WO2017098742A1 - 安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法 - Google Patents

安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法 Download PDF

Info

Publication number
WO2017098742A1
WO2017098742A1 PCT/JP2016/065886 JP2016065886W WO2017098742A1 WO 2017098742 A1 WO2017098742 A1 WO 2017098742A1 JP 2016065886 W JP2016065886 W JP 2016065886W WO 2017098742 A1 WO2017098742 A1 WO 2017098742A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
pilot
tank
safety valve
Prior art date
Application number
PCT/JP2016/065886
Other languages
English (en)
French (fr)
Inventor
石田 聡成
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP16872642.0A priority Critical patent/EP3290771B1/en
Priority to KR1020177034532A priority patent/KR101999470B1/ko
Priority to CN201680032609.4A priority patent/CN107636381B/zh
Priority to US15/579,049 priority patent/US10495260B2/en
Priority to SG11201709723UA priority patent/SG11201709723UA/en
Publication of WO2017098742A1 publication Critical patent/WO2017098742A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • F17C13/126Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures for large storage containers for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/021Avoiding over pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • the present invention relates to a safety valve system, a tank, a ship, and a method of operating the safety valve system in a ship.
  • Priority is claimed on Japanese Patent Application No. 2015-241120, filed Dec. 10, 2015, the content of which is incorporated herein by reference.
  • a carrier carrying liquefied gas such as LNG (Liquefied Natural Gas) or LPG (Liquefied Petroleum Gas) comprises a tank for containing the liquefied gas. If the liquefied gas in the tank is not supercooled, the liquefied gas in the tank evaporates due to the heat entering the tank from the outside of the tank. If the evaporation amount of the liquefied gas exceeds the amount of gas discharged from the tank, the pressure in the tank rises.
  • the tank is equipped with a relief valve so that the pressure in the tank does not rise excessively.
  • the pressure value at which the safety valve operates is set based on the allowable pressure of the tank and the like.
  • the relief valve opens the main valve inside the relief valve when the pressure in the tank reaches a predetermined operating pressure value, and discharges the gas in the tank to the outside.
  • Patent Document 1 discloses a configuration in which the set pressure value of the safety valve is varied during navigation.
  • the safety valve there are a direct acting type and a pilot type.
  • a direct acting safety valve the spring presses the valve body of the main valve directly from one side to the valve seat, and when the pressure exerted on the other side of the valve body exceeds the pressure exerted by the spring, the main valve open.
  • the pilot-type safety valve makes the pressure receiving area equal to the pressure acting on one side of the valve body and the pressure acting on the other side, and presses the valve body against the valve seat. It has a structure that applies a load.
  • the pressure at which the valve body is pressed against the valve seat is reduced by the pilot valve so that the valve body separates from the valve seat and the main valve opens.
  • the structure of the pilot valve is similar to that of the direct acting safety valve described above, and the spring directly presses the valve body of the pilot valve from one side, and the pressure exerted on the other side of the valve body is the pressing force by the spring
  • the valve disc is separated from the valve seat and the pilot valve is actuated.
  • Such a pilot-type safety valve opens and releases pressure when the pressure on the other side of the main valve acts on the pilot valve and exceeds the pressure exerted by the pilot valve spring.
  • the pressure that presses the valve body of the pilot valve against the spring is the same as the pressure that acts on the valve body of the main valve, and when the pilot valve is activated, the pressure that presses the valve body of the main valve against the valve seat decreases.
  • the valve opens.
  • a pilot type safety valve is generally used for the tank of a large liquefied gas carrier.
  • An object of the present invention is to provide a safety valve system capable of easily switching the operating pressure value of the safety valve, and a method of operating the safety valve system in a tank, a ship, and a ship.
  • the safety valve system has an inlet port through which pressure from a pressure source is introduced and an open port through which the pressure is released.
  • the safety valve system further includes a main valve that separates the open port and the introduction port.
  • a plurality of safety valve systems are set to different operating pressure values, and when the pressure exceeds the operating pressure value, the main valve is opened to connect the introduction port and the open port so as to release the pressure.
  • the pilot valve of The safety valve system further includes a switching unit that switches not to operate all the pilot valves other than the pilot valve having the largest operating pressure value among the plurality of pilot valves.
  • the switching unit switches all the pilot valves other than the pilot valve having the largest operating pressure value among the plurality of pilot valves to the inoperable state, that is, does not operate, the operation is performed. Only the pilot valve with the largest pressure value is ready for operation.
  • the operating pressure value is lower than the operating pressure value of the pilot valve having the largest operating pressure value by switching other pilot valves of the plurality of pilot valves other than the pilot valve having the largest operating pressure value to an operable state in the switching unit.
  • Other pilot valves of the operating pressure value can be made operational.
  • the operating pressure value of the safety valve can be switched only by performing the switching operation by the switching unit without attaching or detaching the spring.
  • the pilot valve with the largest operating pressure value is always ready for operation regardless of the state of the other pilot valves. In this way, at least at the pilot valve with the largest operating pressure value, there is no need for the operator to perform any switching operation, so there is no operation error, and there are no moving parts associated with the switching. It is hard to occur. As a result, the reliability of the safety valve system to the maximum operating pressure can be improved.
  • the switching section in the first aspect may be provided with an on-off valve in a pressure introduction line for introducing pressure to the other pilot valve.
  • the on-off valve may be provided on both sides of the other pilot valve in the second aspect.
  • the safety valve system may further include, in the third aspect, a pressure detection unit that detects the pressure between the on-off valves on both sides of another pilot valve. .
  • a pressure detection unit that detects the pressure between the on-off valves on both sides of another pilot valve.
  • the on-off valve may be a solenoid valve or a manual valve with an on-off detector.
  • the safety valve system may further include a control unit that controls the opening and closing operation of the solenoid valve, or a detection unit that detects the opening and closing of the manual valve with the opening and closing detector.
  • the safety valve system is provided before and after the on-off valve and can shut off the flow to the on-off valve. You may have. With this configuration, when the on-off valve is maintained or replaced, the flow to the on-off valve can be shut off by closing the shutoff valves before and after that. Thereby, the workability at the time of maintenance etc. of the on-off valve can be improved.
  • the safety valve system may include a bypass flow passage parallel to the on-off valve and a bypass valve opening and closing the bypass flow passage.
  • the safety valve system according to any one of the first to seventh aspects further comprises a pressure reducing portion for reducing the pressure introduced to the plurality of pilot valves.
  • a pressure reducing portion for reducing the pressure introduced to the plurality of pilot valves.
  • the pressure in the system is switched to the pilot to which the system switches when switching from a state where only the pilot valve with the highest operating pressure value is operated to a state where the pilot valve with the lower operating pressure value is operated. If the operating pressure value of the valve is exceeded, at the same time as switching in the switching unit, there is a possibility that the pilot valve to which switching is to be operated may cause pressure to be released. In such a case, pressure reduction can be performed by the pressure reducing unit prior to switching by the switching unit. Therefore, the pressure introduced to the switching destination pilot valve can be made lower than the operating pressure value.
  • the safety valve system further includes an in-system pressure detection unit for detecting the pressure introduced from the pressure source. It is also good. With this configuration, for example, when the pressure reduction processing is performed in the pressure reduction unit, it can be confirmed whether the pressure after the pressure reduction is lower than the operating pressure value of the other pilot valve.
  • the pilot valve having the largest operating pressure value has the largest number of springs in series.
  • the large operating pressure value may be set, and the plurality of springs may be detachable.
  • the pilot valve can be switched to a lower operating pressure value by removing at least one of the plurality of springs. Therefore, when trouble or the like occurs in another pilot valve having a low operating pressure value, the pilot valve having the highest operating pressure value can be used instead.
  • a tank includes a tank main body that contains a fluid as the pressure source, and the safety valve system according to any one of the first to tenth aspects.
  • the safety valve system can ensure that the pressure in the tank is not excessively high.
  • a ship includes a hull and the tank of the eleventh aspect mounted on the hull.
  • the ship can be reliably maintained so that the pressure in the tank mounted on the hull is not excessively high by the safety valve system.
  • a method of operating a safety valve system on a ship is a method of operating a safety valve system on a twelfth ship.
  • the method of operating the safety valve system when the hull is at anchor, only the pilot valves other than the pilot valve having the largest operating pressure value among the plurality of pilot valves are not operated.
  • the method of operating the safety valve system further enables actuation of the other pilot valves other than the pilot valve having the largest actuation pressure value among the plurality of pilot valves while the hull is underway.
  • the tank, the ship, and the method of operating the safety valve system in a ship it becomes possible to easily switch the operating pressure value of the safety valve.
  • FIG. 7 is a diagram showing an operating state of low pressure setting in a safety valve system provided with two pairs of pilot valves.
  • the composition of the safety valve system concerning a second embodiment of this invention.
  • FIG. 1 is a view showing a schematic configuration of a ship provided with a tank in the first embodiment.
  • FIG. 2 is a view showing the configuration of a safety valve system provided in the tank.
  • the carrier (ship) 10 of this embodiment carries liquefied gas such as liquefied natural gas (LNG) and liquefied propane gas (LPG).
  • LNG liquefied natural gas
  • LPG liquefied propane gas
  • the carrier 10 at least includes a hull 11, a tank (pressure source, tank body) 12, and a safety valve system 20A.
  • the hull 11 is provided with a tank accommodating portion 15 opened upward.
  • the tank 12 is made of, for example, an aluminum alloy, and is provided in the tank housing portion 15.
  • the tank 12 accommodates therein the liquefied gas to be transported.
  • the shape and structure of the tank 12, the number of installation, etc. are not limited at all.
  • the safety valve system 20A includes a main valve 21, a high pressure side pilot valve 22, a low pressure side pilot valve 23, a switching unit 24A, a check valve 25, a pressure reducing valve (pressure reducing unit) 26, and And.
  • the main valve 21 has an introduction port 21a, an open port 21b, a dome chamber 21d, and a valve body 21v.
  • the introduction port 21a is connected to the upper portion of the tank 12 (see FIG. 1), and a gas such as an evaporation gas in the tank 12 is introduced to the introduction port 21a.
  • the pressure P in the tank 12 acts on the valve body of the main valve 21 through the introduction port 21a.
  • the open port 21 b is open toward a riser (not shown) or the like.
  • the valve body 21v opens and closes in accordance with the pressure difference between the introduction port 21a and the dome chamber 21d. When the pressure of the introduction port 21a and the pressure of the dome chamber 21d are the same, the valve body 21v is closed. When the valve body 21v is closed, the introduction port 21a and the open port 21b are shut off, and when the valve body 21v is open, the introduction port 21a and the open port 21b are communicated.
  • the high pressure side pilot valve 22 includes a valve body 22 b in a housing 22 a.
  • the valve body 22b is biased in a direction to close the valve body 22b by springs 22c and 22d connected in series to the valve body 22b.
  • One of the springs 22c and 22d is removable.
  • the same spring 22c, 22d in this embodiment is provided in series with respect to the valve body 22b.
  • a first pressure introduction line L11 and a first return line L21 are connected to the first side of the housing 22a.
  • the first pressure introduction line L11 is further connected to the dome chamber 21d of the main valve 21.
  • the first return line L21 is connected to the tank 12 via a return line L25.
  • the first return line L21 introduces a gas such as evaporated gas in the tank 12 into the housing 22a from the first side of the housing 22a.
  • the first pressure release line L31 is connected to the second side of the housing 22a.
  • the first pressure release line L31 is further connected to the open port 21b of the main valve 21.
  • the gas in the tank 12 flows into the housing 22a to the high pressure side pilot valve 22 via the first return line L21.
  • the pressure P of the gas acts on the first side of the valve body 22b.
  • biasing forces from the springs 22c and 22d are applied. Therefore, the valve body 22b remains closed as long as the pressure P does not exceed the biasing force.
  • the valve body 22b opens and the first return line L21 and the first pressure release line L31 communicate with each other through the housing 22a. Thereby, the gas introduced into the housing 22a from the first return line L21 flows into the open port 21b of the main valve 21 via the first pressure release line L31.
  • the pressure of the first pressure introduction line L11 connected to the housing 22a decreases, and the pressure of the dome chamber 21d of the main valve 21 decreases.
  • a pressure difference occurs between the introduction port 21a of the main valve 21 and the dome chamber 21d, and the valve body 21v is opened to communicate the introduction port 21a with the open port 21b.
  • the pressure P in the tank 12 is released through the main valve 21.
  • the number of springs 22c and 22d is larger than that of the low pressure side pilot valve 23, and the pressure value at the time of releasing the pressure P, ie, the operating pressure value X1 of the high pressure side pilot valve 22 is low.
  • the operating pressure value X2 of the side pilot valve 23 is set higher.
  • the low pressure side pilot valve 23 includes a valve body 23b in a housing 23a.
  • the valve body 23b is biased by a spring 23c in the direction in which the valve body 23b is closed.
  • the spring 23 c is equivalent to the springs 22 c and 22 d of the high pressure side pilot valve 22. Since the low-pressure pilot valve 23 has a smaller number of springs 23 c than the high-pressure pilot valve 22, the pressure P at which the valve body 23 b is opened is lower than that of the high-pressure pilot valve 22.
  • a second pressure introduction line (pressure introduction line) L12 and a second return line L22 are connected to the first side of the valve body 23b in the housing 23a.
