WO2020062298A1 - 云台及其控制方法、可移动平台 - Google Patents

云台及其控制方法、可移动平台 Download PDF

Info

Publication number
WO2020062298A1
WO2020062298A1 PCT/CN2018/109207 CN2018109207W WO2020062298A1 WO 2020062298 A1 WO2020062298 A1 WO 2020062298A1 CN 2018109207 W CN2018109207 W CN 2018109207W WO 2020062298 A1 WO2020062298 A1 WO 2020062298A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
attitude
pan
joint angle
tilt
Prior art date
Application number
PCT/CN2018/109207
Other languages
English (en)
French (fr)
Inventor
刘帅
谢振生
刘力源
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880040630.8A priority Critical patent/CN110770671A/zh
Priority to PCT/CN2018/109207 priority patent/WO2020062298A1/zh
Publication of WO2020062298A1 publication Critical patent/WO2020062298A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • the invention relates to the field of PTZ control, in particular to a PTZ, a control method thereof, and a movable platform.
  • the movement of the gimbal is usually controlled by a remote controller.
  • a joystick or a pulsator is provided on the remote controller.
  • the user sends a motion instruction to the gimbal by controlling the joystick or the pulsator.
  • the drive motor drives the corresponding shaft arm to rotate, displace, etc.
  • due to the unstable strength of the user to control the joystick or the pulsator it is usually difficult to control the PTZ movement to the desired attitude in one operation, and it may be necessary to perform repeated operations to adjust, the operation is complicated, and the positioning accuracy is not high enough.
  • the invention provides a gimbal, a control method thereof, and a movable platform.
  • the present invention is implemented by the following technical solutions:
  • a method for controlling a pan / tilt head includes:
  • the working parameters of the pan / tilt include a desired attitude of the pan / tilt
  • the pan-tilt head attitude is determined based on the desired attitude and the real-time posture of the pan-tilt head when the pan-tilt head is manually moved. Conversion speed
  • a pan / tilt head including: an inertial measurement unit IMU and a processor, wherein the processor and the inertial measurement unit IMU are respectively electrically connected, and the processor is configured to:
  • the working parameters of the pan / tilt include a desired attitude of the pan / tilt
  • the pan-tilt head attitude is determined based on the desired attitude and the real-time posture of the pan-tilt head when the pan-tilt head is manually moved. Conversion speed
  • a movable platform including: a gimbal and a processor.
  • the gimbal includes an inertial measurement unit IMU, the processor is electrically connected to the inertial measurement unit IMU, and the processing For:
  • the working parameters of the pan / tilt include a desired attitude of the pan / tilt
  • the pan-tilt head attitude is determined based on the desired attitude and the real-time posture of the pan-tilt head when the pan-tilt head is manually moved. Conversion speed
  • the operation process is simple and intuitive, and the positioning accuracy is high; and, the desired attitude is controlled by the attitude conversion speed determined by the desired attitude and the real-time attitude of the PTZ when manipulating the PTZ.
  • the attitude method can make the gimbal more smoothly follow the movement of the gimbal when manpower moves the gimbal, and the gimbal's attitude conversion speed can be adjusted in real time, which is helpful to avoid the gimbal's movement to the real-time attitude Situation, the user experience is better.
  • FIG. 1 is a schematic diagram of the working principle of a three-axis head
  • FIG. 2 is a method flowchart of a method for controlling a pan / tilt according to an embodiment of the present invention
  • FIG. 3 is a specific method flowchart of a PTZ control method according to an embodiment of the present invention.
  • 4A is a method flowchart of a first implementation manner of a gimbal control method according to an embodiment of the present invention
  • FIG. 4B is another method flowchart of the first implementation of the PTZ control method according to an embodiment of the present invention.
  • 5A is a method flowchart of a second implementation manner of a gimbal control method according to an embodiment of the present invention
  • FIG. 5B is another method flowchart of the second implementation of the PTZ control method according to an embodiment of the present invention.
  • 6A is a method flowchart of a third implementation manner of a gimbal control method according to an embodiment of the present invention.
  • 6B is another method flowchart of a third implementation manner of the PTZ control method according to an embodiment of the present invention.
  • FIG. 7 is another specific method flowchart of a PTZ control method according to an embodiment of the present invention.
  • FIG. 8 is a specific structural block diagram of a gimbal in an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a movable platform in an embodiment of the present invention.
  • the PTZ in the embodiment of the present invention may be a handheld PTZ or a PTZ carried by a mobile platform.
  • Movable platforms may include, for example, drones, unmanned vehicles, unmanned ships, and the like.
  • the above-mentioned head usually includes a shaft arm and a motor, and the motor is used for driving the shaft arm to rotate.
  • the motor may include at least one of the following: a yaw axis motor, a pitch axis motor, and a roll axis motor, and the shaft arm correspondingly includes at least one of a yaw axis axis arm, a pitch axis axis arm, and a roll axis axis arm.
  • the three-axis gimbal includes three axis arms and motors that drive the rotation of the three axis arms, respectively.
  • the three axis arms are the pitch axis axis arm and the roll axis axis arm.
  • yaw axis shaft arm is the pitch axis axis arm and the roll axis axis arm.
  • the pan / tilt head When controlling the above-mentioned pan / tilt head to change the desired attitude, it can drive loads mounted on the pan / tilt head, such as camera equipment, shooting device, detection device, and the like. For example, the pan / tilt drives the camera or camcorder to move in one or more directions to achieve a wide range of shooting.
  • a user controls a PTZ to change a desired posture through a remote control device, such as a remote control joystick or a pulsator.
  • the operation process is complicated and the positioning accuracy is not high enough. Therefore, in the embodiment of the present invention, a manner in which a user manually moves the pan / tilt head is provided, so that the pan / tilt head can quickly and accurately move to a desired posture.
  • a three-axis head shown in FIG. 1 includes a processor, a three-axis motor, a three-axis arm, an IMU (Inertial Measurement Unit), and an integrator.
  • the above-mentioned three-axis gimbal can form a closed-loop PI (proportional, integral) control system by using a gyroscope constituting an IMU as a feedback element and a three-axis motor as an output element.
  • PI Proportional, integral
  • the measurement attitude (ie, real-time attitude) of the gimbal is obtained through the IMU, and the offset between the measured attitude and the desired attitude is used as the control deviation.
  • the processor controls the input current of the three-axis motor according to the input control deviation.
  • the three-axis motor is driven to work.
  • the output torque of the three-axis motor drives the three-axis shaft arm to rotate.
  • the measurement attitude of the gimbal changes further.
  • the gimbal moves to the desired attitude. That is, the pan / tilt can detect periodically and cyclically, and can make the current measurement attitude be a desired attitude.
  • the desired gesture may be input by a user or set in advance.
  • the current desired attitude is the measured attitude when the pantilon is manually moved by measuring the offset between the measured attitude and the desired attitude. That is, in the embodiment of the present invention, the measurement attitude is used as the current attitude to control the rotation of the PTZ, and the desired attitude of the PTZ (that is, the expected attitude when the manipulator moves the platform in the previous closed loop) is used as the current control. Measurement attitude of gimbal rotation.
  • the attitude conversion speed can be matched with the control deviation, for example, the attitude conversion speed and the control deviation can be positively correlated.
  • FIG. 2 is a method flowchart of a PTZ control method according to an embodiment of the present invention.
  • the method for controlling a pan / tilt in this embodiment includes, but is not limited to, the following steps:
  • Step S201 Obtain the working parameters of the gimbal.
  • the working parameters of the gimbal include a desired attitude of the gimbal.
  • the working parameters of the gimbal in the embodiment of the present invention may further include: a desired torque of the motor, or a joint angle error of the gimbal.
  • the above two parameters of joint angle error and expected torque usually have a positive correlation.
  • the desired torque of the motor is determined by the desired attitude and the real-time attitude (the real-time attitude of the gimbal when the manipulator moves the gimbal). Specifically, the desired torque of the motor is the amount of torque required by the gimbal to move from the real-time attitude to the desired attitude motor.
  • the joint angle error of the gimbal is also determined by the expected attitude and real-time attitude.
  • the joint angle error is the difference between the joint angle corresponding to the desired attitude and the joint angle corresponding to the real-time attitude, where the real-time attitude is obtained by the inertial measurement unit IMU on the gimbal. It can be understood that when the joint angle is determined by the posture, if there are multiple solutions, a unique solution should be determined as the joint angle corresponding to the posture.
  • the head can be a single-axis, two-axis or three-axis head.
  • the gimbal can rotate around the pitch axis, roll axis, and yaw axis, and its attitude can correspond to the pitch axis, roll axis, and yaw axis.
  • the joint angle error corresponding to each axis in the desired attitude and the real-time attitude can be calculated to determine whether the axis arm corresponding to each axis in the gimbal has been manually pushed, and then the axis arm corresponding to each axis is Corresponding control.
  • the desired attitude is the attitude before the manual movement of the PTZ, that is, if the PTZ is in the initial startup state before the manual movement, the expected attitude is the initial attitude of the PTZ.
  • the expected attitude is the expected attitude at the last closed loop, that is, the real-time attitude after the last closed loop. Understandably, the desired attitude can change.
  • Step S202 if it is detected that the working parameters match the preset maneuvering pan / tilt head conditions, determine the attitude conversion speed of the pan / tilt according to the desired posture and the real-time posture of the pan / tilt when the panning is manually performed;
  • the arm of the gimbal has reached the position where the manipulator moves under the action of the manipulator.
  • the attitude conversion speed is the magnitude of the gradient of the PTZ's conversion from the desired attitude to the real-time attitude.
  • the axis of the PTZ will not rotate any more, which achieves the effect that the PTZ can be stopped by the user.
  • the parameter values of the detected working parameters will be significantly different. Therefore, the working parameters can be used as the basis for judging the pan / tilt manually.
  • the working parameters of the pan / tilt are usually larger than those when the pan / tilt is controlled by the remote control.
  • the working parameters of the pan / tilt are usually larger than those through the remote control.
  • the working parameters when controlling the PTZ but the difference between manually touching the PTZ and manual PTZ is that the duration of the parameter value of the former is less than that of the latter.
  • the working parameter in step S201 further includes a desired torque.
  • This embodiment can detect whether the absolute value of the desired torque is greater than or equal to the torque threshold. If the absolute value of the desired torque is greater than or equal to the torque threshold , It can be determined that a manual pan-tilt head is detected; if the absolute value of the desired torque is less than a torque threshold, a current non-human pan-tilt head can be determined.
  • the expected torque is compared with the torque threshold. If the desired torque is greater than or equal to the torque threshold, it may be determined that the absolute value of the detected desired torque is greater than or equal to the torque threshold. In other embodiments, the expected torque is compared with the inverse number of the torque threshold (that is, the negative value of the torque threshold), and if the expected torque is less than or equal to the inverse number of the torque threshold, the absolute value of the detected desired torque may be determined. Greater than or equal to the torque threshold.
  • the joint angle error determines whether to compare the expected torque with the torque threshold or the expected torque and the torque.
  • the opposite numbers of the thresholds are compared.
  • the joint angle error when the joint angle error is positive, the expected torque is compared with the torque threshold; when the joint angle error is negative, the expected torque is compared with the opposite number of the torque threshold. For example, in the case where the joint angle is calculated using posture and the joint angle can be uniquely determined, if the joint angle corresponding to the desired posture is 0 °, the joint angle corresponding to the real-time posture is 5 °, and the joint angle error is -5 °.
  • the angular error is negative and the expected torque can be compared to the opposite of the torque threshold.
  • the joint angle corresponding to the desired posture is 0 °
  • the joint angle corresponding to the real-time posture is -5 °
  • the joint angle error is 5 °
  • the joint angle error is a positive number.
  • the expected torque can be compared with the torque threshold.
