WO2017154929A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2017154929A1
WO2017154929A1 PCT/JP2017/009079 JP2017009079W WO2017154929A1 WO 2017154929 A1 WO2017154929 A1 WO 2017154929A1 JP 2017009079 W JP2017009079 W JP 2017009079W WO 2017154929 A1 WO2017154929 A1 WO 2017154929A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
annealing
hot
steel sheet
Prior art date
Application number
PCT/JP2017/009079
Other languages
English (en)
French (fr)
Inventor
今村 猛
稔 ▲高▼島
有衣子 江橋
早川 康之
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US16/079,669 priority Critical patent/US11066722B2/en
Priority to RU2018132375A priority patent/RU2698040C1/ru
Priority to KR1020187025890A priority patent/KR102139134B1/ko
Priority to BR112018068033-8A priority patent/BR112018068033B1/pt
Priority to EP17763269.2A priority patent/EP3428293B1/en
Priority to CN201780013668.1A priority patent/CN108699620B/zh
Publication of WO2017154929A1 publication Critical patent/WO2017154929A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for a core material of a transformer.
  • Oriented electrical steel sheet is a soft magnetic property material mainly used as the core material of electrical equipment such as transformers and generators, and the ⁇ 001> orientation, which is the easy axis of iron, is highly advanced in the rolling direction of the steel sheet. It has a uniform crystal texture. Such a texture preferentially causes grains of (110) [001] orientation, which is called the Goss orientation, during secondary recrystallization annealing in the production process of grain-oriented electrical steel sheets. It is formed through secondary recrystallization that grows enormously.
  • Patent Document 1 discloses a method using AlN and MnS
  • Patent Document 2 discloses a method using MnS and MnSe, which is industrially put into practical use.
  • the method using these inhibitors requires slab heating at a high temperature of over 1300 ° C for complete dissolution of the inhibitor component, but it is a very useful method for stably developing secondary recrystallized grains. there were.
  • Patent Document 3 discloses a method using Pb, Sb, Nb, and Te
  • Patent Document 4 discloses Zr, Ti, B, Nb. , Ta, V, Cr, and Mo are disclosed.
  • Patent Document 5 contains 0.010 to 0.060% of acid-soluble Al (sol.Al), suppresses slab heating to a low temperature, and performs nitriding in an appropriate nitriding atmosphere in a decarburization annealing process, thereby performing secondary operation.
  • a method has been proposed in which (Al, Si) N is precipitated during recrystallization and used as an inhibitor.
  • a number of methods for performing nitriding in such an intermediate process and using (Al, Si) N or AlN as an inhibitor have been proposed as nitriding methods.
  • Patent Document 6 discloses a technique for preferentially recrystallizing Goss-oriented crystal grains in a material that does not contain an inhibitor component. By eliminating impurities such as inhibitor components as much as possible, the grain boundary energy dependency of the grain boundary energy at the time of primary recrystallization becomes obvious, and the Goss orientation can be changed without using an inhibitor. This is a technique for secondarily recrystallizing grains, and this effect is called a texture inhibition effect. In this method, since fine dispersion of the inhibitor in steel is not necessary, it is a method having great merit in terms of both cost and maintenance, such as not requiring the high-temperature slab heating that is essential.
  • Japanese Patent Publication No.40-15644 Japanese Patent Publication No.51-13469 Japanese Patent Publication No.38-8214 JP-A-52-24116 Japanese Patent No. 2782086 JP 2000-129356 JP
  • the present invention suppresses the coarsening of silicon nitride in precipitates in steel formed at the initial stage of temperature increase by increasing the average temperature increase rate of hot-rolled sheet annealing as much as possible.
  • Example 1 A steel slab containing C: 0.060%, Si: 3.15%, Mn: 0.12%, N: 41ppm, sol.Al:72ppm, S: 36ppm, Se: 30ppm by mass ratio is manufactured at 1200 °C After slab heating soaking for 60 minutes at a temperature of 2.3 mm, it was finished by hot rolling. Thereafter, hot-rolled sheet annealing was performed at 1000 ° C. for 30 seconds in a dry nitrogen atmosphere. At this time, in the temperature increasing process, the temperature increasing rate until reaching 400 ° C. from room temperature was variously changed, and the time until reaching the temperature from 400 ° C. to 900 ° C. was 50 seconds. After the hot-rolled sheet annealing, the scale on the surface of the hot-rolled sheet was removed by pickling, and then finished to a sheet thickness of 0.23 mm by cold rolling.
  • the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization in a humid atmosphere at 830 ° C. for 150 seconds, 50% H 2 -50% N 2 and dew point of 50 ° C.
  • an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1200 ° C. for 5 hours under a hydrogen atmosphere.
  • the magnetic flux density B 8 (magnetic flux density when excited with a magnetizing force of 800 A / m) of the obtained sample was measured by the method described in JIS C2550.
  • FIG. 1 shows the results of arranging the measured magnetic flux density B 8 at an average temperature increase rate from normal temperature to 400 ° C. in hot-rolled sheet annealing. From this result, it can be seen that the faster the average heating rate up to 400 ° C., the better the magnetic properties.
  • Example 2 A steel slab containing C: 0.043%, Si: 3.36%, Mn: 0.07%, N: 29ppm, sol.Al: 80ppm, S: 20ppm by mass ratio is manufactured by continuous casting, and is averaged at 1220 ° C for 45 minutes. After heating slab heating, it was finished to a thickness of 2.0 mm by hot rolling. Then, hot-rolled sheet annealing in a dry nitrogen atmosphere was performed at 1050 ° C. for 30 seconds. At this time, in the temperature increasing process, the average temperature increasing rate from reaching room temperature to 400 ° C. was set to 75 ° C./s, and the time until reaching 400 ° C. to 900 ° C. was variously changed. After hot-rolled sheet annealing, the surface scale was removed by pickling and then cold rolled to a thickness of 0.23 mm.
  • the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization in a humid atmosphere at 840 ° C. for 120 seconds, 60% H 2 -40% N 2 and dew point of 60 ° C.
  • an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1200 ° C. for 10 hours in a hydrogen atmosphere.
  • the magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) of the obtained sample was measured by the method described in JIS C2550.
