WO2016072270A1 - 圧電デバイス - Google Patents

圧電デバイス Download PDF

Info

Publication number
WO2016072270A1
WO2016072270A1 PCT/JP2015/079767 JP2015079767W WO2016072270A1 WO 2016072270 A1 WO2016072270 A1 WO 2016072270A1 JP 2015079767 W JP2015079767 W JP 2015079767W WO 2016072270 A1 WO2016072270 A1 WO 2016072270A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric film
film
resonator
fixed layer
Prior art date
Application number
PCT/JP2015/079767
Other languages
English (en)
French (fr)
Inventor
岸本諭卓
大村正志
木村哲也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016072270A1 publication Critical patent/WO2016072270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to a piezoelectric device in which a conductor is formed on a piezoelectric film.
  • Patent Document 1 describes a piezoelectric resonator having a membrane structure.
  • a piezoelectric resonator having a membrane structure a piezoelectric film on which a resonator conductor pattern such as IDT is formed is supported on a support substrate by a fixed layer.
  • the region where the resonator conductor pattern is formed in the piezoelectric film is not in contact with the fixed layer. That is, the resonator conductor pattern forming region in the piezoelectric film is supported by the fixed layer so that the cavity is formed.
  • Patent Document 2 describes a piezoelectric resonator including an acoustic multilayer film.
  • the acoustic multilayer film is disposed between the piezoelectric film and the support substrate.
  • the characteristics of the resonator are deteriorated due to spurious effects such as higher order modes, and the characteristics of the piezoelectric device are reduced. It may deteriorate.
  • an object of the present invention is to provide a piezoelectric device capable of reducing the influence of spurious.
  • the piezoelectric resonator of the present invention includes a piezoelectric film, a resonator conductor pattern formed on the surface of the piezoelectric film, a support substrate, and a fixed layer that fixes the piezoelectric film to the support substrate.
  • the amount of warpage along a plurality of directions in a plane parallel to the surface of the piezoelectric film is not uniform.
  • the resonance frequency corresponding to the higher harmonics changes without changing the fundamental resonance frequency as compared with the piezoelectric resonator in which the piezoelectric film is arranged so as not to warp. As a result, spurious can be improved.
  • the amount of warp is preferably ⁇ 500 ⁇ m or less per 100 mm scanning distance in the direction parallel to the surface. Furthermore, the amount of warpage is preferably ⁇ 300 ⁇ m or less.
  • the fixed layer is not in contact with a portion where the resonator conductor pattern is formed in the piezoelectric film in a plan view.
  • the fixed layer may be an acoustic multilayer film in which high impedance layers and low impedance layers are alternately arranged.
  • the piezoelectric film is preferably a LiTaO 3 substrate or a LiNbO 3 substrate.
  • the resonator conductor pattern has a structure in which a plurality of comb-like conductors are combined, and it is preferable that the propagating high frequency is a plate wave.
  • the influence of spurious can be reduced and the characteristics of the device can be improved.
  • 1 is a plan view of a piezoelectric resonator according to a first embodiment of the present invention. It is side surface sectional drawing of the piezoelectric resonator which concerns on the 1st Embodiment of this invention. It is an enlarged view which shows the curvature of the piezoelectric film in the piezoelectric resonator which concerns on the 1st Embodiment of this invention. It is an impedance characteristic view of the piezoelectric resonator and the comparative example according to the first embodiment of the present invention. It is side surface sectional drawing which shows the shape in each process in the manufacturing method of the piezoelectric resonator which concerns on the 1st Embodiment of this invention. It is side surface sectional drawing of the piezoelectric resonator which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a plan view of a piezoelectric resonator according to a first embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view (corresponding to the AA cross-sectional view in FIG. 1) of the piezoelectric resonator according to the first embodiment of the present invention.
  • the piezoelectric resonator 10 includes a piezoelectric film 20, a fixed layer 30, and a support substrate 40.
  • the fixed layer 30 is bonded to the back surface of the piezoelectric film 20, and the support substrate 40 is bonded to the back surface of the fixed layer 30 (the surface opposite to the surface on which the piezoelectric film 20 abuts). With this configuration, the piezoelectric film 20 is supported on the support substrate 40 by the fixed layer 30.
  • the piezoelectric film 20 is a piezoelectric body such as LN (LiNbO 3 ) or LT (LiTaO 3 ).
  • the fixed layer 30 is an insulator such as SiO 2 .
  • the support substrate 40 is made of Si, sapphire, glass or the like.
  • Functional conductors 211 and 212 are formed on the surface of the piezoelectric film 20 (the surface opposite to the surface on the fixed layer 30 side).
  • the functional conductors 211 and 212 have a comb-teeth shape in plan view.
  • the functional conductors 211 and 212 are arranged so as to form a so-called IDT (Interdigital Transducer). With this configuration, a piezoelectric resonator is configured.
  • the void 300 is formed in the fixed layer 30.
  • the gap 300 is surrounded by the piezoelectric film 20, the fixed layer 30, and the support substrate 40. However, the gap 300 is inserted through the through hole 200 provided in the piezoelectric film 20.
  • the through-hole 200 is used when the gap 300 is formed.
  • the air gap 300 is provided so as to overlap a portion of the piezoelectric film 20 where the functional conductors 211 and 212 are formed when the piezoelectric resonator 10 is viewed in plan.
  • the back surface of the portion where the functional conductors 211 and 212 are formed in the piezoelectric film 20 is not in contact with (separated from) the fixed layer 30 and the support substrate 40.
  • the piezoelectric film 20 has a warp in the region where the functional conductors 211 and 212 are formed.
  • This warp has anisotropy in a plane parallel to the surface of the piezoelectric film 20. Specifically, as indicated by the dotted arrows in FIG. 1, the amount of warpage differs in a plurality of directions in the plane.
  • the warp amount along the direction parallel to the longitudinal direction of each finger conductor of each functional conductor 211, 212 is Wp1
  • the warp amount along the direction parallel to the finger conductor arrangement direction is Wp2
