WO2017145274A1 - アキシャルギャップ型回転電機 - Google Patents

アキシャルギャップ型回転電機 Download PDF

Info

Publication number
WO2017145274A1
WO2017145274A1 PCT/JP2016/055342 JP2016055342W WO2017145274A1 WO 2017145274 A1 WO2017145274 A1 WO 2017145274A1 JP 2016055342 W JP2016055342 W JP 2016055342W WO 2017145274 A1 WO2017145274 A1 WO 2017145274A1
Authority
WO
WIPO (PCT)
Prior art keywords
type rotating
axial gap
electrical machine
rotating electrical
gap type
Prior art date
Application number
PCT/JP2016/055342
Other languages
English (en)
French (fr)
Inventor
博洋 床井
榎本 裕治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/055342 priority Critical patent/WO2017145274A1/ja
Priority to US16/078,304 priority patent/US10756600B2/en
Priority to JP2018501458A priority patent/JP6771537B2/ja
Publication of WO2017145274A1 publication Critical patent/WO2017145274A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/03Machines characterised by the wiring boards, i.e. printed circuit boards or similar structures for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to an axial gap type rotating electrical machine, and more particularly to an axial air gap type rotating electrical machine having a stator composed of a plurality of stator cores.
  • Rotating electric machines driven by inverters such as variable speed systems and permanent magnet synchronous machines are increasing for energy saving of electric equipment.
  • the common mode voltage generated by the inverter is electrostatically coupled between the coil and the rotor, and a potential difference (hereinafter referred to as “shaft voltage”) is generated between the inner and outer rings of the bearing. May be. This is because an excessive shaft voltage causes dielectric breakdown of the lubricating oil in the bearing, and generates electric corrosion of the bearing due to current (for example, Patent Document 1).
  • Patent Document 1 discloses a technique for shielding a coil and a rotor to reduce axial voltage.
  • Patent Document 1 is a radial gap type rotating electrical machine, in which an insulating layer is provided on the entire stator surface facing the stator core and the rotor of the coil, and the surface has a direction perpendicular to the magnetic flux flow of the stator core.
  • conductive portions and insulating portions are alternately formed.
  • the conductive portion is electrically connected to the core at the ground potential.
  • the radial gap type rotating electric machine described above has a mainstream structure at present, but in recent years, an axial air gap type rotating electric machine in which the stator and the rotor face each other through a predetermined air gap in the direction of the rotation axis is also used. It has been actively developed.
  • the axial air gap type rotating electrical machine when the diameter is increased, the opposing area of the stator and the rotor per physique increases in proportion to the square of the diameter, which makes it easy to achieve higher output density and higher efficiency. . Therefore, this rotary electric machine has a structure suitable for thinning and flattening.
  • the axial voltage is likely to increase, such as the arrangement of a plurality of cores in an electrically insulated state and the large facing area between the coil and the rotor.
  • Patent Document 2 discloses a technique for reducing shaft voltage focusing on a structure peculiar to an axial air gap type, such as a grounding structure of a plurality of cores, a shield structure between a coil and a rotor, and a shaft. Specifically, in Patent Document 2, an end portion of an iron core is protruded from a bobbin around which a coil is wound, and the outer peripheral surface of the protruded iron core and the inner peripheral surface of the housing are electrically connected via a conductive member. The structure which earth
  • Patent Document 2 discloses that a cylindrical conductive member is disposed between a rotating shaft side central portion of a ring-shaped stator and a shaft, and is electrically connected to a housing, whereby a shaft and a coil are arranged.
  • the structure which shields between is disclosed.
  • the crossover wires drawn from the coils of the axial air gap type rotating electrical machine are wired so as to run over the inner periphery of the housing, and are drawn out from the opening of the housing.
  • the gap area contributing to the torque output is approximately proportional to the square of the diameter.
  • the connecting wire protrudes to the rotor side and is disposed at a position facing the side surface of the rotor, and the connecting wire and the rotor are electrostatically coupled.
  • the capacitance between the crossover wire and the rotor cannot be ignored with respect to the capacitance between the coil and the rotor, and the shaft voltage is greatly affected. Effect.
  • the present invention aims to reduce the shaft voltage while ensuring high output, high efficiency and assemblability of the axial gap type rotating electrical machine.
  • the present invention includes a plurality of means for solving the above-described problems. If an example of the axial gap type rotating electrical machine of the present invention is given, a plurality of core members having at least an iron core and a coil wound around the outer periphery thereof are provided.
  • a stator that is arranged in an annular shape with magnetic field lines parallel to the shaft around the shaft, the stator, at least one rotor that faces the shaft in the axial direction of the shaft via a predetermined air gap, and
  • An axial gap type rotating electrical machine having a stator and a rotor and a housing whose inner peripheral surface is opposed in the radial direction, and a coil connection portion connected to the circumferentially extending bus portion and the coil protruding from the bus portion And an outer peripheral side of a plurality of the iron cores arranged in an annular shape, the wiring board comprising an external connection part protruding from the bus part In which were placed.
  • the rotor has a conductive portion made of a conductive member on the outer peripheral side, A first region in which an inner peripheral surface of the housing and a conductive portion of the rotor face each other in a radial direction; a second region from the stator side to the side surface of the coil facing the rotor; The ratio of the bus portion of the wiring board disposed in the second region is larger than the ratio of the bus portion of the wiring board disposed in the first region.
  • a wiring board is arranged.
  • a shaft voltage can be reduced, ensuring the high output of a axial gap type rotary electric machine, high efficiency, and assembly property. Moreover, the reliability with respect to a bearing electrolytic corrosion can be improved. Problems, configurations, and effects other than those described above will be apparent from the following description.
  • FIG. 1A is a perspective view of a motor according to a first embodiment of the present invention.
  • FIG. 1B is an enlarged perspective view of the wiring board of FIG. 1A.
  • FIG. 1C is an axial end view of a stator and a coil connection diagram together with coil numbers.
  • FIG. 2 is a partial cross-sectional view of the motor illustrating the relationship between the crossover wires and the capacitance between the rotors according to the second embodiment of the present invention.
  • FIG. 3 is a perspective view of the motor according to the third embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view of the motor according to the fourth embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of the wiring board according to the fifth embodiment of the present invention.
  • FIG. 6A is a perspective view of a wiring board according to Example 6 of the present invention, in which a mold layer that is an insulating member is shown transparent.
  • FIG. 6B shows the mold layer made opaque.
  • FIG. 7 is a partial cross-sectional view of the motor according to the seventh embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view of a wiring board, bobbin, and winding according to an eighth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the ninth embodiment of the present invention during stator molding.
  • FIG. 10 is a cross-sectional view of the stator mold of Example 10 of the present invention.
  • FIG. 11A is a perspective view of a motor according to Embodiment 11 of the present invention.
  • FIG. 11B is an enlarged perspective view of the wiring board according to the eleventh embodiment.
  • FIG. 12 is a partial cross-sectional view of the external connection portion and the bus portion according to the twelfth embodiment of the present invention.
  • FIG. 13A is a diagram showing a general crimp terminal.
  • FIG. 13B is a partial cross-sectional view of the external connection portion and the bus portion according to the thirteenth embodiment of the present invention.
  • FIG. 14 is an enlarged partial cross-sectional view of the periphery of the wiring board during stator molding of Example 14 of the present invention.
  • FIG. 15 is a partial cross-sectional view of the wiring board, bobbin, and winding according to the fifteenth embodiment of the present invention.
  • FIG. 1A is a perspective view showing a configuration of an axial gap type motor according to a first embodiment of the present invention.
  • 1B shows an enlarged perspective view of the wiring board of FIG. 1A.
  • FIG. 1C shows an end view in the axial direction of the stator along with coil numbers and a connection diagram of each coil.
  • the motor 1000 is a so-called double rotor type rotating electric machine in which a stator 100 having a substantially annular donut shape is disposed so as to face each other so that two disk-shaped rotors 200 are sandwiched from the shaft direction.
  • the specification of the motor is 3 phase, 10 poles, 12 slots.
  • the winding is composed of delta connection, 2 series, 2 parallel, and 2 ends.
  • the stator 100 is configured by arranging a plurality of core members in an annular shape around a shaft (in this example, it is assumed to have 12 sets of core members).
  • the core member is wound around an iron core (core) 110 having a columnar body whose sides at both ends are substantially trapezoidal or fan-shaped, a bobbin having a cylindrical portion having an inner diameter that approximately matches the outer diameter of the iron core, and the outer cylindrical portion of the bobbin. And a coil (winding) 120.
  • core iron core
  • bobbin having a cylindrical portion having an inner diameter that approximately matches the outer diameter of the iron core
  • coil winding
  • a wiring board 300 made of a conductor is disposed on the rotor 200 side of the coil 120 and on the outer diameter side of the iron core 110 on the end surface in the rotation axis direction from the stator 100.
  • the wiring board 300 includes three annular bus portions 310, four coil connection portions 320 provided in the bus portion, and one external connection portion 330 provided one by one. .
  • a lead wire 121 from which an end portion of the electric wire of each coil is drawn is connected to the coil connecting portion 320 by caulking, welding, soldering, or the like. In the two-series and two-parallel connection, the series portion is continuously wound, and there are a total of 24 lead wires 121, two from each coil. The sign of the coil number shown in FIG.
  • the rotor 200 includes a permanent magnet 210 that faces the end side surface of the iron core 110, a back yoke (not shown) disposed on the back surface thereof, and a yoke 230 that supports them and is coupled so as to rotate together with the shaft.
  • the yoke 230 is made of a conductive member such as metal. In this embodiment, iron is used. However, the present invention is not limited to this, and aluminum or stainless steel (SUS, etc.) may be used.
  • the shaft is rotatably coupled to an end bracket (not shown) via a bearing. The end bracket is fixed to both side surfaces of the housing.
  • a terminal box (not shown) is provided on the outer peripheral side surface of the housing, and a primary-side electric wire (not shown) and a secondary-side electric wire, that is, an external connection portion are electrically connected via a terminal block.
  • the motor 1000 having such a configuration operates as follows.
  • the output line of the inverter is connected to the primary side of the terminal block, and an alternating current is passed through the coil 120.
  • a rotating magnetic field is formed in the stator 100, and torque is generated by attracting and repelling the DC magnetic field formed in the rotor 200 by the permanent magnet 210.