  • FIG. 2 shows the results of arranging the measured magnetic flux density B 8 by the time required to reach 900 ° C. from 400 ° C. in the hot-rolled sheet annealing. From this result, it can be seen that the shorter the time from 400 ° C. to 900 ° C., the better the magnetic properties.
  • Non-Patent Document 1 discloses the solubility product of Si 3 N 4 precipitated in ⁇ -phase steel.
  • the melting temperature of Si 3 N 4 is calculated from the component system of Experiment 1 above, and is about 910 ° C. From this, it is considered that Si 3 N 4 precipitates exist up to about 910 ° C. (a slight variation depending on the components) in the temperature rising process of hot-rolled sheet annealing.
  • the reason why the magnetic flux density is improved when the average heating rate from room temperature to 400 ° C. is remarkably increased is considered as follows.
  • Si hardly diffuses in the steel, but on the other hand, N is a light element and is considered to diffuse a considerable distance. Therefore, if the average heating rate is significantly increased, the diffusion distance of N is suppressed, so that it is presumed that the Si 3 N 4 precipitates are finely and densely distributed. In this way, the initial Si 3 N 4 precipitates are finely and densely distributed by rapid heating, and the subsequent heating time is shortened to coarsen Si 3 N 4 and make its distribution sparse. Suppress.
  • the present invention has been completed based on the above experimental results, and the gist of the present invention is as follows.
  • a method for producing a grain-oriented electrical steel sheet that is subjected to secondary recrystallization annealing after applying an annealing separator to the surface of the cold rolled steel sheet after the primary recrystallization annealing is a method for producing grain-oriented electrical steel sheets in which the average rate of temperature increase from room temperature to 400 ° C. is 50 ° C./s or more and the time until it reaches 400 ° C. to 900 ° C. is 100 seconds or less.
  • the component composition further includes: Sb: 0.01 mass% or more and 0.50 mass% or less, Sn: 0.01 mass% or more and 0.50 mass% or less, Ni: 0.005 mass% or more and 1.5 mass% or less, Cu: 0.005 mass% or more and 1.5 mass% or less, Cr: 0.005 mass% or more and 0.1 mass% or less, P: 0.005% to 0.5% by mass Mo: 0.005 mass% or more and 0.5 mass% or less, Ti: 0.0005 mass% or more and 0.1 mass% or less, 2.
  • a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained by shortening the average temperature increase rate and the time required to reach 900 ° C. in the temperature increase process of hot-rolled sheet annealing. Can be provided.
  • C 0.002% or more and 0.100% or less
  • C exceeds 0.100%, it becomes difficult to reduce to 0.005% or less, which does not cause magnetic aging, by decarburization annealing.
  • it is less than 0.002%, hot embrittlement becomes remarkable, and troubles in slab casting and hot rolling frequently occur.
  • it is 0.020% or more and 0.100% or less of range.
  • Si 2.00% to 6.50%
  • Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.00%, it is not sufficient. On the other hand, if it exceeds 6.50%, the workability deteriorates and it becomes difficult to perform rolling. Therefore, Si should be in the range of 2.00% to 6.50%. Preferably it is 2.50% or more and 4.00% or less of range.
  • Mn 0.02% to 1.00%
  • Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.02%, it is not sufficient. On the other hand, if it exceeds 1.00%, the magnetic flux density of the product plate decreases. Therefore, Mn is in the range of 0.02% to 1.00%. Preferably it is 0.04% or more and 0.30% or less of range.
  • S, N, and Se may each be more than 0 ppm to 50 ppm or less, and sol.Al may be more than 0 ppm and less than 100 ppm. That is, when it takes a great deal of cost to reduce these elements, it can be left in the steel within the above range.
  • S, N and Se are each more than 0 ppm and 25 ppm or less, and sol.Al is more than 0 ppm and 80 ppm or less.
  • the basic components of the present invention have been described above.
  • the balance other than the above components is Fe and unavoidable impurities.
  • Sb 0.01% to 0.50%
  • Sn 0.01% to 0.50%
  • Ni 0.01% to 1.5%
  • Cu 0.005% to 1.5%
  • Cr 0.005% to 0.1%
  • P 0.005% to 0.5%
  • Mo 0.005% to 0.5%
  • Ti 0.0005% to 0.1 %
  • Nb 0.0005% or more and 0.1% or less
  • Bi 0.005% or more and 0.1% or less
  • a general manufacturing method can be used as a method for manufacturing the slab.
  • a slab is manufactured by ingot-making or continuous casting of molten steel that has been adjusted for a predetermined component. Since the above-mentioned optional added components are difficult to add in the middle of the process, it is desirable to add them at the molten steel stage.
  • the slab is heated by a normal method.
  • heat treatment is performed at a low temperature of 1300 ° C. or lower, thereby reducing costs. be able to.
  • Hot rolling After the heating, hot rolling is performed.
  • the hot rolling temperature it is preferable that the start temperature is 1000 ° C. or more and the end temperature is 750 ° C. or more because the rolled shape becomes good.
  • the end temperature is preferably 900 ° C. or lower in order not to increase the scale generated on the surface after rolling.
  • the average rate of temperature increase from room temperature to 400 ° C. is preferably 500 ° C./s or less. Furthermore, in order to sufficiently secure Si 3 N 4 , 400 ° C. to 900 ° C. It is preferable that the time to reach ° C. is 10 seconds or more.
  • the heating method is not limited, but in order to achieve an average heating rate of 50 ° C./s or higher, an induction heating method or an electric heating method may be employed in addition to a conventional heating method using a heater or burner.
  • the soaking temperature is preferably 950 ° C. or higher.
  • the soaking temperature is desirably 1000 ° C. or higher and 1100 ° C. or lower. If it is less than 1000 ° C., the substitution of precipitates is incomplete and the magnetism may be deteriorated. If it exceeds 1100 ° C, secondary recrystallization may become unstable.
  • the soaking time is preferably set to 3 seconds or more for substitution of precipitates.
  • the precipitate is not excessively coarsened, and is preferably set to 120 seconds or less.
  • the intermediate annealing temperature is preferably 900 ° C. or higher and 1200 ° C. or lower.
  • the temperature is lower than 900 ° C., the recrystallized grains become finer, the Goss nuclei in the primary recrystallized structure decrease, and the magnetism deteriorates.