  • the second pressure introduction line L12 is connected to the dome chamber 21d of the main valve 21.
  • the second return line L22 is connected to the tank 12 via a return line L25.
  • the second return line L22 introduces the gas in the tank 12 into the housing 23a from the first side of the housing 23a.
  • a second pressure release line L32 is connected to the second side of the housing 23a.
  • the second pressure release line L32 is connected to the open port 21b of the main valve 21.
  • the gas in the tank 12 flows into the housing 23a from the second return line L22 to the low pressure side pilot valve 23.
  • the pressure P of the gas in the tank 12 acts on the first side of the valve body 23b.
  • a biasing force from a spring 23c acts on the second side of the valve body 23b, and the valve body 23b maintains a closed state unless the pressure P exceeds the biasing force.
  • the valve body 23b opens, and the second return line L22 and the second pressure release line L32 communicate with each other through the housing 23a.
  • the gas introduced into the housing 23a from the second return line L22 flows into the open port 21b of the main valve 21 via the second pressure release line L32.
  • the pressure in the second pressure introduction line L12 decreases, and the pressure in the dome chamber 21d of the main valve 21 also decreases.
  • a pressure difference occurs between the introduction port 21a of the main valve 21 and the dome chamber 21d, and the valve body 21v is opened to communicate the introduction port 21a with the open port 21b.
  • the pressure P in the tank 12 is released through the main valve 21.
  • the number of springs 23 c of the low pressure side pilot valve 23 is smaller than the number of springs of the high pressure side pilot valve 22, and the operating pressure value X 2 is set lower than the operating pressure value X 1 of the high pressure side pilot valve 22.
  • the switching unit 24 ⁇ / b> A switches the introduction and non-introduction of the gas in the tank 12 to the low pressure side pilot valve 23.
  • the switching unit 24A includes a first on-off valve (on-off valve) 27 and a second on-off valve (on-off valve) 28.
  • the first on-off valve 27 is provided in a second pressure introduction line L12 closer to the main valve 21 than the low pressure side pilot valve 23. As the first on-off valve 27, the same one is doubled in series. The first on-off valve 27 normally opens or closes one of the two, and the other is always open. The first on-off valve 27 on the side closer to the low pressure side pilot valve 23 is provided with a limit switch 27s for detecting the open / close state thereof. The detection signal of the limit switch 27s is output to the control unit 50 of the safety valve system 20A.
  • the second on-off valve 28 is provided on a second return line L22 opposite to the main valve 21 with the low pressure side pilot valve 23 interposed therebetween. Similarly to the first on-off valve 27, the same ones are provided in series in a double manner in the second on-off valve 28. Normally, one of the second on-off valves 28 is opened and closed, and the other is always open.
  • the second on-off valve 28 closer to the low pressure side pilot valve 23 is provided with a limit switch 28s that detects the open / close state thereof. The detection signal of the limit switch 28s is output to the control unit 50 of the safety valve system 20A.
  • the introduction and non-introduction of the gas in the tank 12 to the low pressure side pilot valve 23 can be switched. More specifically, the gas in the tank 12 is introduced to the low pressure side pilot valve 23 by opening both the first on-off valve 27 and the second on-off valve 28. If both the first on-off valve 27 and the second on-off valve 28 are closed, the introduction of the gas in the tank 12 to the low pressure side pilot valve 23 is shut off.
  • the switching unit 24A further includes a pressure gauge (in-system pressure detection unit) 29 and a pressure gauge (pressure detection unit) 30.
  • the pressure gauge 29 is provided closer to the main valve 21 than the first on-off valve 27 in the second pressure introduction line L12, and detects the pressure P of the dome chamber 21d of the main valve 21.
  • the pressure gauge 29 is provided with a pressure transmitter 29s, and the detection signal is output to the control unit 50 of the safety valve system 20A.
  • the pressure gauge 30 is provided between the first on-off valve 27 and the second on-off valve 28.
  • the pressure gauge 30 is disposed between the first on-off valve 27 and the low pressure side pilot valve 23 in the second pressure introduction line L12.
  • the pressure gauge 30 detects the pressure P of the gas introduced to the low pressure side pilot valve 23.
  • the pressure gauge 30 is provided with a pressure transmitter 30s, and the detection signal is output to the control unit 50 of the safety valve system 20A.
  • the check valve 25 is provided in the return line L 25, and shuts off the flow of gas from the high pressure side pilot valve 22 and the low pressure side pilot valve 23 to the tank 12. On the contrary, the check valve 25 allows gas to flow from the tank 12 to the high pressure side pilot valve 22 and the low pressure side pilot valve 23.
  • the pressure reducing valve 26 is provided in a bypass line L 26 which bypasses the check valve 25. By opening the pressure reducing valve 26, the gas in each line in the safety valve system 20A can be returned to the tank 12, and the pressure in each line can be reduced.
  • the pressure reducing valve 26 in this embodiment is not limited to a manual manual valve, and may be replaced by, for example, a solenoid valve or a manual valve provided with a position switch.
  • the pressure P tends to rise due to the liquid gas being shaken or accelerated in the tank 12.
  • the carrier 10 is anchored, the fluctuation of the gas in the tank 12 is small, and an unintended increase in the pressure P hardly occurs. Therefore, in this embodiment, the operating pressure value of the safety valve system 20A is made different between during navigation and at anchorage.
  • FIG. 3 is a diagram showing an operating state of the high-pressure setting safety valve system 20A in the safety valve system including two sets of pilot valves.
  • portions indicated by thick lines indicate portions through which gas passes.
  • both the first on-off valve 27 and the second on-off valve 28 of the switching portion 24A of the low-pressure pilot valve 23 are closed And block the introduction of the gas in the tank 12 to the low pressure side pilot valve 23. Then, the pressure P in the tank 12 acts only on the high pressure side pilot valve 22.
  • the high pressure side pilot valve 22 remains closed as long as the pressure P does not exceed the operating pressure value X1.
  • the high pressure side pilot valve 22 opens.
  • the pressure P in the high pressure side pilot valve 22 is released through the open port 21 b of the main valve 21.
  • the pressure in the first pressure introduction line L11 decreases, and the pressure in the dome chamber 21d of the main valve 21 also decreases.
  • a pressure difference occurs between the introduction port 21a of the main valve 21 and the dome chamber 21d, and the valve body 21v of the main valve 21 opens to communicate the introduction port 21a with the open port 21b.
  • the pressure P in the tank 12 is released through the main valve 21, and it can be suppressed that the pressure P in the tank 12 becomes excessively high.
  • control unit 50 of the safety valve system 20A acquires the detection value of the pressure transmitter 30s and periodically monitors it.
  • the same ones of the first on-off valve 27 and the second on-off valve 28 are provided in duplicate. In both the first on-off valve 27 and the second on-off valve 28, the first on-off valve 27 and the second on-off valve 28 on the side not normally used are closed. This can prevent the low pressure side pilot valve 23 from operating in the high pressure setting state.
  • FIG. 4 is a diagram showing an operating state of the low pressure setting safety valve system 20A in the safety valve system including two sets of pilot valves.
  • portions shown by thick lines indicate portions through which gas passes.
  • both the first on-off valve 27 and the second on-off valve 28 of the switching part 24A of the low pressure side pilot valve 23 are opened. . Then, the pressure P in the tank 12 acts on the high pressure side pilot valve 22 and the low pressure side pilot valve 23.
  • the low pressure side pilot valve 23 maintains the closed state as long as the pressure P does not exceed the operating pressure value X2 of the low pressure side pilot valve 23.
  • the low pressure side pilot valve 23 is opened, and the pressure P in the low pressure side pilot valve 23 is released through the opening port 21b of the main valve 21.
  • the pressure in the second pressure introduction line L12 decreases, and the pressure in the dome chamber 21d of the main valve 21 also decreases.
  • a pressure difference occurs between the introduction port 21a of the main valve 21 and the dome chamber 21d, and the valve body 21v is opened to communicate the introduction port 21a with the open port 21b.
  • the pressure P in the tank 12 is released through the main valve 21, and the pressure P in the tank 12 can be prevented from becoming excessively high.
  • both the first on-off valve 27 and the second on-off valve 28 of the switching unit 24A are closed.
  • the control unit 50 of the safety valve system 20A opens and closes the first on-off valve 27 and the second on-off valve 28 based on detection signals from limit switches 27s and 28s provided on the first on-off valve 27 and the second on-off valve 28, respectively. You can check the status.
  • the detection value of the pressure gauge 30 can be acquired from the pressure transmitter 30s, and the open / close state of the first on-off valve 27 and the second on-off valve 28 can be monitored.
  • the control unit 50 when the detected value in the pressure transmitter 30s is lower than a predetermined threshold value, both the first on-off valve 27 and the second on-off valve 28 are closed, and as shown in FIG. It can be confirmed that the pressure P of the tank 12 is acting on only 22.
  • both the first on-off valve 27 and the second on-off valve 28 of the switching unit 24A are opened.
  • the pressure reducing valve 26 is first operated to reduce the pressure in the system of the safety valve system 20A to the operating pressure value X2 or less.
  • the pressure P of the dome chamber 21 d of the main valve 21 is detected by the pressure gauge 29.
  • the control unit 50 of the safety valve system 20A acquires the detected value of the pressure gauge 29 from the pressure transmitter 29s. If the detected value in the pressure transmitter 29s is lower than the operating pressure value X2, it can be confirmed that the pressure reducing process by the pressure reducing valve 26 is performed correctly.
  • the high pressure side pilot valve 22 having the largest operating pressure value X1 always operates regardless of the operating state of the low pressure side pilot valve 23. Therefore, at least at the high pressure side pilot valve 22, the operator does not have to perform any switching operation. As a result, no work error occurs, and there is no moving part associated with switching, so troubles such as failure are less likely to occur, and the reliability of the safety valve system 20A is enhanced.
  • a first on-off valve 27 and a second on-off valve 28 are respectively provided on both sides of the low pressure side pilot valve 23.
  • a pressure gauge 30 is provided which detects the pressure between the first on-off valve 27 and the second on-off valve 28 on both sides of the low pressure side pilot valve 23. Thus, with the first on-off valve 27 and the second on-off valve 28 on both sides of the low pressure side pilot valve 23 closed, if the pressure P detected by the pressure gauge 30 increases, any first on-off valve 27, the second The second on-off valve 28 can detect that a leak has occurred.
  • a plurality of first on-off valves 27 and a plurality of second on-off valves 28 are provided in series. Thereby, in the first on-off valve 27 and the second on-off valve 28, when a trouble occurs in one of the plurality, it is possible to switch to the other first on-off valve 27 or the other second on-off valve 28 it can. Therefore, the high pressure side pilot valve 22 and the low pressure side pilot valve 23 can be reliably switched. As a result, the reliability of the safety valve system can be improved.
  • the pressure P is the operating pressure of the low pressure side pilot valve 23 If the value X2 is exceeded, the pressure P may be released simultaneously with the switching in the switching unit 24A. However, in such a case, the pressure P applied to the low pressure side pilot valve 23 can be made lower than the operating pressure value X2 by reducing the pressure by the pressure reducing valve 26 prior to switching by the switching unit 24A. it can. This can suppress the pressure P from being released simultaneously with the switching in the switching unit 24A.
  • FIG. 5 is a view showing the high pressure side pilot valve 22 with the spring 22d removed.
  • the high pressure side pilot valve 22 has a plurality of springs 22c and 22d attachable and detachable.
  • the high pressure side pilot valve 22 can be removed by removing at least one of the plurality of springs 22c and 22d.
  • the pilot valve 22 can be changed to a lower operating pressure value X1. Therefore, when trouble or the like occurs in the low pressure side pilot valve 23, the high pressure side pilot valve 22 can be used instead.
  • the operating pressure value X1 at which the pressure P in the tank 12 is released can be set higher than in the low pressure setting operating state. Therefore, it is possible to suppress the pressure P in the tank 12 from being released wastefully. Furthermore, the storage in the tank 12 can be efficiently delivered to the ground facility.
  • the control unit 50 of the safety valve system 20A controls the first on-off valve 27 according to detection signals from the limit switches 27s and 28s provided on the first on-off valve 27 and the second on-off valve 28, respectively.
  • the open / close state of the second on-off valve 28 is confirmed.
  • confirmation of the open / close state of the first on-off valve 27 and the second on-off valve 28 is not limited to this method.
  • the limit switches 27s and 28s may be omitted, and the operator may visually check the open / close state of the first on-off valve 27 and the second on-off valve 28.
  • first on-off valve 27 and the second on-off valve 28 are electromagnetic valves provided with limit switches 27s and 28s, respectively.
  • each of the first on-off valve 27 and the second on-off valve 28 may be a manual valve with an on-off detector.
  • the control unit 50 may be replaced by a detection unit that detects the open / close state of the open / close detector attached manual valve.
  • the user who has confirmed the open / close state by the detection unit disposed at the position away from the open / close detector attached manual valve manually performs the valve opening operation and the valve closing operation.
  • the detection value of the pressure gauge 30 is acquired from the pressure transmitter 30s, and the control unit 50 of the safety valve system 20A monitors the open / close states of the first on-off valve 27 and the second on-off valve 28. did.
  • confirmation of the open / close state of the first on-off valve 27 and the second on-off valve 28 is not limited to this method.
  • the operator may visually check the open / close states of the first on-off valve 27 and the second on-off valve 28. If the pressure transmitter 30s is omitted and the limit switches 27s and 28s are configured, the control unit 50 of the safety valve system 20A controls the first on-off valve 27 and the second on the basis of detection signals from the limit switches 27s and 28s. The open / close state of the open / close valve 28 may be confirmed.
  • the detection value of the pressure gauge 29 for detecting the pressure P of the dome chamber 21d of the main valve 21 is acquired from the pressure transmitter 29s, and it is determined whether the pressure reducing process by the pressure reducing valve 26 is performed correctly. , And confirmed by the control unit 50 of the safety valve system 20A.
  • confirmation as to whether or not the pressure reducing process by the pressure reducing valve 26 is properly performed is not limited to this method.