  • these two directions In contrast, a warp amount along a direction intersecting at a predetermined angle (for example, 45 °) is defined as Wp3.
  • the piezoelectric film 20 is warped so that Wp1 ⁇ Wp2 and Wp1 ⁇ Wp3.
  • FIG. 3 is an enlarged view showing warpage of the piezoelectric film in the piezoelectric resonator according to the first embodiment of the present invention. Note that FIG. 3 exaggerates the warpage.
  • the interval between adjacent finger conductors (functional conductors 211 and 212) is different from a state without warp.
  • the amount of change in the interval is determined by the amount of warpage.
  • the finger conductor is extended by the amount of the warp Wp2.
  • the ratio between the amount of change in the distance between the finger conductors due to warpage in the arrangement direction and the distance between the finger conductors without warping is the amount by which the length of the finger conductors changes due to the warp in the longitudinal direction of the finger conductors. And the ratio with the length of the finger conductor in a state without warping is large.
  • FIG. 4 is an impedance characteristic diagram of the piezoelectric resonator and the comparative example according to the first embodiment of the present invention.
  • the piezoelectric resonator 10 having the warp in the piezoelectric film 20 is compared with the piezoelectric resonator having no warp of the piezoelectric film (characteristic of the broken line in FIG. 4).
  • the resonance frequency of the fundamental wave hardly changes.
  • the resonance frequency of the higher harmonics changes.
  • the resonance frequency of the high-order harmonic shifts to the high frequency side.
  • the spurious characteristics of the piezoelectric resonator 10 can be improved.
  • the spurious characteristics can be improved by keeping the resonance frequency of the higher harmonics away from the resonance frequency of the fundamental wave.
  • the piezoelectric resonator 10 with improved spurious characteristics can be realized. Further, by using the configuration of the present embodiment, spurious characteristics can be improved without changing the arrangement pitch of the functional conductors 211 and 212, that is, without changing the shape of the functional conductors 211 and 212.
  • FIG. 5 is a side cross-sectional view showing the shape at each step in the method for manufacturing a piezoelectric resonator according to the first embodiment of the present invention.
  • a sacrificial layer 31 is formed on the back surface of the piezoelectric substrate 20P having a predetermined thickness.
  • the sacrificial layer 31 is formed so as to overlap with and include a portion where the functional conductors 211 and 212 are formed in a process described later.
  • the sacrificial layer 31 is, for example, ZnO.
  • the fixed layer 30 is formed on the back surface of the piezoelectric substrate 20P so as to cover the sacrificial layer 31 and the back surface of the piezoelectric substrate 20P.
  • the fixed layer 30 is polished and planarized from the surface of the fixed layer 30 opposite to the surface in contact with the piezoelectric substrate 20P and the sacrificial layer 31.
  • the planarization refers to a process of removing a portion protruding by the sacrificial layer 31 and keeping the surface roughness within a predetermined range.
  • the support substrate 40 is bonded to the flattened surface of the fixed layer 30.
  • a resin adhesive is used for bonding.
  • the piezoelectric substrate 20P is polished to form the piezoelectric film 20.
  • the planarization refers to a process of uniformly reducing the thickness of the piezoelectric film 20 and keeping the surface roughness within a predetermined range.
  • the fixed layer 30 is made of a material that applies a compressive stress to the piezoelectric substrate 20P.
  • the fixed layer 30 is the above-described SiO 2 .
  • the fixed layer 30 is formed on the back surface of the sacrificial layer 31 and the piezoelectric substrate 20P in an environment where the temperature is increased to a predetermined temperature (for example, 80 °). As a result, the fixed layer 30 is cooled, and compressive stress is applied to the piezoelectric substrate 20P, whereby an anisotropic warp can be generated in the piezoelectric substrate 20P.
  • the warp is preferably less than 500 ⁇ m at a scanning distance of 100 mm in each direction in the plane.
  • the warp is more preferably less than 300 ⁇ m at a scanning distance of 100 mm in each direction within the plane.
  • a through hole 200 is formed in the piezoelectric film 20.
  • the sacrificial layer 31 is removed through the through hole 200.
  • the sacrificial layer 31 is removed by wet etching.
  • voids 300 are formed in the fixed layer 30.
  • the piezoelectric resonator 10 is formed by using the above manufacturing method.
  • FIG. 6 is a side sectional view of the piezoelectric resonator according to the second embodiment of the present invention.
  • the piezoelectric resonator 10A according to the present embodiment is different from the piezoelectric resonator 10 according to the first embodiment in the configuration of the fixed layer 30.
  • the fixed layer 30 is configured by the acoustic multilayer film 60.
  • the acoustic multilayer film 60 has a structure in which layers having high acoustic impedance and layers having low acoustic impedance are alternately stacked. Specifically, it has a structure in which SiO 2 layers and AlN layers are alternately laminated.
  • At least one layer constituting the acoustic multilayer film 60 is formed to have anisotropy in warping.
  • the piezoelectric resonator 10A capable of improving the spurious characteristics can be realized as in the first embodiment.
  • the piezoelectric resonators 10 and 10A described above are illustrated as examples of a plate-wave piezoelectric resonator, but may be a bulk-wave piezoelectric resonator.
  • a plate-wave piezoelectric resonator the effect of wave confinement by a membrane structure or an acoustic multilayer film has a great influence on the characteristics of the resonator. For this reason, it is easy to receive the influence of the above-mentioned spurious.
  • the influence of spurious can be suppressed. Therefore, a piezoelectric resonator for plate wave with higher performance can be realized.
  • piezoelectric resonator is shown in the present embodiment, it can be applied to a filter using the piezoelectric resonator and various piezoelectric devices.
  • Piezoelectric resonator 20 Piezoelectric film 20P: Piezoelectric substrate 30: Fixed layer 31: Sacrificial layer 40: Support substrate 60: Acoustic multilayer film 91: Sacrificial layer 200: Through hole 211, 212: Functional conductor 300: Air gap

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

圧電共振器(10)は、圧電膜(20)を備える。圧電膜(20)の表面には、機能導体(211,212)が形成されている。圧電共振器(10)は、支持基板(40)と固定層(30)を備える。固定層(30)は、圧電膜(20)を支持基板(40)に固定する。圧電膜(20)における表面に平行な面内における複数の方向に沿った反り量は不均一である。この状態で、圧電膜(20)は、固定層(30)を介して支持基板(40)に支持されている。

Description

圧電デバイス
 本発明は、圧電膜に導体を形成してなる圧電デバイスに関する。
 特許文献1には、メンブレン構造を備えた圧電共振器が記載されている。メンブレン構造の圧電共振器では、IDT等の共振器導体パターンが形成された圧電膜は、固定層によって支持基板に支持されている。この際、圧電膜における共振器導体パターンの形成領域は、固定層に当接していない。すなわち、圧電膜における共振器導体パターンの形成領域は、固定層によって空洞部が形成されるように支持されている。
 また、特許文献2には、音響多層膜を備えた圧電共振器が記載されている。音響多層膜は、圧電膜と支持基板との間に配置されている。
国際公開第2011/052551号パンフレット 国際公開第2012/086441号パンフレット
 しかしながら、上述の構造のように、反りを有さないように圧電膜を配置した圧電共振器では、高次モード等のスプリアスの影響によって、共振器の特性が悪化して、圧電デバイスの特性を劣化させてしまうことがある。
 したがって、本発明の目的は、スプリアスの影響を軽減可能な圧電デバイスを提供することにある。
 この発明の圧電共振器は、圧電膜と、圧電膜の表面に形成された共振器導体パターンと、支持基板と、圧電膜を支持基板に固定する固定層と、を備える。圧電膜における表面に平行な面内における複数の方向に沿った反り量は不均一である。
 この構成では、反りを有さないように圧電膜を配置した圧電共振器と比較して、基本の共振周波数を殆ど変化させることなく、高次の高調波に対応する共振周波数が変化する。これにより、スプリアスの改善が可能になる。
 また、この発明の圧電共振器では、反り量は、表面に平行な方向の走査距離100mm当たりで±500μm以下であることが好ましい。さらには、この反り量は、±300μm以下であることが好ましい。
 この構成では、スプリアスが改善可能であり、且つ、製造工程中での不良の発生を抑制できる。
 また、この発明の圧電共振器では、固定層は、圧電膜を平面視して、圧電膜における共振器導体パターンの形成部分には当接していないことが好ましい。
 この構成では、所謂、メンブレン構造の圧電共振器が形成される。これにより、さらに共振器特性が向上する。
 また、この発明の圧電共振器では、固定層は、高インピーダンス層と低インピーダンス層とが交互に配置された音響多層膜であってもよい。
 この構成であっても、さらに共振器特性が向上する。
 また、この発明の圧電共振器では、圧電膜は、LiTaO基板またはLiNbO基板であることが好ましい。
 この構成では、上述の作用効果を有する圧電共振器を容易に形成することができる。
 また、この発明の圧電共振器では、共振器導体パターンは、複数の櫛歯状導体が組み合わされた構造であり、伝搬する高周波は板波であることが好ましい。このように板波の圧電共振器に上述の構成を適用することによって、板波共振器のスプリアス特性を改善することができる。
 この発明によれば、スプリアスの影響を軽減することができ、デバイスの特性を改善することができる。
本発明の第1の実施形態に係る圧電共振器の平面図である。 本発明の第1の実施形態に係る圧電共振器の側面断面図である。 本発明の第1の実施形態に係る圧電共振器における圧電膜の反りを示す拡大図である。 本発明の第1の実施形態に係る圧電共振器および比較例のインピーダンス特性図である。 本発明の第1の実施形態に係る圧電共振器の製造方法における各工程での形状を示す側面断面図である。 本発明の第2の実施形態に係る圧電共振器の側面断面図である。
 本発明の第1の実施形態に係る圧電共振器について、図を参照して説明する。図1は、本発明の第1の実施形態に係る圧電共振器の平面図である。図2は、本発明の第1の実施形態に係る圧電共振器の側面断面図(図1におけるA-A断面図に相当する。)である。
 圧電共振器10は、圧電膜20、固定層30、および支持基板40を備える。固定層30は、圧電膜20の裏面に接着しており、固定層30の裏面(圧電膜20が当接する面と反対側の面)には、支持基板40が接着している。この構成によって、圧電膜20は、固定層30によって支持基板40に支持されている。
 圧電膜20は、LN(LiNbO)、LT(LiTaO)等の圧電体である。固定層30は、SiO等の絶縁体である。支持基板40は、Si、サファイヤ、ガラス等である。
 圧電膜20の表面(固定層30側の面と反対側の面)には、機能導体211,212が形成されている。機能導体211,212は平面視して櫛歯形状である。機能導体211,212は、所謂IDT(Interdigital Transducer)を形成するように配置されている。この構成により、圧電共振器が構成される。
 固定層30には、空隙300が形成されている。空隙300は、圧電膜20、固定層30および支持基板40によって囲まれている。ただし、空隙300は、圧電膜20に設けられた貫通孔200に挿通している。この貫通孔200は、空隙300を形成する際に利用されている。
 空隙300は、圧電共振器10を平面視して、圧電膜20における機能導体211,212が形成される部分に重なるように設けられている。言い換えれば、圧電膜20における機能導体211,212が形成される部分の裏面は、固定層30および支持基板40に対して当接していない(離間している)。
 このような構造において、機能導体211,212が形成されている領域内に、圧電膜20は反りを有する。そして、この反りは、圧電膜20の表面に平行な面内において異方性を有する。具体的には、図1の点線矢印に示すように、平面内における複数の方向で反り量が異なる。
 例えば、各機能導体211,212の各フィンガー導体の長手方向に平行な方向に沿った反り量をWp1とし、フィンガー導体の配列方向に平行な方向に沿った反り量をWp2とし、これら二つの方向に対して、所定角(例えば45°)で交わる方向に沿った反り量をWp3とする。圧電膜20は、Wp1≠Wp2、Wp1≠Wp3となるように反っている。
 このように、圧電膜20の反りが異方性を有することによって、次に示す作用効果が得られる。図3は、本発明の第1の実施形態に係る圧電共振器における圧電膜の反りを示す拡大図である。なお、図3は反りを誇張して図示している。
 図3の上段の図に示すように、フィンガー導体の配列方向に反りWp1が生じると、隣り合うフィンガー導体(機能導体211,212)の間隔が、反りを有さない状態と異なる。この間隔の変化量は、反り量によって決まる。
 図3の下段の図に示すように、フィンガー導体の長手方向に反りWp2が生じると、反りWp2の分だけ、フィンガー導体が伸延する。
 配列方向の反りによってフィンガー導体間の距離が変化する量と、反りを有さない状態でのフィンガー導体の間隔との比は、フィンガー導体の長手方向の反りによってフィンガー導体の長さが変化する量と、反りを有さない状態でのフィンガー導体の長さとの比と比較して大きい。
 このような形状の変化が生じることによって、圧電共振器のインピーダンス特性は図4に示すように変化する。図4は、本発明の第1の実施形態に係る圧電共振器および比較例のインピーダンス特性図である。
 図4に示すように、圧電膜20に反りを有する圧電共振器10(図4太実線の特性)は、圧電膜の反りを有さない圧電共振器(図4破線の特性)と比較して、基本波の共振周波数は殆ど変化しない。しかしながら、高次高調波の共振周波数は変化する。図4の例では、高次高調波の共振周波数は、高周波数側にシフトする。
 なお、図4に示すように、機能導体211,212の配列ピッチを変化させても、基本波の共振周波数を殆ど変化させることなく、高次高調波の共振周波数をシフトさせることができる。
 このように、基本波の共振周波数を変化させることなく、高次高調波の共振周波数を変化させることができるので、圧電共振器10のスプリアス特性を改善することができる。特に、図4に示すように、高次高調波の共振周波数を基本波の共振周波数から遠ざけることによって、スプリアス特性を改善することができる。
 本実施形態の構成を用いることによって、スプリアス特性を改善した圧電共振器10を実現することができる。また、本実施形態の構成を用いることによって、機能導体211,212の配列ピッチを変えることなく、すなわち、機能導体211,212の形状を変えることなく、スプリアス特性を改善することができる。
 このような構成からなる圧電共振器10は、次に示す工程によって形成される。図5は、本発明の第1の実施形態に係る圧電共振器の製造方法における各工程での形状を示す側面断面図である。
 図5(A)に示すように、所定の厚みを有する圧電基板20Pの裏面に犠牲層31を形成する。犠牲層31は、後述の工程において機能導体211,212が形成される部分に重なり、且つこの部分を含むように形成される。犠牲層31は、例えば、ZnOである。次に、圧電基板20Pの裏面に、犠牲層31および圧電基板20Pの裏面を覆うように、固定層30を形成する。
 次に、図5(B)に示すように、固定層30における圧電基板20Pおよび犠牲層31に当接する面と反対側の面から、固定層30を研磨して、平坦化する。なお、ここでいう平坦化は、犠牲層31によって突出している部分を除去し、表面粗さを所定範囲内に収める処理を示す。
 次に、図5(C)に示すように、固定層30における平坦化された面に対して、支持基板40を接着する。接着には、例えば樹脂接着剤を用いる。
 次に、図5(D)に示すように、圧電基板20Pを研磨し、圧電膜20を形成する。なお、ここでいう平坦化は、圧電膜20の厚みを均一に薄くし、表面粗さを所定範囲内に収める処理を示す。
 固定層30は、圧電基板20Pに対して圧縮応力を印加するような材質からなる。例えば、固定層30は、上述のSiOである。固定層30は、所定温度(例えば、80°)に昇温した環境下で、犠牲層31および圧電基板20Pの裏面に形成される。これにより、固定層30が冷却され、圧電基板20Pに圧縮応力が加わることによって、圧電基板20Pに異方性の反りを発生させることができる。この際、反りは、平面内の各方向において100mmの走査距離で500μm未満であることが好ましい。さらには、反りは、平面内の各方向において100mmの走査距離で300μm未満であることがより好ましい。反りをこの範囲とすることによって、製造工程中での自動装置(例えば、フォトリソグラフィ装置)の流動を確実且つ容易にすることができる。また、後述の支持基板40への密着強度の低下も抑制できる。これにより、製造工程内での不良の発生を抑制することができる。
 次に、図5(E)に示すように、圧電膜20に機能導体211,212を形成する。
 次に、図5(F)に示すように、圧電膜20に貫通孔200を形成する。
 そして、貫通孔200を介して、犠牲層31を除去する。例えば、犠牲層31をウェットエッチングによって除去する。この処理によって、図2に示すように、固定層30には空隙300が形成される。
 以上の製造方法を用いることによって、圧電共振器10が形成される。
 次に、本発明の第2の実施形態に係る圧電共振器について、図を参照して説明する。図6は、本発明の第2の実施形態に係る圧電共振器の側面断面図である。
 本実施形態に係る圧電共振器10Aは、第1の実施形態に係る圧電共振器10に対して、固定層30の構成が異なる。
 圧電共振器10Aは、固定層30が音響多層膜60によって構成されている。音響多層膜60は、高音響インピーダンスを有する層と低音響インピーダンスを有する層とを交互に積層した構造を有する。具体的には、SiO層とAlN層とを交互に積層した構造を有する。
 そして、音響多層膜60を構成する少なくとも1つの層が反りに異方性を有するように形成されている。
 このような構成であっても、第1の実施形態と同様に、スプリアス特性を改善可能な圧電共振器10Aを実現することができる。
 なお、上述の圧電共振器10,10Aは、板波用の圧電共振器を例に示したが、バルク波の圧電共振器であってもよい。もっとも、板波の圧電共振器では、メンブレン構造や音響多層膜による波の閉じ込め効果が共振器の特性へ与える影響が大きい。このため、上述のスプリアスの影響も受けやすい。しかしながら、上述の実施形態の構造を用いることによって、スプリアスの影響を抑制することができる。したがって、より高性能な板波用の圧電共振器を実現することができる。
 また、本実施形態では圧電共振器を示したが、圧電共振器を用いたフィルタおよび種々の圧電デバイスにも適用できる。
10,10A:圧電共振器
20:圧電膜
20P:圧電基板
30:固定層
31:犠牲層
40:支持基板
60:音響多層膜
91:犠牲層
200:貫通孔
211,212:機能導体
300:空隙

Claims (7)

  1.  圧電膜と、
     圧電膜の表面に形成された機能導体パターンと、
     支持基板と、
     前記圧電膜を前記支持基板に固定する固定層と、を備え、
     前記機能導体パターンが形成されている領域において、前記圧電膜の表面が反っており、前記圧電膜における前記表面に平行な面内における複数の方向に沿った反り量は不均一である、
     圧電デバイス。
  2.  前記反り量は、前記表面に平行な方向の走査距離100mm当たりで、±500μm以下である、
     請求項1に記載の圧電デバイス。
  3.  前記反り量は、±300μm以下である、
     請求項2に記載の圧電デバイス。
  4.  前記固定層は、前記圧電膜を平面視して、前記圧電膜における機能導体パターンの形成部分には当接していない、
     請求項1乃至請求項3のいずれかに記載の圧電デバイス。
  5.  前記固定層は、高インピーダンス層と低インピーダンス層とが交互に配置された音響多層膜である、
     請求項1乃至請求項3のいずれかに記載の圧電デバイス。
  6.  前記圧電膜は、LiTaO基板またはLiNbO基板である、
     請求項1乃至請求項5のいずれかに記載の圧電デバイス。
  7.  前記機能導体パターンは、複数の櫛歯状導体が組み合わされた構造であり、
     伝搬する高周波は板波である、
     請求項1乃至請求項6のいずれかに記載の圧電デバイス。
PCT/JP2015/079767 2014-11-05 2015-10-22 圧電デバイス WO2016072270A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014224861 2014-11-05
JP2014-224861 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016072270A1 true WO2016072270A1 (ja) 2016-05-12