  • the direction of the manual pan-tilt head is determined based on the expected attitude and the real-time posture. Assuming that the difference between the attitude angle corresponding to the desired attitude and the attitude angle corresponding to the real-time posture is positive, the manual pan-tilt head When the direction of is the first movement direction, and the difference between the attitude angle corresponding to the desired attitude and the attitude angle corresponding to the real-time attitude is negative, the direction of the manual movement of the gimbal is regarded as the second movement direction.
  • the desired torque can be compared with the torque threshold; or / and when the direction of the manual movement of the pan-tilt head is the second movement direction, the desired torque can be compared.
  • the torque is compared to the inverse of the torque threshold.
  • the comparison result of the expected torque and the torque threshold may not be determined according to the direction of the manipulator to move the gimbal. For example, if you are not sure about the direction of the manual movement of the gimbal, you can compare the expected torque with the torque threshold and the opposite of the torque threshold in order to determine whether the desired torque is greater than the torque threshold or smaller than the opposite of the torque threshold. Or it is located between the torque threshold and the opposite value of the torque threshold, and then it can also detect whether there is any manual movement of the gimbal.
  • the torque value of the gimbal is usually greater than the torque value when the gimbal is controlled by the remote control.
  • the torque threshold value of this embodiment is preset according to the temperature protection strategy of the motor, and the torque threshold value is a lower limit value for judging the torque value when the manipulator moves the pan / tilt head.
  • the torque threshold will not be changed.
  • the preset torque threshold can be directly obtained.
  • the torque threshold is adjusted in real time according to the temperature protection strategy of the motor, that is, in the process of manually manipulating the pan / tilt to control the desired attitude of the pan / tilt, the torque threshold is changed to meet different requirements.
  • the expected torque of the gimbal is usually greater than the torque when the gimbal is controlled by the remote control. Is shorter than the latter. Therefore, in this embodiment, in order to avoid detecting that the human head accidentally touches the pan / tilt head, a time length can be set in advance for judging whether the absolute value of the desired torque continues to be greater than or equal to the torque threshold in a continuous period of time, thereby avoiding human error Touching the pan / tilt head is also determined as a manual pan / tilt head to improve the accuracy of the detection of the manual pan / tilt head.
  • the absolute value of the desired torque is greater than or equal to the torque threshold, if the expected torque is greater than or equal to the torque threshold at the 100th test in the next 1 second, then the manual pan / tilt is considered to be manual.
  • the torque threshold is considered to be an unmanned throb. If the absolute value of the desired torque is greater than or equal to the torque threshold is detected next time, the timing is restarted.
  • the joint angle errors when the joint angle errors are all positive within a preset period of time, it is determined whether the expected torque within the preset period of time is greater than or equal to the torque threshold, and if both are greater than or equal to the torque threshold, it may be determined It is detected that the absolute value of the desired torque within a preset time period is greater than or equal to the torque threshold.
  • the preset time period when the joint angle errors are all negative, it is judged whether the expected torque in the preset time period is less than or equal to the opposite number of the torque threshold. If both are less than or equal to the opposite number of the torque threshold, it is OK It is determined that the absolute value of the expected torque within a preset time period is greater than or equal to the torque threshold.
  • the preset duration can be set according to actual requirements, for example, 0.5 seconds, 1 second, 1.5 seconds, 2 seconds, 2.5 seconds, 3 seconds, and so on.
  • the detection may be determined.
  • the absolute value of the expected torque within the preset time period is greater than or equal to the torque threshold; or / and, when the direction of the manual movement of the pan / tilt is the second movement direction, it is determined whether the expected torque is uniform in the preset time period. Less than or equal to the opposite number of the torque threshold, and if both are less than or equal to the opposite number of the torque threshold, it can be determined that the absolute value of the expected torque within a preset time period is greater than or equal to the torque threshold.
  • the working parameters in step S201 further include joint angle errors.
  • This embodiment can detect whether the absolute value of the joint angle error is greater than or equal to the joint angle threshold. If the absolute value of the joint angle error is greater than Or equal to the joint angle threshold, it can be determined that a manual panning head is detected; if the absolute value of the joint angle error is less than the joint angle threshold, the current non-human panning head can be determined.
  • the joint angle error can be preset according to the actual situation. For example, the joint angle threshold is 1 °.
  • the absolute value of the joint angle error is greater than or equal to 1 °, it is determined that a manual panning head is detected; when the absolute value of the joint angle error is absolute, When the value is less than 1 °, it is determined that the human head accidentally touches the gimbal or other factors cause a small joint angle change of the gimbal.
  • the joint angle error is compared with the joint angle threshold. If the joint angle error is greater than or equal to the joint angle threshold, it can be determined that the absolute value of the detected joint angle error is greater than or equal to the joint angle threshold. In other embodiments, the joint angle error is compared with the opposite number of the joint angle threshold (that is, the negative number of the joint angle threshold). If the joint angle error is less than or equal to the opposite number of the joint angle threshold, it may be determined that the joint angle error is detected. The absolute value of the joint angle error is greater than or equal to the joint angle threshold.
  • the joint angle error determines whether to compare the joint angle error with the joint angle threshold or the joint angle.
  • the error is compared to the opposite number of the joint angle threshold.
  • the joint angle error is a positive number
  • the joint angle error is compared with a joint angle threshold
  • the joint angle error is compared with an opposite number of the joint angle threshold.
  • the joint angle corresponding to the desired posture is 0 °
  • the joint angle corresponding to the real-time posture is 5 °
  • the joint angle error is -5 °.
  • the angular error is negative
  • the joint angle error needs to be compared with the opposite number of the joint angle threshold.
  • the joint angle corresponding to the desired posture is 0 °
  • the joint angle corresponding to the real-time posture is -5 °
  • the joint angle error is 5 °
  • the joint angle error is a positive number.
  • the joint angle error needs to be compared with the joint angle threshold.
  • the direction of the manual pan-tilt head is determined according to the desired attitude and the real-time attitude. Assuming that the difference between the attitude angle corresponding to the desired attitude and the attitude angle corresponding to the real-time attitude is positive, the When the direction is the first panning direction, and the difference between the attitude angle corresponding to the desired posture and the attitude angle corresponding to the real-time posture is negative, the direction of the panning head manually is the second panning direction.
  • the joint angle error is compared with the joint angle threshold; or / and when the direction of the manual panning head is the second panning direction, the joint is The angular error is compared to the inverse of the joint angle threshold.
  • the comparison result of the joint angle error and the joint angle threshold value may not be determined according to the direction of the manual movement of the pan / tilt head.
  • the direction of the manual pan / tilt head is uncertain, but the joint angle error is compared with the joint angle threshold and the opposite number of the joint angle threshold in order to determine whether the joint angle error is greater than the joint angle threshold or smaller than the joint angle.
  • the opposite number of the threshold value, or between the opposite value of the joint angle threshold value and the joint angle threshold value can further detect whether there is a manual movement of the pan / tilt.
  • the joint angle error of the gimbal is usually greater than the joint angle when the gimbal is controlled by the remote control.
  • the difference between a human touched by the gimbal and a manual movement of the gimbal is that the former is greater than the joint angle.
  • the duration of the threshold joint angle is smaller than the latter.
  • a time length can be set in advance to determine whether the absolute value of the joint angle error is continuously greater than or equal to the joint angle threshold in a continuous period of time, thereby avoiding the Manually touching the pan / tilt is also determined as a manual pan / tilt to improve the accuracy of detecting the manual pan / tilt.
  • whether the absolute value of the joint angle error within a preset time period is greater than or equal to the joint angle threshold value can be detected, and if both are greater than or equal to the joint angle threshold value, it can be determined that a manual movement pan / tilt head is detected.
  • the absolute value of the joint angle error is greater than or equal to the duration of the joint angle threshold and reaches a preset duration, it is considered that the panic head is manually moved. It can be assumed that the detection period of the joint angle error is 0.001 second / time, and the preset duration is 1 s.
  • the absolute value of the joint angle error detected 1000 times is greater than or equal to the joint angle threshold, and in the next 1 second and 1001 detections, if the joint angle error is greater than or equal to the joint angle threshold, it is considered that the manipulator moves automatically; If the joint angle error is smaller than the joint angle threshold, it is considered that the unmanned pan-tilt head. If the absolute value of the joint angle error is greater than or equal to the joint angle threshold, the timing will be restarted.
  • the joint angle errors when the joint angle errors are all positive within a preset time period, it is determined whether the joint angle errors within the preset time period are all greater than or equal to the joint angle threshold. If both are greater than or equal to the joint angle threshold, It can be determined that the absolute value of the joint angle error within a preset time period is greater than or equal to the joint angle threshold.
  • the joint angle errors are all negative within a preset time period, determine whether the joint angle errors within the preset time period are all less than or equal to the opposite number of the joint angle threshold, and if they are all less than or equal to the opposite number of the joint angle threshold , It can be determined that the absolute value of the joint angle error within a preset period of time is greater than or equal to the joint angle threshold.
  • the preset duration can be set according to actual requirements, for example, 0.5 seconds, 1 second, 1.5 seconds, 2 seconds, 2.5 seconds, 3 seconds, and so on.
  • the direction of the manual panning head is the first panning direction
  • the working parameter in step S201 may also include both the expected torque and the joint angle error.
  • This embodiment can detect whether the absolute value of the desired torque is greater than or equal to the torque threshold, and detect the joint angle error. Whether the absolute value of is greater than or equal to the joint angle threshold, and if the absolute value of the desired torque is greater than or equal to the torque threshold, and the absolute value of the joint angle error is greater than or equal to the joint angle threshold, it is determined that a manual throbbing head is detected.
  • the detection period of the expected torque and joint angle error is 0.001 second / time, and the preset duration is 1 s. If within 1 s, the absolute value of the expected torque is greater than or equal to the torque threshold value 1000 times, and the absolute value of the joint angle error is greater than or equal to the joint angle threshold value 1000 times. If the torque threshold is greater than or equal to the threshold value and the joint angle error is greater than or equal to the joint angle threshold value, the head is considered to be manual; but if the expected torque is less than the torque threshold, or if the joint angle error is less than the threshold value, the head is considered to be unmanned. When the absolute value of the expected torque is greater than or equal to the torque threshold is detected next time, and the absolute value of the joint angle error is greater than or equal to the joint angle threshold, the timing is restarted.
  • step S202 based on the desired attitude and the real-time attitude of the gimbal when the manipulator moves the gimbal, the time of the attitude conversion speed of the gimbal is determined.
  • the joint angle error of the gimbal is determined according to the desired attitude and the real-time attitude of the gimbal when the manipulator is moved by the gimbal; the speed of the attitude conversion of the gimbal is determined according to the joint angle error and a preset coefficient.
  • the preset coefficient is determined by the number of time detection cycles and the gain coefficient. The size of the number of time detection cycles can be set according to a preset duration.