  • the pressure transmitter 29s may be omitted.
  • FIG. 6 is a view showing the configuration of a safety valve system according to a second embodiment of the present invention.
  • the safety valve system 20B in this embodiment includes the main valve 21, the high pressure side pilot valve 22, the low pressure side pilot valve 23, the switching portion 24B, the check valve 125, and the pressure reducing solenoid valve. 126, and.
  • the gas P in the tank 12 flows into the housing 22a through the return line L25 and the first return line L21 so that the pressure P of the gas acts on the first side of the valve body 22b. It will be in the state of The biasing force of the springs 22c and 22d acts on the second side of the valve body 22b, so the valve body 22b remains closed unless the pressure P exceeds the biasing force. When the pressure P exceeds the biasing force of the springs 22c and 22d, the valve body 22b opens. Thereby, the gas introduced into the housing 22a from the first return line L21 flows into the open port 21b of the main valve 21 via the first pressure release line L31.
  • the pressure of the first pressure introduction line L11 connected to the housing 22a decreases, and the pressure of the dome chamber 21d of the main valve 21 decreases.
  • a pressure difference occurs between the introduction port 21a of the main valve 21 and the dome chamber 21d, and the valve body 21v is opened to communicate the introduction port 21a with the open port 21b.
  • the pressure P in the tank 12 is released through the main valve 21.
  • the low pressure side pilot valve 23 has the pressure P of the gas in the tank 12 measured by the gas in the tank 12 flowing into the housing 23a through the return line L25 and the second return line L22. Act on one side. A biasing force from a spring 23c acts on the second side of the valve body 23b, and the valve body 23b maintains a closed state unless the pressure P exceeds the biasing force.
  • the valve body 23b opens, and the gas introduced into the housing 23a from the second return line L22 passes through the second pressure release line L32 to the open port 21b of the main valve 21. Flow into. Then, the pressure in the second pressure introduction line L12 decreases, and the pressure in the dome chamber 21d of the main valve 21 also decreases. As a result, a pressure difference occurs between the introduction port 21a of the main valve 21 and the dome chamber 21d, and the valve body 21v is opened to communicate the introduction port 21a with the open port 21b. Thus, the pressure P in the tank 12 is released through the main valve 21.
  • the number of springs 23 c of the low pressure side pilot valve 23 is smaller than the number of springs of the high pressure side pilot valve 22, and the operating pressure value X 2 is set low.
  • the switching unit 24 ⁇ / b> B switches the introduction and non-introduction of the gas in the tank 12 to the low pressure side pilot valve 23.
  • the switching unit 24 ⁇ / b> B includes a first solenoid valve (open / close valve) 127 and a second solenoid valve (open / close valve) 128.
  • the first solenoid valve 127 is provided in a second pressure introduction line L12 closer to the main valve 21 than the low pressure side pilot valve 23.
  • the opening / closing operation of the first solenoid valve 127 is controlled by the control unit 150 of the safety valve system 20B.
  • the first solenoid valve 127 includes manual shutoff valves 140v1 and 140v2 before and after it.
  • a bypass line (bypass passage) L12B is provided in parallel with the second pressure introduction line L12 in which the first solenoid valve 127 is provided.
  • the bypass line L12B is formed to branch from the second pressure introduction line L12 and bypass the first solenoid valve 127.
  • the bypass line L12B includes a manual bypass valve 141.
  • the manual shutoff valves 140v1 and 140v2 are normally open at all times.
  • the bypass valve 141 is normally closed at normal times.
  • the second solenoid valve 128 is provided on a second return line L22 opposite to the main valve 21 with the low pressure side pilot valve 23 interposed therebetween.
  • the opening / closing operation of the second solenoid valve 128 is controlled by the control unit 150 of the safety valve system 20B.
  • the second solenoid valve 128 includes manual shutoff valves 142v1 and 142v2 before and after it.
  • a bypass line (bypass passage) L22B is provided in parallel with the second return line L22 in which the second solenoid valve 128 is provided.
  • the bypass line L22B is formed to branch from the second return line L22 and bypass the second electromagnetic valve 128.
  • the bypass line L22B includes a manual bypass valve 143.
  • the manual shutoff valves 142v1 and 142v2 are always open at the normal time.
  • the bypass valve 143 is normally closed at normal times. When maintaining or replacing the second solenoid valve 128, the manual shutoff valves 142v1 and 142v2 are closed and the bypass valve 143 is opened.
  • connection line L28 is connected to the first return line L21 at a position closer to the low pressure side pilot valve 23 than a check valve 125 described later.
  • the connection line L28 is further connected to the second return line L22 at a position between the shutoff valve 142v2 adjacent to the second solenoid valve 128 and the shutoff valve 144v1 adjacent to the pressure reducing solenoid valve 126 described later.
  • the connection line L28 is further connected to the bypass line L22B at a position between the series-connected bypass valve 143 and a bypass valve 145 described later.
  • the introduction and non-introduction of the gas in the tank 12 to the low pressure side pilot valve 23 can be switched. More specifically, the gas in the tank 12 is introduced to the low pressure side pilot valve 23 by opening both the first solenoid valve 127 and the second solenoid valve 128. If both the first solenoid valve 127 and the second solenoid valve 128 are closed, the introduction of the gas in the tank 12 to the low pressure side pilot valve 23 is shut off.
  • the switching unit 24B further includes a pressure gauge (in-system pressure detection unit) 129, a pressure transmitter 129s, a pressure gauge (pressure detection unit) 130, and a pressure transmitter 130s.
  • the pressure gauge 129 measures and displays the pressure P of the dome chamber 21 d of the main valve 21.
  • the pressure gauge 129 is a second pressure introduction line L12 at a position between the first solenoid valve 127 and the main valve 21, more specifically, a second pressure introduction line L12 closer to the main valve 21 than the manual shutoff valve 140v1. It is branch-connected to the pressure introduction line L12.
  • the pressure gauge 129 is provided via a manual shutoff valve 160v1 so as to be disconnected from the second pressure introduction line L12 at the time of maintenance or the like.
  • the pressure transmitter 129 s detects the pressure P of the dome chamber 21 d of the main valve 21 and outputs the detection signal to the control unit 150 of the safety valve system 20 B.
  • the pressure transmitter 129s is provided side by side so as to be adjacent to the pressure gauge 129.
  • the pressure transmitter 129s is located at a position closer to the main valve 21 than the first solenoid valve 127 of the second pressure introduction line L12, more specifically, at a position closer to the main valve 21 than the shutoff valve 140v1 via the shutoff valve 160v2. Is provided.
  • the pressure transmitter 129 s is disposed closer to the main valve 21 than the pressure gauge 129.
  • the arrangement of the pressure gauge 129 and the pressure transmitter 129s is not limited to this arrangement.
  • the pressure transmitter 129s shown in FIG. 6 may be disposed closer to the first solenoid valve 127 than the pressure gauge 129.
  • the pressure gauge 130 measures and displays the pressure P of the gas introduced to the low pressure side pilot valve 23.
  • the pressure gauge 130 is closer to the low pressure side pilot valve 23 than the second pressure introduction line L12 at a position between the first solenoid valve 127 and the low pressure side pilot valve 23, more specifically, the manual shutoff valve 140v2. It is branch-connected to the second pressure introduction line L12 at the side position.
  • the pressure gauge 130 is provided via a manual shut-off valve 161v1 so as to be disconnected from the second pressure introduction line L12 at the time of maintenance or the like.
  • the pressure transmitter 130s detects the pressure P of the gas introduced to the low pressure side pilot valve 23, and outputs the detection signal to the control unit 150 of the safety valve system 20B.
  • the pressure transmitter 130s is provided side by side so as to be adjacent to the pressure gauge 130.
  • the pressure transmitter 130s is shut off at a position closer to the low pressure side pilot valve 23 than the first solenoid valve 127 of the second pressure introduction line L12, more specifically to a position closer to the low pressure side pilot valve 23 than the shutoff valve 140v2. It is provided via a valve 161v2.
  • the pressure transmitter 130 s is disposed closer to the first solenoid valve 127 than the pressure gauge 130.
  • the arrangement of the pressure gauge 130 and the pressure transmitter 130s is not limited to this arrangement.
  • the pressure transmitter 130s shown in FIG. 6 may be disposed closer to the low pressure side pilot valve 23 than the pressure gauge 130.
  • the present invention is not limited to these configurations, and as in the pressure gauge 30 of the first embodiment and the pressure transmitter 30s, the second pressure introduction line L12 may be branched and connected in a dendritic manner.
  • the check valve 125 is provided in the return line L25, and shuts off the flow of gas from the high pressure side pilot valve 22 to the tank 12 as in the check valve of the first embodiment.
  • the check valve 125 allows gas to flow from the tank 12 to the high pressure side pilot valve 22 and the low pressure side pilot valve 23.
  • the pressure reducing solenoid valve 126 is provided in a bypass line L 26 that bypasses the check valve 125. By opening the pressure reducing solenoid valve 126, the gas in each line in the safety valve system 20B can be returned to the tank 12, and the pressure in each line can be reduced. The opening / closing operation of the pressure reducing solenoid valve 126 is controlled by the control unit 150 of the safety valve system 20B.
  • the pressure reducing solenoid valve 126 is provided with manual shut off valves 144 v 1 and 144 v 2 before and after it.
  • a second bypass line L26B is provided in parallel with the bypass line L26 in which the pressure reducing solenoid valve 126 is provided.
  • the second bypass line L26B is formed to branch from the bypass line L26 and bypass the pressure reducing solenoid valve 126.
  • the second bypass line L26B includes a manual bypass valve 145.
  • the bypass line L26 and the second bypass line L26B are connected to the connection line L28.
  • the manual shutoff valves 144v1 and 144v2 are normally open at all times.
  • the bypass valve 145 is normally closed at normal times.
  • the operating pressure value of the safety valve system 20B is made different between during navigation and at anchorage. That is, when the carrier 10 is anchored, both the first solenoid valve 127 and the second solenoid valve 128 of the switching portion 24B of the low pressure side pilot valve 23 are closed, and the gas in the tank 12 is introduced to the low pressure side pilot valve 23 Shut off being done. Then, the pressure P in the tank 12 acts only on the high pressure side pilot valve 22. The high pressure side pilot valve 22 maintains a closed state as long as the pressure P does not exceed the operating pressure value X1, and when the pressure P exceeds the operating pressure value X1, the high pressure side pilot valve 22 opens. As a result, the pressure P in the tank 12 is released through the main valve 21, and it can be suppressed that the pressure P in the tank 12 becomes excessively high.
  • both the first solenoid valve 127 and the second solenoid valve 128 of the switching portion 24B of the low pressure side pilot valve 23 are opened. Then, the pressure P in the tank 12 acts on the high pressure side pilot valve 22 and the low pressure side pilot valve 23.
  • the low pressure side pilot valve 23 maintains a closed state as long as the pressure P does not exceed the operating pressure value X2 of the low pressure side pilot valve 23.
  • the low pressure side pilot valve 23 opens. As a result, the pressure P in the tank 12 is released through the main valve 21, and the pressure P in the tank 12 can be prevented from becoming excessively high.
  • the high pressure side pilot valve 22 having the largest operating pressure value X1 always operates. Therefore, at least in the high-pressure side pilot valve 22, there is no need for the operator to perform any switching operation, so there is no operation error, and there are no moving parts associated with the switching. Increase the reliability of 20B.
  • first solenoid valve 127, the second solenoid valve 128 and the pressure reducing solenoid valve 126 are solenoid valves
  • the opening and closing of the first solenoid valve 127, the second solenoid valve 128 and the pressure reducing solenoid valve 126 are remotely controlled. It is possible to monitor the open / close states of the first solenoid valve 127, the second solenoid valve 128 and the pressure reducing solenoid valve 126. Therefore, it becomes possible to easily switch between the high pressure side pilot valve 22 and the low pressure side pilot valve 23 and open / close the pressure reducing solenoid valve 126.
  • a shutoff valve 140v1 which blocks the flow to the first solenoid valve 127, the second solenoid valve 128 and the pressure reducing solenoid valve 126.
  • 140v2, 142v1, 142v2, 144v1, and 144v2 are provided so as to be openable and closable. Thereby, when maintaining or replacing the first solenoid valve 127, the second solenoid valve 128, and the pressure reducing solenoid valve 126, the shutoff valves 140v1, 140v2, 142v1, 142v2, 144v1, 144v2 before and after them are used.
  • the flow to the first solenoid valve 127, the second solenoid valve 128 and the pressure reducing solenoid valve 126 can be shut off. Thereby, the workability at the time of maintenance etc. of the first solenoid valve 127, the second solenoid valve 128, and the pressure reducing solenoid valve 126 is improved.
  • Valves 141, 143 and 145 are provided. Thereby, when maintaining or replacing the first solenoid valve 127, the second solenoid valve 128, and the pressure reducing solenoid valve 126, the shutoff valves 140v1, 140v2, 142v1, 142v2, 144v1 disposed before and after them.
  • a first solenoid valve 127 and a second solenoid valve 128 are respectively provided on both sides of the low pressure side pilot valve 23. Therefore, when the first solenoid valve 127 and the second solenoid valve 128 on both sides of the low pressure side pilot valve 23 are closed, the pressure P can not be reliably introduced to the low pressure side pilot valve 23. As a result, the reliability of the safety valve system can be improved.
  • a pressure gauge 130 which detects the pressure between the first solenoid valve 127 and the second solenoid valve 128 on both sides of the low pressure side pilot valve 23. As a result, if the pressure P detected by the pressure gauge 130 rises while the first solenoid valve 127 and the second solenoid valve 128 on both sides of the low pressure side pilot valve 23 are closed, any first solenoid valve 127, It is possible to detect that a leak has occurred in the two solenoid valves 128.
  • the present invention is not limited to the above-described embodiment, and includes the above-described embodiment with various modifications added thereto, without departing from the spirit of the present invention. That is, the specific shape, configuration, and the like described in the above embodiment are merely examples, and can be changed as appropriate.
  • liquefied gas such as LNG and LPG
  • the present invention can be applied even when other types of gases and liquids are stored.
  • the above safety valve systems 20A and 20B can be applied not only to the tank 12 but also to piping and the like.
  • the present invention is applicable to tanks and pipes not mounted on ships.
  • the present invention can be applied to a safety valve system, a tank, a ship, and a method of operating the safety valve system in a ship, and switching of the operating pressure value of the safety valve can be easily performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

安全弁システム(20A)は、タンクからの圧力が導入される導入ポート(21a)、および圧力を開放する開放ポート(21b)を有する主弁(21)と、互いに異なる作動圧力値に設定され、圧力が作動圧力値を超えたときに導入ポート(21a)と開放ポート(21b)とを連通させて圧力を開放させる高圧側パイロット弁(22)、低圧側パイロット弁(23)と、作動圧力値が最も大きい高圧側パイロット弁(22)以外の低圧側パイロット弁(23)のみを作動しないように切り換える切換部(24A)と、を備える。

Description

安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法
 この発明は、安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法に関する。
 本願は、2015年12月10日に、日本に出願された特願2015-241120号に基づき優先権を主張し、その内容をここに援用する。
 LNG(Liquefied Natural Gas:液化天然ガス)、LPG(Liquefied Petroleum Gas:液化石油ガス)等の液化ガスを運搬する運搬船は、液化ガスを収容するタンクを備えている。タンク内の液化ガスが過冷却状態でなければタンク外部からタンク内部に侵入する熱によってタンク内の液化ガスが蒸発する。液化ガスの蒸発量がタンクから排出されるガスの量を上回ればタンク内の圧力が上昇する。
 タンク内の圧力が過度に上昇しないよう、タンクは安全弁を備えている。タンクの許容圧力等に基づいて、安全弁が作動する圧力値が設定される。安全弁は、タンク内の圧力が予め定めた作動圧力値に到達したときに安全弁内部の主弁を開き、タンク内のガスを外部に放出する。
 運搬船の航行中には、タンク外部からタンク内部へ侵入する熱に加え、タンク内の液化ガスの動揺により液化ガスの蒸発量が増加することがある。
 そこで、特許文献1には、航行中に、安全弁の設定圧力値を変動させる構成が開示されている。
 ここで、安全弁には、直動式のものと、パイロット式のものがある。
 直動式の安全弁では、バネで主弁の弁体を一方の側から直接弁座に押圧し、弁体の他方の側に作用した圧力が、バネによる押圧力を上回ったときに主弁が開く。
 一方で、パイロット式の安全弁は、弁体の一方の側に作用する圧力と他方の側に作用する圧力を等しくしつつその圧力を受ける面積に違いを持たせ、弁体を弁座に押圧する荷重を作用させる構造を有している。このパイロット式の安全弁では、弁体を弁座に押し付けている圧力をパイロット弁が低下させることで弁体が弁座から離れ主弁が開く。パイロット弁の構造は上述の直動式の安全弁の構造に似ており、バネでパイロット弁の弁体を一方の側から直接押圧し、弁体の他方の側に作用した圧力がバネによる押圧力を上回ったときに、弁体が弁座から離れてパイロット弁が作動する。このようなパイロット式の安全弁は、主弁の他方の側の圧力がパイロット弁に作用して、パイロット弁のバネによる押圧力を上回ったときに開き、圧力を開放する。パイロット弁の弁体をバネに対して押圧する圧力は主弁の弁体に作用する圧力と同じであり、パイロット弁が作動すると主弁の弁体を弁座に押し付けている圧力が低下し主弁が開く。大型の液化ガス運搬船のタンクには、パイロット式の安全弁が一般に用いられている。
 このようなパイロット式の安全弁の作動圧力値を切り換えるには、パイロット弁のバネ自体をバネ定数の異なるものに交換するか、パイロット弁に装着するバネの数を変える必要がある。
特許第4750097号公報
 しかしながら、特許文献1に記載の安全弁では、作業者が手作業でパイロット弁のバネを追加することにより作動圧力値を切り換えているため、適正に切り換えられているか(追加のバネが適正に取り付けられているか)判別が難しい、という課題がある。
 この発明は、安全弁の作動圧力値の切換を容易に行うことができる安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法を提供することを目的とする。
 この発明の第一態様によれば、安全弁システムは、圧力源からの圧力が導入される導入ポート、および前記圧力を開放する開放ポート有する。安全弁システムは、前記開放ポートと前記導入ポートとを仕切る主弁を更に備える。安全弁システムは、互いに異なる作動圧力値に設定され、前記圧力が前記作動圧力値を超えたときに前記主弁を開くことで前記導入ポートと前記開放ポートとを連通させて前記圧力を開放させる複数のパイロット弁を更に備える。安全弁システムは、複数の前記パイロット弁のうち、前記作動圧力値が最も大きい前記パイロット弁以外の他の全ての前記パイロット弁を作動しないように切り換える切換部を更に備える。
 このように構成することで、切換部において、複数のパイロット弁のうち、作動圧力値が最も大きいパイロット弁以外の他の全てのパイロット弁を作動不能な状態、つまり作動しないように切り換えると、作動圧力値が最も大きいパイロット弁のみが作動可能な状態となる。切換部において、複数のパイロット弁のうち、作動圧力値が最も大きいパイロット弁以外の他のパイロット弁を作動可能な状態に切り換えれば、作動圧力値が最も大きいパイロット弁の作動圧力値よりも低い作動圧力値の他のパイロット弁を作動可能な状態にすることができる。これによって、バネの着脱等を行うことなく切換部で切換操作を行うのみで、安全弁の作動圧力値を切り換えることが可能となる。
 作動圧力値が最も大きいパイロット弁は、他のパイロット弁の状態にかかわらず、常に作動可能な状態となる。このようにすると、少なくとも、作動圧力値が最も大きいパイロット弁においては、作業者が何らの切換作業をする必要が無いので作業ミスも起こらず、切換にともなう可動部分も存在しないので故障等のトラブルも生じ難い。その結果、最大作動圧力に対する安全弁システムの信頼性を高めることができる。
 この発明の第二態様によれば、安全弁システムは、第一態様における切換部が、他の前記パイロット弁に圧力を導入する圧力導入ラインに開閉弁を備えるようにしてもよい。
 このように構成することで、開閉弁を閉じれば、他のパイロット弁には圧力が導入されない状態となる。このように、開閉弁を開閉するのみで、切換部におけるパイロット弁の作動状態を容易に切り換えることが可能となる。
 この発明の第三態様によれば、安全弁システムは、第二態様において、前記開閉弁は、他の前記パイロット弁を挟んだ両側にそれぞれ設けられているようにしてもよい。
 このように構成することで、パイロット弁の両側の開閉弁を閉めると、他のパイロット弁に対し、圧力が確実に導入されない状態とすることができる。その結果、システムの信頼性が高まる。
 この発明の第四態様によれば、安全弁システムは、第三態様において、他の前記パイロット弁を挟んだ両側の前記開閉弁の間における圧力を検出する圧力検出部をさらに備えるようにしてもよい。
 このように構成することで、パイロット弁の両側の開閉弁を閉めたか否か、つまり複数のパイロット弁の切換操作が正しく行われたかどうかを確認することができる。パイロット弁の両側の開閉弁を閉めた状態で、圧力検出部で検出する圧力が上昇すれば、いずれかのパイロット弁を挟んだ両側の前記開閉弁の一方あるいは両方でリークが生じていることを検知することができる。
 この発明の第五態様によれば、安全弁システムは、第二から第四態様の何れか一つの態様において、前記開閉弁が、電磁弁または開閉検出器付手動弁であってもよい。安全弁システムは、前記電磁弁の開閉動作を制御する制御部、または、前記開閉検出器付手動弁の開閉を検出する検出部を更に備えていてもよい。
 このように構成することで、開閉弁の開閉を遠隔操作により行うことができるとともに、開閉弁の開閉状態を開閉弁から離れた位置でモニタリングすることができる。
 この発明の第六態様によれば、安全弁システムは、第二から第五態様の何れか一つの態様において、前記開閉弁の前後に設けられ、前記開閉弁への流れを遮断可能な遮断弁を備えていてもよい。
 このように構成することで、開閉弁をメンテナンスしたり交換したりする際には、その前後の遮断弁を閉じることで、開閉弁への流れを遮断することができる。これにより、開閉弁をメンテナンス等する時の作業性を向上することができる。
 この発明の第七態様によれば、安全弁システムは、第六態様において、前記開閉弁に並行するバイパス流路と、前記バイパス流路を開閉するバイパス弁と、を備えていてもよい。
 このように構成することで、開閉弁をメンテナンスしたり開閉弁を交換したりする際には、その前後の遮断弁を閉じつつ、バイパス弁を開くことで、開閉弁に流入していた流体をバイパス流路によって迂回させることができる。
 この発明の第八態様によれば、安全弁システムは、第一から第七態様の何れか一つの態様において、複数の前記パイロット弁に導入される前記圧力を減圧する減圧部をさらに備えていてもよい。
 複数のパイロット弁のうち、作動圧力値が最も高いパイロット弁のみを作動させた状態から、より低い作動圧力値のパイロット弁を作動させる状態に移行する際、システム内の圧力が、切換先のパイロット弁の作動圧力値を超えていると、切換部における切換と同時に、切換先のパイロット弁が作動し圧力が開放されてしまう可能性がある。そのような場合に、切換部で切換を行うに先だって減圧部で減圧することができる。そのため、切換先のパイロット弁に導入される圧力を、作動圧力値よりも低い状態とすることができる。
 この発明の第九態様によれば、安全弁システムは、第一から第八態様の何れか一つの態様において、前記圧力源から導入される前記圧力を検出する系内圧力検出部をさらに備えていてもよい。
 このように構成することで、例えば、減圧部で減圧処理を行ったときに、減圧後の圧力が他のパイロット弁の作動圧力値を下回っているかどうかを確認することができる。
 この発明の第十態様によれば、安全弁システムは、第一から第九態様の何れか一つの態様において、前記作動圧力値が最も大きい前記パイロット弁が、複数のバネを直列に備えることで最も大きい前記作動圧力値に設定され、かつ、複数の前記バネが着脱可能とされていてもよい。
 このように構成することで、複数のバネのうちの少なくとも一つを取り外せば、パイロット弁を、より低い作動圧力値に切り換えることができる。そのため、作動圧力値が低い他のパイロット弁にトラブル等が生じた場合に、作動圧力値が最も高いパイロット弁を代わりに用いることができる。
 この発明の第十一態様によれば、タンクは、前記圧力源としての流体を収容するタンク本体と、第一から第十態様の何れか一つの態様の安全弁システムと、を備える。
 このように構成することで、安全弁システムによってタンク内の圧力が過度に高くならないように確実に維持することができる。
 この発明の第十二態様によれば、船舶は、船体と、前記船体に搭載された第十一態様のタンクと、を備える。
 このように構成することで、船舶は、船体に搭載されたタンク内の圧力が安全弁システムによって過度に高くならないように確実に維持することができる。
 この発明の第十三態様によれば、船舶における安全弁システムの運用方法は、第十二の船舶における安全弁システムの運用方法である。この安全弁システムの運用方法は、前記船体が停泊中の状態では、複数の前記パイロット弁のうち、前記作動圧力値が最も大きい前記パイロット弁以外の他の前記パイロット弁のみを作動しないようにする。この安全弁システムの運用方法は、更に、前記船体が航行中の状態では、複数の前記パイロット弁のうち、前記作動圧力値が最も大きい前記パイロット弁以外の他の前記パイロット弁を作動可能とする。
 このように構成することで、停泊中の状態では、航行中の状態に比較し、タンク内の圧力が開放される作動圧力値を、より高い状態に設定することができる。その結果、タンク内の流体を地上設備等に送出する際に、より多くの流体を送出することができる。
 上述した安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法によれば、安全弁の作動圧力値の切換を容易に行うことが可能となる。
この発明の第一実施形態に係るタンクを備えた船舶の概略構成を示す図である。 上記タンクが備える安全弁システムの構成を示す図である。 2組のパイロット弁を備える安全弁システムにおいて、高圧設定の運用状態を示す図である。 2組のパイロット弁を備える安全弁システムにおいて、低圧設定の運用状態を示す図である。 上記安全弁システムにおいて、高圧側パイロット弁のバネを取り外した状態を示す図である。 この発明の第二実施形態に係る安全弁システムの構成を示す図である。
 次に、この発明の実施形態に係る安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法を図面に基づき説明する。
(第一実施形態)
 図1は、第一実施形態におけるタンクを備えた船舶の概略構成を示す図である。
 図2は、タンクが備える安全弁システムの構成を示す図である。
 図1に示すように、この実施形態の運搬船(船舶)10は、液化天然ガス(LNG)、液化プロパンガス(LPG)等の液化ガスを運搬する。この運搬船10は、船体11と、タンク(圧力源、タンク本体)12と、安全弁システム20Aと、を少なくとも備えている。
 船体11は、上方に開口したタンク収容部15を備えている。
 タンク12は、例えばアルミニウム合金製で、タンク収容部15内に設けられている。
 タンク12は、その内部に、運搬対象である液化ガスを収容する。
 ここで、タンク12の形状や構造、設置数等については何ら限定するものではない。
 図2に示すように、安全弁システム20Aは、主弁21と、高圧側パイロット弁22と、低圧側パイロット弁23と、切換部24Aと、逆止弁25と、減圧弁(減圧部)26と、を備えている。
 主弁21は、導入ポート21aと、開放ポート21bと、ドーム室21dと、弁体21vを有している。導入ポート21aは、タンク12(図1参照)の上部に連結されており、この導入ポート21aに、タンク12内の蒸発ガス等のガスが導入される。これにより、主弁21の弁体には、導入ポート21aを通じてタンク12内の圧力Pが作用する。開放ポート21bは、ライザ(図示無し)等に向けて開放している。弁体21vは、導入ポート21aとドーム室21dとの間の圧力差に応じて開閉する。これら導入ポート21aの圧力とドーム室21dの圧力とが同一の場合には、弁体21vが閉状態となる。弁体21vが閉状態では、導入ポート21aと開放ポート21bとを遮断し、弁体21vが開状態では、導入ポート21aと開放ポート21bとを連通する。
 高圧側パイロット弁22は、ハウジング22a内に、弁体22bを備えている。この弁体22bは、弁体22bに対して直列に接続されたバネ22c,22dにより、弁体22bが閉塞する方向に付勢されている。これらバネ22c,22dのうち一方のバネ22dは、着脱可能となっている。この実施形態におけるバネ22c,22dは、同一のものを、弁体22bに対して直列に設けている。
 ハウジング22aの第一の側には、第一圧力導入ラインL11と、第一リターンラインL21とが接続されている。
 第一圧力導入ラインL11は、更に主弁21のドーム室21dに接続されている。
 第一リターンラインL21は、リターンラインL25を介し、タンク12へと繋がっている。第一リターンラインL21は、タンク12内の蒸発ガス等のガスをハウジング22aの第一の側からハウジング22a内に導入する。
 第一圧力開放ラインL31は、ハウジング22aの第二の側に接続されている。この第一圧力開放ラインL31は、更に主弁21の開放ポート21bに接続されている。
 高圧側パイロット弁22には、第一リターンラインL21を介してタンク12内のガスがハウジング22a内に流れ込む。これにより、ガスの圧力Pが、弁体22bの第一の側に作用する状態となる。弁体22bの第二の側には、バネ22c,22dによる付勢力が作用している。そのため、圧力Pが付勢力を上回らない限り、弁体22bは閉じた状態を維持する。
 圧力Pがバネ22c,22dの付勢力を上回ると、弁体22bが開き第一リターンラインL21と第一圧力開放ラインL31とがハウジング22aを介して連通する。これにより、第一リターンラインL21からハウジング22a内に導入されたガスが、第一圧力開放ラインL31を介して、主弁21の開放ポート21bに流れ込む。すると、ハウジング22aに接続された第一圧力導入ラインL11の圧力が下がり、主弁21のドーム室21dの圧力が低下する。その結果、主弁21の導入ポート21aとドーム室21dとの間に圧力差が生じ、弁体21vが開いて導入ポート21aと開放ポート21bとが連通する。これによって、タンク12内の圧力Pは、主弁21を通して開放される。
 ここで、高圧側パイロット弁22は、バネ22c,22dの数が、低圧側パイロット弁23よりも多く、圧力Pを開放する際の圧力値、すなわち高圧側パイロット弁22の作動圧力値X1が低圧側パイロット弁23の作動圧力値X2よりも高く設定されている。
 低圧側パイロット弁23は、ハウジング23a内に弁体23bを備えている。弁体23bは、バネ23cにより弁体23bが閉じる方向に付勢されている。バネ23cは、高圧側パイロット弁22のバネ22c,22dと同等のものである。低圧側パイロット弁23は、高圧側パイロット弁22よりもバネ23cの装備数が少なくなっていることで、弁体23bが開放される圧力Pが高圧側パイロット弁22よりも低くなっている。
 ハウジング23a内の弁体23bの第一の側には、第二圧力導入ライン(圧力導入ライン)L12と、第二リターンラインL22と、が接続されている。
 第二圧力導入ラインL12は、主弁21のドーム室21dに接続されている。
 第二リターンラインL22は、リターンラインL25を介し、タンク12へと繋がっている。第二リターンラインL22は、タンク12内のガスをハウジング23aの第一の側からハウジング23a内に導入する。ハウジング23aの第二の側には、第二圧力開放ラインL32が接続されている。この第二圧力開放ラインL32は、主弁21の開放ポート21bに接続されている。
 低圧側パイロット弁23には、第二リターンラインL22からタンク12内のガスがハウジング23a内に流れ込む。これにより、タンク12内のガスの圧力Pが、弁体23bの第一の側に作用する。弁体23bの第二の側には、バネ23cによる付勢力が作用しており、圧力Pが付勢力を上回らない限り、弁体23bは閉じた状態を維持する。
 圧力Pがバネ23cの付勢力を上回ると、弁体23bが開き、第二リターンラインL22と第二圧力開放ラインL32とがハウジング23aを介して連通する。これにより、第二リターンラインL22からハウジング23a内に導入されたガスが、第二圧力開放ラインL32を介して、主弁21の開放ポート21bに流れ込む。すると、第二圧力導入ラインL12の圧力が下がり、主弁21のドーム室21dの圧力も低下する。その結果、主弁21の導入ポート21aとドーム室21dとの間に圧力差が生じ、弁体21vが開いて導入ポート21aと開放ポート21bとが連通する。これによって、タンク12内の圧力Pは、主弁21を通して開放される。ここで、低圧側パイロット弁23のバネ23cの数は、高圧側パイロット弁22のバネ数よりも少なく、作動圧力値X2が高圧側パイロット弁22の作動圧力値X1よりも低く設定されている。
 切換部24Aは、低圧側パイロット弁23へのタンク12内のガスの導入、非導入を切り換える。切換部24Aは、第一開閉弁(開閉弁)27と、第二開閉弁(開閉弁)28と、を備えている。
 第一開閉弁27は、低圧側パイロット弁23よりも主弁21側の第二圧力導入ラインL12に設けられている。第一開閉弁27は、同一のものが直列に二重に設けられている。
 第一開閉弁27は、通常、何れか一方を開閉し、他方は常時開状態とされる。低圧側パイロット弁23に近い側の第一開閉弁27には、その開閉状態を検知するリミットスイッチ27sが設けられている。リミットスイッチ27sの検知信号は、安全弁システム20Aの制御部50に出力される。
 第二開閉弁28は、低圧側パイロット弁23を挟んで、主弁21とは反対側の第二リターンラインL22に設けられている。第二開閉弁28も、第一開閉弁27と同様に、同一のものが直列に二重に設けられている。第二開閉弁28は、通常、何れか一方を開閉し、他方は常時開状態とされる。低圧側パイロット弁23に近い側の第二開閉弁28には、その開閉状態を検知するリミットスイッチ28sが設けられている。リミットスイッチ28sの検知信号は、安全弁システム20Aの制御部50に出力される。
 これら第一開閉弁27と第二開閉弁28とを開閉することで、低圧側パイロット弁23へのタンク12内のガスの導入、非導入を切り替えることができる。より具体的には、第一開閉弁27および第二開閉弁28の双方を開くことで、タンク12内のガスが低圧側パイロット弁23に導入される。第一開閉弁27、第二開閉弁28の双方を閉じれば、低圧側パイロット弁23へのタンク12内のガスの導入が遮断される。
 切換部24Aは、圧力計(系内圧力検出部)29と、圧力計(圧力検出部)30と、をさらに備える。
 圧力計29は、第二圧力導入ラインL12において第一開閉弁27よりも主弁21に近い側に設けられ、主弁21のドーム室21dの圧力Pを検知する。この圧力計29には、圧力トランスミッター29sが設けられ、その検知信号は、安全弁システム20Aの制御部50に出力される。
 圧力計30は、第一開閉弁27と第二開閉弁28との間に設けられている。この実施形態では、圧力計30は、第二圧力導入ラインL12において、第一開閉弁27と低圧側パイロット弁23との間に配置されている。圧力計30は、低圧側パイロット弁23へ導入されるガスの圧力Pを検出する。圧力計30には、圧力トランスミッター30sが設けられ、その検知信号は、安全弁システム20Aの制御部50に出力される。
 逆止弁25は、リターンラインL25に設けられ、高圧側パイロット弁22および低圧側パイロット弁23からタンク12へのガスの流れを遮断する。その反対に、逆止弁25は、タンク12から高圧側パイロット弁22および低圧側パイロット弁23へ向けてのガスの流入は可能となっている。
 減圧弁26は、逆止弁25を迂回するバイパスラインL26に設けられている。この減圧弁26を開放することで、安全弁システム20A内の各ラインのガスをタンク12に戻すことができ、各ラインの圧力を減圧することができる。この実施形態における減圧弁26は、手動のマニュアルバルブに限られず、例えば、電磁弁や、ポジションスイッチを備えるマニュアルバルブに置き換えても良い。
 上述した運搬船10の航行中には、タンク12内でガスが蒸発してガス化するのに加え、タンク12内で液化ガスが動揺したり加速度を受けたりして圧力Pが上昇しやすい。これに対し、運搬船10が停泊中の場合には、タンク12内のガスの動揺が少なく意図しない圧力Pの上昇が生じ難い。そこで、この実施形態では、航行中と停泊中とで、安全弁システム20Aの作動圧力値を異ならせている。
 図3は、2組のパイロット弁を備える安全弁システムにおいて、高圧設定の安全弁システム20Aの運用状態を示す図である。図3において、太線で示す部分は、ガスが通っている部位を示している。
 図3に示すように、2組のパイロット弁を備える安全弁システムにおいて、高圧設定の運用状態では、低圧側パイロット弁23の切換部24Aの第一開閉弁27、第二開閉弁28の双方を閉じ、低圧側パイロット弁23へタンク12内のガスが導入されることを遮断する。
 すると、タンク12内の圧力Pは、高圧側パイロット弁22のみに作用する。
 高圧側パイロット弁22は、圧力Pが、作動圧力値X1を超えない限り、閉状態を維持する。圧力Pが作動圧力値X1を超えると、高圧側パイロット弁22が開く。すると、高圧側パイロット弁22内の圧力Pが、主弁21の開放ポート21bを介して開放される。
 これによって第一圧力導入ラインL11の圧力が下がり、主弁21のドーム室21dの圧力も低下する。その結果、主弁21の導入ポート21aとドーム室21dとの間に圧力差が生じ、主弁21の弁体21vが開いて導入ポート21aと開放ポート21bとが連通する。これにより、タンク12内の圧力Pが主弁21を通して開放され、タンク12内の圧力Pが過度に高くなることを抑制できる。
 高圧設定の運用状態では、安全弁システム20Aの制御部50は、圧力トランスミッター30sの検出値を取得して定期的にモニタリングする。
 高圧設定の運用状態では、第一開閉弁27、第二開閉弁28の双方が閉じているので、圧力計30の検出値が相対的に低い状態を維持している。しかし、圧力計30の検出値が、上昇傾向にあることが確認された場合、第一開閉弁27、第二開閉弁28の少なくともいずれか一方において、リークが生じていることになる。すると、停泊状態にありながら、低圧側パイロット弁23が作動し、高圧側パイロット弁22の作動圧力値X1よりも低い圧力Pで低圧側パイロット弁23が開放してしまう可能性がある。
 そこで、圧力計30の検出値が、上昇傾向にあることが確認された場合には、第一開閉弁27,第二開閉弁28は、同一のものが二重に設けられているので、第一開閉弁27、第二開閉弁28の双方において、通常使用していない側の第一開閉弁27、第二開閉弁28を閉じる。これにより、高圧設定状態で低圧側パイロット弁23が作動することを防ぐことができる。
 図4は、2組のパイロット弁を備える安全弁システムにおいて、低圧設定の安全弁システム20Aの運用状態を示す図である。図4において、太線で示す部分は、ガスが通っている部位を示している。
 図4に示すように、2組のパイロット弁を備える安全弁システムにおいて、低圧設定の運用状態では、低圧側パイロット弁23の切換部24Aの第一開閉弁27、第二開閉弁28の双方を開く。すると、タンク12内の圧力Pは、高圧側パイロット弁22および低圧側パイロット弁23に作用する。
 低圧側パイロット弁23は、圧力Pが低圧側パイロット弁23の作動圧力値X2を超えない限り閉状態を維持する。圧力Pが作動圧力値X2を超えると、低圧側パイロット弁23が開き、低圧側パイロット弁23内の圧力Pが、主弁21の開放ポート21bを介して開放される。これによって第二圧力導入ラインL12の圧力が下がり、主弁21のドーム室21dの圧力も低下する。その結果、主弁21の導入ポート21aとドーム室21dとの間の圧力差が生じ、弁体21vが開いて導入ポート21aと開放ポート21bとが連通する。これにより、タンク12内の圧力Pが主弁21を通して開放され、タンク12内の圧力Pが過度に高くなることを抑えることができる。
 ここで、低圧設定の運用状態では、切換部24Aの第一開閉弁27、第二開閉弁28の双方を閉じる。第一開閉弁27、第二開閉弁28のそれぞれに設けられたリミットスイッチ27s,28sからの検知信号により、安全弁システム20Aの制御部50では、第一開閉弁27、第二開閉弁28の開閉状態を確認することができる。
 さらに、安全弁システム20Aの制御部50において、圧力計30の検出値を、圧力トランスミッター30sから取得し、第一開閉弁27、第二開閉弁28の開閉状態をモニタリングすることができる。制御部50においては、圧力トランスミッター30sにおける検出値が、予め定めた閾値よりも低ければ、第一開閉弁27,第二開閉弁28の双方が閉じ、図3に示すように、高圧側パイロット弁22のみにタンク12の圧力Pが作用している状態に移行していることを確認できる。
 運搬船10が高圧設定の運用状態から低圧設定の運用状態に移行するときには、切換部24Aの第一開閉弁27、第二開閉弁28の双方を開く。このとき圧力Pが低圧側パイロット弁23の作動圧力値X2を超えていると、切換部24Aの第一開閉弁27、第二開閉弁28を開くと同時に、低圧側パイロット弁23が開放してしまう。そこで、運搬船10が高圧設定の運用状態から低圧設定の運用状態に移行するときには、まず減圧弁26を操作して、安全弁システム20Aの系内の圧力を作動圧力値X2以下に減圧する減圧処理を行う。この減圧処理後、圧力計29で主弁21のドーム室21dの圧力Pを検出する。安全弁システム20Aの制御部50では、この圧力計29の検出値を、圧力トランスミッター29sから取得する。圧力トランスミッター29sにおける検出値が、作動圧力値X2よりも低ければ、減圧弁26による減圧処理が正しく行われていることを確認できる。
 したがって、上述した実施形態によれば、切換部24Aにおいて、低圧側パイロット弁23のみを作動しないように切り換えると、作動圧力値X1が最も大きい高圧側パイロット弁22のみを作動可能な状態にすることができる。切換部24Aにおいて、低圧側パイロット弁23を作動可能な状態に切り換えれば、低圧側パイロット弁23が作動可能な状態とすることができる。これによって、バネの着脱等を行うことなく、切換部24Aで切換操作を行うのみで、安全弁システム20Aにおける作動圧力値X1,X2を容易に切り換えることが可能となる。
 作動圧力値X1が最も大きい高圧側パイロット弁22は、低圧側パイロット弁23の作動状態にかかわらず、常に作動する。そのため、少なくとも、高圧側パイロット弁22においては、作業者が何らの切換作業をする必要が無い。その結果、作業ミスも起こらず、切換にともなう可動部分も存在しないので故障等のトラブルも生じにくく、安全弁システム20Aの信頼性が高まる。
 第一開閉弁27、第二開閉弁28を開閉するのみで、高圧側パイロット弁22と低圧側パイロット弁23との切換を容易に行うことが可能となる。
 さらに、第一開閉弁27、第二開閉弁28が、低圧側パイロット弁23を挟んだ両側にそれぞれ設けられている。これにより、低圧側パイロット弁23の両側の第一開閉弁27、第二開閉弁28を閉めると、低圧側パイロット弁23に対し、圧力Pが確実に導入されない状態とすることができる。その結果、安全弁システムの信頼性を向上できる。
 低圧側パイロット弁23を挟んだ両側の第一開閉弁27、第二開閉弁28の間の圧力を検出する圧力計30が設けられている。これにより、低圧側パイロット弁23の両側の第一開閉弁27、第二開閉弁28を閉めた状態で、圧力計30で検出する圧力Pが上昇すれば、いずれの第一開閉弁27、第二開閉弁28でリークが生じていることを検知することができる。
 第一開閉弁27、第二開閉弁28が、それぞれ複数基、直列に設けられている。これにより、第一開閉弁27、第二開閉弁28において、複数基のうちの一つにトラブルが生じた場合に、他の第一開閉弁27、他の第二開閉弁28に切り換えることができる。そのため、高圧側パイロット弁22、低圧側パイロット弁23の切換を確実に行うことができる。その結果、安全弁システムの信頼性を高めることができる。
 作動圧力値X1が最も高いパイロット弁のみを作動させた状態から、より低い作動圧力値X2の低圧側パイロット弁23を作動させる状態に移行する際、圧力Pが、低圧側パイロット弁23の作動圧力値X2を超えていると、切換部24Aにおける切換と同時に、圧力Pが開放されてしまうことがある。しかし、そのような場合に、切換部24Aで切換を行うに先だって減圧弁26で減圧することで、低圧側パイロット弁23に作用する圧力Pを、作動圧力値X2よりも低い状態とすることができる。これによって、切換部24Aにおける切換と同時に、圧力Pが開放されてしまうことを抑制できる。
 例えば、減圧弁26で減圧処理を行ったときに、減圧後の圧力Pが低圧側パイロット弁23の作動圧力値X1,X2を下回っているかどうかを確実に確認することができる。そのため、システム信頼性をさらに高めることができる。
 図5は、高圧側パイロット弁22において、バネ22dを取り外した状態を示す図である。
 高圧側パイロット弁22は、複数のバネ22c,22dが着脱可能とされているので、例えば、図5に示すように、複数のバネ22c,22dのうちの少なくとも一つを取り外すことで、高圧側パイロット弁22を、より低い作動圧力値X1に変更することができる。そのため、低圧側パイロット弁23にトラブル等が生じた場合に、高圧側パイロット弁22を代わりに用いることができる。
 運搬船10が高圧設定の運用状態では、低圧設定の運用状態に比較し、タンク12内の圧力Pが開放される作動圧力値X1を、より高い状態に設定することができる。そのため、タンク12内の圧力Pが無駄に開放されることを抑制できる。さらに、地上設備にタンク12内の貯蔵物を効率よく送出させることができる。
(第一実施形態の変形例)
 上記第一実施形態では、第一開閉弁27、第二開閉弁28のそれぞれに設けられたリミットスイッチ27s,28sからの検知信号により、安全弁システム20Aの制御部50で、第一開閉弁27、第二開閉弁28の開閉状態を確認するようにした。しかし、第一開閉弁27、第二開閉弁28の開閉状態の確認は、この方法に限られない。リミットスイッチ27s,28sを省略し、第一開閉弁27、第二開閉弁28の開閉状態を、作業員が目視で確認するようにしてもよい。さらに、第一実施形態では、第一開閉弁27と第二開閉弁28がそれぞれリミットスイッチ27s,28sを備える電磁弁である場合について説明した。しかし、これら第一開閉弁27と第二開閉弁28とをそれぞれ開閉検出器付手動弁としても良い。この場合、制御部50に代えて開閉検出器付手動弁の開閉状態を検出する検出部を設けても良い。この場合、開閉検出器付手動弁から離れた位置に配置されている検出部によって開閉状態を確認したユーザーが、手動で開弁操作、および閉弁操作を行う。
 上記第一実施形態では、圧力計30の検出値を、圧力トランスミッター30sから取得し、安全弁システム20Aの制御部50で、第一開閉弁27、第二開閉弁28の開閉状態をモニタリングするようにした。しかし、第一開閉弁27、第二開閉弁28の開閉状態の確認は、この方法に限られない。第一開閉弁27、第二開閉弁28の開閉状態は、作業員が目視で確認するようにしてもよい。圧力トランスミッター30sを省略しつつ、リミットスイッチ27s,28sを備える構成とするのであれば、リミットスイッチ27s,28sからの検知信号により、安全弁システム20Aの制御部50で、第一開閉弁27、第二開閉弁28の開閉状態を確認するようにしてもよい。
 上記第一実施形態では、主弁21のドーム室21dの圧力Pを検出する圧力計29の検出値を、圧力トランスミッター29sから取得し、減圧弁26による減圧処理が正しく行われているか否かを、安全弁システム20Aの制御部50で確認するようにした。しかし、減圧弁26による減圧処理が正しく行われているか否かの確認は、この方法に限られない。圧力トランスミッター29sを省略するようにしてもよい。
(第二実施形態)
 次に、この発明に係る安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態と切換部の構成のみが異なる。そのため、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
 図6は、この発明の第二実施形態に係る安全弁システムの構成を示す図である。
 図6に示すように、この実施形態における安全弁システム20Bは、主弁21と、高圧側パイロット弁22と、低圧側パイロット弁23と、切換部24Bと、逆止弁125と、減圧用電磁弁126と、を備えている。
 高圧側パイロット弁22は、リターンラインL25、及び、第一リターンラインL21を介してタンク12内のガスがハウジング22aに流れ込むことで、ガスの圧力Pが、弁体22bの第一の側に作用する状態となる。弁体22bの第二の側には、バネ22c,22dによる付勢力が作用しているため、圧力Pが付勢力を上回らない限り、弁体22bは閉じた状態を維持する。
 圧力Pがバネ22c,22dの付勢力を上回ると、弁体22bが開く。これにより、第一リターンラインL21からハウジング22a内に導入されたガスが、第一圧力開放ラインL31を介して、主弁21の開放ポート21bに流れ込む。すると、ハウジング22aに接続された第一圧力導入ラインL11の圧力が下がり、主弁21のドーム室21dの圧力が低下する。その結果、主弁21の導入ポート21aとドーム室21dとの間に圧力差が生じ、弁体21vが開いて導入ポート21aと開放ポート21bとが連通する。これによって、タンク12内の圧力Pは、主弁21を通して開放される。
 低圧側パイロット弁23は、リターンラインL25、及び、第二リターンラインL22を介してタンク12内のガスがハウジング23a内に流れ込むことで、タンク12内のガスの圧力Pが、弁体23bの第一の側に作用する。弁体23bの第二の側には、バネ23cによる付勢力が作用しており、圧力Pが付勢力を上回らない限り、弁体23bは閉じた状態を維持する。
 圧力Pがバネ23cの付勢力を上回ると、弁体23bが開き、第二リターンラインL22からハウジング23a内に導入されたガスが、第二圧力開放ラインL32を通して、主弁21の開放ポート21bに流れ込む。すると、第二圧力導入ラインL12の圧力が下がり、主弁21のドーム室21dの圧力も低下する。その結果、主弁21の導入ポート21aとドーム室21dとの間に圧力差が生じ、弁体21vが開いて導入ポート21aと開放ポート21bとが連通する。これによって、タンク12内の圧力Pは、主弁21を通して開放される。ここで、低圧側パイロット弁23のバネ23cの数は、高圧側パイロット弁22のバネ数よりも少なく、作動圧力値X2が低く設定されている。
 切換部24Bは、低圧側パイロット弁23へのタンク12内のガスの導入、非導入を切り換える。切換部24Bは、第一電磁弁(開閉弁)127と、第二電磁弁(開閉弁)128と、を備えている。
 第一電磁弁127は、低圧側パイロット弁23よりも主弁21に近い側の第二圧力導入ラインL12に設けられている。第一電磁弁127は、安全弁システム20Bの制御部150により、その開閉動作が制御される。
 第一電磁弁127は、その前後に、手動の遮断弁140v1,140v2を備えている。
 第一電磁弁127が設けられた第二圧力導入ラインL12と並行して、バイパスライン(バイパス流路)L12Bが設けられている。バイパスラインL12Bは、第二圧力導入ラインL12から分岐して、第一電磁弁127を迂回するように形成されている。バイパスラインL12Bは、手動のバイパス弁141を備えている。
 ここで、手動の遮断弁140v1,140v2は、通常時は常時開いている。バイパス弁141は、通常時は常時閉じている。第一電磁弁127をメンテナンスしたり交換したりする際に、手動の遮断弁140v1,140v2が閉じられるとともに、バイパス弁141が開かれる。
 第二電磁弁128は、低圧側パイロット弁23を挟んで、主弁21とは反対側の第二リターンラインL22に設けられている。第二電磁弁128は、安全弁システム20Bの制御部150により、その開閉動作が制御される。
 第二電磁弁128は、その前後に、手動の遮断弁142v1,142v2を備えている。
 第二電磁弁128が設けられた第二リターンラインL22と並行して、バイパスライン(バイパス流路)L22Bが設けられている。バイパスラインL22Bは、第二リターンラインL22から分岐して、第二電磁弁128を迂回するように形成されている。バイパスラインL22Bは、手動のバイパス弁143を備えている。
 ここで、手動の遮断弁142v1,142v2は、通常時は常時開いている。バイパス弁143は、通常時は常時閉じている。第二電磁弁128をメンテナンスしたり交換したりする際に、手動の遮断弁142v1,142v2が閉じられるとともに、バイパス弁143が開かれる。
 この第二実施形態における第一リターンラインL21と、第二リターンラインL22と、バイパスラインL22Bとは、それぞれ連結ラインL28によって連結されている。具体的には、連結ラインL28は、後述する逆止弁125よりも低圧側パイロット弁23に近い位置で第一リターンラインL21に接続されている。連結ラインL28は、更に、第二電磁弁128と隣り合う遮断弁142v2と、後述する減圧用電磁弁126と隣り合う遮断弁144v1との間の位置で、第二リターンラインL22に接続されている。連結ラインL28は、更に、直列に接続されたバイパス弁143と後述するバイパス弁145との間の位置で、バイパスラインL22Bに連結されている。
 これら第一電磁弁127と第二電磁弁128とを開閉することで、低圧側パイロット弁23へのタンク12内のガスの導入、非導入を切り替えることができる。より具体的には、第一電磁弁127および第二電磁弁128の双方を開くことで、タンク12内のガスが低圧側パイロット弁23に導入される。第一電磁弁127、第二電磁弁128の双方を閉じれば、低圧側パイロット弁23へのタンク12内のガスの導入が遮断される。
 切換部24Bは、圧力計(系内圧力検出部)129と、圧力トランスミッター129sと、圧力計(圧力検出部)130と、圧力トランスミッター130sと、をさらに備えている。
 圧力計129は、主弁21のドーム室21dの圧力Pを計測して表示する。この圧力計129は、第一電磁弁127と主弁21との間の位置の第二圧力導入ラインL12、より具体的には、手動の遮断弁140v1よりも主弁21に近い位置の第二圧力導入ラインL12に分岐接続されている。この圧力計129は、メンテナンス時等に第二圧力導入ラインL12から切り離せるように、手動の遮断弁160v1を介して設けられている。
 圧力トランスミッター129sは、主弁21のドーム室21dの圧力Pを検知して、その検知信号を安全弁システム20Bの制御部150に出力する。この圧力トランスミッター129sは、圧力計129と隣り合うように並んで設けられている。圧力トランスミッター129sは、第二圧力導入ラインL12の第一電磁弁127よりも主弁21に近い位置、より具体的には、遮断弁140v1よりも主弁21に近い位置に、遮断弁160v2を介して設けられている。図6においては、圧力トランスミッター129sが圧力計129よりも主弁21に近い位置に配置されている。しかし、圧力計129と圧力トランスミッター129sとの配置は、この配置に限定されるものではない。例えば、図6に示す圧力トランスミッター129sは、圧力計129よりも第一電磁弁127に近い側に配置するようにしても良い。
 圧力計130は、低圧側パイロット弁23へ導入されるガスの圧力Pを計測して表示する。この圧力計130は、第一電磁弁127と低圧側パイロット弁23との間の位置の第二圧力導入ラインL12、より具体的には、手動の遮断弁140v2よりも低圧側パイロット弁23に近い側の位置の第二圧力導入ラインL12に分岐接続されている。この圧力計130は、上述した圧力計129と同様に、メンテナンス時等に第二圧力導入ラインL12から切り離せるように、手動の遮断弁161v1を介して設けられている。
 圧力トランスミッター130sは、低圧側パイロット弁23へ導入されるガスの圧力Pを検知して、その検知信号を安全弁システム20Bの制御部150に出力する。この圧力トランスミッター130sは、圧力計130と隣り合うように並んで設けられている。圧力トランスミッター130sは、第二圧力導入ラインL12の第一電磁弁127よりも低圧側パイロット弁23に近い位置、より具体的には、遮断弁140v2よりも低圧側パイロット弁23に近い位置に、遮断弁161v2を介して設けられている。図6においては、圧力トランスミッター130sが圧力計130よりも第一電磁弁127に近い位置に配置されている。しかし、圧力計130と圧力トランスミッター130sとの配置は、この配置に限定されるものではない。例えば、図6に示す圧力トランスミッター130sは、圧力計130よりも低圧側パイロット弁23に近い側に配置するようにしても良い。
 ここで、図6においては、圧力計129と、圧力トランスミッター129sとを、個別に第二圧力導入ラインL12に分岐接続する場合について説明した。更に、圧力計130と、圧力トランスミッター130sとを、個別に第二圧力導入ラインL12に分岐接続する場合について説明した。しかし、これらの構成に限られず、第一実施形態の圧力計30、及び、圧力トランスミッター30sのように、第二圧力導入ラインL12に対して樹枝状に分岐接続させるようにしても良い。
 逆止弁125は、リターンラインL25に設けられ、第一実施形態の逆止弁と同様に、高圧側パイロット弁22からタンク12へ向かうガスの流れを遮断する。その反対に、逆止弁125は、タンク12から高圧側パイロット弁22および低圧側パイロット弁23へ向けてのガスの流入は可能となっている。
 減圧用電磁弁126は、逆止弁125を迂回するバイパスラインL26に設けられている。この減圧用電磁弁126を開放することで、安全弁システム20B内の各ラインのガスをタンク12に戻すことができ、各ラインの圧力を減圧することができる。減圧用電磁弁126は、安全弁システム20Bの制御部150により、その開閉動作が制御される。
 減圧用電磁弁126は、その前後に、手動の遮断弁144v1,144v2を備えている。
 減圧用電磁弁126が設けられたバイパスラインL26と並行して、第二バイパスラインL26Bが設けられている。第二バイパスラインL26Bは、バイパスラインL26から分岐して、減圧用電磁弁126を迂回するように形成されている。第二バイパスラインL26Bは、手動のバイパス弁145を備えている。
 バイパスラインL26、第二バイパスラインL26Bは、連結ラインL28に接続されている。
 ここで、手動の遮断弁144v1,144v2は、通常時は常時開いている。バイパス弁145は、通常時は常時閉じている。減圧用電磁弁126をメンテナンスしたり交換したりする際に、手動の遮断弁144v1,144v2が閉じられるとともに、減圧用電磁弁126の代わりにバイパス弁145が開閉される。
 上述した運搬船10では、上記第一実施形態と同様、航行中と停泊中とで、安全弁システム20Bの作動圧力値を異ならせている。
 すなわち、運搬船10が停泊しているときには、低圧側パイロット弁23の切換部24Bの第一電磁弁127、第二電磁弁128の双方を閉じ、低圧側パイロット弁23へタンク12内のガスが導入されることを遮断する。すると、タンク12内の圧力Pは、高圧側パイロット弁22のみに作用する。高圧側パイロット弁22は、圧力Pが、作動圧力値X1を超えない限り、閉状態を維持し、圧力Pが作動圧力値X1を超えると、高圧側パイロット弁22が開く。これにより、タンク12内の圧力Pが主弁21を通して開放され、タンク12内の圧力Pが過度に高くなることを抑制できる。
 運搬船10が航行しているときには、低圧側パイロット弁23の切換部24Bの第一電磁弁127、第二電磁弁128の双方を開く。すると、タンク12内の圧力Pは、高圧側パイロット弁22および低圧側パイロット弁23に作用する。低圧側パイロット弁23は、圧力Pが低圧側パイロット弁23の作動圧力値X2を超えない限り閉状態を維持し、圧力Pが作動圧力値X2を超えると、低圧側パイロット弁23が開く。これにより、タンク12内の圧力Pが主弁21を通して開放され、タンク12内の圧力Pが過度に高くなることを抑えることができる。
 したがって、上述した第二実施形態によれば、上記第一実施形態と同様、切換部24Bにおいて、低圧側パイロット弁23のみを作動しないように切り換えると、作動圧力値X1が最も大きい高圧側パイロット弁22のみを作動可能な状態にすることができる。切換部24Bにおいて、低圧側パイロット弁23を作動可能な状態に切り換えれば、低圧側パイロット弁23を作動可能な状態とすることができる。これによって、バネの着脱等を行うことなく、切換部24Bで切換操作を行うのみで、安全弁システム20Bにおける作動圧力値X1,X2を容易に切り換えることが可能となる。
 さらに、作動圧力値X1が最も大きい高圧側パイロット弁22は、低圧側パイロット弁23の作動状態にかかわらず、常に作動する。そのため、少なくとも、高圧側パイロット弁22においては、作業者が何らの切換作業をする必要が無いので作業ミスも起こらず、切換にともなう可動部分も存在しないので故障等のトラブルも生じにくく、安全弁システム20Bの信頼性が高まる。
 さらに、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126が、電磁弁であるので、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126の開閉を、遠隔操作により行うことができるとともに、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126の開閉状態もモニタリングすることができる。したがって、高圧側パイロット弁22と低圧側パイロット弁23との切換、減圧用電磁弁126の開閉を容易に行うことが可能となる。
 さらに、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126の前後に、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126への流れを遮断する遮断弁140v1,140v2,142v1,142v2,144v1,144v2が開閉可能に設けられている。これにより、第一電磁弁127、第二電磁弁128、減圧用電磁弁126をメンテナンスしたり交換したりする際には、それらの前後の遮断弁140v1,140v2,142v1,142v2,144v1,144v2を閉じることで、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126への流れを遮断することができる。これにより、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126をメンテナンス等する時の作業性が向上する。
 さらに、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126に並行するバイパスラインL12B,L22B及び第二バイパスラインL26Bと、バイパスラインL12B,L22B及び第二バイパスラインL26Bを開閉するバイパス弁141,143,145と、が設けられている。これにより、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126をメンテナンスしたり交換したりする際には、それらの前後に配置された遮断弁140v1,140v2,142v1,142v2,144v1,144v2を閉じつつ、バイパス弁141,143,145を開くことで、第一電磁弁127、第二電磁弁128及び減圧用電磁弁126を流れるガスをバイパスラインL12B,L22B、第二バイパスラインL26Bに迂回させることができる。したがって、作業を行いながらも、安全弁システム20Bを運用することが可能となる。
 さらに、第一電磁弁127、第二電磁弁128が、低圧側パイロット弁23を挟んだ両側にそれぞれ設けられている。そのため、低圧側パイロット弁23の両側の第一電磁弁127、第二電磁弁128を閉めると、低圧側パイロット弁23に対し、圧力Pが確実に導入されない状態とすることができる。その結果、安全弁システムの信頼性を向上できる。
 さらに、低圧側パイロット弁23を挟んだ両側の第一電磁弁127、第二電磁弁128の間の圧力を検出する圧力計130が設けられている。これにより、低圧側パイロット弁23の両側の第一電磁弁127、第二電磁弁128を閉めた状態で、圧力計130で検出する圧力Pが上昇すれば、いずれの第一電磁弁127、第二電磁弁128でリークが生じていることを検知することができる。
(その他の変形例)
 この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、上記実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上記実施形態では、タンク12にLNGやLPG等の液化ガスを搭載するようにしたが、他の種類のガスや液体を収容する場合であっても、この発明を適用可能である。
 タンク12に限らず、配管等にも上記安全弁システム20A,20Bを適用することができる。さらに、船舶に搭載されないタンクや配管以外にも、この発明は適用可能である。
 この発明は、安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法に適用でき、安全弁の作動圧力値の切換を容易に行うことができる。
10 運搬船(船舶)
11 船体
12 タンク(圧力源、タンク本体)
15 タンク収容部
20A,20B 安全弁システム
21 主弁
21a 導入ポート
21b 開放ポート
21d ドーム室
21v 弁体
22 高圧側パイロット弁
22a ハウジング
22b 弁体
22c,22d バネ
23 低圧側パイロット弁
23a ハウジング
23b 弁体
23c バネ
24A,24B 切換部
25 逆止弁
26 減圧弁(減圧部)
27 第一開閉弁(開閉弁)
27s リミットスイッチ
28 第二開閉弁(開閉弁)
28s リミットスイッチ
29,129 圧力計(系内圧力検出部)
29s,129s 圧力トランスミッター
30,130 圧力計(圧力検出部)
30s,130s 圧力トランスミッター
125 逆止弁
126 減圧用電磁弁
127 第一電磁弁(開閉弁)
128 第二電磁弁(開閉弁)
129 圧力計
129s 圧力トランスミッター
130 圧力計
130s 圧力トランスミッター
140v1,140v2,142v1,142v2 遮断弁
141,143 バイパス弁
144v1,144v2 遮断弁
145 バイパス弁
50,150 制御部
160v1,160v2,161v1,161v2 遮断弁
L11 第一圧力導入ライン
L12 第二圧力導入ライン(圧力導入ライン)
L12B,L22B バイパスライン(バイパス流路)
L21 第一リターンライン
L22 第二リターンライン
L25 リターンライン
L26 バイパスライン
L26B 第二バイパスライン
L31 第一圧力開放ライン
L32 第二圧力開放ライン
P 圧力
X1 作動圧力値
X2 作動圧力値

