/tilt according to the direction of the human-powered pan/tilt.
  • FIG. 7 a block diagram of an embodiment of a cloud platform according to the present invention is shown:
  • the pan/tilt head includes a fixing mechanism 710, a shaft arm 720, a motor 730, an IMU 740, and a controller 750.
  • the fixing mechanism 710 is configured to fix an imaging device mounted on the pan/tilt;
  • the motor 730 is configured to drive the corresponding axle arm 720 to rotate, thereby driving the imaging device to move in one or more directions;
  • the controller 750 is configured to acquire an operating parameter of the pan/tilt. If the working parameter is detected to match the preset human-powered pan/tilt head condition, the motor is controlled according to the direction of the human-powered pan/tilt head. The target arm is driven to rotate to the target posture when the manpower stops the pan/tilt.
  • the controller 750 may be specifically configured to acquire a current value of the motor, and measure a torque value corresponding to the current value according to a proportional relationship between the current and the torque, and detect whether the measured torque value is greater than a preset torque threshold. If it is greater than the torque threshold, it is determined that the torque value is detected to match the preset human-powered pan/tilt condition.
  • controller 750 may be specifically configured to detect whether the measured torque values are greater than the torque threshold within a preset time period.
  • the controller 750 may be specifically configured to collect the measurement posture of the PTZ by using the IMU 740, obtain a control deviation of the PTZ according to the measurement posture of the PTZ, and detect whether the control deviation is greater than a preset The deviation threshold, if greater than the deviation threshold, determines that the control deviation is detected to match the preset human-powered pan/tilt condition.
  • controller 750 may be specifically configured to detect whether the control deviation is greater than the deviation threshold within a preset time period.
  • the controller 750 may be specifically configured to: when the operating parameter is a current value of the motor, detect whether the current value is greater than a preset current threshold, and if greater than the current threshold, determine to detect the detected The current value matches the preset human-powered pan/tilt condition.
  • controller 750 may be specifically configured to detect whether the current value is greater than the current threshold in a preset time period.
  • the controller 750 may be specifically configured to measure, by using the IMU 740, a tilting direction when the human body moves the pan/tilt, and retrieve a target speed for changing the target posture of the pan/tilt, in the tilting direction, according to The target speed controls the motor to drive the axle arm to rotate to a target attitude when the manpower stops the pan/tilt head, wherein the target speed is greater than a human body to shake the panning speed of the pan/tilt.
  • the PTZ controller detects that the working parameters of the PTZ match the preset human-powered PTZ conditions, the PTZ is controlled according to the direction of the human-powered PTZ to change its target posture.
  • the operation process is simple and intuitive, and the positioning accuracy is high.
  • the system, device, module or unit illustrated in the above embodiments may be implemented by a computer chip or an entity, or by a product having a certain function.
  • the above devices are described separately by function into various units.
  • the functions of each unit may be implemented in the same software or software and/or hardware when implementing the present application.
  • Those skilled in the art will appreciate that embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Manipulator (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台控制方法、装置及云台,该云台包括轴臂(720)和电机(730),电机(730)用于驱动轴臂(720)转动,从而带动搭载于云台上的摄像设备在一个或者多个方向上运动,该方法包括:获取云台的工作参数;检测到工作参数与预设的人力掰动云台条件相匹配;按照人力掰动云台的方向,控制电机(730)驱动轴臂(720)转动到人力停止掰动云台时的目标姿态。与通过遥控器控制云台目标姿态的方式相比,通过人力掰动来控制云台以改变自身的目标姿态,操作过程简单直观,定位精度高。

Description

云台控制方法、装置及云台 技术领域
本发明涉及云台技术领域,尤其涉及一种云台控制方法、装置及云台。
背景技术
云台是用于安装和固定摄像设备的承载设备,其可以通过云台的轴臂与电机的配合,带动摄像设备在一个或者多个方向上运动,从而在较大范围内拍摄图像。目前,云台已被广泛应用于各种特殊行业,比如在航拍领域,当摄像设备固定在云台上后,可由飞行器携带云台至高空进行拍摄。
相关技术中,通常通过遥控器控制云台的运动,遥控器上设置有摇杆或者波轮,用户通过操控摇杆或者波轮,向云台发出运动指令,云台根据接收到的运动指令,驱动电机带动相应轴臂进行旋转、位移等。但是,由于用户操控摇杆或者波轮的力度不稳定,通常一次操作难以控制云台运动到目标姿态,可能需要反复操作进行调整,操作比较繁琐,定位精度也不够高。
发明内容
本发明提供一种云台控制方法、装置及云台。
依据本发明的第一方面,提供一种云台控制方法,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述方法包括:
获取所述云台的工作参数;
检测到所述工作参数与预设的人力掰动云台条件相匹配;
按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
依据本发明的第二方面,提供一种云台控制装置,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述装置包括:
获取模块,用于获取所述云台的工作参数;
检测模块,用于检测到所述工作参数与预设的人力掰动云台条件相匹配;
控制模块,用于按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
依据本发明的第三方面,提供一种云台,所述云台包括:固定机构,一个或多个轴臂,电机,IMU以及控制器,其中,
所述固定机构,用于固定搭载于所述云台上的摄像设备;
所述电机,用于驱动所对应的轴臂转动,从而带动所述摄像设备在一个或者多个方向上运动;
所述控制器,用于获取所述云台的工作参数,如果检测到所述工作参数与预设的人力掰动云台条件相匹配,按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
由以上本发明实施例提供的技术方案可见,本发明实施例中在检测到云台的工作参数与预设的人力掰动云台条件相匹配时,按照人力掰动云台的方向控制云台来改变自身的目标姿态,与现有通过遥控器控制云台目标姿态的方式相比,操作过程简单直观,定位精度高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一种三轴云台的工作原理示意图;
图2是本发明云台控制方法的一个实施例流程图;
图3是本发明云台控制方法的另一个实施例流程图;
图4是本发明云台控制方法的另一个实施例流程图;
图5是本发明云台控制方法的另一个实施例流程图;
图6A是本发明云台控制装置的实施例框图;
图6B是图6A中获取模块的一个实施例框图;
图6C是图6A中获取模块的另一个实施例框图;
图6D是图6A中控制模块的实施例框图;
图7是本发明云台的实施例框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例中的云台可以是手持云台,也可以是由飞行器携带的云台。上述云台通常包括轴臂和电机,电机用于驱动轴臂转动。以常见的三轴云台为例,三轴云台包括三个轴臂,以及分别驱动三个轴臂转动的电机,其中,三个轴臂分别为俯仰轴,横滚轴,以及横向轴。
在控制上述云台改变目标姿态时,可以带动搭载于云台上的摄像设备,例如,照相机或者摄像机在一个或者多个方向上运动,从而实现大范围拍摄。现有技术中,使用者通过遥控设备,例如遥控器摇杆或者波轮等,控制云台改变目标姿态,其操作过程比较繁琐,定位精度不够高。因此本发明实施例中,提供使用者通过人力掰动云台的方式,从而使云台可以快速准确地运动到目标姿态。
下面结合附图对本发明实施例进行详细说明。
参见图1,为一种三轴云台的工作原理示意图:
图1所示的一种三轴云台包括:控制器,三轴电机,三轴轴臂,IMU(Inertial Measurement Unit,惯性测量单元),以及积分器。上述三轴云台可以通过组成IMU的陀螺仪作为反馈原件,三轴电机作为输出原件,形成闭环PI(比例、积分)控制***。
其中,通过IMU获得云台的测量姿态,测量姿态与目标姿态的差值作为控制偏差,控制器根据输入的控制偏差,控制三轴电机的输入电流,从而驱动三轴电机工作,三轴电机工作过程中输出扭矩带动三轴轴臂转动,在转动过程中云台的测量姿态进一步发生变化,通过上述反馈控制过程,使得云台运动到目标姿态。
参见图2,为本发明云台控制方法的一个实施例流程图:
步骤201:获取云台的工作参数。
结合图1所示,本发明实施例中云台的工作参数可以包括:电机的电流值,或者电机的扭矩值,或者云台的控制偏差。上述控制偏差、电流值和扭矩值三个参数之间通常呈正比关系。
步骤202:检测到工作参数与预设的人力掰动云台条件相匹配。
通常人力掰动云台与通过遥控器控制云台相比,检测到的工作参数的参数值会有较大差异,因此可以将工作参数作为判断人力掰动云台的依据。
首先,在人力掰动云台时,云台的工作参数通常大于通过遥控器控制云台时的工作参数;其次,在人力误触云台时,云台的工作参数通常也会大于通过遥控器控制云台时的工作参数,但人力误触云台与人力掰动云台的区别在于,检测到的前者的参数值的持续时间要小于后者。基于上述分析,根据工作参数的类型不同,可以分别采用如下可选的实现方式检测是否由人力掰动云台:
在第一个可选的实现方式中,对应于步骤201中工作参数为电流值,本步骤中可以检测电流值是否大于预设的电流阈值,如果大于电流阈值,则可以确定检测到人力掰动云台。
进一步的,为了避免检测到人力误触云台,可以检测在预设的时间周期内电流值是否均大于电流阈值,如果均大于电流阈值,则可以确定检测到人力掰动云台。
在第二个可选的实现方式中,对应于步骤202中工作参数为扭矩值,在获得电机的电流值后,可以根据电流与扭矩的正比关系,测量得到电机的扭矩值,则本步骤中可以检测扭矩值是否大于预设的扭矩阈值,如果大于扭矩阈值,则可以确定检测到人力掰动云台。
进一步的,为了避免检测到人力误触云台,可以检测在预设的时间周期内扭矩值是否均大于扭矩阈值,如果均大于扭矩阈值,则可以确定检测到人力掰动云台。
在第三个可选的实现方式中,对应于步骤202中工作参数为控制偏差,可以通过设置在云台上的IMU采集反馈控制过程中云台的测量姿态,并根据云台的测量姿态获得云台的控制偏差,则本步骤中可以检测控制偏差是否大于预设的偏差阈值,如果大于偏差阈值,则可以确定检测到人力掰动云台。
进一步的,为了避免检测到人力误触云台,可以检测在预设的时间周期内控制偏差是否均大于偏差阈值,如果均大于偏差阈值,则可以确定检测到人力掰动云台。
步骤203:按照人力掰动云台的方向,控制电机驱动轴臂转动到人力停止掰动云台时的目标姿态。
在检测到人力掰动云台后,可以通过设置在云台上的IMU测量人力掰动云台时的掰动方向,然后调取用于改变云台目标姿态的目标速度,其中该目标速度大于人力掰动云台的掰动速度,在该掰动方向上,按照上述目标速度控制电机驱动轴臂转动到人力停止掰动云 台时的目标姿态。
由上述实施例可见,在检测到云台的工作参数与预设的人力掰动云台条件相匹配时,按照人力掰动云台的方向控制云台来改变自身的目标姿态,与现有通过遥控器控制云台目标姿态的方式相比,操作过程简单直观,定位精度高。
参见图3,为本发明云台控制方法的另一个实施例流程图,该实施例示出了通过电机扭矩值检测人力掰动云台的过程:
步骤301:获取电机的电流值。
结合图1所示,当控制器获得控制偏差后,可以根据该控制偏差控制电机的输入电流,以三轴云台为例,控制器可以根据控制偏差分别控制三个电机的输入电流。在通常情况下,云台的控制偏差比较小,在本发明实施例中,当人力掰动云台时,云台的控制偏差瞬间加大,根据该控制偏差得到的电机的输入电流也相应增大。
步骤302:根据电流与扭矩的正比关系,测量与电流值对应的扭矩值。
电机的扭矩就是指电机从其曲轴端输出的力矩,扭矩是使电机对应轴臂可以发生转动的力。通常电机的电流与扭矩呈正比关系,如下公式所示:
M=Ca×I;其中,M表示扭矩,Ca表示一常数,I表示电流;
当获得电机的电流值后,可以按照上述公式计算电机的扭矩值。
步骤303:判断测量得到的扭矩值是否大于预设的扭矩阈值,若是,则执行步骤304;否则,结束当前流程。
在人力掰动云台时,云台的扭矩值通常大于通过遥控器控制云台时的扭矩值。因此本实施例中,可以预先设置扭矩阈值,该扭矩阈值为用于判断人力掰动云台时扭矩值的下限值。
本步骤中,当实时测量得到电机的电流值对应的扭矩值后,将该扭矩值与扭矩阈值进行比较,如果扭矩值不大于扭矩阈值,则可以确定当前非人力掰动云台,可以结束当前流程,如果扭矩值大于扭矩阈值,执行步骤304。
步骤304:判断是否达到预设的时间周期,若是,则执行步骤305;否则,返回步骤301。
由于在人力误触云台时,云台的扭矩值通常也会大于通过遥控器控制云台时的扭矩值,但人力误触云台与人力掰动云台的区别在于,前者大于扭矩阈值的扭矩值的持续时间 要小于后者。因此本实施例中,可以预先设置一个时间周期,用于判断在一段连续的时间内,云台的扭矩值是否持续大于扭矩阈值,从而避免将人力误触云台也确定为人力掰动云台,以此提高对人力掰动云台检测的准确性。
步骤305:确定检测到人力掰动云台,结束当前流程。
参见图4,为本发明云台控制方法的另一个实施例流程图,该实施例示出了通过控制偏差值检测人力掰动云台的过程:
步骤401:通过设置在云台上的IMU采集云台的测量姿态。
步骤402:根据云台的测量姿态获得云台的控制偏差。
结合图1所示,在本发明实施例的反馈控制过程中,可以通过云台上的IMU采集云台的测量姿态,根据测量姿态获得云台的控制偏差。在人力掰动云台时,初始的目标姿态为0,此时控制偏差最大,在目标姿态不断向测量姿态调整的过程中,控制偏差逐渐减小。
步骤403:判断控制偏差是否大于预设的偏差阈值,若是,则执行步骤404;否则,结束当前流程。
在通常情况下,云台的控制偏差都比较小,而当人力掰动云台时,云台的控制偏差会加大。因此本实施例中,可以预先设置偏差阈值,该偏差阈值为用于判断人力掰动云台时控制偏差的下限值。
本步骤中,当实时获得云台的控制偏差后,将该控制偏差与偏差阈值进行比较,如果控制偏差不大于偏差阈值,则可以确定当前非人力掰动云台,可以结束当前流程,如果控制偏差大于偏差阈值,则执行步骤404。
步骤404:判断是否达到预设的时间周期,若是,则执行步骤405;否则,返回步骤401。
由于在人力误触云台时,云台的控制偏差通常也会大于通过遥控器控制云台时的控制偏差,但人力误触云台与人力掰动云台的区别在于,前者大于偏差阈值的控制偏差的持续时间要小于后者。因此本实施例中,可以预先设置一个时间周期,用于判断在一段连续的时间内,云台的控制偏差是否持续大于偏差阈值,从而避免将人力误触云台也确定为人力掰动云台,以此提高对人力掰动云台检测的准确性。
步骤405:确定检测到人力掰动云台,结束当前流程。
参见图5,为本发明云台控制方法的另一个实施例流程图,该实施例示出了按照人力 掰动云台方向改变云台目标姿态的过程:
步骤501:通过设置在云台上的IMU测量人力掰动云台时的掰动方向。
IMU可以用于测量物体的姿态信息,本实施例中,在检测到人力掰动云台后,可以通过IMU测量人力掰动云台时的掰动方向,例如,对于三轴云台,可以测量到人力掰动俯仰轴,横滚轴,以及横向轴中的至少一个轴臂时的掰动方向。
步骤502:调取用于改变云台目标姿态的目标速度,该目标速度大于人力掰动云台的掰动速度。
在检测到人力掰动云台的方向后,如果要使云台运动到人力掰动的目标姿态,可以控制云台以目标速度进行运动,上述目标速度通常大于人力掰动云台的掰动速度。以三轴云台为例,在三轴电机上均设置有角度传感器,通过角度传感器可以测量到人力掰动云台时不同轴臂的掰动速度。
在应用本发明实施例时,可以预先通过多组测试实验,测试出人力掰动云台时的常规掰动速度,根据该掰动速度确定用于改变云台目标姿态的目标速度,比如目标速度略大于掰动速度即可。云台控制器可以保存上述目标速度,当检测到人力掰动云台后,调取上述目标速度,控制云台改变目标姿态。
步骤503:在掰动方向上,按照目标速度控制电机驱动轴臂转动到人力停止掰动云台时的目标姿态。
本步骤中,在检测到的人力掰动云台的掰动方向上,按照目标速度改变云台的目标姿态,即按照目标速度进行反馈控制,以使电机驱动轴臂进行转动,直至转动到人力停止掰动云台时的姿态。在上述控制过程中,由于目标速度大于掰动速度,因此可以保证当人力停止掰动云台时,云台的目标姿态已经改变到人力掰动的实际姿态。
与本发明云台控制方法的实施例相对应,本发明还提供了云台控制装置和云台的实施例。
参见图6A,为本发明云台控制装置的一个实施例框图:
该云台控制装置包括:获取模块610、检测模块620和控制模块630。
其中,获取模块610,用于获取所述云台的工作参数;
检测模块620,用于检测到所述工作参数与预设的人力掰动云台条件相匹配;
控制模块630,用于按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
在一个可选的实现方式中,参见图6B,是图6A中获取模块的一个实施例框图:
该获取模块610可以包括:电流值获取子模块611和扭矩测量子模块612。
其中,电流值获取子模块611,用于获取所述电机的电流值;
扭矩测量子模块612,用于根据电流与扭矩的正比关系,测量与所述电流值对应的扭矩值,将所述扭矩值确定为所述云台的工作参数。
相应的,所述检测模块620,可以具体用于检测测量得到的扭矩值是否大于预设的扭矩阈值,如果大于所述扭矩阈值,则检测到所述扭矩值与预设的人力掰动云台条件相匹配。
进一步,所述检测模块620,可以具体用于检测在预设的时间周期内所述测量得到的扭矩值是否均大于所述扭矩阈值。
在另一个可选的实现方式中,参见图6C,是图6A中获取模块的另一个实施例框图:
该获取模块610可以包括:测量姿态获得子模块613和控制偏差获得子模块614。
其中,测量姿态获得子模块613,用于通过设置在所述云台上的IMU采集所述云台的测量姿态;
控制偏差获得子模块614,用于根据所述云台的测量姿态获得所述云台的控制偏差,将所述控制偏差确定为所述云台的工作参数。
相应的,所述检测模块620,可以具体用于检测所述控制偏差是否大于预设的偏差阈值,如果大于所述偏差阈值,则检测到所述控制偏差与预设的人力掰动云台条件相匹配。
进一步,所述检测模块620,可以具体用于检测在预设的时间周期内所述控制偏差是否均大于所述偏差阈值。
在另一个可选的实现方式中,所述检测模块620,可以具体用于当所述获取模块610获取的工作参数为所述电机的电流值时,检测所述电流值是否大于预设的电流阈值,如果大于所述电流阈值,则检测到所述电流值与预设的人力掰动云台条件相匹配。
进一步,所述检测模块620,可以具体用于检测在预设的时间周期内所述电流值是否均大于所述电流阈值。
在另一个可选的实现方式中,参见图6D,是图6A中控制模块的实施例框图:
该控制模块630可以包括:掰动方向测量子模块631、目标速度调取子模块632和目标姿态控制子模块633。
其中,掰动方向测量子模块631,用于通过设置在所述云台上的IMU测量人力掰动云台时的掰动方向;
目标速度调取子模块632,用于调取用于改变所述云台目标姿态的目标速度,所述目标速度大于人力掰动所述云台的掰动速度;
目标姿态控制子模块633,用于在所述掰动方向上,按照所述目标速度控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
由上述实施例可见,在检测模块检测到获取模块所获取的云台的工作参数与预设的人力掰动云台条件相匹配时,由控制模块按照人力掰动云台的方向控制云台来改变自身的目标姿态,与现有通过遥控器控制云台目标姿态的方式相比,操作过程简单直观,定位精度高。
参见图7,为本发明云台的实施例框图:
该云台包括:固定机构710、轴臂720、电机730、IMU740和控制器750。
其中,所述固定机构710,用于固定搭载于所述云台上的摄像设备;
所述电机730,用于驱动所对应的轴臂720转动,从而带动所述摄像设备在一个或者多个方向上运动;
所述控制器750,用于获取所述云台的工作参数,如果检测到所述工作参数与预设的人力掰动云台条件相匹配,按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
在一个可选的实现方式中:
所述控制器750,可以具体用于获取所述电机的电流值,根据电流与扭矩的正比关系,测量与所述电流值对应的扭矩值,检测测量得到的扭矩值是否大于预设的扭矩阈值,如果大于所述扭矩阈值,则确定检测到所述扭矩值与预设的人力掰动云台条件相匹配。
进一步,所述控制器750,可以具体用于检测在预设的时间周期内所述测量得到的扭矩值是否均大于所述扭矩阈值。
在另一个可选的实现方式中:
所述控制器750,可以具体用于通过所述IMU740采集所述云台的测量姿态,根据所述云台的测量姿态获得所述云台的控制偏差,检测所述控制偏差是否大于预设的偏差阈值,如果大于所述偏差阈值,则确定检测到所述控制偏差与预设的人力掰动云台条件相匹配。
进一步,所述控制器750,可以具体用于检测在预设的时间周期内所述控制偏差是否均大于所述偏差阈值。
在另一个可选的实现方式中:
所述控制器750,可以具体用于当所述工作参数为所述电机的电流值时,检测所述电流值是否大于预设的电流阈值,如果大于所述电流阈值,则确定检测到所述电流值与预设的人力掰动云台条件相匹配。
进一步,所述控制器750,可以具体用于检测在预设的时间周期内所述电流值是否均大于所述电流阈值。
在另一个可选的实现方式中:
所述控制器750,可以具体用于通过所述IMU740测量人力掰动云台时的掰动方向,调取用于改变所述云台目标姿态的目标速度,在所述掰动方向上,按照所述目标速度控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态,其中,所述目标速度大于人力掰动所述云台的掰动速度。
由上述实施例可见,在云台控制器检测到云台的工作参数与预设的人力掰动云台条件相匹配时,按照人力掰动云台的方向控制云台来改变自身的目标姿态,与现有通过遥控器控制云台目标姿态的方式相比,操作过程简单直观,定位精度高。
上述实施例阐明的***、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他 性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (28)

  1. 一种云台控制方法,其特征在于,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述方法包括:
    获取所述云台的工作参数;
    检测到所述工作参数与预设的人力掰动云台条件相匹配;
    按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述云台的工作参数包括:
    获取所述电机的电流值;
    根据电流与扭矩的正比关系,测量与所述电流值对应的扭矩值,将所述扭矩值确定为所述云台的工作参数。
  3. 根据权利要求2述的方法,其特征在于,所述检测到所述工作参数与预设的人力掰动云台条件相匹配包括:
    检测测量得到的扭矩值是否大于预设的扭矩阈值,如果大于所述扭矩阈值,则检测到所述扭矩值与预设的人力掰动云台条件相匹配。
  4. 根据权利要求3所述的方法,其特征在于,所述检测测量得到的扭矩值是否大于预设的扭矩阈值包括:检测在预设的时间周期内所述测量得到的扭矩值是否均大于所述扭矩阈值。
  5. 根据权利要求1所述的方法,其特征在于,所述获取所述云台的工作参数包括:
    通过设置在所述云台上的惯性测量单元IMU采集所述云台的测量姿态;
    根据所述云台的测量姿态获得所述云台的控制偏差,将所述控制偏差确定为所述云台的工作参数。
  6. 根据权利要求5所述的方法,其特征在于,所述检测到所述工作参数与预设的人力掰动云台条件相匹配包括:
    检测所述控制偏差是否大于预设的偏差阈值,如果大于所述偏差阈值,则检测到所述控制偏差与预设的人力掰动云台条件相匹配。
  7. 根据权利要求6所述的方法,其特征在于,所述检测所述控制偏差是否大于预设的偏差阈值包括:检测在预设的时间周期内所述控制偏差是否均大于所述偏差阈值。
  8. 根据权利要求1所述的方法,其特征在于,所述检测到所述工作参数与预设的人力掰动云台条件相匹配包括:
    当所述工作参数为所述电机的电流值时,检测所述电流值是否大于预设的电流阈值,如果大于所述电流阈值,则检测到所述电流值与预设的人力掰动云台条件相匹配。
  9. 根据权利要求8所述的方法,其特征在于,所述检测所述电流值是否大于预设的电流阈值包括:检测在预设的时间周期内所述电流值是否均大于所述电流阈值。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态包括:
    通过设置在所述云台上的IMU测量人力掰动云台时的掰动方向;
    调取用于改变所述云台目标姿态的目标速度,所述目标速度大于人力掰动所述云台的掰动速度;
    在所述掰动方向上,按照所述目标速度控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
  11. 一种云台控制装置,其特征在于,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述装置包括:
    获取模块,用于获取所述云台的工作参数;
    检测模块,用于检测到所述工作参数与预设的人力掰动云台条件相匹配;
    控制模块,用于按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
  12. 根据权利要求11所述的装置,其特征在于,所述获取模块包括:
    电流值获取子模块,用于获取所述电机的电流值;
    扭矩测量子模块,用于根据电流与扭矩的正比关系,测量与所述电流值对应的扭矩值,将所述扭矩值确定为所述云台的工作参数。
  13. 根据权利要求12所述的装置,其特征在于,所述检测模块,具体用于检测测量得到的扭矩值是否大于预设的扭矩阈值,如果大于所述扭矩阈值,则检测到所述扭矩值与预设的人力掰动云台条件相匹配。
  14. 根据权利要求13所述的装置,其特征在于,所述检测模块,具体用于检测在预设的时间周期内所述测量得到的扭矩值是否均大于所述扭矩阈值。
  15. 根据权利要求11所述的装置,其特征在于,所述获取模块包括:
    测量姿态获得子模块,用于通过设置在所述云台上的IMU采集所述云台的测量姿态;
    控制偏差获得子模块,用于根据所述云台的测量姿态获得所述云台的控制偏差,将所述控制偏差确定为所述云台的工作参数。
  16. 根据权利要求15所述的装置,其特征在于,所述检测模块,具体用于检测所述控制偏差是否大于预设的偏差阈值,如果大于所述偏差阈值,则检测到所述控制偏差与预设的人力掰动云台条件相匹配。
  17. 根据权利要求16所述的装置,其特征在于,所述检测模块,具体用于检测在预设的时间周期内所述控制偏差是否均大于所述偏差阈值。
  18. 根据权利要求11所述的装置,其特征在于,所述检测模块,具体用于当所述获取模块获取的工作参数为所述电机的电流值时,检测所述电流值是否大于预设的电流阈值,如果大于所述电流阈值,则检测到所述电流值与预设的人力掰动云台条件相匹配。
  19. 根据权利要求18所述的装置,其特征在于,所述检测模块,具体用于检测在预设的时间周期内所述电流值是否均大于所述电流阈值。
  20. 根据权利要求11至19任一所述的装置,其特征在于,所述控制模块包括:
    掰动方向测量子模块,用于通过设置在所述云台上的IMU测量人力掰动云台时的掰动方向;
    目标速度调取子模块,用于调取用于改变所述云台目标姿态的目标速度,所述目标速度大于人力掰动所述云台的掰动速度;
    目标姿态控制子模块,用于在所述掰动方向上,按照所述目标速度控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
  21. 一种云台,其特征在于,所述云台包括:固定机构,一个或多个轴臂,电机,IMU以及控制器,其中,
    所述固定机构,用于固定搭载于所述云台上的摄像设备;
    所述电机,用于驱动所对应的轴臂转动,从而带动所述摄像设备在一个或者多个方向上运动;
    所述控制器,用于获取所述云台的工作参数,如果检测到所述工作参数与预设的人力掰动云台条件相匹配,按照人力掰动云台的方向,控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态。
  22. 根据权利要求21所述云台,其特征在于,
    所述控制器,具体用于获取所述电机的电流值,根据电流与扭矩的正比关系,测量与所述电流值对应的扭矩值,检测测量得到的扭矩值是否大于预设的扭矩阈值,如果大于所述扭矩阈值,则确定检测到所述扭矩值与预设的人力掰动云台条件相匹配。
  23. 根据权利要求22所述的云台,其特征在于,所述控制器,具体用于检测在预设的时间周期内所述测量得到的扭矩值是否均大于所述扭矩阈值。
  24. 根据权利要求21所述的云台,其特征在于,
    所述控制器,具体用于通过所述IMU采集所述云台的测量姿态,根据所述云台的测量姿态获得所述云台的控制偏差,检测所述控制偏差是否大于预设的偏差阈值,如果大于所述偏差阈值,则确定检测到所述控制偏差与预设的人力掰动云台条件相匹配。
  25. 根据权利要求24所述的云台,其特征在于,所述控制器,具体用于检测在预设的时间周期内所述控制偏差是否均大于所述偏差阈值。
  26. 根据权利要求21所述的云台,其特征在于,
    所述控制器,具体用于当所述工作参数为所述电机的电流值时,检测所述电流值是否大于预设的电流阈值,如果大于所述电流阈值,则确定检测到所述电流值与预设的人力掰动云台条件相匹配。
  27. 根据权利要求26所述的云台,其特征在于,所述控制器,具体用于检测在预设的时间周期内所述电流值是否均大于所述电流阈值。
  28. 根据权利要求21至27任一所述的云台,其特征在于,
    所述控制器,具体用于通过所述IMU测量人力掰动云台时的掰动方向,调取用于改变所述云台目标姿态的目标速度,在所述掰动方向上,按照所述目标速度控制所述电机驱动所述轴臂转动到人力停止掰动云台时的目标姿态,其中,所述目标速度大于人力掰动所述云台的掰动速度。
PCT/CN2016/113475 2016-12-30 2016-12-30 云台控制方法、装置及云台 WO2018120012A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201680007138.1A CN107223220B (zh) 2016-12-30 2016-12-30 云台控制方法、装置及云台
PCT/CN2016/113475 WO2018120012A1 (zh) 2016-12-30 2016-12-30 云台控制方法、装置及云台
CN201910196047.2A CN109885105B (zh) 2016-12-30 2016-12-30 云台控制方法、装置及云台
EP16925751.6A EP3564574B1 (en) 2016-12-30 2016-12-30 Method and device for controlling cradle head, and cradle head
EP21200085.5A EP3954934A1 (en) 2016-12-30 2016-12-30 Method and device for controlling cradle head, and cradle head
US16/457,123 US11086202B2 (en) 2016-12-30 2019-06-28 Gimbal control method, device, and gimbal
US17/397,641 US11852958B2 (en) 2016-12-30 2021-08-09 Gimbal control method, device, and gimbal
US18/390,998 US20240118594A1 (en) 2016-12-30 2023-12-20 Gimbal control method, device, and gimbal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113475 WO2018120012A1 (zh) 2016-12-30 2016-12-30 云台控制方法、装置及云台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/457,123 Continuation US11086202B2 (en) 2016-12-30 2019-06-28 Gimbal control method, device, and gimbal

Publications (1)

Publication Number Publication Date
WO2018120012A1 true WO2018120012A1 (zh) 2018-07-05

Family

ID=59927658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113475 WO2018120012A1 (zh) 2016-12-30 2016-12-30 云台控制方法、装置及云台

Country Status (4)

Country Link
US (3) US11086202B2 (zh)
EP (2) EP3564574B1 (zh)
CN (2) CN107223220B (zh)
WO (1) WO2018120012A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889729A4 (en) * 2018-11-28 2022-07-13 SZ DJI Technology Co., Ltd. ORDERING METHOD FOR GIMBAL, GIMBAL, MOBILE PLATFORM AND COMPUTER READABLE DATA MEDIA

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107223220B (zh) * 2016-12-30 2019-04-16 深圳市大疆灵眸科技有限公司 云台控制方法、装置及云台
WO2019134154A1 (zh) 2018-01-06 2019-07-11 深圳市大疆创新科技有限公司 非正交云台的控制方法及其云台和存储装置
WO2019205034A1 (zh) * 2018-04-25 2019-10-31 深圳市大疆创新科技有限公司 云台位姿修正方法和装置
CN116880574A (zh) * 2018-05-24 2023-10-13 深圳市大疆创新科技有限公司 云台控制方法和装置
CN108762325A (zh) * 2018-05-28 2018-11-06 长春博信光电子有限公司 云台移动速度的控制方法、装置及云台
CN110914781A (zh) * 2018-07-27 2020-03-24 深圳市大疆创新科技有限公司 云台的控制方法及控制装置、云台、移动小车
WO2020062298A1 (zh) * 2018-09-30 2020-04-02 深圳市大疆创新科技有限公司 云台及其控制方法、可移动平台
CN110352394A (zh) * 2018-09-30 2019-10-18 深圳市大疆创新科技有限公司 云台的控制方法、云台、移动平台和计算机可读存储介质
CN109947138A (zh) * 2019-03-29 2019-06-28 西安工业大学 云台控制方法及云台
WO2020220159A1 (zh) * 2019-04-28 2020-11-05 深圳市大疆创新科技有限公司 一种无人机的控制方法、设备、无人机、***及存储介质
CN112154398A (zh) * 2019-08-01 2020-12-29 深圳市大疆创新科技有限公司 云台控制方法、控制器、云台、无人移动平台和存储介质
WO2024060105A1 (zh) * 2022-09-21 2024-03-28 深圳市大疆创新科技有限公司 控制方法、云台、云台***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054859B2 (ja) * 2003-09-05 2008-03-05 日本マイクロシステムズ株式会社 動体監視装置
EP1912431A2 (de) * 2006-10-09 2008-04-16 Funkwerk plettac electronic GmbH Verfahren und Vorrichtung zur Steuerung einer schwenkbaren Kamera
CN101291428A (zh) * 2008-05-30 2008-10-22 上海天卫通信科技有限公司 自动视角配置的全景视频监控***和方法
CN101916119A (zh) * 2010-07-28 2010-12-15 山东神戎电子股份有限公司 分体式云台的自动跟随控制***及方法
CN103105858A (zh) * 2012-12-29 2013-05-15 上海安维尔信息科技有限公司 在固定相机和云台相机间进行目标放大、主从跟踪的方法
CN103148324A (zh) * 2013-03-15 2013-06-12 崔新巍 车载自平衡摄像云台
CN103309357A (zh) * 2013-06-25 2013-09-18 西安康柏自动化工程有限责任公司 一种二自由度激光扫描方法及中空式数控云台
CN103841313A (zh) * 2012-11-27 2014-06-04 华为技术有限公司 云台摄像机控制方法、***及设备

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147674A (en) * 1995-12-01 2000-11-14 Immersion Corporation Method and apparatus for designing force sensations in force feedback computer applications
US7027032B2 (en) * 1995-12-01 2006-04-11 Immersion Corporation Designing force sensations for force feedback computer applications
US6169540B1 (en) * 1995-12-01 2001-01-02 Immersion Corporation Method and apparatus for designing force sensations in force feedback applications
US6020876A (en) * 1997-04-14 2000-02-01 Immersion Corporation Force feedback interface with selective disturbance filter
US5963749A (en) * 1998-02-09 1999-10-05 Nicholson; Lynn Self-leveling invertible camera stabilizer
US20050052531A1 (en) * 2003-09-04 2005-03-10 Chapman/Leonard Studio Equipment Stabilized camera platform system
US8179078B2 (en) * 2005-04-27 2012-05-15 Sidman Adam D Handheld or vehicle-mounted platform stabilization system
US20070070185A1 (en) * 2005-09-27 2007-03-29 Dy Lady C System and method for remote display of security video images
CN201876733U (zh) * 2010-09-29 2011-06-22 林晓尧 云台摄像机遥控装置
CN103246290B (zh) * 2012-02-01 2015-09-30 深圳中兴力维技术有限公司 一种云台控制方法及其***
CN102662404A (zh) * 2012-03-31 2012-09-12 天津九安医疗电子股份有限公司 一种云台控制装置及云台的控制方法
US8908090B2 (en) * 2013-03-15 2014-12-09 Freefly Systems, Inc. Method for enabling manual adjustment of a pointing direction of an actively stabilized camera
CN103672340A (zh) * 2013-12-05 2014-03-26 张锦海 一种手持三轴拍摄云台
CN107352038B (zh) * 2014-03-14 2019-09-06 深圳市大疆灵眸科技有限公司 云台的控制方法及云台的控制***
DK3139239T3 (en) * 2014-04-30 2019-04-15 Sz Dji Osmo Technology Co Ltd Control unit, cradle head for use and cradle control method
CN204372498U (zh) * 2014-11-28 2015-06-03 昆山优力电能运动科技有限公司 云台手持架
CN104486543B (zh) * 2014-12-09 2020-11-27 北京时代沃林科技发展有限公司 智能终端触控方式控制云台摄像头的***
JP6430661B2 (ja) * 2015-04-02 2018-11-28 エスゼット ディージェイアイ オスモ テクノロジー カンパニー リミテッドSZ DJI Osmo Technology Co., Ltd. 安定プラットホーム、並びにその追従制御システム及び方法
US9243741B1 (en) * 2015-04-20 2016-01-26 Intellectual Fortress, LLC Telescoping monopod apparatus for holding photographic instrument
CN104967827A (zh) * 2015-07-03 2015-10-07 北京旷视科技有限公司 一种摄像装置及其控制方法
CN204901238U (zh) * 2015-08-27 2015-12-23 深圳市大疆创新科技有限公司 云台
CN105090695B (zh) * 2015-09-29 2018-01-16 深圳市大疆灵眸科技有限公司 手柄云台及其控制方法
CN105352604A (zh) * 2015-11-02 2016-02-24 上海电力学院 基于可见光图像配准的红外测温***云台位置校准方法
CN105468028A (zh) * 2015-12-26 2016-04-06 武汉智能鸟无人机有限公司 一种用摇杆实现运动控制的手持云台
CN105676880A (zh) * 2016-01-13 2016-06-15 零度智控(北京)智能科技有限公司 一种云台摄像装置的控制方法及***
WO2017143595A1 (en) * 2016-02-26 2017-08-31 Sz Dji Osmo Technology Co., Ltd. Method and system for stabilizing a payload
CN205716353U (zh) * 2016-04-15 2016-11-23 深圳市大疆创新科技有限公司 手持云台结构及拍摄装置
CN113311878A (zh) * 2016-05-31 2021-08-27 深圳市大疆灵眸科技有限公司 用于自适应云台的方法和***
CN106125769A (zh) * 2016-07-22 2016-11-16 南阳理工学院 一种无线头部运动随动***设计方法
WO2018107330A1 (en) * 2016-12-12 2018-06-21 SZ DJI Technology Co., Ltd. Method and system for stabilizing a payload
CN107223220B (zh) * 2016-12-30 2019-04-16 深圳市大疆灵眸科技有限公司 云台控制方法、装置及云台
CN110312913A (zh) * 2017-03-24 2019-10-08 深圳市大疆灵眸科技有限公司 用于自适应云台的方法和***
CN108496137B (zh) * 2017-04-21 2022-05-31 深圳市大疆灵眸科技有限公司 遥控器、云台及云台控制方法、装置、***
WO2019056381A1 (zh) * 2017-09-25 2019-03-28 深圳市大疆灵眸科技有限公司 云台的控制方法、云台控制器及云台
JP7024155B2 (ja) * 2018-01-05 2022-02-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド ジンバル制御方法、ジンバル、及びコンピュータプログラム
EP3736653B1 (en) * 2018-01-05 2023-03-01 SZ DJI Technology Co., Ltd. Handheld gimbal control method and handheld gimbal
WO2019134154A1 (zh) * 2018-01-06 2019-07-11 深圳市大疆创新科技有限公司 非正交云台的控制方法及其云台和存储装置
WO2020062298A1 (zh) * 2018-09-30 2020-04-02 深圳市大疆创新科技有限公司 云台及其控制方法、可移动平台
CN110352394A (zh) * 2018-09-30 2019-10-18 深圳市大疆创新科技有限公司 云台的控制方法、云台、移动平台和计算机可读存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054859B2 (ja) * 2003-09-05 2008-03-05 日本マイクロシステムズ株式会社 動体監視装置
EP1912431A2 (de) * 2006-10-09 2008-04-16 Funkwerk plettac electronic GmbH Verfahren und Vorrichtung zur Steuerung einer schwenkbaren Kamera
CN101291428A (zh) * 2008-05-30 2008-10-22 上海天卫通信科技有限公司 自动视角配置的全景视频监控***和方法
CN101916119A (zh) * 2010-07-28 2010-12-15 山东神戎电子股份有限公司 分体式云台的自动跟随控制***及方法
CN103841313A (zh) * 2012-11-27 2014-06-04 华为技术有限公司 云台摄像机控制方法、***及设备
CN103105858A (zh) * 2012-12-29 2013-05-15 上海安维尔信息科技有限公司 在固定相机和云台相机间进行目标放大、主从跟踪的方法
CN103148324A (zh) * 2013-03-15 2013-06-12 崔新巍 车载自平衡摄像云台
CN103309357A (zh) * 2013-06-25 2013-09-18 西安康柏自动化工程有限责任公司 一种二自由度激光扫描方法及中空式数控云台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564574A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889729A4 (en) * 2018-11-28 2022-07-13 SZ DJI Technology Co., Ltd. ORDERING METHOD FOR GIMBAL, GIMBAL, MOBILE PLATFORM AND COMPUTER READABLE DATA MEDIA

Also Published As

Publication number Publication date
US11852958B2 (en) 2023-12-26
CN107223220A (zh) 2017-09-29
EP3564574A1 (en) 2019-11-06
US11086202B2 (en) 2021-08-10
EP3564574A4 (en) 2020-08-19
EP3564574B1 (en) 2021-11-10
US20210364895A1 (en) 2021-11-25
CN109885105A (zh) 2019-06-14
US20240118594A1 (en) 2024-04-11
US20190339594A1 (en) 2019-11-07
CN109885105B (zh) 2022-04-19
CN107223220B (zh) 2019-04-16
EP3954934A1 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
WO2018120012A1 (zh) 云台控制方法、装置及云台
JP6334576B2 (ja) 能動的に安定化させたカメラのポインティング制御を可能にするための方法及びシステム
WO2017206072A1 (zh) 云台控制方法、装置和云台
WO2018098784A1 (zh) 无人机的控制方法、装置、设备和无人机的控制***
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
JP6430661B2 (ja) 安定プラットホーム、並びにその追従制御システム及び方法
WO2019227441A1 (zh) 可移动平台的拍摄控制方法和设备
WO2019134154A1 (zh) 非正交云台的控制方法及其云台和存储装置
CN108780324B (zh) 无人机、无人机控制方法和装置
WO2020042152A1 (zh) 手持云台的控制方法、手持云台及图像获取设备
WO2018148906A1 (zh) 云台参数的配置方法、装置及云台
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
WO2019227384A1 (zh) 一种云台控制方法及云台
JP2017522588A (ja) 撮像制御方法、装置および雲台装置
CN112334855A (zh) 云台***的校准方法、装置、云台***和计算机可读介质
WO2020062298A1 (zh) 云台及其控制方法、可移动平台
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2023010318A1 (zh) 云台控制方法、装置、云台和存储介质
WO2021134644A1 (zh) 云台的控制方法和云台
CN108519067B (zh) 摄像机移轴操作过程中确定拍摄目标坐标的方法
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2019104684A1 (zh) 无人机的控制方法、装置和***
WO2022061534A1 (zh) 拍摄控制方法、装置、云台、跟焦器电机及存储介质
JP2020020878A (ja) 移動体、合焦制御方法、プログラム、及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016925751

Country of ref document: EP

Effective date: 20190730