  • the common mode voltage of the inverter generated in the coil 120 is electrostatically coupled to the rotor side.
  • the rotor 200 has a potential, a potential difference is generated between the rotor 200 and the housing 400 that is at the ground potential. This potential difference is applied between the inner and outer rings of the bearing and becomes a shaft voltage.
  • the shaft voltage Vb resulting from the common mode voltage Vcom is expressed by the following [Formula 1].
  • Cwr indicates the capacitance between the coil and the rotor
  • Crf indicates the capacitance between the coil and the frame, that is, the housing or the end bracket
  • Cb indicates the capacitance between the bearing inner and outer rings.
  • Cwr is a composite capacity formed between the coil and the rotor disk, between the coil and the shaft, and between the wiring board functioning as a jumper and the rotor side surface.
  • the capacitance between the wiring board and the rotor side surface mainly depends on the radial cross-sectional area of the bus portion arranged in the circumferential direction.
  • the bus portion of the wiring board is greatly reduced in size and has the effect of suppressing the capacitance with the side surface of the rotor. Also, the wiring workability has been greatly improved.
  • the bus portion 310 is arranged on the outer peripheral side of the plurality of iron cores 110 arranged in an annular shape and on the rotor 200 side with respect to the coil 120. Therefore, the outer diameter of the iron core 110 and the coil 120 It is possible to maximize the outer diameter. As a result, the shaft voltage can be suppressed without lowering the output and efficiency of the motor.
  • the wiring board 300 is made of a conductor such as copper or aluminum.
  • the conductor may be subjected to a surface treatment as necessary.
  • the bus portion of the present embodiment has a substantially square cross section, but may be a rectangle, a circle, an ellipse, or the like. Although one bus portion is provided for each phase, it may be divided into a plurality of bus portions.
  • the bus portions of each phase are not limited to being arranged in the axial direction, but may be arranged in the radial direction. From the viewpoint of reducing the axial voltage, it is desirable that the cross-sectional shape of the bus part and the arrangement of the bus part of each phase are such that the projected area of the bus part viewed from the rotor in the axial direction is small.
  • the number of phases, the slot combination, the connection structure, and the number of possessions are not limited to this example.
  • the position and number of leader lines and the connection position to the bus section differ depending on the slot combination and the connection method. It may be a synchronous reluctance motor, a switched reluctance motor or an induction motor without a permanent magnet. Furthermore, a generator may be used instead of a motor.
  • FIG. 2 schematically shows an enlarged cross section of the motor according to the second embodiment of the present invention.
  • a part or all of the wiring board 300 is in a region (space) located on the rotor 200 side of the coil 120 and on the housing 400 side in the rotational axis radial direction of the rotor 200. Be placed.
  • a region where the inner peripheral surface of the housing 400 and the conductive portion of the rotor 200 are opposed to each other in the radial direction is a first region, and a region from the first region to the side of the coil 120 facing the rotor 200 on the stator side. Is the second region.
  • the conductive portion of the rotor means that when the yoke 230 is made of a conductive material such as iron, and this portion, and the permanent magnet 210 is made of a conductive magnetic material such as iron. This is the case. Note that this is not the case when the permanent magnet 210 is a non-conductive magnetic material such as ferrite.
  • the wiring board 300 in particular the bus section 310, arranges the wiring board 300 such that the ratio of the wiring board 300 is higher than the ratio of the first board.
  • FIG. 2 also shows a schematic relationship between the arrangement state of the bus unit 310 and the capacitance Cwr.
  • Cwr in this figure is the relationship with the end face position of the bus section when the bus section is stacked from the end face of the coil in the direction of the rotation axis (here, defined as the Z direction).
  • the height of the bus portion is equal to or less than the coil, the distance between the bus portion and the conductive member of the rotor is increased, so that Cwr is sufficiently small.
  • the height of the bus portion is lower than the position of the yoke, the increasing gradient of Cwr is small.
  • the bus portion and the yoke face each other close to each other, so that Cwr increases rapidly.
  • Example 2 since most bus parts are arrange
  • the second region is formed on the outer peripheral side surface of the permanent magnet. According to this structure, it is possible to achieve both an increase in the magnet diameter and a reduction in the capacitance between the crossover wire and the rotor, and at the same time, it is possible to achieve higher motor output, higher efficiency, and lower shaft voltage. it can.
  • a double rotor type motor has been described as an example.
  • the present invention can also be applied to an axial air gap type electric motor having a single rotor structure in which one rotor and one stator face each other. Further, it may be a synchronous reluctance motor, a switched reluctance motor or an induction motor without a permanent magnet.
  • a generator may be used instead of a motor.
  • an open slot iron core has a large opposing area between the coil and the rotor, so that Cwr tends to be large compared to the iron core shape having a flange.
  • this structure can suppress the electrostatic capacitance between the coil and the rotor even in the case of an open slot iron core.
  • Embodiment 4 of the present invention is characterized in that the core member, the wiring board, and the housing are integrally molded.
  • FIG. 4 shows a partial cross section of the motor of Example 4 of the present invention.
  • the wiring board 300 excluding the external connection portion, the core member including the iron core 110 and the coil 120, and the housing 400 are integrally molded with the resin 140.
  • Embodiment 5 of the present invention is characterized in that an insulating member is provided on the wiring board and the bus portion is held by the insulating member.
  • FIG. 5 shows a cross-sectional view around the wiring board of Example 5 of the present invention.
  • an annular insulating member 340 having a groove having a U-shaped cross section is provided, and the bus portion 310 is stored in the groove.
  • the winding connection part 320 and the external connection part 330 protrude to the outer diameter side of the insulating member 340.
  • the bus portion since the bus portion is positioned, insulation between the phases is maintained. Even when the wiring board, the core member, and the housing are integrally molded with an insulating member, contact between the bus portions can be prevented. In addition, the following assemblability can be improved.
  • the wiring boards of the respective phases stored in the insulating member may be arranged so as to be stacked, and the workability is good.
  • the insulating member may be provided with a positioning mechanism between the insulating members. Thereby, the assembly property at the time of laminating
  • Embodiment 6 of the present invention is characterized in that the wiring board is integrally molded with an insulating member before being incorporated into the motor.
  • FIG. 6 shows a perspective view of the wiring board 300 according to the sixth embodiment of the present invention.
  • the wiring board is integrally molded with the insulating member 340 in a state where the phases of the bus portion 310 are separated from each other.
  • the mold layer is made opaque, the winding connection part 320 and the external connection part 330 are not molded.
  • This embodiment secures insulation between the phases of the wiring board, reduces the number of parts of the stator, and improves assemblability. Further, it is possible to suppress the deformation of the wiring board in the integral molding with the core member and the housing, and the insulation failure due to this.
  • Embodiment 7 of the present invention is characterized in that a ground connection portion is formed in an insulating member of a wiring board.
  • FIG. 7 shows a partial cross-sectional view of a motor of Example 7 of the present invention.
  • the wiring board 300 has an insulating member 340 formed by pre-molding.
  • the ground connection portion 350 penetrates the insulating member 340 in the axial direction on the outer diameter side of the bus portion. It is provided to do.
  • the ground connection part 350 of this figure is provided in one place or a plurality of places in the circumferential direction, and is not an annular one that is continuous in the circumferential direction.
  • One end of the ground connection portion 350 is connected to the first conductive member 150 and the second conductive member 160 provided on the core and the stator.
  • the other end of the ground connection portion 350 is connected to the grounded housing 400 by a ground wire 351.
  • the core and the shielding material can be reliably grounded. Further, since there are no special parts or structures for ensuring grounding, assemblability is improved.
  • Embodiment 8 of the present invention is characterized in that a mutual positioning mechanism is provided on the insulating member of the wiring board and the bobbin.
  • FIG. 8 is a partial cross-sectional view of the wiring board 300, bobbin 130, and winding 120 according to the eighth embodiment of the present invention.
  • a positioning mechanism including a convex portion 131 is provided on the collar portion of the bobbin 130.
  • the insulating member 340 of the wiring board 300 is provided with a positioning mechanism including a recess 341.
  • Wiring board 300 is arranged on the top of bobbin 130 so that both positioning mechanisms fit together.
  • This embodiment facilitates the positioning of the wiring board and suppresses the movement of the wiring board when connecting the coil connecting portions.
  • Embodiment 9 of the present invention is characterized in that an axial notch is provided at one end of the outer periphery of the annular insulating member of the wiring board to perform circumferential positioning.
  • FIG. 9 shows a cross-sectional view of Example 9 of the present invention during stator molding.
  • the mold 3000 includes a center post 3100 that forms the inner periphery of the stator, a lower mold 3300 that forms the lower surface of the stator, and an upper mold (not shown) that forms the upper surface of the stator.
  • a concave portion 341 that is continuous in the axial direction is provided on the outer periphery of the insulating member 340 of the wiring board 300.
  • a protrusion 420 corresponding to the recess 341 of the insulating member is provided on the inner periphery of the housing 400 in the axial direction.
  • the wiring board and the housing are positioned in the circumferential direction by the concave portion and the convex portion.
  • a wiring board moves at the time of a molding, and it can suppress that the electrical connection of a coil connection part is damaged.
  • the convex part of the housing also functions as a detent of the stator against the torque reaction force generated when operating as a motor, and improves the reliability of the motor.
  • a plurality of concave portions of the insulating member and convex portions of the housing may be provided in the circumferential direction. Moreover, you may provide a convex part in an insulating member and a recessed part in a housing.
  • Embodiment 10 of the present invention is characterized in that a mutual positioning mechanism is provided in the insulating resin portion of the wiring board and the mold.
  • FIG. 10 shows a cross-sectional view of Example 10 of the present invention during stator molding.
  • a recess 341 is provided in the insulating resin portion of the wiring board.
  • a step 3310 for arranging the wiring board 300 is formed on the lower mold 3300 of the mold 3000.
  • a convex portion 3320 is provided on the bottom surface of the stepped portion.
  • the concave portion of the insulating resin portion and the convex portion of the lower mold of the mold mold are fitted to each other so that both are positioned.
  • a wiring board moves at the time of a molding, and it can suppress that the electrical connection of a coil connection part is damaged.
  • a plurality of concave portions of the insulating member and convex portions of the lower mold may be provided in the circumferential direction. Moreover, you may provide a convex part in an insulating member and a recessed part in a lower mold
  • Example 11 of the present invention is characterized in that the bus portion of the wiring board is formed in an open structure.
  • FIG. 11A shows a perspective view of a motor of Example 11 of the present invention.
  • FIG. 11B shows an enlarged perspective view of the wiring board.
  • the bus part 310 has one open part 380 in the circumferential direction.
  • This embodiment can reduce the amount of bus conductor used. It is possible to improve the yield when manufacturing the bus part by punching from the plate material. Furthermore, the bus portion can be manufactured by bending one conductor.
  • Embodiment 12 of the present invention is characterized in that an external connection portion is formed by connecting a terminal separate from the bus portion.
  • FIG. 12 shows a cross-sectional view of the external connection part and the bus part of Example 12 of the present invention.
  • the external connection portion 330 includes a terminal 331 provided with a screw portion 333 at one end, and is connected to a screw hole provided in the bus portion 310 by the screw portion 333.
  • the terminal 331 and the bus part 310 are in contact with each other at the contact surface 332.
  • the shape of the external connection portion does not depend on the shape of the bus portion, the shape of the external connection portion can be arbitrarily changed. Even if the structure on the primary side is changed, the external connection portion can be connected without providing a connector or the like.
  • connection portion and the bus portion are connected by a screw mechanism, but other connection means such as welding, soldering, and friction stir welding may be used.
  • Embodiment 13 of the present invention is characterized in that an external connection portion is formed by connecting a terminal connected to a bus portion and an insulated wire.
  • FIG. 13A shows a general-purpose round crimp terminal 334.
  • FIG. 13B is a cross-sectional view of the external connection portion and the bus portion 310 according to the thirteenth embodiment of the present invention.
  • the external connection portion includes a general-purpose round terminal 334 with an insulated wire 370 caulked.
  • the round terminal 334 is bent to pull out the insulated wire 370 in the axial direction.
  • the external connection part is connected to the screw hole of the bus part 310 by a bolt 335.
  • the present embodiment can give shape flexibility to the external connection portion, connection independent of the connection position and shape on the primary side is possible. For example, it can be easily connected to a terminal block arranged outside the housing.
  • connection portion and the bus portion are connected by a screw mechanism, but other connection means such as welding, soldering, friction stir welding, and the like may be used.
  • Embodiment 14 of the present invention is characterized in that when the wiring board is molded integrally with the core member and the housing, a sealing piece is provided at the external connection portion.
  • FIG. 14 is a cross-sectional view of the periphery of the wiring board during stator molding of Example 14 of the present invention.
  • the wiring board 300 is covered with an insulating member 340 except for the external connecting portion 330 and a coil connecting portion (not shown).
  • the sealing piece 360 which has the taper part 361 which a cross section reduces gradually is provided in the outer periphery.
  • the lower mold 3300 is provided with an opening 3330 for storing the external connection portion 330.
  • a tapered portion 3331 corresponding to the shape of the sealing piece 360 is provided at the entrance of the opening 3330.
  • the sealing member is preferably made of resin, rubber or the like.
  • the dimensional relationship is such that clamping pressure is applied between the sealing member and the lower mold taper portion, the sealing member and the lower mold, and further, the sealing member, the insulating member, and the external connection portion are in close contact with each other. Therefore, the resin sealing effect can be enhanced.
  • the shape of the coil connection portion does not depend on the shape of the bus portion, the shape of the coil connection portion can be arbitrarily changed. By changing the terminal shape of the coil connection portion, it is possible to cope with changes in the specifications of the lead wire and the structure of the primary side.
  • connection between the coil connection portion and the lead wire is not limited to caulking, but may be welding, soldering, friction stir welding, or the like.
  • Example 16 of the present invention is characterized in that the contact surface of the coil connecting portion with the lead wire is provided with irregularities and is crimped without removing the surface insulating film of the lead wire.
  • FIG. 16 shows an enlarged perspective view of the coil connection part and the bus part of Example 16 of the present invention.
  • the bus part 310 and the coil connection part 320 are made of the same member formed by punching a plate material and then bending the coil connection part.
  • a large number of protrusions 323 that are sufficiently deeper than the thickness of the insulating coating applied to the coil surface are provided on the contact surface of the coil connecting portion 320 with the lead wire 121.
  • the lead wire 121 is caulked to the coil connecting portion 320 without removing the insulating film.
  • the protrusion 323 on the contact surface with the lead wire breaks down the insulating film and penetrates deeply to the conductor portion of the coil.
  • the present embodiment it is possible to perform the caulking work between the lead wire and the coil connecting portion without performing the step of removing the insulating film from the lead wire.
  • assemblability improves.
  • the coil of an aluminum electric wire it can suppress that a high-resistance oxide film is formed by removing the insulating film and the contact resistance is increased.
  • a waterproofing process can be performed in which the connection part between the aluminum electric wire and the copper coil connection part is covered with a resin. By suppressing the penetration of moisture into the connecting portion, corrosion between different metals (galvanic corrosion) can be suppressed.
  • an aluminum electric wire is employ
  • Example 17 of the present invention the present invention is used for an industrial motor.
  • FIG. 17 shows a cross-sectional view of an industrial motor of Example 17 of the present invention.
  • the motor 1000 includes an outer fan fan 900 that is directly connected to the shaft on the opposite output side of the shaft 600 and a fan cover 910 that guides wind generated by the outer fan fan to the housing side.
  • a terminal box 800 in which a terminal block 810 is built is provided outside the housing 400.
  • the wiring board 300 is disposed adjacent to the anti-load side of the stator 100.
  • a lead wire from the coil is connected to the coil connection portion, and an insulated wire 370 forming an external connection portion is connected to the secondary side of the terminal block 810.
  • the amount of conductor at the transition portion from each coil to the terminal block can be minimized, and the capacitance formed by the transition portion and the rotor conductor can be reduced.
  • the shaft voltage of a motor reduces and it can suppress a bearing electrolytic corrosion.
  • Industrial motors are continuously operated such as fans, pumps, and compressors, and are used for a long period of 10 years or more. Therefore, it is important to configure motors and parts with a long life. Suppression of the electric corrosion of the bearing greatly contributes to extending the life of the bearing. Further, since the crossover portion is made compact, the outer diameter of the rotor can be enlarged, and high output and high efficiency can be achieved.
  • An opening is provided on the side of the housing to place the connecting wire between the coil and the terminal block.
  • the opening and the crossover are arranged so as not to interfere with each other. Since it becomes easy, sealing of the resin at the time of stator molding becomes easy. Further, in the industrial motor, the housing dimensions are roughly determined according to the output. It becomes easy to divert the housing of the conventional radial type motor to the axial gap. Furthermore, the wiring work process at the crossover and the leakage prevention measures at the time of molding are greatly simplified, so that the assemblability is improved.
  • the position of the terminal block is arbitrary, and the wiring board may be arranged on either the anti-load side or the load side according to this.
  • the structures of the coil connection part and the external connection part may be those described in other embodiments.
  • FIG. 18 shows a cross-sectional view of an industrial motor integrated with an inverter of Example 18 of the present invention.
  • This motor makes use of the thin characteristics of the axial gap motor, and the inverter 2000 is arranged in the axial direction of the motor, on the side opposite to the load.
  • the end bracket on the side opposite to the load is arranged close to the motor side,
  • An inverter storage chamber is formed from the cover 2200 and the end cover 2300.
  • an external fan 900 and a fan cover 910 that are directly connected to a shaft that penetrates the inverter storage chamber are provided.
  • a terminal box 800 and a terminal block 810 are provided outside the side cover 2200.
  • a wiring board 300 is provided on the antiload side of the stator, and an insulated power line 370 forming an external connection portion is connected to the secondary side of the inverter 2000 through the opening of the antiload side end bracket 500. . Further, the primary side of the inverter 2000 is connected to the secondary side of the terminal block 810 through the opening of the side cover 2200.
  • the amount of conductor at the transition portion from each coil to the terminal block can be minimized, and the capacitance formed by the transition portion and the rotor conductor can be reduced.
  • the shaft voltage of a motor reduces and it can suppress a bearing electrolytic corrosion.
  • Industrial motors are continuously operated such as fans, pumps, and compressors, and are used for a long period of 10 years or more. Therefore, it is important to configure motors and parts with a long life. Suppression of the electric corrosion of the bearing greatly contributes to extending the life of the bearing. Further, since the crossover portion is made compact, the outer diameter of the rotor can be enlarged, and high output and high efficiency can be achieved.
  • An opening is provided on the side of the housing to place the connecting wire between the coil and the terminal block.
  • the opening and the crossover are arranged so as not to interfere with each other. Since it becomes easy, sealing of the resin at the time of stator molding becomes easy. Further, in the industrial motor, the housing dimensions are roughly determined according to the output. It becomes easy to divert the housing of the conventional radial type motor to the axial gap. Furthermore, the wiring work process at the crossover and the leakage prevention measures at the time of molding are greatly simplified, so that the assemblability is improved.
  • connection line from the motor to the inverter can be minimized, the opening area provided on the anti-load side can be minimized and the strength can be easily secured.
  • flexible connection independent of the connection part on the inverter side becomes possible. This also improves the assemblability.
  • End cover 3000 ... Mold die, 3100 ... Center post, 3200 ... Upper die, 3300 ... Lower die, 3310 ... Stepped portion, 3320 ... Protruding portion, 3330 ... Opening portion, 3331 ... Tapered part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 アキシャルギャップ型回転電機の高出力、高効率および組立性を確保しつつ、軸電圧を低減する。鉄心及びその外周に巻き回されたコイルを少なくとも有する複数のコアメンバを、シャフトを中心に、磁力線が該シャフトと並行になる向きで、環状に配列してなるステータと、前記ステータと、シャフト軸方向に所定のエアギャップを介して面対向する少なくとも1つのロータと、前記ステータ及び前記ロータと径方向に内周面が対向するハウジングとを有するアキシャルギャップ型回転電機であって、周方向に連続したバス部と、前記バス部から突出した前記コイルと接続するコイル接続部と、前記バス部から突出した外部接続部からなる配線板を有し、前記配線板を、環状に配列された複数の前記鉄心の外周側に配置したものである。

Description

アキシャルギャップ型回転電機
 本発明は、アキシャルギャップ型回転電機に係り、特に、複数のステータコアからなるステータを有するアキシャルエアギャップ型回転電機に関する。
 電動機器の省エネルギー化等のため、可変速システムや、永久磁石同期機などのインバータにより駆動される回転電機が増加している。これらの回転電機では、インバータが発生するコモンモード電圧がコイルとロータとの間で静電結合し、軸受の内外輪間に電位差(以下、「軸電圧」という。)を発生させることが問題となることがある。これは、過大な軸電圧が、軸受内の潤滑油の絶縁破壊を招き、電流による軸受電食を発生するためである(例えば、特許文献1)。
 特許文献1は、コイルとロータ間を遮蔽して、軸電圧を低減する技術を開示する。具体的には、特許文献1は、ラジアルギャップ型の回転電機であって、ステータコアとコイルのロータと向き合うステータ表面全体に絶縁層を設け、その表面には、ステータコアの磁束の流れと垂直の方向に導電部と絶縁部を交互に形成する構成となっている。即ち、接地電位となっているコアに、導電部が電気的に接続されるようになっている。これにより導電部に大きな渦電流が発生せず、コイルとロータ間を遮蔽でき、静電容量を大幅に低減することが可能となる。
 上述のラジアルギャップ型の回転電機は、現在主流の構造であるが、近年では、回転軸方向に所定のエアギャップを介して固定子と、回転子とが面対向するアキシャルエアギャップ型回転電機も盛んに開発されるようになっている。アキシャルエアギャップ型回転電機では、径を拡大すると、体格あたりの固定子と回転子の対向面積が径のおよそ2乗に比例して増加するため、高出力密度化や高効率化を図り易くなる。したがって、本回転電機は、薄型化、扁平化に好適な構造とされている。一方で、複数のコアが電気的に絶縁された状態で配置されていることや、コイルとロータとの対向面積が大きいことなど、軸電圧を増加し易い構造でもある。
 特許文献2では、複数のコアの接地構造や、コイルと回転子、シャフト間の遮蔽構造など、アキシャルエアギャップ型特有の構造に着目した軸電圧の低減技術が開示されている。具体的には、特許文献2は、コイルが巻き回されたボビンから鉄心の端部を突出させ、突出した鉄心の外周面と、ハウジング内周面とを導電性部材を介して電気的に導通させることで鉄心を接地する構成を開示する。また、特許文献2は、円環形状からなる固定子の回転軸側中央部分とシャフトとの間に筒状の導電部材を配置してこれをハウジングと電気的に導通させることで、シャフトとコイル間の遮蔽をする構成を開示する。
特開2012-5307号公報 特開2014‐17915号公報
 しかしながら、発明者らの検討により、アキシャルエアギャップ型回転電機の軸受電食の防止には、コイル渡り線部とロータとの関係を考慮することも重要であることがわかった。アキシャルエアギャップ型回転電機の各コイルから引き出された渡り線は、ハウジングの内周を這うように配線され、ハウジングの開口部から外部に引き出される。前述のように、アキシャルエアギャップ型回転電機ではトルク出力に寄与するギャップ面積(ステータとロータの対向面の面積)がおおよそ径の2乗に比例する。このため、高出力化、高効率化のためには、ステータコアやロータの外径を可能な限り大きくすることが望ましく、コイルとハウジングは近接する場合が多い。この結果、渡り線はロータ側に突出しロータの側面に対向した位置に配置され、渡り線とロータが静電結合する。特に、渡り線の本数が多い場合や渡り線の導体径が大きい場合、渡り線とロータ間の静電容量が、コイルとロータ間の静電容量に対し無視できなくなり、軸電圧に大きな影響を及ぼす。
 渡り線とロータ間の静電容量を低減するには、(1)渡り線とロータとの距離を増加することや、(2)渡り線とロータの対向面積を低減する方法がある。しかしながら、(1)はロータ外径の縮小を、(2)はコア外径の縮小を、即ちいずれもギャップ面積の低減を招来し、それに起因するモータ特性の低下、即ち出力や効率の低下を招く。したがって、出力や効率を低下することなく、渡り線とロータとの静電結合を低減する手段が必要となった。
 また、渡り線による軸電圧の増加が課題となるような場合、前述のように多数の渡り線や太い渡り線が配線されていることが多く、渡り線の成形作業が複雑になり易い。このため、成形作業の簡略化が求められる。さらに、多くのアキシャルエアギャップ型回転電機では、コアや巻線をモールドで保持しているため、渡り線も含めたステータ全体をモールド型で隙間なく覆う必要がある。封止が十分でないと、成形圧の低下により樹脂の密度が低下し強度の低下、即ち信頼性の低下を招く。渡り線の形状が複雑な場合、樹脂の封止対策にも多くの工数を要する。
 本発明は、アキシャルギャップ型回転電機の高出力、高効率および組立性を確保しつつ、軸電圧を低減することを目的とする。
 本発明は、上記課題を解決する手段を複数含んでいるが、本発明のアキシャルギャップ型回転電機の一例を挙げるならば、鉄心及びその外周に巻き回されたコイルを少なくとも有する複数のコアメンバを、シャフトを中心に、磁力線が該シャフトと並行になる向きで、環状に配列してなるステータと、前記ステータと、シャフト軸方向に所定のエアギャップを介して面対向する少なくとも1つのロータと、前記ステータ及び前記ロータと径方向に内周面が対向するハウジングとを有するアキシャルギャップ型回転電機であって、周方向に連続したバス部と、前記バス部から突出した前記コイルと接続するコイル接続部と、前記バス部から突出した外部接続部からなる配線板を有し、前記配線板を、環状に配列された複数の前記鉄心の外周側に配置したものである。
 また、本発明のアキシャルギャップ型回転電機の他の一例を挙げるならば、上記のアキシャルギャップ型回転電機において、前記ロータが、外周側に導電性部材からなる導電性部分を有するものであり、前記ハウジングの内周面と、前記ロータの導電性部分とが径方向から対向する第1領域と、前記第1領域よりもステータ側で、前記ロータと対向する前記コイルの側面までの第2領域と、が形成されており、前記第2領域に配置される前記配線板のバス部の比率が、前記第1領域に配置される前記配線板のバス部の比率よりも大となるように、前記配線板を配置したものである。
 本発明によれば、アキシャルギャップ型回転電機の高出力や高効率および組立性を確保しつつ、軸電圧を低減することができる。また、軸受電食に対する信頼性を高めることができる。
  上記した以外の課題、構成及び効果は、以下の記載から明らかとなる。
図1Aは、本発明の実施例1のモータの斜視図である。 図1Bは、図1Aの配線板を拡大した斜視図である。 図1Cは、コイル番号を併記したステータの軸方向端面図およびコイルの結線図である。 図2は、本発明の実施例2の渡り線とロータ間の静電容量の関係を示したモータの部分断面図である。 図3は、本発明の実施例3のモータの斜視図である。 図4は、本発明の実施例4のモータの部分断面図である。 図5は、本発明の実施例5の配線板の部分断面図である。 図6(a)は、本発明の実施例6の配線板の斜視図であり、絶縁部材であるモールド層を透明化して示したものである。図6(b)は、モールド層を不透明にして示したものである。 図7は、本発明の実施例7のモータの部分断面図である。 図8は、本発明の実施例8の配線板およびボビン、巻線の部分断面図である。 図9は、本発明の実施例9のステータモールド時の断面図である。 図10は、本発明の実施例10のステータモールド時の断面図である。 図11Aは、本発明の実施例11のモータの斜視図である。 図11Bは、実施例11の配線板を拡大した斜視図である。 図12は、本発明の実施例12の外部接続部およびバス部の部分断面図である。 図13(a)は、一般的な圧着端子を示す図である。図13(b)は、本発明の実施例13の外部接続部およびバス部の部分断面図である。 図14は、本発明の実施例14のステータモールド時の配線板周辺を拡大した部分断面図である。 図15は、本発明の実施例15の配線板およびボビン、巻線の部分断面図である。 図16は、本発明の実施例16の配線板の部分斜視図である。 図17は、本発明を適用した実施例17のモータの側断面図である。 図18は、本発明を適用した実施例18のインバータ一体型モータの側断面図である。
 以下、本発明の実施例を、図面を用いて説明する。なお、実施例を説明するための各図において、同一の構成要素には同一の名称、符号を付して、その繰り返しの説明を省略する。
 図1Aに、本発明の実施例1のアキシャルギャップ型モータの構成を表わす斜視図を示す。また、図1Bに、図1Aの配線板を拡大した斜視図を示す。図1Cに、コイル番号を併記したステータの軸方向端面図および各コイルの結線図を示す。
 モータ1000は、概略円環状のドーナツ形状を有するステータ100を、ディスク形状の2つのロータ200がシャフト方向から挟むように面対向して配置された所謂ダブルロータ型の回転電機である。モータの仕様は、3相、10極12スロットである。巻線は、デルタ結線、2直2並列、2本もちで構成されている。
  ここで、図1Aに示すように、ステータ100は、複数のコアメンバがシャフトを中心として環状に配列して構成される(本例では12組のコアメンバを有するものとする。)。コアメンバは、両端部の側面が概略台形若しくは扇形を有する柱体の鉄心(コア)110と、鉄心の外径と概略一致する内径の筒部を有するボビンと、ボビンの外筒部に巻き回されたコイル(巻線)120とから構成される。環状に配列されたコアメンバの夫々と、ハウジング400の内周面とが図示しない樹脂によって一体的にモールドされてステータ100が支持されるようになっている。
 ステータ100から回転軸方向の端面には、コイル120のロータ200側であって、鉄心110よりも外径側に導体で構成された配線板300が配置されている。図1Bに示すように、配線板300は、3個の環状のバス部310と、バス部にそれぞれ4個設けられたコイル接続部320、および、1個ずつ設けられた外部接続部330からなる。コイル接続部320には、各コイルの電線の端部が引き出された引出線121がかしめや溶接、はんだ付けなどにより接続されている。2直2並列の結線において、直列部は連続巻されており、引出線121は各コイルから2本ずつの計24本となっている。図1Cに示すコイル番号の符号はコイルに流れる電流の向き(時計周り、反時計周り)を示している。本実施例では、巻線の製作を簡便にするため、隣接する同相コイルは巻き方向を反転し、連続巻している。巻き方向の組合わせは1種類のみとし、これを周方向に6組配置し、結線段階で隣接する位相間、例えばU1-とV1-の電流の向きが一致するようにしている。外部接続部330は、図示しない1次側電源に接続されている。
 ロータ200は、鉄心110の端部側面に対向する永久磁石210と、その背面に配置された図示しないバックヨークと、これらを支持してシャフトと共回りするように結合するヨーク230とからなる。ヨーク230は、金属等の導電性部材からなる。本実施例では鉄を使用するものとするがこれに限るものではなく、アルミやステンレス鋼(SUS等)でもよい。
  シャフトは、軸受を介して回転自在に図示しないエンドブラケットに結合される。エンドブラケットは、ハウジングの両端部側面に固定される。
  ハウジングの外周側面には、図示しない端子箱が設けられており、同じく図示しない1次側の電線と2次側の電線即ち外部接続部が端子台を介し電気的に接続される。
 このような構成を有するモータ1000は、以下のように動作する。端子台の1次側にインバータの出力線が接続され、コイル120に交流電流を通電する。これにより、ステータ100には回転磁界が形成され、永久磁石210によりロータ200に形成された直流磁界と吸引反発してトルクを発生する。このときコイル120と、ロータ200との間の静電容量によって、コイル120に生じるインバータのコモンモード電圧が、ロータ側に静電結合する。ロータ200が電位をもつことにより、接地電位となっているハウジング400との間に電位差が生じる。この電位差は、軸受の内外輪間にかかり、軸電圧となる。
 コモンモード電圧Vcomに起因する軸電圧Vbは、次の〔数式1〕で表される。
Figure JPOXMLDOC01-appb-M000001
           
  ここで、Cwrは、コイルとロータ間の静電容量を示し、Crfは、コイルとフレーム即ちハウジングやエンドブラケットの間の静電容量を示し、Cbは、軸受内外輪間の静電容量を示す。
 Cwrは、コイルとロータ円盤間、コイルとシャフト間、渡り線として機能する配線板とロータ側面間に形成する合成容量である。配線板とロータ側面間の静電容量は、主に周方向に配置されたバス部の径方向断面積に依存する。コイルからの24本の引出線をロータ外周に直接這い回す構造に比較すると、配線板のバス部は大幅にコンパクト化されており、ロータ側面との静電容量を抑制する効果がある。また、配線の作業性も大幅に改善している。
 本配線板構造では、バス部310を、環状に配列された複数の鉄心110の外周側であって、コイル120よりもロータ200側に配置しているため、鉄心110の外径やコイル120の外径を最大限に大きくすることが可能である。これにより、モータの出力や効率を低下させることなく、軸電圧の抑制が可能となる。
 配線板300は、銅やアルミなどの導電体で構成されている。導電体には、必要に応じ表面処理を施してもよい。
 なお、本実施例では、ダブルロータ型のモータを例として説明したが、他構造のアキシャルエアギャップ型モータに適用することもできる。本実施例のバス部は、断面が略正方形としているが、長方形や円、楕円等であっても良い。各相で1つのバス部としているが複数に分割されていても良い。各相のバス部は軸方向に配置するに限らず、径方向に配置してもよい。軸電圧を低減する観点では、バス部の断面形状や各相のバス部の配置は、ロータから軸方向にみたバス部の投影面積が小さくなるようにすることが望ましい。また、相数やスロットコンビネーション、結線構造、持ち数も本例に限定されるものではない。引出線の位置や本数およびバス部への接続位置はスロットコンビネーションや結線方法により異なる。永久磁石を備えない、シンクロナスリラクタンスモータやスイッチトリラクタンスモータ又は誘導モータであってもよい。更には、モータではなく発電機であってもよい。
 図2に、本発明の実施例2のモータの拡大断面を模式的に示す。本図では、バックヨーク、樹脂、ボビンなどの一部部品の図示を省略している。本実施例において、配線板300の一部又は全部は、コイル120よりもロータ200側であって、鉄心110および/またはロータ200の回転軸径方向のハウジング400側に位置する領域(空間)に配置される。
 ここで、ハウジング400の内周面とロータ200の導電性部分とが径方向から対向する領域を第1領域、第1領域よりもステータ側で、ロータ200と対向するコイル120の側面までの領域を第2領域とする。ここで、ロータの導電性部分とは、ヨーク230が鉄等の導電性材料で構成されている場合はこの部分、および、永久磁石210が鉄系等の導電性磁性材料で構成されている場合はこの部分が該当する。なお、永久磁石210がフェライト等の非導電性磁性材料の場合は、該当しない。図2では、永久磁石210がフェライト磁石で形成されているため、永久磁石210の外周面は第2領域となる。本実施例では、配線板300、特にそのバス部310は、第2領域に配置される比率が、第1領域に配置される比率よりも高くなるように、配線板300を配置する。
 図2には、バス部310の配置状態と、静電容量Cwrとの模式的な関係を併記する。本図のCwrは、バス部をコイルの端面から回転軸方向(ここではZ方向と定義)に積み上げたときのバス部の端面位置との関係である。ここで、バス部の高さがコイル以下の場合、バス部と、ロータの導電性を有する部材との距離が大きくなるため、Cwrは十分小さい。同様に、バス部の高さが、ヨークの位置よりも低い領域では、Cwrの増加勾配が小さい。他方、ヨークよりも高くなると、バス部と、ヨークとが近接して対向するため、Cwrが急激に増加することになる。
 図2に示すように、実施例2では、第2領域に大半のバス部を配置しているため、バス部による軸電圧の増加を抑制することができる。軸電圧を抑制するという観点からは、バス部の全体を第2領域に配置するのが、より好ましい。これにより、軸受内の潤滑油への放電が抑制されると共に、軸受電食が抑制される。
  また、バス部310を、コイル120よりもロータ200側に配置しているため、その分、鉄心の外径やコイルの外径を最大限に大きくすることが可能である。これにより、モータの出力や効率を低下させることなく、軸電圧の抑制が可能となる。
 特に、非導電性のフェライト磁石等を永久磁石に用いているため、永久磁石の外周側面に第2領域が形成される。本構造によると、磁石径の拡大と、渡り線とロータ間の静電容量の低減を両立することが可能となり、モータの高出力化や高効率化と軸電圧の低減を同時に実現することができる。
 なお、本実施例では、ダブルロータ型のモータを例として説明したが、1つのロータと1つのステータとが面対向したシングルロータ構造のアキシャルエアギャップ型電動機に適用することもできる。また、永久磁石を備えない、シンクロナスリラクタンスモータやスイッチトリラクタンスモータ又は誘導モータであってもよい。更には、モータではなく発電機であってもよい。
 本発明の実施例3は、オープンスロット型の鉄心を有するモータに、ロータと対向するシャフト方向コイル端面及びシャフトとの遮蔽をすることを特徴とする。
  図3に、本発明の実施例3のモータの斜視図を示す。モータは、断面が常に概略台形状となるオープンスロットの鉄心を有する。鉄心はボビンによりコイルと絶縁されている。コイルの端面には、ボビンの鍔部が配置されている。鍔部のロータ側には、第1の導電部材150が内周側を除く全周にわたって配置されている。また、シャフトと対向する樹脂の内周面にも第2の導電部材160が配置されている。これらの導電部材は、ハウジング400と電気的に接続されている。
 通常、オープンスロットの鉄心は、コイルとロータとの対向面積が大きくなるため、鍔部をもつ鉄心形状と比較して、Cwrが大きくなり易い。これに対し、本構造は、オープンスロットの鉄心形状でも、コイルとロータ間の静電容量を抑制することが可能である。本構造と上述の各実施例に示した配線板300の配置を併用することで、オープンスロットの鉄心形状に対し、十分に軸電圧を抑制することが可能となる。
 本発明の実施例4は、コアメンバと配線板およびハウジングを一体でモールドしたことを特徴とする。
 図4に、本発明の実施例4のモータの部分断面を示す。本実施例では、外部接続部を除く配線板300と、鉄心110とコイル120を含むコアメンバと、ハウジング400とが樹脂140で一体にモールドされている。
 本実施例により、配線板が樹脂で絶縁されるため電気的な信頼性が向上する。また、特別な固定手段を設けることなく配線板を強固に固定することができ、モータの信頼性を向上することができる。
 本発明の実施例5は、配線板に絶縁部材を設け、絶縁部材でバス部を保持したことを特徴とする。
 図5に、本発明の実施例5の配線板周辺の断面図を示す。ここでは、断面がU字型の溝を有する環状の絶縁部材340を設け、溝にバス部310を格納している。巻線接続部320および外部接続部330は絶縁部材340の外径側に突出している。
 本実施例により、バス部が位置決めされるため、相間の絶縁が保持される。配線板とコアメンバ、ハウジングを絶縁部材で一体にモールドする場合においても、バス部同士の接触を防止することができる。また、以下の組立性を向上する効果もある。組立時には絶縁部材に格納した各相の配線板を重ねて配置すればよく作業性が良い。配置する際に、一相ごとに引出線とコイル接続部との接続処理を行うことも可能であり、接続スペースを確保し易い。特に、配線板の径方向厚みが制約される場合、コイル接続部の径方向寸法の確保が困難である外径側からの接続作業が難しい。本構造であれば、コイル接続部を同相のバス部よりも軸方向に突出させて設けることで、軸方向から接続作業を行うことが可能である。
 絶縁部材には、絶縁部材同士の位置決め機構を設けてもよい。これにより、各相の配線板を積層する際の組立性が向上する。
 本発明の実施例6は、配線板をモータに組込む前に絶縁部材で一体にモールドしたことを特徴とする。
 図6に、本発明の実施例6の配線板300の斜視図を示す。モールド層を透明化して示した図6(a)に示すように、配線板は、バス部310の各相が離間した状態で絶縁部材340で一体にモールドされている。なお、モールド層を不透明にして示した図6(b)に示すように、巻線接続部320および外部接続部330はモールドされていない。
 本実施例により、配線板の相間の絶縁が確保されるとともに、ステータの部品点数が削減され組立性が向上する。また、コアメンバ、ハウジングとの一体モールドにおける配線板の変形、これによる絶縁不良を抑制できる。
 本発明の実施例7は、配線板の絶縁部材内に接地接続部を形成したことを特徴とする。
 図7に、本発明の実施例7のモータの部分断面図を示す。図7に示すように、配線板300は事前のモールドにより形成された絶縁部材340を有し、絶縁部材340のなかにはバス部の外径側に接地接続部350が軸方向に絶縁部材340を貫通するように設けられている。本図の接地接続部350は周方向に1ヶ所ないしは複数個所設けられているものであり、周方向に連続した環状のものではない。接地接続部350の一端は、コアおよびステータに設けられた第1の導電部材150および第2の導電部材160と接続されている。接地接続部350の他端は、接地されたハウジング400と接地線351で接続されている。
 本実施例により、コアおよび遮蔽材を確実に接地することができる。また、接地を確保するための特別な部品や構造がないため、組立性が向上する。
 本発明の実施例8は、配線板の絶縁部材とボビンに相互の位置決め機構を設けたことを特徴とする。
 図8に、本発明の実施例8の配線板300およびボビン130、巻線120の部分断面図を示す。図8に示すように、ボビン130の鍔部には凸部131からなる位置決め機構が設けられている。配線板300の絶縁部材340には凹部341からなる位置決め機構が設けられている。両位置決め機構が勘合するようにボビン130の鍔上に配線板300が配置されている。
 本実施例により、配線板の位置決めが容易になるとともに、コイル接続部を接続するときの配線板の移動を抑制できる。
 本発明の実施例9は、配線板の円環状の絶縁部材の外周の一端に軸方向の切欠きを設けて周方向の位置決めをすることを特徴とする。
 図9に、本発明の実施例9のステータモールド時の断面図を示す。図9に示すように、モールド型3000は、ステータ内周を形成するセンターポスト3100、ステータの下面を形成する下型3300、ステータの上面を形成する上型(図示なし)からなる。配線板300の絶縁部材340の外周には、軸方向に連続した凹部341が設けられている。また、ハウジング400の内周には、絶縁部材の凹部341に対応した突部420が軸方向に設けられている。 
 本実施例により、配線板とハウジングとが凹部および凸部で周方向に位置決めされる。これにより、モールド時に配線板が移動し、コイル接続部の電気的接続が損傷することを抑制できる。ハウジングの凸部は、モータとして運転する際に発生するトルク反力に対するステータの回り止めとしても機能し、モータの信頼性を向上する。
 絶縁部材の凹部、ハウジングの凸部は周方向に複数設けてもよい。また、絶縁部材に凸部、ハウジングに凹部を設けてもよい。
 本発明の実施例10は、配線板の絶縁樹脂部およびモールド型に互いの位置決め機構を設けたことを特徴とする。
 図10に、本発明の実施例10のステータモールド時の断面図を示す。配線板の絶縁樹脂部には凹部341が設けられている。モールド型3000の下型3300には配線板300を配置するための段部3310が形成されている。段部の底面に凸部3320が設けられている。
 本実施例により、絶縁樹脂部の凹部とモールド型の下型の凸部とが勘合することで両者が位置決めされる。これにより、モールド時に配線板が移動し、コイル接続部の電気的接続が損傷することを抑制できる。
 絶縁部材の凹部、下型の凸部は周方向に複数設けてもよい。また、絶縁部材に凸部、下型に凹部を設けてもよい。
 本発明の実施例11は、配線板のバス部を開放構造で形成したことを特徴とする。
 図11Aに、本発明の実施例11のモータの斜視図を示す。また、図11Bに配線板の拡大斜視図を示す。バス部310は周方向に1か所の開放部380を有する。
 本実施例により、バス部の導体使用量を低減できる。バス部を板材から打ち抜きで製作する際の歩留まりを向上できる。さらには、バス部を1本の導体を折り曲げ加工して製作することも可能である。
 本発明の実施例12は、バス部と別体の端子を接続し外部接続部を形成したことを特徴とする。
 図12に、本発明の実施例12の外部接続部とバス部の断面図を示す。外部接続部330は一端にネジ部333が設けられた端子331からなり、ネジ部333でバス部310に設けられたネジ穴に接続されている。端子331とバス部310は、接触面332で接触している。
 本実施例により、外部接続部の形状がバス部形状に依存しないため、外部接続部の形状を任意に変更することができる。1次側の構造が変更されても、コネクタ等を設けることなく、外部接続部を接続することができる。
 なお、本構造ではネジ機構により外部接続部とバス部を接続しているが、溶接やはんだ付け、摩擦撹拌接合など他の接続手段であってもよい。
 本発明の実施例13は、バス部と絶縁電線が接続された端子を接続し外部接続部を形成したことを特徴とする。
 図13(a)に、汎用の丸型圧着端子334を示す。図13(b)に、本発明の実施例13の外部接続部およびバス部310の断面図を示す。外部接続部は絶縁電線370がかしめられた汎用の丸型端子334からなる。丸型端子334は、絶縁電線370を軸方向に引き出すため折り曲げられている。外部接続部は、ボルト335によりバス部310のネジ穴に接続されている。
 本実施例により、外部接続部に形状的柔軟性を付与することができるため、1次側の接続位置や形状に依存しない接続が可能である。例えば、ハウジングの外側に配置された端子台に容易に接続することができる。
 なお、本実施例ではネジ機構により外部接続部とバス部を接続しているが、溶接やはんだ付け、摩擦撹拌接合など他の接続手段であってもよい。
 本発明の実施例14は、配線板をコアメンバおよびハウジングと一体でモールドする際に、外部接続部に封止駒を設けたことを特徴とする。
 図14に、本発明の実施例14のステータモールド時の配線板周辺の断面図を示す。配線板300は、外部接続部330と図示しないコイル接続部以外が絶縁部材340で覆われており、絶縁部材340から突出した外部接続部330の根元に、絶縁部材側から出力端子の先端に向かい断面が徐減するようなテーパ部361を外周に有する封止駒360を設けている。また、下型3300には外部接続部330を格納する開口部3330が設けられている。開口部3330の入り口には封止駒360の形状に対応したテーパ部3331が設けられている。
 本実施例により、一体モールド時に外部接続部から樹脂が漏洩することを抑制できる。これにより、出力端子に付着した樹脂を除去する必要がなくなる。樹脂の漏洩による成型圧の低下を抑制できるため、樹脂の充填密度を高く維持することができコアメンバの保持度を安定して確保することができる。
 封止部材は、樹脂、ゴムなどで構成することが望ましい。また、封止部材と下型のテーパ部との間に型締め圧がかかるような寸法関係で構成すると、封止部材と下型、さらには、封止部材と絶縁部材および外部接続部を密着させることができるため樹脂の封止効果を高められる。
 本発明の実施例15は、バス部と別体の端子を接続しコイル接続部を形成したことを特徴とする。
 図15に、本発明の実施例15のコイル接続部320とバス部310およびコイル120、ボビン130の部分断面図を示す。コイル接続部320は丸型端子334を折り曲げたもので、バス部310に溶接されている。丸型端子334には、コイル120からの引出線121がかしめられている。
 本実施例により、コイル接続部の形状がバス部形状に依存しないため、コイル接続部の形状を任意に変更することができる。コイル接続部の端子形状を変更することで、引出線の仕様や1次側の構造の仕様変更に対応できる。
 なお、本実施例では丸型端子を溶接した例を示したが、別の形状の端子やコネクタであってもよい。コイル接続部と引出線との接続は、かしめに限らず、溶接やはんだ付け、摩擦撹拌接合などであってもよい。また、コイル接続部とバス部との接続は、はんだ付けや摩擦撹拌接合、ネジやボルトなど別の締結手段を用いてもよい。
 本発明の実施例16は、コイル接続部の引出線との接触面に凹凸を設け、引出線の表面絶縁被膜を除去せずに圧着したことを特徴とする。
 図16に、本発明の実施例16のコイル接続部とバス部の拡大斜視図を示す。バス部310およびコイル接続部320は板材を打ち抜き加工したのち、コイル接続部を折り曲げ加工して形成された同一の部材から構成されている。ここで、コイル接続部320の引出線121との接触面には、コイル表面に施された絶縁被膜の厚みより十分深い多数の突起323が設けられている。引出線121は絶縁被膜を除去することなくコイル接続部320にかしめられている。引出線との接触面の突起323は、絶縁被膜を破壊しコイルの導体部まで深く侵入している。
 本実施例により、引出線の絶縁被膜の除去工程を施すことなく引出線とコイル接続部のかしめ作業を行うことができる。これにより、組立性が向上する。さらに、アルミ電線のコイルを用いた場合には、絶縁被膜除去により高抵抗な酸化被膜が形成し、接触抵抗が増加することを抑制できる。さらに、コイル接続部をコアメンバ、ハウジングと一体でモールドすることで、アルミ電線と銅製のコイル接続部との接続部を樹脂で覆う防水処理を施すことができる。接続部に水分が侵入することを抑制することで、異種金属間の腐食(ガルバニ腐食)を抑制できる。これにより、特別な工程を設けることなくアルミ電線を採用し、モータの軽量化やコスト低減を図ることができる。
 なお、バス部とコイル接続部が同一の部材で形成された例を示したが、別体の端子を接続したものであってもよい。アルミ線用の圧着端子を用いても良い。また、コイル接続部の突起は、コイル接続部と一体であるに限らず、凹凸や網目が入ったスリーブをコイル接続部と引出線の間に入れてもよい。
 本発明の実施例17は、本発明を産業用モータに用いたものである。
 図17に、本発明の実施例17の産業用モータの断面図を示す。本モータ1000は、シャフト600の反出力側にシャフトに直結した外扇ファン900、および、外扇ファンでおこした風をハウジング側に導くファンカバー910を有する。また、ハウジング400の外側には、端子台810が内蔵された端子箱800を有する。配線板300はステータ100の反負荷側に隣接して配置されている。コイルからの引出線がコイル接続部に接続され、外部接続部を形成する絶縁電線370が端子台810の2次側に接続されている。
 本実施例により、各コイルから端子台への渡り部の導体量を最小化し、渡り部とロータ導電体とで形成される静電容量を低減することができる。これにより、モータの軸電圧が低減し軸受電食を抑制できる。産業用モータは、ファンやポンプ、圧縮機など連続運転されかつ、10年以上の長期にわたって使用されるため、モータや部品を長寿命に構成することが重要である。軸受電食の抑制は軸受の長寿命化に大きく寄与する。また、渡り部がコンパクト化されることにより、ロータの外径を拡大することができ、高出力化、高効率化が可能になる。ハウジング側面には、コイルと端子台との接続線を配置するための開口が設けられているが、配線板により、渡り部がコンパクト化されると、開口部と渡り部を干渉しないよう配置し易くなるため、ステータモールド時の樹脂の封止も容易になる。また、産業用モータでは出力に応じハウジング寸法が概略決まっている。アキシャルギャップに従来のラジアル型モータのハウジングを流用することも容易になる。さらに、渡り部の配線作業工程、モールド時の渡り部漏洩防止対策が大幅に簡易化されるため組立性が向上する。
 なお、端子台の位置は任意であり、これに合わせて配線板も反負荷側、負荷側のいずれに配置してもよい。コイル接続部、外部接続部の構造は他の実施形態で記載したものであってもよい。
 本発明の実施例18は、本発明をインバータ一体型モータに用いたものである。
 図18に、本発明の実施例18のインバータを一体化した産業用モータの断面図を示す。本モータは、アキシャルギャップモータの薄型特性を活かし、インバータ2000をモータの軸方向、反負荷側に配置したものである、反負荷側のエンドブラケットはモータ側に寄せて配置し、これと、側面カバー2200、端部カバー2300とからインバータ格納室を形成している。反負荷側にはインバータ格納室を貫通したシャフトに直結した外扇ファン900およびファンカバー910が設けられている。側面カバー2200の外側には、端子箱800および端子台810が設けられている。ステータの反負荷側には、配線板300が設けられており、外部接続部を形成する絶縁電力線370が、反負荷側エンドブラケット500の開口を介し、インバータ2000の2次側に接続されている。また、インバータ2000の1次側は側面カバー2200の開口を介し端子台810の2次側に接続されている。
 本実施例により、各コイルから端子台への渡り部の導体量を最小化し、渡り部とロータ導電体とで形成される静電容量を低減することができる。これにより、モータの軸電圧が低減し軸受電食を抑制できる。産業用モータは、ファンやポンプ、圧縮機など連続運転されかつ、10年以上の長期にわたって使用されるため、モータや部品を長寿命に構成することが重要である。軸受電食の抑制は軸受の長寿命化に大きく寄与する。また、渡り部がコンパクト化されることにより、ロータの外径を拡大することができ、高出力化、高効率化が可能になる。ハウジング側面には、コイルと端子台との接続線を配置するための開口が設けられているが、配線板により、渡り部がコンパクト化されると、開口部と渡り部を干渉しないよう配置し易くなるため、ステータモールド時の樹脂の封止も容易になる。また、産業用モータでは出力に応じハウジング寸法が概略決まっている。アキシャルギャップに従来のラジアル型モータのハウジングを流用することも容易になる。さらに、渡り部の配線作業工程、モールド時の渡り部漏洩防止対策が大幅に簡易化されるため組立性が向上する。また、モータからインバータへの接続線の断面積を最小化できるため、反負荷側に設ける開口面積を最小化し、強度を確保しやすくなる。絶縁電線を外部接続部として用いることで、インバータ側の接続部に依存しないフレキシブルな接続が可能になる。これにより組立性も向上する。
100・・・ステータ、 110・・・鉄心(コア)、 120・・・コイル(巻線)、 121・・・引出部、 130・・・ボビン、 131・・・凸部、 132・・・鍔部、 140・・・樹脂、 150・・・第1導電部材、 160・・・第2導電部材、
200・・・ロータ、 210・・・永久磁石、 220・・・バックヨーク、 230・・・ヨーク、
300・・・配線板、 310・・・バス部、 311・・・端部、 320・・・コイル接続部、 321・・・端子、 322・・・圧着端子、 323・・・突起、 330・・・外部接続部、 331・・・端子、 332・・・接触面、 333・・・ネジ部、 334・・・圧着端子、 335・・・ボルト、 340・・・絶縁部材、 341・・・凹部、 350・・・接地接続部、 351・・・接地線、 360・・・封止駒、 361・・・テーパ部、 370・・・絶縁電線、 380・・・開放部、
400・・・ハウジング、 410・・・口出し部、 420・・・凸部、 430・・・脚、 500・・・エンドブラケット、 600・・・シャフト、 700・・・軸受、 800・・・端子箱、 810・・・端子台、 900・・・外扇ファン、 910・・・ファンカバー、
1000・・・モータ、 2000・・・インバータ、 2100・・・出力線、 2200・・・側面カバー、 2300・・・端部カバー、
3000・・・モールド型、 3100・・・センターポスト、 3200・・・上型、 3300・・・下型、 3310・・・段部、 3320・・・凸部、 3330・・・開口部、 3331・・・テーパ部。

Claims (20)

  1.  鉄心及びその外周に巻き回されたコイルを少なくとも有する複数のコアメンバを、シャフトを中心に、磁力線が該シャフトと並行になる向きで、環状に配列してなるステータと、前記ステータと、シャフト軸方向に所定のエアギャップを介して面対向する少なくとも1つのロータと、前記ステータ及び前記ロータと径方向に内周面が対向するハウジングとを有するアキシャルギャップ型回転電機であって、
     周方向に連続したバス部と、前記バス部から突出した前記コイルと接続するコイル接続部と、前記バス部から突出した外部接続部からなる配線板を有し、
     前記配線板を、環状に配列された複数の前記鉄心の外周側に配置したアキシャルギャップ型回転電機。
  2.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記配線板を、前記コイルの側面よりもロータ側に配置したアキシャルギャップ型回転電機。
  3.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記ロータが、外周側に導電性部材からなる導電性部分を有するものであり、
     前記ハウジングの内周面と、前記ロータの導電性部分とが径方向から対向する第1領域と、前記第1領域よりもステータ側で、前記ロータと対向する前記コイルの側面までの第2領域と、が形成されており、
     前記第2領域に配置される前記配線板のバス部の比率が、前記第1領域に配置される前記配線板のバス部の比率よりも大となるように、前記配線板を配置したアキシャルギャップ型回転電機。
  4.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記ステータは、前記鉄心の外周に前記コイルを巻回す筒部と前記筒部の端に位置し前記ロータと対向する鍔部とからなるボビンを有し、
     前記鍔部のロータ側には、前記ハウジングと電気的に接続された第1の導電部材が配置されており、
     前記ステータの前記シャフトと対向する内周側には、前記ハウジングと電気的に接続された筒状の第2の導電部材が配置されているアキシャルギャップ型回転電機。
  5.  請求項1に記載のアキシャルギャップ型回転電機において、
     少なくとも前記配線板と前記ステータとが樹脂で一体にモールドされており、
     前記外部接続部の一部は前記モールドから露出しているアキシャルギャップ型回転電機。
  6.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記配線板に、前記バス部を格納し位置決めするための絶縁部材を有するアキシャルギャップ型回転電機。
  7.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記配線板が、前記コイル接続部と前記外部接続部を除き、前記配線板全体を覆うように、絶縁部材で一体にモールドされたアキシャルギャップ型回転電機。
  8.  請求項4に記載のアキシャルギャップ型回転電機において、
     前記配線板に前記バス部を位置決めするための絶縁部材を有し、
     前記絶縁部材内に、前記バス部、前記コイル接続部、前記外部接続部とは電気的に絶縁され、前記鉄心と前記第1の導電部材と前記第2の導電部材と電気的に接続された接地接続部を有し、
     前記接地接続部は前記ハウジングと接続されているアキシャルギャップ型回転電機。
  9.  請求項7に記載のアキシャルギャップ型回転電機において、
     前記ステータは、前記鉄心の外周に前記コイルを巻回す筒部と前記筒部の端に位置し前記ロータと対向する鍔部とからなるボビンを有し、
     前記配線板をモールドした絶縁部材と前記ボビンに相互の位置決め機構を設けたアキシャルギャップ型回転電機。
  10.  請求項7に記載のアキシャルギャップ型回転電機において、
     前記配線板をモールドした絶縁部材と前記ハウジングに相互の位置決め機構を設けたアキシャルギャップ型回転電機。
  11.  請求項7に記載のアキシャルギャップ型回転電機において、
     前記配線板をモールドした絶縁部材と前記ステータのモールド型に相互の位置決め機構を設けたアキシャルギャップ型回転電機。
  12.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記配線板のバス部が、周方向に電気的に接続されていない開放部を有するアキシャルギャップ型回転電機。
  13.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記バス部とは別体の端子が前記バス部に機械的かつ電気的に接続され、前記外部接続部を形成したアキシャルギャップ型回転電機。
  14.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記配線板の外部接続部が、前記バス部に接続された端子部と前記端子部に接続された絶縁電線とからなるアキシャルギャップ型回転電機。
  15.  請求項7に記載のアキシャルギャップ型回転電機において、
     前記バス部と接続する前記外部接続部の根元に、外部接続部の出力端子の先端に向かって断面が縮小するテーパ面を有する封止駒を有するアキシャルギャップ型回転電機。
  16.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記バス部とは別体の端子が前記バス部に機械的かつ電気的に接続され、前記コイル接続部を形成したアキシャルギャップ型回転電機。
  17.  請求項16に記載のアキシャルギャップ型回転電機において、
     前記別体の端子が圧着端子であるアキシャルギャップ型回転電機。
  18.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記コイル接続部の前記コイルと接触する面に凹凸が設けられており、コイル表面に施された絶縁被膜を破壊し突部がコイルの導電層と電気的に接続されるアキシャルギャップ型回転電機。
  19.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記ハウジングには開口が設けられ、前記開口の外側に端子台が配置され、
     前記外部接続部と前記端子台とが電気的に接続されたアキシャルギャップ型回転電機。
  20.  請求項1に記載のアキシャルギャップ型回転電機において、
     前記ハウジングに隣接した位置に前記回転電機を駆動するためのインバータが一体化して配置され、
     前記外部接続部と前記インバータの2次側端子とが電気的に接続されたアキシャルギャップ型回転電機。
PCT/JP2016/055342 2016-02-24 2016-02-24 アキシャルギャップ型回転電機 WO2017145274A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/055342 WO2017145274A1 (ja) 2016-02-24 2016-02-24 アキシャルギャップ型回転電機
US16/078,304 US10756600B2 (en) 2016-02-24 2016-02-24 Axial gap rotary electric machine
JP2018501458A JP6771537B2 (ja) 2016-02-24 2016-02-24 アキシャルギャップ型回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055342 WO2017145274A1 (ja) 2016-02-24 2016-02-24 アキシャルギャップ型回転電機

Publications (1)

Publication Number Publication Date
WO2017145274A1 true WO2017145274A1 (ja) 2017-08-31

Family

ID=59685145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055342 WO2017145274A1 (ja) 2016-02-24 2016-02-24 アキシャルギャップ型回転電機

Country Status (3)

Country Link
US (1) US10756600B2 (ja)
JP (1) JP6771537B2 (ja)
WO (1) WO2017145274A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109005638A (zh) * 2018-09-07 2018-12-14 英迪迈智能驱动技术无锡股份有限公司 一种用于筒状电机的pcb布局结构
CN109245469A (zh) * 2018-11-15 2019-01-18 徐晓东 一种高效电机及其模具和组装方法
IT201800010056A1 (it) * 2018-11-06 2020-05-06 Texa Dynamics S R L “Metodo costruttivo per statore di motore elettrico”

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683940A1 (en) * 2019-01-15 2020-07-22 Hamilton Sundstrand Corporation Stator windings for an electric motor or generator
DE102020115642B3 (de) 2020-06-12 2021-10-07 Gkn Sinter Metals Engineering Gmbh Elektrischer Motor und Leiterplatte
CN112436702B (zh) * 2020-12-28 2023-03-24 齐鲁工业大学 转子盘滚筒电机
US12015316B2 (en) * 2021-10-19 2024-06-18 Honeywell International Inc. High temperature and high power density axial flux motor
WO2023151753A1 (de) * 2022-02-14 2023-08-17 Schaeffler Technologies AG & Co. KG Elektrische axialflussmaschine
DE102022114477A1 (de) 2022-02-14 2023-08-17 Schaeffler Technologies AG & Co. KG Elektrische Axialflussmaschine
DE102022206234B3 (de) 2022-06-22 2023-09-07 Vitesco Technologies GmbH Stator für eine Axialflussmaschine, Axialflussmaschine und Kraftfahrzeug mit Axialflussmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174551A (ja) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd アキシャルギャップ型回転電機のコイル結線構造
JP2007060794A (ja) * 2005-08-24 2007-03-08 Nissan Motor Co Ltd アキシャルギャップ型モータの結線構造
US20120228972A1 (en) * 2009-09-08 2012-09-13 Green Ray Technologies Llc Arbitrary phase relationship for electrical connections in n-phase electric machines
JP2014017915A (ja) * 2012-07-06 2014-01-30 Hitachi Ltd アキシャルギャップ型回転電機
JP2014176214A (ja) * 2013-03-08 2014-09-22 Kayaba Ind Co Ltd バスバーユニット
JP2014176210A (ja) * 2013-03-08 2014-09-22 Kayaba Ind Co Ltd バスバーユニット製造方法及びバスバーユニット
JP2015012675A (ja) * 2013-06-28 2015-01-19 株式会社日立産機システム 回転子および回転子を用いたアキシャル型回転電機

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748510A (en) * 1971-10-26 1973-07-24 Gen Electric Dynamoelectric machine winding connection insulator
US4147398A (en) * 1978-03-17 1979-04-03 Amp Incorporated Selective electrical connections among wires of different diameters
JP4097968B2 (ja) 2002-03-25 2008-06-11 本田技研工業株式会社 回転電機の集配電リングおよびその製造方法
JP4275458B2 (ja) 2003-05-20 2009-06-10 アイチエレック株式会社 電動機の固定子
JP2006180618A (ja) 2004-12-22 2006-07-06 Fujitsu General Ltd アキシャルギャップ型電動機
JP4797429B2 (ja) 2005-04-27 2011-10-19 日産自動車株式会社 回転電機のステータ樹脂成型方法
JP2007037262A (ja) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp インバータ一体型回転電機
JP4789676B2 (ja) 2006-03-29 2011-10-12 トヨタ自動車株式会社 回転電機用端末モジュールおよび回転電機
JP2007312560A (ja) 2006-05-22 2007-11-29 Toyota Motor Corp インシュレータおよび回転電機
JP4940815B2 (ja) 2006-08-03 2012-05-30 日産自動車株式会社 回転電機用バズバ
JP4868147B2 (ja) 2006-11-08 2012-02-01 株式会社富士通ゼネラル アキシャルエアギャップ型電動機
JP5092412B2 (ja) * 2007-01-12 2012-12-05 日本電産株式会社 レゾルバおよびレゾルバの製造方法
JP2010130803A (ja) 2008-11-28 2010-06-10 Jtekt Corp 多相交流モータ及び電動パワーステアリング装置
JP5703604B2 (ja) 2010-03-03 2015-04-22 日本電産株式会社 バスバーユニット及びモータ
JP5564341B2 (ja) 2010-06-21 2014-07-30 株式会社日立産機システム 回転電機
CN103339838B (zh) * 2011-04-20 2016-05-25 三菱电机株式会社 旋转电机
EP2712065B1 (en) * 2011-05-20 2017-01-04 Mitsubishi Electric Corporation Motor driving apparatus for electric-powered power steering apparatus
JP6033582B2 (ja) * 2012-06-22 2016-11-30 アイシン・エィ・ダブリュ株式会社 ステータおよびステータの製造方法
JP5997589B2 (ja) * 2012-11-15 2016-09-28 山洋電気株式会社 分割コア型モータ、および分割コア型モータの電機子の製造方法
JP5930115B2 (ja) * 2013-02-20 2016-06-08 日産自動車株式会社 インバータ付きモータ
JP6286129B2 (ja) 2013-03-08 2018-02-28 Kyb株式会社 バスバーユニット
JP6154024B2 (ja) 2013-11-22 2017-06-28 株式会社日立製作所 アキシャルギャップ型回転電機
CN106416024B (zh) * 2014-04-14 2019-06-07 株式会社日立产机*** 轴向间隙型旋转电机
JP6578674B2 (ja) 2014-06-04 2019-09-25 株式会社デンソー 電機子及びモータ
JP6638202B2 (ja) * 2015-03-20 2020-01-29 スズキ株式会社 アキシャルギャップ型の回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174551A (ja) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd アキシャルギャップ型回転電機のコイル結線構造
JP2007060794A (ja) * 2005-08-24 2007-03-08 Nissan Motor Co Ltd アキシャルギャップ型モータの結線構造
US20120228972A1 (en) * 2009-09-08 2012-09-13 Green Ray Technologies Llc Arbitrary phase relationship for electrical connections in n-phase electric machines
JP2014017915A (ja) * 2012-07-06 2014-01-30 Hitachi Ltd アキシャルギャップ型回転電機
JP2014176214A (ja) * 2013-03-08 2014-09-22 Kayaba Ind Co Ltd バスバーユニット
JP2014176210A (ja) * 2013-03-08 2014-09-22 Kayaba Ind Co Ltd バスバーユニット製造方法及びバスバーユニット
JP2015012675A (ja) * 2013-06-28 2015-01-19 株式会社日立産機システム 回転子および回転子を用いたアキシャル型回転電機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109005638A (zh) * 2018-09-07 2018-12-14 英迪迈智能驱动技术无锡股份有限公司 一种用于筒状电机的pcb布局结构
CN109005638B (zh) * 2018-09-07 2024-04-05 英迪迈智能驱动技术无锡股份有限公司 一种用于筒状电机的pcb布局结构
IT201800010056A1 (it) * 2018-11-06 2020-05-06 Texa Dynamics S R L “Metodo costruttivo per statore di motore elettrico”
EP3651325A1 (en) * 2018-11-06 2020-05-13 Texa Dynamics S.R.L. Method to make the stator of an electric motor
CN109245469A (zh) * 2018-11-15 2019-01-18 徐晓东 一种高效电机及其模具和组装方法

Also Published As

Publication number Publication date
JPWO2017145274A1 (ja) 2018-11-01
JP6771537B2 (ja) 2020-10-21
US10756600B2 (en) 2020-08-25
US20190058375A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017145274A1 (ja) アキシャルギャップ型回転電機
JP6208333B2 (ja) アキシャルギャップ型回転電機
US8890387B2 (en) Stator and motor
JP5519808B2 (ja) ステータおよびこのステータを備える回転電機
CN106416025B (zh) 轴向气隙型旋转电机
JP2012244842A (ja) 回転電機
JP2012016141A (ja) 回転電機の固定子
EP3193432A1 (en) Stator and electric motor
US7928619B2 (en) Gap winding motor
US10348150B2 (en) Rotating electric machine stator
JP7400521B2 (ja) モータの製造方法
CN111245164B (zh) 旋转电机及其制造方法
JP2012130157A (ja) 電動機
JP2008312318A (ja) 回転電機の回転子及び回転電機
US20180145549A1 (en) Rotary electric machine and manufacturing method for rotary electric machine
JP2021052492A (ja) バスバーユニットおよびモータ
WO2016152785A1 (ja) 回転電機
WO2020188789A1 (ja) アキシャルエアギャップ型回転電機
WO2019225156A1 (ja) 回転電機および回転電機の製造方法
JP7166207B2 (ja) 回転電機およびその製造方法
WO2024034364A1 (ja) コイル、ステータ及び回転電機
US20230299630A1 (en) Molding coil, stator, and rotary electric machine
JP2019205311A (ja) 電動機、固定子、電動機の製造方法
JP2014057462A (ja) 回転電機の固定子
JP7483150B2 (ja) 電動機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891431

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891431

Country of ref document: EP

Kind code of ref document: A1