Claims (13)

  1.  圧力源からの圧力が導入される導入ポート、および前記圧力を開放する開放ポートを有し、前記開放ポートと前記導入ポートとを仕切る主弁と、
     互いに異なる作動圧力値に設定され、前記圧力が前記作動圧力値を超えたときに前記主弁を開くことで前記導入ポートと前記開放ポートとを連通させて前記圧力を開放させる複数のパイロット弁と、
     複数の前記パイロット弁のうち、前記作動圧力値が最も大きい前記パイロット弁以外の他の全ての前記パイロット弁を作動しないように切り換える切換部と、
    を備える安全弁システム。
  2.  前記切換部は、他の前記パイロット弁に圧力を導入する圧力導入ラインに開閉弁を備える請求項1に記載の安全弁システム。
  3.  前記開閉弁は、他の前記パイロット弁を挟んだ両側にそれぞれ設けられている請求項2に記載の安全弁システム。
  4.  他の前記パイロット弁を挟んだ両側の前記開閉弁の間における圧力を検出する圧力検出部をさらに備える請求項3に記載の安全弁システム。
  5.  前記開閉弁は、電磁弁または開閉検出器付手動弁であり、
     前記電磁弁の開閉動作を制御する制御部、または、前記開閉検出器付手動弁の開閉を検出する検出部をさらに備える請求項2から4の何れか一項に記載の安全弁システム。
  6.  前記開閉弁の前後に設けられ、前記開閉弁への流れを遮断可能な遮断弁を備えている請求項2から5のいずれか一項に記載の安全弁システム。
  7.  前記開閉弁に並行するバイパス流路と、
     前記バイパス流路を開閉するバイパス弁と、
    を備える請求項6に記載の安全弁システム。
  8.  複数の前記パイロット弁に導入される前記圧力を減圧する減圧部をさらに備える請求項1から7の何れか一項に記載の安全弁システム。
  9.  前記圧力源から導入される前記圧力を検出する系内圧力検出部をさらに備える請求項1から8の何れか一項に記載の安全弁システム。
  10.  前記作動圧力値が最も大きい前記パイロット弁は、複数のバネを直列に備えることで最も大きい前記作動圧力値に設定され、かつ、複数の前記バネが着脱可能とされている請求項1から9の何れか一項に記載の安全弁システム。
  11.  前記圧力源としての流体を収容するタンク本体と、
     請求項1から10の何れか一項に記載の安全弁システムと、
    を備えるタンク。
  12.  船体と、
     前記船体に搭載された請求項11に記載のタンクと、
    を備える船舶。
  13.  請求項12に記載の船舶における安全弁システムの運用方法であって、
     前記船体が停泊中の状態では、複数の前記パイロット弁のうち、前記作動圧力値が最も大きい前記パイロット弁以外の他の前記パイロット弁のみを作動しないようにして、
     前記船体が航行中の状態では、複数の前記パイロット弁のうち、前記作動圧力値が最も大きい前記パイロット弁以外の他の前記パイロット弁を作動可能とする安全弁システムの運用方法。
PCT/JP2016/065886 2015-12-10 2016-05-30 安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法 WO2017098742A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16872642.0A EP3290771B1 (en) 2015-12-10 2016-05-30 Safety valve system, tank, ship, and operation method for safety valve system on ships
KR1020177034532A KR101999470B1 (ko) 2015-12-10 2016-05-30 안전 밸브 시스템, 탱크, 선박, 선박에 있어서의 안전 밸브 시스템의 운용 방법
CN201680032609.4A CN107636381B (zh) 2015-12-10 2016-05-30 安全阀***、储罐、船舶及船舶中的安全阀***的运用方法
US15/579,049 US10495260B2 (en) 2015-12-10 2016-05-30 Safety valve system, tank, ship, and operation method for safety valve system on ships
SG11201709723UA SG11201709723UA (en) 2015-12-10 2016-05-30 Safety valve system, tank, ship, and operation method for safety valve system on ships

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015241120A JP6582347B2 (ja) 2015-12-10 2015-12-10 安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法
JP2015-241120 2015-12-10

Publications (1)

Publication Number Publication Date
WO2017098742A1 true WO2017098742A1 (ja) 2017-06-15

Family

ID=59012962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065886 WO2017098742A1 (ja) 2015-12-10 2016-05-30 安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法

Country Status (7)

Country Link
US (1) US10495260B2 (ja)
EP (1) EP3290771B1 (ja)
JP (1) JP6582347B2 (ja)
KR (1) KR101999470B1 (ja)
CN (1) CN107636381B (ja)
SG (1) SG11201709723UA (ja)
WO (1) WO2017098742A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4215433A4 (en) * 2020-11-12 2024-03-13 Mitsubishi Shipbuilding Co., Ltd. FLOATING BODY

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007511A (ja) * 2017-06-21 2019-01-17 三井E&S造船株式会社 液化ガス管理システム
MX2022000748A (es) * 2019-07-19 2022-04-26 Emerson Automation Solutions Final Control US LP Derivacion de valvula piloto de carga rapida de domo.
KR102300003B1 (ko) * 2019-09-23 2021-09-09 한국수력원자력 주식회사 가압 용기용 안전 방출 시스템
CN113586947A (zh) * 2021-08-03 2021-11-02 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 一种c型液化气舱压力控制***
CN114396495A (zh) * 2022-03-03 2022-04-26 上海核工程研究设计院有限公司 一种自锁式多功能自动卸压阀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164098A (ja) * 1984-02-06 1985-08-27 Matsushita Electric Ind Co Ltd 液化ガスの気化装置
JPS61244998A (ja) * 1985-04-22 1986-10-31 Yoshihiro Yonahara タンク内気体圧力調節装置
US5699839A (en) * 1995-07-14 1997-12-23 Acurex Environmental Corporation Zero-vent liquid natural gas fueling station
JP2001254867A (ja) * 2000-01-28 2001-09-21 Greenfield Ag フィリング・ステーション用の切替え装置、およびガス・フィリング・ステーション
JP2010144878A (ja) * 2008-12-19 2010-07-01 Ud Trucks Corp Lng車用燃料貯蔵装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583432A (en) 1969-03-20 1971-06-08 Anderson Greenwood & Co Pilot operated pressure-vacuum relief valves
DE2319402C3 (de) 1973-04-17 1980-04-30 Bopp & Reuther Gmbh, 6800 Mannheim Sicherheitsventil mit gesteuerter Zusatzbelastung
DE2731804C3 (de) 1977-07-14 1982-01-28 Cryogas Technik Ingenieurgesellschaft für thermische Verfahren mbH, 5000 Köln Sicherheitseinrichtung für Tanks für verflüssigtes Gas
DE3414294A1 (de) 1984-04-14 1985-10-24 Drago Dipl.-Ing. 5020 Frechen Kober Sicherheitsventil fuer fluessiggastanks, insbesondere schiffstanks
DE3633851A1 (de) * 1986-10-04 1988-04-28 Bopp & Reuther Gmbh Verfahren und einrichtung zum steuern von sicherheitsventilen
US6568416B2 (en) * 2001-02-28 2003-05-27 Brian L. Andersen Fluid flow control system, fluid delivery and control system for a fluid delivery line, and method for controlling pressure oscillations within fluid of a fluid delivery line
US8028724B2 (en) * 2007-02-12 2011-10-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and unloading of LNG from the tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164098A (ja) * 1984-02-06 1985-08-27 Matsushita Electric Ind Co Ltd 液化ガスの気化装置
JPS61244998A (ja) * 1985-04-22 1986-10-31 Yoshihiro Yonahara タンク内気体圧力調節装置
US5699839A (en) * 1995-07-14 1997-12-23 Acurex Environmental Corporation Zero-vent liquid natural gas fueling station
JP2001254867A (ja) * 2000-01-28 2001-09-21 Greenfield Ag フィリング・ステーション用の切替え装置、およびガス・フィリング・ステーション
JP2010144878A (ja) * 2008-12-19 2010-07-01 Ud Trucks Corp Lng車用燃料貯蔵装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4215433A4 (en) * 2020-11-12 2024-03-13 Mitsubishi Shipbuilding Co., Ltd. FLOATING BODY

Also Published As

Publication number Publication date
SG11201709723UA (en) 2017-12-28
KR101999470B1 (ko) 2019-07-11
KR20170142193A (ko) 2017-12-27
US10495260B2 (en) 2019-12-03
CN107636381A (zh) 2018-01-26
JP2017106568A (ja) 2017-06-15
EP3290771A4 (en) 2018-04-25
JP6582347B2 (ja) 2019-10-02
US20180172213A1 (en) 2018-06-21
CN107636381B (zh) 2020-01-10
EP3290771B1 (en) 2019-09-04
EP3290771A1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
WO2017098742A1 (ja) 安全弁システム、タンク、船舶、船舶における安全弁システムの運用方法
MX2015004032A (es) Valvula de alivio accionada por piloto con doble regulador piloto.
NO339846B1 (no) Beskyttelsessystem for rørledning
US9016301B2 (en) Conduit protection system and method
JP2002115798A (ja) バルブ装置
RU2147706C1 (ru) Устройство привода клапана (варианты)
US20210095807A1 (en) Powered emergency released coupling control and monitoring system
CN109312898B (zh) 用于运行压力容器***的阀的方法以及压力容器***
KR102304652B1 (ko) 밸브 제어 시스템
JP4886386B2 (ja) 高圧ガス供給方法
JP2005257340A (ja) 高圧タンクシステムのガス漏れ検出装置
KR20190099878A (ko) 복수 관로의 배관 압력 통합 제어 시스템
JPS5952314B2 (ja) 天然ガス等の輸送管の破裂時自動遮断装置
US10919756B2 (en) Loading assembly for conveying a pressurized gas stream and a switching system for use in a loading assembly
KR100445323B1 (ko) 선박용 비상정지시스템
KR101686910B1 (ko) Lng 재기화 시스템의 고압펌프 가압 시스템 및 방법
EP2808293A1 (en) Loading Assembly for conveying a pressurized Gas, and a floating Gas processing Unit
EP2808294A1 (en) Loading Assembly and Emergency Disconnection Coupler for conveying a pressurized Gas between a floating Gas processing Unit and another Structure
JP2007197905A (ja) 配管緊急遮断装置
KR102583839B1 (ko) 부유식 구조물의 격리 밸브 제어 시스템
US20230032503A1 (en) System for transferring fluid and fluid transfer method
JP2009108763A (ja) 気体燃料供給装置及び圧力低下配管特定方法
EP3648848B1 (en) Installed fire extinguishing equipment with extinguishing-launching part-unit
KAYSER et al. 7.5 Excess Flow and Regular Check Valves
JP2006070969A (ja) 制御用圧縮空気のバックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201709723U

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2016872642

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177034532

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE