WO2018092187A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2018092187A1
WO2018092187A1 PCT/JP2016/083803 JP2016083803W WO2018092187A1 WO 2018092187 A1 WO2018092187 A1 WO 2018092187A1 JP 2016083803 W JP2016083803 W JP 2016083803W WO 2018092187 A1 WO2018092187 A1 WO 2018092187A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
cutting tool
structure forming
flank
core
Prior art date
Application number
PCT/JP2016/083803
Other languages
English (en)
French (fr)
Inventor
泰助 東
松田 裕介
久木野 暁
神田 孝
克己 岡村
Original Assignee
住友電工ハードメタル株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社, 住友電気工業株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP16921956.5A priority Critical patent/EP3542934B1/en
Priority to US16/062,686 priority patent/US10293411B2/en
Priority to PCT/JP2016/083803 priority patent/WO2018092187A1/ja
Priority to KR1020197013520A priority patent/KR102188627B1/ko
Priority to CN201680090839.6A priority patent/CN109996632B/zh
Priority to JP2018550895A priority patent/JP6629990B2/ja
Publication of WO2018092187A1 publication Critical patent/WO2018092187A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1054T slot cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/28Features relating to lubricating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/002Tools other than cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2205/00Fixation of cutting inserts in holders
    • B23B2205/12Seats for cutting inserts
    • B23B2205/125One or more walls of the seat being elastically deformable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/16Cermet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/92Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/28Titanium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/32Titanium carbide nitride (TiCN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/02Connections between shanks and removable cutting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/02Connections between the shanks and detachable cutting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/03Cutting heads comprised of different material than the shank irrespective of whether the head is detachable from the shank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/16Cermet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23C2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23C2224/28Titanium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23C2224/32Titanium carbide nitride (TiCN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/31Diamond
    • B23C2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D2277/00Reaming tools
    • B23D2277/02Cutting head and shank made from two different components which are releasably or non-releasably attached to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D2277/00Reaming tools
    • B23D2277/06Connections between component parts
    • B23D2277/061Brazed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D2277/00Reaming tools
    • B23D2277/24Materials of the tool or the intended workpiece, methods of applying these materials
    • B23D2277/2435Cubic boron nitride [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D2277/00Reaming tools
    • B23D2277/24Materials of the tool or the intended workpiece, methods of applying these materials
    • B23D2277/2442Diamond
    • B23D2277/245Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D2277/00Reaming tools
    • B23D2277/60Reaming tools comprising means for lubrication or cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder

Definitions

  • This disclosure relates to a cutting tool.
  • Rotating cutting tools such as drills and end mills use up cutting blades as they are used, so at least when the cutting performance deteriorates or after a specified period of use has elapsed, the cutting head that contains at least the cutting blade is a new cutting head. Will be replaced. At this time, if the cutting head is non-removably attached to the carbide shank, the carbide shank has not reached the end of its useful life, so even if it is not necessary to replace it, the timing for replacing the cutting blade At the same time, the carbide shank must be changed together. Such replacement of the carbide shank is not preferable from the viewpoint of cost because the carbide shank is relatively expensive.
  • Patent Document 1 describes that a super-hard structure to be processed into a cutting blade is attached to a tool carrier. Specifically, the structure can be attached to the tool carrier by brazing the structure and the tool carrier, or providing the structure with attachment means such as a screw groove.
  • a cutting tool includes a shank, an attachment portion attached to the shank, a core portion, a cutting portion having a surface portion covering the core portion around a central axis, and the attachment portion.
  • a joining portion that joins the cutting portion.
  • the attachment portion includes a hard component and a hard material.
  • the hard component is at least one of TiC (titanium carbide), TiCN (titanium carbonitride), W (tungsten), WC (tungsten carbide), Al 2 O 3 (alumina), CBN (cubic boron nitride) and diamond. And at least one selected from the group consisting of a combination of at least one of W and WC.
  • the hard material contains one or more iron group elements and has a Young's modulus of 350 GPa or less.
  • the core portion includes a cemented carbide material.
  • the surface portion includes PCD (polycrystalline diamond) or CBN.
  • the cutting part has a biting part located at an end opposite to the attachment part.
  • the surface portion includes a groove, a flank, and a cutting edge constituted by a ridge line between the groove and the flank.
  • the cutting edge extends from the end toward the attachment portion.
  • the said flank is comprised by the biting flank located in the said biting part, and the outer periphery flank located in other than the said biting part.
  • the inclination of the biting flank with respect to the central axis is greater than the inclination of the outer peripheral flank with respect to the central axis.
  • the manufacturing method of the raw material for cutting tools which concerns on the other aspect of this indication WHEREIN:
  • FIG. 1A is a perspective view of a cutting tool material showing one embodiment of the present embodiment.
  • 1B is a cross-sectional view taken along the line AA in FIG. 1A.
  • FIG. 2A is a cross-sectional view of a cutting tool material showing another embodiment of the present embodiment.
  • FIG. 2B is a cross-sectional view of the cutting tool material showing another embodiment of the present embodiment.
  • FIG. 2C is a cross-sectional view of a cutting tool material showing another embodiment of the present embodiment.
  • FIG. 3 is a cross-sectional view of a cutting tool material showing still another embodiment of the present embodiment.
  • FIG. 4 is a perspective view of a cutting tool material showing still another embodiment of the present embodiment.
  • FIG. 1A is a perspective view of a cutting tool material showing one embodiment of the present embodiment.
  • FIG. 2B is a cross-sectional view taken along the line AA in FIG. 1A.
  • FIG. 2A is a cross-sectional view of a cutting tool material
  • FIG. 5 is a perspective view of a cutting tool obtained from the cutting tool material 1 of the present embodiment.
  • FIG. 6 is a perspective view of a first example of a rotary cutting tool using the cutting tool material 1 of the present disclosure.
  • FIG. 7 is an enlarged view of region VII in FIG.
  • FIG. 8 is a perspective view of a second example of a rotary cutting tool using the cutting tool material 1 of the present disclosure.
  • FIG. 9 is a perspective view of a third example of the rotary cutting tool using the cutting tool material 1 of the present disclosure.
  • FIG. 10 is a cross-sectional view showing the internal oil supply structure of the rotary cutting tool of the present disclosure.
  • Patent Document 1 has room for further improvement when forming attachment means for attaching to the tool carrier and brazing.
  • a cutting tool material is a cutting tool material for a cutting tool that is used by being attached to a shank, and the cutting tool material is an attachment portion to the shank.
  • the surface portion covers at least a part of the surface of the core portion, and the attachment structure forming portion is made of a hard material including a hard component and one or more of iron group elements.
  • the hard material has a Young's modulus of 350 GPa or less
  • the core portion includes a cemented carbide material
  • the surface portion includes PCD (polycrystalline diamond) or CBN (cubic boron nitride)
  • Hard component is W (tan Gusten), WC (tungsten carbide), TiC (titanium carbide), TiCN (titanium carbonitride), Al 2 O 3 (alumina), and at least one of CBN (cubic boron nitride) and diamond and at least one of W and WC And at least one selected from the group consisting of.
  • the surface portion covers the core portion so that the core portion is not exposed to the outside.
  • At least a part of the joint includes one or more of iron group elements.
  • the joint between the attachment structure forming portion and the surface portion of the joint includes one or more of iron group elements.
  • the core portion has a hollow portion therein, and the attachment structure forming portion has an inner core portion disposed in the hollow portion.
  • the hard material has a Young's modulus of less than 300 GPa.
  • the hard material has an elongation of 5% or less.
  • the cutting tool material is a cutting tool material for a cutting tool that is used by being attached to a shank, and the cutting tool material is an attachment structure forming portion that serves as an attachment portion to the shank.
  • a cutting structure forming portion to be a cutting blade, and a joint portion
  • the cutting structure forming portion has a core portion and a surface portion provided in the attachment structure forming portion through the joint portion,
  • the surface portion covers at least a part of the surface of the core portion
  • the attachment structure forming portion includes a hard material containing W (tungsten), iron, and nickel, and the hard material has a Young's modulus of less than 300 GPa
  • the core portion includes a cemented carbide material
  • the surface portion includes CBN (cubic boron nitride)
  • a method for manufacturing a cutting tool material according to another aspect of the present disclosure includes a first precursor for forming the attachment structure forming portion, a second precursor for forming the core portion, An assembly step of assembling the cutting tool material precursor using a third precursor for forming the surface portion; and a sintering step of sintering the cutting tool material precursor.
  • the manufacturing method of the cutting tool material includes a second precursor and a third precursor on the first precursor via a material containing one or more of iron group elements on the first precursor.
  • the body is arranged.
  • a cutting tool includes a mounting portion attached to a shank, a cutting portion having a core portion and a surface portion covering the core portion around a central axis, the mounting portion, and the cutting And a joining part that joins the parts.
  • the attachment portion includes a hard component and a hard material.
  • the hard component is at least one of TiC (titanium carbide), TiCN (titanium carbonitride), W (tungsten), WC (tungsten carbide), Al 2 O 3 (alumina), CBN (cubic boron nitride) and diamond. And at least one selected from the group consisting of a combination of at least one of W and WC.
  • the hard material contains one or more iron group elements and has a Young's modulus of 350 GPa or less.
  • the core portion includes a cemented carbide material.
  • the surface portion includes PCD (polycrystalline diamond) or CBN.
  • the cutting part has a biting part located at an end opposite to the attachment part.
  • the surface portion includes a groove, a flank, and a cutting edge constituted by a ridge line between the groove and the flank.
  • the cutting edge extends from the end toward the attachment portion.
  • the said flank is comprised by the biting flank located in the said biting part, and the outer periphery flank located in other than the said biting part.
  • the inclination of the biting flank with respect to the central axis is greater than the inclination of the outer peripheral flank with respect to the central axis.
  • the cutting edge extends from the end toward the mounting portion while rotating counterclockwise around the central axis as viewed from the end side.
  • a cutting tool includes a cutting portion having an attachment portion attached to a shank, a core portion, and a surface portion covering the core portion around a central axis, the attachment portion, and the A joining portion that joins the cutting portion.
  • the attachment portion includes a hard component and a hard material.
  • the hard component is at least one of W (tungsten), TiC (titanium carbide), TiCN (titanium carbonitride), WC (tungsten carbide), Al 2 O 3 (alumina), CBN (cubic boron nitride), and diamond. And at least one selected from the group consisting of a combination of at least one of W and WC.
  • the hard material contains one or more iron group elements and has a Young's modulus of 350 GPa or less.
  • the core portion includes a cemented carbide material.
  • the surface portion includes PCD (polycrystalline diamond) or CBN.
  • the surface portion has a cutting edge. The cutting edge extends from an end opposite to the attachment portion toward the attachment portion while being twisted with respect to the central axis.
  • the cutting edge includes a plurality of first cutting edges and a plurality of second cutting edges that are alternately arranged along a circumferential direction, and the first cutting edge is the second cutting edge. It extends while twisting with respect to the central axis in the direction opposite to the cutting edge.
  • the cutting portion has a first flow path therein.
  • the core portion includes a recess.
  • the attachment portion has a convex portion.
  • the attachment portion has a second flow path inside.
  • a space located inside the cutting portion is defined by the concave portion and the convex portion.
  • the first flow path connects the space and the outer peripheral surface of the cutting portion.
  • the second flow path connects the space and the outside.
  • FIG. 1A is a perspective view of a cutting tool material showing one embodiment of the present embodiment.
  • 1B is a cross-sectional view taken along the line AA in FIG. 1A.
  • 2A to 2C are cross-sectional views of a cutting tool material showing another embodiment of the present embodiment.
  • FIG. 3 is a cross-sectional view of a cutting tool material showing still another embodiment of the present embodiment.
  • FIG. 4 is a perspective view of a cutting tool material showing still another embodiment of the present embodiment.
  • FIG. 5 is a perspective view of a cutting tool obtained from the cutting tool material 1 of the present embodiment.
  • the cutting tool material 1 of the present embodiment is a material for a cutting tool that is used by being attached to the shank 5, and as shown in FIG. 1A and FIG. It has the attachment structure forming part 20, the cutting structure forming part 30 used as a cutting blade, and the junction part 40. Then, as shown in FIG. 5, the cutting part 3 and the mounting part 2 are obtained from the cutting tool material 1 by obtaining the mounting part 2 from the mounting structure forming part 20 and obtaining the cutting part 3 from the cutting structure forming part 30. A cutting tool (cutting head) 10 is obtained which is used by being attached to the shank 5 at the attachment portion 2.
  • the attachment structure forming part 20 becomes the attachment part 2 for attaching to the shank 5 in the cutting tool 10 obtained by processing the cutting tool material 1 (FIG. 5).
  • the attachment structure forming portion 20 is subjected to cutting or grinding.
  • the attachment part 2 processed into a predetermined shape such as a screw groove or a pin hole is formed.
  • the attachment structure forming portion 20 may be used as it is as the attachment portion 2, and processed into a predetermined shape as necessary as the attachment portion 2. Also good.
  • the attachment structure forming portion 20 can perform cutting and grinding to form a structure for mechanical fastening such as screw fastening, pinning, other engagement, press fitting, and the like.
  • the shape and size are selected so that brazing can be performed.
  • the attachment structure forming portion 20 of the present embodiment has a circular shape having a joint surface with the cutting structure forming portion 30 that is the same shape as the joint surface with the attachment structure forming portion 20 of the cutting structure forming portion 30. It has a cylindrical shape that is a shape.
  • FIG. 1A shows a cylindrical mounting structure forming portion 20 having a circular joint surface
  • a polygonal columnar shape such as an elliptical columnar shape, a triangular prism shape or a quadrangular prism shape, or a conical shape.
  • an arbitrary shape such as a polygonal pyramid shape.
  • the vertical structure of the mounting structure forming portion 20 (the cross section in the vertical direction with respect to the joint surface with the cutting structure forming portion 30 and corresponding to the AA cross section in FIG. 1A) is a quadrangle.
  • the joint surface of the mounting structure forming portion 20 may have the same shape and size as the joint surface of the cutting structure forming portion 30 as shown in FIG. 1B.
  • the shape and size may be different from the joint surface.
  • the height of the mounting structure forming portion 20 (the length in the vertical direction with respect to the joint surface with the cutting structure forming portion 30) is high enough to perform cutting and grinding to form a structure for mechanical fastening. There is no particular limitation as long as it has a height capable of brazing and has a height at which the vibration damping effect is exhibited in the mounting portion 2 obtained by processing the mounting structure forming portion 20.
  • the diameter of the joint surface may be 5 mm to 30 mm and the height may be 1 mm to 20 mm.
  • the attachment structure forming portion 20 is formed of a hard material containing a hard component and at least one element selected from iron group elements.
  • the hard component includes at least one of W (tungsten), WC (tungsten carbide), TiC (titanium carbide), TiCN (titanium carbonitride), Al 2 O 3 (alumina), CBN (cubic boron nitride) and diamond, and W And at least one selected from the group consisting of a combination with at least one of WC.
  • the iron group element is any one of cobalt, iron, and nickel. The iron group element functions as a sintering aid for converting the hard component into a sintered body.
  • the hard material preferably contains W (tungsten) among the hard components, and preferably contains at least one of iron and nickel among the iron group elements.
  • the hard material may contain other components such as copper as a component other than the hard component and the iron group element.
  • the content of the hard component contained in the hard material is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more, based on the total mass of the hard material. Further preferred.
  • the total content of iron, nickel, and cobalt contained in the hard material is preferably 50% by mass or less, more preferably 20% by mass or more, and more preferably 10% by mass or less, based on the total mass of the hard material. More preferably.
  • a hard component of the mounting structure forming portion 20 W (tungsten), WC (tungsten carbide), TiC (titanium carbide), TiCN (titanium carbonitride), Al 2 O 3 (alumina), and CBN (cubic boron nitride)
  • W tungsten
  • WC tungsten carbide
  • TiC titanium carbide
  • TiCN titanium carbonitride
  • Al 2 O 3 alumina
  • CBN cubic boron nitride
  • the brazing wettability of the mounting portion 2 when the mounting structure forming portion 20 is processed into the mounting portion 2 and brazed to the shank 5. Can be improved.
  • the inventors of the present invention use the mounting portion 2 formed from the mounting structure forming portion 20 by attaching the cutting tool 10 to the shank 5 because the mounting structure forming portion 20 includes a hard material having specific physical properties.
  • the present inventors have newly found that it is possible to improve the service life of the cutting tool 10 by providing a vibration damping effect that suppresses chatter and breakage when the cutting tool 10 is turned on.
  • the mounting structure forming portion 20 has a smaller rigidity than the core portion 31 including a cemented carbide material and the surface portion 32 including PCD or CBN. can do.
  • the attachment portion 2 to the shank 5 formed from the attachment structure forming portion 20 is also easily elastically deformed. Therefore, when using the cutting tool 10 as a rotary cutting tool, the load applied to the mounting portion 2 can be reduced, so that breakage of the cutting tool 10 can be suppressed.
  • the attachment part 2 of the cutting tool 10 is easily affected by vibration when used as a rotary cutting tool, if the attachment part 2 is formed of a material that is easily deformed as described above, it is easy to absorb vibration. Therefore, it is possible to provide a rotary cutting tool having excellent vibration damping (vibration resistance) with reduced chatter.
  • a hard material having a Young's modulus at a temperature of 25 ° C. of less than 500 GPa, more preferably less than 400 GPa, and 350 GPa or less. Is more preferred, and most preferred is less than 300 GPa.
  • the Young's modulus is a value measured according to a tensile test.
  • the attachment structure forming portion 20 and the core portion 31 and the surface portion 32 forming the cutting structure forming portion 30 are integrated by sintering.
  • the mounting structure forming portion 20 including a hard material, the core portion 31 including a cemented carbide material, and the surface portion 32 including PCD or CBN are used, the inventors attach the mounting structure during the integration by the sintering. It has been found that the bondability during sintering between the structure forming part 20 and the core part 31 and the surface part 32 may deteriorate.
  • the present inventors have found that by adjusting the elongation of the hard material, it is possible to suppress a decrease in bondability during sintering.
  • the elongation of the hard material is preferably 5% or less, more preferably 1% or less, and further preferably 0.5% or less.
  • the plastic deformability of the mounting structure forming portion 20 formed of the hard material can be reduced.
  • the deformation of the attachment structure forming portion 20 due to the temperature change during sintering is reduced, so that the deformation of the attachment structure forming portion 20 and the core portion 31 and the surface portion 32 of the cutting structure forming portion 30 during sintering.
  • the difference can be reduced.
  • the above elongation is a value measured according to a tensile test.
  • the mounting structure forming portion 20 of the present embodiment includes a hard component and an iron group element, and uses a hard material having specific physical properties to perform mechanical fastening for mounting to the shank 5. Therefore, it is possible to easily perform a cutting process or a grinding process, or brazing for mounting to the shank 5. Moreover, the vibration damping effect which suppresses chatter and breakage when the cutting tool 10 is attached to the shank 5 and used can be obtained. Then, by adjusting the elongation of the hard material, it is possible to achieve excellent bonding properties with the core portion 31 and the surface portion 32 of the cutting structure forming portion 30 during sintering.
  • the Young's modulus and elongation of the hard material can be adjusted by the type and content of the hard component and the iron group element in the hard material.
  • the cutting structure forming unit 30 is processed so as to form the cutting unit 3 having a cutting blade in the cutting tool 10 obtained by processing the cutting tool material 1 (FIG. 5).
  • the cutting structure forming unit 30 of the present embodiment has a cylindrical shape as shown in FIG. 1A.
  • size of the bottom face of the cylinder which comprises the cutting structure formation part 30, and the height of a cylinder will not be specifically limited if the cutting part 3 which has a cutting blade can be formed by cutting or grinding.
  • the bottom diameter may be 5 mm to 30 mm and the height may be 5 mm to 30 mm.
  • the cylindrical cutting structure forming unit 30 is shown.
  • the shape is not limited to the cylindrical shape, and may be any shape such as an elliptical column shape, a polygonal column shape such as a triangular column shape or a quadrangular column shape, a conical shape or a polygonal pyramid shape.
  • the shape may also be
  • the cutting structure forming portion 30 has a vertical cross section (a cross section in a direction perpendicular to the joint surface with the mounting structure forming portion 20 and corresponding to the AA cross section in FIG. 1A) having a square shape.
  • the joint surface of the cutting structure forming part 30 with the attachment structure forming part 20 may be the same shape / size as the joint surface of the attachment structure forming part 20 or may have a different shape / size.
  • the cutting structure forming part 30 of the present embodiment has a core part 31 and a surface part 32 provided in the attachment structure forming part 20 via a joint part 40.
  • the surface portion 32 covers a part of the surface of the core portion.
  • the core portion 31 is provided so as to cover at least a part of the surface other than the surface in contact with the joint portion 40.
  • the core part 31 and the surface part 32 are the states joined by sintering mentioned later.
  • the size of the core portion 31 and the surface portion 32 may be selected so that a desired cutting blade can be cut or ground.
  • the size and shape of the cutting blade to be formed, and the connection with the attachment structure forming portion 20 The diameter and height of the bottom surfaces of the core portion 31 and the surface portion 32 may be selected in consideration of the size required for the above.
  • the diameter of the bottom surface of the core part 31 may be 3 mm to 27 mm, and the height of the core part 31 may be 5 mm to 30 mm.
  • the outer diameter of the bottom surface of the surface portion 32 may be 5 mm to 30 mm, and the height of the surface portion 32 may be 5 mm to 30 mm.
  • the core part 31 of this Embodiment is provided in the center part of the cutting structure formation part 30, as shown to FIG. 1A and FIG. 1B, and is a solid cylindrical shape.
  • 1A and 1B show a solid columnar core 31, but the shape is not limited to a columnar shape, but a polygonal columnar shape such as an elliptical column shape, a triangular column shape, or a quadrangular column shape, a conical shape, or a polygonal pyramid shape.
  • Arbitrary shapes, such as a shape may be sufficient, a solid shape may be sufficient, and a hollow shape may be sufficient.
  • the hollow part formed in the core part 31 penetrates from the surface of the core part 31 on the side joining the attachment structure forming part 20 to the surface of the core part 31 opposite to the side joining the attachment structure forming part 20.
  • the shape may be sufficient, the shape which penetrates only in any one surface among these may be sufficient, and the shape which does not penetrate in any surface may be sufficient.
  • the core portion 31 has a hollow shape, as shown in FIG. 2A, the hard material that forms the attachment structure forming portion 20 in the hollow portion of the core portion 31, the material that forms the core portion 31 and the attachment structure formation portion 20
  • the inner core part 33 formed with arbitrary materials, such as different steel, may be provided.
  • the method of providing the inner core portion 33 is not particularly limited.
  • the inner core portion 33 may be fixed to the hollow portion by screwing, shrink fitting, or brazing, in the same shape as the hollow portion of the core portion 31.
  • FIG. 2A the inner core portion 33 may be fixed to the hollow portion by screwing, shrink fitting, or brazing, in the same shape as the hollow portion of the core portion 31.
  • a screw is attached to the tip of the inner core portion 33 on the attachment structure forming portion 20 side so that the inner core portion 33 and the attachment structure forming portion 20 are fixed by a fixture such as a screw or a pin. You may make it make it a pin shape which provides a groove
  • the inner core portion 33 made of the same material as the hard material forming the attachment structure forming portion 20 is disposed in the hollow portion of the core portion 31, it is provided in the hollow portion of the core portion 31 as shown in FIG. Assemble the mounting structure forming portion 20 and the cutting structure forming portion 30 so that the inner core portion 33 and the mounting structure forming portion 20 are integrally formed, and the inner core portion 33 is disposed in the hollow portion of the core portion 31. Also good. Thus, when the inner core portion 33 is formed integrally with the attachment structure forming portion 20 from the same material as the hard material forming the attachment structure forming portion 20, the vibration damping performance of the resulting cutting tool 10 is further improved. be able to.
  • the longitudinal section of the core portion 31 and the inner core portion 33 (a section perpendicular to the joint surface with the mounting structure forming portion 20, corresponding to the section AA in FIG. 1A). ) are both rectangular, but they may be the same shape or different shapes, and the shape may be any shape such as a trapezoid or a triangle. .
  • the core part 31 is formed of a cemented carbide material.
  • the cemented carbide material is a material containing, for example, tungsten carbide and cobalt.
  • the hardness of the core part 31 can be made smaller than the surface part 32 formed of PCD or CBN.
  • the surface containing the core part 31 and PCD or CBN A good joined state with the portion 32 can be obtained.
  • the content ratio of tungsten carbide and cobalt contained in the cemented carbide material forming the core portion 31 is not particularly limited, but the content of tungsten carbide is 75% by mass or more with respect to the total mass of tungsten carbide and cobalt. It is preferable that the content is 85% by mass or more. Moreover, it is preferable that content of tungsten carbide is 98 mass% or less with respect to the total mass of tungsten carbide and cobalt, and it is more preferable that it is 95 mass% or less.
  • the strength of the core portion can be ensured. Moreover, it can join favorably with the surface part 32 by content of tungsten carbide being 98 mass% or less with respect to the total mass of tungsten carbide and cobalt.
  • the cemented carbide material may contain other components other than tungsten carbide and cobalt.
  • other components include one or more of TiC, TaC, Ni, and the like.
  • the other components are preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total mass of the cemented carbide material.
  • the surface portion 32 of the present embodiment has a cylindrical shape having a hollow portion that accommodates the core portion 31 at the center. Then, as shown in FIG. 1B, the surface portion 32 is joined to the attachment structure forming portion 20, is provided concentrically on the outer periphery of the side surface of the cylindrical core portion 31, and has a cylindrical shape as a whole together with the core portion 31.
  • the cutting structure forming part 30 is formed. The surface portion 32 is joined to the core portion 31 by sintering, which will be described later, at a portion covering the core portion 31.
  • the surface portion 32 has a joint surface to be joined to the attachment structure forming portion, and is provided so as to cover at least a part of the surface of the core portion 31.
  • the surface portion 32 may be provided only on the side surface portion of the surface of the core portion 31, and as shown in FIG. You may provide in the side surface and top surface of the core part 31 so that the surface may not be exposed outside.
  • the cutting tool 10 which has the cutting blade formed in the surface part 32 also in the front-end
  • the shape and size of the surface portion 32 are not particularly limited as long as the surface portion 32 can be bonded to the core portion 31 and the cutting structure forming portion 30 can be cut or ground to form a cutting blade. Accordingly, the surface portion 32 is formed to have an outer shape different from that of the core portion 31, and the outer shape of the cutting structure forming portion 30 is an elliptical column shape, a polygonal column shape such as a triangular column shape or a quadrangular column shape, a conical shape, You may make it form in arbitrary shapes, such as a polygonal pyramid shape.
  • the cutting process or grinding process performed to form the cutting blade may be performed only on the surface part 32 or may be performed on both the surface part 32 and the core part 31. Good.
  • the surface portion 32 is formed of a material containing PCD (polycrystalline diamond) or CBN (cubic boron nitride). By forming the surface portion 32 of a material containing PCD or CBN, a rotary cutting tool having excellent wear resistance and breakage resistance can be formed.
  • the surface portion 32 is preferably formed of a material containing CBN.
  • the joint portion 40 is formed on the joint surface between the attachment structure forming portion 20 and the cutting structure forming portion 30.
  • the joint portion 40 includes at least a first joint portion that joins the joint surface of the attachment structure forming portion 20 and the core portion 31 of the cutting structure formation portion 30, a joint surface of the attachment structure formation portion 20, and a surface of the cutting structure formation portion 30. And a second joint portion that joins the portion 32.
  • the thickness of the bonding portion 40 is not particularly limited as long as a required bonding strength is obtained, but may be, for example, 5 ⁇ m to 200 ⁇ m.
  • the attachment structure forming portion 20 and the cutting structure forming portion 30 can be firmly joined.
  • the cutting portion 3 formed from the cutting structure forming portion 30 and the mounting portion 2 formed from the mounting structure forming portion 20 are used.
  • the intensity measured by the shear test of bonding portion 40 is preferably at 25 kgf / mm 2 or more, preferably 30 kgf / mm 2 or more.
  • the joint part 40 is formed of a material containing one or more of iron group elements composed of cobalt, iron, and nickel. May be.
  • the second joint portion that joins the attachment structure forming portion 20 and the surface portion 32 is a joint portion made of a material containing one or more of iron group elements. Bondability with the surface portion 32 of the cutting structure forming portion 30 can be improved.
  • the joint portion 40 may be formed by sintering the attachment structure forming portion 20 and the cutting structure forming portion 30. Specifically, the attachment structure forming portion 20 and the core portion 31 of the cutting structure forming portion 30 are joined during sintering by an iron group element contained in the attachment structure forming portion 20 and a small amount of cobalt component contained in the core portion 31. The portion 40 can be formed. Further, even when PCD is used as the surface portion 32 of the cutting structure forming portion 30, the joint portion 40 can be formed between the mounting structure forming portion 20 and the surface portion 32 during sintering. However, when CBN having a low cobalt component content is used as the surface portion 32, deterioration in bondability is likely to be a problem.
  • the bonding portion 40 including the iron group element is used. It is preferable to provide it. Thereby, the surface part 32 containing CBN and the attachment structure forming part 20 can be joined with a joining strength of 30 kgf / mm 2 or more.
  • the joint 40 may include both a joint of a material containing one or more of the iron group elements and a joint formed by sintering, and includes only one of them. May be.
  • the 1st junction part which joins the attachment structure formation part 20 and the core part 31 is formed by sintering
  • the 2nd junction part which joins the attachment structure formation part 20 and the surface part 32 is 1 type of an iron group element Or you may form with the material containing 2 or more types.
  • the cutting tool material of the present embodiment forms a first precursor to be the attachment structure forming portion 20, a second precursor to be the core portion 31, and a third precursor to be the surface portion 32. It is manufactured through an assembly process for assembling the third precursor and a sintering process for sintering the precursor of the cutting tool material assembled by the assembly process.
  • Each precursor of the mounting structure forming portion 20, the core portion 31, and the surface portion 32 can be manufactured according to a conventionally known method. For example, a molded body in which raw material powder is put into a mold and press-molded, A blank processed body made into a predetermined shape by cutting or grinding from a blank material or the like can be used.
  • contracts by sintering it is preferable to prepare the metal mold
  • the precursor of the core portion 31 is fitted into the hollow portion of the precursor of the surface portion 32 obtained in this way by pressing to form a precursor that becomes the cutting structure forming portion 30.
  • the precursor to be the cutting structure forming portion 30 is assembled in a state where the precursor of the core portion 31 and the precursor of the surface portion 32 are in contact with the precursor of the mounting structure forming portion 20, and the cutting tool material A precursor is obtained and the precursor is sintered.
  • the core portion 31 and the surface portion 32 are joined, and the joint portion 40 containing cobalt is formed between the core portion 31 and the attachment structure forming portion 20.
  • a joint 40 containing cobalt is formed between the surface portion 32 and the attachment structure forming portion 20.
  • the precursor of the core portion 31 and the precursor of the attachment structure forming portion 20 are interposed on the precursor containing one or more of iron group elements composed of nickel, iron, and cobalt.
  • the precursor of the surface portion 32 is disposed and sintered, the joint portion 40 containing the iron group element is formed.
  • the material containing an iron group element may be arranged in a powder form or a foil form between the precursors.
  • the sintering process may be performed under conditions known in the art, but in the present embodiment, different materials are used for the attachment structure forming portion 20, the core portion 31, and the surface portion 32, respectively. Degree of deformation is different. Due to this difference in deformation, there is a possibility that cracks may occur at the portions where the molded bodies forming the attachment structure forming portion 20, the core portion 31, and the surface portion 32 are in contact with each other. Therefore, in the sintering process, after sintering under conditions of pressure 4.5 GPa to 7.5 GPa and temperature 1200 to 1700 ° C., the pressure is reduced to 3 GPa to 4 GPa while maintaining the temperature, and the core portion 31 is compressed. , Release the pressure to normal pressure, and bring the temperature to room temperature. Thereby, it is possible to obtain good jointability at the portion where the respective molded bodies are in contact with each other without causing cracks at the portions where the respective molded bodies are in contact with each other.
  • the cutting tool material of the present disclosure can be suitably used as a cutting tool 10 of a rotary cutting tool such as a drill or an end mill as shown in FIG.
  • test piece As a test piece, a strip shape having a length of 30 mm and a width of 5 mm is prepared, and the test piece is subjected to a tensile test at a tensile speed of 0.1 mm / min using an autograph (manufactured by Shimadzu Corporation), and a strain gauge method is used. Young's modulus and elongation were measured.
  • A The value measured with a vibrometer was small (less than 1.5 m / s 2 ), and the vibration damping property when using a rotary cutting tool was very excellent.
  • Example 1 First, in order to form the cylindrical mounting structure forming portion 20, the cylindrical core portion 31, and the hollow cylindrical surface portion 32 shown in FIGS. 1A and 1B by sintering, using the following powder materials, It was press-molded with a mold to obtain a molded body for an attachment structure forming portion, a molded body for a core portion, and a molded body for a surface portion.
  • -Molding for mounting structure molded part Material Hard material containing 90% by mass of tungsten and 10% by mass of metal binder containing iron, nickel and copper (Young's modulus: 280 GPa, elongation 0.4%) -Molded body for core material: Powder of cemented carbide containing 94% by mass of tungsten carbide and 6% by mass of cobalt Pressure during press molding: 100MPa to 200MPa -Molded body for surface portion Powder material: Powder of material containing CBN and inevitable impurities Pressure during press molding: 100 MPa to 200 MPa Next, the core part molded body was fitted into the hollow part of the surface part molded body obtained as described above by pressing to obtain a cutting structure forming part molded body.
  • a nickel 100% by mass thin plate is disposed on the joint surface of the mounting structure forming portion molded body to form the joint portion 40, and the core portion molded body and the surface portion molded body are disposed on the thin plate. And each said molded object was assembled.
  • the molded body assembled as described above was sintered under conditions of a temperature of 1400 ° C. and a pressure of 5 Pa to obtain a cutting tool material 1.
  • the size of the obtained cutting tool material 1 is 8 mm in diameter and 20 mm in height, the height of the mounting structure forming portion 20 is 12 mm, the diameter of the core portion 31 is 5 mm, and the thickness of the surface portion 32 in the circumferential direction.
  • the height of the core portion 31 and the surface portion 32 was 5 mm.
  • the cutting structure forming portion 30 of the obtained cutting tool material 1 is formed with a cutting blade having four blades (twisting angle is 45 °), a screw groove is formed in the mounting structure forming portion 20, and the diameter is 7.5 mm.
  • a rotary cutting tool was obtained by fastening with a screw of a cemented carbide shank 5 having a length of 75 mm. The obtained rotary cutting tool was evaluated for vibration and breakage during the rotary cutting operation. The results are shown in Table 1.
  • Example 1 Example except that the cemented carbide material (Young's modulus: 620 GPa, elongation 0.5%) used as the material for the core part molded body in Example 1 was used as the material for the molded part for the mounting structure molded part.
  • the raw material for cutting tools and the rotary cutting tool were obtained in the same manner as in 1.
  • the obtained rotary cutting tool was evaluated for vibration and breakage during the rotary cutting operation. The results are shown in Table 1.
  • Example 1 From a comparison between Example 1 and Comparative Example 1, it was found that by forming the attachment structure forming portion with a hard material, the vibration damping performance during the rotary cutting operation was excellent and breakage could be suppressed.
  • Example 2 A cutting tool material and a rotary cutting tool were obtained in the same manner as in Example 1 except that the following materials were used as the material for the mounting structure molded part.
  • -Molded body for mounting structure molded part material of Example 2
  • Hard material containing 95% by mass of tungsten and 5% by mass of a metal binder containing iron, nickel and copper Youngng's modulus: 300 GPa, 5% elongation
  • (Material of Example 3) A hard material containing 95% by mass of tungsten and 5% by mass of a metal binder containing iron, nickel, and copper (Young's modulus: 350 GPa, elongation: 25%)
  • the obtained rotary cutting tool was evaluated for vibration and breakage during the rotary cutting operation. The results are shown in Table 1.
  • Example 3 From the comparison of Example 1 to Example 3, it was found that the smaller the Young's modulus of the mounting structure molding portion, the better the vibration damping property of the obtained rotary cutting tool and the prevention of breakage.
  • FIG. 6 is a perspective view of a first example of a rotary cutting tool using the cutting tool material 1 of the present disclosure.
  • FIG. 7 is an enlarged view of region VII in FIG.
  • the rotary cutting tool according to the first example is a reamer.
  • the rotary cutting tool according to the first example is formed using the cutting tool material 1 of the present disclosure. Therefore, a cutting edge can be formed at any position on the outer peripheral surface 32a, and the cutting tool can have a small diameter and a large number of cutting edges.
  • the rotary cutting tool according to the first example has a cutting tool 10.
  • the cutting tool 10 has an attachment part 2 and a cutting part 3.
  • the attachment portion 2 and the cutting portion 3 are joined by the joint portion 40.
  • the attachment part 2 is detachably attached to the shank 5.
  • the cutting part 3 includes the core part 31 and the surface part 32, and the surface part 32 covers the outer peripheral surface of the core part 31. From another point of view, the surface portion 32 covers the surface of the core portion 31 around the central axis.
  • the attaching part 2 and the cutting part 3 are formed by processing the cutting tool raw material 1 of this indication.
  • the surface portion 32 has an outer peripheral surface 32a.
  • the outer peripheral surface 32 a is the outer peripheral surface of the cutting part 3.
  • the outer peripheral surface 32a has a cutting edge 32b, a groove 32c, and a flank 32d.
  • the surface portion 32 has a biting portion 32e.
  • the cutting edge 32b is formed on the outer peripheral surface 32a. Note that the cutting edge 32b may be formed not only on the outer peripheral surface 32a but also on other portions (for example, the attachment portion 2, the core portion 31, and the joint portion 40). It is preferable that a plurality of cutting edges 32b are provided.
  • the cutting edge 32b is preferably twisted counterclockwise with respect to the central axis A. Note that the cutting edge 32b is twisted counterclockwise with respect to the central axis A when the cutting edge 32b is viewed from the tip of the rotary cutting tool (the end opposite to the mounting part 2 side of the cutting part 3). In addition, it means that the cutting edge 32b extends toward the mounting portion 2 while rotating counterclockwise around the central axis A.
  • the cutting edge 32b may not be twisted. That is, the cutting edge 32b may be formed linearly.
  • the outer peripheral surface 32a is recessed.
  • a cutting edge 32b is constituted by a ridge line between the groove 32c and the flank 32d. That is, the groove 32c located on the side of the cutting edge 32b is a rake face.
  • the biting portion 32e is a portion that bites the work material and mainly performs cutting.
  • the biting portion 32e is disposed at the tip of the surface portion 32 (the end opposite to the attachment portion 2 side of the cutting portion 3).
  • the flank 32d has a biting flank 32da and an outer peripheral flank 32db.
  • the biting flank 32da is a flank 32d located at the biting portion 32e.
  • the outer peripheral flank 32db is a flank 32d positioned other than the biting portion 32e.
  • the flank 32d is chamfered at the chamfered portion 32e, and the chamfered flank 32da is formed by this chamfering. That is, by performing this chamfering, a chamfered flank 32da that is inclined more than the outer peripheral flank 32db with respect to the central axis is formed.
  • the inclination with respect to the central axis A of the biting flank 32da is larger than the inclination with respect to the central axis A of the outer peripheral flank 32db. More specifically, the biting flank 32da is inclined so that the distance from the central axis A becomes closer as it approaches the tip of the surface portion 32.
  • the cutting edge 32b has a chamfering cutting edge 32ba and an outer peripheral cutting edge 32bb.
  • the biting edge 32ba is a cutting edge 32b located in the biting portion 32e.
  • the outer peripheral cutting edge 32bb is a cutting edge 32b positioned other than the biting portion 32e.
  • biting edge 32ba is formed by a ridge line between the biting flank 32da and the groove 32c.
  • the outer peripheral cutting edge 32bb is formed by a ridge line between the outer peripheral flank 32db and the groove 32c.
  • FIG. 8 is a perspective view of a second example of a rotary cutting tool using the cutting tool material 1 of the present disclosure.
  • FIG. 9 is a perspective view of a third example of the rotary cutting tool using the cutting tool material 1 of the present disclosure.
  • the rotary cutting tool according to the second example is a T-slot cutter.
  • the rotary cutting tool according to the third example is also a T slot cutter.
  • the cutting tool according to the second and third examples has a cutting tool 10.
  • the cutting tool 10 has an attachment part 2 and a cutting part 3. Although not shown, as described above, the attachment portion 2 and the cutting portion 3 are joined by the joint portion 40.
  • the attachment part 2 is detachably attached to the shank 5.
  • the cutting part 3 includes the core part 31 and the surface part 32 as described above.
  • the surface portion 32 of the cutting tool material 1 of the present disclosure has an outer peripheral surface 32a.
  • the outer peripheral surface 32a has a first cutting edge 32bc, a second cutting edge 32bd, and a groove 32c.
  • a plurality of first cutting edges 32bc and second cutting edges 32bd may be provided.
  • the first cutting edges 32bc and the second cutting edges 32bd are alternately arranged along the circumferential direction on the outer peripheral surface 32a.
  • the groove 32c is disposed between the first cutting edge 32bc and the second cutting edge 32bd.
  • 1st cutting edge 32bc and 2nd cutting edge 32bd are extended toward the attachment part 2 from the front-end
  • the first cutting edge 32bc and the second cutting edge 32bd may be twisted in the same direction.
  • the first cutting edge 32bc may extend while twisting in the direction opposite to the second cutting edge 32bd.
  • the first cutting edge 32bc may be twisted clockwise with respect to the central axis
  • the second cutting edge 32bd may be twisted counterclockwise with respect to the central axis. That is, the first cutting edge 32bc and the second cutting edge 32bd may be formed in a staggered shape.
  • FIG. 10 is a cross-sectional view showing the internal oil supply structure of the rotary cutting tool of the present disclosure.
  • the rotary cutting tool has an attachment portion 2, a cutting portion 3, and a joint portion 40.
  • the cutting part 3 has a core part 31 and a surface part 32.
  • the core part 31 has the recessed part 31a.
  • the concave portion 31 a is provided on the surface of the core portion 31 on the mounting portion 2 side.
  • the attachment part 2 has a convex part 2a.
  • the convex portion 2 a is provided on the surface of the attachment portion 2 on the cutting portion 3 side.
  • the attachment portion 2 is joined to the cutting portion 3 by the joint portion 40 in a state where the convex portion 2a is inserted into the concave portion 31a.
  • the depth of the concave portion 31a is larger than the height of the convex portion 2a. Therefore, a space 31 b is formed between the attachment portion 2 and the core portion 31. That is, a space 31b defined by the convex portion 2a and the concave portion 31a is formed inside the cutting portion 3.
  • the cutting unit 3 has a first flow path 34. There may be a plurality of first flow paths 34.
  • the first flow path 34 is connected to the space 31b at one end.
  • the first flow path 34 is connected to the outer peripheral surface of the cutting part 3 at the other end.
  • the first flow path 34 penetrates the core portion 31 and the surface portion 32.
  • the rotary cutting tool of the present disclosure further has a second flow path 6.
  • the second flow path 6 is formed inside the attachment portion 2.
  • the second flow path 6 is connected to the space 31b at one end.
  • the second flow path 6 is connected to the outside of the rotary cutting tool of the present disclosure at the other end.
  • the cutting oil When the cutting oil is supplied from the other end of the second flow path 6, the cutting oil is supplied to the space 31b through the second flow path 6 and accumulates in the space 31b.
  • the cutting oil that has accumulated in the space 31 b is supplied to the outer peripheral surface of the cutting structure forming unit 30 via the other end of the first flow path 34.
  • the space 31b functions as an oil reservoir
  • the first channel 34 functions as an oil supply port to the cutting edge
  • the second channel 6 functions as an oil hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Milling Processes (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

本開示の一態様に係る切削工具は、取付け部と、コア部と表面部とを有する切削部と、接合部とを備える。取付け部は、硬質成分と硬質材料とを含む。硬質成分は、TiC、TiCN、W、WC、Al並びにCBN及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より少なくとも1つ選択される。硬質材料は、鉄族元素の1種又は2種以上を含み、ヤング率が350GPa以下である。コア部は超硬合金材料を含む。表面部は、PCD又はCBNを含む。切削部は、食付き部を有する。表面部は、溝と、逃げ面と、切れ刃とを含む。切れ刃は、取付け部の側に向かって延在している。逃げ面は、食付き逃げ面と外周逃げ面とにより構成される。食付き逃げ面の中心軸に対する傾斜は、外周逃げ面の中心軸に対する傾斜よりも大きい。

Description

切削工具
 本開示は、切削工具に関する。
 ドリルやエンドミルなどの回転切削工具は、その使用に伴って切削刃が消耗するため、切削性能が低下したり所定の使用期間が経過した後などに、少なくとも切削刃を含む切削ヘッドが新しい切削ヘッドに交換される。このとき、切削ヘッドが超硬シャンクに取り外し不可能に取り付けられていると、超硬シャンクは耐用寿命に達していないために交換する必要がない場合であっても、切削刃の交換のタイミングに合わせて超硬シャンクも一緒に交換しなければならない。このような超硬シャンクの交換は、超硬シャンクが比較的高価であるためコスト面から好ましくない。
 そこで、切削刃が消耗したときに切削ヘッドのみを交換できるように、切削ヘッドを超硬シャンクに取り外し可能に取り付けることが考えられる。特許文献1には、切削刃に加工される超硬質構造の構造物を工具担体に取付けることが記載されている。具体的には、上記構造物と工具担体とをろう付けする、上記構造物にねじ溝等の取付け手段を設ける等により、工具担体への取り付けを可能にしている。
特表2015-520661号公報
 本開示の一態様に係る切削工具は、シャンクと、前記シャンクに取り付けられる取付け部と、コア部と、前記コア部を中心軸回りに被覆する表面部とを有する切削部と、前記取付け部と前記切削部とを接合する接合部とを備える。前記取付け部は、硬質成分と、硬質材料とを含む。前記硬質成分は、TiC(炭化チタン)、TiCN(炭窒化チタン)、W(タングステン)、WC(炭化タングステン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より少なくとも1つ選択される。前記硬質材料は、鉄族元素の1種又は2種以上を含むとともに、ヤング率が350GPa以下である。前記コア部は、超硬合金材料を含む。前記表面部は、PCD(多結晶ダイヤモンド)又はCBNを含む。前記切削部は、前記取付け部とは反対側の端に位置する食付き部を有する。前記表面部は、溝と、逃げ面と、前記溝と前記逃げ面との稜線により構成される切れ刃とを含む。前記切れ刃は、前記端から前記取付け部の側に向かって延在している。前記逃げ面は、前記食付き部に位置する食付き逃げ面と、前記食付き部以外に位置する外周逃げ面とにより構成される。前記食付き逃げ面の前記中心軸に対する傾斜は、前記外周逃げ面の前記中心軸に対する傾斜よりも大きい。
 また、本開示の他の態様に係る切削工具用素材の製造方法は、前記取付け構造形成部を形成するための第1前駆体と、前記コア部を形成するための第2前駆体と、前記表面部を形成するための第3前駆体とを用いて前記切削工具用素材の前駆体を組立てる組立て工程と、前記切削工具用素材の前駆体を焼結する焼結工程とを有する。
図1Aは、本実施の形態の一形態を示す切削工具用素材の斜視図である。 図1Bは、図1AのA-A断面図である。 図2Aは、本実施の形態の他の一形態を示す切削工具用素材の断面図である。 図2Bは、本実施の形態の他の一形態を示す切削工具用素材の断面図である。 図2Cは、本実施の形態の他の一形態を示す切削工具用素材の断面図である。 図3は、本実施の形態のさらに他の一形態を示す切削工具用素材の断面図である。 図4は、本実施の形態のさらに他の一形態を示す切削工具用素材の斜視図である。 図5は、本実施の形態の切削工具用素材1から得られる切削工具の斜視図である。 図6は、本開示の切削工具用素材1を用いた回転切削工具の第1例の斜視図である。 図7は、図6の領域VIIにおける拡大図である。 図8は、本開示の切削工具用素材1を用いた回転切削工具の第2例の斜視図である。 図9は、本開示の切削工具用素材1を用いた回転切削工具の第3例の斜視図である。 図10は、本開示の回転切削工具の内部給油構造を示す断面図である。
[本開示が解決しようとする課題]
 特許文献1に記載の構造物は、工具担体に取付けるための取付け手段の形成やろう付けに際してさらなる改良の余地がある。
 本開示は、上記実情に鑑みてなされたものであって、シャンクへの取付け性に優れた切削工具用素材及びその製造方法を提供することを目的とする。
[本開示の効果]
 上記によれば、シャンクへの取付け性に優れた切削工具用素材及びその製造方法を提供することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 [1] 本開示の一態様に係る切削工具用素材は、シャンクに取付けられて使用される切削工具のための切削工具用素材であって、前記切削工具用素材は、前記シャンクへの取付け部となる取付け構造形成部と、切削刃となる切削構造形成部と、接合部とを有し、前記切削構造形成部は、前記接合部を介して前記取付け構造形成部に設けられるコア部及び表面部を有し、前記表面部は、前記コア部の表面の少なくとも一部を被覆し、前記取付け構造形成部は、硬質成分と、鉄族元素の1種又は2種以上とを含む硬質材料を含むとともに、前記硬質材料は、ヤング率が350GPa以下であり、前記コア部は、超硬合金材料を含み、前記表面部は、PCD(多結晶ダイヤモンド)又はCBN(立方窒化ホウ素)を含み、前記硬質成分は、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つであるものである。
 [2] 前記表面部は、前記コア部が外部に露出しないように前記コア部を被覆しているものである。
 [3] 前記切削工具用素材は、前記接合部の少なくとも一部は、鉄族元素の1種又は2種以上を含むものである。
 [4] 前記切削工具用素材は、前記接合部のうち前記取付け構造形成部と前記表面部との間の接合部は、鉄族元素の1種又は2種以上を含むものである。
 [5] 前記切削工具用素材は、前記コア部は、その内部に中空部を有し、前記取付け構造形成部は、前記中空部に配置される内側コア部を有するものである。
 [6] 前記切削工具用素材は、前記硬質材料は、ヤング率が300GPa未満であるものである。
 [7] 前記切削工具用素材は、前記硬質材料は、伸びが5%以下であるものである。
 [8] 前記切削工具用素材は、シャンクに取付けられて使用される切削工具のための切削工具用素材であって、前記切削工具用素材は、前記シャンクへの取付け部となる取付け構造形成部と、切削刃となる切削構造形成部と、接合部とを有し、前記切削構造形成部は、前記接合部を介して前記取付け構造形成部に設けられるコア部及び表面部を有し、前記表面部は、前記コア部の表面の少なくとも一部を被覆し、前記取付け構造形成部は、W(タングステン)、鉄及びニッケルを含む硬質材料を含むとともに、前記硬質材料は、ヤング率が300GPa未満、伸びが5%未満であり、前記コア部は、超硬合金材料を含み、前記表面部は、CBN(立方窒化ホウ素)を含み、前記接合部のうち前記取付け構造形成部と前記表面部との間の接合部は、鉄族元素の1種又は2種以上を含む材料であるものである。
 [9] 本開示の他の態様に係る切削工具用素材の製造方法は、前記取付け構造形成部を形成するための第1前駆体と、前記コア部を形成するための第2前駆体と、前記表面部を形成するための第3前駆体とを用いて前記切削工具用素材の前駆体を組立てる組立て工程と、前記切削工具用素材の前駆体を焼結する焼結工程とを有する。
 [10] 前記切削工具用素材の製造方法は、上記組立て工程において、第1前駆体上に、鉄族元素の1種又は2種以上を含む材料を介して、第2前駆体及び第3前駆体を配置するものである。
 [11] 本開示の一態様に係る切削工具は、シャンクに取り付けられる取付け部と、コア部と前記コア部を中心軸回りに被覆する表面部とを有する切削部と、前記取付け部と前記切削部とを接合する接合部とを備える。前記取付け部は、硬質成分と、硬質材料とを含む。前記硬質成分は、TiC(炭化チタン)、TiCN(炭窒化チタン)、W(タングステン)、WC(炭化タングステン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より少なくとも1つ選択される。前記硬質材料は、鉄族元素の1種又は2種以上を含むとともに、ヤング率が350GPa以下である。前記コア部は、超硬合金材料を含む。前記表面部は、PCD(多結晶ダイヤモンド)又はCBNを含む。前記切削部は、前記取付け部とは反対側の端に位置する食付き部を有する。前記表面部は、溝と、逃げ面と、前記溝と前記逃げ面との稜線により構成される切れ刃とを含む。前記切れ刃は、前記端から前記取付け部の側に向かって延在している。前記逃げ面は、前記食付き部に位置する食付き逃げ面と、前記食付き部以外に位置する外周逃げ面とにより構成される。前記食付き逃げ面の前記中心軸に対する傾斜は、前記外周逃げ面の前記中心軸に対する傾斜よりも大きい。
 [12] 前記切削工具において、前記切れ刃は、前記端側からみて前記中心軸を中心として反時計回りに回転しながら、前記端から前記取付け部の側に向かって延在する。
 [13] 本開示の一態様に係る切削工具は、シャンクに取り付けられる取付け部と、コア部と、前記コア部を中心軸回りに被覆する表面部とを有する切削部と、前記取付け部と前記切削部とを接合する接合部とを備える。前記取付け部は、硬質成分と、硬質材料とを含む。前記硬質成分は、W(タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、WC(炭化タングステン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より少なくとも1つ選択される。前記硬質材料は、鉄族元素の1種又は2種以上を含むとともに、ヤング率が350GPa以下である。前記コア部は、超硬合金材料を含む。前記表面部は、PCD(多結晶ダイヤモンド)又はCBNを含む。前記表面部は、切れ刃を有する。前記切れ刃は、前記中心軸に対してねじれながら、前記取付け部に向かって前記取付け部とは反対側の端から延在している。
 [14] 前記切削工具において、前記切れ刃は、周方向に沿って交互に配置される複数の第1切れ刃と複数の第2切れ刃とを含み、前記第1切れ刃は、前記第2切れ刃とは反対方向に前記中心軸に対してねじれながら延在する。
 [15] 前記切削工具において、前記切削部は、内部に第1流路を有する。前記コア部は、凹部を含む。前記取付け部は、凸部を有する。前記取付け部は、内部に第2流路を有する。前記凹部と前記凸部とにより、前記切削部の内部に位置する空間が画される。前記第1流路は、前記空間と前記切削部の外周面とを接続する。前記第2流路は、前記空間と外部とを接続する。
 [本開示の実施形態の詳細]
 本実施の形態に係る切削工具用素材及びその製造方法の具体例を図面に基づいて説明する。図1Aは、本実施の形態の一形態を示す切削工具用素材の斜視図である。図1Bは、図1AのA-A断面図である。図2A~図2Cは、本実施の形態の他の一形態を示す切削工具用素材の断面図である。図3は、本実施の形態のさらに他の一形態を示す切削工具用素材の断面図である。図4は、本実施の形態のさらに他の一形態を示す切削工具用素材の斜視図である。図5は、本実施の形態の切削工具用素材1から得られる切削工具の斜視図である。
 〔切削工具用素材の構造〕
 本実施の形態の切削工具用素材1は、シャンク5に取付けられて使用される切削工具のための素材であって、図1A及び図1Bに示すように、シャンク5への取付け部2となる取付け構造形成部20と、切削刃となる切削構造形成部30と、接合部40とを有する。そして、図5に示すように、取付け構造形成部20から取付け部2を得、切削構造形成部30から切削部3を得ることにより、切削工具用素材1から、切削部3及び取付け部2を有し、取付け部2でシャンク5に取付けられて使用される切削工具(切削ヘッド)10を得る。
 (取付け構造形成部)
 取付け構造形成部20は、上記切削工具用素材1を加工して得られる切削工具10においてシャンク5に取付けるための取付け部2となる(図5)。シャンク5への切削工具10の取付けがねじ締結、ピン止め、その他の係合、圧入などの機械的締結で行われる場合は、取付け構造形成部20には、切削加工又は研削加工が施されてねじ溝やピン孔等の所定の形状に加工された取付け部2が形成される。また、シャンク5への切削工具10の取付けがろう付けで行われる場合には、取付け構造形成部20をそのまま取付け部2としてもよく、必要に応じて所定の形状に加工して取付け部2としてもよい。
 取付け構造形成部20は、ねじ締結、ピン止め、その他の係合、圧入等の機械的締結のための構造を形成する切削加工や研削加工を施すことができるように、また、シャンク5へのろう付けが行えるように、形状及び大きさが選択される。
 本実施の形態の取付け構造形成部20は、図1Aに示すように、切削構造形成部30との接合面が、切削構造形成部30の取付け構造形成部20との接合面と同形状の円形状である円柱形状を有する。
 なお、図1Aでは円形状の接合面を有する円柱形状の取付け構造形成部20を示したが、円柱形状に限らず、楕円柱形状、三角柱形状や四角柱形状等の多角形柱形状、円錐形状や多角錐形状等の任意の形状であってもよい。図1Bでは、取付け構造形成部20の縦断面(切削構造形成部30との接合面に対して鉛直方向の断面であり、図1AのA-A断面に相当)の形状が四角形であるものを示したが、これに限らず、台形、三角形等の任意の形状であってもよい。また、取付け構造形成部20の接合面についても、図1Bに示すように切削構造形成部30の接合面と同じ形状・サイズであってもよく、例えば図4に示すように切削構造形成部30の接合面と異なる形状・サイズであってもよい。
 取付け構造形成部20の高さ(切削構造形成部30との接合面に対して鉛直方向の長さ)は、機械的締結のための構造を形成する切削加工や研削加工を施すことができる高さ、ろう付けが行える高さを有し、取付け構造形成部20を加工して得られる取付け部2において上記減振効果が発揮される高さを有していれば特に限定されない。例えば、図1Aに示す形状の取付け構造形成部20では、接合面の直径を5mm~30mm、高さを1mm~20mmとしてもよい。
 取付け構造形成部20は、硬質成分と鉄族元素から選択される少なくとも1つの元素とを含む硬質材料で形成されている。硬質成分は、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びにCBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つである。鉄族元素とは、コバルト、鉄、ニッケルのいずれかである。鉄族元素は、硬質成分を焼結体とするための焼結助剤として働く。
 硬質材料は上記硬質成分のうちW(タングステン)を含むことが好ましく、上記鉄族元素のうち鉄及びニッケルのうち少なくとも一方を含むことが好ましい。
 硬質材料は、上記硬質成分及び上記鉄族元素以外の成分として、銅などの他の成分を含んでいてもよい。
 硬質材料に含まれる硬質成分の含有量は、硬質材料の総質量に対して、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。硬質材料に含まれる鉄、ニッケル、コバルトの総含有量は、硬質材料の総質量に対して、50質量%以下であることが好ましく、20質量%以上であることがより好ましく、10質量%以下であることがさらに好ましい。
 取付け構造形成部20の硬質成分として、W(タングステン)、WC(炭化タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より選択される少なくとも1つの硬質成分を用いた場合には、超硬合金材料を含むコア部31やPCD(多結晶ダイヤモンド)又はCBN(立方窒化ホウ素)を含む表面部32に比較して、取付け構造形成部20の硬度を小さくすることができるため、取付け構造形成部20に優れた快削性を付与することができる。これにより、ねじ締結、ピン止め、その他の係合のために取付け構造形成部20に施される切削加工または研削加工を行いやすくすることができる。また、上記硬質成分として、金属材料であるW(タングステン)を用いた場合、取付け構造形成部20を取付け部2に加工してシャンク5とろう付けする際に、取付け部2のろう付け濡れ性を向上することができる。
 本発明者らは、取付け構造形成部20が特定の物性を有する硬質材料を含むことにより、取付け構造形成部20から形成される取付け部2が、切削工具10がシャンク5に取付けられて使用されるときのビビリや折損を抑制する減振効果をもたらし、切削工具10の耐用寿命を向上できることを新たに見出した。
 この理由は次のように推測される。取付け構造形成部20が特定の物性を有する硬質材料を含むことにより、超硬合金材料を含むコア部31やPCD又はCBNを含む表面部32に比較して、取付け構造形成部20の剛性を小さくすることができる。これにより、本実施の形態の切削工具用素材を用いて切削工具10を得た際に、取付け構造形成部20から形成されるシャンク5への取付け部2も弾性変形しやすくなる。したがって、切削工具10を回転切削工具として使用する際に上記取付け部2にかかる負荷を低減することができるため、切削工具10の折損を抑制することができる。
 また、切削工具10の取付け部2は、回転切削工具として使用する際の振動の影響を受けやすいが、上記のように取付け部2が変形しやすい材料で形成されていると振動を吸収しやすくなるため、ビビリを抑制した減振性(防振性)に優れた回転切削工具を提供することができる。
 このような取付け構造形成部20を形成するためには、硬質材料として、温度25℃におけるヤング率が500GPa未満のものを用いることが好ましく、400GPa未満であることがより好ましく、350GPa以下であることがさらに好ましく、300GPa未満であることが最も好ましい。上記ヤング率は、引張試験にしたがって測定された値である。
 また、後述するように、取付け構造形成部20と切削構造形成部30をなすコア部31及び表面部32とは焼結によって一体化される。本発明者らは、硬質材料を含む取付け構造形成部20、超硬合金材料を含むコア部31、PCD又はCBNを含む表面部32を用いた場合、上記焼結による一体化の際に、取付け構造形成部20とコア部31及び表面部32との間の焼結時の接合性が低下する場合があることを見出した。
 この原因は次のように推測される。すなわち、焼結時の温度変化に伴って取付け構造形成部20、コア部31、表面部32にはそれぞれ変形(熱膨張)が生じる。取付け構造形成部20、コア部31、表面部32の変形の程度は、各部をなす材料の違いに起因して異なり、取付け構造形成部20をなす硬質材料は、コア部31をなす超硬合金材料や表面部32をなすPCD又はCBNを含む材料に比較して変形しやすい。このような焼結における変形の違いは、取付け構造形成部20とコア部31及び表面部32との間の焼結時の接合性の低下を引き起こしやすくなる。
 本発明者らは、上記硬質材料の伸びを調整することにより、焼結時の接合性の低下を抑制することができることを見出した。具体的には、上記硬質材料の伸びは、5%以下であることが好ましく、1%以下であることがより好ましく、0.5%以下であることがさらに好ましい。硬質材料の伸びが5%以下であると、上記硬質材料で形成された取付け構造形成部20の塑性変形能を小さくすることができる。その結果、焼結時の温度変化に伴う取付け構造形成部20の変形が小さくなることにより、焼結時の取付け構造形成部20と切削構造形成部30のコア部31及び表面部32との変形差を小さくすることができる。これにより、取付け構造形成部20と切削構造形成部30との変形差に起因して生じる取付け構造形成部20と表面部32との接合性の低下を抑制することができる。上記の伸びは、引張試験にしたがって測定された値である。
 このように、本実施の形態の取付け構造形成部20は、硬質成分と鉄族元素とを含み、特定の物性を有する硬質材料を用いることにより、シャンク5への取付けのための機械的締結のための切削加工又は研削加工や、シャンク5への取付けのためのろう付けを行いやすいものとすることができる。また、切削工具10がシャンク5に取付けられて使用されるときのビビリや折損を抑制する減振効果を得ることができる。そして、硬質材料の伸びを調整することで、焼結時の切削構造形成部30のコア部31及び表面部32との接合性に優れたものとすることもできる。
 硬質材料のヤング率及び伸びは、硬質材料中の硬質成分及び鉄族元素の種類及び含有量によって調整することができる。
 (切削構造形成部)
 切削構造形成部30は、切削工具用素材1を加工して得られる切削工具10において、切削刃を有する切削部3を形成するように加工される(図5)。本実施の形態の切削構造形成部30は、図1Aに示すように円柱形状を有する。切削構造形成部30をなす円柱の底面の大きさ及び円柱の高さは、切削加工又は研削加工によって切削刃を有する切削部3を形成することができれば特に限定されない。例えば、図1Aに示す形状の切削構造形成部30では、底面の直径を5mm~30mm、高さを5mm~30mmとしてもよい。
 なお、図1Aでは円柱形状の切削構造形成部30を示したが、円柱形状に限らず、楕円柱形状、三角柱形状や四角柱形状等の多角形柱形状、円錐形状や多角錐形状等の任意の形状であってもよい。図1Bでは、切削構造形成部30の縦断面(取付け構造形成部20との接合面に対して鉛直方向の断面であり、図1AのA-A断面に相当)の形状が四角形であるものを示したが、これに限らず、台形、三角形等の任意の形状であってもよい。また、切削構造形成部30の取付け構造形成部20との接合面についても、取付け構造形成部20の接合面と同じ形状・サイズであってもよく、異なる形状・サイズであってもよい。
 本実施の形態の切削構造形成部30は、接合部40を介して取付け構造形成部20に設けられるコア部31及び表面部32を有する。表面部32は、コア部の表面の一部を被覆している。具体的には、図1Bに示すように、コア部31の表面のうち接合部40と接する表面以外の表面の少なくとも一部を覆うように設けられる。そして、表面部32がコア部31を被覆する部分において、後述する焼結によってコア部31と表面部32とは接合された状態となっている。コア部31及び表面部32の大きさは、所望の切削刃を切削加工又は研削加工することができるように選択すればよく、形成する切削刃の大きさや形状、取付け構造形成部20との接合に必要となる大きさを考慮して、コア部31及び表面部32の底面の直径や高さを選択すればよい。例えば、図1Bに示す形状の切削構造形成部30では、コア部31の底面の直径を3mm~27mm、コア部31の高さを5mm~30mmとしてもよい。また、表面部32の底面の外径を5mm~30mm、表面部32の高さを5mm~30mmとしてもよい。
 (コア部)
 本実施の形態のコア部31は、図1A及び図1Bに示すように、切削構造形成部30の中心部に設けられ、中実の円柱形状である。なお、図1A及び図1Bでは中実の円柱状のコア部31を示したが、円柱形状に限らず、楕円柱形状、三角柱形状や四角柱形状等の多角形柱形状、円錐形状、多角錐形状等の任意の形状であってもよく、中実形状であってもよく中空形状であってもよい。
 コア部31に形成される中空部は、コア部31の取付け構造形成部20と接合する側の面から、コア部31の取付け構造形成部20と接合する側とは反対側の面に貫通する形状であってもよく、これらのうちいずれか一方の面のみに貫通する形状であってもよく、いずれの面にも貫通しない形状であってもよい。
 コア部31が中空形状である場合には、図2Aに示すように、コア部31の中空部に取付け構造形成部20をなす硬質材料、コア部31や取付け構造形成部20をなす材料とは異なる鋼等の任意の材料で形成された内側コア部33が設けられていてもよい。内側コア部33の設け方は特に限定されない。例えば、内側コア部33は、図2Aに示すように、コア部31の中空部の形状と同形状のものを上記中空部に、捩じ込み、焼嵌め、ろう付けで固定してもよい。あるいは、図2Bに示すように、内側コア部33と取付け構造形成部20とがねじやピン等の固定具によって固定されるように、内側コア部33の取付け構造形成部20側の先端にねじ溝を設ける、ピン形状とするようにしてもよい。この場合、内側コア部33の他方の先端は、ねじやピンの頭部形状に形成する。
 また、コア部31の中空部に取付け構造形成部20をなす硬質材料と同じ材料の内側コア部33が配置される場合には、図2Cに示すように、コア部31の中空部に設けられる内側コア部33と取付け構造形成部20とを一体的に形成し、内側コア部33をコア部31の中空部に配置するように、取付け構造形成部20と切削構造形成部30とを組立ててもよい。このように、取付け構造形成部20をなす硬質材料と同じ材料で取付け構造形成部20に一体的に内側コア部33が形成されると、得られる切削工具10の減振性をより一層向上することができる。
 図1B及び図2A~図2Cでは、コア部31及び内側コア部33の縦断面(取付け構造形成部20との接合面に対して鉛直方向の断面であり、図1AのA-A断面に相当)の形状がどちらも四角形であるものを示したが、両者は同じ形状であっても、異なる形状であってもよく、また、その形状も台形、三角形等の任意の形状であってもよい。
 コア部31は超硬合金材料で形成される。超硬合金材料は、例えば炭化タングステン及びコバルトを含む材料である。コア部31に超硬合金材料を用いることにより、PCD又はCBNで形成された表面部32よりもコア部31の硬度を小さくすることができる。これにより、上記コア部31を有する切削構造形成部30は、全体をPCD又はCBNのみで形成した場合に比較して硬度を小さくすることができるため、切削刃を形成するための切削加工及び研削加工が行いやすくなり、切削刃の加工性に優れた切削構造形成部30を提供することができる。
 コア部31として超硬合金材料を用いることにより、後述するようにコア部31の成形体と表面部32の成形体とを組立てて焼結したときに、コア部31とPCD又はCBNを含む表面部32との良好な接合状態を得ることができる。
 コア部31をなす超硬合金材料に含まれる炭化タングステンとコバルトとの含有比率は、特に限定されないが、炭化タングステンとコバルトとの総質量に対して、炭化タングステンの含有量が75質量%以上であることが好ましく、85質量%以上であることがより好ましい。また、炭化タングステンとコバルトとの総質量に対して、炭化タングステンの含有量が98質量%以下であることが好ましく、95質量%以下であることがより好ましい。炭化タングステンとコバルトとの総質量に対して、炭化タングステンの含有量を75質量%以上とすることにより、コア部の強度を確保することができる。また、炭化タングステンとコバルトとの総質量に対して、炭化タングステンの含有量を98質量%以下とすることにより、表面部32と良好に接合することができる。
 また、超硬合金材料には、炭化タングステン及びコバルト以外のその他の成分が含まれていてもよい。その他の成分としては例えばTiC、TaC、Ni等のうちの1種または2種以上を挙げることができる。その他の成分は、超硬合金材料の総質量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 (表面部)
 本実施の形態の表面部32は、図1A及び図1Bに示すように、中心に前記コア部31を収容する中空部を有する円柱形状を有している。そして、表面部32は、図1Bに示すように、取付け構造形成部20に接合し、円柱形状のコア部31の側面の外周に同心円状に設けられて、コア部31とともに全体として円柱形状の切削構造形成部30を形成している。表面部32はコア部31を被覆する部分において後述する焼結によりコア部31に接合している。
 表面部32は、取付け構造形成部に接合する接合面を有し、コア部31の表面の少なくとも一部を被覆するように設けられる。具体的には、表面部32は、図1B及び図2A~図2Cに示すように、コア部31の表面のうち側面部分にのみ設けてもよく、図3に示すように、コア部31の表面が外部に露出しないようにコア部31の側面及び頂面に設けられてもよい。これにより、切削部3の先端部にも表面部32に形成された切削刃を有する切削工具10を製造することができる。
 また、表面部32の形状や大きさは、コア部31に接合され、切削構造形成部30を切削加工又は研削加工して切削刃を形成することができれば、特に限定されない。したがって、表面部32は、コア部31とは異なる外形をなすように形成して、切削構造形成部30の外形を楕円柱形状、三角柱形状や四角柱形状等の多角形柱形状、円錐形状、多角錐形状等の任意の形状に形成するようにしてもよい。切削刃を形成するために施される切削加工又は研削加工は、表面部32のみに施されるものであっても、表面部32とコア部31との両方に施されるものであってもよい。
 表面部32は、PCD(多結晶ダイヤモンド)又はCBN(立方窒化ホウ素)を含む材料によって形成される。表面部32をPCD又はCBNを含む材料によって形成することにより、耐摩耗性や耐折損性に優れた回転切削工具を形成することができる。表面部32はCBNを含む材料で形成されることが好ましい。
 (接合部)
 接合部40は、取付け構造形成部20と切削構造形成部30との接合面に形成される。接合部40は、少なくとも、取付け構造形成部20の接合面と切削構造形成部30のコア部31と接合する第1接合部と、取付け構造形成部20の接合面と切削構造形成部30の表面部32とを接合する第2接合部とを有する。接合部40の厚さは、必要な接合強度が得られれば特に限定されないが、例えば5μm~200μmとすればよい。
 接合部40を設けることにより、取付け構造形成部20と切削構造形成部30とを強固に接合することができる。これにより、本実施の形態の切削工具用素材を切削工具10に加工して使用したときに、切削構造形成部30から形成される切削部3と取付け構造形成部20から形成される取付け部2とが分離することを防止できるとともに、切削部3や取付け部2にクラックが生じることを防止し、切削工具10として使用するときの強度を確保することができる。切削工具10として好適に使用できるようにするためには、接合部40のせん断試験で測定された強度が、25kgf/mm以上であることが好ましく、30kgf/mm以上であることが好ましい。
 接合部40は、取付け構造形成部20と切削構造形成部30とを接合するために、コバルト、鉄、ニッケルからなる鉄族元素の1種又は2種以上を含む材料で形成されるものであってもよい。接合部のうち取付け構造形成部20と表面部32とを接合する第2接合部が鉄族元素の1種又は2種以上を含む材料からなる接合部であることにより、取付け構造形成部20と切削構造形成部30の表面部32との接合性を改善することができる。
 接合部40は、取付け構造形成部20と切削構造形成部30とを焼結することによって形成されるものであってもよい。具体的には、取付け構造形成部20と切削構造形成部30のコア部31とは、取付け構造形成部20に含まれる鉄族元素及びコア部31に含まれる微量のコバルト成分によって焼結時に接合部40を形成することができる。また、切削構造形成部30の表面部32としてPCDを用いた場合にも、焼結時に取付け構造形成部20と表面部32との間に接合部40を形成することができる。ただし、表面部32としてコバルト成分の含有量が少ないCBNを用いた場合に接合性の低下が問題となりやすいため、表面部32がCBNを含む場合には、上記鉄族元素を含む接合部40を設けることが好ましい。これにより、CBNを含む表面部32と取付け構造形成部20とを接合強度30kgf/mm以上で接合することができる。
 接合部40は、鉄族元素の1種又は2種以上を含む材料の接合部及び焼結によって形成される接合部の両者を含むものであってもよく、いずれか一方のみを含むものであってもよい。例えば、取付け構造形成部20とコア部31とを接合する第1接合部を焼結によって形成し、取付け構造形成部20と表面部32とを接合する第2接合部を鉄族元素の1種又は2種以上を含む材料で形成してもよい。
 〔切削工具用素材の製造方法〕
 本実施の形態の切削工具用素材は、取付け構造形成部20となる第1前駆体、コア部31となる第2前駆体、表面部32となる第3前駆体を形成し、これら第1~第3前駆体を組立てる組立て工程と、組立て工程によって組立てられた切削工具用素材の前駆体を焼結する焼結工程を経て製造される。取付け構造形成部20、コア部31及び表面部32の各前駆体は、従来公知の方法にしたがって製造することができ、例えば原料粉末を金型に投入しプレス成形した成形体や、各材料のブランク材等から切削加工や研削加工によって所定の形状にされたブランク加工体を用いることができる。なお、前駆体は焼結により収縮するため、成形体を形成するための金型及びブランク加工体は、前駆体の収縮の程度を考慮した大きさのものを準備することが好ましい。
 このようにして得られた表面部32の前駆体の中空部にコア部31の前駆体を押し込みにより嵌め込んで、切削構造形成部30となる前駆体を形成する。次いで、切削構造形成部30となる前駆体を、コア部31の前駆体及び表面部32の前駆体が取付け構造形成部20の前駆体に接するように配置した状態に組立て、切削工具用素材の前駆体を得、この前駆体を焼結する。この焼結工程により、コア部31と表面部32とが接合した状態となり、コア部31と取付け構造形成部20との間にコバルトを含む接合部40が形成される。また、表面部32をPCDで形成した場合は、表面部32と取付け構造形成部20との間にコバルトを含む接合部40が形成される。
 一方、上記前駆体の組立てに際して、取付け構造形成部20の前駆体上に、ニッケル、鉄、コバルトからなる鉄族元素の1種又は2種以上を含む材料を介し、コア部31の前駆体及び表面部32の前駆体を配置して焼結を行った場合に、上記鉄族元素を含む接合部40が形成される。鉄族元素を含む材料は、各前駆体間に粉末状で配置しても箔状で配置してもよい。
 焼結工程の条件は、従来公知の条件で行えばよいが、本実施の形態では、取付け構造形成部20、コア部31、表面部32にそれぞれ異なる材料を用いているため、焼結時の変形の程度が異なる。この変形の違いに起因し、取付け構造形成部20、コア部31、表面部32をなす各成形体が互いに接する部分で亀裂が生じる可能性がある。そのため、焼結工程は、圧力4.5GPa~7.5GPa、温度1200~1700℃の条件下で焼結を行った後、温度を維持したまま圧力を3GPa~4GPaまで下げてコア部31の圧縮を解放し、圧力を常圧に、温度を常温にする。これにより、各成形体が互いに接する部分で亀裂が生じることなく各成形体が互いに接する部分で良好な接合性を得ることができる。
 〔用途〕
 本開示の切削工具用素材は、図5に示すように、ドリルやエンドミル等の回転切削工具の切削工具10として好適に用いることができる。
 以下の実施例及び比較例では、次のように測定及び評価を行った。
 [ヤング率及び伸び]
 試験片として、長さ30mm、幅5mmの短冊形状を用意し、この試験片について、オートグラフ(島津製作所社製)を用い、引張速度0.1mm/minで引張試験を行い、ひずみゲージ法により、ヤング率及び伸びを測定した。
 [振動評価]
 実施例及び比較例で得た回転切削工具について、振動計(KEYENCE社製)を用い、切削速度Vを600m/min、送り量fzを0.1mm、切り込み量Aeを0.2mm、Apを2.5mmとして、ダイス鋼の切削を行い、振動の評価を行った。
 A:振動計で測定した値が小さく(1.5m/s未満)、回転切削工具使用時の減振性が非常に優れていた。
 B:振動計で測定した値が中程度であり(1.5m/s以上3.0m/s未満)、回転切削工具使用時の減振性に優れていた。
 C:振動計で測定した値が大きく(3.0m/s以上)、回転切削工具使用時の減振性が十分ではなかった。
 [折損評価]
 実施例及び比較例で得た回転切削工具を用いて、切削速度Vを600m/min、送り量fzを0.3mm、切り込み量Aeを0.2mm、Apを2.5mmとして、ダイス鋼の切削を行い、切削工具(切削ヘッド)の折損の有無を評価した。
 〔実施例1〕
 まず、図1A及び図1Bに示す円柱形状の取付け構造形成部20、円柱形状のコア部31、中空円柱形状の表面部32をそれぞれ焼結によって形成するために、下記の粉末材料を用いて、金型でプレス成形し、取付け構造形成部用成形体、コア部用成形体、表面部用成形体を得た。
・取付け構造成形部用成形体
 材料:タングステンを90質量%、鉄、ニッケル、銅を含む金属結合材を10質量%含む硬質材料(ヤング率:280GPa、伸び0.4%)
・コア部用成形体
 材料:炭化タングステンを94質量%、コバルトを6質量%含む超硬合金材料の粉末
 プレス成形時の圧力:100MPa~200MPa
・表面部用成形体
 粉末材料:CBNと不可避不純物とを含む材料の粉末
 プレス成形時の圧力:100MPa~200MPa
 次に、上記のようにして得られた表面部用成形体の中空部に、コア部用成形体を押し込みにより嵌め込んで、切削構造形成部用成形体を得た。次いで、取付け構造形成部用成形体の接合面に、接合部40を形成するためにニッケル100質量%の薄板を配置し、この薄板上に、コア部用成形体及び表面部用成形体を配置して、上記の各成形体を組立てた。
 上記のようにして組立てられた成形体を、温度1400℃、圧力5Paの条件下で焼結し、切削工具用素材1を得た。得られた切削工具用素材1の大きさは直径が8mm、高さが20mmであり、取付け構造形成部20の高さが12mm、コア部31の直径が5mm、表面部32の周方向の厚さが1.5mm、コア部31及び表面部32の高さが5mmであった。
 得られた切削工具用素材1の切削構造形成部30に、4枚刃(ネジレ角は45°)の切削刃を形成し、取付け構造形成部20にねじ溝を形成し、直径7.5mm、長さ75mmの超硬シャンク5のねじと締結して、回転切削工具を得た。得られた回転切削工具について、回転切削動作時の振動及び折損を評価した。その結果を表1に示す。
 〔比較例1〕
 取付け構造成形部用成形体の材料として、実施例1でコア部成形体用の材料として用いた超硬合金材料(ヤング率:620GPa、伸び0.5%)を用いたこと以外は、実施例1と同様に切削工具用素材及び回転切削工具を得た。
 得られた回転切削工具について、回転切削動作時の振動及び折損を評価した。その結果を表1に示す。
 実施例1と比較例1との比較より、取付け構造形成部を硬質材料で形成することにより、回転切削動作時の減振性に優れ、折損を抑制できることがわかった。
 〔実施例2~3〕
 取付け構造成形部用成形体の材料として、下記の材料を用いたこと以外は、実施例1と同様に切削工具用素材及び回転切削工具を得た。
・取付け構造成形部用成形体
 (実施例2の材料)
 タングステンを95質量%、鉄、ニッケル、銅を含む金属結合材を5質量%含む硬質材料(ヤング率:300GPa、伸び5%)
 (実施例3の材料)
 タングステンを95質量%、鉄、ニッケル、銅を含む金属結合材を5質量%含む硬質材料(ヤング率:350GPa、伸び25%)
 得られた回転切削工具について、回転切削動作時の振動及び折損を評価した。その結果を表1に示す。
 実施例1~実施例3の比較より、取付け構造成形部のヤング率が小さいほど、得られる回転切削工具の減振性に優れ、折損を防止できることがわかった。
Figure JPOXMLDOC01-appb-T000001
 以上のように本開示の実施形態および実施例について説明を行ったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。
 〔本開示の切削工具用素材を用いた回転切削工具の詳細〕
 以下に、本開示の切削工具用素材を用いた回転切削工具の詳細について、図を参照して説明する。
 <第1例>
 図6は、本開示の切削工具用素材1を用いた回転切削工具の第1例の斜視図である。図7は、図6の領域VIIにおける拡大図である。図6及び図7に示すように、第1例に係る回転切削工具は、リーマである。第1例に係る回転切削工具は、本開示の切削工具用素材1を用いて形成されている。そのため、外周面32aのどの位置においても切れ刃を形成することができ、切削工具の小径多刃化が可能となる。
 第1例に係る回転切削工具は、切削工具10を有している。切削工具10は、取付け部2と、切削部3とを有している。図6において図示されていないが、上記のとおり、取付け部2と切削部3とは、接合部40により接合されている。取付け部2は、シャンク5に着脱可能に取付けられている。図6において図示されていないが、上記のとおり、切削部3は、コア部31と、表面部32とを有しており、表面部32は、コア部31の外周面を被覆している。別の観点からいえば、表面部32は、コア部31の表面を中心軸回りに被覆している。なお、上記のとおり、取付け部2及び切削部3は、本開示の切削工具用素材1を加工することにより形成されている。
 第1例に係る回転切削工具においては、表面部32は、外周面32aを有している。外周面32aは、切削部3の外周面となっている。外周面32aは、切れ刃32bと、溝32cと、逃げ面32dとを有している。表面部32は、食付き部32eを有している。
 切れ刃32bは、外周面32aに形成されている。なお、切れ刃32bは、外周面32aのみならず、他の部分(例えば取付け部2、コア部31、接合部40)にも形成されていてもよい。切れ刃32bは、複数条設けられていることが好ましい。切れ刃32bは、中心軸Aに対して左回りにねじれていることが好ましい。なお、切れ刃32bが中心軸Aに対して左回りにねじれているとは、切れ刃32bを回転切削工具の先端(切削部3の取付け部2側とは反対側の端)側からみた際に、切れ刃32bが中心軸Aを中心として反時計回りに回転しながら取付け部2の側に向かって延在していることをいう。
 但し、切れ刃32bはねじれていなくてもよい。すなわち、切れ刃32bは、直線状に形成されていてもよい。
 溝32cにおいて、外周面32aは窪んでいる。溝32cと逃げ面32dとの稜線により、切れ刃32bが構成されている。すなわち、切れ刃32b側に位置している位置している溝32cが、すくい面となっている。
 食付き部32eは、被削材に食付き、主として切削を行う部分である。食付き部32eは、表面部32の先端(切削部3の取付け部2側とは反対側の端)の配置されている。
 逃げ面32dは、食付き逃げ面32daと、外周逃げ面32dbとを有している。食付き逃げ面32daは、食付き部32eに位置している逃げ面32dである。外周逃げ面32dbは、食付き部32e以外に位置している逃げ面32dである。このことを別の観点からいえば、逃げ面32dは、食付き部32eにおいて面取りが行われており、この面取りにより食付き逃げ面32daが形成されている。すなわち、この面取りが行われることにより、外周逃げ面32dbよりも中心軸に対して大きく傾いた食付き逃げ面32daが形成されている。
 食付き逃げ面32daの中心軸Aに対する傾斜は、外周逃げ面32dbの中心軸Aに対する傾斜よりも大きくなっている。より具体的には、食付き逃げ面32daは、表面部32の先端に近づくにつれて、中心軸Aとの距離が近くなるように傾斜している。
 なお、切れ刃32bは、食付き切れ刃32baと、外周切れ刃32bbとを有している。食付き切れ刃32baは、食付き部32eに位置している切れ刃32bである。外周切れ刃32bbは、食付き部32e以外に位置している切れ刃32bである。
 また、食付き切れ刃32baは、食付き逃げ面32daと溝32cとの稜線により形成されている。外周切れ刃32bbは、外周逃げ面32dbと溝32cとの稜線により形成されている。
 <第2例及び第3例>
 図8は、本開示の切削工具用素材1を用いた回転切削工具の第2例の斜視図である。図9は、本開示の切削工具用素材1を用いた回転切削工具の第3例の斜視図である。図8に示すように、第2例に係る回転切削工具は、Tスロットカッタである。図9に示すように、第3例に係る回転切削工具も、Tスロットカッタである。
 第2例及び第3例に係る切削工具は、切削工具10を有している。切削工具10は、取付け部2と、切削部3とを有している。図示されていないが、上記のとおり、取付け部2と切削部3とは、接合部40により接合されている。取付け部2は、シャンク5に着脱可能に取付けられている。図示されていないが、上記のとおり、切削部3は、コア部31と表面部32とを有している。第2例及び第3例においては、本開示の切削工具用素材1の表面部32は、外周面32aを有している。
 外周面32aは、第1切れ刃32bcと、第2切れ刃32bdと、溝32cとを有している。第1切れ刃32bc及び第2切れ刃32bdは、複数条設けられていてもよい。第1切れ刃32bc及び第2切れ刃32bdは、外周面32a上において、周方向に沿って交互に配置されている。溝32cは、第1切れ刃32bcと第2切れ刃32bdとの間に配置されている。
 第1切れ刃32bc及び第2切れ刃32bdは、中心軸に対してねじれながら先端(切削部3の取付け部2とは反対側の端)から取付け部2に向かって延在している。第1切れ刃32bc及び第2切れ刃32bdは、図8に示すように、同一方向にねじれていてもよい。図9に示すように、第1切れ刃32bcは、第2切れ刃32bdとは反対方向にねじれながら延在していてもよい。例えば、第1切れ刃32bcは中心軸に対して右回りにねじれており、第2切れ刃32bdは中心軸に対して左回りにねじれていてもよい。すなわち、第1切れ刃32bc及び第2切れ刃32bdは、千鳥状に形成されていてもよい。
 〔本開示の回転切削工具に内部給油構造を設ける例〕
 以下に、本開示の回転切削工具の内部給油構造を設ける例について、図を参照して説明する。
 図10は、本開示の回転切削工具の内部給油構造を示す断面図である。図10に示すように、回転切削工具は、取付け部2と、切削部3と、接合部40とを有している。切削部3は、コア部31と、表面部32とを有している。
 コア部31は、凹部31aを有している。凹部31aは、コア部31の取付け部2側の面に設けられている。取付け部2は、凸部2aを有している。凸部2aは、取付け部2の切削部3側の面に設けられている。取付け部2は、凹部31aに凸部2aが嵌入された状態で、接合部40により切削部3に接合されている。
 凹部31aの深さは、凸部2aの高さよりも大きい。そのため、取付け部2とコア部31との間には、空間31bが形成されている。すなわち、切削部3の内部には、凸部2aと凹部31aとにより画される空間31bが形成されている。
 切削部3は、第1流路34を有している。第1流路34の数は、複数であってもよい。第1流路34は、一方端において空間31bと接続している。第1流路34は、他方端において切削部3の外周面と接続している。第1流路34は、コア部31と表面部32とを貫通している。
 本開示の回転切削工具は、第2流路6をさらに有している。第2流路6は、取付け部2の内部に形成されている。第2流路6は、一方端において、空間31bと接続している。第2流路6は、他方端において、本開示の回転切削工具の外部と接続している。
 第2流路6の他方端から切削油が供給されると、その切削油は、第2流路6を介して空間31bに供給され、空間31b内にたまる。空間31b内にたまった切削油は、第1流路34の他方端を介して、切削構造形成部30の外周面に供給される。上記のとおり、切削構造形成部30の外周面には切れ刃が形成されるため、切削油は、切れ刃近傍に供給される。このように、上記の切削工具用素材1の内部構造においては、空間31bがオイル溜まり、第1流路34が切れ刃への給油口、第2流路6がオイルホールとして機能する。以上から、本開示の切削工具用素材1が上記の内部構造を有することにより、ウエット加工用工具に本開示の切削工具用素材1を適用することが可能となる。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 切削工具用素材、2 取付け部、3 切削部、5 シャンク、6 第2流路、10 切削工具、20 取付け構造形成部、30 切削構造形成部、31 コア部、31a 凹部、31b 空間、32 表面部、32a 外周面、32b 切れ刃、32ba 食付き切れ刃、32bb 外周切れ刃、32bc 第1切れ刃、32bd 第2切れ刃、32c 溝、32d 逃げ面、32da 食付き逃げ面、32db 外周逃げ面、32e 食付き部、33 内側コア部、34 第1流路、40 接合部。

Claims (5)

  1.  シャンクに取り付けられる取付け部と、
     コア部と、前記コア部を中心軸回りに被覆する表面部とを有する切削部と、
     前記取付け部と前記切削部とを接合する接合部とを備え、
     前記取付け部は、硬質成分と、硬質材料とを含み、
     前記硬質成分は、TiC(炭化チタン)、TiCN(炭窒化チタン)、W(タングステン)、WC(炭化タングステン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より少なくとも1つ選択され、
     前記硬質材料は、鉄族元素の1種又は2種以上を含むとともに、ヤング率が350GPa以下であり、
     前記コア部は、超硬合金材料を含み、
     前記表面部は、PCD(多結晶ダイヤモンド)又はCBNを含み、
     前記切削部は、前記取付け部とは反対側の端に位置する食付き部を有し、
     前記表面部は、溝と、逃げ面と、前記溝と前記逃げ面との稜線により構成される切れ刃とを含み、
     前記切れ刃は、前記端から前記取付け部の側に向かって延在しており、
     前記逃げ面は、前記食付き部に位置する食付き逃げ面と、前記食付き部以外に位置する外周逃げ面とにより構成され、
     前記食付き逃げ面の前記中心軸に対する傾斜は、前記外周逃げ面の前記中心軸に対する傾斜よりも大きい、切削工具。
  2.  前記切れ刃は、前記端側からみて前記中心軸を中心として反時計回りに回転しながら、前記端から前記取付け部の側に向かって延在する、請求項1に記載の切削工具。
  3.  シャンクに取り付けられる取付け部と、
     コア部と、前記コア部を中心軸回りに被覆する表面部とを有する切削部と、
     前記取付け部と前記切削部とを接合する接合部とを備え、
     前記取付け部は、硬質成分と、硬質材料とを含み、
     前記硬質成分は、W(タングステン)、TiC(炭化チタン)、TiCN(炭窒化チタン)、WC(炭化タングステン)、Al(アルミナ)、並びに、CBN(立方窒化ホウ素)及びダイヤモンドの少なくとも一方とW及びWCの少なくとも一方との組合せからなる群より少なくとも1つ選択され、
     前記硬質材料は、鉄族元素の1種又は2種以上を含むとともに、ヤング率が350GPa以下であり、
     前記コア部は、超硬合金材料を含み、
     前記表面部は、PCD(多結晶ダイヤモンド)又はCBNを含み、
     前記表面部は、切れ刃を有し、
     前記切れ刃は、前記中心軸に対してねじれながら、前記取付け部に向かって前記取付け部とは反対側の端から延在している、切削工具。
  4.  前記切れ刃は、周方向に沿って交互に配置される複数の第1切れ刃と複数の第2切れ刃とを含み、
     前記第1切れ刃は、前記第2切れ刃とは反対方向に前記中心軸に対してねじれながら延在する、請求項3に記載の切削工具。
  5.  前記切削部は、内部に第1流路を有し、
     前記コア部は、凹部を含み、
     前記取付け部は、凸部を有し、
     前記取付け部は、内部に第2流路を有し、
     前記凹部と前記凸部とにより、前記切削部の内部に位置する空間が画され、
     前記第1流路は、前記空間と前記切削部の外周面とを接続し、
     前記第2流路は、前記空間と外部とを接続する、請求項1~4のいずれか1項に記載の切削工具。
PCT/JP2016/083803 2016-11-15 2016-11-15 切削工具 WO2018092187A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16921956.5A EP3542934B1 (en) 2016-11-15 2016-11-15 Reamer
US16/062,686 US10293411B2 (en) 2016-11-15 2016-11-15 Cutting tool
PCT/JP2016/083803 WO2018092187A1 (ja) 2016-11-15 2016-11-15 切削工具
KR1020197013520A KR102188627B1 (ko) 2016-11-15 2016-11-15 절삭 공구
CN201680090839.6A CN109996632B (zh) 2016-11-15 2016-11-15 切削工具
JP2018550895A JP6629990B2 (ja) 2016-11-15 2016-11-15 切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083803 WO2018092187A1 (ja) 2016-11-15 2016-11-15 切削工具

Publications (1)

Publication Number Publication Date
WO2018092187A1 true WO2018092187A1 (ja) 2018-05-24

Family

ID=62146361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083803 WO2018092187A1 (ja) 2016-11-15 2016-11-15 切削工具

Country Status (6)

Country Link
US (1) US10293411B2 (ja)
EP (1) EP3542934B1 (ja)
JP (1) JP6629990B2 (ja)
KR (1) KR102188627B1 (ja)
CN (1) CN109996632B (ja)
WO (1) WO2018092187A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110480014A (zh) * 2019-08-20 2019-11-22 扬州海昌新材股份有限公司 以粉末为原料生产多功能外圆倒角刀方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717134B2 (en) * 2016-11-15 2020-07-21 Sumitomo Electric Hardmetal Corp. Cutting tool
JP7313599B2 (ja) * 2019-03-27 2023-07-25 三菱マテリアル株式会社 硬質焼結体用の基材、硬質焼結体および切削工具
DE102020112808A1 (de) * 2020-05-12 2021-11-18 Kennametal Inc. Schneidwerkzeug und Verfahren zur Herstellung eines Schneidwerkzeugs
KR102220310B1 (ko) * 2020-07-21 2021-02-25 (주)신성금속 리머
WO2023074924A1 (ko) * 2021-10-25 2023-05-04 한국생산기술연구원 강성과 감쇠 조절이 가능한 절삭공구
CN116250678A (zh) * 2023-03-09 2023-06-13 科丝美诗(中国)化妆品有限公司 可替换切削膏管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252817A (ja) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd 刃部交換式切削工具
JP2001252808A (ja) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd 刃部交換式ドリル
JP2004218048A (ja) * 2003-01-17 2004-08-05 Kyocera Corp 複合硬質焼結体およびこれを用いた複合部材、切削工具
WO2009126521A2 (en) * 2008-04-11 2009-10-15 Kennametal Inc. Cutting bit useful for impingement of earth strata
JP2011056594A (ja) * 2009-09-07 2011-03-24 Dijet Industrial Co Ltd 切削工具
WO2016178626A1 (en) * 2015-05-07 2016-11-10 Atlas Copco Secoroc Ab Cutting tool

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US692749A (en) * 1901-07-17 1902-02-04 Georgia White Power-transmitter and speed-controller.
US3085453A (en) * 1960-05-27 1963-04-16 Carl W Mossberg Method of preforming a coolant type drill
JPS60127810U (ja) * 1984-02-06 1985-08-28 住友電気工業株式会社 超硬切削工具
JPS60238214A (ja) * 1984-05-10 1985-11-27 Toshiba Tungaloy Co Ltd 回転切削工具
DE3575092D1 (de) * 1984-06-12 1990-02-08 Sumitomo Electric Industries Stab aus verbundmaterialien und verfahren zu seiner herstellung.
JPH02106210A (ja) * 1988-10-14 1990-04-18 Sumitomo Electric Ind Ltd ねじれ刃多結晶ダイヤモンド工具及びその製造方法
JPH0343112A (ja) * 1989-07-07 1991-02-25 Sumitomo Electric Ind Ltd 焼結硬質合金製ドリル
JP2556393B2 (ja) * 1990-02-07 1996-11-20 ジーエヌツール株式会社 ねじれ刃を有する切削工具及びその製造方法
US5020780A (en) * 1990-04-04 1991-06-04 Woodings Industrial Corporation Quick connect-disconnect coupling for blast furnace tap hole drill bit
JPH0413506A (ja) * 1990-04-27 1992-01-17 Sumitomo Electric Ind Ltd ダイヤモンド被覆Si↓3N↓4焼結体製マイクロドリル
US5070748A (en) * 1990-05-24 1991-12-10 Smith International, Inc. Diamond fluted end mill
US5031484A (en) * 1990-05-24 1991-07-16 Smith International, Inc. Diamond fluted end mill
GB2259263B (en) * 1991-08-08 1995-11-22 Habit Diamond Ltd Wear resistant tools
GB9220671D0 (en) * 1992-10-01 1992-11-11 Hunt James G Disposable cutting head gun reamer
JPH0724620A (ja) * 1993-06-30 1995-01-27 Retsu Gomi エンドミル
US5443337A (en) * 1993-07-02 1995-08-22 Katayama; Ichiro Sintered diamond drill bits and method of making
US5685671A (en) * 1993-11-01 1997-11-11 Smith International, Inc. Diamond or CBN fluted center cutting end mill
SE509207C2 (sv) * 1995-05-04 1998-12-14 Seco Tools Ab Verktyg för skärande bearbetning
AU2587095A (en) * 1995-05-11 1996-11-29 Smith International, Inc. Diamond or cbn fluted center cutting end mill
JPH08336716A (ja) * 1995-06-13 1996-12-24 Asahi Daiyamondo Kogyo Kk 回転切削工具
US5716170A (en) * 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same
SE511429C2 (sv) * 1996-09-13 1999-09-27 Seco Tools Ab Verktyg, skärdel, verktygskropp för skärande bearbetning samt metod för montering av skärdel till verktygskropp
SE509931C2 (sv) * 1996-09-27 1999-03-22 Seco Tools Ab Pinnfräs, pinnfräshuvud samt metod för montering av ett lösbart pinnfräshuvud på ett skaft till en pinnfräs
US5701578A (en) * 1996-11-20 1997-12-23 Kennametal Inc. Method for making a diamond-coated member
JP3690626B2 (ja) * 1997-08-19 2005-08-31 株式会社アライドマテリアル ダイヤモンドコーティングドリルおよびエンドミル及びその製造方法
JP2000296410A (ja) * 1999-04-13 2000-10-24 Honda Motor Co Ltd 複合材製エンドミル
SE9903685L (sv) * 1999-10-14 2001-04-15 Seco Tools Ab Verktyg för roterande skärande bearbetning, verktygsspets samt metod för tillverkning av verktygsspetsen
US6511265B1 (en) * 1999-12-14 2003-01-28 Ati Properties, Inc. Composite rotary tool and tool fabrication method
JP3720010B2 (ja) * 2002-10-02 2005-11-24 オーエスジー株式会社 深穴加工用ドリル
JP4145629B2 (ja) * 2002-11-11 2008-09-03 住友電工ハードメタル株式会社 マイクロドリル
US20050133277A1 (en) * 2003-08-28 2005-06-23 Diamicron, Inc. Superhard mill cutters and related methods
JP4854946B2 (ja) * 2004-09-30 2012-01-18 三菱マテリアル株式会社 エンドミル素材及びエンドミル
DE202005021817U1 (de) * 2005-10-04 2010-11-04 Gühring Ohg Spanabtragendes Werkzeug
JP2007185736A (ja) * 2006-01-12 2007-07-26 Sumitomo Electric Hardmetal Corp エンドミル
DE102006000251A1 (de) * 2006-05-30 2007-12-06 Hilti Ag Hartstoffkopf und Drehschlagbohrer
JP2008049409A (ja) * 2006-08-22 2008-03-06 Sumitomo Electric Hardmetal Corp ボールエンドミルおよびその製造方法
JP4464953B2 (ja) * 2006-11-30 2010-05-19 ユニオンツール株式会社 切削工具及びその製造方法
US20090142150A1 (en) * 2007-11-29 2009-06-04 Yang Tsuan Chu Tungsten steel cutter
JP5382463B2 (ja) * 2008-02-29 2014-01-08 マニー株式会社 歯科用切削具
FR2935914B1 (fr) * 2008-09-16 2012-07-27 Sarl Fac Outil de coupe plat et porte-outil associe.
GB0819257D0 (en) * 2008-10-21 2008-11-26 Element Six Holding Gmbh Insert for an attack tool
US8272816B2 (en) * 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
JP5071462B2 (ja) 2009-09-18 2012-11-14 日立ツール株式会社 回転切削工具
US9358079B2 (en) * 2010-02-11 2016-06-07 Sybron Canada Lp Bur and method of making same
JP5168597B2 (ja) * 2010-02-12 2013-03-21 住友電工ハードメタル株式会社 ヘッド着脱式切削工具
GB201010061D0 (en) * 2010-06-16 2010-07-21 Element Six Ltd Rotary machine tools
JP5488374B2 (ja) * 2010-09-29 2014-05-14 三菱マテリアル株式会社 ヘッド交換式切削工具
CN103370156A (zh) * 2011-02-23 2013-10-23 京瓷株式会社 切削工具及其制造方法
JP2012254486A (ja) * 2011-06-07 2012-12-27 Tomei Diamond Co Ltd 超高圧焼結体回転切削工具
CN104136165B (zh) * 2012-02-28 2017-03-08 京瓷株式会社 钻头用坯件、钻头用坯件的制造方法、钻头以及钻头的制造方法
GB201206965D0 (en) * 2012-04-20 2012-06-06 Element Six Abrasives Sa Super-hard constructions and mathod for making same
FR3006215B1 (fr) * 2013-05-29 2015-10-09 Mecachrome France Outil coupant rotatif presentant une arete en plusieurs materiaux.
US20150061236A1 (en) * 2013-08-30 2015-03-05 Topgreen Technology Co., Ltd. Soldered machining tool and soldered bar stock for forming the soldered machining tool
DE102014207502B4 (de) * 2014-04-17 2022-11-24 Kennametal Inc. Rotationswerkzeug sowie Werkzeugkopf
JP2015205329A (ja) * 2014-04-22 2015-11-19 オーエスジー株式会社 超硬合金と鋼材とを接合した切削工具およびその切削工具の製造方法
GB2539746A (en) * 2015-02-28 2016-12-28 Element Six (Uk) Ltd Superhard constructions & methods of making same
US20160263666A1 (en) * 2015-03-12 2016-09-15 Kennametal Inc. Cutting member with coolant delivery
US10702926B2 (en) * 2016-10-07 2020-07-07 Sumitomo Electric Hardmetal Corp. Rotary cutting blade material and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252817A (ja) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd 刃部交換式切削工具
JP2001252808A (ja) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd 刃部交換式ドリル
JP2004218048A (ja) * 2003-01-17 2004-08-05 Kyocera Corp 複合硬質焼結体およびこれを用いた複合部材、切削工具
WO2009126521A2 (en) * 2008-04-11 2009-10-15 Kennametal Inc. Cutting bit useful for impingement of earth strata
JP2011056594A (ja) * 2009-09-07 2011-03-24 Dijet Industrial Co Ltd 切削工具
WO2016178626A1 (en) * 2015-05-07 2016-11-10 Atlas Copco Secoroc Ab Cutting tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3542934A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110480014A (zh) * 2019-08-20 2019-11-22 扬州海昌新材股份有限公司 以粉末为原料生产多功能外圆倒角刀方法
CN110480014B (zh) * 2019-08-20 2022-02-18 扬州海昌新材股份有限公司 以粉末为原料生产多功能外圆倒角刀方法

Also Published As

Publication number Publication date
KR102188627B1 (ko) 2020-12-08
CN109996632B (zh) 2020-09-01
EP3542934A1 (en) 2019-09-25
EP3542934A4 (en) 2020-06-10
EP3542934B1 (en) 2024-04-24
JPWO2018092187A1 (ja) 2019-10-10
KR20190069475A (ko) 2019-06-19
CN109996632A (zh) 2019-07-09
JP6629990B2 (ja) 2020-01-15
US10293411B2 (en) 2019-05-21
US20180369924A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2018092187A1 (ja) 切削工具
JP6614541B2 (ja) 回転切削刃用素材及びその製造方法
US9393629B2 (en) Cutter elements, rotary machine tools comprising same and method for making same
US9844814B2 (en) Superhard tool tip, method for making same and tool comprising same
US9975185B2 (en) Twist drill tips, precursor constructions for use in making same, and methods for making and using same
US20130017028A1 (en) Multi-piece twist drill head and twist drill including the same
JP2006510492A (ja) 深穴用ドリル
CN105246629B (zh) 具有多种材料制的切削刃的旋转切削工具
JP2007098496A (ja) 穴加工工具
JP2012045664A (ja) 優れた切屑処理性を発揮できる切削インサート
US9421611B2 (en) Composite cutting insert and method of making same
JP5743868B2 (ja) 切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550895

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197013520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016921956

Country of ref document: EP

Effective date: 20190617