  • the temperature exceeds 1200 ° C., the particle size becomes too coarse, which is extremely disadvantageous in realizing a primary recrystallized structure of sized particles.
  • the temperature of the cold rolling is increased to 100 ° C to 300 ° C, and the aging treatment in the range of 100 to 300 ° C is performed one or more times during the cold rolling, This is effective for improving the magnetic properties by changing the recrystallization texture.
  • Primary recrystallization annealing Thereafter, primary recrystallization annealing is performed.
  • This primary recrystallization annealing may also serve as decarburization.
  • An annealing temperature of 800 ° C. or higher and 900 ° C. or lower is effective from the viewpoint of decarburization.
  • it is desirable that the atmosphere is a humid atmosphere. However, when it contains only C: 0.005% or less, which does not require decarburization, there is no problem even under other conditions.
  • the average rate of temperature rise to the holding temperature be 50 ° C./s or more and 400 ° C./s or less because the final magnetic properties are good.
  • An annealing separator is applied to the steel sheet after the primary recrystallization annealing.
  • an annealing separator mainly composed of MgO secondary recrystallization annealing can be performed thereafter to develop a secondary recrystallization structure and to form a forsterite film. If the forsterite film is not required with emphasis on the punching processability, silica or alumina is used without using MgO for forming the forsterite film.
  • these annealing separators When these annealing separators are applied, it is effective to perform electrostatic application or the like that does not bring in moisture.
  • a heat resistant inorganic material sheet (silica, alumina, mica) may be used.
  • Secondary recrystallization annealing is performed.
  • the secondary recrystallization annealing is desirably performed at 800 ° C. or higher in order to develop secondary recrystallization. Further, it is desirable to anneal at a temperature of 800 ° C. or higher for 20 hours or longer in order to complete the secondary recrystallization. In order to form a forsterite film, it is desirable to raise the temperature to about 1200 ° C.
  • the annealing temperature for the flattening annealing is preferably 750 to 900 ° C., and the annealing time is preferably 3 seconds or more and 120 seconds or less.
  • Magnetic domain subdivision processing Thereafter, in order to further reduce iron loss, it is desirable to perform magnetic domain fragmentation.
  • a processing method a method of applying strain to an iron crystal lattice by an electron beam, a laser, or the like, which is generally performed, is desirable.
  • a method of applying strain to an iron crystal lattice by an electron beam, a laser, or the like, which is generally performed is desirable.
  • not only the final product plate but also a method in which a groove is formed in advance in an intermediate product such as a cold-rolled plate having reached the final finished plate thickness.
  • Other manufacturing conditions may follow the general manufacturing method of a grain-oriented electrical steel sheet.
  • Example 1 Steel slab containing C: 0.023%, Si: 3.55%, Mn: 0.18%, sol.Al: 42ppm, N: 42ppm, S: 11ppm, Sb: 0.075%, the balance being the composition of Fe and inevitable impurities Manufactured by continuous casting, slab heated at 1170 ° C and then hot rolled to a thickness of 2.4 mm. Thereafter, hot-rolled sheet annealing was performed at 900 ° C. or 975 ° C. for 20 seconds and at a dew point of 40 ° C. in an atmosphere of 90% N 2 + 10% CO 2 . At this time, in the temperature raising process, the average temperature raising rate until reaching 400 ° C. from normal temperature and the time until reaching 900 ° C. from 400 ° C. were variously changed as shown in Table 1.
  • the surface scale was removed by pickling, and then finished to a thickness of 1.6 mm by cold rolling, 110% at 1100 ° C, 70% N 2 + 30% H 2 at 40 ° C dew point was subjected to intermediate annealing in the following manner, and then finished to a thickness of 0.20 mm by cold rolling.
  • an annealing separator mainly composed of MgO was applied, held at 900 ° C.
  • the magnetic flux density B 8 (magnetic flux density when excited at 800 A / m) of the obtained sample was measured by the method described in JIS C2550.
  • the obtained magnetic flux density B 8 is also shown in Table 1. From the results in Table 1, good magnetic flux density B can be obtained by setting the average rate of temperature increase from room temperature to 400 ° C to 50 ° C / s or more and the time to reach 900 ° C from 400 ° C to 100 seconds or less. It turns out that 8 is obtained. Also, the soaking temperature in the hot-rolled sheet annealing by a 950 ° C. or higher, it is understood that better magnetic flux density B 8 is obtained.
  • Example 2 A steel slab containing the various components listed in Table 2 and the balance being composed of Fe and inevitable impurities is manufactured by continuous casting, heated to 1200 ° C, and then hot rolled to a thickness of 2.5 mm. It was. Thereafter, hot-rolled sheet annealing was performed at 1060 ° C. for 45 seconds and at a dew point of 30 ° C. in an atmosphere of 80% N 2 + 20% CO 2 . At this time, in the temperature rising process, the average temperature rising rate from reaching normal temperature to 400 ° C. was set to 100 ° C./s, and the time from 400 ° C. to reaching 900 ° C. was set to 45 seconds.
  • the scale on the surface was removed by pickling and then finished to a thickness of 0.27 mm by warm rolling at 150 ° C. Thereafter, primary recrystallization annealing was performed with decarburization in a humid atmosphere of 850 ° C. for 180 seconds, 60% H 2 -40% N 2 and a dew point of 50 ° C. Further, an annealing separator mainly composed of MgO was applied, and secondary recrystallization annealing was performed at 1175 ° C. for 15 hours under a hydrogen atmosphere.
  • the magnetic flux density B 8 of the obtained sample was measured by the method described in JIS C2550. The obtained magnetic flux density B 8 is also shown in Table 2.
  • the steel slab contains C: 0.002% to 0.100%, Si: 2.00% to 6.50%, and Mn: 0.02% to 1.00%, S: 50ppm or less, N: 50ppm or less, It can be seen that a good magnetic flux density B 8 can be obtained by having the component composition suppressed to Se: 50 ppm or less and acid-soluble Al: less than 100 ppm. Further, it can be seen that a further better magnetic flux density B 8 can be obtained by adding a predetermined optional additive component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

従来よりも優れた磁気特性を有する方向性電磁鋼板を提供する。鋼スラブを1300℃以下の温度域で加熱し、該鋼スラブに熱間圧延を施して熱延鋼板とし、該熱延鋼板に熱延板焼鈍を施し、該熱延板焼鈍後の熱延鋼板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、該冷延鋼板に一次再結晶焼鈍を施し、該一次再結晶焼鈍後の冷延鋼板の表面に焼鈍分離剤を塗布してから二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、前記熱延板焼鈍は、常温から400℃までの平均昇温速度を50℃/s以上とし、かつ400℃から900℃に到達するまでの時間を100秒以下とする、方向性電磁鋼板の製造方法。

Description

方向性電磁鋼板の製造方法
 本発明は、変圧器の鉄心材料に好適な方向性電磁鋼板の製造方法に関するものである。
 方向性電磁鋼板は、主に変圧器や発電機等の電気機器の鉄心材料として用いられる軟磁気特性材料であって、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶集合組織を有する。このような集合組織は、方向性電磁鋼板の製造工程のうち、二次再結晶焼鈍の際に、いわゆるゴス(Goss)方位と称される(110)[001]方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。
 この方向性電磁鋼板については、インヒビターと呼ばれる析出物を使用して、仕上焼鈍中にGoss方位を有する粒を二次再結晶させることが一般的な技術として使用されている。例えば、特許文献1には、AlN、MnSを使用する方法が開示され、特許文献2には、MnS、MnSeを使用する方法が開示され、工業的に実用化されている。これらのインヒビターを用いる方法は、インヒビター成分の完全固溶のために1300℃超と高温でのスラブ加熱を必要とするが、安定して二次再結晶粒を発達させるのに極めて有用な方法であった。さらには、これらのインヒビターの働きを強化するために、特許文献3には、Pb、Sb、Nb、Teを利用する方法が開示されており、特許文献4には、Zr、Ti、B、Nb、Ta、V、Cr、Moを利用する方法が開示されている。
 また、特許文献5には、酸可溶性Al(sol.Al)を0.010~0.060%含有させ、スラブ加熱を低温に抑え、脱炭焼鈍工程で適正な窒化雰囲気下で窒化を行うことにより、二次再結晶時に(Al,Si)Nを析出させて、インヒビターとして用いる方法が提案されている。このような途中工程で窒化処理を行い、(Al,Si)NあるいはAlNをインヒビターとして利用する方法は、窒化法と称して数多く提案されている。
 一方、インヒビター成分を含有しない素材において、ゴス方位結晶粒を優位に二次再結晶させる技術が特許文献6に開示されている。これは、インヒビター成分のような不純物を極力排除する事で、一次再結晶時の結晶粒界が持つ粒界エネルギーの粒界方位差角依存性を顕在化させ、インヒビターを用いずともGoss方位を有する粒を二次再結晶させる技術であり、その効果をテクスチャーインヒビション効果と呼んでいる。この方法では、インヒビターの鋼中微細分散が必要ではないため、必須であった高温スラブ加熱も必要としないなど、コスト面でもメンテナンス面でも大きなメリットを有する方法である。
特公昭40-15644号公報 特公昭51-13469号公報 特公昭38-8214号公報 特開昭52-24116号公報 特許第2782086号公報 特開2000-129356号公報
Joachim Kunze et al."Solubility of nitrogen in Fe-Si alloys", Journal of Materials Science Letters 5 (1986) p.815-818
 しかしながら、インヒビター成分を含有しない素材では、一次再結晶焼鈍時に粒成長を抑制し、一定の粒径にそろえ、さらに二次再結晶時にGoss方位の先鋭性を高める機能を有するインヒビターが存在しないため、インヒビターを利用する方法よりも、最終的な磁気特性が劣る場合が多いことが明らかとなった。
 本発明は、上記課題に鑑み、熱延板焼鈍の平均昇温速度を極力速くすることで、昇温初期に形成される鋼中析出物中の窒化珪素の粗大化を抑制し、その後、その窒化珪素を核として生成する微量のAlN析出物の分散状態を適正化させることにより、インヒビターを積極的に利用しない成分系においても、従来よりも優れた磁気特性を有する方向性電磁鋼板を提供するものである。
 以下、本発明を導くに至った実験結果について説明する。
<実験1>
 質量比でC:0.060%、Si:3.15%、Mn:0.12%、N:41ppm、sol.Al:72ppm、S:36ppm、Se:30ppmを含んだ鋼スラブを連続鋳造にて製造し、1200℃で60分均熱するスラブ加熱を施した後、熱間圧延により2.3mmの厚さに仕上げた。その後、1000℃で30秒、乾燥窒素雰囲気で熱延板焼鈍を施した。この際、昇温過程において、常温から400℃に到達するまでの昇温速度を種々変更し、引続く400℃から900℃に到達するまでの時間は50秒とした。熱延板焼鈍後に酸洗にて熱延板表面のスケールを除去した後、冷間圧延で0.23mmの板厚に仕上げた。
 さらに、冷延板に、830℃で150秒、50%H2-50%N2、露点50℃の湿潤雰囲気下での脱炭をともなう一次再結晶焼鈍を施した。次に、MgOを主体とする焼鈍分離剤を塗布し、1200℃で5時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。得られたサンプルの磁束密度B8(磁化力800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定した。測定した磁束密度B8を、熱延板焼鈍における常温から400℃までの平均昇温速度で整理した結果について図1に示す。この結果から、400℃までの平均昇温速度が速いほど、磁気特性が良好であることがわかる。
<実験2>
 質量比でC:0.043%、Si:3.36%、Mn:0.07%、N:29ppm、sol.Al:80ppm、S:20ppmを含んだ鋼スラブを連続鋳造にて製造し、1220℃で45分均熱するスラブ加熱を施した後、熱間圧延により2.0mmの厚さに仕上げた。その後、1050℃で30秒、乾燥窒素雰囲気の熱延板焼鈍を施した。この際、昇温過程において、常温から400℃に到達するまでの平均昇温速度を75℃/sとし、400℃から900℃に到達するまでの時間を種々変更した。熱延板焼鈍後に酸洗にて表面のスケールを除去した後、冷間圧延で0.23mmの板厚に仕上げた。
 さらに、冷延板に、840℃で120秒、60%H2-40%N2、露点60℃の湿潤雰囲気下での脱炭をともなう一次再結晶焼鈍を施した。次に、MgOを主体とする焼鈍分離剤を塗布し、1200℃で10時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。得られたサンプルの磁束密度B8(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定した。測定した磁束密度B8を、熱延板焼鈍の400℃から900℃に到達するまでの時間で整理した結果について図2に示す。この結果から、400℃から900℃に到達するまでの時間が短いほど磁気特性が良好であることがわかる。
 上記2つの実験結果をまとめると、熱延板焼鈍の昇温過程において400℃から900℃までは短時間で昇温するほど磁気特性に優れること、また常温から400℃までは急熱により優れた磁気特性が得られること、がわかる。この理由は必ずしも明らかではないが、発明者らは次のように考えている。
 インヒビターレス素材においては、鋼中のAlが少なく、Siが多いために熱延板焼鈍の昇温過程では、鋼中にSi3N4の組成を主体とした窒化珪素が析出物として形成される。非特許文献1には、α相の鋼中に析出するSi3N4の溶解度積が開示されている。
 この非特許文献1に示された溶解度積に基づいて、上記実験1の成分系からSi3N4の溶解温度を算出すると、約910℃である。このことから、熱延板焼鈍の昇温過程において、この910℃程度(成分によって多少変動)までは、Si3N4の析出物が存在していると考えられる。
 鋼中に存在する析出物は、熱処理により、小さい析出物は消滅し、大きな析出物がより大きくなることが知られている(オストワルド成長)。すなわち、熱処理により、析出物分布は疎になり、その大きさは粗大化する。このことから、Si3N4では、400℃から900℃までの昇温時間を短くすることで、Si3N4の析出物分布や径の変化を防止することができる。その結果、Si3N4析出物の分布が密でかつ析出物径が小さいまま存在することになると考えられる。ここで、Si3N4は熱延板焼鈍の均熱中にSiがAlに置換してAlN析出物に変化することが知られている。とすると、400℃から900℃までの昇温時間を短くすることで熱延板焼鈍後のAlNの分布を密にかつ析出物径を小さくすることができることが推測される。
 また、常温から400℃までの平均昇温速度を著しく速くすると磁束密度が向上する理由については以下のことが考えられる。常温から400℃程度までの温度域では、Siが鋼中を拡散することは少ないが、一方のNは軽元素のためかなりの距離を拡散すると考えられる。従って、平均昇温速度を著しく速くすれば、Nの拡散距離が抑制されるために、Si3N4析出物が細かく密に分布すると推測される。このように、急熱により初期のSi3N4析出物を細かく密に分布させ、その後の昇温時間も短時間化することにより、Si3N4が粗大化し、その分布が疎になることを抑制する。その結果、均熱中に上記のように置換されたAlNの分布を密にしてかつ析出物径を小さくすることにより、二次再結晶後のGoss方位の先鋭性が高まり、最終製品の磁気特性(磁束密度B8)は向上したものと推定される。
 また、Si3N4よりもAlNの方が安定であることから、一度AlNが生成されると、上記のような制御は困難であると推測される。すなわち、中間焼鈍をはさむ2回以上の冷間圧延を含んだ工程においても、Si3N4析出物は熱延板焼鈍の昇温過程でのみ発生する。このため、上記制御は、中間焼鈍工程ではなく熱延板焼鈍工程で行うことが必須であると考えられる。
 なお、上記のメカニズムによれば、AlやNを含まない成分系には適用できないと推測される。しかしながら、AlやNを全く含まない成分系で鋼板を製造することは、工業的規模の製造では不可能であることから、上記のような制御は極めて重要である。
 すなわち、本発明は、上記した実験結果に基づいて完成されたものであり、その要旨構成は、以下のとおりである。
1.C:0.002質量%以上0.100質量%以下、
 Si:2.00質量%以上6.50質量%以下、
 Mn:0.02質量%以上1.00質量%以下、
 S:50質量ppm以下、
 N:50質量ppm以下、
 Se:50質量ppm以下および
 酸可溶性Al:100質量ppm未満
を含有し、残部はFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1300℃以下で加熱し、
 該鋼スラブに熱間圧延を施して熱延鋼板とし、
 該熱延鋼板に熱延板焼鈍を施し、
 該熱延板焼鈍後の熱延鋼板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
 該冷延鋼板に一次再結晶焼鈍を施し、
 該一次再結晶焼鈍後の冷延鋼板の表面に焼鈍分離剤を塗布してから二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、
 前記熱延板焼鈍は、常温から400℃までの平均昇温速度を50℃/s以上とし、かつ400℃から900℃に到達するまでの時間を100秒以下とする、方向性電磁鋼板の製造方法。
2.前記成分組成は、さらに、
 Sb:0.01質量%以上0.50質量%以下、
 Sn:0.01質量%以上0.50質量%以下、
 Ni:0.005質量%以上1.5質量%以下、
 Cu:0.005質量%以上1.5質量%以下、
 Cr:0.005質量%以上0.1質量%以下、
 P:0.005%質量以上0.5質量%以下、
 Mo:0.005質量%以上0.5質量%以下、
 Ti:0.0005質量%以上0.1質量%以下、
 Nb:0.0005質量%以上0.1質量%以下および
 Bi:0.005質量%以上0.1質量%以下
のうちから選ばれる1種または2種以上を含有する、上記1に記載の方向性電磁鋼板の製造方法。
 本発明によれば、インヒビターレス素材において、熱延板焼鈍の昇温過程における平均昇温速度および900℃までの到達時間を短時間化することで、優れた磁気特性を有する方向性電磁鋼板を提供することができる。
最終製品の磁束密度B8と熱延板焼鈍工程における常温から400℃までの平均昇温速度との関係を示すグラフである。 最終製品の磁束密度B8と熱延板焼鈍の昇温過程における400℃から900℃に到達するまでの時間との関係を示すグラフである。
 以下、本発明の一実施形態による方向性電磁鋼板の製造方法について説明する。まず、鋼の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味し、「ppm」は、特に断らない限り「質量ppm」を意味する。
C: 0.002%以上0.100%以下
 Cは0.100%を超えると、脱炭焼鈍で、磁気時効の起こらない0.005%以下に低減することが困難となる。また、0.002%未満となると熱間脆化が顕著となり、スラブ鋳込みや熱間圧延でのトラブルが多発する。好ましくは0.020%以上0.100%以下の範囲である。
Si:2.00%以上6.50%以下
 Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.00%未満では十分ではなく、一方、6.50%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.00%以上6.50%以下の範囲とする。好ましくは2.50%以上4.00%以下の範囲である。
Mn:0.02%以上1.00%以下
 Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.02%未満では十分ではなく、一方、1.00%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.02%以上1.00%以下の範囲とする。好ましくは0.04%以上0.30%以下の範囲である。
 一方、インヒビターを形成し得る元素Al、S、NおよびSeは、極力除くことが望ましい。しかしながら、工業規模の製造では完全に除去することは不可能であることから、S、NおよびSeは、それぞれ、0ppm超50ppm以下、sol.Alは0ppm超100ppm未満であればよい。すなわち、これらの元素を低減するために多大なコストがかかる場合には、上記の範囲で鋼中に残存させることが可能である。好ましくは、S、NおよびSeは、それぞれ、0ppm超25ppm以下、sol.Alは0ppm超80ppm以下である。
 以上、本発明の基本成分について説明した。上記成分以外の残部はFeおよび不可避的不純物であるが、その他にも必要に応じて、磁束密度を向上させる目的で、Sb:0.01%以上0.50%以下、Sn:0.01%以上0.50%以下、Ni:0.005%以上1.5%以下、Cu:0.005%以上1.5%以下、Cr:0.005%以上0.1%以下、P:0.005%以上0.5%以下、Mo:0.005%以上0.5%以下、Ti:0.0005%以上0.1%以下、Nb:0.0005%以上0.1%以下、Bi:0.005%以上0.1%以下のうち一種を単独または複合して添加できる。それぞれの元素の添加量が、下限量より少ないと磁束密度向上効果が乏しくなり、上限量を超えると二次再結晶不良を招き、磁気特性が劣化する。
 次に、本発明に係る方向性電磁鋼板の製造条件について説明する。
 スラブの製造方法は、一般的な製造方法を利用できる。例えば、所定の成分調整がなされた溶鋼を造塊法または連続鋳造法でスラブを製造する。上述の任意添加成分は、途中工程で加えることは困難であることから、溶鋼段階で添加する事が望ましい。
[加熱]
 その後、スラブを通常の方法で加熱する。本発明の成分系では、AlやNが低減されているため、これらを固溶させるための高温での熱処理を必要としないことから、1300℃以下の低温で熱処理することにより、コストを低減することができる。
[熱間圧延]
 上記加熱後に、熱間圧延を行う。熱間圧延温度は、開始温度を1000℃以上、終了温度を750℃以上とすることが、圧延形状が良好となるため好ましい。ただし、終了温度は、圧延後に表面に生成するスケールを増やさないため、900℃以下とすることが好ましい。
[熱延板焼鈍]
 次に、熱延板焼鈍を施す。上述の理由により、昇温過程において常温から400℃までの平均昇温速度を50℃/s以上とし、かつ400℃から900℃に到達するまでの時間を100秒以下とすることが必須である。上記実験結果では、1.945Tを超える磁束密度B8を得られていることから、常温から400℃までの平均昇温速度は100℃/s以上であることが好ましく、400℃から900℃に到達するまでの時間は60秒以下であることが好ましい。
 また、鋼板の形状劣化を抑制するため、常温から400℃までの平均昇温速度は500℃/s以下であることが好ましく、さらに、Si3N4を十分に確保するため、400℃から900℃に到達するまでの時間は10秒以上であることが好ましい。加熱方法は問わないが、50℃/s以上の平均昇温速度を達成させるためには、従来のヒーターやバーナーによる加熱方法のほか、誘導加熱方法や通電加熱方法を採用してもよい。
 さらに、鋼中のSi3N4析出物からAlN析出物への置換を確実とするために、均熱温度を950℃以上とすることが好適であると考えられる。均熱温度は望ましくは、1000℃以上1100℃以下である。1000℃未満では析出物の置換が不完全であり、磁性が劣化する可能性がある。また、1100℃超では二次再結晶が不安定となる可能性がある。均熱時間は、析出物の置換のため、3秒以上とすることが好ましい。また、析出物が過度に粗大化しないため、120秒以下とすることが好ましい。
[冷間圧延]
 熱延板焼鈍後、必要に応じて中間焼鈍を挟む1回以上の冷間圧延を行う。中間焼鈍温度は900℃以上1200℃以下が好適である。温度が900℃未満であると再結晶粒が細かくなり、一次再結晶組織におけるGoss核が減少して磁性が劣化する。また1200℃を超えると、粒径が粗大化しすぎるため、整粒の一次再結晶組織を実現する上で極めて不利である。最終冷間圧延では、冷間圧延の温度を100℃~300℃に上昇させて行うこと、および冷間圧延途中で100~300℃の範囲での時効処理を1回または複数回行うことが、再結晶集合組織を変化させて磁気特性を向上させるためには有効である。
[一次再結晶焼鈍]
 その後、一次再結晶焼鈍を行う。この一次再結晶焼鈍は、脱炭を兼ねることとしてもよい。焼鈍温度は、800℃以上900℃以下が脱炭性の観点から有効である。さらに脱炭の観点からは、雰囲気は湿潤雰囲気とすることが望ましい。ただし、脱炭が不要なC:0.005%以下しか含有していない場合は上記以外の条件でも問題ない。また、保定温度までの平均昇温速度は50℃/s以上400℃/s以下とすることが最終磁気特性が良好となり望ましい。
[焼鈍分離剤]
 上記一次再結晶焼鈍後の鋼板に、焼鈍分離剤を塗布する。MgOを主体とする焼鈍分離剤を適用することで、その後、二次再結晶焼鈍を施すことにより、二次再結晶組織を発達させると共にフォルステライト被膜を形成することができる。打ち抜き加工性を重視してフォルステライト被膜を必要としない場合には、フォルステライト被膜を形成するMgOは使用せずに、シリカやアルミナ等を用いる。これらの焼鈍分離剤を塗布する際は、水分を持ち込まない静電塗布等を行うことが有効である。耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。
[二次再結晶焼鈍]
 その後、二次再結晶焼鈍を行う。二次再結晶焼鈍は、二次再結晶発現のために800℃以上で行うことが望ましい。また、二次再結晶を完了させるために800℃以上の温度で20時間以上焼鈍することが望ましい。フォルステライト被膜を形成させるためには1200℃程度まで昇温させることが望ましい。
[平坦化焼鈍]
 二次再結晶焼鈍後には、付着した焼鈍分離剤を除去するため、水洗やブラッシング、酸洗を行う事が有用である。その後、さらに平坦化焼鈍を行い形状を矯正することにより、鉄損を有効に低減できる。平坦化焼鈍の焼鈍温度は750~900℃が好ましく、焼鈍時間は、3秒以上120秒以下が好ましい。
[絶縁コーティング]
 鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前もしくは後に、鋼板表面に絶縁コーティングを施すことが有効である。この場合、鉄損低減のために鋼板に張力を付与できるコーティングを施すことが好ましい。この絶縁コーティング工程に、バインダーを介した張力コーティング塗布方法、物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させるコーティング方法を採用すると、コーティング密着性に優れ、かつ著しい鉄損低減効果があるため好ましい。
 [磁区細分化処理]
 その後、さらなる鉄損低減のために、磁区細分化処理を行うことが望ましい。処理方法としては、一般的に実施されているような、最終製品板に電子ビームやレーザー等により鉄の結晶格子に歪を加える方法が望ましい。また、最終製品板のみならず、最終仕上板厚に達した冷間圧延板などの中間製品にあらかじめ溝をいれる方法でもよい。
 その他の製造条件は、方向性電磁鋼板の一般的な製造方法に従えばよい。
 (実施例1)
 C:0.023%、Si:3.55%、Mn:0.18%、sol.Al:42ppm、N:42ppm、S:11ppm、Sb:0.075%を含み、残部はFeおよび不可避的不純物の組成からなる鋼スラブを連続鋳造にて製造し、1170℃でスラブ加熱した後、熱間圧延で2.4mmの厚さに仕上げた。その後、900℃もしくは975℃で20秒、露点40℃で90%N2+10%CO2の雰囲気の熱延板焼鈍を施した。この際、昇温過程において、常温から400℃に到達するまでの平均昇温速度と、400℃から900℃に到達するまでの時間を表1記載の通りに種々に変更した。
 次に、熱延板焼鈍後に酸洗にて表面のスケールを除去した後、冷間圧延で1.6mmの板厚に仕上げ、1100℃で110秒、露点40℃で70%N2+30%H2の雰囲気の中間焼鈍を施し、次いで冷間圧延にて0.20mm厚に仕上げた。この後、850℃で60秒、50%H2-50%N2、露点50℃の湿潤雰囲気下での脱炭を伴う一次再結晶焼鈍を施した。さらにMgOを主体とする焼鈍分離剤を塗布し、900℃で40時間、N2雰囲気で保定した後、1220℃で5時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。得られたサンプルの磁束密度B8(800A/mで励磁した時の磁束密度)をJIS C2550に記載の方法で測定した。得られた磁束密度B8を表1に併記する。表1の結果から、常温から400℃までの平均昇温速度を50℃/s以上とし、かつ400℃から900℃に到達するまでの時間を100秒以下とすることにより、良好な磁束密度B8が得られる事がわかる。また、熱延板焼鈍における均熱温度を950℃以上とすることで、さらに良好な磁束密度B8が得られる事がわかる。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 表2記載の種々の成分を含み、残部はFeおよび不可避的不純物の組成からなる鋼スラブを連続鋳造にて製造し、1200℃でスラブ加熱した後、熱間圧延で2.5mmの厚さに仕上げた。その後、1060℃で45秒、露点30℃で80%N2+20%CO2の雰囲気の熱延板焼鈍を施した。この際、昇温過程において、常温から400℃に到達するまでの平均昇温速度を100℃/s、400℃から900℃に到達するまでの時間を45秒とした。
 上記熱延板焼鈍後に、酸洗にて表面のスケールを除去した後、150℃の温間圧延にて0.27mm厚に仕上げた。この後、850℃で180秒、60%H2-40%N2、露点50℃の湿潤雰囲気下での脱炭を伴う一次再結晶焼鈍を施した。さらにMgOを主体とする焼鈍分離剤を塗布し、1175℃で15時間、水素雰囲気下で保定する二次再結晶焼鈍を行った。得られたサンプルの磁束密度B8をJIS C2550に記載の方法で測定した。得られた磁束密度B8を表2に併記する。表2の結果から、鋼スラブがC:0.002%以上0.100%以下、Si:2.00%以上6.50%以下、およびMn:0.02%以上1.00%以下を含有し、S:50ppm以下、N:50ppm以下、Se:50ppm以下、酸可溶性Al:100ppm未満に抑制された成分組成を有することにより、良好な磁束密度B8が得られる事がわかる。また、所定の任意添加成分を添加することで、さらに良好な磁束密度B8が得られる事がわかる。
Figure JPOXMLDOC01-appb-T000002

Claims (2)

  1.  C:0.002質量%以上0.100質量%以下、
     Si:2.00質量%以上6.50質量%以下、
     Mn:0.02質量%以上1.00質量%以下、
     S:50質量ppm以下、
     N:50質量ppm以下、
     Se:50質量ppm以下および
     酸可溶性Al:100質量ppm未満
    を含有し、残部はFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1300℃以下で加熱し、
     該鋼スラブに熱間圧延を施して熱延鋼板とし、
     該熱延鋼板に熱延板焼鈍を施し、
     該熱延板焼鈍後の熱延鋼板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚を有する冷延鋼板とし、
     該冷延鋼板に一次再結晶焼鈍を施し、
     該一次再結晶焼鈍後の冷延鋼板の表面に焼鈍分離剤を塗布してから二次再結晶焼鈍を施す方向性電磁鋼板の製造方法であって、
     前記熱延板焼鈍は、常温から400℃までの平均昇温速度を50℃/s以上とし、かつ400℃から900℃に到達するまでの時間を100秒以下とする、方向性電磁鋼板の製造方法。
  2.  前記成分組成は、さらに、
     Sb:0.01質量%以上0.50質量%以下、
     Sn:0.01質量%以上0.50質量%以下、
     Ni:0.005質量%以上1.5質量%以下、
     Cu:0.005質量%以上1.5質量%以下、
     Cr:0.005質量%以上0.1質量%以下、
     P:0.005%質量以上0.5質量%以下、
     Mo:0.005質量%以上0.5質量%以下、
     Ti:0.0005質量%以上0.1質量%以下、
     Nb:0.0005質量%以上0.1質量%以下および
     Bi:0.005質量%以上0.1質量%以下
    のうちから選ばれる1種または2種以上を含有する、請求項1に記載の方向性電磁鋼板の製造方法。
PCT/JP2017/009079 2016-03-09 2017-03-07 方向性電磁鋼板の製造方法 WO2017154929A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/079,669 US11066722B2 (en) 2016-03-09 2017-03-07 Method of producing grain-oriented electrical steel sheet
RU2018132375A RU2698040C1 (ru) 2016-03-09 2017-03-07 Способ производства текстурированного листа из электротехнической стали
KR1020187025890A KR102139134B1 (ko) 2016-03-09 2017-03-07 방향성 전자 강판의 제조 방법
BR112018068033-8A BR112018068033B1 (pt) 2016-03-09 2017-03-07 Método de produção de chapa de aço elétrica de grão orientado.
EP17763269.2A EP3428293B1 (en) 2016-03-09 2017-03-07 Method for manufacturing grain-oriented electrical steel sheet
CN201780013668.1A CN108699620B (zh) 2016-03-09 2017-03-07 取向性电磁钢板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046026 2016-03-09
JP2016046026A JP6455468B2 (ja) 2016-03-09 2016-03-09 方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO2017154929A1 true WO2017154929A1 (ja) 2017-09-14

Family

ID=59789560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009079 WO2017154929A1 (ja) 2016-03-09 2017-03-07 方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US11066722B2 (ja)
EP (1) EP3428293B1 (ja)
JP (1) JP6455468B2 (ja)
KR (1) KR102139134B1 (ja)
CN (1) CN108699620B (ja)
BR (1) BR112018068033B1 (ja)
RU (1) RU2698040C1 (ja)
WO (1) WO2017154929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770282A4 (en) * 2018-03-20 2021-08-04 Nippon Steel Corporation PROCESS FOR THE PRODUCTION OF A SHEET OF MAGNETIC STEEL WITH ORIENTED GRAIN, AND SHEET OF MAGNETIC STEEL WITH ORIENTED GRAIN
EP3770283A4 (en) * 2018-03-20 2021-08-11 Nippon Steel Corporation PRODUCTION PROCESS FOR GRAIN ORIENTED ELECTRIC STEEL SHEET AND GRAIN ORIENTED ELECTRIC STEEL SHEET

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455468B2 (ja) 2016-03-09 2019-01-23 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6748375B2 (ja) 2016-10-19 2020-09-02 Jfeスチール株式会社 Si含有熱延鋼板の脱スケール方法
CN110291214A (zh) * 2017-02-20 2019-09-27 杰富意钢铁株式会社 方向性电磁钢板的制造方法
JP6900977B2 (ja) * 2018-06-29 2021-07-14 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6947147B2 (ja) * 2018-11-01 2021-10-13 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US20220010400A1 (en) * 2018-11-26 2022-01-13 Jfe Steel Corporation Method of manufacturing non-oriented electrical steel sheet
CN113195753B (zh) * 2019-01-08 2024-04-30 日本制铁株式会社 方向性电磁钢板的制造方法及方向性电磁钢板
US20220239202A1 (en) * 2019-05-28 2022-07-28 Jfe Steel Corporation Method for manufacturing motor core
DE102019217491A1 (de) * 2019-08-30 2021-03-04 Sms Group Gmbh Verfahren zur Herstellung eines kaltgewalzten Si-legierten Elektrobandes mit einer Kaltbanddicke dkb < 1 mm aus einem Stahlvorprodukt
BR112022024371A2 (pt) * 2020-06-24 2022-12-27 Nippon Steel Corp Método para produção de uma chapa de aço elétrico de grão orientado
CN114107787A (zh) * 2020-08-27 2022-03-01 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
KR102493771B1 (ko) * 2020-12-21 2023-01-30 주식회사 포스코 이방향성 전기강판 및 그의 제조방법
CN115992331B (zh) * 2021-10-19 2024-06-04 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031498A (ja) * 2006-07-26 2008-02-14 Jfe Steel Kk 一方向性電磁鋼板およびその製造方法
JP2010100885A (ja) * 2008-10-22 2010-05-06 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2011219793A (ja) * 2010-04-06 2011-11-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板用熱延板及びその製造方法
JP2015200002A (ja) * 2014-04-10 2015-11-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333992A (en) 1964-06-29 1967-08-01 Armco Steel Corp Production of oriented silicon-iron using grain growth inhibitor during primary recrystallization heat treatment
JPS5113469B2 (ja) 1972-10-13 1976-04-28
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS5844152B2 (ja) 1978-12-27 1983-10-01 川崎製鉄株式会社 下地被膜をほとんど有しない方向性珪素鋼板の製造方法
US4468551A (en) 1982-07-30 1984-08-28 Armco Inc. Laser treatment of electrical steel and optical scanning assembly therefor
US4919733A (en) 1988-03-03 1990-04-24 Allegheny Ludlum Corporation Method for refining magnetic domains of electrical steels to reduce core loss
JPH0230740A (ja) 1988-04-23 1990-02-01 Nippon Steel Corp 鉄損の著しく優れた高磁束密度一方向性電磁鋼板及びその製造方法
US5082509A (en) 1989-04-14 1992-01-21 Nippon Steel Corporation Method of producing oriented electrical steel sheet having superior magnetic properties
JP2782086B2 (ja) 1989-05-29 1998-07-30 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JPH088214B2 (ja) 1990-01-19 1996-01-29 三菱電機株式会社 半導体装置
US5643370A (en) 1995-05-16 1997-07-01 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
IT1290172B1 (it) 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche.
KR19990088437A (ko) * 1998-05-21 1999-12-27 에모또 간지 철손이매우낮은고자속밀도방향성전자강판및그제조방법
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2002220642A (ja) 2001-01-29 2002-08-09 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板およびその製造方法
JP2002241906A (ja) 2001-02-09 2002-08-28 Kawasaki Steel Corp 被膜特性および磁気特性に優れた方向性電磁鋼板
EP1279747B1 (en) 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
IN2015DN02521A (ja) 2006-05-24 2015-09-11 Nippon Steel & Sumitomo Metal Corp
JP5336035B2 (ja) 2006-06-21 2013-11-06 Hoya株式会社 光学ガラス、ガラス成形体、光学素子およびそれらの製造方法
CN101684514A (zh) * 2008-09-27 2010-03-31 鞍钢股份有限公司 一种高效冷轧电工钢产品的制造方法
RU2407809C1 (ru) * 2009-08-03 2010-12-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали с высокими магнитными свойствами
JP4840518B2 (ja) * 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2011158519A1 (ja) * 2010-06-18 2011-12-22 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CA2808774C (en) * 2010-09-10 2015-05-05 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
CN102477483B (zh) * 2010-11-26 2013-10-30 宝山钢铁股份有限公司 一种磁性能优良的取向硅钢生产方法
JP5994981B2 (ja) 2011-08-12 2016-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP2940160B1 (en) * 2012-12-28 2017-02-01 JFE Steel Corporation Production method for grain-oriented electrical steel sheet
CN104674136B (zh) 2013-11-28 2017-11-14 Posco公司 导磁率优良的无取向电工钢板及其制造方法
US9589606B2 (en) * 2014-01-15 2017-03-07 Samsung Electronics Co., Ltd. Handling maximum activation count limit and target row refresh in DDR4 SDRAM
JP6455468B2 (ja) 2016-03-09 2019-01-23 Jfeスチール株式会社 方向性電磁鋼板の製造方法
RU2716053C1 (ru) 2016-11-01 2020-03-05 ДжФЕ СТИЛ КОРПОРЕЙШН Способ производства текстурированной электротехнической листовой стали

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031498A (ja) * 2006-07-26 2008-02-14 Jfe Steel Kk 一方向性電磁鋼板およびその製造方法
JP2010100885A (ja) * 2008-10-22 2010-05-06 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2011219793A (ja) * 2010-04-06 2011-11-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板用熱延板及びその製造方法
JP2015200002A (ja) * 2014-04-10 2015-11-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770282A4 (en) * 2018-03-20 2021-08-04 Nippon Steel Corporation PROCESS FOR THE PRODUCTION OF A SHEET OF MAGNETIC STEEL WITH ORIENTED GRAIN, AND SHEET OF MAGNETIC STEEL WITH ORIENTED GRAIN
EP3770283A4 (en) * 2018-03-20 2021-08-11 Nippon Steel Corporation PRODUCTION PROCESS FOR GRAIN ORIENTED ELECTRIC STEEL SHEET AND GRAIN ORIENTED ELECTRIC STEEL SHEET
US11408042B2 (en) 2018-03-20 2022-08-09 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
US11661636B2 (en) 2018-03-20 2023-05-30 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
BR112018068033B1 (pt) 2022-05-24
BR112018068033A2 (pt) 2019-01-08
EP3428293A1 (en) 2019-01-16
US11066722B2 (en) 2021-07-20
KR102139134B1 (ko) 2020-07-29
EP3428293B1 (en) 2020-04-29
CN108699620A (zh) 2018-10-23
JP6455468B2 (ja) 2019-01-23
KR20180111954A (ko) 2018-10-11
US20190055619A1 (en) 2019-02-21
EP3428293A4 (en) 2019-01-16
RU2698040C1 (ru) 2019-08-21
CN108699620B (zh) 2020-07-14
JP2017160489A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2017154929A1 (ja) 方向性電磁鋼板の製造方法
JP5737483B2 (ja) 方向性電磁鋼板の製造方法
JP6617827B2 (ja) 方向性電磁鋼板の製造方法
JP6132103B2 (ja) 方向性電磁鋼板の製造方法
JP6260513B2 (ja) 方向性電磁鋼板の製造方法
WO2017086036A1 (ja) 無方向性電磁鋼板の製造方法
WO2015174362A1 (ja) 方向性電磁鋼板の製造方法
JP4962516B2 (ja) 方向性電磁鋼板の製造方法
JP6004183B2 (ja) 方向性電磁鋼板の製造方法
JP6418226B2 (ja) 方向性電磁鋼板の製造方法
JP5375694B2 (ja) 方向性電磁鋼板の製造方法
JP5754115B2 (ja) 方向性電磁鋼板およびその製造方法
JP6143010B2 (ja) 鉄損特性に優れる方向性電磁鋼板の製造方法
JP5846390B2 (ja) 方向性電磁鋼板の製造方法
JP5741308B2 (ja) 方向性電磁鋼板の製造方法およびその素材鋼板
JP5310510B2 (ja) 方向性電磁鋼板の製造方法
JP2014173098A (ja) 方向性電磁鋼板の製造方法
JP6900977B2 (ja) 方向性電磁鋼板の製造方法
JP6544344B2 (ja) 方向性電磁鋼板の製造方法
JP6866869B2 (ja) 方向性電磁鋼板の製造方法
KR20230159875A (ko) 방향성 전자 강판의 제조 방법
KR20230159874A (ko) 방향성 전자 강판의 제조 방법
JP2016084540A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025890

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025890

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763269

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018068033

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017763269

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018068033

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180906