WO2018052098A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2018052098A1
WO2018052098A1 PCT/JP2017/033361 JP2017033361W WO2018052098A1 WO 2018052098 A1 WO2018052098 A1 WO 2018052098A1 JP 2017033361 W JP2017033361 W JP 2017033361W WO 2018052098 A1 WO2018052098 A1 WO 2018052098A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
trench
contact
semiconductor device
contact layer
Prior art date
Application number
PCT/JP2017/033361
Other languages
English (en)
French (fr)
Inventor
内藤 達也
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2018539793A priority Critical patent/JP6741070B2/ja
Priority to CN201780015047.7A priority patent/CN108780814B/zh
Priority to DE112017000689.9T priority patent/DE112017000689T5/de
Publication of WO2018052098A1 publication Critical patent/WO2018052098A1/ja
Priority to US16/114,174 priority patent/US10749025B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the same.
  • Patent Document 1 Japanese Patent Application Publication No. 2015-213193
  • Patent Document 2 Japanese Patent Application Publication No. 2015-065420
  • the P + -type contact layer may affect the threshold voltage Vth.
  • a semiconductor substrate a drift region of a first conductivity type provided on the upper surface side of the semiconductor substrate, a base region of a second conductivity type provided above the drift region, and a base Between a source region of the first conductivity type provided above the region, two or more trench portions provided through the source region and the base region from the upper end side of the source region, and adjacent trench portions,
  • a semiconductor device comprising: a contact trench provided adjacent to a source region; and a contact layer of a second conductivity type provided below the contact trench, wherein the peak position of the doping concentration of the contact layer is shallower than the lower end of the source region I will provide a.
  • the contact layer may have multiple peaks of doping concentration.
  • the peak position may be the peak position of the peak with the highest doping concentration among the plurality of peaks.
  • the lower end of the source region may be deeper than the lower end of the contact trench.
  • the two or more trench portions may have a trench conductive portion, and the lower end of the source region may be deeper than the upper end of the trench conductive portion.
  • the lower end of the source region may have a width of 10% or more and 30% or less of the mesa width between two or more trench portions in the arrangement direction of the trench portions.
  • the source region may be provided extending in the extending direction of the trench portion.
  • It may further comprise a contact region of the second conductivity type provided above the base region.
  • the source region and the contact region may be alternately provided in the extending direction of the trench portion.
  • the contact layer may be provided extending in the extending direction of the two or more trench portions.
  • the contact layer may be provided on at least a part of the sidewall of the contact trench.
  • the lower end of the contact layer may be deeper than the lower end of the source region.
  • the thickness in the depth direction of the contact layer may be 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the lower end of the contact layer may be shallower than half the thickness of the base region.
  • the lower end of the contact layer may be equal to the depth of the lower end of the base region.
  • the upper end of the contact layer may be shallower than the lower end of the source region.
  • the width of the lower end of the contact layer may be narrower than the width of the upper end of the contact layer in the arrangement direction of the trench portions.
  • the doping concentration of the contact layer may be greater than the doping concentration of the source region of the same depth.
  • the lower end of the contact trench may have a width of 0.1 ⁇ m to 0.4 ⁇ m in the arrangement direction of the trench portions.
  • the contact trench may have a tapered shape.
  • the semiconductor device may further include a second contact layer of a second conductivity type provided below the first contact layer.
  • It may further comprise a storage region of the first conductivity type provided between the drift region and the base region and having a higher concentration than the drift region.
  • the contact layer may be in contact with the accumulation region.
  • the lower end of the contact layer may be provided deeper than half the distance between the upper end of the accumulation region and the lower end of the source region.
  • the semiconductor device may further include a second storage region of a first conductivity type formed deeper than the first storage region and having a doping concentration higher than that of the drift region.
  • the drift region of the first conductivity type, the base region of the second conductivity type, the source region of the first conductivity type, and the source region and the base region are penetrated on the upper surface side of the semiconductor substrate.
  • Forming the contact layer may include implanting a first dopant and implanting a second dopant.
  • the step of forming the source region includes the step of forming the source region on the entire surface of the base region, and the step of forming the contact trench includes the step of forming two trench portions inside the source region formed on the entire surface of the base region. There may be the step of forming contact trenches in between.
  • FIG. 1 is a plan view showing an example of a semiconductor device 100 according to a first embodiment.
  • FIG. 2 is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the first embodiment;
  • An example of the enlarged view of the circumference of contact layer 28 is shown.
  • An example of the doping concentration distribution in the ZZ ′ cross section of FIG. 2 around the contact layer 28 is shown.
  • An example of a more specific structure of the semiconductor device 100 is shown.
  • FIG. 18 is a plan view showing an example of a semiconductor device 500 according to Comparative Example 1;
  • FIG. 18 is a view showing an example of the cross section aa ′ of the semiconductor device 500 according to Comparative Example 1;
  • FIG. 18 is a view showing an example of a cross section of the semiconductor device 500 according to Comparative Example 1 taken along the line b-b '. Is a graph showing the built-in potential [Delta] V bi of Comparative Examples 2 and 3 Example 1.
  • FIG. 7 is a plan view showing an example of a semiconductor device 100 according to a second embodiment.
  • FIG. 7 is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the second embodiment;
  • FIG. 7 is a view showing an example of the bb ′ cross section of a semiconductor device 100 according to a second embodiment;
  • 15 shows an example of the configuration of a semiconductor device 100 according to a third embodiment. An example of the manufacturing method of the semiconductor device 100 is shown.
  • FIG. 7 is a view showing an example of a cross section of the semiconductor device 500 according to Comparative Example 1 taken along the line b-b '. Is a graph showing the built-in potential [Delta] V bi of Comparative
  • FIG. 18 is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the fourth embodiment; An example of a more specific structure of the semiconductor device 100 based on Example 4 is shown. An example of the doping concentration distribution in the YY ′ cross section of FIG. 10B around the contact layer 28 is shown.
  • FIG. 18 is a plan view showing an example of a semiconductor device 100 according to a fifth embodiment.
  • FIG. 18 is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the fifth embodiment;
  • FIG. 18 is a plan view showing an example of a semiconductor device 100 according to a sixth embodiment.
  • FIG. 18 is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the sixth embodiment;
  • FIG. 1A is a plan view showing an example of a semiconductor device 100 according to the first embodiment.
  • FIG. 1B is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the first embodiment.
  • the semiconductor device 100 of this example is a semiconductor chip having a transistor unit 70 including a transistor such as an IGBT (Insulated Gate Bipolar Transistor) and a diode unit 80 including a diode such as a FWD (Free Wheel Diode).
  • IGBT Insulated Gate Bipolar Transistor
  • FWD Free Wheel Diode
  • one side in a direction parallel to the depth direction of the semiconductor substrate 10 is referred to as “upper”, and the other side is referred to as “lower”.
  • the terms “upper” and “lower” are not limited to the direction of gravity.
  • the direction connecting the emitter electrode and the collector electrode is referred to as the depth direction.
  • the first conductivity type is N-type and the second conductivity type is P-type, but the conductivity types of the substrate, layer, region, etc. are opposite in polarity. It is also good.
  • the source region 12, the contact region 15, the well region 17, the contact trench 27, the dummy trench 30, the gate trench 40, the gate metal layer 50, the emitter electrode 52, and the contact It has holes 55, 56, 57 and an emitter trench portion 60.
  • the term “trench portion” refers to the dummy trench portion 30, the gate trench portion 40 and the emitter trench portion 60.
  • the semiconductor substrate 10 is a substrate formed of a semiconductor such as silicon.
  • the semiconductor substrate 10 may be formed of a compound semiconductor such as silicon carbide and gallium nitride.
  • the semiconductor substrate 10 of this example is N + type.
  • the semiconductor substrate 10 includes a source region 12, a base region 14, a contact region 15, an accumulation region 16, a well region 17, a drift region 18, a buffer region 20, a collector region 22 and a cathode region 82.
  • the gate metal layer 50 and the emitter electrode 52 are formed on the upper surface of the semiconductor substrate 10, and the collector electrode 24 is formed on the lower surface.
  • An interlayer insulating film is formed between the emitter electrode 52 and the gate metal layer 50 and the upper surface of the semiconductor substrate 10, but this is omitted in this example.
  • the drift region 18 is formed on the upper surface side of the semiconductor substrate 10.
  • the upper surface side of the semiconductor substrate 10 may be above the upper surface of the semiconductor substrate 10 or may be in the vicinity of the upper surface inside the semiconductor substrate 10.
  • Drift region 18 is formed on the back side of storage region 16.
  • the drift region 18 in this example is N-type.
  • the base region 14 is formed above the drift region 18.
  • the base region 14 may be formed by implanting a dopant from the top side of the drift region 18.
  • the base region 14 is formed in the mesa portion sandwiched by the respective trench portions.
  • the mesa portion refers to a region between adjacent trench portions.
  • Base region 14 has a lower doping concentration than well region 17.
  • the base region 14 in this example is P-type.
  • the source region 12 is formed above the base region 14.
  • the source region 12 is formed extending in the extending direction of the trench portion.
  • the source region 12 in this example is formed in a mesa portion between two adjacent trench portions among the plurality of trench portions.
  • the source region 12 may be formed by implanting a dopant from the top side of the base region 14.
  • the source region 12 in this example is N + type.
  • the extension direction of the trench portion is the Y-axis direction
  • the arrangement direction of the trench portions is the X-axis direction.
  • the depth direction of the semiconductor device 100 is the Z-axis direction.
  • the contact trench 27 is formed on the upper surface side of the semiconductor substrate 10.
  • the contact trench 27 is formed between adjacent trench portions and provided adjacent to the source region 12.
  • contact trench 27 is formed by etching source region 12.
  • the contact trench 27 may be filled with a conductive material by the same process as the emitter electrode 52.
  • the contact layer 28 is provided below the contact trench 27.
  • the contact layer 28 is formed to extend in the extending direction of the two trench portions between the two trench portions.
  • the contact layer 28 may be formed by implanting a dopant through the contact trench 27.
  • the contact layer 28 is formed by implanting boron (B) or boron fluoride (BF 2 ).
  • the contact layer 28 may be formed by implanting two or more types of dopants in two or more stages.
  • the contact layer 28 in this example is of P + type.
  • the contact layer 28 suppresses latch-up by pulling out the holes.
  • the contact layer 28 is an example of a first contact layer.
  • the peak of the doping concentration in the contact layer 28 is shallower than the lower end of the source region 12. That is, the peak of the doping concentration in the contact layer 28 of this example is formed apart from the side wall of the base region 14 which determines the threshold voltage Vth. Thereby, the contact layer 28 of the present example has a small influence on the threshold voltage Vth even when it is miniaturized.
  • the contact layer 28 may also have multiple peaks of doping concentration. It is preferable that the peak position of the maximum concentration of the plurality of peaks in the contact layer 28 be shallower than the lower end of the source region 12.
  • Buffer region 20 is formed on the back side of drift region 18.
  • the doping concentration of buffer region 20 is higher than the doping concentration of drift region 18.
  • Buffer region 20 functions as a field stop layer that prevents the depletion layer extending from the back surface side of base region 14 from reaching collector region 22 and cathode region 82.
  • the buffer area 20 in this example is N-type.
  • the contact region 15 is formed above the base region 14. Contact region 15 has a higher doping concentration than base region 14.
  • the contact region 15 may be formed by implanting a dopant from the upper surface side of the base region 14.
  • the contact region 15 in this example is P + type.
  • the storage region 16 is formed between the drift region 18 and the base region 14.
  • the accumulation region 16 is formed to have a concentration higher than the doping concentration of the semiconductor substrate 10.
  • the doping concentration of the accumulation region 16 is higher than the doping concentration of the drift region 18.
  • the doping concentration of the accumulation region 16 is 1E16 cm ⁇ 3 or more and 1E18 cm ⁇ 3 or less.
  • the storage region 16 is formed by implanting an N-type dopant such as phosphorus from the upper surface side of the semiconductor substrate 10.
  • E is meant a power of 10, for example, 1E16 cm -3 means 1 ⁇ 10 16 cm -3.
  • the storage region 16 is formed between adjacent trench portions.
  • storage region 16 is formed between dummy trench portion 30 and gate trench portion 40 in transistor portion 70.
  • Storage region 16 may be provided to cover the entire region between dummy trench portion 30 and gate trench portion 40.
  • the carrier density may increase due to the injection-enhanced (IE) effect of the carrier, and latch-up may easily occur.
  • the semiconductor device 100 of this example since the holes are extracted by the contact layer 28 at turn-off, latch-up can be suppressed. Therefore, the semiconductor device 100 can suppress the latch up while reducing the on voltage.
  • the collector region 22 is formed on the back surface side of the buffer region 20 in the transistor unit 70.
  • the cathode region 82 is formed on the back surface side of the buffer region 20 in the diode section 80.
  • a collector electrode 24 is provided on the back surface of the collector region 22 and the cathode region 82.
  • the collector electrode 24 is formed of a metal material such as aluminum, gold or silver.
  • the contact holes 55, 56, 57 are formed through the interlayer insulating film formed above the semiconductor substrate 10.
  • the contact hole 55 connects the gate metal layer 50 and the gate conductive portion 44.
  • the contact hole 56 connects the emitter electrode 52 and the dummy conductive portion 34.
  • Contact hole 57 connects emitter electrode 52 and emitter conductive portion 64.
  • the positions at which the contact holes 55, 56, 57 are formed are not particularly limited to this example.
  • Emitter electrode 52 is in contact with semiconductor substrate 10 through contact holes 56 and 57.
  • Emitter electrode 52 is formed of a material containing a metal. In one example, at least a partial region of the emitter electrode 52 is formed of aluminum. Emitter electrode 52 may have a region formed of a material containing tungsten.
  • the gate metal layer 50 contacts the semiconductor substrate through the contact hole 55.
  • the gate metal layer 50 is formed of a material containing a metal. In one example, at least a portion of the gate metal layer 50 is formed of aluminum.
  • the gate metal layer 50 may have a region formed of a material containing tungsten.
  • the gate metal layer 50 in this example is formed of the same material as the emitter electrode 52. However, the gate metal layer 50 may be formed of a material different from that of the emitter electrode 52.
  • two or more gate trench portions 40, two or more dummy trench portions 30, and two or more emitter trench portions 60 are formed on the upper surface side of the semiconductor substrate 10.
  • the arrangement order of the trench portions is not limited to this example.
  • the dummy trench portion 30 and the gate trench portion 40 are formed to penetrate the source region 12, the base region 14 and the storage region 16 from the upper end side of the source region 12. Further, the dummy trench portion 30 and the gate trench portion 40 are formed to extend in a predetermined extending direction on the upper surface of the semiconductor substrate 10. One or more dummy trench portions 30 are arranged at predetermined intervals in the region of the transistor portion 70 along the predetermined arrangement direction with the gate trench portion 40. The dummy trench portion 30 and the gate trench portion 40 in this example are formed extending in a direction perpendicular to the arrangement direction. The dummy trench portion 30 and the gate trench portion 40 may each have a loop shape at the end in the extending direction.
  • the gate trench portions 40 and the dummy trench portions 30 of this example are alternately arranged in a predetermined arrangement direction. Also, the trench portions may be arranged at regular intervals. However, the arrangement of each trench is not limited to the above example. A plurality of gate trench portions 40 may be disposed between the two dummy trench portions 30. Also, the number of gate trench portions 40 provided between the respective dummy trench portions 30 may not be constant.
  • Emitter trench portion 60 is formed to penetrate source region 12, base region 14, and storage region 16 from the upper end side of source region 12. Emitter trench portion 60 is provided in the region of diode portion 80. Emitter trench portion 60 is formed extending in a predetermined extending direction on the upper surface of semiconductor substrate 10. The spacing between the emitter trench portions 60 in this example is the same as the spacing between the dummy trench portion 30 and the gate trench portion 40, but may be different. A P + -type well region 17 is formed at the end in the extending direction of dummy trench portion 30, gate trench portion 40 and emitter trench portion 60.
  • Gate trench portion 40 has insulating film 42 and gate conductive portion 44 formed on the upper surface side of semiconductor substrate 10.
  • Gate conductive portion 44 includes a region facing at least adjacent base region 14. When a predetermined voltage is applied to gate conductive portion 44 through gate metal layer 50, a channel is formed in the surface layer of the interface in contact with gate trench portion 40 in base region 14.
  • the gate conductive portion 44 in this example is formed of a conductive material such as polysilicon.
  • the gate conductive portion 44 is an example of a trench conductive portion.
  • the insulating film 42 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the gate trench so as to cover the periphery of the gate conductive portion 44.
  • Dummy trench portion 30 has insulating film 32 and dummy conductive portion 34 formed on the upper surface side of semiconductor substrate 10.
  • the dummy conductive portion 34 may be formed of the same material as the gate conductive portion 44.
  • the dummy conductive portion 34 is formed of a conductive material such as polysilicon.
  • the dummy conductive portion 34 is an example of a trench conductive portion.
  • the insulating film 32 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the dummy trench so as to cover the periphery of the dummy conductive portion 34.
  • the diode unit 80 is provided in a region adjacent to the transistor unit 70.
  • the diode unit 80 has a base region 14, a storage region 16, a drift region 18 and a buffer region 20 in the same layer as the transistor unit 70.
  • a cathode region 82 is provided on the back side of the buffer region 20 of the diode unit 80.
  • a region of the lower surface that coincides with the cathode region 82 is referred to as a diode portion 80.
  • the projection area when the cathode area 82 is projected in the direction perpendicular to the lower surface of the semiconductor substrate 10 with respect to the upper surface of the semiconductor substrate 10 may be the diode section 80.
  • collector region 22 is a projection area when collector region 22 is projected in a direction perpendicular to the lower surface of semiconductor substrate 10 with respect to the upper surface of semiconductor substrate 10 in the active region, and includes source region 12 and contact region 15.
  • a region in which a predetermined unit structure is regularly arranged is referred to as a transistor portion 70.
  • the cathode region 82 is directed away from the contact region 15 more than the boundary position on the upper surface of the semiconductor substrate 10 between the source region 12 and the most end contact region 15 in the Y-axis direction (Y axis in FIG. It may be located apart in the direction of + Y in the direction).
  • the cathode region 82 may be located away from the end in the Y-axis direction of the contact trench 27 in a direction (direction of + Y in the Y-axis direction in FIG. 1A) away from the end. Thereby, excessive injection of holes from the contact region 15 can be suppressed.
  • Emitter trench portion 60 penetrates base region 14 and storage region 16 from the upper surface side of base region 14 to reach drift region 18.
  • Each emitter trench portion 60 includes an insulating film 62 and an emitter conductive portion 64.
  • the insulating film 62 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the emitter trench so as to cover the periphery of the emitter conductive portion 64.
  • FIG. 2 shows an example of an enlarged view of the periphery of the contact layer 28.
  • the mesa portion between the dummy trench portion 30 and the gate trench portion 40 is shown, but the same is true for any of the dummy trench portion 30, the gate trench portion 40 and the emitter trench portion 60.
  • a structure may be provided.
  • Mesa width W M refers to the width of the X-axis direction of the mesa.
  • Mesa width W M of the present embodiment is a mesa width of the mesa between the dummy trench 30 and the gate trench 40.
  • Mesa width W M of the present embodiment is 0.7 [mu] m.
  • the hole drawing width W H is the width in the X-axis direction of the lower end of the source region 12. That is, the hole drawing width W H is the distance from the sidewall of the trench portion to the contact layer 28.
  • the hole drawing width W H corresponds to the distance that holes passing through the side wall of the trench flow toward the contact layer 28.
  • the hole drawing width W H is 10% or more and 30% or less of the mesa width W M.
  • the hole extraction width W H refers to the width of the lower end of one of the source regions 12 when two source regions 12 are formed between adjacent trench portions as in this example. That is, when the source region 12 are formed at both ends of the mesa, the hole pulling a width W H occupies 20-60% of the mesa width W M.
  • the hole drawing width W H is 0.05 ⁇ m or more and 0.25 ⁇ m or less.
  • the hole drawing width W H of this example is 0.1 ⁇ m.
  • the contact width W C is the width in the X axis direction of the region other than the hole drawing width W H in the mesa width W M. That is, the contact width W C indicates the width in the X-axis direction of the contact layer 28 at the same depth as the lower end of the source region 12. In one example, the contact width W C occupies 40% to 80% of the mesa width W M. For example, the contact width W C is 0.2 ⁇ m or more and 0.6 ⁇ m or less. The contact width W C in this example is 0.5 ⁇ m.
  • the contact trench width W CT is the width of the contact trench 27 in the X-axis direction.
  • the contact trench width W CT is 0.1 ⁇ m or more and 0.4 ⁇ m or less.
  • the contact trench width W CT in this example is 0.3 ⁇ m.
  • the depth D2 of the contact trench 27 is 0.3 ⁇ m from the upper end of the semiconductor substrate 10.
  • the contact trench width WCT and the depth D2 may be determined according to the required contact resistance.
  • the contact trench width W CT may be determined according to the size of the contact layer 28 formed by ion implantation through the contact trench 27.
  • the lower end of the source region 12 is deeper than the lower end of the contact trench 27. Then, the peak position of the doping concentration of the contact layer 28 is formed shallower than the lower end of the source region 12. Thereby, even in the case of miniaturization, the influence of the contact layer 28 on the threshold voltage Vth is reduced.
  • the lower end of the source region 12 is deeper than the upper ends of the dummy conductive portion 34 and the gate conductive portion 44.
  • the depth D1 of the lower end of the source region 12 in this example is 0.45 ⁇ m from the upper end of the semiconductor substrate 10.
  • the upper end of the contact layer 28 is shallower than the lower end of the source region 12. Further, the lower end of the contact layer 28 is deeper than the lower end of the source region 12. By forming the contact layer 28 thick, holes are easily pulled out, and thus latch-up can be easily suppressed.
  • the lower end of the contact layer 28 may be equal to the depth of the lower end of the base region 14. In this case, since the lower end of the contact layer 28 is moved away from the source region 12, the hole extraction effect is more remarkable.
  • the thickness D3 in the depth direction of the contact layer 28 is 0.1 ⁇ m or more and 1.0 ⁇ m or less. The thickness D3 in the depth direction of the contact layer 28 in this example is 0.5 ⁇ m.
  • the contact layer 28 may be formed such that the lower end of the contact layer 28 is shallower than the half of the thickness of the base region 14. By forming the contact layer 28 shallow, the number of ion implantations for forming the contact layer 28 can be reduced. Then, the manufacturing cost of the semiconductor device 100 is reduced.
  • the doping concentration of the contact layer 28 may be larger than the doping concentration of the source region 12 of the same depth. That is, the region under the contact trench 27 is a region in which the N + -type source region 12 is changed to a P + -type contact layer 28 by implanting a high concentration of dopant.
  • FIG. 3 shows an example of the doping concentration distribution in the ZZ ′ cross section of FIG. 2 around the contact layer.
  • the vertical axis indicates the doping concentration
  • the horizontal axis indicates the distance from the lower end of the contact trench 27 in the depth direction.
  • the solid line indicates the doping concentration of the contact layer 28 and the base region 14 in the depth direction from the point O.
  • the broken line indicates the doping concentration of the source region 12 in the depth direction from the point O ′. That is, the graph of the doping concentration distribution of this example displays the doping concentrations in the depth direction from two different points O and O ′ in an overlapping manner.
  • Point O and point O ′ indicate the origin of the doping concentration graph shown in FIG.
  • the depths of the points O and O ′ correspond to the depth of the lower end of the contact trench 27.
  • the source region 12 is formed by ion implantation of arsenic (As) from the upper surface side of the base region 14.
  • the doping concentration of the source region 12 is approximately 1E18 cm ⁇ 3 at the point O ′ at the lower end of the contact trench 27.
  • the contact layer 28 is formed by ion implantation of boron fluoride and boron in two steps through the contact trench 27.
  • the first peak P1 of the contact layer 28 is approximately 1E20 cm ⁇ 3 .
  • the first peak P 1 of the contact layer 28 is formed at a position shallower than the lower end of the source region 12.
  • the second peak P2 in this example is formed at a deeper position than the lower end of the source region 12. However, the second peak P2 may be formed shallower than the lower end of the source region 12.
  • the contact layer 28 may also have three or more peaks. In this case, all the peaks may be formed shallower than the lower end of the source region 12, or some of the peaks may be formed deeper than the lower end of the source region 12. That is, at least one of the peaks of the doping concentration of the contact layer 28 may be formed shallower than the lower end of the source region 12. Also, the largest peak of the doping concentration peaks of the contact layer 28 may be formed shallower than the lower end of the source region 12.
  • the distribution of the doping concentration in this example is just an example.
  • the number of peaks, the depth, and the like may be changed as appropriate.
  • FIG. 4 shows an example of a more specific structure of the semiconductor device 100.
  • the interlayer insulating film 26 is shown without being omitted.
  • the interlayer insulating film 26 is formed above the semiconductor substrate 10.
  • the interlayer insulating film 26 in this example is a BPSG (boron phosphorus silicon glass) film.
  • the interlayer insulating film 26 may have a plurality of layers formed of different materials. In the layer having a thickness D1 from the upper end of the source region 12, the interlayer insulating film 26 has an opening width at the lower end of W1 and an opening width at the upper end of W2.
  • Contact trench 27 has a tapered shape.
  • the contact trench 27 in this example has a tapered shape such that the width of the upper end is larger than the width of the lower end.
  • the tapered shape of the contact trench 27 facilitates the implantation of the dopant also on the side wall of the contact trench 27.
  • the contact layer 28 is formed over the contact trench 27 having a tapered shape. Thereby, the contact layer 28 is formed on at least a part of the side wall of the contact trench 27. For example, the contact layer 28 in this example is formed to extend upward from the lower end of the contact trench 27 in contact with the side wall.
  • the contact width W C changes in accordance with the opening width W2 of the lower end of the BPSG film. That is, the hole drawing width W H also changes according to the opening width W 2 of the lower end of the BPSG film.
  • the opening width W1 of the upper end of the BPSG film of this example is 0.45 ⁇ m
  • the opening width W2 of the lower end of the BPSG film is 0.3 ⁇ m.
  • the contact layer 28 may be formed in contact with the storage region 16.
  • L1 L2 holds.
  • the distance L 1 indicates the distance in the depth direction between the lower end of the source region 12 and the upper end of the accumulation region 16.
  • the distance L2 indicates the distance in the depth direction between the lower end of the source region 12 and the lower end of the contact layer 28.
  • the lower end of the contact layer 28 may be provided at a position deeper than half the distance between the upper end of the accumulation region 16 and the lower end of the source region 12. In this case, L1 / 2 ⁇ L2 holds.
  • a multi-layered film may be formed as the emitter electrode 52 on the contact trench 27 and the opened interlayer insulating film 26.
  • the emitter electrode 52 may have a stacked structure of titanium / titanium nitride (Ti / TiN), tungsten and aluminum.
  • FIG. 5A is a plan view showing an example of a semiconductor device 500 according to Comparative Example 1.
  • FIG. 5B is a view showing an example of the aa ′ cross section of the semiconductor device 500 according to the first comparative example.
  • FIG. 5C is a view showing an example of the bb ′ cross section of the semiconductor device 500 according to the first comparative example.
  • the semiconductor device 500 of this example does not have the contact trench 27 and the contact layer 28.
  • the hole drawing width W H0 indicates the distance until the carrier flowing along the side wall of the trench flows toward the contact region 15.
  • a hole flows under the source region 12 through the sidewall of the gate trench portion 40 and then flows from the sidewall of the gate trench portion 40 toward the contact region 15.
  • the hole drawing width WH0 in the extending direction of the trench portion may be larger than the hole drawing width in the arranging direction of the trench portion.
  • the hole pulling a width W H0 of the semiconductor device 500 is larger than the hole pulling the width W H of the semiconductor device 100. That is, the extraction of holes becomes worse, and in the semiconductor device 500, it becomes difficult to suppress latch-up. In particular, as miniaturization progresses, the current density in the mesa portion increases, and thus the semiconductor device 500 is easily latched up at turn-off.
  • FIG. 6 is a graph showing the built-in potentials ⁇ V bi of Example 1 and Comparative Examples 2 and 3.
  • the vertical axis represents the relative value of the built-in potential ⁇ V bi
  • the horizontal axis represents the relative value of the hole extraction widths W H and W H0 .
  • Example 1 and Comparative Example 2 are for the case of 1.9 ⁇ m pitch.
  • Comparative Example 3 is the case of a 2.3 ⁇ m pitch.
  • the pitch refers to the distance from the center of a certain trench to the center of another trench adjacent to the trench in the arrangement direction.
  • the hole extraction width W H according to the first embodiment becomes smaller as the pitch becomes smaller due to the miniaturization.
  • the hole drawing width W H0 according to Comparative Examples 2 and 3 is not necessarily reduced even if the pitch is reduced due to the miniaturization. Therefore, when the pitch is reduced due to the miniaturization, the hole drawing width WH is relatively smaller than the hole drawing width WH0 .
  • the 1 hole pull width W H of Example 1 holes pull width W H of Comparative Examples 2 and 3 is a size of about 17 from 5-fold embodiment.
  • FIG. 7A is a plan view showing an example of the semiconductor device 100 according to the second embodiment.
  • FIG. 7B is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the second embodiment.
  • FIG. 7C is a view showing an example of the bb ′ cross section of the semiconductor device 100 according to the second embodiment.
  • the source regions 12 and the contact regions 15 in the present example are alternately provided in the extending direction of the trench portion in the transistor portion 70.
  • Source region 12 and contact region 15 are formed on the upper surface side of semiconductor substrate 10. Source region 12 and contact region 15 are formed from one adjacent trench portion to the other trench portion, and thereafter, in the extending direction of the trench portion so that contact trench 27 traverses source region 12 and contact region 15 It is formed. Thus, the source regions 12 and the contact regions 15 are alternately provided in the extending direction of the trench along the sidewalls of the trench. In the diode section 80 of this embodiment, as in the case of the first embodiment, the source region 12 is formed between the adjacent emitter trench sections 60.
  • the cathode region 82 is directed away from the contact region 15 more than the boundary position on the upper surface of the semiconductor substrate 10 between the source region 12 and the most end contact region 15 in the Y axis direction (Y axis in FIG. 7A It may be located apart in the direction of + Y in the direction). In addition, the cathode region 82 may be located away from the end in the Y-axis direction of the contact trench 27 in a direction (direction of + Y in the Y-axis direction in FIG. 7A) away from the end. Thereby, excessive injection of holes from the contact region 15 can be suppressed.
  • the semiconductor device 100 according to the present embodiment has the contact layer 28 formed below the contact trench 27. Therefore, the latch-up can be suppressed by extracting the holes.
  • the source regions 12 and the contact regions 15 are alternately provided. Since the saturation current is thereby suppressed, latchup can be further suppressed.
  • FIG. 8 shows an example of the configuration of the semiconductor device 100 according to the third embodiment.
  • the contact layer 28 in this example is formed by implanting dopants in multiple stages.
  • the contact layer 28 is formed by a three-step implantation process.
  • the contact layer 28 is implanted with a dopant using the interlayer insulating film 26 as a mask.
  • the interlayer insulating film 26 in the present example has a tapered shape. Therefore, in the contact layer 28, the thickness of the interlayer insulating film 26 which is a mask differs depending on the implantation position of the dopant. In the region where the interlayer insulating film 26 is thickly formed, the implantation depth of the dopant becomes shallow. Therefore, in the contact layer 28, the dopant is deeply implanted near the center of the contact trench 27 and the dopant is shallowly implanted at the end of the contact trench 27.
  • the width of the lower end of the contact layer 28 becomes narrower than the width of the upper end of the contact layer 28. That is, the contact layer 28 in this example has a shape that gradually narrows from the upper side to the lower side.
  • the electric field may be concentrated at the end of the contact layer 28.
  • the contact layer 28 of the present example is formed to be gradually narrowed, the electric field is less likely to be concentrated at the end of the contact layer 28 when the depletion layer spreads.
  • FIG. 9 shows an example of a method of manufacturing the semiconductor device 100.
  • a method of manufacturing the semiconductor device 100 according to the third embodiment will be particularly described.
  • a cross-sectional view of one cell is shown in the same figure, other cells may be formed in the same manner.
  • the semiconductor substrate 10 is prepared.
  • the semiconductor substrate 10 is a silicon substrate having a drift region 18.
  • the doping concentration of the drift region 18 in this example is, for example, 3.0E + 13 cm ⁇ 3 or more and 2.0E + 14 cm ⁇ 3 or less.
  • the thickness of the drift region 18 varies depending on the withstand voltage class of the semiconductor device 100.
  • step S300 the source region 12, the base region 14 and the gate trench portion 40 are formed on the surface of the semiconductor substrate 10.
  • an etching mask having a predetermined pattern is provided on the surface of the semiconductor substrate 10 to form a groove of the gate trench portion 40.
  • a gate insulating film is formed on the inner wall of the groove portion of the gate trench portion 40.
  • polysilicon heavily doped with an N-type dopant is deposited in the trench to form the gate conductive portion 44. Thereby, the gate trench portion 40 is formed.
  • an oxide film is formed on the upper surface of the semiconductor substrate 10 in a region where the base region 14 and the source region 12 are not formed.
  • P-type dopant is selectively implanted from the surface side of the semiconductor substrate 10, and heat treatment is performed at a temperature of about 1100 ° C. for about 2 hours.
  • the P ⁇ -type base region 14 is formed on the entire surface of the semiconductor substrate 10.
  • the P-type dopant may be boron.
  • the P-type base region 14 may be doped with P-type dopants at a doping concentration of 2.5E + 13 cm.sup.- 2 .
  • the base region 14 is formed in contact with the gate trench portion 40, and a region in contact with the gate trench portion 40 functions as a channel.
  • Source region 12 is formed on the entire surface of the region where base region 14 is formed.
  • the source region 12 may be doped with an N-type dopant at a doping concentration of 5.0E + 19 cm ⁇ 2 .
  • heat treatment or the like is performed to form the source region 12.
  • the source region 12 is also formed in contact with the gate trench portion 40.
  • the interlayer insulating film 26 is formed on the upper surface of the semiconductor substrate 10 by the CVD method.
  • step S302 a resist pattern is formed on the upper surface of the interlayer insulating film 26.
  • the interlayer insulating film 26 exposed by the opening of the resist pattern is etched by RIE to expose the semiconductor substrate 10.
  • the exposed upper surface of the semiconductor substrate 10 is etched to form a contact trench 27 between the two trench portions, penetrating the interlayer insulating film 26 and adjacent to the source region 12.
  • the contact trench 27 is formed inside the source region 12 formed on the entire surface.
  • a P-type dopant such as boron is ion implanted into the implantation region 93 adjacent to the lower end of the contact trench 27.
  • the acceleration energy of the P-type dopant is about 30 keV, and the dose amount is 1.0E + 15 cm ⁇ 2 or more and 5.0E + 15 cm ⁇ 2 or less.
  • a dopant is implanted from the lower end of the contact trench 27 below the base region 14.
  • a P-type dopant such as boron below the base region 14
  • ions are implanted vertically from the lower end of the contact trench 27.
  • the contact layer 28 is formed so that the peak position of the doping concentration is shallower than the lower end of the source region 12 in the region facing the lower end of the contact trench 27.
  • the contact layer 28 may be implanted with the dopant in a plurality of stages. Forming the contact layer 28 of the present example includes implanting a first dopant and implanting a second dopant.
  • boron is implanted as a first dopant and boron fluoride is implanted as a second dopant.
  • the implantation of the P-type dopant may change the acceleration energy depending on the depth of the contact layer 28 to be formed.
  • the implantation of the P-type dopant forms one or more implanted regions 94 below the base region 14.
  • the semiconductor device 100 is heat-treated to activate the P-type dopant implanted into the implantation region 93 and the implantation region 94.
  • the heat treatment is preferably performed in a short time so that the P-type dopant does not diffuse too much.
  • the temperature of the heat treatment is about 950 degrees, and the time is within 30 minutes.
  • the contact layer 28 is formed.
  • the emitter electrode 52, the collector electrode 24 and the like are formed to complete the semiconductor device 100.
  • a barrier metal layer including a titanium film, a titanium nitride film, a tantalum film, a tantalum nitride film, or the like is formed on the inner wall of contact trench 27 in order to suppress interdiffusion between emitter electrode 52 and the semiconductor region. Is preferred.
  • the contact trench 27 may be filled with tungsten, molybdenum, polysilicon doped with a dopant, or the like before the emitter electrode 52 is formed.
  • FIG. 10A is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the fourth embodiment.
  • the plan view of the semiconductor device 100 of this example corresponds to the plan view of the semiconductor device 100 according to the first embodiment shown in FIG. 1A. That is, the aa ′ cross section in this example corresponds to the aa ′ cross section in FIG. 1A.
  • the semiconductor device 100 of this example includes a plurality of storage regions 16a and 16b, and a plurality of contact layers 28a and 28b.
  • Storage region 16 a and storage region 16 b are provided in at least one of transistor portion 70 and diode portion 80.
  • the storage region 16 a and the storage region 16 b of this example are provided in both the transistor unit 70 and the diode unit 80.
  • the storage area 16 a and the storage area 16 b are an example of the storage area 16 having different depths.
  • the accumulation region 16a is formed shallower than the accumulation region 16b.
  • the doping concentration of storage region 16a and storage region 16b may be the same.
  • the accumulation area 16a is an example of a first accumulation area.
  • the accumulation area 16 b is an example of a second accumulation area.
  • the contact layer 28 a and the contact layer 28 b are provided in at least one of the transistor portion 70 and the diode portion 80.
  • the contact layer 28 a and the contact layer 28 b of this example are provided in both the transistor portion 70 and the diode portion 80.
  • the contact layer 28 a and the contact layer 28 b are provided below the contact trench 27.
  • the contact layer 28 b is provided below the contact layer 28 a.
  • the contact layer 28a and the contact layer 28b are P + -type.
  • the doping concentration of the contact layer 28b may be the same as the doping concentration of the contact layer 28a.
  • the dopant of the contact layer 28b may be the same as the dopant of the contact layer 28a.
  • the contact layer 28a of this embodiment may appropriately adopt the structure of the contact layer 28 described in the other embodiments.
  • the contact layer 28a may have multiple doping concentration peaks.
  • the contact layer 28b may have a plurality of peaks of doping concentration.
  • the contact layer 28 a is an example of a first contact layer, and the contact layer 28 b is an example of a second contact layer.
  • the semiconductor device 100 of the present example can easily extract holes by having the plurality of contact layers 28, and can improve the latch-up resistance.
  • the plurality of contact layers 28 can suppress latch-up even when the carrier density is increased by the plurality of storage regions 16.
  • the semiconductor device 100 can reduce the turn-on loss and improve the trade-off between the on-state voltage and the turn-off loss by having the plurality of storage regions 16.
  • FIG. 10B shows an example of a more specific structure of the semiconductor device 100 according to the fourth embodiment.
  • the semiconductor device 100 of this example is different from the embodiment of FIG. 4 in that the storage region 16 b and the contact layer 28 b are provided.
  • the distance L1, the distance L2, the opening width W1, the opening width W2 and the depth D1 may be the same conditions as the embodiment of FIG.
  • the distance L3 indicates the distance in the depth direction between the upper end of the contact layer 28b and the lower end of the contact layer 28b. That is, the distance L3 corresponds to the thickness of the contact layer 28b.
  • the lower end of the contact layer 28 b may be provided at a position deeper than half the distance between the upper end of the accumulation region 16 a and the lower end of the source region 12. In this case, L1 / 2 ⁇ L2 + L3 holds.
  • the width of the contact layer 28b may be substantially the same as the width of the contact layer 28a.
  • the contact layer 28b is formed by implanting a dopant through the contact trench 27 in the same manner as the contact layer 28a.
  • FIG. 10C shows an example of the doping concentration distribution in the YY ′ cross section of FIG. 10B around the contact layer 28.
  • the vertical axis indicates the doping concentration
  • the horizontal axis indicates the distance from the lower end of the contact trench 27 in the depth direction.
  • the solid line indicates the doping concentration of the contact layer 28 and the base region 14 in the depth direction from the point O.
  • the broken line indicates the doping concentration of the source region 12 in the depth direction from the point O ′. That is, the graph of the doping concentration distribution of this example displays the doping concentrations in the depth direction from two different points O and O ′ in an overlapping manner. Point O and point O 'indicate the origin of the doping concentration graph shown in FIG. 10B.
  • the depths of the points O and O ′ correspond to the depth of the lower end of the contact trench 27.
  • the source region 12 is formed by ion implantation of arsenic (As) from the upper surface side of the base region 14.
  • the doping concentration of the source region 12 is approximately 1E18 cm ⁇ 3 at the point O ′ at the lower end of the contact trench 27.
  • the contact layer 28 is formed by ion implantation of boron fluoride and boron in two steps through the contact trench 27.
  • the first peak P1 of the contact layer 28 is approximately 1E20 cm ⁇ 3 .
  • the first peak P 1 of the contact layer 28 is formed at a position shallower than the lower end of the source region 12.
  • the second peak P2 in this example is formed at a deeper position than the lower end of the source region 12. However, the second peak P2 may be formed shallower than the lower end of the source region 12.
  • Both the contact layer 28 a and the contact layer 28 b may be formed shallower than the lower end of the source region 12, or any of the contact layer 28 a and the contact layer 28 b may be formed deeper than the lower end of the source region 12. That is, any one of the contact layer 28 a and the contact layer 28 b may be formed shallower than the lower end of the source region 12. Further, the largest peak of the peaks of the contact layer 28 a and the contact layer 28 b may be formed shallower than the lower end of the source region 12.
  • the storage region 16 has two doping concentration peaks (storage region 16a, storage region 16b).
  • the doping concentration between the two peaks may be an N-type valley-like concentration region higher than the drift region 18 and may be a valley-like concentration region substantially the same as the drift region 18.
  • the distribution of the doping concentration in this example is just an example.
  • the number of peaks, the depth, and the like may be changed as appropriate.
  • FIG. 11A is a plan view showing an example of a semiconductor device 100 according to the fifth embodiment.
  • the semiconductor device 100 of this example differs from the semiconductor device 100 according to the first embodiment in the arrangement of the contact trenches 27.
  • the end in the Y-axis direction is provided inside the contact region 15 in plan view. That is, the contact trench 27 extends from the source region 12 to the inside of the contact region 15 in plan view. Further, an end in the Y-axis direction of contact trench 27 may be provided in contact with contact region 15.
  • the contact trench 27 in this example can easily withdraw the outer carrier at the end in the Y-axis direction. Thereby, the turn-off tolerance and reverse recovery tolerance of the semiconductor device 100 are improved.
  • the source region 12 is not formed on the front surface of the semiconductor substrate 10 in the mesa portion provided closest to the diode portion 80.
  • the transistor section 70 may form the source region 12 in the mesa section provided closest to the diode section 80.
  • FIG. 11B is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the fifth embodiment.
  • the semiconductor device 100 of this example is different from the semiconductor device 100 according to the first embodiment in the method of arranging the contact layer 28.
  • the arrangement of the contact layer 28 is changed between the transistor unit 70 and the diode unit 80.
  • the contact layer 28 may be formed in the diode unit 80 shallower than the contact layer 28 of the transistor unit 70 and having a lower doping concentration.
  • the first peak P1 of the contact layer 28 and the base region 14 may be in direct contact with the bottom surface of the contact trench 27. Thereby, excessive injection of holes from the contact region 15 can be suppressed.
  • FIG. 12A is a plan view showing an example of a semiconductor device 100 according to the sixth embodiment.
  • the semiconductor device 100 of this example differs from the semiconductor device 100 according to the second embodiment in the arrangement of the contact trenches 27.
  • the end in the Y-axis direction is provided inside the contact region 15 in plan view. That is, the contact trench 27 extends from the source region 12 to the inside of the contact region 15 in plan view. Further, an end in the Y-axis direction of contact trench 27 may be provided in contact with contact region 15.
  • the contact trench 27 in this example can easily withdraw the outer carrier at the end in the Y-axis direction. Thereby, the turn-off tolerance and reverse recovery tolerance of the semiconductor device 100 are improved.
  • the source region 12 is not formed on the front surface of the semiconductor substrate 10 in the mesa portion provided closest to the diode portion 80.
  • the transistor section 70 may form the source region 12 in the mesa section provided closest to the diode section 80.
  • FIG. 12B is a view showing an example of the cross section aa ′ of the semiconductor device 100 according to the sixth embodiment.
  • the semiconductor device 100 of this example is different from the semiconductor device 100 according to the second embodiment in the method of arranging the contact layer 28.
  • the arrangement of the contact layer 28 is changed between the transistor unit 70 and the diode unit 80.
  • the contact layer 28 may be formed in the diode unit 80 shallower than the contact layer 28 of the transistor unit 70 and having a lower doping concentration.
  • the first peak P1 of the contact layer 28 and the base region 14 may be in direct contact with the bottom surface of the contact trench 27. Thereby, excessive injection of holes from the contact region 15 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

コンタクトトレンチを有する半導体装置を提供する。半導体基板と、半導体基板の上面側に設けられた第1導電型のドリフト領域と、ドリフト領域の上方に設けられた第2導電型のベース領域と、ベース領域の上方に設けられた第1導電型のソース領域と、ソース領域の上端側から、ソース領域およびベース領域を貫通して設けられた2以上のトレンチ部と、隣接するトレンチ部の間において、ソース領域と隣接して設けられたコンタクトトレンチと、コンタクトトレンチの下方に設けられた第2導電型のコンタクト層とを備え、コンタクト層のドーピング濃度のピーク位置がソース領域の下端よりも浅い半導体装置を提供する。

Description

半導体装置およびその製造方法
 本発明は、半導体装置およびその製造方法に関する。
 従来、2以上のトレンチ部を有する半導体装置において、隣接するトレンチ部の間にコンタクトトレンチを有し、コンタクトトレンチの下方にP+型のコンタクト層を有することが知られている(例えば、特許文献1および2参照)。
 特許文献1 特開2015-213193号公報
 特許文献2 特開2015-065420号公報
解決しようとする課題
 しかしながら、従来の半導体装置では、微細化によりメサ幅が狭くなると、P+型のコンタクト層が閾値電圧Vthに影響する場合がある。
一般的開示
 本発明の第1の態様においては、半導体基板と、半導体基板の上面側に設けられた第1導電型のドリフト領域と、ドリフト領域の上方に設けられた第2導電型のベース領域と、ベース領域の上方に設けられた第1導電型のソース領域と、ソース領域の上端側から、ソース領域およびベース領域を貫通して設けられた2以上のトレンチ部と、隣接するトレンチ部の間において、ソース領域と隣接して設けられたコンタクトトレンチと、コンタクトトレンチの下方に設けられた第2導電型のコンタクト層とを備え、コンタクト層のドーピング濃度のピーク位置がソース領域の下端よりも浅い半導体装置を提供する。
 コンタクト層は、ドーピング濃度の複数のピークを有してよい。
 ピーク位置は、複数のピークのうち、ドーピング濃度が最大のピークのピーク位置であってよい。
 ソース領域の下端は、コンタクトトレンチの下端よりも深くてよい。
 2以上のトレンチ部は、トレンチ導電部を有し、ソース領域の下端は、トレンチ導電部の上端より深くてよい。
 ソース領域の下端は、トレンチ部の配列方向において、2以上のトレンチ部の間のメサ幅の10%以上、30%以下の幅を有してよい。
 ソース領域は、トレンチ部の延伸方向に延伸して設けられてよい。
 ベース領域の上方に設けられた第2導電型のコンタクト領域を更に備えてよい。ソース領域およびコンタクト領域は、トレンチ部の延伸方向において交互に設けられてよい。
 コンタクト層は、2以上のトレンチ部の延伸方向に延伸して設けられてよい。
 コンタクト層は、コンタクトトレンチの側壁の少なくとも一部に設けられてよい。
 コンタクト層の下端は、ソース領域の下端よりも深くてよい。
 コンタクト層の深さ方向の厚さは、0.1μm以上、1.0μm以下であってよい。
 コンタクト層の下端は、ベース領域の厚さの半分の位置よりも浅くてよい。
 コンタクト層の下端は、ベース領域の下端の深さと等しくてよい。
 コンタクト層の上端は、ソース領域の下端よりも浅くてよい。
 コンタクト層の下端の幅は、トレンチ部の配列方向において、コンタクト層の上端の幅よりも狭くてよい。
 コンタクトトレンチの下方において、コンタクト層のドーピング濃度は、同一の深さのソース領域のドーピング濃度よりも大きくてよい。
 コンタクトトレンチの下端は、トレンチ部の配列方向において、0.1μm以上、0.4μm以下の幅を有してよい。
 コンタクトトレンチは、テーパ形状を有してよい。
 半導体装置は、第1コンタクト層の下方に設けられた、第2導電型の第2コンタクト層を更に備えてよい。
 ドリフト領域とベース領域との間に設けられ、ドリフト領域よりも高濃度である第1導電型の蓄積領域を更に備えてよい。
 コンタクト層は、蓄積領域と接していてよい。
 コンタクト層の下端は、蓄積領域の上端とソース領域の下端との距離の半分よりも深い位置に設けられてよい。
 半導体装置は、第1蓄積領域よりも深く形成され、ドリフト領域よりもドーピング濃度が高い第1導電型の第2蓄積領域を更に備えてよい。
 本発明の第2の態様においては、半導体基板の上面側に、第1導電型のドリフト領域、第2導電型のベース領域、第1導電型のソース領域、および、ソース領域およびベース領域を貫通する2以上のトレンチ部を形成する段階と、2つのトレンチ部の間に、ソース領域と隣接してコンタクトトレンチを形成する段階と、コンタクトトレンチの下端から、ベース領域の下方にドーパントを注入して、コンタクトトレンチの下端と対向する領域において、ドーピング濃度のピーク位置がソース領域の下端よりも浅くなるように第2導電型のコンタクト層を形成する段階とを備える半導体装置の製造方法を提供する。
 コンタクト層を形成する段階は、第1のドーパントを注入する段階と、第2のドーパントを注入する段階とを有してよい。
 ソース領域を形成する段階は、ベース領域の全面にソース領域を形成する段階を有し、コンタクトトレンチを形成する段階は、ベース領域の全面に形成されたソース領域の内部に、2つのトレンチ部の間にコンタクトトレンチを形成する段階を有してよい。
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
実施例1に係る半導体装置100の一例を示す平面図である。 実施例1に係る半導体装置100のa-a'断面の一例を示す図である。 コンタクト層28の周辺の拡大図の一例を示す。 コンタクト層28の周辺の図2のZ-Z'断面におけるドーピング濃度分布の一例を示す。 より具体的な半導体装置100の構造の一例を示す。 比較例1に係る半導体装置500の一例を示す平面図である。 比較例1に係る半導体装置500のa-a'断面の一例を示す図である。 比較例1に係る半導体装置500のb-b'断面の一例を示す図である。 実施例1と比較例2,3の内蔵電位ΔVbiを示すグラフである。 実施例2に係る半導体装置100の一例を示す平面図である。 実施例2に係る半導体装置100のa-a'断面の一例を示す図である。 実施例2に係る半導体装置100のb-b'断面の一例を示す図である。 実施例3に係る半導体装置100の構成の一例を示す。 半導体装置100の製造方法の一例を示す。 実施例4に係る半導体装置100のa-a'断面の一例を示す図である。 実施例4に係る半導体装置100のより具体的な構造の一例を示す。 コンタクト層28の周辺の図10BのY-Y'断面におけるドーピング濃度分布の一例を示す。 実施例5に係る半導体装置100の一例を示す平面図である。 実施例5に係る半導体装置100のa-a'断面の一例を示す図である。 実施例6に係る半導体装置100の一例を示す平面図である。 実施例6に係る半導体装置100のa-a'断面の一例を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 [実施例1]
 図1Aは、実施例1に係る半導体装置100の一例を示す平面図である。図1Bは、実施例1に係る半導体装置100のa-a'断面の一例を示す図である。本例の半導体装置100は、IGBT(Insulated Gate Bipolar Transistor)等のトランジスタを含むトランジスタ部70、および、FWD(Free Wheel Diode)等のダイオードを含むダイオード部80を有する半導体チップである。図1Aにおいてはチップ端部周辺のチップ表面を示しており、他の領域を省略している。
 なお、本明細書においては半導体基板10の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。「上」および「下」は重力方向に限定されない。エミッタ電極とコレクタ電極とを結ぶ方向を深さ方向と称する。また、各実施例においては、第1導電型をN型、第2導電型をP型とした例を示しているが、基板、層、領域等の導電型は、それぞれ逆の極性であってもよい。
 本例の半導体装置100は、チップの上面側において、ソース領域12、コンタクト領域15、ウェル領域17、コンタクトトレンチ27、ダミートレンチ部30、ゲートトレンチ部40、ゲート金属層50、エミッタ電極52、コンタクトホール55,56,57およびエミッタトレンチ部60を有する。なお、本明細書において、単にトレンチ部と称する場合、ダミートレンチ部30、ゲートトレンチ部40およびエミッタトレンチ部60を指す。
 半導体基板10は、シリコン等の半導体で形成された基板である。半導体基板10は、シリコンカーバイドおよび窒化ガリウム等の化合物半導体で形成されてもよい。本例の半導体基板10は、N+型である。半導体基板10は、ソース領域12、ベース領域14、コンタクト領域15、蓄積領域16、ウェル領域17、ドリフト領域18、バッファ領域20、コレクタ領域22およびカソード領域82を含む。また、半導体基板10の上面にはゲート金属層50およびエミッタ電極52が形成され、下面にはコレクタ電極24が形成される。エミッタ電極52およびゲート金属層50と、半導体基板10の上面との間には層間絶縁膜が形成されるが、本例では省略している。
 ドリフト領域18は、半導体基板10の上面側に形成されている。半導体基板10の上面側とは、半導体基板10の上面の上方であってよく、半導体基板10の内部における上面近傍であってもよい。ドリフト領域18は、蓄積領域16の裏面側に形成される。本例のドリフト領域18は、N-型である。
 ベース領域14は、ドリフト領域18の上方に形成されている。ベース領域14は、ドリフト領域18の上面側からドーパントを注入して形成してよい。ベース領域14は、各トレンチ部に挟まれたメサ部に形成される。メサ部とは、隣接するトレンチ部同士の間の領域を指す。ベース領域14は、ウェル領域17よりもドーピング濃度が低い。本例のベース領域14は、P-型である。
 ソース領域12は、ベース領域14の上方に形成されている。また、ソース領域12は、トレンチ部の延伸方向に延伸して形成されている。本例のソース領域12は、複数のトレンチ部のうち、隣接する2つのトレンチ部の間のメサ部に形成されている。ソース領域12は、ベース領域14の上面側からドーパントを注入することにより形成されてよい。本例のソース領域12は、N+型である。なお、本明細書において、トレンチ部の延伸方向はY軸方向であり、トレンチ部の配列方向はX軸方向である。半導体装置100の深さ方向はZ軸方向である。
 コンタクトトレンチ27は、半導体基板10の上面側に形成される。コンタクトトレンチ27は、隣接するトレンチ部の間に形成され、ソース領域12と隣接して設けられる。一例において、コンタクトトレンチ27は、ソース領域12をエッチングすることにより形成される。コンタクトトレンチ27には、エミッタ電極52と同一のプロセスにより、導電性の材料が埋め込まれてよい。
 コンタクト層28は、コンタクトトレンチ27の下方に設けられる。また、コンタクト層28は、2つのトレンチ部の間において2つのトレンチ部の延伸方向に延伸して形成される。コンタクト層28は、コンタクトトレンチ27を介してドーパントを注入することにより形成されてよい。例えば、コンタクト層28は、ボロン(B)又はフッ化ボロン(BF)を注入することにより形成される。コンタクト層28は、2種類以上のドーパントを2段階以上の注入で形成されてよい。本例のコンタクト層28は、P+型である。コンタクト層28は、ホールを引き抜くことにより、ラッチアップを抑制する。なお、コンタクト層28は、第1コンタクト層の一例である。
 また、コンタクト層28におけるドーピング濃度のピークは、ソース領域12の下端よりも浅い。即ち、本例のコンタクト層28におけるドーピング濃度のピークが、閾値電圧Vthを決定するベース領域14の側壁から離れて形成されている。これにより、本例のコンタクト層28は、微細化された場合であっても、閾値電圧Vthに対する影響が小さい。また、コンタクト層28は、ドーピング濃度の複数のピークを有してよい。コンタクト層28における複数のピークのうちの最大濃度のピーク位置が、ソース領域12の下端よりも浅いことが好ましい。
 バッファ領域20は、ドリフト領域18の裏面側に形成される。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ベース領域14の裏面側から広がる空乏層が、コレクタ領域22およびカソード領域82に到達することを防ぐフィールドストップ層として機能する。本例のバッファ領域20は、N-型である。
 コンタクト領域15は、ベース領域14の上方に形成される。コンタクト領域15は、ベース領域14よりもドーピング濃度が高い。コンタクト領域15は、ベース領域14の上面側からドーパントを注入することにより形成されてよい。本例のコンタクト領域15はP+型である。
 蓄積領域16は、ドリフト領域18とベース領域14との間に形成される。蓄積領域16は、半導体基板10のドーピング濃度よりも高濃度に形成される。また、蓄積領域16のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。一例において、蓄積領域16のドーピング濃度は、1E16cm-3以上、1E18cm-3以下である。例えば、蓄積領域16は、半導体基板10の上面側からリン等のN型ドーパントを注入することにより形成される。なお、Eは10のべき乗を意味し、例えば1E16cm-3は1×1016cm-3を意味する。
 また、蓄積領域16は、隣接するトレンチ部の間に形成される。例えば、蓄積領域16は、トランジスタ部70において、ダミートレンチ部30およびゲートトレンチ部40の間に形成される。蓄積領域16は、ダミートレンチ部30およびゲートトレンチ部40の間の全領域を覆うように設けられてよい。蓄積領域16を設けることにより、オン状態においてコレクタ領域22からドリフト領域18に注入されたホールのベース領域14への流れ込みが抑制されるので、ソース領域12からベース領域14への電子の注入促進が高まる。これにより、半導体装置100のオン電圧が低減される。
 但し、半導体装置100が蓄積領域16を有する場合、キャリアの注入促進(Injection-Enhancement,IE)効果によりキャリア密度が上昇し、ラッチアップが生じやすくなる場合がある。本例の半導体装置100は、ターンオフ時にコンタクト層28によりホールを引き抜くので、ラッチアップを抑制できる。そのため、半導体装置100は、オン電圧を低減しつつ、ラッチアップを抑制できる。
 コレクタ領域22は、トランジスタ部70において、バッファ領域20の裏面側に形成される。カソード領域82は、ダイオード部80において、バッファ領域20の裏面側に形成される。また、コレクタ領域22およびカソード領域82の裏面にはコレクタ電極24が設けられる。コレクタ電極24は、アルミニウムや金、銀等の金属材料で形成される。
 コンタクトホール55、56,57は、半導体基板10の上方に形成された層間絶縁膜を貫通して形成される。コンタクトホール55は、ゲート金属層50とゲート導電部44とを接続する。コンタクトホール56は、エミッタ電極52とダミー導電部34とを接続する。コンタクトホール57は、エミッタ電極52とエミッタ導電部64とを接続する。コンタクトホール55、56,57を形成する位置は特に本例に限られない。
 エミッタ電極52は、コンタクトホール56,57を通って半導体基板10と接触する。エミッタ電極52は、金属を含む材料で形成される。一例において、エミッタ電極52の少なくとも一部の領域はアルミで形成される。エミッタ電極52は、タングステンを含む材料で形成される領域を有してもよい。
 ゲート金属層50は、コンタクトホール55を通って半導体基板と接触する。ゲート金属層50は、金属を含む材料で形成される。一例において、ゲート金属層50の少なくとも一部の領域はアルミで形成される。ゲート金属層50は、タングステンを含む材料で形成される領域を有してもよい。本例のゲート金属層50は、エミッタ電極52と同一の材料で形成される。但し、ゲート金属層50は、エミッタ電極52と異なる材料で形成されてもよい。
 半導体基板10の上面側には、2以上のゲートトレンチ部40、2以上のダミートレンチ部30、および、2以上のエミッタトレンチ部60が形成される。トレンチ部の配列順序は本例に限られない。
 ダミートレンチ部30およびゲートトレンチ部40は、ソース領域12の上端側から、ソース領域12、ベース領域14および蓄積領域16を貫通して形成されている。また、ダミートレンチ部30およびゲートトレンチ部40は、半導体基板10の上面において予め定められた延伸方向に延伸して形成される。ダミートレンチ部30は、トランジスタ部70の領域において所定の配列方向に沿って、ゲートトレンチ部40と所定の間隔で1つ以上配列されている。本例のダミートレンチ部30およびゲートトレンチ部40は、配列方向とは垂直な方向に延伸して形成される。ダミートレンチ部30およびゲートトレンチ部40は、延伸方向の端部がそれぞれループ形状を有してもよい。
 本例のゲートトレンチ部40およびダミートレンチ部30は、所定の配列方向において交互に配置される。また、各トレンチ部は一定の間隔で配置されてよい。但し、各トレンチの配置は上記の例に限定されない。2つのダミートレンチ部30の間に複数のゲートトレンチ部40が配置されてよい。また、それぞれのダミートレンチ部30の間に設けられるゲートトレンチ部40の数は一定でなくともよい。
 エミッタトレンチ部60は、ソース領域12の上端側から、ソース領域12、ベース領域14および蓄積領域16を貫通して形成されている。エミッタトレンチ部60は、ダイオード部80の領域に設けられる。エミッタトレンチ部60は、半導体基板10の上面において予め定められた延伸方向に延伸して形成される。本例のエミッタトレンチ部60の間隔は、ダミートレンチ部30およびゲートトレンチ部40の間隔と同一であるが、異なっていてもよい。なお、ダミートレンチ部30、ゲートトレンチ部40およびエミッタトレンチ部60の延伸方向の端部には、P+型のウェル領域17が形成される。
 ゲートトレンチ部40は、半導体基板10の上面側に形成された絶縁膜42およびゲート導電部44を有する。ゲート導電部44は、少なくとも隣接するベース領域14と対向する領域を含む。ゲート金属層50を介してゲート導電部44に所定の電圧が印加されると、ベース領域14のうちゲートトレンチ部40に接する界面の表層にチャネルが形成される。本例のゲート導電部44は、ポリシリコン等の導電材料で形成される。ゲート導電部44は、トレンチ導電部の一例である。絶縁膜42は、ゲート導電部44の周囲を覆うように、ゲートトレンチの内壁の半導体を酸化または窒化して形成されてよい。
 ダミートレンチ部30は、半導体基板10の上面側に形成された絶縁膜32およびダミー導電部34を有する。ダミー導電部34は、ゲート導電部44と同一の材料で形成されてよい。例えば、ダミー導電部34は、ポリシリコン等の導電材料で形成される。ダミー導電部34は、トレンチ導電部の一例である。絶縁膜32は、ダミー導電部34の周囲を覆うように、ダミートレンチの内壁の半導体を酸化または窒化して形成されてよい。
 ダイオード部80は、トランジスタ部70と隣接した領域に設けられる。ダイオード部80は、トランジスタ部70と同一層のベース領域14、蓄積領域16、ドリフト領域18およびバッファ領域20を有する。ダイオード部80のバッファ領域20の裏面側にはカソード領域82が設けられる。なお、本明細書では、活性領域において、カソード領域82に一致する下面の領域をダイオード部80とする。または、半導体基板10の上面に対して、半導体基板10の下面と垂直な方向にカソード領域82を投影したときの投影領域をダイオード部80としてもよい。また、活性領域において、半導体基板10の上面に対して、半導体基板10の下面と垂直な方向にコレクタ領域22を投影したときの投影領域であって、且つ、ソース領域12およびコンタクト領域15を含む所定の単位構成が規則的に配置された領域をトランジスタ部70とする。
 ダイオード部80において、カソード領域82は、ソース領域12と、Y軸方向で最も端のコンタクト領域15との半導体基板10の上面における境界位置よりも、コンタクト領域15から離れる向き(図1AにおいてY軸方向の+Yの向き)に離れて位置してよい。また、カソード領域82は、コンタクトトレンチ27のうちY軸方向の端部より、当該端部からは離れる向き(図1AにおいてY軸方向の+Yの向き)に離れて位置してよい。これにより、コンタクト領域15からの正孔の過大な注入を抑制できる。
 エミッタトレンチ部60は、ベース領域14の上面側からベース領域14および蓄積領域16を貫通して、ドリフト領域18まで到達して形成される。それぞれのエミッタトレンチ部60は、絶縁膜62およびエミッタ導電部64を備える。絶縁膜62は、エミッタ導電部64の周囲を覆うように、エミッタトレンチの内壁の半導体を酸化または窒化して形成されてよい。
 図2は、コンタクト層28の周辺の拡大図の一例を示す。本例では、ダミートレンチ部30とゲートトレンチ部40との間のメサ部について示しているが、ダミートレンチ部30、ゲートトレンチ部40およびエミッタトレンチ部60のいずれの間のメサ部についても同様の構造を設けてよい。
 メサ幅Wは、メサ部のX軸方向の幅を指す。本例のメサ幅Wは、ダミートレンチ部30とゲートトレンチ部40との間のメサ部のメサ幅である。本例のメサ幅Wは、0.7μmである。
 ホール引抜き幅Wは、ソース領域12の下端のX軸方向の幅である。即ち、ホール引抜き幅Wは、トレンチ部の側壁からコンタクト層28までの距離である。ホール引抜き幅Wは、トレンチ部の側壁を通過したホールがコンタクト層28に向かって流れるまでの距離に対応する。ホール引抜き幅Wを短くすることにより、ホールを引き抜くための経路の抵抗値が低くなるので、ターンオフ時にホールが引き抜かれやすくなる。ホールが引き抜かれやすくなると、NPNの寄生トランジスタが動作しにくくなるのでラッチアップが抑制される。
 一例において、ホール引抜き幅Wは、メサ幅Wの10%以上、30%以下の大きさである。ホール引抜き幅Wは、本例のように隣接するトレンチ部の間に2つのソース領域12が形成されている場合、いずれか一方のソース領域12の下端の幅を指す。即ち、ソース領域12がメサの両端に形成される場合、ホール引抜き幅Wがメサ幅Wの20~60%を占める。例えば、ホール引抜き幅Wは、0.05μm以上、0.25μm以下である。本例のホール引抜き幅Wは、0.1μmである。
 コンタクト幅Wは、メサ幅Wにおける、ホール引抜き幅W以外の領域のX軸方向の幅である。即ち、コンタクト幅Wは、ソース領域12の下端と同じ深さにおける、コンタクト層28のX軸方向の幅を指す。一例において、コンタクト幅Wは、メサ幅Wの40%~80%を占める。例えば、コンタクト幅Wは、0.2μm以上、0.6μm以下である。本例のコンタクト幅Wは、0.5μmである。
 コンタクトトレンチ幅WCTは、コンタクトトレンチ27のX軸方向の幅である。一例において、コンタクトトレンチ幅WCTは、0.1μm以上、0.4μm以下である。本例のコンタクトトレンチ幅WCTは、0.3μmである。また、コンタクトトレンチ27の深さD2は、半導体基板10の上端から0.3μmである。コンタクトトレンチ幅WCTおよび深さD2は、必要な接触抵抗に応じて決定されてよい。また、コンタクトトレンチ幅WCTは、コンタクトトレンチ27越しのイオン注入により形成するコンタクト層28の大きさに応じて決定されてよい。
 ソース領域12の下端は、コンタクトトレンチ27の下端よりも深い。そして、コンタクト層28のドーピング濃度のピーク位置は、ソース領域12の下端よりも浅く形成される。これにより、微細化された場合であっても、閾値電圧Vthに対するコンタクト層28の影響が小さくなる。なお、ソース領域12の下端は、ダミー導電部34およびゲート導電部44の上端より深い。本例のソース領域12の下端の深さD1は、半導体基板10の上端から0.45μmである。
 コンタクト層28の上端は、ソース領域12の下端よりも浅い。また、コンタクト層28の下端は、ソース領域12の下端よりも深い。コンタクト層28を厚く形成することにより、ホールが引き抜かれやすくなるので、ラッチアップを抑制しやすくなる。一例において、コンタクト層28の下端は、ベース領域14の下端の深さと等しくてよい。この場合、コンタクト層28の下端がソース領域12から遠ざけられるので、ホールの引き抜き効果がより顕著になる。例えば、コンタクト層28の深さ方向の厚さD3は、0.1μm以上、1.0μm以下である。本例のコンタクト層28の深さ方向の厚さD3は、0.5μmである。
 なお、コンタクト層28は、コンタクト層28の下端が、ベース領域14の厚さの半分の位置よりも浅くなるように形成されてよい。コンタクト層28を浅く形成することにより、コンタクト層28を形成するためのイオン注入の回数を減らすことができる。そして、半導体装置100の製造コストが低減される。
 また、コンタクトトレンチ27の下方において、コンタクト層28のドーピング濃度は、同一の深さのソース領域12のドーピング濃度よりも大きくてよい。即ち、コンタクトトレンチ27の下方の領域は、高濃度のドーパントを注入することにより、N+型のソース領域12がP+型のコンタクト層28に変化した領域である。
 図3は、コンタクト層28の周辺の図2のZ-Z'断面におけるドーピング濃度分布の一例を示す。縦軸はドーピング濃度を示し、横軸はコンタクトトレンチ27の下端から深さ方向への距離を示す。実線は、点Oから深さ方向におけるコンタクト層28およびベース領域14のドーピング濃度を示す。破線は、点O'から深さ方向におけるソース領域12のドーピング濃度を示す。即ち、本例のドーピング濃度分布のグラフは、異なる2つの点Oおよび点O'からの深さ方向のドーピング濃度を重ねて表示している。なお、点Oおよび点O'は、図3で示すドーピング濃度のグラフの原点を指す。点Oおよび点O'の深さは、コンタクトトレンチ27の下端の深さに対応している。
 ソース領域12は、ヒ素(As)をベース領域14の上面側からイオン注入することにより形成される。ソース領域12のドーピング濃度は、コンタクトトレンチ27の下端の点O'において、およそ1E18cm-3である。
 コンタクト層28は、フッ化ボロンおよびボロンをコンタクトトレンチ27越しに2段階でイオン注入することにより形成される。コンタクト層28の第1のピークP1は、およそ1E20cm-3である。コンタクト層28の第1のピークP1は、ソース領域12の下端よりも浅い位置に形成されている。本例の第2のピークP2は、ソース領域12の下端よりも深い位置に形成されている。但し、第2のピークP2は、ソース領域12の下端よりも浅く形成されてよい。
 また、コンタクト層28は、3以上のピークを有してもよい。この場合、全てのピークがソース領域12の下端よりも浅く形成されてよいし、ピークの一部がソース領域12の下端よりも深く形成されてもよい。即ち、コンタクト層28のドーピング濃度のピークの少なくとも1つがソース領域12の下端よりも浅く形成されていればよい。また、コンタクト層28のドーピング濃度のピークのうち最大のピークがソース領域12の下端よりも浅く形成されてよい。
 なお、本例のドーピング濃度の分布は、あくまで一例である。本願明細書に開示された半導体装置100を実現するために、ピークの個数および深さ等が適宜変更されてよい。
 図4は、より具体的な半導体装置100の構造の一例を示す。本例では、層間絶縁膜26を省略せずに示している。
 層間絶縁膜26は、半導体基板10の上方に形成される。本例の層間絶縁膜26は、BPSG(Boron Phosphorus Silicon Glass)膜である。層間絶縁膜26は、異なる材料で形成された複数の層を有してもよい。層間絶縁膜26は、ソース領域12の上端から厚さD1の層において、下端の開口幅がW1であり、上端の開口幅がW2である。
 コンタクトトレンチ27は、テーパ形状を有する。本例のコンタクトトレンチ27は、上端の幅が下端の幅よりも大きくなるようなテーパ形状を有する。コンタクトトレンチ27がテーパ形状を有することにより、コンタクトトレンチ27の側壁にもドーパントが注入されやすくなる。
 コンタクト層28は、テーパ形状を有するコンタクトトレンチ27越しに形成される。これにより、コンタクトトレンチ27の側壁の少なくとも一部に、コンタクト層28が形成されている。例えば、本例のコンタクト層28は、コンタクトトレンチ27の下端から、側壁と接して上側に延伸して形成される。また、コンタクト幅Wは、BPSG膜の下端の開口幅W2に応じて変化する。即ち、ホール引抜き幅Wも、BPSG膜の下端の開口幅W2に応じて変化する。本例のBPSG膜の上端の開口幅W1は、0.45μmであり、BPSG膜の下端の開口幅W2は0.3μmである。
 また、コンタクト層28は、蓄積領域16と接して形成されてよい。この場合、L1=L2が成り立つ。距離L1は、ソース領域12の下端と蓄積領域16の上端との間の深さ方向の距離を示す。距離L2は、ソース領域12の下端とコンタクト層28の下端との間の深さ方向の距離を示す。また、コンタクト層28の下端は、蓄積領域16の上端とソース領域12の下端との距離の半分よりも深い位置に設けられてよい。この場合、L1/2<L2が成り立つ。
 なお、コンタクトトレンチ27および開口された層間絶縁膜26には、エミッタ電極52として多層の膜が形成されてよい。一例において、エミッタ電極52は、チタン/窒化チタン(Ti/TiN)と、タングステンと、アルミニウムとを積層した構造を有してよい。
 [比較例1]
 図5Aは、比較例1に係る半導体装置500の一例を示す平面図である。図5Bは、比較例1に係る半導体装置500のa-a'断面の一例を示す図である。図5Cは、比較例1に係る半導体装置500のb-b'断面の一例を示す図である。
 本例の半導体装置500は、コンタクトトレンチ27およびコンタクト層28を有さない。ホール引抜き幅WH0は、トレンチ部の側壁に沿って流れたキャリアが、コンタクト領域15に向けて流れるまでの距離を示す。半導体装置500においてホールは、ソース領域12の下部であって、ゲートトレンチ部40の側壁を通り、その後ゲートトレンチ部40の側壁からコンタクト領域15に向かって流れる。
 ここで、トレンチ部の延伸方向におけるホール引抜き幅WH0は、トレンチ部の配列方向におけるホール引抜き幅よりも大きくなる場合がある。この場合、半導体装置500のホール引抜き幅WH0は、半導体装置100のホール引抜き幅Wよりも大きくなる。即ち、ホールの引き抜きが悪くなり、半導体装置500では、ラッチアップを抑制しにくくなる。特に、微細化が進むと、メサ部における電流密度が上昇するので、ターンオフ時に半導体装置500がラッチアップしやすくなる。
 図6は、実施例1と比較例2,3の内蔵電位ΔVbiを示すグラフである。縦軸は内蔵電位ΔVbiの相対値を示し、横軸はホール引抜き幅W,WH0の相対値を示す。実施例1および比較例2は、1.9μmピッチの場合である。比較例3は、2.3μmピッチの場合である。ピッチとは、あるトレンチ部の中心から、当該トレンチ部と配列方向に隣接する他のトレンチ部の中心までの距離を指す。内蔵電位ΔVbiの相対値が2になると、ラッチアップが生じる。
 実施例1に係るホール引抜き幅Wは、微細化によりピッチが小さくなるに従い小さくなる。一方、比較例2および3に係るホール引抜き幅WH0は、微細化によりピッチが小さくなっても、必ずしも小さくなるわけではない。そのため、微細化によりピッチが小さくなると、ホール引抜き幅Wがホール引抜き幅WH0と比較して相対的に小さくなる。例えば、実施例1に係るホール引抜き幅Wを1とした場合、比較例2および3のホール引抜き幅Wが実施例の5倍から17程度の大きさになる。
 また、比較例2および3では、ピッチを2.3μmから1.9mmに微細化すると、内蔵電位ΔVbiが上昇する。内蔵電位ΔVbiが上昇すると、半導体装置500がラッチアップしやすくなる。一方、実施例1の場合は、ホール引抜き幅Wが短く、ホールが引き抜かれやすいので、微細化が進んだ場合であってもラッチアップを抑制できる。むしろ、実施例1の場合は、ホールを配列方向に引き抜くので、ピッチが小さくなるほど、ホール引抜き幅Wが短くなる。
 [実施例2]
 図7Aは、実施例2に係る半導体装置100の一例を示す平面図である。図7Bは、実施例2に係る半導体装置100のa-a'断面の一例を示す図である。図7Cは、実施例2に係る半導体装置100のb-b'断面の一例を示す図である。本例のソース領域12およびコンタクト領域15は、トランジスタ部70におけるトレンチ部の延伸方向において、交互に設けられている。
 ソース領域12およびコンタクト領域15は、半導体基板10の上面側に形成される。ソース領域12およびコンタクト領域15は、隣接する一方のトレンチ部から、他方のトレンチ部まで形成され、その後、コンタクトトレンチ27がソース領域12およびコンタクト領域15を横断するように、トレンチ部の延伸方向に形成されている。これにより、ソース領域12およびコンタクト領域15は、それぞれトレンチ部の側壁に沿って、トレンチ部の延伸方向に交互に設けられている。なお、本例のダイオード部80では、実施例1の場合と同様に、隣接するエミッタトレンチ部60の間には、ソース領域12が形成されている。
 ダイオード部80において、カソード領域82は、ソース領域12と、Y軸方向で最も端のコンタクト領域15との半導体基板10の上面における境界位置よりも、コンタクト領域15から離れる向き(図7AにおいてY軸方向の+Yの向き)に離れて位置してよい。また、カソード領域82は、コンタクトトレンチ27のうちY軸方向の端部より、当該端部からは離れる向き(図7AにおいてY軸方向の+Yの向き)に離れて位置してよい。これにより、コンタクト領域15からの正孔の過大な注入を抑制できる。
 本例の半導体装置100は、実施例1に係る半導体装置100と同様に、コンタクトトレンチ27の下方に形成されたコンタクト層28を有するので、ホールの引き抜きにより、ラッチアップを抑制できる。また、本例の半導体装置100は、ソース領域12とコンタクト領域15とを交互に設けている。これにより飽和電流が抑制されるので、ラッチアップを更に抑制できる。
 [実施例3]
 図8は、実施例3に係る半導体装置100の構成の一例を示す。本例のコンタクト層28は、ドーパントを多段で注入することにより形成される。例えば、コンタクト層28は、3段の注入工程により形成される。
 コンタクト層28は、層間絶縁膜26をマスクとして、ドーパントが注入される。また、本例の層間絶縁膜26は、テーパ形状を有する。そのため、コンタクト層28は、ドーパントの注入位置によってマスクである層間絶縁膜26の厚さが異なる。層間絶縁膜26が厚く形成された領域では、ドーパントの注入深さが浅くなる。そのため、コンタクト層28は、コンタクトトレンチ27の中心付近においてドーパントが深く注入され、コンタクトトレンチ27の端部においてドーパントが浅く注入される。
 これにより、コンタクト層28の下端の幅は、コンタクト層28の上端の幅よりも狭くなる。即ち、本例のコンタクト層28は、上側から下側にかけて徐々に窄まるような形状を有する。ここで、コンタクト層28の幅が徐々に窄まる形状ではなく、途中で幅が厚くなる形状の場合、コンタクト層28の端部に電界が集中する恐れがある。一方、本例のコンタクト層28は、徐々に窄まる形成を有するので、空乏層が広がった場合にコンタクト層28の端部に電界が集中しにくい。
 図9は、半導体装置100の製造方法の一例を示す。本例では、実施例3に係る半導体装置100の製造方法について特に説明する。同図においては、1セル分の断面図を示しているが、他のセルについても同様に形成してよい。
 まず、半導体基板10を準備する。半導体基板10は、ドリフト領域18を有するシリコン基板である。本例のドリフト領域18のドーピング濃度は、例えば3.0E+13cm-3以上、2.0E+14cm-3以下である。ドリフト領域18の厚みは、半導体装置100の耐圧クラスによって異なる。
 次に段階S300において、半導体基板10の表面にソース領域12、ベース領域14およびゲートトレンチ部40を形成する。まず、半導体基板10の表面に所定のパターンのエッチングマスクを設け、ゲートトレンチ部40の溝部を形成する。ゲートトレンチ部40の溝部の内壁には、ゲート絶縁膜が形成される。そして、N型のドーパントが高濃度にドープされたポリシリコンを、トレンチ部内に堆積させて、ゲート導電部44を形成する。これにより、ゲートトレンチ部40が形成される。
 次に、半導体基板10の上面においてベース領域14およびソース領域12を形成しない領域に酸化膜を形成する。そして、半導体基板10の表面側から選択的にP型ドーパントを注入して、1100℃程度の温度で2時間程度の熱処理を行う。これにより、半導体基板10の表面全体に、P-型のベース領域14を形成する。P型ドーパントは、ボロンであってよい。P-型のベース領域14には2.5E+13cm-2のドーピング濃度でP型ドーパントがドープされてよい。ベース領域14は、ゲートトレンチ部40と接して形成されており、ゲートトレンチ部40と接触する領域がチャネルとして機能する。
 次に、半導体基板10の上面側からソース領域12を形成するためのN型ドーパントとしてヒ素又はリン等をイオン注入する。ソース領域12は、ベース領域14が形成された領域の全面に形成される。ソース領域12には5.0E+19cm-2のドーピング濃度でN型ドーパントをドープしてよい。イオン注入後、熱処理等を行いソース領域12を形成する。ソース領域12も、ゲートトレンチ部40と接して形成されている。次に、CVD法により、半導体基板10の上面に層間絶縁膜26を形成する。
 次に段階S302において、層間絶縁膜26の上面にレジストパターンを形成する。レジストパターンの開口部により露出した層間絶縁膜26をRIEによりエッチングして、半導体基板10を露出させる。次に、露出した半導体基板10の上面をエッチングして、2つのトレンチ部の間に、層間絶縁膜26を貫通し、ソース領域12と隣接してコンタクトトレンチ27を形成する。また、コンタクトトレンチ27は、全面に形成されたソース領域12の内部に形成される。ソース領域12の内部にコンタクトトレンチ27を形成することにより、後続のプロセスでコンタクト層28を形成した場合に、コンタクト層28のピーク位置をソース領域12の下端よりも浅く形成できる。
 次に段階S304において、コンタクトトレンチ27の下端に隣接する注入領域93に、ボロン等のP型ドーパントをイオン注入する。本例においてP型ドーパントの加速エネルギーは30keV程度であり、ドーズ量は1.0E+15cm-2以上、5.0E+15cm-2以下である。
 次に、コンタクトトレンチ27の下端から、ベース領域14の下方にドーパントを注入する。例えば、ベース領域14よりも下方にボロン等のP型ドーパントを注入すべく、コンタクトトレンチ27の下端から垂直にイオン注入する。これにより、コンタクトトレンチ27の下端と対向する領域において、ドーピング濃度のピーク位置がソース領域12の下端よりも浅くなるようにコンタクト層28を形成する。コンタクト層28は、複数の段階に分けてドーパントが注入されてよい。本例のコンタクト層28を形成する段階は、第1のドーパントを注入する段階と、第2のドーパントを注入する段階とを有する。例えば、第1のドーパントとしてボロンを注入し、第2のドーパントとしてフッ化ボロンを注入する。また、P型ドーパントの注入は、形成すべきコンタクト層28の深さに応じて、それぞれ加速エネルギーを変化させてよい。P型ドーパントの注入により、ベース領域14の下方に1以上の注入領域94が形成される。
 次に、注入領域93および注入領域94に注入したP型ドーパントを活性化させるべく、段階306において半導体装置100を熱処理する。P型ドーパントが拡散しすぎないように、当該熱処理は短時間で行うことが好ましい。一例として、熱処理の温度は950度程度であり、時間は30分以内である。
 これにより、コンタクト層28が形成される。段階S306の後に、エミッタ電極52、コレクタ電極24等を形成して半導体装置100が完成する。なお、エミッタ電極52と半導体領域との間の相互拡散を抑制すべく、コンタクトトレンチ27の内壁には、チタン膜、窒化チタン膜、タンタル膜、または窒化タンタル膜等を含むバリアメタル層を形成することが好ましい。また、エミッタ電極52の平坦性を向上させるべく、エミッタ電極52を形成する前に、コンタクトトレンチ27の内部にタングステン、モリブデン、または、ドーパントをドープしたポリシリコン等を充填してもよい。
 図10Aは、実施例4に係る半導体装置100のa-a'断面の一例を示す図である。本例の半導体装置100の平面図は、図1Aで示した実施例1に係る半導体装置100の平面図に対応する。即ち、本例のa-a'断面は、図1Aのa-a'断面に対応する。本例の半導体装置100は、複数の蓄積領域16aおよび蓄積領域16bと、複数のコンタクト層28aおよびコンタクト層28bを備える。
 蓄積領域16aおよび蓄積領域16bは、トランジスタ部70およびダイオード部80の少なくとも一方に設けられる。本例の蓄積領域16aおよび蓄積領域16bは、トランジスタ部70およびダイオード部80の両方に設けられる。蓄積領域16aおよび蓄積領域16bは、深さの異なる蓄積領域16の一例である。蓄積領域16aは、蓄積領域16bよりも浅く形成される。蓄積領域16aおよび蓄積領域16bのドーピング濃度は同一であってよい。なお、蓄積領域16aは、第1蓄積領域の一例である。蓄積領域16bは、第2蓄積領域の一例である。
 コンタクト層28aおよびコンタクト層28bは、トランジスタ部70およびダイオード部80の少なくとも一方に設けられる。本例のコンタクト層28aおよびコンタクト層28bは、トランジスタ部70およびダイオード部80の両方に設けられる。
 コンタクト層28aおよびコンタクト層28bは、コンタクトトレンチ27の下方に設けられる。また、コンタクト層28bは、コンタクト層28aの下方に設けられる。コンタクト層28aおよびコンタクト層28bは、P+型である。コンタクト層28bのドーピング濃度は、コンタクト層28aのドーピング濃度と同一であってよい。また、コンタクト層28bのドーパントは、コンタクト層28aのドーパントと同一であってよい。
 本例のコンタクト層28aは、他の実施例で説明したコンタクト層28の構造を適宜採用してよい。例えば、コンタクト層28aは、複数のドーピング濃度のピークを有してよい。同様にコンタクト層28bは、複数のドーピング濃度のピークを有してもよい。なお、コンタクト層28aは、第1コンタクト層の一例であり、コンタクト層28bは、第2コンタクト層の一例である。
 本例の半導体装置100は、複数のコンタクト層28を有することで、ホールを引き抜きやすくなり、ラッチアップ耐量を向上できる。特に、複数のコンタクト層28は、複数の蓄積領域16によってキャリア密度が上昇した場合でも、ラッチアップを抑制できる。また、半導体装置100は、複数の蓄積領域16を有することで、ターンオン損失を低減するとともに、オン電圧とターンオフ損失のトレードオフを改善できる。
 図10Bは、実施例4に係る半導体装置100のより具体的な構造の一例を示す。本例の半導体装置100は、蓄積領域16bとコンタクト層28bを有する点で図4の実施形態と異なる。距離L1、距離L2、開口幅W1、開口幅W2および深さD1は、図4の実施形態と同一の条件であってよい。
 距離L3は、コンタクト層28bの上端とコンタクト層28bの下端との間の深さ方向の距離を示す。即ち、距離L3は、コンタクト層28bの厚みに対応する。ここで、コンタクト層28bの下端は、蓄積領域16aと接して形成されてよい。この場合、L1=L2+L3が成り立つ。
 また、コンタクト層28bの下端は、蓄積領域16aの上端とソース領域12の下端との距離の半分よりも深い位置に設けられてよい。この場合、L1/2<L2+L3が成り立つ。
 コンタクト層28bの幅は、コンタクト層28aの幅と略同一であってよい。この場合、コンタクト層28bは、コンタクト層28aと同様に、コンタクトトレンチ27を介してドーパントを注入することにより形成される。
 図10Cは、コンタクト層28の周辺の図10BのY-Y'断面におけるドーピング濃度分布の一例を示す。縦軸はドーピング濃度を示し、横軸はコンタクトトレンチ27の下端から深さ方向への距離を示す。実線は、点Oから深さ方向におけるコンタクト層28およびベース領域14のドーピング濃度を示す。破線は、点O'から深さ方向におけるソース領域12のドーピング濃度を示す。即ち、本例のドーピング濃度分布のグラフは、異なる2つの点Oおよび点O'からの深さ方向のドーピング濃度を重ねて表示している。なお、点Oおよび点O'は、図10Bで示すドーピング濃度のグラフの原点を指す。点Oおよび点O'の深さは、コンタクトトレンチ27の下端の深さに対応している。
 ソース領域12は、ヒ素(As)をベース領域14の上面側からイオン注入することにより形成される。ソース領域12のドーピング濃度は、コンタクトトレンチ27の下端の点O'において、およそ1E18cm-3である。
 コンタクト層28は、フッ化ボロンおよびボロンをコンタクトトレンチ27越しに2段階でイオン注入することにより形成される。コンタクト層28の第1のピークP1は、およそ1E20cm-3である。コンタクト層28の第1のピークP1は、ソース領域12の下端よりも浅い位置に形成されている。本例の第2のピークP2は、ソース領域12の下端よりも深い位置に形成されている。但し、第2のピークP2は、ソース領域12の下端よりも浅く形成されてよい。
 コンタクト層28aおよびコンタクト層28bの両方が、ソース領域12の下端よりも浅く形成されてよいし、コンタクト層28aおよびコンタクト層28bのいずれかがソース領域12の下端よりも深く形成されてもよい。即ち、コンタクト層28aおよびコンタクト層28bのいずれかがソース領域12の下端よりも浅く形成されていればよい。また、コンタクト層28aおよびコンタクト層28bが有するピークのうち最大のピークがソース領域12の下端よりも浅く形成されてよい。
 さらに、本例では蓄積領域16は2つのドーピング濃度のピーク(蓄積領域16a、蓄積領域16b)を有する。2つのピークの間のドーピング濃度は、ドリフト領域18より高濃度のN型の谷状の濃度領域であってよく、ドリフト領域18と略同じ谷状の濃度領域であってよい。
 なお、本例のドーピング濃度の分布は、あくまで一例である。本願明細書に開示された半導体装置100を実現するために、ピークの個数および深さ等が適宜変更されてよい。
 図11Aは、実施例5に係る半導体装置100の一例を示す平面図である。本例の半導体装置100は、コンタクトトレンチ27の配置が実施例1に係る半導体装置100と相違する。
 本例のコンタクトトレンチ27は、Y軸方向の端部が、平面視で、コンタクト領域15の内部に設けられる。即ち、コンタクトトレンチ27は、平面視で、ソース領域12からコンタクト領域15の内部まで延伸して設けられている。また、コンタクトトレンチ27のY軸方向の端部は、コンタクト領域15と接して設けられてもよい。本例のコンタクトトレンチ27は、Y軸方向の端部において、容易に外側のキャリアを引き抜くことができる。これにより、半導体装置100のターンオフ耐量および逆回復耐量が向上する。
 また、本例のトランジスタ部70は、最もダイオード部80側に設けられたメサ部において、半導体基板10のおもて面にソース領域12が形成されていない。但し、トランジスタ部70は、最もダイオード部80側に設けられたメサ部において、ソース領域12を形成してもよい。
 図11Bは、実施例5に係る半導体装置100のa-a'断面の一例を示す図である。本例の半導体装置100では、コンタクト層28の配置方法が、実施例1に係る半導体装置100と相違する。本例の半導体装置100は、トランジスタ部70とダイオード部80とで、コンタクト層28の配置を変更している。
 例えば、本例の半導体装置100は、トランジスタ部70においてコンタクト層28を有するが、ダイオード部80において、トランジスタ部70のコンタクト層28よりも浅くドーピング濃度が低いコンタクト層28を形成してもよい。この場合、ダイオード部80において、コンタクト層28の第1のピークP1とベース領域14が、コンタクトトレンチ27の底面に直接接してよい。これにより、コンタクト領域15からの正孔の過大な注入を抑制できる。
 図12Aは、実施例6に係る半導体装置100の一例を示す平面図である。本例の半導体装置100は、コンタクトトレンチ27の配置が実施例2に係る半導体装置100と相違する。
 本例のコンタクトトレンチ27は、Y軸方向の端部が、平面視で、コンタクト領域15の内部に設けられる。即ち、コンタクトトレンチ27は、平面視で、ソース領域12からコンタクト領域15の内部まで延伸して設けられている。また、コンタクトトレンチ27のY軸方向の端部は、コンタクト領域15と接して設けられてもよい。本例のコンタクトトレンチ27は、Y軸方向の端部において、容易に外側のキャリアを引き抜くことができる。これにより、半導体装置100のターンオフ耐量および逆回復耐量が向上する。
 また、本例のトランジスタ部70は、最もダイオード部80側に設けられたメサ部において、半導体基板10のおもて面にソース領域12が形成されていない。但し、トランジスタ部70は、最もダイオード部80側に設けられたメサ部において、ソース領域12を形成してもよい。
 図12Bは、実施例6に係る半導体装置100のa-a'断面の一例を示す図である。本例の半導体装置100では、コンタクト層28の配置方法が、実施例2に係る半導体装置100と相違する。本例の半導体装置100は、トランジスタ部70とダイオード部80とで、コンタクト層28の配置を変更している。
 例えば、本例の半導体装置100は、トランジスタ部70においてコンタクト層28を有するが、ダイオード部80において、トランジスタ部70のコンタクト層28よりも浅くドーピング濃度が低いコンタクト層28を形成してもよい。この場合、ダイオード部80において、コンタクト層28の第1のピークP1とベース領域14が、コンタクトトレンチ27の底面に直接接してよい。これにより、コンタクト領域15からの正孔の過大な注入を抑制できる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・半導体基板、12・・・ソース領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、17・・・ウェル領域、18・・・ドリフト領域、20・・・バッファ領域、22・・・コレクタ領域、24・・・コレクタ電極、26・・・層間絶縁膜、27・・・コンタクトトレンチ、28・・・コンタクト層、30・・・ダミートレンチ部、32・・・絶縁膜、34・・・ダミー導電部、40・・・ゲートトレンチ部、42・・・絶縁膜、44・・・ゲート導電部、50・・・ゲート金属層、52・・・エミッタ電極、55・・・コンタクトホール、56・・・コンタクトホール、57・・・コンタクトホール、60・・・エミッタトレンチ部、62・・・絶縁膜、64・・・エミッタ導電部、70・・・トランジスタ部、80・・・ダイオード部、82・・・カソード領域、93・・・注入領域、94・・・注入領域、100・・・半導体装置、500・・・半導体装置

Claims (27)

  1.  半導体基板と、
     前記半導体基板の上面側に設けられた第1導電型のドリフト領域と、
     前記ドリフト領域の上方に設けられた第2導電型のベース領域と、
     前記ベース領域の上方に設けられた第1導電型のソース領域と、
     前記ソース領域の上端側から、前記ソース領域および前記ベース領域を貫通して設けられた2以上のトレンチ部と、
     隣接するトレンチ部の間において、前記ソース領域と隣接して設けられたコンタクトトレンチと、
     前記コンタクトトレンチの下方に設けられた第2導電型の第1コンタクト層と
     を備え、
     前記第1コンタクト層のドーピング濃度のピーク位置が前記ソース領域の下端よりも浅い
     半導体装置。
  2.  前記第1コンタクト層は、ドーピング濃度の複数のピークを有する
     請求項1に記載の半導体装置。
  3.  前記ピーク位置は、前記複数のピークのうち、ドーピング濃度が最大のピークのピーク位置である
     請求項2に記載の半導体装置。
  4.  前記ソース領域の下端は、前記コンタクトトレンチの下端よりも深い
     請求項1から3のいずれか一項に記載の半導体装置。
  5.  前記2以上のトレンチ部は、トレンチ導電部を有し、
     前記ソース領域の下端は、前記トレンチ導電部の上端より深い
     請求項1から4のいずれか一項に記載の半導体装置。
  6.  前記ソース領域の下端は、前記トレンチ部の配列方向において、前記2以上のトレンチ部の間のメサ幅の10%以上、30%以下の幅を有する
     請求項1から5のいずれか一項に記載の半導体装置。
  7.  前記ソース領域は、前記トレンチ部の延伸方向に延伸して設けられている
     請求項1から6のいずれか一項に記載の半導体装置。
  8.  前記ベース領域の上方に設けられた第2導電型のコンタクト領域を更に備え、
     前記ソース領域および前記コンタクト領域は、前記トレンチ部の延伸方向において交互に設けられている
     請求項1から6のいずれか一項に記載の半導体装置。
  9.  前記第1コンタクト層は、前記2以上のトレンチ部の延伸方向に延伸して設けられる
     請求項1から8のいずれか一項に記載の半導体装置。
  10.  前記第1コンタクト層は、前記コンタクトトレンチの側壁の少なくとも一部に設けられている
     請求項1から9のいずれか一項に記載の半導体装置。
  11.  前記第1コンタクト層の下端は、前記ソース領域の下端よりも深い
     請求項1から10のいずれか一項に記載の半導体装置。
  12.  前記第1コンタクト層の深さ方向の厚さは、0.1μm以上、1.0μm以下である
     請求項1から11のいずれか一項に記載の半導体装置。
  13.  前記第1コンタクト層の下端は、前記ベース領域の厚さの半分の位置よりも浅い
     請求項1から11のいずれか一項に記載の半導体装置。
  14.  前記第1コンタクト層の下端は、前記ベース領域の下端の深さと等しい
     請求項1から13のいずれか一項に記載の半導体装置。
  15.  前記第1コンタクト層の上端は、前記ソース領域の下端よりも浅い
     請求項1から14のいずれか一項に記載の半導体装置。
  16.  前記第1コンタクト層の下端の幅は、前記トレンチ部の配列方向において、前記第1コンタクト層の上端の幅よりも狭い
     請求項1から15のいずれか一項に記載の半導体装置。
  17.  前記コンタクトトレンチの下方において、前記第1コンタクト層のドーピング濃度は、同一の深さの前記ソース領域のドーピング濃度よりも大きい
     請求項1から16のいずれか一項に記載の半導体装置。
  18.  前記コンタクトトレンチの下端は、前記トレンチ部の配列方向において、0.1μm以上、0.4μm以下の幅を有する
     請求項1から17のいずれか一項に記載の半導体装置。
  19.  前記コンタクトトレンチは、テーパ形状を有する
     請求項1から18のいずれか一項に記載の半導体装置。
  20.  前記第1コンタクト層の下方に設けられた、第2導電型の第2コンタクト層を更に備える
     請求項1から19のいずれか一項に記載の半導体装置。
  21.  前記ドリフト領域と前記ベース領域との間に設けられ、前記ドリフト領域よりも高濃度である第1導電型の第1蓄積領域を更に備える
     請求項1から20のいずれか一項に記載の半導体装置。
  22.  前記第1コンタクト層は、前記第1蓄積領域と接している
     請求項21に記載の半導体装置。
  23.  前記第1コンタクト層の下端は、前記第1蓄積領域の上端と前記ソース領域の下端との距離の半分よりも深い位置に設けられる
     請求項21に記載の半導体装置。
  24.  前記第1蓄積領域よりも深く形成され、前記ドリフト領域よりもドーピング濃度が高い第1導電型の第2蓄積領域を更に備える
     請求項21から23のいずれか一項に記載の半導体装置。
  25.  半導体基板の上面側に、第1導電型のドリフト領域、第2導電型のベース領域、第1導電型のソース領域、および、前記ソース領域および前記ベース領域を貫通する2以上のトレンチ部を形成する段階と、
     2つのトレンチ部の間に、前記ソース領域と隣接してコンタクトトレンチを形成する段階と、
     前記コンタクトトレンチの下端から、前記ベース領域の下方にドーパントを注入して、前記コンタクトトレンチの下端と対向する領域において、ドーピング濃度のピーク位置が前記ソース領域の下端よりも浅くなるように第2導電型のコンタクト層を形成する段階と
     を備える半導体装置の製造方法。
  26.  前記コンタクト層を形成する段階は、第1のドーパントを注入する段階と、第2のドーパントを注入する段階とを有する
     請求項25に記載の半導体装置の製造方法。
  27.  前記ソース領域を形成する段階は、前記ベース領域の全面に前記ソース領域を形成する段階を有し、
     前記コンタクトトレンチを形成する段階は、前記ベース領域の全面に形成された前記ソース領域の内部に、前記2つのトレンチ部の間に前記コンタクトトレンチを形成する段階を有する
     請求項25又は26に記載の半導体装置の製造方法。
PCT/JP2017/033361 2016-09-14 2017-09-14 半導体装置およびその製造方法 WO2018052098A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018539793A JP6741070B2 (ja) 2016-09-14 2017-09-14 半導体装置およびその製造方法
CN201780015047.7A CN108780814B (zh) 2016-09-14 2017-09-14 半导体装置及其制造方法
DE112017000689.9T DE112017000689T5 (de) 2016-09-14 2017-09-14 Halbleitervorrichtung und Herstellungsverfahren dafür
US16/114,174 US10749025B2 (en) 2016-09-14 2018-08-27 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-180025 2016-09-14
JP2016180025 2016-09-14
JP2017154304 2017-08-09
JP2017-154304 2017-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/114,174 Continuation US10749025B2 (en) 2016-09-14 2018-08-27 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018052098A1 true WO2018052098A1 (ja) 2018-03-22

Family

ID=61619166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033361 WO2018052098A1 (ja) 2016-09-14 2017-09-14 半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US10749025B2 (ja)
JP (1) JP6741070B2 (ja)
CN (1) CN108780814B (ja)
DE (1) DE112017000689T5 (ja)
WO (1) WO2018052098A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107703A (ja) * 2018-12-27 2020-07-09 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JPWO2021161668A1 (ja) * 2020-02-12 2021-08-19
JP2022056498A (ja) * 2020-09-30 2022-04-11 三菱電機株式会社 半導体装置
US11316013B2 (en) * 2019-06-26 2022-04-26 Fuji Electric Co., Ltd. Nitride semiconductor device
DE112021000202T5 (de) 2020-07-03 2022-08-18 Fuji Electric Co., Ltd. Halbleitervorrichtung
DE112021000309T5 (de) 2020-08-24 2022-10-13 Fuji Electric Co., Ltd. Halbleitervorrichtung und herstellungsverfahren einer halbleitervorrichtung
WO2022244802A1 (ja) * 2021-05-19 2022-11-24 富士電機株式会社 半導体装置および製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017121878A1 (de) * 2017-09-21 2019-03-21 Infineon Technologies Austria Ag Leistungsdiode
WO2019097836A1 (ja) * 2017-11-16 2019-05-23 富士電機株式会社 半導体装置
DE112018006404T5 (de) * 2017-12-14 2020-09-03 Fuji Electric Co., Ltd. Halbleitervorrichtung
JP6827433B2 (ja) * 2018-03-02 2021-02-10 株式会社東芝 半導体装置
CN109686788B (zh) * 2018-11-20 2020-12-29 电子科技大学 一种具有载流子存储层的槽栅igbt器件
WO2022085765A1 (ja) * 2020-10-23 2022-04-28 ヌヴォトンテクノロジージャパン株式会社 半導体装置
CN117133800B (zh) * 2023-10-25 2024-03-26 合肥海图微电子有限公司 一种绝缘栅双极型晶体管及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310727A (ja) * 1993-04-27 1994-11-04 Toshiba Corp 半導体装置
JPH11345969A (ja) * 1998-06-01 1999-12-14 Toshiba Corp 電力用半導体装置
US6031265A (en) * 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
JP2005536868A (ja) * 2001-11-20 2005-12-02 ゼネラル セミコンダクター,インク. 寄生抵抗が低いトレンチ金属酸化膜半導体電界効果トランジスタデバイスの製造方法
JP2006032676A (ja) * 2004-07-16 2006-02-02 Toyota Central Res & Dev Lab Inc 半導体装置
JP2007311627A (ja) * 2006-05-19 2007-11-29 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2012174989A (ja) * 2011-02-23 2012-09-10 Toshiba Corp 半導体装置の製造方法
WO2012124784A1 (ja) * 2011-03-16 2012-09-20 富士電機株式会社 半導体装置およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423316B2 (en) * 2004-05-12 2008-09-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor devices
JP5048273B2 (ja) * 2006-05-10 2012-10-17 オンセミコンダクター・トレーディング・リミテッド 絶縁ゲート型半導体装置
JP5340961B2 (ja) * 2008-01-29 2013-11-13 富士電機株式会社 半導体装置
JP5317560B2 (ja) * 2008-07-16 2013-10-16 株式会社東芝 電力用半導体装置
JP5384878B2 (ja) * 2008-08-22 2014-01-08 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US20110006362A1 (en) * 2009-07-10 2011-01-13 Force Mos Technology Co. Ltd. Trench MOSFET with on-resistance reduction
DE102011079747A1 (de) * 2010-07-27 2012-02-02 Denso Corporation Halbleitervorrichtung mit Schaltelement und Freilaufdiode, sowie Steuerverfahren hierfür
CN102804385B (zh) * 2010-11-30 2016-08-03 富士电机株式会社 半导体器件
JP5728992B2 (ja) * 2011-02-11 2015-06-03 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP5562917B2 (ja) 2011-09-16 2014-07-30 株式会社東芝 半導体装置及びその製造方法
JP5831526B2 (ja) 2013-01-17 2015-12-09 株式会社デンソー 半導体装置およびその製造方法
JP6440989B2 (ja) 2013-08-28 2018-12-19 ローム株式会社 半導体装置
JP5719899B2 (ja) * 2013-10-07 2015-05-20 ローム株式会社 半導体装置
JP6341074B2 (ja) * 2014-01-24 2018-06-13 株式会社デンソー 半導体装置の製造方法
JP6003919B2 (ja) * 2014-02-10 2016-10-05 トヨタ自動車株式会社 半導体装置及びその製造方法
JP5975543B2 (ja) * 2014-08-22 2016-08-23 ローム株式会社 半導体装置および半導体装置の製造方法
JP2015213193A (ja) 2015-07-21 2015-11-26 ルネサスエレクトロニクス株式会社 Igbt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310727A (ja) * 1993-04-27 1994-11-04 Toshiba Corp 半導体装置
US6031265A (en) * 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
JPH11345969A (ja) * 1998-06-01 1999-12-14 Toshiba Corp 電力用半導体装置
JP2005536868A (ja) * 2001-11-20 2005-12-02 ゼネラル セミコンダクター,インク. 寄生抵抗が低いトレンチ金属酸化膜半導体電界効果トランジスタデバイスの製造方法
JP2006032676A (ja) * 2004-07-16 2006-02-02 Toyota Central Res & Dev Lab Inc 半導体装置
JP2007311627A (ja) * 2006-05-19 2007-11-29 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2012174989A (ja) * 2011-02-23 2012-09-10 Toshiba Corp 半導体装置の製造方法
WO2012124784A1 (ja) * 2011-03-16 2012-09-20 富士電機株式会社 半導体装置およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107703A (ja) * 2018-12-27 2020-07-09 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7275573B2 (ja) 2018-12-27 2023-05-18 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US11316013B2 (en) * 2019-06-26 2022-04-26 Fuji Electric Co., Ltd. Nitride semiconductor device
JPWO2021161668A1 (ja) * 2020-02-12 2021-08-19
JP7364027B2 (ja) 2020-02-12 2023-10-18 富士電機株式会社 半導体装置およびその製造方法
DE112021000202T5 (de) 2020-07-03 2022-08-18 Fuji Electric Co., Ltd. Halbleitervorrichtung
DE112021000309T5 (de) 2020-08-24 2022-10-13 Fuji Electric Co., Ltd. Halbleitervorrichtung und herstellungsverfahren einer halbleitervorrichtung
JP2022056498A (ja) * 2020-09-30 2022-04-11 三菱電機株式会社 半導体装置
US11830872B2 (en) 2020-09-30 2023-11-28 Mitsubishi Electric Corporation Semiconductor device
WO2022244802A1 (ja) * 2021-05-19 2022-11-24 富士電機株式会社 半導体装置および製造方法
JP7468786B2 (ja) 2021-05-19 2024-04-16 富士電機株式会社 半導体装置および製造方法

Also Published As

Publication number Publication date
US20180374948A1 (en) 2018-12-27
JP6741070B2 (ja) 2020-08-19
DE112017000689T5 (de) 2018-10-25
US10749025B2 (en) 2020-08-18
JPWO2018052098A1 (ja) 2018-12-27
CN108780814A (zh) 2018-11-09
CN108780814B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
JP6741070B2 (ja) 半導体装置およびその製造方法
JP6881463B2 (ja) Rc−igbtおよびその製造方法
JP6418340B2 (ja) 逆導通型絶縁ゲートバイポーラトランジスタの製造方法および逆導通型絶縁ゲートバイポーラトランジスタ
US11094810B2 (en) Semiconductor device and manufacturing method of semiconductor device
US9312336B2 (en) MOSFET device with reduced breakdown voltage
JP5530602B2 (ja) 半導体装置およびその製造方法
JP6645594B2 (ja) 半導体装置
CN107316899B (zh) 半超结器件及其制造方法
CN109314141B (zh) 半导体装置
JP2005285913A (ja) 半導体装置およびその製造方法
JP2024010217A (ja) 半導体装置および半導体装置の製造方法
JP5034151B2 (ja) 半導体装置およびその製造方法
WO2022004084A1 (ja) 半導体装置
US20220352315A1 (en) Semiconductor device and method for producing same
US9117872B2 (en) Semiconductor device and method for manufacturing the semiconductor device
WO2019244485A1 (ja) 半導体装置の製造方法および半導体装置
US20220123132A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP5578165B2 (ja) 半導体装置の製造方法
US20240096965A1 (en) Semiconductor device
US20240145464A1 (en) Semiconductor device and method of manufacturing same
US20230246097A1 (en) Semiconductor device and manufacturing method of semiconductor device
JP2024009540A (ja) 半導体装置
JP2023135082A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112017000689

Country of ref document: DE

Ref document number: 2018539793

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850998

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17850998

Country of ref document: EP

Kind code of ref document: A1