WO2018079485A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2018079485A1
WO2018079485A1 PCT/JP2017/038182 JP2017038182W WO2018079485A1 WO 2018079485 A1 WO2018079485 A1 WO 2018079485A1 JP 2017038182 W JP2017038182 W JP 2017038182W WO 2018079485 A1 WO2018079485 A1 WO 2018079485A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
substrate
elastic wave
wave device
wave element
Prior art date
Application number
PCT/JP2017/038182
Other languages
English (en)
French (fr)
Inventor
一嗣 渡邉
心弥 城之薗
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018079485A1 publication Critical patent/WO2018079485A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an acoustic wave device in which a surface acoustic wave element is sealed with resin.
  • a surface acoustic wave element is mounted on a mounting substrate by face-down bonding.
  • the periphery of the surface acoustic wave element is sealed with a sealing resin layer in a state where a space is secured between the IDT electrode forming surface of the surface acoustic wave element and the mounting surface.
  • the sealing resin layer is in close contact with the periphery of the elastic wave element substrate. Therefore, an impact when the acoustic wave device is mounted on a printed circuit board or a stress at the time of forming a sealing resin layer at the time of manufacture is directly applied to the acoustic wave element substrate. Therefore, there is a risk that the elastic wave element substrate may be broken.
  • An object of the present invention is to provide a highly reliable elastic wave device that is less prone to problems such as cracking of an elastic wave element substrate.
  • An elastic wave device includes a mounting substrate, an elastic wave element substrate mounted on the mounting substrate and having first and second main surfaces and side surfaces facing each other, and the elastic wave element.
  • a second main surface of the acoustic wave element substrate facing the mounting substrate at a predetermined interval, and in contact with the acoustic wave element substrate in the sealing resin layer A gap is provided.
  • the gap is in contact with the first main surface of the acoustic wave element substrate.
  • the gap is in contact with the side surface of the acoustic wave element substrate.
  • the gap portion is in contact with one of the side surfaces of the acoustic wave element substrate and the side surface opposite to the side surface. It consists of a void part.
  • the stress applied in the direction connecting the pair of side surfaces facing each other can be effectively alleviated. Therefore, the crack of the acoustic wave element substrate due to the stress applied in this direction is less likely to occur.
  • the surface acoustic wave element is bonded to the mounting substrate by a bump.
  • the gap is not positioned so as to overlap the bump.
  • the part is located. In this case, cracks and the like of the acoustic wave element substrate are more unlikely to occur at positions that do not overlap the bumps.
  • the acoustic wave element substrate is a piezoelectric substrate.
  • the acoustic wave element substrate includes a support substrate and a piezoelectric thin film laminated on the support substrate.
  • the support substrate is a high-sonic support substrate
  • the acoustic velocity of the bulk wave propagating through the high-sonic support substrate is an elastic wave propagating through the piezoelectric thin film. It is higher than the speed of sound.
  • the elastic wave can be effectively confined in the piezoelectric thin film.
  • the supporting substrate has a high sound velocity layer in which the sound velocity of the propagating bulk wave is higher than the sound velocity of the elastic wave propagating through the piezoelectric thin film, and the propagating bulk.
  • the void portion in contact with the acoustic wave element substrate is provided in the sealing resin layer, problems such as cracking of the acoustic wave element substrate hardly occur. Therefore, the reliability of the acoustic wave device can be increased.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a front sectional view of a structure in which the acoustic wave device according to the first embodiment is further mounted on a substrate such as a printed circuit board and the periphery is resin-molded.
  • FIG. 3 is a front sectional view of an acoustic wave device according to the second embodiment of the present invention.
  • FIG. 4 is a front sectional view of an acoustic wave device according to a third embodiment of the present invention.
  • FIG. 5 is a front sectional view of an acoustic wave device according to a fourth embodiment of the present invention.
  • FIG. 6 is a front sectional view for explaining a modification of the acoustic wave element substrate used in the present invention.
  • FIG. 7 is a front sectional view for explaining still another modification of the acoustic wave device substrate used in the present invention.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • the acoustic wave device 1 includes a mounting substrate 2, a surface acoustic wave element 3, and a sealing resin layer 4.
  • the mounting substrate 2 is not particularly limited, but is made of insulating ceramics such as alumina, Si, or the like.
  • Mounting electrode lands 5 a and 5 b are provided on the mounting surface 2 a which is the upper surface of the mounting substrate 2.
  • the electrode lands 5a and 5b are made of an appropriate metal or alloy.
  • the surface acoustic wave element 3 has an acoustic wave element substrate 6.
  • the acoustic wave element substrate 6 has first and second main surfaces 6a and 6b facing each other.
  • a plurality of side surfaces 6c and 6d connect the first main surface 6a and the second main surface 6b.
  • the side surface 6c and the side surface 6d face each other.
  • the acoustic wave element substrate 6 is a piezoelectric substrate made of a piezoelectric single crystal such as LiTaO 3 or LiNbO 3 .
  • the acoustic wave element substrate 6 may be formed of piezoelectric ceramics.
  • An IDT electrode 7 and terminal electrodes 8a and 8b are provided on the second main surface 6b of the acoustic wave element substrate 6.
  • the terminal electrodes 8a and 8b are electrically connected to the IDT electrode 7.
  • the IDT electrode 7 and the terminal electrodes 8a and 8b are made of an appropriate metal or alloy.
  • Bumps 9a and 9b made of metal are joined to the terminal electrodes 8a and 8b.
  • the second main surface 6 b faces the mounting surface 2 a of the mounting substrate 2 at a predetermined interval. Thereby, a space A is provided.
  • the sealing resin layer 4 is provided so as to seal the surface acoustic wave element 3 while securing the space A. In order to secure the space A, the sealing resin layer 4 does not reach the region between the bumps 9a and 9b.
  • a gap 4 a that is in contact with the first main surface 6 a of the acoustic wave element substrate 6 is provided.
  • the elastic wave element substrate 6 is hardly cracked.
  • FIG. 2 is a front sectional view of a structure in which the acoustic wave device 1 according to the first embodiment is further mounted on a substrate such as a printed circuit board and the periphery is resin-molded.
  • a structure in which the acoustic wave device 1 is mounted on a substrate 12 such as a printed circuit board and the periphery is sealed with the resin mold layer 13 is generally used.
  • resin molding is performed with the resin mold layer 13
  • a large stress is applied toward the elastic wave device 1 due to curing shrinkage of the resin or the like.
  • the gap 4a is provided, the stress applied to the surface acoustic wave element substrate 6 of the surface acoustic wave element 3 can be relaxed. Therefore, the elastic wave element substrate 6 is not easily cracked due to stress in forming the resin mold layer 13.
  • FIG. 3 is a front cross-sectional view of an acoustic wave device according to a second embodiment of the present invention.
  • the gap 4b is provided so as to be in contact with the side surface 6c.
  • the gap 4c is provided so as to contact the side surface 6d.
  • the elastic wave device 21 is configured in the same manner as the elastic wave device 1 except that the sealing resin layer 4 has the gaps 4b and 4c. Therefore, about the same part, suppose that the description of 1st Embodiment is used by attaching
  • the gaps 4b and 4c are provided so as to contact the side surface 6c on one side of the acoustic wave element substrate 6 and the side surface 6d opposite to the side surface 6c. Therefore, when stress is applied to the acoustic wave device 21 in the direction connecting the side surfaces 6c and 6d, the stress can be effectively relieved. Therefore, the elastic wave device 21 is also less likely to crack the elastic wave element substrate 6.
  • the sealing resin layer may have a plurality of voids.
  • FIG. 4 is a front sectional view of the acoustic wave device 31 according to the third embodiment.
  • the sealing resin layer 4 has an elongated rectangular gap 4d when viewed from the front cross-section.
  • the elastic wave device 31 is the same as the elastic wave device 1 except that the gap 4d has a different cross-sectional shape from the gap 4a. As shown in the gap 4d, in the present invention, the shape of the gap is not particularly limited, and can be various shapes.
  • the gap 4a is provided at a position that does not overlap the bumps 9a and 9b. Thereby, it is possible to effectively relieve the stress to the bump non-formation portion where the stress is easily applied.
  • FIG. 5 is a front sectional view of an acoustic wave device 41 according to a fourth embodiment of the present invention.
  • the sealing resin layer 4 has a gap portion 4e in contact with the side surface 6c and a gap portion 4f in contact with the side surface 6d.
  • the gap 4e is larger than the gap 4f.
  • gap part 4e, 4f may differ.
  • FIG. 6 is a front cross-sectional view for explaining a modification of the acoustic wave element substrate used in the present invention.
  • a piezoelectric thin film 53 is laminated on a high sound velocity support substrate 52.
  • An IDT electrode 7 is provided on the piezoelectric thin film 53.
  • the acoustic velocity of the bulk wave propagating through the high acoustic velocity support substrate 52 is higher than the acoustic velocity of the elastic wave propagating through the piezoelectric thin film 53.
  • the acoustic wave propagating through the piezoelectric thin film 53 can be effectively confined in the piezoelectric thin film 53 by using the high sound velocity supporting substrate 52 having such a sound speed as the supporting substrate.
  • the high sound velocity layer 55 and the low sound velocity layer 56 may be laminated.
  • the high sound velocity layer 55 is made of a material in which the sound velocity of the propagating bulk wave is higher than the sound velocity of the elastic wave propagating through the piezoelectric thin film 53.
  • the low acoustic velocity layer 56 is made of a material in which the acoustic velocity of the propagating bulk wave is lower than that of the elastic wave propagating through the piezoelectric thin film 53.
  • a plurality of high sound velocity layers 55 and low sound velocity layers 56 may be alternately laminated.
  • the acoustic wave device according to the present invention is characterized by having a gap portion in contact with the acoustic wave element substrate in the sealing resin layer, and is therefore provided on the second main surface of the acoustic wave element substrate.
  • the electrode structure is not particularly limited as long as it has an IDT electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波素子基板の割れ等の不具合が生じ難い、信頼性に優れた弾性波装置を提供する。 実装基板2上に、弾性表面波素子3が実装されており、弾性表面波素子3が封止樹脂層4により封止されている、弾性波装置1。封止樹脂層4内に、弾性波素子基板6に接している空隙部4aが設けられている。

Description

弾性波装置
 本発明は、弾性表面波素子が樹脂封止されている、弾性波装置に関する。
 下記の特許文献1に記載の弾性波装置では、実装基板上に弾性表面波素子がフェイスダウンボンディングにより実装されている。弾性表面波素子のIDT電極形成面と、実装面との間に空間を確保した状態で、弾性表面波素子の周囲が封止樹脂層により封止されている。
特開2005-20423号公報
 特許文献1に記載の弾性波装置では、封止樹脂層が、弾性波素子基板の周囲に密着している。そのため、弾性波装置をプリント回路基板などに実装する際の衝撃や、製造に際しての封止樹脂層形成時の応力が、弾性波素子基板に直接加わる。従って、弾性波素子基板が割れたりするという、不具合が生じるおそれがあった。
 本発明の目的は、弾性波素子基板の割れ等の不具合が生じ難い、信頼性に優れた弾性波装置を提供することにある。
 本発明に係る弾性波装置は、実装基板と、前記実装基板上に実装されており、対向し合う第1及び第2の主面と、側面とを有する弾性波素子基板と、前記弾性波素子基板の前記第2の主面上に直接または間接に設けられたIDT電極とを有する弾性表面波素子と、前記弾性表面波素子を封止するように前記実装基板上に設けられた封止樹脂層と、を備え、前記弾性波素子基板の前記第2の主面が所定間隔を隔てて前記実装基板に対向しており、前記封止樹脂層内に、前記弾性波素子基板に接している空隙部が設けられている。
 本発明に係る弾性波装置のある特定の局面では、前記空隙部が、前記弾性波素子基板の前記第1の主面に接している。
 本発明に係る弾性波装置の他の特定の局面では、前記空隙部が、前記弾性波素子基板の前記側面に接している。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記空隙部が、前記弾性波素子基板の一方の前記側面に接している空隙部と、該側面とは反対側の前記側面に接している空隙部とからなる。この場合には、対向し合っている一対の側面を結ぶ方向に加わる応力を、効果的に緩和することができる。従って、この方向に加わった応力による弾性波素子基板の割れ等がより一層生じ難い。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記弾性表面波素子が、前記実装基板にバンプにより接合されている。
 本発明に係る弾性波装置の別の特定の局面では、前記実装基板上に実装された前記弾性表面波素子及び前記封止樹脂層を平面視した場合、前記バンプと重ならない位置に、前記空隙部が位置している。この場合には、バンプと重ならない位置において、弾性波素子基板の割れ等がより一層生じ難い。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記弾性波素子基板が、圧電基板である。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記弾性波素子基板が、支持基板と、前記支持基板上に積層された圧電薄膜とを有する。
 本発明に係る弾性波装置の別の特定の局面では、前記支持基板が、高音速支持基板であり、前記高音速支持基板を伝搬するバルク波の音速が、前記圧電薄膜を伝搬する弾性波の音速よりも高い。この場合には、弾性波を圧電薄膜内に効果的に閉じ込めることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記支持基板が、伝搬するバルク波の音速が、前記圧電薄膜を伝搬する弾性波の音速よりも高い高音速層と、伝搬するバルク波の音速が、前記圧電薄膜を伝搬する前記弾性波の音速よりも低い、低音速層とを有する。この場合においても、圧電薄膜内に弾性波を効果的に閉じ込めることができる。