Family

ID=55908997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079767 WO2016072270A1 (ja) 2014-11-05 2015-10-22 圧電デバイス

Country Status (1)

Country Link
WO (1) WO2016072270A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043646A (ja) * 2000-07-19 2002-02-08 Murata Mfg Co Ltd 薄膜、薄膜の製造方法および電子部品
JP2004159339A (ja) * 2002-11-07 2004-06-03 Infineon Technologies Ag Baw共振器の音響反射器
JP2004357306A (ja) * 2003-05-29 2004-12-16 Samsung Electronics Co Ltd 支持台を有する薄膜バルク音響共振器およびその製造方法
WO2008084578A1 (ja) * 2006-12-25 2008-07-17 Murata Manufacturing Co., Ltd. 圧電薄膜共振子
JP2009005143A (ja) * 2007-06-22 2009-01-08 Ngk Insulators Ltd 圧電薄膜デバイス
JP2010028371A (ja) * 2008-07-17 2010-02-04 Fujitsu Ltd 共振デバイス、通信モジュール、通信装置、共振デバイスの製造方法
WO2011052551A1 (ja) * 2009-10-30 2011-05-05 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法
WO2012086441A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043646A (ja) * 2000-07-19 2002-02-08 Murata Mfg Co Ltd 薄膜、薄膜の製造方法および電子部品
JP2004159339A (ja) * 2002-11-07 2004-06-03 Infineon Technologies Ag Baw共振器の音響反射器
JP2004357306A (ja) * 2003-05-29 2004-12-16 Samsung Electronics Co Ltd 支持台を有する薄膜バルク音響共振器およびその製造方法
WO2008084578A1 (ja) * 2006-12-25 2008-07-17 Murata Manufacturing Co., Ltd. 圧電薄膜共振子
JP2009005143A (ja) * 2007-06-22 2009-01-08 Ngk Insulators Ltd 圧電薄膜デバイス
JP2010028371A (ja) * 2008-07-17 2010-02-04 Fujitsu Ltd 共振デバイス、通信モジュール、通信装置、共振デバイスの製造方法
WO2011052551A1 (ja) * 2009-10-30 2011-05-05 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法
WO2012086441A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法

Similar Documents

Publication Publication Date Title
JP6662490B2 (ja) 弾性波装置
JP6481687B2 (ja) 弾性波装置
JP6741082B2 (ja) 弾性波装置
CN107615653B (zh) 弹性波装置
WO2017212774A1 (ja) 弾性波装置及びその製造方法
JP5833239B2 (ja) 複合基板、圧電デバイス及び複合基板の製法
WO2016208427A1 (ja) 弾性波装置
JP2017224890A (ja) 弾性波装置
JP2019080093A (ja) 弾性波装置
JP6327355B2 (ja) 圧電デバイス、圧電デバイスの製造方法
WO2016093020A1 (ja) 圧電デバイス、及び圧電デバイスの製造方法
JP6451744B2 (ja) 圧電モジュール
WO2017094520A1 (ja) 圧電素子、圧電マイクロフォン、圧電共振子及び圧電素子の製造方法
WO2021053399A3 (en) Transducer structure for an acoustic wave device
JP2010268429A (ja) 弾性境界波装置
JP2013143608A (ja) 共振子
WO2019194140A1 (ja) 弾性波装置
WO2017077892A1 (ja) 弾性波装置
JP4956569B2 (ja) 弾性表面波素子
JP2015122566A (ja) 弾性波装置
WO2016072270A1 (ja) 圧電デバイス
JP2010103621A (ja) 弾性波装置
JP2009027554A (ja) 薄膜バルク波共振器及び電子部品
WO2016067924A1 (ja) 圧電デバイス、及び圧電デバイスの製造方法
WO2021241681A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15857651

Country of ref document: EP

Kind code of ref document: A1