  • the gain factor can be large, for example, the gain factor can be 10.
  • the attitude conversion speed of the gimbal determined in step 202 is the joint angular velocity, and the change in the desired attitude of the gimbal is actually controlled by the Euler angular velocity.
  • the joint angular velocity determined in step 202 may be directly used as the Euler angular velocity of the gimbal.
  • the process of determining the attitude conversion speed of the gimbal according to the joint angle error and a preset time coefficient specifically includes:
  • Step S701 Determine the first angular velocity of the gimbal in the gimbal joint angle coordinate system according to the joint angle error and the preset coefficient;
  • the first angular velocity W i -joint angle error / predetermined coefficient.
  • W i -joint angle error / time detection cycles * Gain factor.
  • Step S702 According to the conversion relationship between the joint angle coordinate system of the gimbal and the coordinate system of the gimbal body, convert the first angular velocity to the second angular velocity of the gimbal on the gimbal body coordinate system;
  • W b R j-> b * W i ;
  • R j-> b (Jacobian matrix) to convert the joint angle relationship between the head body and the head coordinate system coordinates, R j-> b determined by the configuration of the head, the head of the different configuration , R j-> b is different.
  • the yaw axis motor is used to drive the yaw axis axis arm to rotate to drive the roll axis motor and the roll axis axis arm, the pitch axis motor and the pitch axis axis arm and the camera to rotate, and the roll axis motor is used to drive the roll
  • the pivot axis arm rotates to drive the pitch axis motor and the pitch axis axis arm and the camera to rotate.
  • the pitch axis motor is used to drive the pitch axis axis arm to rotate to drive the camera.
  • the rotation axes of the three joint angles are:
  • V inny, V midx, V outz respectively pitch joint angle, joint angular roll, yaw axis rotation axis of the joint angle.
  • V inny, V midx, V outz head body are converted to the coordinate system:
  • R y ', R x' , R z ' respectively, corresponding to R y, R x, R z transpose;
  • R y, R x, R z are joint angle coordinate system around Y axis (i.e., pitch axis), Rotation matrix from X axis (ie roll axis), Z axis (ie yaw axis) to the reference coordinate system.
  • R y , R x , R z can be as follows:
  • the reference coordinate system is a coordinate system with a joint angle of 0, and A is a conversion angle of the joint angle coordinate system to the reference coordinate system.
  • inn_joint_rad is the joint angle of the inner frame
  • mid_jo int_rad is the joint angle of the middle frame.
  • Step S703 convert the second angular velocity into the Euler angular velocity according to the conversion relationship between the coordinate system of the gimbal body and the Euler coordinate system;
  • R b-> ⁇ is the conversion relationship between the gimbal body coordinate system and Euler coordinate system
  • inn_euler_rad is the Euler angle of the inner frame
  • mid_euler_rad is the Euler angle of the middle frame
  • the Euler angle of the inner frame and the Euler angle of the middle frame are the expected Euler angles of the gimbal at the last closed loop, that is, at the end of the last closed loop Real-time attitude of the gimbal.
  • the joint angle of the middle frame is 40 degrees
  • the joint angle of the inner frame is 40 degrees
  • the Euler angle of the inner frame is 10
  • the Euler angle of the middle frame is 0,
  • the joint angular velocity (that is, the first The angular velocity) is [0,0,1].
  • the Euler angular velocity of the gimbal is the joint angular velocity [0,0,1] by default.
  • the Euler angular velocity of the gimbal is [-0.3830, 0.6428, 0.6634]. It can be known that by converting the first angular velocity through the coordinate system of the gimbal body, a more accurate attitude control can be obtained, and the gimbal can stay more accurately at the position when the manpower is pushed to stop.
  • the speed of the corresponding preset axis in the Euler angular velocity can be controlled to be a preset Set value, such as 0.
  • the axis arm corresponding to the preset axis is an axis arm in the gimbal that does not require attitude control. In this way, the torque output of the axis arm for the preset axis can be avoided to prevent the attitude control of other axis arms in the gimbal from being affected due to control saturation.
  • the gimbal is not provided with an axis arm corresponding to a preset axis, that is, the axis arm corresponding to the preset axis may be an axis arm that does not actually exist in the gimbal, such as a roll axis. That is, due to the Euler angle calculation, even if the axis arm corresponding to the preset axis does not exist, the axis arm corresponding to the preset axis may have Euler angular velocity, but the default value is the default value to prevent the motor torque output from being saturated. .
  • the gimbal can be a two-axis gimbal.
  • the arm includes two of a yaw axis arm, a pitch axis arm, and a roll axis arm. After performing step S703, the Euler angular velocity of the other axis arm can be controlled as 0.
  • the other axis arm is a roll axis axis arm; when the axis arm includes a yaw axis axis arm and a roll axis axis arm, the other axis arm Is the pitch axis axis arm; when the axis arm includes the pitch axis axis arm and the roll axis axis arm, the other axis arm is the yaw axis axis arm.
  • Step S704 Determine the Euler angular velocity as the attitude conversion speed of the gimbal.
  • Step S203 Control the desired attitude to a real-time attitude in accordance with the direction of the manipulator and the speed of the attitude conversion.
  • the inertial measurement unit IMU on the gimbal can be used to measure the direction of movement when the human is panning the pan / tilt, and then in the direction of movement, control the expectations in accordance with the attitude conversion speed determined in step S202.
  • the attitude is real-time. In this way, the speed of controlling the desired attitude toward the real-time attitude is related to the offset between the desired attitude of the gimbal and the real-time attitude of the gimbal when the manipulator moves the gimbal, and it can be adjusted in real time according to the offset.
  • the Euler angle corresponding to a certain axis arm in the desired attitude is A
  • the Euler angle corresponding to this axis arm in the real-time attitude is B.
  • A is directly assigned to B, since a posture may correspond to multiple joint angles, then As a result of the direct assignment, the corresponding axis arm in the gimbal is not sure which joint angle it should stay at. As a result, the gimbal may not be able to stay at the end of the user's human power after the human power is pushed. For example, the gimbal may exist Rotate and hit the mechanical limit. If A is gradually converted to B according to the attitude conversion speed and rotation direction, the above problems can be effectively solved.
  • the desired attitude of the PTZ is the real-time attitude of the PTZ when manually panned
  • the current desired attitude if it is detected again that the working parameters match the preset conditions of the manually-moved PTZ, then the current desired attitude, And the real-time attitude of the pan / tilt when the manually detected pan / tilt is detected again, determine the current attitude conversion speed of the pan / tilt, and then control the current according to the direction of the manually detected pan / tilt and the current attitude conversion speed of the pan / tilt.
  • the desired attitude is the real-time attitude of the manual pan-tilt head detected again.
  • the attitude conversion speed of the pan / tilt in this embodiment may be determined by the speed of the manual movement of the pan / tilt.
  • the change in the attitude conversion speed of the head is positively related to the speed of the manual movement of the pan / tilt. For example, when The speed of moving the pan / tilt head changes from slow to fast, so the attitude conversion speed of the pan / tilt head changes from slow to fast.
  • the change in the attitude conversion speed of the pan / tilt head is consistent with the speed change of the manipulator moving the pan / tilt head, so that the head can move smoothly.
  • step S203 is performed after determining that the gimbal is in the over-damping mode.
  • the gimbal is in an over-damped mode, and the gimbal follows the movement of the gimbal when a human moves the gimbal (that is, the gimbal stays at the position corresponding to the real-time posture of the gimbal when the user pushes the gimbal);
  • the pan / tilt will spring back to the position before the pan / tilt. You can choose whether the gimbal is in the over-damped mode or other modes according to the actual needs of users.
  • the pan / tilt when detecting that the working parameters of the pan / tilt match the preset conditions of manually panning the pan / tilt, the pan / tilt is panned according to the direction of the pan / tilt and the desired attitude and manpower
  • the attitude conversion speed determined by the real-time attitude of the PTZ is to control the PTZ to change its desired attitude, so that the PTZ ’s real-time attitude when the PTZ moves to manpower and the existing PTZ control is controlled by the remote control.
  • the operation process is simple and intuitive, and the positioning accuracy is high; and the attitude control speed determined by the attitude conversion speed determined by the real-time attitude of the gimbal when the gimbal is moved manually can control the gimbal's attitude conversion
  • the speed can be adjusted to make the PTZ more smoothly follow the movement of the PTZ when manpower moves the PTZ, and the user experience is better.
  • the second embodiment of the present invention also provides a PTZ.
  • a second embodiment of the present invention provides a pan / tilt head.
  • the pan / tilt head may include: an inertial measurement unit IMU1 and a processor 2.
  • the processor 2 is electrically connected to the inertial measurement unit IMU2.
  • the processor 2 in this embodiment is configured to execute the PTZ control method shown in FIG. 2 to FIG. 7.
  • the processor 2 is configured to: obtain the working parameters of the gimbal, and the working parameters of the gimbal include the expected attitude of the gimbal; if it is detected that the working parameters match the preset manual movement of the gimbal conditions, according to the expected attitude
  • the manipulator moves the pan-tilt head in real time, determine the speed of the gimbal's attitude conversion; according to the direction of the man-powered pan-tilt head and the speed of the attitude conversion, control the desired attitude to be a real-time attitude.
  • the processor 2 in this embodiment may be a central processing unit (central processing unit, CPU).
  • the processor 2 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the gimbal of this embodiment may be a single-axis gimbal, a two-axis gimbal, a three-axis gimbal, or another gimbal.
  • the gimbal of this embodiment is used to carry a shooting device, and is used to adjust the attitude of the shooting device (for example, change the height, inclination, and / or direction of the shooting device) and keep the shooting device in a fixed attitude.
  • the PTZ can also be equipped with other loads, such as a photographing device, which can be a camera or an image sensor.
  • an embodiment of the present invention further provides a movable platform.
  • the movable platform may include a processor 100 and a PTZ 200.
  • the PTZ 200 includes an inertial measurement unit IMU, and the processor 100 inertial measurement unit IMU is electrically connected.
  • the processor 100 in this embodiment is configured to execute the PTZ control method shown in FIG. 2 to FIG. 7.
  • the processor 100 is configured to: obtain the working parameters of the gimbal 200, and the working parameters of the gimbal 200 include the expected attitude of the gimbal 200; if it is detected that the working parameters match the preset manual motion gimbal 200 conditions, Then, according to the desired attitude and the real-time posture of the gimbal 200 when the human head moves the gimbal 200, the attitude conversion speed of the gimbal 200 is determined; according to the direction and speed of the human gimbal 200, the desired attitude is controlled as a real-time attitude.
  • the processor 100 may be a mobile platform processor, a PTZ processor, or other controllers provided on the mobile platform.
  • the movable platform can be an unmanned aerial vehicle, such as a drone, or a ground mobile device, such as a remotely controlled car, or a surface mobile device, such as a remotely controlled ship.
  • the processor 100 may be a flight controller.
  • the processor 100 in this embodiment may be a central processing unit (CPU).
  • the processor 100 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the head 200 in this embodiment may be a single-axis head, a two-axis head, a three-axis head, or another head.
  • the gimbal 200 of this embodiment is used to carry a shooting device, and is used to adjust the attitude of the shooting device (for example, change the height, inclination, and / or direction of the shooting device) and keep the shooting device in a fixed attitude.
  • the pan / tilt 200 can also be equipped with other loads, such as a photographing device.
  • the photographing device can be a camera or an image sensor.
  • an embodiment of the present invention further provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by the processor 100, the steps of the PTZ control method of the first embodiment are implemented.
  • the program can be stored in a computer-readable storage medium.
  • the program When executed, the processes of the embodiments of the methods described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random, Access Memory, RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台及其控制方法、可移动平台,方法包括:获取云台的工作参数,云台的工作参数包括云台的期望姿态(S201);若检测到工作参数与预设的人力掰动云台条件相匹配,则根据期望姿态和人力掰动云台时云台的实时姿态,确定云台的姿态转换速度(S202);按照人力掰动云台的方向和姿态转换速度,控制期望姿态为实时姿态(S203)。本方法在云台发生人力掰动时,可以按照人力掰动云台的方向以及根据期望姿态和人力掰动云台时云台的实时姿态所确定的姿态转换速度控制期望姿态趋向于实时姿态,使得云台停留在人力掰动云台时云台的实时姿态对应的位置,操作过程简单直观,定位精度高,且云台的姿态转换速度可实时调整,有利于避免云台运动至上述实时姿态时来回摆动的情况。

Description

云台及其控制方法、可移动平台 技术领域
本发明涉及云台控制领域,尤其涉及一种云台及其控制方法、可移动平台。
背景技术
相关技术中,通常通过遥控器控制云台的运动,遥控器上设置有摇杆或者波轮,用户通过操控摇杆或者波轮,向云台发出运动指令,云台根据接收到的运动指令,驱动电机带动相应轴臂进行旋转、位移等。但是,由于用户操控摇杆或者波轮的力度不稳定,通常一次操作难以控制云台运动到期望姿态,可能需要反复操作进行调整,操作比较繁琐,定位精度也不够高。
发明内容
本发明提供一种云台及其控制方法、可移动平台。
具体地,本发明是通过如下技术方案实现的:
根据本发明的第一方面,提供一种云台控制方法,所述方法包括:
获取所述云台的工作参数,所述云台的工作参数包括所述云台的期望姿态;
若检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度;
按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态。
根据本发明的第二方面,提供一种云台,包括:惯性测量单元IMU以及处理器,所述处理器与所述惯性测量单元IMU分别电连接,所述处理器用于:
获取所述云台的工作参数,所述云台的工作参数包括所述云台的期望姿态;
若检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度;
按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态。
根据本发明的第三方面,提供一种可移动平台,包括:云台及处理器,所述云台包括惯性测量单元IMU,所述处理器与所述惯性测量单元IMU电连接,所述处理器用于:
获取所述云台的工作参数,所述云台的工作参数包括所述云台的期望姿态;
若检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度;
按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态。
由以上本发明实施例提供的技术方案可见,本发明实施例在检测到云台的工作参数与预设的人力掰动云台条件相匹配时,按照人力掰动云台的方向以及根据期望姿态和人力掰动云台时云台的实时姿态所确定的姿态转换速度控制期望姿态趋向于上述实时姿态使得云台停留在人力掰动云台时云台的实时姿态对应的位置,与现有通过遥控器控制云台期望姿态的方式相比,操作过程简单直观,定位精度高;并且,根据期望姿态和人力掰动云台时云台的实时姿态所确定的姿态转换速度控制期望姿态趋向于实时姿态的方式,能够让云台更加顺畅地跟随人力掰动云台时云台的运动而运动,且云台的姿态转换速度可进行实时调整,有利于避免云台运动至上述实时姿态时来回摆动的情况,用户体验更佳。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一种三轴云台的工作原理示意图;
图2是本发明一实施例中的云台控制方法的方法流程图;
图3是本发明一实施例中的云台控制方法一具体的方法流程图;
图4A是本发明一实施例中的云台控制方法第一实现方式的方法流程图;
图4B是本发明一实施例中的云台控制方法第一实现方式的另一方法流程图;
图5A是本发明一实施例中的云台控制方法第二实现方式的方法流程图;
图5B是本发明一实施例中的云台控制方法第二实现方式的另一方法流程图;
图6A是本发明一实施例中的云台控制方法第三实现方式的方法流程图;
图6B是本发明一实施例中的云台控制方法第三实现方式的另一方法流程图;
图7是本发明一实施例中的云台控制方法另一具体的方法流程图;
图8是本发明一实施例中的云台一具体的结构框图;
图9是本发明一实施例中的可移动平台的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的云台及其控制方法、可移动平台进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
本发明实施例中的云台可以是手持云台,也可以是由可移动平台携带的云台。可移动平台可以包括诸如无人机、无人车、无人船等。上述云台通常包括轴臂和电机,电机用于驱动轴臂转动。电机可包括以下至少一种:偏航轴电机、俯仰轴电机和横滚轴电机,轴臂对应包括偏航轴轴臂、俯仰轴轴臂和横滚轴轴臂中的至少一种。以常见的三轴云台为例,三轴云台包括三个轴臂,以及分别驱动三个轴臂转动的电机,其中,三个轴臂分别为俯仰轴轴臂,横滚轴轴臂,以及偏航轴轴臂。
在控制上述云台改变期望姿态时,可以带动搭载于云台上的负载,如摄像设备、射击装置、探测装置等。例如,云台带动照相机或者摄像机在一个或者多个方向上运动,从而实现大范围拍摄。现有技术中,使用者通过遥控设备,例如遥控器摇杆或者波轮等,控制云台改变期望姿态,其操作过程比较繁琐,定位精度不够高。因此本发明实施例中,提供使用者通过人力掰动云台的方式,从而使云台可以快速准确地运动到期望姿态。
下面结合附图对本发明实施例进行详细说明。
实施例一
参见图1,为一种三轴云台的工作原理示意图。图1所示的一种三轴云台包括:处理器,三轴电机,三轴轴臂,IMU(Inertial Measurement Unit,惯性测量单元),以及积分器。上述三轴云台可以通过组成IMU的陀螺仪作为反馈元件,三轴电机作为输出元件,形成闭环PI(比例、积分)控制***。
一般来说,通过IMU获得云台的测量姿态(即实时姿态),测量姿态与期望姿态之间的偏移量作为控制偏差,处理器根据输入的控制偏差,控制三轴电机的输入电流大小,从而驱动三轴电机工作,三轴电机工作过程中输出扭矩带动三轴轴臂转动,在转动过程中云台的测量姿态进一步发生变化,通过上述反馈控制过程,使得云台运动到期望姿态。也即,云台可以周期性循环检测,并能够使得当前的测量姿态为期望姿态。其中,期望姿态可以由用户输入或预先设置。
本发明实施例中,由于人力掰动的原因,希望借助于人力掰动时的便利性,使得云台可以由用户推哪停哪,即测量姿态先于期望姿态。由此,与上述内容相反的是, 本发明实施例是通过测量姿态与期望姿态之间的偏移量使得当前的期望姿态为人力掰动云台时的测量姿态。也即,本发明实施例中,是将测量姿态作为当前控制云台转动的期望姿态,而将云台的期望姿态(即人力掰动云台前,上一次闭环时的期望姿态)作为当前控制云台转动的测量姿态。其中,在控制期望姿态为实时姿态的过程中,其姿态转换速度可以与控制偏差相匹配,如,姿态转换速度与控制偏差可以为正相关。
图2是本发明一实施例中的云台控制方法的方法流程图。参见图2,本实施例的云台控制方法包括但不限于如下步骤:
步骤S201:获取云台的工作参数,云台的工作参数包括云台的期望姿态;
结合图1所示,本发明实施例中云台的工作参数还可以包括:电机的期望扭矩,或者云台的关节角误差。上述关节角误差和期望扭矩二个参数之间通常呈正相关关系。
本实施例中,电机的期望扭矩由期望姿态和实时姿态(人力掰动云台时云台的实时姿态)确定。具体的,电机的期望扭矩为云台由上述实时姿态运动至期望姿态电机所需输出的扭矩大小。
而云台的关节角误差也由期望姿态和实时姿态确定。具体的,关节角误差为期望姿态对应的关节角与实时姿态对应的关节角的差值,其中,实时姿态由云台上的惯性测量单元IMU检测获得。可以理解,在由姿态确定关节角时,若存在多解的情况,应确定一个唯一解为该姿态对应的关节角。
可以理解,云台可以为单轴、二轴或三轴云台。以云台为三轴云台为例,云台可以绕俯仰轴、横滚轴、偏航轴旋转,其姿态可以对应俯仰轴、横滚轴、偏航轴。如此,在计算关节角误差时,可以计算期望姿态与实时姿态中对应每一个轴的关节角误差,以确定云台中各轴对应的轴臂是否发生人力推动,再对各轴对应的轴臂进行相应的控制。
在本实施例中,期望姿态为云台人力掰动前的姿态,即若云台在人力掰动前为初始启动状态,则期望姿态为云台的初始姿态,若云台在人力掰动前已启动且进行转动,则期望姿态为上一次闭环时的期望姿态,也即上一次闭环结束后的实时姿态。可以理解,期望姿态可以发生变化。
步骤S202:若检测到工作参数与预设的人力掰动云台条件相匹配,则根据期望姿态和人力掰动云台时云台的实时姿态,确定云台的姿态转换速度;
需要说明的是,本发明实施例中,人力掰动云台时,云台的轴臂在人力掰动作用下已经到达人力掰动的位置,为避免云台回弹,故需要将期望姿态转换成实时姿态,姿态转换速度即为云台由期望姿态转换成实时姿态的转换梯度大小,实际上云台的轴臂不会再转动,实现了云台可以由用户推哪停哪的效果。
通常人力掰动云台与通过遥控器控制云台相比,检测到的工作参数的参数值会 有较大差异,因此可以将工作参数作为判断人力掰动云台的依据。
首先,在人力掰动云台时,云台的工作参数通常大于通过遥控器控制云台时的工作参数;其次,在人力误触云台时,云台的工作参数通常也会大于通过遥控器控制云台时的工作参数,但人力误触云台与人力掰动云台的区别在于,检测到的前者的参数值的持续时间要小于后者。基于上述分析,根据工作参数的类型不同,可以分别采用如下可选的实现方式检测是否由人力掰动云台。
在第一实现方式中,参见图4A,步骤S201中的工作参数还包括期望扭矩,本实施例可检测期望扭矩的绝对值是否大于或者等于扭矩阈值,若期望扭矩的绝对值大于或者等于扭矩阈值,则可以确定检测到人力掰动云台;若期望扭矩的绝对值小于扭矩阈值,则可以确定当前非人力掰动云台。
具体的,在一些实施例中,将期望扭矩与扭矩阈值进行比较,若期望扭矩大于或者等于扭矩阈值时,则可以确定检测到期望扭矩的绝对值大于或者等于扭矩阈值。而在另一些实施例中,将期望扭矩与扭矩阈值的相反数(即扭矩阈值的负数)进行比较,若期望扭矩小于或等于扭矩阈值的相反数时,则可以确定检测到期望扭矩的绝对值大于或者等于扭矩阈值。
可选的,根据关节角误差的正负,即期望姿态对应的关节角和实时姿态对应的关节角的差值正负,进一步确定是将期望扭矩与扭矩阈值进行比较,还是将期望扭矩与扭矩阈值的相反数进行比较。在本实施例中,当关节角误差为正数时,将期望扭矩与扭矩阈值比较;当关节角误差为负数时,将期望扭矩与扭矩阈值的相反数比较。例如,在利用姿态计算关节角,且关节角能够唯一确定的情况下,若期望姿态对应的关节角为0°,实时姿态对应的关节角为5°,关节角误差则为-5°,关节角误差为负数,可以将期望扭矩与扭矩阈值的相反数比较。又如,期望姿态对应的关节角为0°,实时姿态对应的关节角为-5°,关节角误差则为5°,关节角误差为正数,可以将期望扭矩与扭矩阈值比较。
可选的,可以根据人力掰动云台的方向来确定是将期望扭矩与扭矩阈值进行比较,还是将期望扭矩与扭矩阈值的相反数进行比较。本实施例中,人力掰动云台的方向是根据期望姿态与实时姿态来确定的,假设期望姿态对应的姿态角和实时姿态对应的姿态角的差值为正数时,人力掰动云台的方向作为第一掰动方向,而期望姿态对应的姿态角和实时姿态对应的姿态角的差值为负数时,人力掰动云台的方向作为第二掰动方向。如此,当人力掰动云台的方向为第一掰动方向时,可以将期望扭矩与扭矩阈值比较;或/及,当人力掰动云台的方向为第二掰动方向时,可以将期望扭矩与扭矩阈值的相反数比较。
可以理解,在实际应用中,也可以不根据人力掰动云台的方向来确定期望扭矩与扭矩阈值的比较结果。例如,不确定人力掰动云台的方向,而是依次将期望扭矩与 扭矩阈值、扭矩阈值的相反数进行比较,从而也可以确定期望扭矩是大于扭矩阈值,还是小于扭矩阈值的相反数,亦或是位于扭矩阈值与扭矩阈值的相反数之间,进而也可以检测到是否有人力掰动云台。
在人力掰动云台时,云台的扭矩值通常大于通过遥控器控制云台时的扭矩值。本实施例的扭矩阈值是根据电机的温度保护策略预设的,该扭矩阈值为用于判断人力掰动云台时的扭矩值的下限值。可选的,根据电机的温度保护策略预设了扭矩阈值后,扭矩阈值则不会再改变。在需要使用时,直接获取该预设的扭矩阈值即可。可选的,扭矩阈值是根据电机的温度保护策略实时调整的,即在人力掰动云台以控制云台的期望姿态的过程中,扭矩阈值是变化的,以满足不同的需求。
由于在人力误触云台时,云台的期望扭矩通常也会大于通过遥控器控制云台时的扭矩,但人力误触云台与人力掰动云台的区别在于,前者大于扭矩阈值的扭矩的持续时间要小于后者。因此本实施例中,为了避免检测到人力误触云台,可以预先设置一个时长,用于判断在一段连续的时间内,期望扭矩的绝对值是否持续大于或者等于扭矩阈值,从而避免将人力误触云台也确定为人力掰动云台,以此提高对人力掰动云台检测的准确性。
在本实施例中,可以检测预设的时长内期望扭矩的绝对值是否均大于或者等于扭矩阈值,若均大于或者等于扭矩阈值,则可以确定检测到人力掰动云台。参见图4B,若期望扭矩的绝对值大于或者等于扭矩阈值的持续时间超过预设的时长,则可以认为人力掰动云台。可以假设期望扭矩的检测周期为0.001秒/次,预设的时长为1s。若1s内,1000次检测到期望扭矩的绝对值大于或者等于扭矩阈值,在下1秒、第1001次检测时,若期望扭矩大于等于扭矩阈值,则认为人力掰动云台;但若期望扭矩小于扭矩阈值,则认为非人力掰动云台。若在下一次检测到期望扭矩的绝对值大于或者等于扭矩阈值,则开始重新计时。
可选的,在预设的时长内,当关节角误差均为正数时,判断该预设的时长内的期望扭矩是否均大于或者等于扭矩阈值,若均大于或者等于扭矩阈值,则可以确定检测到预设的时长内期望扭矩的绝对值均大于或者等于扭矩阈值。在预设的时长内,当关节角误差均为负数时,判断该预设的时长内的期望扭矩是否均小于或者等于扭矩阈值的相反数,若均小于或者等于扭矩阈值的相反数,则可以确定检测到预设的时长内期望扭矩的绝对值均大于或者等于扭矩阈值。其中,预设的时长可根据实际需求设定,例如,0.5秒、1秒、1.5秒、2秒、2.5秒、3秒等等。
可选的,当人力掰动云台的方向为第一掰动方向时,判断该预设的时长内的期望扭矩是否均大于或者等于扭矩阈值,若均大于或者等于扭矩阈值,则可以确定检测到预设的时长内期望扭矩的绝对值均大于或者等于扭矩阈值;或/及,当人力掰动云台的方向为第二掰动方向时,判断该预设的时长内的期望扭矩是否均小于或者等于扭矩 阈值的相反数,若均小于或者等于扭矩阈值的相反数,则可以确定检测到预设的时长内期望扭矩的绝对值均大于或者等于扭矩阈值。
在第二实现方式中,参见图5A,步骤S201中的工作参数还包括关节角误差,本实施例可检测关节角误差的绝对值是否大于或者等于关节角阈值,若关节角误差的绝对值大于或者等于关节角阈值,则可以确定检测到人力掰动云台;若关节角误差的绝对值小于关节角阈值,则可以确定当前非人力掰动云台。其中,关节角误差可根据实际情况预设,例如,关节角阈值为1°,当关节角误差的绝对值大于或者等于1°时,确定检测到人力掰动云台;当关节角误差的绝对值小于1°时,确定人力误触云台或其他因素导致云台存在较小的关节角变化。
具体的,在一些实施例中,将关节角误差与关节角阈值进行比较,若关节角误差大于或者等于关节角阈值时,则可以确定检测到关节角误差的绝对值大于或者等于关节角阈值。而在另一些实施例中,将关节角误差与关节角阈值的相反数(即关节角阈值的负数)进行比较,若关节角误差小于或等于关节角阈值的相反数时,则可以确定检测到关节角误差的绝对值大于或者等于关节角阈值。
可选的,根据关节角误差的正负,即期望姿态对应的关节角和实时姿态对应的关节角的差值正负,进一步确定是将关节角误差与关节角阈值进行比较,还是将关节角误差与关节角阈值的相反数进行比较。在本实施例中,当关节角误差为正数时,将关节角误差与关节角阈值比较;当关节角误差为负数时,将关节角误差与关节角阈值的相反数比较。例如,在利用姿态计算关节角,且关节角能够唯一确定的情况下,若期望姿态对应的关节角为0°,实时姿态对应的关节角为5°,关节角误差则为-5°,关节角误差为负数,需要将关节角误差与关节角阈值的相反数比较。又如,期望姿态对应的关节角为0°,实时姿态对应的关节角为-5°,关节角误差则为5°,关节角误差为正数,需要将关节角误差与关节角阈值比较。
可选的,根据人力掰动云台的方向来确定是将关节角误差与关节角阈值进行比较,还是将关节角误差与关节角阈值的相反数进行比较。本实施例中,人力掰动云台的方向根据期望姿态与实时姿态来确定的,假设期望姿态对应的姿态角和实时姿态对应的姿态角的差值为正数时,人力掰动云台的方向作为第一掰动方向,而期望姿态对应的姿态角和实时姿态对应的姿态角的差值为负数时,人力掰动云台的方向作为第二掰动方向。如此,当人力掰动云台的方向为第一掰动方向时,将关节角误差与关节角阈值比较;或/及,当人力掰动云台的方向为第二掰动方向时,将关节角误差与关节角阈值的相反数比较。
可以理解,在实际应用中,也可以不根据人力掰动云台的方向来确定关节角误差与关节角阈值的比较结果。例如,不确定人力掰动云台的方向,而是依次将关节角误差与关节角阈值、关节角阈值的相反数进行比较,从而也可以确定关节角误差是大 于关节角阈值,还是小于关节角阈值的相反数,亦或是位于关节角阈值与关节角阈值的相反数之间,进而也可以检测到是否有人力掰动云台。
由于在人力误触云台时,云台的关节角误差通常也会大于通过遥控器控制云台时的关节角,但人力误触云台与人力掰动云台的区别在于,前者大于关节角阈值的关节角的持续时间要小于后者。因此本实施例中,为了避免检测到人力误触云台,可以预先设置一个时长,用于判断在一段连续的时间内,关节角误差的绝对值是否持续大于或者等于关节角阈值,从而避免将人力误触云台也确定为人力掰动云台,以此提高对人力掰动云台检测的准确性。
在本实施例中,可以检测预设的时长内关节角误差的绝对值是否均大于或者等于关节角阈值,若均大于或者等于关节角阈值,则可以确定检测到人力掰动云台。参见图5B,若关节角误差的绝对值大于或者等于关节角阈值的持续时间达到预设的时长,则认为人力掰动云台。可以假设关节角误差的检测周期为0.001秒/次,预设的时长为1s。若1s内,1000次检测到关节角误差的绝对值大于或者等于关节角阈值,在下1秒、第1001次检测时,若关节角误差大于等于关节角阈值,则认为人力掰动云台;但若关节角误差小于关节角阈值,则认为非人力掰动云台。若在下一次检测到关节角误差的绝对值大于或者等于关节角阈值,则开始重新计时。
可选的,在预设的时长内,当关节角误差均为正数时,判断该预设的时长内的关节角误差是否均大于或者等于关节角阈值,若均大于或者等于关节角阈值,则可以确定检测到预设的时长内关节角误差的绝对值均大于或者等于关节角阈值。在预设的时长内,当关节角误差均为负数时,判断该预设的时长内的关节角误差是否均小于或者等于关节角阈值的相反数,若均小于或者等于关节角阈值的相反数,则可以确定检测到预设的时长内关节角误差的绝对值均大于或者等于关节角阈值。其中,预设的时长可根据实际需求设定,例如,0.5秒、1秒、1.5秒、2秒、2.5秒、3秒等等。
可选的,当人力掰动云台的方向为第一掰动方向时,判断该预设的时长内的关节角误差是否均大于或者等于关节角阈值,若均大于或者等于关节角阈值,则可以确定检测到预设的时长内关节角误差的绝对值均大于或者等于关节角阈值;或/及,当人力掰动云台的方向为第二掰动方向时,判断该预设的时长内的关节角误差是否均小于或者等于关节角阈值的相反数,若均小于或者等于关节角阈值的相反数,则可以确定检测到预设的时长内关节角误差的绝对值均大于或者等于关节角阈值。
在第三实现方式中,参见图6A,步骤S201中的工作参数还可以同时包括期望扭矩和关节角误差,本实施例可检测期望扭矩的绝对值是否大于或者等于扭矩阈值,且检测关节角误差的绝对值是否大于或者等于关节角阈值,若期望扭矩的绝对值大于或者等于扭矩阈值,且关节角误差的绝对值大于或者等于关节角阈值,则以确定检测到人力掰动云台。
进一步的,为了避免检测到人力误触云台,参见图6B,可以检测预设的时长内期望扭矩的绝对值是否均大于或者等于扭矩阈值,且检测预设的时长内关节角误差的绝对值是否均大于或者等于关节角阈值,若预设的时长内期望扭矩的绝对值均大于或者等于扭矩阈值,且关节角误差的绝对值均大于或等于关节角阈值,则可以确定检测到人力掰动云台。该实现方式可参见上述两种实现方式的具体说明,此处不再赘述。可以假设期望扭矩和关节角误差的检测周期为0.001秒/次,预设的时长为1s。若1s内,1000次检测到期望扭矩的绝对值大于或者等于扭矩阈值,并且1000次检测到关节角误差的绝对值大于或者等于关节角阈值,在下1秒、第1001次检测时,若期望扭矩大于等于扭矩阈值、并且关节角误差大于等于关节角阈值,则认为人力掰动云台;但若期望扭矩小于扭矩阈值、或者若关节角误差小于关节角阈值,则认为非人力掰动云台。在下一次检测到期望扭矩的绝对值大于或者等于扭矩阈值、并且关节角误差的绝对值大于或者等于关节角阈值,则开始重新计时。
此外,步骤S202中根据期望姿态和人力掰动云台时云台的实时姿态,确定云台的姿态转换速度时。具体的,根据期望姿态和人力掰动云台时云台的实时姿态,确定云台的关节角误差;根据关节角误差和预设系数,确定云台的姿态转换速度。其中,关节角误差的确定方式可参见上述实施例。本实施例中,预设系数由时间检测周期数以及增益系数确定。其中,时间检测周期数的大小可根据预设的时长设定,例如,预设的时长为1秒,时间检测周期数为1000,则1秒内有1000次检测,即0.001秒检测一次实时姿态。增益系数的大小可以根据具体的使用场景设定,一般来说,为了避免云台在执行步骤203后回弹(即向人力掰动云台的反方向偏移人力掰动云台时云台的实时姿态),增益系数可以较大,例如,增益系数可以为10。
步骤202确定出的云台的姿态转换速度为关节角速度,实际通过欧拉角速度控制云台的期望姿态的变化。可选的,可以将步骤202确定出的关节角速度直接作为云台的欧拉角速度。
可选的,为了实现对云台的精准控制,可以对关节角速度进行坐标转换,获得云台的欧拉角速度,并利用该转换后的欧拉角速度控制云台的期望姿态为实时姿态。具体的,参见图7,根据关节角误差和预设的时间系数,确定云台的姿态转换速度的过程具体包括:
步骤S701:根据关节角误差和预设系数,确定云台在云台关节角坐标系上的第一角速度;
具体的,第一角速度W i=-关节角误差/预设系数,以上述实施例中的预设系数包括时间检测周期数以及增益系数为例,W i=-关节角误差/时间检测周期数*增益系数。
步骤S702:根据云台关节角坐标系和云台本体坐标系之间的转换关系,将第一角速度转换成云台在云台本体坐标系上的第二角速度;
在该步骤中,第二角速度为W b的计算公式如下:
W b=R j->b*W i
其中,R j->b(雅克比矩阵)为云台关节角坐标系和云台本体坐标系之间的转换关系,R j->b由云台的构型确定,云台的构型不同,R j->b则不同。
以ZXY三轴云台构型为例,其中,假设Z为偏航轴,X为横滚轴,Y为俯仰轴,在该构型中Z为外框,X为中框,Y为内框,偏航轴电机用于驱动偏航轴轴臂转动,以驱动横滚轴电机和横滚轴轴臂、俯仰轴电机和俯仰轴轴臂以及拍摄装置转动,横滚轴电机用于驱动横滚轴轴臂转动,以驱动俯仰轴电机和俯仰轴轴臂以及拍摄装置转动,俯仰轴电机用于驱动俯仰轴轴臂转动,以驱动拍摄装置转动。三个关节角(偏航关节角、横滚关节角以及俯仰关节角)的坐标轴的旋转轴为:
Figure PCTCN2018109207-appb-000001
其中,V inny、V midx、V outz分别为俯仰关节角、横滚关节角、偏航关节角的坐标轴的旋转轴。
将V inny、V midx、V outz分别转换至云台本体坐标系:
Figure PCTCN2018109207-appb-000002
其中,R y′、R x′、R z′分别对应R y、R x、R z的转置;R y、R x、R z分别为关节角坐标系绕Y轴(即俯仰轴)、X轴(即横滚轴)、Z轴(即偏航轴)到参考坐标系的旋转矩阵。例如,R y、R x、R z可分别如下:
Figure PCTCN2018109207-appb-000003
其中,参考坐标系为关节角为0的坐标系,A为关节角坐标系到参考坐标系的 转换角度。
云台关节角坐标系和云台本体坐标系之间的转换关系R j->b的转换如下:
Figure PCTCN2018109207-appb-000004
其中,inn_joint_rad为内框关节角,mid_jo int_rad为中框关节角。
针对两轴云台,云台关节角坐标系和云台本体坐标系之间的转换关系R j->b的转换如下:
Figure PCTCN2018109207-appb-000005
步骤S703:根据云台本体坐标系和欧拉坐标系之间的转换关系,将第二角速度转换成欧拉角速度;
在该步骤中,欧拉角速度为W φ的计算公式如下:
W φ=R b->φ*W b
其中,R b->φ为云台本体坐标系和欧拉坐标系之间的转换关系;
Figure PCTCN2018109207-appb-000006
其中,inn_euler_rad为内框欧拉角,mid_euler_rad为中框欧拉角,内框欧拉角和中框欧拉角均为上一次闭环时云台的期望欧拉角,也即上一次闭环结束时云台的实时姿态。
在一具体实施中,依据上述转换关系,假设中框关节角为40度、内框关节角为40度,内框欧拉角为10,中框欧拉角为0,关节角速度(即第一角速度)为[0,0,1],若不经过上述坐标系之间的转换,则云台的欧拉角速度默认为关节角速度[0,0,1]。而经过上述坐标系之间的转换后,云台的欧拉角速度为[-0.3830,0.6428,0.6634]。如此可知,将第一角速度经由云台本体坐标系的转换,可以得到更为准确的姿态控制,可以更精准地使得云台停留在人力推动停止时的位置。
在另一具体实施中,当云台中对应预设轴的轴臂不需要进行姿态控制时,在将关节角速度转换得到的欧拉角速度后,可以控制欧拉角速度中对应预设轴的速度为预 设值,例如0。其中,预设轴对应的轴臂为云台中不需要姿态控制的轴臂。如此,可以避免针对预设轴的轴臂的扭矩输出,以防止由于控制饱和而影响云台中其它轴臂的姿态控制。
在一些实施例中,云台未设有预设轴对应的轴臂,即上述预设轴对应的轴臂可以为云台中实际不存在的轴臂,如横滚轴。也即,由于计算欧拉角的原因,即使预设轴对应的轴臂不存在,预设轴对应的轴臂也可能会有欧拉角速度,但默认为预设值,以防止电机扭矩输出饱和。
云台可以为两轴云台,轴臂包括偏航轴轴臂、俯仰轴轴臂和横滚轴轴臂中的两个,在执行步骤S703之后,可以控制另外一个轴臂的欧拉角速度为0。其中,当轴臂包括偏航轴轴臂和仰轴轴臂时,另外一个轴臂是横滚轴轴臂;当轴臂包括偏航轴轴臂和横滚轴轴臂时,另外一个轴臂是俯仰轴轴臂;当轴臂包括俯仰轴轴臂和横滚轴轴臂时,另外一个轴臂是偏航轴轴臂。
步骤S704:将欧拉角速度确定为云台的姿态转换速度。
步骤S203:按照人力掰动云台的方向和姿态转换速度,控制期望姿态为实时姿态。
在检测到人力掰动云台后,可通过云台上的惯性测量单元IMU测量人力掰动云台时的掰动方向,然后在掰动方向上,按照步骤S202中确定的姿态转换速度控制期望姿态为实时姿态。如此,控制期望姿态趋向于实时姿态的速度与云台的期望姿态、人力掰动云台时云台的实时姿态之间的偏移量有关,且可以根据该偏移量得到实时调整,如此可以避免由于速度不可控而导致的云台的回弹及转动过程的不顺畅感(如在实时姿态对应的位置处产生的突突感),使得轴臂能够较为顺畅地停留在实时姿态,提升了用户体验。
例如,期望姿态中某一轴臂对应的欧拉角为A,实时姿态中该轴臂对应的欧拉角为B,若将A直接赋值为B,由于一个姿态可能对应多个关节角,则导致直接赋值后,云台中的相应轴臂并不确定该停留在哪个关节角,从而导致云台在人力推动结束后,可能无法实现停留在用户人力推动结束时的位置,例如,云台可能存在回转并撞击机械限位。而若将A根据姿态转换速度和转动方向逐渐转换为B,则可以有效解决上述问题。
进一步的,在控制云台的期望姿态为人力掰动云台时云台的实时姿态之后,若再次检测到工作参数与预设的人力掰动云台条件相匹配,则可以根据当前期望姿态、以及再次检测到的人力掰动云台时云台的实时姿态,确定云台的当前姿态转换速度,然后按照再次检测到的人力掰动云台的方向和云台的当前姿态转换速度,控制当前期 望姿态为再次检测到的人力掰动云台的实时姿态。可选的,本实施例的云台的姿态转换速度可以由人力掰动云台的速度决定,云台的姿态转换速度的变化与人力掰动云台的速度变化呈正相关,例如,当人力掰动云台的速度由慢变快,则云台的姿态转换速度也由慢变快,云台的姿态转换速度的变化与人力掰动云台的速度变化一致,从而使得云台能够更顺畅的跟随人力掰动云台时云台的运动而运动。
在一些实施例中,步骤S203是在确定出云台处于过阻尼模式之后执行的。本实施例中,云台处于过阻尼模式下,云台跟随人力掰动云台时云台的运动而运动(即云台停留在用户手推云台时云台的实时姿态对应的位置);而在其他模式下,如欠阻尼模式下,在人力掰动云台之后,云台则会回弹至人力掰动云台前的位置。可根据用户实际需求来选择云台是处于过阻尼模式还是处于其他模式。
本发明实施例的云台控制方法,在检测到云台的工作参数与预设的人力掰动云台条件相匹配时,按照人力掰动云台的方向以及根据期望姿态和人力掰动云台时云台的实时姿态所确定的姿态转换速度控制云台来改变自身的期望姿态,使得云台运动至人力掰动云台时云台的实时姿态,与现有通过遥控器控制云台期望姿态的方式相比,操作过程简单直观,定位精度高;并且,根据期望姿态和人力掰动云台时云台的实时姿态所确定的姿态转换速度控制云台的方式,能够使得云台的姿态转换速度可调整,以让云台更加顺畅地跟随人力掰动云台时云台的运动而运动,用户体验更佳。
与本发明实施例一的云台控制方法相对应,本发明实施例二还提供了一种云台。
实施例二
参见图8,本发明实施例二提供一种云台,该云台可包括:惯性测量单元IMU1以及处理器2。
其中,处理器2与惯性测量单元IMU2电连接。本实施例的处理器2用于执行如图2至图7的云台控制方法。
具体的,处理器2用于:获取云台的工作参数,云台的工作参数包括云台的期望姿态;若检测到工作参数与预设的人力掰动云台条件相匹配,则根据期望姿态和人力掰动云台时云台的实时姿态,确定云台的姿态转换速度;按照人力掰动云台的方向和姿态转换速度,控制期望姿态为实时姿态。
处理器2的实现过程和工作原理可参见上述实施例一的云台控制方法的描述,此处不再赘述。
本实施例的处理器2可以是中央处理器(central processing unit,CPU)。处理器2还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic  device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
本实施例的云台可以为单轴云台、两轴云台、三轴云台或者其他云台。
本实施例的云台用于搭载射击装置,并用于调节射击装置的姿态(例如:改变射击装置的高度、倾角和/或方向)和使射击装置稳定保持在确定的姿态上。其中,云台也可以搭载其它负载,如拍摄装置,拍摄装置可以为相机,也可为图像传感器等。
实施例三
参见图9,本发明实施例还提供一种可移动平台,该可移动平台可包括处理器100及云台200,云台200包括惯性测量单元IMU,处理器100惯性测量单元IMU电连接。本实施例的处理器100用于执行如图2至图7的云台控制方法。
具体的,处理器100用于:获取云台200的工作参数,云台200的工作参数包括云台200的期望姿态;若检测到工作参数与预设的人力掰动云台200条件相匹配,则根据期望姿态和人力掰动云台200时云台200的实时姿态,确定云台200的姿态转换速度;按照人力掰动云台200的方向和姿态转换速度,控制期望姿态为实时姿态。
处理器100的实现过程和工作原理可参见上述实施例一的云台控制方法的描述,此处不再赘述。
在本实施例中,处理器100可以为可移动平台处理器、云台处理器,还可以为设于可移动平台上的其他控制器。可移动平台可以为无人飞行器如无人机,也可以为地面移动设备如遥控小车,还可以为水面移动设备如遥控船舶。当可移动平台为无人机时,处理器100可以为飞行控制器。
另外,本实施例的处理器100可以是中央处理器(central processing unit,CPU)。处理器100还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
本实施例的云台200可以为单轴云台、两轴云台、三轴云台或者其他云台。
本实施例的云台200用于搭载射击装置,并用于调节射击装置的姿态(例如:改变射击装置的高度、倾角和/或方向)和使射击装置稳定保持在确定的姿态上。其中,云台200也可以搭载其它负载,如拍摄装置,拍摄装置可以为相机,也可为图像传感器等。
此外,本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序, 该程序被处理器100执行时实现上述实施例一的云台控制方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (57)

  1. 一种云台控制方法,其特征在于,所述方法包括:
    获取所述云台的工作参数,所述云台的工作参数包括所述云台的期望姿态;
    若检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度;
    按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度,包括:
    根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的关节角误差;
    根据所述关节角误差和预设系数,确定所述云台的姿态转换速度。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述关节角误差和预设的时间系数,确定所述云台的姿态转换速度,包括:
    根据所述关节角误差和预设系数,确定所述云台在云台关节角坐标系上的第一角速度;
    根据所述云台关节角坐标系和云台本体坐标系之间的转换关系,将所述第一角速度转换成所述云台在云台本体坐标系上的第二角速度;
    根据所述云台本体坐标系和欧拉坐标系之间的转换关系,将所述第二角速度转换成欧拉角速度;
    将所述欧拉角速度确定为所述云台的姿态转换速度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述云台本体坐标系和欧拉坐标系之间的转换关系,将所述第二角速度转换成欧拉角速度之后,还包括:
    控制所述欧拉角速度中对应预设轴的速度为预设值,所述预设轴对应的轴臂为所述云台中不需要姿态控制的轴臂。
  5. 根据权利要求4所述的方法,其特征在于,所述云台未设有所述预设轴对应的轴臂。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度之后,还包括:
    将人力掰动所述云台时所述云台的实时姿态确定为所述云台的当前期望姿态。
  7. 根据权利要求6所述的方法,其特征在于,所述按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态之后,还包括:
    若再次检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述当前期望姿态、以及再次检测到的人力掰动所述云台时所述云台的实时姿态,确定所述云台的当前姿态转换速度;
    按照再次检测到的人力掰动所述云台的方向和所述云台的当前姿态转换速度,控 制所述当前期望姿态为再次检测到的人力掰动所述云台时所述云台的实时姿态。
  8. 根据权利要求1所述的方法,其特征在于,所述按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态之前,还包括:
    确定出所述云台处于过阻尼模式。
  9. 根据权利要求1所述的方法,其特征在于,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动;
    所述云台的工作参数还包括:所述电机的期望扭矩和/或所述云台的关节角误差;
    其中,所述电机的期望扭矩、所述云台的关节角误差均由所述期望姿态和所述实时姿态确定,所述实时姿态由所述云台上的惯性测量单元IMU检测获得。
  10. 根据权利要求9所述的方法,其特征在于,当所述工作参数还包括所述期望扭矩时,所述检测到所述工作参数与预设的人力掰动云台条件相匹配,包括:
    检测到所述期望扭矩的绝对值大于或者等于扭矩阈值。
  11. 根据权利要求9所述的方法,其特征在于,当所述工作参数还包括所述关节角误差时,所述检测到所述工作参数与预设的人力掰动云台条件相匹配,包括:
    检测到所述关节角误差的绝对值大于或者等于关节角阈值。
  12. 根据权利要求9所述的方法,其特征在于,当所述工作参数还包括所述期望扭矩和关节角误差时,所述检测到所述工作参数与预设的人力掰动云台条件相匹配,包括:
    检测到所述期望扭矩的绝对值大于或者等于扭矩阈值,且检测到所述关节角误差的绝对值大于或者等于关节角阈值。
  13. 根据权利要求10或12所述的方法,其特征在于,所述扭矩阈值是根据所述电机的温度保护策略预设的。
  14. 根据权利要求13所述的方法,其特征在于,所述扭矩阈值是根据所述电机的温度保护策略实时调整的。
  15. 根据权利要求10或12所述的方法,其特征在于,所述检测到所述期望扭矩的绝对值大于或者等于扭矩阈值,包括:
    检测到预设的时长内的所述期望扭矩的绝对值均大于或者等于所述扭矩阈值。
  16. 根据权利要求15所述的方法,其特征在于,所述检测到预设的时长内的所述期望扭矩的绝对值均大于或者等于所述扭矩阈值,进一步包括:
    当人力掰动所述云台的方向为第一掰动方向时,检测到预设的时长内的所述期望扭矩均大于或者等于扭矩阈值;或/及
    当人力掰动所述云台的方向为第二掰动方向时,检测到所述预设的时长内的所述期望扭矩均小于或者等于所述扭矩阈值的相反数。
  17. 根据权利要求11或12所述的方法,其特征在于,所述检测到所述关节角误差的绝对值大于或者等于关节角阈值,包括:
    检测到预设的时长内的所述关节角误差的绝对值均大于或者等于关节角阈值。
  18. 根据权利要求17所述的方法,其特征在于,所述检测到预设的时长内的所述关节角误差的绝对值均大于或者等于关节角阈值,进一步包括:
    当人力掰动所述云台的方向为第一掰动方向时,检测到预设的时长内的所述关节角误差大于或者等于关节角阈值;或/及
    当人力掰动所述云台的方向为第二掰动方向时,检测到所述预设的时长内的所述关节角误差小于或者等于关节角阈值的相反数。
  19. 根据权利要求1所述的方法,其特征在于,所述按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态,包括:
    通过所述云台上的惯性测量单元IMU测量人力掰动所述云台时的掰动方向;
    在所述掰动方向上,按照所述姿态转换速度控制所述期望姿态为所述实时姿态。
  20. 一种云台,其特征在于,包括:惯性测量单元IMU以及处理器,所述处理器与所述惯性测量单元IMU电连接;所述处理器用于:
    获取所述云台的工作参数,所述云台的工作参数包括所述云台的期望姿态;
    若检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度;
    按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态。
  21. 根据权利要求20所述的云台,其特征在于,所述处理器具体用于:
    根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的关节角误差;
    根据所述关节角误差和预设系数,确定所述云台的姿态转换速度。
  22. 根据权利要求21所述的云台,其特征在于,所述处理器具体用于:
    根据所述关节角误差和预设系数,确定所述云台在云台关节角坐标系上的第一角速度;
    根据所述云台关节角坐标系和云台本体坐标系之间的转换关系,将所述第一角速度转换成所述云台在云台本体坐标系上的第二角速度;
    根据所述云台本体坐标系和欧拉坐标系之间的转换关系,将所述第二角速度转换成欧拉角速度;
    将所述欧拉角速度确定为所述云台的姿态转换速度。
  23. 根据权利要求22所述的云台,其特征在于,所述处理器根据所述云台本体坐标系和欧拉坐标系之间的转换关系,将所述第二角速度转换成欧拉角速度之后,还用于:
    控制所述欧拉角速度中对应预设轴的速度为预设值,所述预设轴对应的轴臂为所述云台中不需要姿态控制的轴臂。
  24. 根据权利要求23所述的云台,其特征在于,所述云台未设有所述预设轴对应的轴臂。
  25. 根据权利要求20所述的云台,其特征在于,所述处理器根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度之后,还用于:
    将人力掰动所述云台时所述云台的实时姿态确定为所述云台的当前期望姿态。
  26. 根据权利要求25所述的云台,其特征在于,所述处理器按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态之后,还用于:
    若再次检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述当前期望姿态、以及再次检测到的人力掰动所述云台时所述云台的实时姿态,确定所述云台的当前姿态转换速度;
    按照再次检测到的人力掰动所述云台的方向和所述云台的当前姿态转换速度,控制所述当前期望姿态为再次检测到的人力掰动所述云台时所述云台的实时姿态。
  27. 根据权利要求20所述的云台,其特征在于,所述处理器按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态之前,还用于:
    确定出所述云台处于过阻尼模式。
  28. 根据权利要求20所述的云台,其特征在于,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动;
    所述云台的工作参数还包括:所述电机的期望扭矩和/或所述云台的关节角误差;
    其中,所述电机的期望扭矩、所述云台的关节角误差均由所述期望姿态和所述实时姿态确定,所述实时姿态由所述云台上的惯性测量单元IMU检测获得。
  29. 根据权利要求28所述的云台,其特征在于,当所述工作参数还包括所述期望扭矩时,所述处理器具体用于:
    检测到所述期望扭矩的绝对值大于或者等于扭矩阈值,则确定所述工作参数与预设的人力掰动云台条件相匹配。
  30. 根据权利要求28所述的云台,其特征在于,当所述工作参数还包括所述关节角误差时,所述处理器具体用于:
    检测到所述关节角误差的绝对值大于或者等于关节角阈值,则确定到所述工作参数与预设的人力掰动云台条件相匹配。
  31. 根据权利要求28所述的云台,其特征在于,当所述工作参数还包括所述期望扭矩和关节角误差时,所述处理器具体用于:
    检测到所述期望扭矩的绝对值大于或者等于扭矩阈值,且检测到所述关节角误差的绝对值大于或者等于关节角阈值,则确定所述工作参数与预设的人力掰动云台条件相匹配。
  32. 根据权利要求29或31所述的云台,其特征在于,所述扭矩阈值是根据所述电机的温度保护策略预设的。
  33. 根据权利要求32所述的云台,其特征在于,所述扭矩阈值是根据所述电机的温度保护策略实时调整的。
  34. 根据权利要求29或31所述的云台,其特征在于,所述处理器具体用于:
    检测到预设的时长内的所述期望扭矩的绝对值均大于或者等于所述扭矩阈值。
  35. 根据权利要求34所述的云台,其特征在于,所述处理器具体用于:
    当人力掰动所述云台的方向为第一掰动方向时,检测到预设的时长内的所述期望扭矩均大于或者等于扭矩阈值;或/及
    当人力掰动所述云台的方向为第二掰动方向时,检测到所述预设的时长内的所述期望扭矩均小于或者等于所述扭矩阈值的相反数。
  36. 根据权利要求30或31所述的云台,其特征在于,所述处理器具体用于:
    检测到预设的时长内的所述关节角误差的绝对值均大于或者等于关节角阈值。
  37. 根据权利要求36所述的云台,其特征在于,所述处理器具体用于:
    当人力掰动所述云台的方向为第一掰动方向时,检测到预设的时长内的所述关节角误差大于或者等于关节角阈值;或/及
    当人力掰动所述云台的方向为第二掰动方向时,检测到所述预设的时长内的所述关节角误差小于或者等于关节角阈值的相反数。
  38. 根据权利要求20所述的云台,其特征在于,所述处理器具体用于:
    通过所述云台上的惯性测量单元IMU测量人力掰动所述云台时的掰动方向;
    在所述掰动方向上,按照所述姿态转换速度控制所述期望姿态为所述实时姿态。
  39. 一种可移动平台,其特征在于,包括:云台及处理器,所述云台包括惯性测量单元IMU,所述处理器与所述惯性测量单元IMU电连接,所述处理器用于:
    获取所述云台的工作参数,所述云台的工作参数包括所述云台的期望姿态;
    若检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度;
    按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态。
  40. 根据权利要求39所述的可移动平台,其特征在于,所述处理器具体用于:
    根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的关节角误差;
    根据所述关节角误差和预设系数,确定所述云台的姿态转换速度。
  41. 根据权利要求40所述的可移动平台,其特征在于,所述处理器具体用于:
    根据所述关节角误差和预设系数,确定所述云台在云台关节角坐标系上的第一角速度;
    根据所述云台关节角坐标系和云台本体坐标系之间的转换关系,将所述第一角速度转换成所述云台在云台本体坐标系上的第二角速度;
    根据所述云台本体坐标系和欧拉坐标系之间的转换关系,将所述第二角速度转换成欧拉角速度;
    将所述欧拉角速度确定为所述云台的姿态转换速度。
  42. 根据权利要求41所述的可移动平台,其特征在于,所述处理器根据所述云台本体坐标系和欧拉坐标系之间的转换关系,将所述第二角速度转换成欧拉角速度之后,还用于:
    控制所述欧拉角速度中对应预设轴的速度为预设值,所述预设轴对应的轴臂为所述云台中不需要姿态控制的轴臂。
  43. 根据权利要求42所述的可移动平台,其特征在于,所述云台未设有所述预设轴对应的轴臂。
  44. 根据权利要求39所述的可移动平台,其特征在于,所述处理器根据所述期望姿态和人力掰动所述云台时所述云台的实时姿态,确定所述云台的姿态转换速度之后,还用于:
    将人力掰动所述云台时所述云台的实时姿态确定为所述云台的当前期望姿态。
  45. 根据权利要求44所述的可移动平台,其特征在于,所述处理器按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态之后,还用于:
    若再次检测到所述工作参数与预设的人力掰动云台条件相匹配,则根据所述当前期望姿态、以及再次检测到的人力掰动所述云台时所述云台的实时姿态,确定所述云台的当前姿态转换速度;
    按照再次检测到的人力掰动所述云台的方向和所述云台的当前姿态转换速度,控制所述当前期望姿态为再次检测到的人力掰动所述云台时所述云台的实时姿态。
  46. 根据权利要求39所述的可移动平台,其特征在于,所述处理器按照人力掰动所述云台的方向和所述姿态转换速度,控制所述期望姿态为所述实时姿态之前,还用于:
    确定出所述云台处于过阻尼模式。
  47. 根据权利要求39所述的可移动平台,其特征在于,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动;
    所述云台的工作参数还包括:所述电机的期望扭矩和/或所述云台的关节角误差;
    其中,所述电机的期望扭矩、所述云台的关节角误差均由所述期望姿态和所述实时姿态确定,所述实时姿态由所述云台上的惯性测量单元IMU检测获得。
  48. 根据权利要求47所述的可移动平台,其特征在于,当所述工作参数还包括所述期望扭矩时,所述处理器具体用于:
    检测到所述期望扭矩的绝对值大于或者等于扭矩阈值,则确定所述工作参数与预设的人力掰动云台条件相匹配。
  49. 根据权利要求47所述的可移动平台,其特征在于,当所述工作参数还包括所述关节角误差时,所述处理器具体用于:
    检测到所述关节角误差的绝对值大于或者等于关节角阈值,则确定所述工作参数与预设的人力掰动云台条件相匹配。
  50. 根据权利要求47所述的可移动平台,其特征在于,当所述工作参数还包括所述期望扭矩和关节角误差时,所述处理器具体用于:
    检测到所述期望扭矩的绝对值大于或者等于扭矩阈值,且检测到所述关节角误差的绝对值大于或者等于关节角阈值,则确定所述工作参数与预设的人力掰动云台条件相匹配。
  51. 根据权利要求48或50所述的可移动平台,其特征在于,所述扭矩阈值是根据所述电机的温度保护策略预设的。
  52. 根据权利要求51所述的可移动平台,其特征在于,所述扭矩阈值是根据所述电机的温度保护策略实时调整的。
  53. 根据权利要求48或50所述的可移动平台,其特征在于,所述处理器具体用于:
    检测到预设的时长内的所述期望扭矩的绝对值均大于或者等于所述扭矩阈值。
  54. 根据权利要求53所述的可移动平台,其特征在于,所述处理器具体用于:
    当人力掰动所述云台的方向为第一掰动方向时,检测到预设的时长内的所述期望扭矩均大于或者等于扭矩阈值;或/及
    当人力掰动所述云台的方向为第二掰动方向时,检测到所述预设的时长内的所述期望扭矩均小于或者等于所述扭矩阈值的相反数。
  55. 根据权利要求49或50所述的可移动平台,其特征在于,所述处理器具体用于:
    检测到预设的时长内的所述关节角误差的绝对值均大于或者等于关节角阈值。
  56. 根据权利要求55所述的可移动平台,其特征在于,所述处理器具体用于:
    当人力掰动所述云台的方向为第一掰动方向时,检测到预设的时长内的所述关节角误差大于或者等于关节角阈值;或/及
    当人力掰动所述云台的方向为第二掰动方向时,检测到所述预设的时长内的所述关节角误差小于或者等于关节角阈值的相反数。
  57. 根据权利要求39所述的可移动平台,其特征在于,所述处理器具体用于:
    通过所述云台上的惯性测量单元IMU测量人力掰动所述云台时的掰动方向;
    在所述掰动方向上,按照所述姿态转换速度控制所述期望姿态为所述实时姿态。
PCT/CN2018/109207 2018-09-30 2018-09-30 云台及其控制方法、可移动平台 WO2020062298A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880040630.8A CN110770671A (zh) 2018-09-30 2018-09-30 云台及其控制方法、可移动平台
PCT/CN2018/109207 WO2020062298A1 (zh) 2018-09-30 2018-09-30 云台及其控制方法、可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109207 WO2020062298A1 (zh) 2018-09-30 2018-09-30 云台及其控制方法、可移动平台

Publications (1)

Publication Number Publication Date
WO2020062298A1 true WO2020062298A1 (zh) 2020-04-02

Family

ID=69328600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109207 WO2020062298A1 (zh) 2018-09-30 2018-09-30 云台及其控制方法、可移动平台

Country Status (2)

Country Link
CN (1) CN110770671A (zh)
WO (1) WO2020062298A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564574A4 (en) * 2016-12-30 2020-08-19 SZ DJI Osmo Technology Co., Ltd. METHOD AND DEVICE FOR CONTROLLING A BEARING HEAD AND BEARING HEAD
WO2024060105A1 (zh) * 2022-09-21 2024-03-28 深圳市大疆创新科技有限公司 控制方法、云台、云台***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113168191A (zh) * 2020-06-01 2021-07-23 深圳市大疆创新科技有限公司 云台控制方法、手持云台及计算机可读存储介质
CN113169630B (zh) * 2020-10-27 2022-07-19 深圳市大疆创新科技有限公司 跟焦轮的控制方法、跟焦轮及存储介质
CN116746054A (zh) * 2021-06-17 2023-09-12 深圳市大疆创新科技有限公司 跟焦设备的控制方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1912431A2 (de) * 2006-10-09 2008-04-16 Funkwerk plettac electronic GmbH Verfahren und Vorrichtung zur Steuerung einer schwenkbaren Kamera
CN107223220A (zh) * 2016-12-30 2017-09-29 深圳市大疆灵眸科技有限公司 云台控制方法、装置及云台
CN108513610A (zh) * 2017-04-21 2018-09-07 深圳市大疆灵眸科技有限公司 一种云台姿态估计方法、装置以及相应的云台
CN108549399A (zh) * 2018-05-23 2018-09-18 深圳市道通智能航空技术有限公司 飞行器偏航角修正方法、装置及飞行器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8688296B2 (en) * 2008-11-17 2014-04-01 David A. Bailey Method for maximum data collection with a control moment gyroscope controlled satellite
CN102707734A (zh) * 2012-06-19 2012-10-03 上海大学 基于惯性姿态传感器的自稳定云台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1912431A2 (de) * 2006-10-09 2008-04-16 Funkwerk plettac electronic GmbH Verfahren und Vorrichtung zur Steuerung einer schwenkbaren Kamera
CN107223220A (zh) * 2016-12-30 2017-09-29 深圳市大疆灵眸科技有限公司 云台控制方法、装置及云台
CN109885105A (zh) * 2016-12-30 2019-06-14 深圳市大疆灵眸科技有限公司 云台控制方法、装置及云台
CN108513610A (zh) * 2017-04-21 2018-09-07 深圳市大疆灵眸科技有限公司 一种云台姿态估计方法、装置以及相应的云台
CN108549399A (zh) * 2018-05-23 2018-09-18 深圳市道通智能航空技术有限公司 飞行器偏航角修正方法、装置及飞行器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564574A4 (en) * 2016-12-30 2020-08-19 SZ DJI Osmo Technology Co., Ltd. METHOD AND DEVICE FOR CONTROLLING A BEARING HEAD AND BEARING HEAD
US11086202B2 (en) 2016-12-30 2021-08-10 Sz Dji Osmo Technology Co., Ltd. Gimbal control method, device, and gimbal
EP3954934A1 (en) * 2016-12-30 2022-02-16 SZ DJI Osmo Technology Co., Ltd. Method and device for controlling cradle head, and cradle head
US11852958B2 (en) 2016-12-30 2023-12-26 Sz Dji Osmo Technology Co., Ltd. Gimbal control method, device, and gimbal
WO2024060105A1 (zh) * 2022-09-21 2024-03-28 深圳市大疆创新科技有限公司 控制方法、云台、云台***

Also Published As

Publication number Publication date
CN110770671A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020062298A1 (zh) 云台及其控制方法、可移动平台
CN108549399B (zh) 飞行器偏航角修正方法、装置及飞行器
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
WO2019134154A1 (zh) 非正交云台的控制方法及其云台和存储装置
WO2017024761A1 (zh) 一种手持回收和放飞无人机的方法及装置
WO2017024759A1 (zh) 一种手持放飞无人机的方法及装置
WO2018120012A1 (zh) 云台控制方法、装置及云台
WO2019100249A1 (zh) 云台的控制方法、云台以及无人飞行器
US10377043B2 (en) Robot control apparatus, robot, and robot system
JP6430661B2 (ja) 安定プラットホーム、並びにその追従制御システム及び方法
EP3118508B1 (en) Control method for pan tilt and control system of pan tilt
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2020097890A1 (zh) 手持云台的控制方法和手持云台
EP3889729A1 (en) Control method for gimbal, gimbal, mobile platform, and computer readable storage medium
US20190035108A1 (en) Control Device for Robot, Robot, Robot System, and Method of Confirming Abnormality Of Robot
WO2021037047A1 (zh) 一种飞行器的偏航角修正方法、装置及飞行器
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2020019260A1 (zh) 磁传感器校准方法、控制终端以及可移动平台
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2021134644A1 (zh) 云台的控制方法和云台
US20240025039A1 (en) Learning physical features from tactile robotic exploration
KR102476705B1 (ko) 카메라 구동장치, 카메라 구동 방법 및 짐벌장치
WO2020000233A1 (zh) 移动平台及其控制方法
WO2020062280A1 (zh) 云台的控制方法、云台、移动平台和计算机可读存储介质
JP6146520B1 (ja) 光学装置、移動体、保持位置調整方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935162

Country of ref document: EP

Kind code of ref document: A1