 本発明に係る弾性波装置では、封止樹脂層内に、弾性波素子基板に接している空隙部が設けられているため、弾性波素子基板の割れのような不具合が生じ難い。よって、弾性波装置の信頼性を高めることができる。
図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。 図2は、第1の実施形態の弾性波装置を、さらにプリント回路基板などの基板上に実装し、周囲を樹脂モールドした構造の正面断面図である。 図3は、本発明の第2の実施形態に係る弾性波装置の正面断面図である。 図4は、本発明の第3の実施形態に係る弾性波装置の正面断面図である。 図5は、本発明の第4の実施形態に係る弾性波装置の正面断面図である。 図6は、本発明で用いられる弾性波素子基板の変形例を説明するための正面断面図である。 図7は、本発明で用いられる弾性波素子基板のさらに他の変形例を説明するための正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。
 弾性波装置1は、実装基板2と、弾性表面波素子3と、封止樹脂層4とを有する。
 実装基板2は、特に限定されるわけではないが、アルミナなどの絶縁性セラミックスや、Siなどからなる。
 実装基板2の上面である実装面2aには、実装用の電極ランド5a,5bが設けられている。電極ランド5a,5bは適宜の金属もしくは合金からなる。
 弾性表面波素子3は、弾性波素子基板6を有する。弾性波素子基板6は、対向し合う第1,第2の主面6a,6bを有する。第1の主面6aと第2の主面6bとを、複数の側面6c,6dが結んでいる。側面6cと側面6dとは対向し合っている。
 弾性波素子基板6は、本実施形態では、LiTaO、LiNbOなどの圧電単結晶からなる圧電基板である。弾性波素子基板6は、圧電セラミックスにより形成されていてもよい。
 弾性波素子基板6の第2の主面6b上には、IDT電極7及び端子電極8a,8bが設けられている。端子電極8a,8bは、IDT電極7に電気的に接続されている。IDT電極7及び端子電極8a,8bは適宜の金属もしくは合金からなる。端子電極8a,8bに金属からなるバンプ9a,9bが接合されている。弾性表面波素子3においては、第2の主面6bが、実装基板2の実装面2aと所定間隔を隔てて対向している。それによって、空間Aが設けられている。
 封止樹脂層4は、上記空間Aを確保しつつ、弾性表面波素子3を封止するように設けられている。上記空間Aを確保するために、封止樹脂層4は、バンプ9a,9bの間の領域には至っていない。
 他方、封止樹脂層4内には、弾性波素子基板6の第1の主面6aに接している空隙部4aが設けられている。本実施形態の弾性波装置1では、空隙部4aが設けられているため、弾性波素子基板6の割れ等が生じ難い。
 すなわち、例えば、破線で示す吸着ヘッド11を用いて、弾性波装置1をプリント回路基板などに実装する場合、矢印Bで示す方向に応力が加わる。すなわち、弾性波装置1の封止樹脂層4に、矢印Bで示す方向の応力が加わる。しかしながら、空隙部4aが設けられているため、上記応力を緩和することができる。そのため、上記応力による弾性波素子基板6の割れ等が生じ難い。
 図2は、第1の実施形態の弾性波装置1を、さらにプリント回路基板などの基板上に実装し、周囲を樹脂モールドした構造の正面断面図である。
 このように、弾性波装置1をプリント回路基板などの基板12上に実装し、さらに周囲を樹脂モールド層13により封止する構造も一般的に用いられている。樹脂モールド層13により樹脂モールドする際にも、樹脂の硬化収縮などにより大きな応力が弾性波装置1側に向かって加わる。この場合においても、空隙部4aが設けられているため、弾性表面波素子3の弾性波素子基板6に加わる応力を緩和することができる。従って、樹脂モールド層13の形成に際しての応力による、弾性波素子基板6の割れ等も生じ難い。
 図3は、本発明の第2の実施形態に係る弾性波装置の正面断面図である。第2の実施形態の弾性波装置21では、空隙部4bが、側面6cに接するように設けられている。また、空隙部4cが、側面6dに接するように設けられている。弾性波装置21は、封止樹脂層4が、上記空隙部4b,4cを有することを除いては、弾性波装置1と同様に構成されている。従って、同一部分については、同一の参照番号を付することにより、第1の実施形態の説明を援用することとする。
 弾性波装置21では、弾性波素子基板6の一方側の側面6cと、側面6cとは反対側の側面6dとに接するように、空隙部4b,4cが設けられている。そのため、側面6c,6dを結ぶ方向において、弾性波装置21に応力が加わった場合、この応力を効果的に緩和することができる。従って、弾性波装置21においても、弾性波素子基板6の割れ等が生じ難い。弾性波装置21のように、本発明においては、封止樹脂層は、複数の空隙部を有していてもよい。
 図4は、第3の実施形態に係る弾性波装置31の正面断面図である。第3の実施形態の弾性波装置31では、正面断面視した場合、封止樹脂層4が、細長い矩形の空隙部4dを有する。
 空隙部4dが空隙部4aと異なる断面形状を有することを除いては、弾性波装置31は弾性波装置1と同様である。空隙部4dに示すように、本発明において、空隙部の形状は特に限定されず、様々な形状とすることができる。
 また、好ましくは、弾性波装置1のように、弾性波装置1を平面視した場合、バンプ9a,9bと重ならない位置に、空隙部4aが設けられていることが望ましい。それによって、応力が加わりやすいバンプ非形成箇所への応力を効果的に緩和することができる。
 図5は、本発明の第4の実施形態に係る弾性波装置41の正面断面図である。弾性波装置41では、封止樹脂層4が、側面6cに接している空隙部4eと、側面6dに接触している空隙部4fとを有する。空隙部4eが、空隙部4fよりも大きくなっている。このように、複数の空隙部4e,4fが設けられている場合、複数の空隙部4e,4fの大きさが異なっていてもよい。
 図6は、本発明で用いられる弾性波素子基板の変形例を説明するための正面断面図である。図6に示す弾性波素子基板51では、高音速支持基板52上に、圧電薄膜53が積層されている。圧電薄膜53上にIDT電極7が設けられている。高音速支持基板52を伝搬するバルク波の音速は、圧電薄膜53を伝搬する弾性波の音速よりも高い。このような音速関係の高音速支持基板52を支持基板として用いることにより、圧電薄膜53を伝搬する弾性波を圧電薄膜53内に効果的に閉じ込めることができる。
 また、図7に示す支持基板54のように、高音速層55と、低音速層56とが積層された構造を有していてもよい。高音速層55は、伝搬するバルク波の音速が、圧電薄膜53を伝搬する弾性波の音速よりも高い材料からなる。低音速層56は、伝搬するバルク波の音速が、圧電薄膜53を伝搬する弾性波の音速よりも低い材料からなる。また、高音速層55及び低音速層56は、それぞれ交互に複数積層されていてもよい。
 本発明に係る弾性波装置は、封止樹脂層内に、弾性波素子基板に接する空隙部を有することを特徴とするものであり、従って、弾性波素子基板の第2の主面に設けられている電極構造は、IDT電極を有する限り特に限定されるものではない。
1…弾性波装置
2…実装基板
2a…実装面
3…弾性表面波素子
4…封止樹脂層
4a~4f…空隙部
5a,5b…電極ランド
6…弾性波素子基板
6a,6b…第1,第2の主面
6c,6d…側面
7…IDT電極
8a,8b…端子電極
9a,9b…バンプ
11…吸着ヘッド
12…基板
13…樹脂モールド層
21,31,41…弾性波装置
51…弾性波素子基板
52…高音速支持基板
53…圧電薄膜
54…支持基板
55…高音速層
56…低音速層

Claims (10)

  1.  実装基板と、
     前記実装基板上に実装されており、対向し合う第1及び第2の主面と、側面とを有する弾性波素子基板と、前記弾性波素子基板の前記第2の主面上に直接または間接に設けられたIDT電極とを有する弾性表面波素子と、
     前記弾性表面波素子を封止するように前記実装基板上に設けられた封止樹脂層と、
    を備え、
     前記弾性波素子基板の前記第2の主面が所定間隔を隔てて前記実装基板に対向しており、
     前記封止樹脂層内に、前記弾性波素子基板に接している空隙部が設けられている、弾性波装置。
  2.  前記空隙部が、前記弾性波素子基板の前記第1の主面に接している、請求項1に記載の弾性波装置。
  3.  前記空隙部が、前記弾性波素子基板の前記側面に接している、請求項1または2に記載の弾性波装置。
  4.  前記空隙部が、前記弾性波素子基板の一方の前記側面に接している空隙部と、該側面とは反対側の前記側面に接している空隙部とからなる、請求項1~3のいずれか一項に記載の弾性波装置。
  5.  前記弾性表面波素子が、前記実装基板にバンプにより接合されている、請求項1~4のいずれか一項に記載の弾性波装置。
  6.  前記実装基板上に実装された前記弾性表面波素子及び前記封止樹脂層を平面視した場合、前記バンプと重ならない位置に、前記空隙部が位置している、請求項5に記載の弾性波装置。
  7.  前記弾性波素子基板が、圧電基板である、請求項1~6のいずれか一項に記載の弾性波装置。
  8.  前記弾性波素子基板が、支持基板と、前記支持基板上に積層された圧電薄膜とを有する、請求項1~7のいずれか一項に記載の弾性波装置。
  9.  前記支持基板が、高音速支持基板であり、前記高音速支持基板を伝搬するバルク波の音速が、前記圧電薄膜を伝搬する弾性波の音速よりも高い、請求項8に記載の弾性波装置。
  10.  前記支持基板が、伝搬するバルク波の音速が、前記圧電薄膜を伝搬する弾性波の音速よりも高い高音速層と、伝搬するバルク波の音速が、前記圧電薄膜を伝搬する前記弾性波の音速よりも低い、低音速層とを有する、請求項8に記載の弾性波装置。
PCT/JP2017/038182 2016-10-25 2017-10-23 弾性波装置 WO2018079485A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016208319 2016-10-25
JP2016-208319 2016-10-25

Publications (1)

Publication Number Publication Date
WO2018079485A1 true WO2018079485A1 (ja) 2018-05-03

Family

ID=62024896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038182 WO2018079485A1 (ja) 2016-10-25 2017-10-23 弾性波装置

Country Status (1)

Country Link
WO (1) WO2018079485A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371428A (zh) * 2018-12-26 2020-07-03 中芯集成电路(宁波)有限公司上海分公司 控制电路与表面声波滤波器的集成方法和集成结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032075A (ja) * 2001-07-12 2003-01-31 Toshiba Corp 弾性表面波デバイスとその製造方法
JP2015073331A (ja) * 2010-12-24 2015-04-16 株式会社村田製作所 弾性波装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032075A (ja) * 2001-07-12 2003-01-31 Toshiba Corp 弾性表面波デバイスとその製造方法
JP2015073331A (ja) * 2010-12-24 2015-04-16 株式会社村田製作所 弾性波装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371428A (zh) * 2018-12-26 2020-07-03 中芯集成电路(宁波)有限公司上海分公司 控制电路与表面声波滤波器的集成方法和集成结构

Similar Documents

Publication Publication Date Title
CN210807199U (zh) 弹性波装置
JP6516005B2 (ja) 弾性波装置
CN107615659B (zh) 弹性波装置
JP5077714B2 (ja) 弾性波装置及びその製造方法
WO2016208427A1 (ja) 弾性波装置
JP6432558B2 (ja) 弾性波装置
WO2014174945A1 (ja) 水晶振動装置
JP6288251B2 (ja) 電子部品及びその製造方法
JP6683255B2 (ja) 弾性波装置及び電子部品
TWI481020B (zh) Electronic component module manufacturing method and electronic component module
US10812042B2 (en) Electronic component
JP6327355B2 (ja) 圧電デバイス、圧電デバイスの製造方法
JP2019179961A (ja) 弾性波装置
JP5472557B1 (ja) 複合電子部品及びそれを備える電子装置
WO2018079485A1 (ja) 弾性波装置
JP2000307373A (ja) 表面波装置及びその製造方法
US10804196B2 (en) Electronic component device
WO2016042972A1 (ja) 電子部品及び樹脂モールド型電子部品装置
JP6544153B2 (ja) 電子部品素子及び電子部品
WO2023157798A1 (ja) 弾性波装置
JP2011109481A (ja) 弾性波デバイスおよびその製造方法
JP5805497B2 (ja) 電子部品の実装構造体
JP2010147591A (ja) 弾性波デバイス及びその製造方法
JP2005348273A (ja) 弾性表面波装置
WO2016072270A1 (ja) 圧電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP