WO2017094871A1 - プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法 - Google Patents

プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法 Download PDF

Info

Publication number
WO2017094871A1
WO2017094871A1 PCT/JP2016/085859 JP2016085859W WO2017094871A1 WO 2017094871 A1 WO2017094871 A1 WO 2017094871A1 JP 2016085859 W JP2016085859 W JP 2016085859W WO 2017094871 A1 WO2017094871 A1 WO 2017094871A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
release
film
release film
resin
Prior art date
Application number
PCT/JP2016/085859
Other languages
English (en)
French (fr)
Inventor
清水 勝
健二 志摩
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015236639A external-priority patent/JP6818406B2/ja
Priority claimed from JP2016014872A external-priority patent/JP6785558B2/ja
Priority claimed from JP2016066240A external-priority patent/JP6767763B2/ja
Priority claimed from JP2016098224A external-priority patent/JP6731782B2/ja
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Priority to CN201680065928.5A priority Critical patent/CN108349122B/zh
Priority to KR1020187012541A priority patent/KR102172867B1/ko
Publication of WO2017094871A1 publication Critical patent/WO2017094871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the first and second inventions of the present application relate to a release film for a process, preferably a release film for a semiconductor sealing process, and in particular, when a semiconductor chip is placed in a mold and a resin is injected and molded, the semiconductor chip It is related with the mold release film for processes arrange
  • the third and fourth inventions of the present application relate to a mold release film for a process, preferably a mold release film for a semiconductor sealing process, which can effectively suppress an appearance defect of a molded product, particularly an appearance defect due to wrinkles, and particularly in a mold.
  • the present invention relates to a process release film disposed between a semiconductor chip or the like and an inner surface of a mold when a semiconductor chip or the like is placed and a resin is injection-molded, and a resin-encapsulated semiconductor manufacturing method using the same.
  • a release film As such a release film, a fluorine-based resin film (for example, Patent Documents 1 and 2), a poly-4-methyl-1-pentene resin film (for example, Patent Document 3), etc., which are excellent in releasability and heat resistance. Proposed.
  • these release films have a problem that wrinkles are easily generated when they are mounted on the inner surface of the mold, and the wrinkles are transferred to the surface of the molded product, resulting in poor appearance.
  • Patent Document 4 discloses a laminated release film having a configuration in which the storage elastic modulus of the release layer is relatively low and the storage elastic modulus of the heat-resistant layer is relatively high, more specifically, the release layer at 175 ° C.
  • a release film for a semiconductor encapsulation process is described in which the storage elastic modulus E ′ is 45 MPa or more and 105 MPa or less, and the storage elastic modulus E ′ of the heat resistant layer at 175 ° C. is 100 MPa or more and 250 MPa or less.
  • Such a release film for a process can be used not only in a semiconductor sealing process but also in a molding process of a reflector for a light emitting element such as a light emitting diode (see, for example, Patent Document 7).
  • the release film used in the semiconductor sealing process is a resin film as described above, it is generally easily charged.
  • static electricity is generated when the release film is peeled off, and foreign matter such as dust existing in the manufacturing atmosphere adheres to the charged release film, resulting in abnormal shape of the molded product (foreign matter Such as adhesion) and mold contamination.
  • some semiconductor chip sealing devices employ a granular resin as a sealing resin, resulting in abnormal shapes and mold contamination due to the dust generated from the granular resin adhering to the release film. Appearance defects that cannot be ignored.
  • MUF Molded Under Film
  • Patent Document 6 discloses a first thermoplastic resin layer that contacts a curable resin at the time of formation, a second thermoplastic resin layer that contacts a mold, a first thermoplastic resin layer, and a second thermoplastic resin. There is described a release film comprising an intermediate layer disposed between the resin layer and the intermediate layer including a layer containing a polymer antistatic agent.
  • the first invention of the present application was made in view of such circumstances, and the molded product after resin sealing can be easily released without depending on the mold structure or the amount of the release agent, and wrinkles, chips, etc.
  • An object of the present invention is to provide a release film for a process capable of obtaining a molded product having no poor appearance.
  • the second invention of the present application was made in view of such circumstances, and the molded product after resin sealing can be easily released without using a mold structure or a release agent, and has wrinkles, chips or shapes.
  • An object is to provide a mold film.
  • the third invention of the present application was made in view of such circumstances, and the molded product after resin sealing can be easily released without depending on the mold structure or the amount of the release agent, and wrinkles, chips, etc.
  • An object of the present invention is to provide a release film for a process capable of obtaining a molded product having no poor appearance.
  • the fourth invention of the present application has been made in view of such circumstances, and can easily release a molded product after resin sealing without using a mold structure or a release agent, and has a wrinkle, a chip, or a shape.
  • An object of the present invention is to provide a release film for a process capable of obtaining a molded product having no appearance defects such as abnormalities (such as adhesion of foreign matter).
  • the present inventors have determined that the rate of thermal dimensional change at a specific temperature of the process release film, particularly the TD direction of the laminated film constituting the process release film (film Is a direction perpendicular to the longitudinal direction when the film is manufactured (hereinafter also referred to as “lateral direction”).
  • the present invention has been found to be important for the suppression of wrinkles, and the present invention has been completed.
  • the present inventors have determined that the rate of thermal dimensional change at a specific temperature of the process release film, particularly the TD direction of the laminated film constituting the process release film.
  • the invention has been completed.
  • the present inventors have determined that the rate of thermal dimensional change at a specific temperature of the process release film, particularly the TD direction of the laminated film constituting the process release film ( In the plane of the film, the direction perpendicular to the longitudinal direction during film production (hereinafter also referred to as the “lateral direction”) is appropriately mounted on the inner surface of the mold.
  • the present invention has been found to be important for the suppression of wrinkles, and the third invention of the present application has been completed.
  • the present inventors have made extensive studies to solve the above problems, and as a result, appropriately controlled the tensile elastic modulus at a specific temperature of the process release film, and constitutes the laminated film.
  • the present inventors have found that it is particularly important to provide a layer containing a polymer-based charging agent in order to suppress poor appearance, and have completed the fourth invention of the present application. That is, the first invention of the present application and each aspect thereof are as described in the following [1] to [19].
  • a release film for process that is a laminated film including a release layer 1A and a heat-resistant resin layer 1B,
  • the contact angle of the release layer 1A with water (hereinafter, “contact angle with water” may be referred to as “water contact angle”) is 90 ° to 130 °
  • a release film for process which is a laminated film including a release layer 1A and a heat-resistant resin layer 1B, The contact angle of the release layer 1A with respect to water is 90 ° to 130 °, The release film for a process as described above, wherein a thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat resistant resin layer 1B is 4% or less.
  • the release layer 1A includes a resin selected from the group consisting of a fluororesin, a 4-methyl-1-pentene (co) polymer, and a polystyrene resin.
  • the laminated film further has a release layer 1A ′, and includes the release layer 1A, the heat-resistant resin layer 1B, and the release layer 1A ′ in this order, The release film for a process according to any one of [1] to [12], wherein a contact angle of the release layer 1A ′ with respect to water is 90 ° to 130 °.
  • At least one of the release layer 1A and the release layer 1A ′ contains a resin selected from the group consisting of a fluororesin, 4-methyl-1-pentene (co) polymer, and polystyrene resin
  • the process release film according to any one of [1] to [15] which is used in a semiconductor sealing process.
  • the release film for a process according to any one of [1] to [15] which is used in a fiber-reinforced plastic molding process or a plastic lens molding process.
  • a method of manufacturing a resin-encapsulated semiconductor Placing a semiconductor device to be resin-sealed at a predetermined position in a molding die; and Disposing the release film for a semiconductor sealing process according to any one of [1] to [14] on the inner surface of the molding die so that the release layer 1A faces the semiconductor device; , A step of injecting a sealing resin between the semiconductor device and the release film for semiconductor sealing process after clamping the molding die; and A method for producing the resin-encapsulated semiconductor, comprising: [19] A method of manufacturing a resin-encapsulated semiconductor, Placing a semiconductor device to be resin-sealed at a predetermined position in a molding die; and A step of disposing the release film for semiconductor sealing process according to [13] or [14] on the inner surface of the molding die so that the release layer 1A ′ faces the semiconductor device; A step of injecting a sealing resin between the semiconductor device and the release film for semiconductor sealing process after clamping the molding die; and A method for producing the
  • a release film for process which is a laminated film including a release layer 2A and a heat resistant resin layer 2B,
  • the contact angle of the release film 2A of the laminated film with respect to water is 90 ° to 130 °, and the surface specific resistance value is 1 ⁇ 10 13 ⁇ / ⁇ or less
  • the heat-resistant resin layer 2B includes a layer 2B1 containing a polymer antistatic agent
  • the mold release film for a process as described above, wherein a thermal dimensional change rate from 23 ° C. to 120 ° C. in a transverse (TD) direction of the laminated film is 3% or less.
  • a release film for process which is a laminated film including a release layer 2A and a heat resistant resin layer 2B,
  • the contact angle of the release film 2A of the laminated film with respect to water is 90 ° to 130 °, and the surface specific resistance value is 1 ⁇ 10 13 ⁇ / ⁇ or less
  • the heat-resistant resin layer 2B includes a layer 2B1 containing a polymer antistatic agent
  • the mold release film for a process as described above, wherein a thermal dimensional change rate from 23 ° C. to 170 ° C. in a transverse (TD) direction of the laminated film is 4% or less.
  • the release layer 2A includes a resin selected from the group consisting of a fluororesin, a 4-methyl-1-pentene (co) polymer, and a polystyrene resin.
  • the laminated film further has a release layer 2A ′, and includes the release layer 2A, the heat-resistant resin layer 2B, and the release layer 2A ′ in this order,
  • At least one of the release layer 2A and the release layer 2A ′ includes a resin selected from the group consisting of a fluororesin, a 4-methyl-1-pentene (co) polymer, and a polystyrene resin [14] Or the release film for processes as described in [15].
  • the process release film according to any one of [20] to [36] which is used in a semiconductor sealing process.
  • the release film for a process according to any one of [20] to [36] which is used in a fiber-reinforced plastic molding process or a plastic lens molding process.
  • a method of manufacturing a resin-encapsulated semiconductor Placing a semiconductor device to be resin-sealed at a predetermined position in a molding die; and Disposing the release film for semiconductor sealing process according to any one of [20] to [35] on the inner surface of the molding die so that the release layer 2A faces the semiconductor device; , A step of injecting a sealing resin between the semiconductor device and the release film for semiconductor sealing process after clamping the molding die; and A method for producing the resin-encapsulated semiconductor, comprising: [40] A method of manufacturing a resin-encapsulated semiconductor, Placing a semiconductor device to be resin-sealed at a predetermined position in a molding die; and The step of disposing the release film for semiconductor sealing process according to any one of [33] to [35] on the inner surface of the molding die so that the release layer 2A ′ faces the semiconductor device.
  • a release film for process which is a laminated film including a release layer 3A and a heat-resistant resin layer 3B, The contact angle of the release layer 3A with respect to water is 90 ° to 130 °, The release film for a process as described above, wherein the laminated film has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa.
  • TD transverse
  • a release film for process which is a laminated film including a release layer 3A and a heat-resistant resin layer 3B, The contact angle of the release layer 3A with respect to water is 90 ° to 130 °, The release film for a process as described above, wherein the laminated film has a tensile elastic modulus at 170 ° C. of 75 MPa to 500 MPa.
  • the laminated film further has a release layer 3A ′, and includes the release layer 3A, the heat-resistant resin layer 3B, and the release layer 3A ′ in this order, The release film for process according to any one of [41] to [54], wherein a contact angle of the release layer 3A 'with water is 90 ° to 130 °.
  • At least one of the release layer 3A and the release layer 3A ′ includes a resin selected from the group consisting of a fluororesin, a 4-methyl-1-pentene (co) polymer, and a polystyrene resin
  • a method of manufacturing a resin-encapsulated semiconductor Placing a semiconductor device to be resin-sealed at a predetermined position in a molding die; and Disposing the release film for semiconductor sealing process according to any one of [41] to [56] on the inner surface of the molding die so that the release layer 3A faces the semiconductor device; , A step of injecting a sealing resin between the semiconductor device and the release film for semiconductor sealing process after clamping the molding die; and A method for producing the resin-encapsulated semiconductor, comprising: [61] A method of manufacturing a resin-encapsulated semiconductor, Placing a semiconductor device to be resin-sealed at a predetermined position in a molding die; and Disposing the release film for semiconductor sealing process according to [55] or [56] on the inner surface of the molding die so that the release layer 3A ′ faces the semiconductor device; A step of injecting a sealing resin between the semiconductor device and the release film for semiconductor sealing process after clamping the molding die; and A method for producing the resin-encapsul
  • a release film for process which is a laminated film including a release layer 4A and a heat resistant resin layer 4B, The contact angle of the release layer 4A with respect to water is 90 ° to 130 °,
  • the heat-resistant resin layer 4B includes a layer 4B1 containing a polymer antistatic agent,
  • the mold release film for a process according to [62] wherein a thermal dimensional change rate from 23 ° C. to 120 ° C. in a transverse (TD) direction of the laminated film is 3% or less.
  • a release film for process which is a laminated film including a release layer 4A and a heat resistant resin layer 4B, The contact angle of the release layer 4A with respect to water is 90 ° to 130 °,
  • the heat-resistant resin layer 4B includes a layer 4B1 containing a polymer antistatic agent,
  • the mold release film for process according to [65] wherein a rate of thermal dimensional change from 23 ° C to 170 ° C in the transverse (TD) direction of the laminated film is 4% or less.
  • the release layer 4A includes a resin selected from the group consisting of a fluororesin, a 4-methyl-1-pentene (co) polymer, and a polystyrene resin.
  • the release film for process as described.
  • the process release film according to [75], wherein the stretched film is selected from the group consisting of a stretched polyester film, a stretched polyamide film, and a stretched polypropylene film.
  • the heat of crystal fusion in the first heating step measured by differential scanning calorimetry (DSC) according to JISK7221 of the heat resistant resin layer 4B is 20 J / g or more and 100 J / g or less.
  • the laminated film further has a release layer 4A ′, and includes the release layer 4A, the heat-resistant resin layer 4B, and the release layer 4A ′ in this order,
  • At least one of the release layer 4A and the release layer 4A ′ contains a resin selected from the group consisting of a fluororesin, a 4-methyl-1-pentene (co) polymer, and a polystyrene resin
  • the release film for process according to any one of [62] to [82] which is used in a fiber-reinforced plastic molding process or a plastic lens molding process.
  • a method of manufacturing a resin-encapsulated semiconductor Placing a semiconductor device to be resin-sealed at a predetermined position in a molding die; and Disposing the release film for semiconductor encapsulation process according to any one of [62] to [83] on the inner surface of the molding die so that the release layer 4A faces the semiconductor device; , A step of injecting a sealing resin between the semiconductor device and the release film for semiconductor sealing process after clamping the molding die; and A method for producing the resin-encapsulated semiconductor, comprising: [86] A method of manufacturing a resin-encapsulated semiconductor, Placing a semiconductor device to be resin-sealed at a predetermined position in a molding die; and A step of disposing the release film for semiconductor sealing process according to any one of [79] to [81] on the inner surface of the molding die so that the release layer 4A ′ faces the semiconductor device.
  • the “semiconductor device” is a concept including a semiconductor element (chip).
  • the process release film of the first invention of the present application has a high level of releasability, suppression of wrinkles, and mold followability that could not be realized by the prior art.
  • a molded product obtained by sealing or the like can be easily released, and a molded product free from appearance defects such as wrinkles and chips can be manufactured with high productivity.
  • the process release film of the second invention of the present application has a high level of mold release property, suppression of appearance defects, and mold followability that could not be realized by the prior art.
  • a molded product obtained by resin sealing or the like can be easily released, and a molded product free from defects in appearance such as wrinkles, chips, and abnormal shapes (such as adhesion of foreign matter) can be produced with high productivity.
  • the process release film of the second invention of the present application is particularly suitable for use in a sealing apparatus that employs a granular resin as the sealing resin.
  • the process release film of the third invention of the present application has a high level of releasability, suppression of wrinkles, and mold followability that could not be realized by the prior art. A molded product obtained by sealing or the like can be easily released, and a molded product free from appearance defects such as wrinkles and chips can be manufactured with high productivity.
  • the process release film of the fourth invention of the present application has a high level of mold release property, suppression of appearance defects, and mold followability that could not be realized by the prior art.
  • a molded product obtained by resin sealing or the like can be easily released, and a molded product free from defects in appearance such as wrinkles, chips, and abnormal shapes (such as adhesion of foreign matter) can be produced with high productivity.
  • the process release film of the fourth invention of the present application is particularly suitable for use in a sealing device that employs a granular resin as the sealing resin.
  • the process release film of the first invention of the present application includes the following four aspects.
  • (1-1) A release film for process that is a laminated film including a release layer 1A and a heat-resistant resin layer 1B, The contact angle of the release layer 1A with respect to water is 90 ° to 130 °, The mold release film for a process as described above, wherein a thermal dimensional change rate from 23 ° C. to 120 ° C. in a transverse (TD) direction of the laminated film is 3% or less.
  • a release film for process that is a laminated film including a release layer 1A and a heat-resistant resin layer 1B, The contact angle of the release layer 1A with respect to water is 90 ° to 130 °, The mold release film for a process as described above, wherein a thermal dimensional change rate from 23 ° C. to 170 ° C. in a transverse (TD) direction of the laminated film is 4% or less.
  • a release film for process which is a laminated film including the release layer 1A, the heat-resistant resin layer 1B, and the release layer 1A ′ in this order,
  • the contact angle of the release layer 1A and the release layer 1A ′ with respect to water is 90 ° to 130 °
  • a release film for process which is a laminated film including the release layer 1A, the heat-resistant resin layer 1B, and the release layer 1A ′ in this order,
  • the contact angle of the release layer 1A and the release layer 1A ′ with respect to water is 90 ° to 130 °
  • the process release film of the first invention of the present application (hereinafter, also simply referred to as “release film”) has a release layer 1A having release properties for molded products and molds, and A laminated film including a release layer 1A ′ and a heat-resistant resin layer 1B that supports the release layer as desired.
  • the process release film of the first invention of the present application is disposed on the inner surface of a molding die when a semiconductor element or the like is resin-sealed inside the molding die.
  • the release layer 1A of the release film (may be the release layer 1A ′ when the release layer 1A ′ is present) is placed on the resin-encapsulated semiconductor element or the like (molded product) side. It is preferable to arrange.
  • the contact angle of the release layer 1A with respect to water is 90 ° to 130 °.
  • the release layer 1A has low wettability and is fixed to the cured sealing resin or the mold surface. Without this, the molded product can be easily released.
  • the contact angle of the release layer 1A with respect to water is preferably 95 ° to 120 °, more preferably 98 ° to 115 °, and still more preferably 100 ° to 110 °.
  • the release layer 1A (in some cases, the release layer 1A ′) is disposed on the molded product side, so that the mold in the release layer 1A (in some cases, the release layer 1A ′) in the resin sealing step. It is preferable to suppress the occurrence of. This is because the generated wrinkles are transferred to the molded product and the appearance defect of the molded product is highly likely to occur.
  • the release layer 1A (and the release layer 1A ′ if necessary) and the release layer are supported.
  • a laminated film including the heat-resistant resin layer 1 ⁇ / b> B, in which a thermal dimensional change rate in the transverse (TD) direction shows a specific value is used. That is, the laminated film including the release layer 1A (and the release layer 1A ′ if necessary) and the heat-resistant resin layer 1B that supports the release layer is from 23 ° C. to 120 ° C. in the TD direction (lateral direction). The rate of thermal dimensional change in the TD direction (lateral direction) from 23 ° C.
  • the laminated film has a thermal dimensional change rate of 23% to 120 ° C. in the TD direction (lateral direction) of 3% or less and a thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the rate is more preferably 4% or less.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) of the laminated film is 3% or less, or the thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the rate is 4% or less, generation of wrinkles in the release layer in the resin sealing step or the like can be effectively suppressed.
  • the mechanism that suppresses the occurrence of wrinkles in the release layer is not always clear by using a film having a specific rate of thermal dimensional change in the transverse (TD) direction as a laminated film constituting the release film for the process.
  • TD transverse
  • the laminated film constituting the process release film of the first invention of the present application preferably has a thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) of 2.5% or less. It is more preferably 0% or less, and further preferably 1.5% or less.
  • the laminated film preferably has a thermal dimensional change rate of ⁇ 5.0% or more from 23 ° C. to 120 ° C. in the TD direction (lateral direction).
  • the laminated film constituting the process release film of the first invention of the present application preferably has a thermal dimensional change rate of 23% to 170 ° C. in the TD direction (lateral direction) of 3.5% or less.
  • the laminated film preferably has a thermal dimensional change rate of ⁇ 5.0% or more from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the mechanism by which the generation of wrinkles in the release layer is more effectively suppressed by using a resin layer in which the rate of thermal dimensional change in the transverse (TD) direction exhibits the specific value as the heat resistant resin layer 1B is not necessarily clear.
  • the thermal expansion / contraction of the release layer 1A (or the release layer 1A ′) due to heating / cooling during the process is suppressed by using the heat-resistant resin layer 1B having relatively small thermal expansion / contraction. It is presumed to be related.
  • the process release film of the first invention of the present application which is a laminated film including the release layer 1A (and the release layer 1A ′ if necessary) and the heat-resistant resin layer 1B that supports the release layer, has a TD direction ( It is preferable that the sum of the thermal dimensional change rate in the transverse direction and the thermal dimensional change rate in the MD direction (longitudinal direction during production of the film; hereinafter referred to as “longitudinal direction”) is not more than a specific value. That is, the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction and the thermal dimensional change rate from 23 ° C. to 120 ° C.
  • the laminated film is the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the vertical (MD) direction. Is preferably ⁇ 5.0% or more.
  • the rate of thermal dimensional change from 23 ° C. to 170 ° C. in the transverse (TD) direction and longitudinal (MD) of the laminated film including the release layer 1A (and release layer 1A ′ if necessary) and the heat-resistant resin layer 1B is preferably 7% or less, while the laminated film has a thermal dimension from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the sum of the rate of change and the rate of change in the thermal dimension from 23 ° C. to 170 ° C. in the machine direction (MD) is preferably ⁇ 5.0% or more.
  • the release layer 1A constituting the process release film of the first invention of the present application has a contact angle with water of 90 ° to 130 °, preferably 95 ° to 120 °, more preferably 98 ° to 115. °, more preferably 100 ° to 110 °.
  • a resin selected from the group consisting of a fluororesin, 4-methyl-1-pentene (co) polymer, and a polystyrene resin.
  • the fluororesin that can be used for the release layer 1A may be a resin containing a structural unit derived from tetrafluoroethylene. Although it may be a homopolymer of tetrafluoroethylene, it may be a copolymer with other olefins. Examples of other olefins include ethylene. A copolymer containing tetrafluoroethylene and ethylene as monomer constitutional units is a preferred example. In such a copolymer, the proportion of constitutional units derived from tetrafluoroethylene is 55 to 100% by mass. The proportion of the structural unit derived from is preferably 0 to 45% by mass.
  • the 4-methyl-1-pentene (co) polymer that can be used for the release layer 1A may be a homopolymer of 4-methyl-1-pentene, and 4-methyl-1-pentene, It may be a copolymer with other olefins having 2 to 20 carbon atoms (hereinafter referred to as “olefins having 2 to 20 carbon atoms”).
  • the olefin having 2 to 20 carbon atoms to be copolymerized with 4-methyl-1-pentene is 4-methyl It can give flexibility to -1-pentene.
  • olefins having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-tetradecene, 1-hexadecene, 1-heptadecene, -Octadecene, 1-eicosene and the like are included. These olefins may be used alone or in combination of two or more.
  • the proportion of structural units derived from 4-methyl-1-pentene is 96 to 99% by mass;
  • the proportion of the structural unit derived from the olefin having 2 to 20 carbon atoms is preferably 1 to 4% by mass.
  • the copolymer can be softened, that is, the storage elastic modulus E ′ can be lowered, and the mold followability can be improved. Is advantageous.
  • 4-Methyl-1-pentene (co) polymer can be produced by methods known to those skilled in the art. For example, it can be produced by a method using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • the 4-methyl-1-pentene (co) polymer is preferably a highly crystalline (co) polymer.
  • the crystalline copolymer may be either a copolymer having an isotactic structure or a copolymer having a syndiotactic structure, but in particular a copolymer having an isotactic structure. Is preferable from the viewpoint of physical properties and is easily available.
  • 4-methyl-1-pentene (co) polymer can be formed into a film and has the strength to withstand the temperature and pressure during molding, the stereoregularity and molecular weight are also particularly limited.
  • the 4-methyl-1-pentene copolymer may be a commercially available copolymer such as TPX (registered trademark) manufactured by Mitsui Chemicals, Inc.
  • Polystyrene resins that can be used for the release layer 1A include styrene homopolymers and copolymers, and the structural unit derived from styrene contained in the polymer is at least 60% by weight or more. Preferably, it is 80% by weight or more.
  • the polystyrene resin may be isotactic polystyrene or syndiotactic polystyrene, but is preferably isotactic polystyrene from the viewpoint of transparency, availability, release properties, heat resistance, etc. From this point of view, syndiotactic polystyrene is preferable. Polystyrene may be used alone or in combination of two or more.
  • the release layer 1A preferably has heat resistance that can withstand the mold temperature during molding (typically 120 to 180 ° C.). From such a viewpoint, the release layer 1A preferably includes a crystalline resin having a crystalline component, and the melting point of the crystalline resin is preferably 190 ° C. or higher, and more preferably 200 ° C. or higher and 300 ° C. or lower.
  • a fluororesin preferably contains at least a structural unit derived from tetrafluoroethylene
  • a 4-methyl-1-pentene (co) polymer has 4-methyl-1 -It preferably contains at least a structural unit derived from pentene, and in a polystyrene resin, it preferably contains at least syndiotactic polystyrene.
  • the resin containing the crystalline component constituting the release layer 1A has a heat of crystal melting of 15 J / g or more and 60 J / g or less in the first heating step measured by differential scanning calorimetry (DSC) according to JISK7221. It is preferable that it is 20 J / g or more and 50 J / g or less. When it is 15 J / g or more, in addition to being able to more effectively express heat resistance and releasability that can withstand hot press molding in the resin sealing step, etc., it also suppresses the dimensional change rate. Therefore, generation of wrinkles can be prevented.
  • DSC differential scanning calorimetry
  • the release layer 1A has an appropriate hardness, so that sufficient followability to the mold of the film can be obtained in the resin sealing step or the like. There is no risk of film damage.
  • the release layer 1A may further contain other resins in addition to the fluororesin, 4-methyl-1-pentene copolymer, and / or polystyrene resin. In this case, it is preferable that the hardness of the other resin is relatively high.
  • other resins include polyamide-6, polyamide-66, polybutylene terephthalate, and polyethylene terephthalate.
  • the release layer 1A contains a large amount of soft resin (for example, when the 4-methyl-1-pentene copolymer contains a large amount of olefins having 2 to 20 carbon atoms), the hardness of the release layer 1A is relatively high.
  • the release layer 1A can be hardened, which is advantageous in suppressing wrinkles in the sealing process and the like.
  • the content of these other resins is preferably, for example, 3 to 30% by mass with respect to the resin component constituting the release layer 1A.
  • the release layer 1A includes a heat resistance stabilizer, weather resistance, and the like within a range not impairing the object of the first invention of the present application.
  • the content of these additives can be, for example, 0.0001 to 10 parts by weight with respect to 100 parts by weight of the fluororesin, 4-methyl-1-pentene copolymer, and / or polystyrene resin.
  • the thickness of the release layer 1A is not particularly limited as long as the release property for the molded product is sufficient, but is usually 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the surface of the release layer 1A may have a concavo-convex shape as necessary, thereby improving the releasability.
  • the method for imparting irregularities to the surface of the release layer 1A is not particularly limited, but a general method such as embossing can be employed.
  • the process release film of the first invention of the present application may further have a release layer 1A ′ in addition to the release layer 1A and the heat-resistant resin layer 1B. That is, the process release film of the first invention of the present application may be a process release film that is a laminated film including the release layer 1A, the heat-resistant resin layer 1B, and the release layer 1A ′ in this order. Good.
  • the contact angle with respect to water of the release layer 1A ′ that may constitute the process release film of the first invention of the present application is 90 ° to 130 °, preferably 95 ° to 120 °, more preferably 98. It is from ° to 115 °, more preferably from 100 ° to 110 °.
  • the preferable material, configuration, physical properties, and the like of the release layer 1A ′ are the same as those described above for the release layer 1A.
  • the release layer 1A and the release layer 1A ′ are the same when the release film for the process is a laminated film including the release layer 1A, the heat-resistant resin layer 1B, and the release layer 1A ′ in this order. It may be a layer having a different structure or a layer having a different structure. From the standpoints of warpage prevention and ease of handling due to the same releasability on both surfaces, the release layer 1A and the release layer 1A ′ may have the same or substantially the same configuration. Preferably, from the viewpoint of optimally designing each in relation to the process of using the release layer 1A and the release layer 1A ′, for example, the release layer 1A has excellent release properties from the mold.
  • the release layer 1A and the release layer 1A ′ have different configurations.
  • the release layer 1A and the release layer 1A ′ may be made of the same material and have different configurations such as thickness. However, the materials and other configurations may be different.
  • Heat resistant resin layer 1B The heat-resistant resin layer 1B constituting the process release film of the first invention of the present application has a function of supporting the release layer 1A (and possibly the release layer 1A ') and suppressing wrinkles due to mold temperature and the like. Have.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat-resistant resin layer 1B is 3% or less, or the heat-resistant resin layer 1B It is preferable that the thermal dimensional change rate from 23 ° C. to 170 ° C. in the (TD) direction is 3% or less. Further, the heat resistant resin layer 1B has a thermal dimensional change rate of 23% to 120 ° C.
  • any resin layer including an unstretched film can be used for the heat-resistant resin layer 1B, it is particularly preferable to comprise a stretched film.
  • the stretched film tends to have a low or negative coefficient of thermal expansion due to the influence of stretching in the manufacturing process, and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction is 3% or less.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat-resistant resin layer 1B is preferably 2% or less, more preferably 1.5% or less, and 1% or less. More preferably, it is preferably -10% or more.
  • the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat resistant resin layer 1B is preferably 2% or less, more preferably 1.5% or less, and 1% or less. More preferably, it is preferably -10% or more.
  • the stretched film may be a uniaxially stretched film or a biaxially stretched film.
  • a uniaxially stretched film either longitudinal stretching or lateral stretching may be used, but it is desirable that stretching is performed at least in the transverse (TD) direction.
  • the method and apparatus for obtaining the stretched film are not particularly limited, and stretching may be performed by a method known in the art. For example, it can be stretched with a heating roll or a tenter stretching machine.
  • stretched film a stretched film selected from the group consisting of a stretched polyester film, a stretched polyamide film, and a stretched polypropylene film is preferably used.
  • stretched films are relatively easy to reduce the thermal expansion coefficient in the transverse (TD) direction or to be negative by stretching, and the mechanical properties are suitable for the use of the first invention of the present application.
  • TD transverse
  • the mechanical properties are suitable for the use of the first invention of the present application.
  • it since it is inexpensive and relatively easy to obtain, it is particularly suitable as a stretched film in the heat-resistant resin layer 1B.
  • stretched polyester film a stretched polyethylene terephthalate (PET) film and a stretched polybutylene terephthalate (PBT) film are preferable, and a biaxially stretched polyethylene terephthalate (PET) film is particularly preferable.
  • PET polyethylene terephthalate
  • PBT stretched polybutylene terephthalate
  • PET biaxially stretched polyethylene terephthalate
  • the polyamide constituting the stretched polyamide film but polyamide-6, polyamide-66, etc. can be preferably used.
  • stretched polypropylene film a uniaxially stretched polypropylene film, a biaxially stretched polypropylene film, or the like can be preferably used.
  • draw ratio and the thermal dimensional change rate can be appropriately controlled, and an appropriate value may be set as appropriate in order to achieve suitable mechanical properties.
  • the machine direction In the transverse direction the range is preferably 2.7 to 8.0 times.
  • the longitudinal direction and the transverse direction are preferably in the range of 2.7 to 5.0 times.
  • the polypropylene film in the case of a biaxially stretched polypropylene film, it is preferably in the range of 5.0 to 10.0 times in both the machine direction and the transverse direction. The range of 5 to 10.0 times is preferable.
  • the heat-resistant resin layer 1B has heat resistance that can withstand the mold temperature (typically 120 to 180 ° C.) at the time of molding from the viewpoint of controlling the strength of the film and the rate of thermal dimensional change within an appropriate range. It is preferable. From this point of view, the heat resistant resin layer 1B preferably includes a crystalline resin having a crystalline component, and the melting point of the crystalline resin is preferably 125 ° C. or higher, and the melting point is 155 ° C. or higher and 300 ° C. or lower. Is more preferably 185 to 210 ° C., and particularly preferably 185 to 205 ° C.
  • the heat-resistant resin layer 1B preferably contains a crystalline resin having a crystal component.
  • a crystalline resin to be contained in the heat resistant resin layer 1B for example, a crystalline resin such as a polyester resin, a polyamide resin, or a polypropylene resin can be used for a part or all of the crystalline resin.
  • a crystalline resin such as a polyester resin, a polyamide resin, or a polypropylene resin can be used for a part or all of the crystalline resin.
  • polyethylene terephthalate or polybutylene terephthalate for the polyester resin
  • polyamide 6 or polyamide 66 for the polyamide resin
  • isotactic polypropylene for the polypropylene resin.
  • the resin constituting the heat-resistant resin layer 1B preferably has a heat of crystal fusion in the first heating step measured by differential scanning calorimetry (DSC) in accordance with JISK7221 of 20 J / g or more and 100 J / g or less.
  • it is 20 J / g or more it is possible to effectively exhibit heat resistance and releasability that can withstand hot press molding in a resin sealing process and the like, and the dimensional change rate can be slightly suppressed. The occurrence of wrinkles can also be prevented.
  • the heat resistant resin layer 1B can be provided with an appropriate hardness, so that sufficient followability of the film to the mold is ensured in the resin sealing step and the like. In addition to being able to do so, there is no risk of the film being easily damaged.
  • the crystal melting calorie is the calorific value (J / g) on the vertical axis obtained in the first heating step in the differential scanning calorimetry (DSC) measurement according to JISK7221 and the horizontal axis. In the chart showing the relationship with temperature (° C.), it is a numerical value obtained by the sum of peak areas having a peak at 120 ° C. or higher.
  • the amount of crystal melting heat of the heat-resistant resin layer 1B can be adjusted by appropriately setting the heating and cooling conditions and the stretching conditions during film production.
  • the thickness of the heat-resistant resin layer 1B is not particularly limited as long as the film strength can be secured, but is usually 1-1. It is 00 ⁇ m, preferably 5 to 50 ⁇ m.
  • the release film for process of the first invention of the present application has layers other than the release layer 1A, the heat-resistant resin layer 1B, and the release layer 1A ′ as long as the object of the first invention of the present application is not violated. May be.
  • an adhesive layer may be provided between the release layer 1A (or the release layer 1A ′) and the heat resistant resin layer 1B as necessary.
  • the material used for the adhesive layer is not particularly limited as long as it can firmly bond the release layer 1A and the heat-resistant resin layer 1B and does not peel in the resin sealing step or the release step.
  • the adhesive layer is modified 4-methyl-1 graft-modified with an unsaturated carboxylic acid or the like. It is preferably a pentene copolymer resin, an olefin adhesive resin composed of a 4-methyl-1-pentene copolymer and an ⁇ -olefin copolymer.
  • the adhesive layer is preferably a pressure-sensitive adhesive such as polyester, acrylic or fluororubber. The thickness of the adhesive layer is not particularly limited as long as the adhesiveness between the release layer 1A (or the release layer 1A ') and the heat-resistant resin layer 1B can be improved, but it is, for example, 0.5 to 10 ⁇ m.
  • the total thickness of the process release film of the first invention of the present application is not particularly limited, but is preferably 10 to 300 ⁇ m, for example, and more preferably 30 to 150 ⁇ m.
  • the total thickness of the release film is in the above range, it is preferable because the handling property when used as a roll is good and the amount of discarded film is small.
  • FIG. 1 is a schematic diagram showing an example of a three-layer process release film.
  • the release film 10 has a heat-resistant resin layer 12 and a release layer 16 formed on one surface of the release film 16 with an adhesive layer 14 interposed therebetween.
  • the release layer 16 is the aforementioned release layer 1A, the heat resistant resin layer 12 is the aforementioned heat resistant resin layer 1B, and the adhesive layer 14 is the aforementioned adhesive layer.
  • the release layer 16 is preferably disposed on the side in contact with the sealing resin in the sealing process; the heat-resistant resin layer 12 is preferably disposed on the side in contact with the inner surface of the mold in the sealing process.
  • FIG. 2 is a schematic diagram showing an example of a five-layer process release film. Members having the same functions as those in FIG. 1 are denoted by the same reference numerals.
  • the release film 20 includes a heat resistant resin layer 12 and a release layer 16 ⁇ / b> A and a release layer 16 ⁇ / b> B formed on both surfaces of the release film 16 via an adhesive layer 14.
  • the release layer 16A is the aforementioned release layer 1A
  • the heat-resistant resin layer 12 is the aforementioned heat-resistant resin layer 1B
  • the release layer 16B is the aforementioned release layer 1A '
  • the adhesive layer 14 is the aforementioned It is an adhesive layer.
  • the compositions of the release layers 16A and 16B may be the same as or different from each other.
  • the thicknesses of the release layers 16A and 16B may be the same as or different from each other.
  • the release film of the first invention of the present application may be stressed by heating in the sealing process, it is preferable to suppress warping.
  • the release layers 16A and 16B are formed on both surfaces of the heat-resistant resin layer 12 because good release properties can be obtained on both the molded product and the inner surface of the mold.
  • the process release film of the first invention of the present application can be manufactured by any method. For example, 1) a method for producing a release film for a process by coextruding and laminating a release layer 1A and a heat resistant resin layer 1B (coextrusion forming method), and 2) on a film to be a heat resistant resin layer 1B
  • the molten resin of the resin to be the release layer 1A and the adhesive layer is applied and dried, or the resin solution in which the resin to be the release layer 1A and the adhesive layer is dissolved in a solvent is applied and dried.
  • the method 3 as a method for laminating the resin films, various known laminating methods can be employed, and examples thereof include an extrusion laminating method, a dry laminating method, and a thermal laminating method.
  • the dry laminating method each resin film is laminated using an adhesive.
  • the adhesive known adhesives for dry lamination can be used.
  • polyvinyl acetate adhesives for example, polyvinyl acetate adhesives; homopolymers or copolymers of acrylic esters (ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.), or acrylic esters and other monomers (methacrylic acid)
  • Polyacrylate adhesives consisting of copolymers with methyl, acrylonitrile, styrene, etc .
  • Cyanoacrylate adhesives Ethylene and other monomers (vinyl acetate, ethyl acrylate, acrylic acid, methacrylic acid) Etc.) Ethylene copolymer adhesives made of copolymers, etc .
  • Cellulose adhesives Polyester adhesives; Polyamide adhesives; Polyimide adhesives; Amino resin systems made of urea resins or melamine resins Adhesive; phenolic resin adhesive; epoxy adhesive; polyol (polyether polyol) , Polyester polyol
  • the resin film laminated by the method 3 As the resin film laminated by the method 3), a commercially available one may be used, or one produced by a known production method may be used.
  • the resin film may be subjected to surface treatment such as corona treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, and primer coating treatment. It does not specifically limit as a manufacturing method of a resin film, A well-known manufacturing method can be utilized.
  • the coextrusion molding method is preferable in that a defect due to a foreign matter biting between the resin layer to be the release layer 1A and the resin layer to be the heat-resistant resin layer 1B or a warp of the release film hardly occurs. . 3)
  • the laminating method is a manufacturing method suitable when a stretched film is used for the heat resistant resin layer 1B. In this case, it is preferable to form an appropriate adhesive layer at the interface between the films as necessary. In order to improve the adhesiveness between the films, a surface treatment such as a corona discharge treatment may be applied to the interface between the films as necessary.
  • the process release film may be uniaxially or biaxially stretched as necessary, whereby the film strength of the film can be increased.
  • the coating means in the above 2) coating method is not particularly limited, but various coaters such as a roll coater, a die coater, and a spray coater are used.
  • the melt extrusion means is not particularly limited. For example, an extruder having a T-type die or an inflation type die is used.
  • the release film for a process of the first invention of the present application is used by placing a semiconductor chip or the like in a mold and injecting and molding a resin between the semiconductor chip and the inner surface of the mold. Can do.
  • the resin used in the manufacturing process may be either a thermoplastic resin or a thermosetting resin.
  • thermosetting resins are widely used in the technical field, and in particular, epoxy-based thermosetting resins are used. It is preferable to use it.
  • semiconductor chip sealing is the most representative, but is not limited to this, and the first invention of the present application is also applicable to a fiber reinforced plastic molding process, a plastic lens molding process, and the like. Can do.
  • FIGS. 3-1, 4A and 4B are schematic views showing an example of a method for producing a resin-encapsulated semiconductor using the release film of the first invention of the present application.
  • the release film 1 of the first invention of the present application is supplied from the roll-shaped roll into the molding die 2 by the roll 1-2 and the roll 1-3.
  • the release film 1 is disposed on the inner surface of the upper mold 2.
  • the inner surface of the upper mold 2 may be evacuated to bring the release film 1 into close contact with the inner surface of the upper mold 2.
  • a semiconductor chip 6 disposed on a substrate is disposed in a lower mold 5 of the molding apparatus, and a sealing resin is disposed on the semiconductor chip 6 or a liquid sealing resin so as to cover the semiconductor chip 6.
  • the sealing resin 4 is accommodated between the upper mold 2 and the lower mold 5 on which the release film 1 that has been sucked and adhered is exhausted. Next, as shown in FIG. 3B, the upper mold 2 and the lower mold 5 are closed with the release film 1 of the first invention of this application, and the sealing resin 4 is cured.
  • the sealing resin 4 flows into the mold by the mold closing and curing, and the sealing resin 4 flows into the space and is filled and sealed so as to surround the side surface of the semiconductor chip 6.
  • the semiconductor chip 6 is taken out by the upper mold 2 and the lower mold 5 being opened.
  • the release film 1 is repeatedly used for a plurality of times or a new release film is supplied and subjected to the next resin molding.
  • the mold release film of the first invention of the present application is closely attached to the upper mold, interposed between the mold and the sealing resin, and resin molding prevents the resin from adhering to the mold.
  • the molded product can be easily released from the mold.
  • the release film can be newly supplied and resin-molded for each resin molding operation, or can be newly supplied and resin-molded for each of a plurality of resin molding operations.
  • the sealing resin may be a liquid resin or a resin that is solid at room temperature, but a sealing material such as a liquid that is liquid at the time of resin sealing can be appropriately employed.
  • epoxy resin biphenyl type epoxy resin, bisphenol epoxy resin, o-cresol novolac type epoxy resin, etc.
  • polyimide type resin Bismaleimide-based), silicone-based resin (thermosetting addition type), or the like that is usually used as a sealing resin can be used.
  • the resin sealing conditions vary depending on the sealing resin to be used, but may be appropriately set, for example, within a range of a curing temperature of 120 ° C. to 180 ° C., a molding pressure of 10 to 50 kg / cm 2 , and a curing time of 1 to 60 minutes. it can.
  • the step of placing the release film 1 on the inner surface of the molding die 8 and the step of placing the semiconductor chip 6 in the molding die 8 are not particularly limited and may be performed simultaneously. After the placement, the release film 1 may be placed, or after the release film 1 is placed, the semiconductor chip 6 may be placed.
  • the release film 1 since the release film 1 has the release layer 1A (and the release layer 1A 'if necessary) having a high release property, the semiconductor package 4-2 can be easily released. Moreover, since the release film 1 has moderate flexibility, it is less likely to become wrinkles due to the heat of the molding die 8 while having excellent followability to the mold shape. For this reason, a sealed semiconductor package having a good external appearance can be obtained without generating wrinkles on the resin-sealed surface of the sealed semiconductor package 4-2 or generating a portion not filled with resin (resin chipping). 4-2 can be obtained.
  • FIG. 4A and FIG. 4B are schematic views showing a transfer mold method which is an example of a method for producing a resin-encapsulated semiconductor using the release film of the first invention of the present application.
  • the release film 22 of the first invention of the present application is supplied from the roll-shaped roll into the molding die 28 by the roll 24 and the roll 26 (step a).
  • the release film 22 is disposed on the inner surface 30A of the upper mold 30 (step b).
  • the upper mold inner surface 30A may be evacuated to bring the release film 22 into close contact with the upper mold inner surface 30A.
  • the semiconductor chip 34 to be resin-sealed semiconductor chip 34 fixed to the substrate 34A
  • the sealing resin material 36 is set (step c), and the mold is clamped ( Step d).
  • a sealing resin material 36 is injected into the molding die 28 under predetermined heating and pressurizing conditions (step e).
  • the temperature (molding temperature) of the molding die 28 at this time is, for example, 165 to 185 ° C.
  • the molding pressure is, for example, 7 to 12 MPa
  • the molding time is, for example, about 90 seconds.
  • type 32 are opened, and the semiconductor package 40 and the release film 22 which were resin-sealed are released simultaneously or sequentially (process f).
  • a desired semiconductor package 44 can be obtained by removing the excess resin portion 42 from the obtained semiconductor package 40.
  • the release film 22 may be used as it is for resin sealing of other semiconductor chips as it is, but each time molding is completed, the roll is operated to feed the film, and a new release film 22 is formed as a molding die. 28 is preferably supplied.
  • the step of disposing the release film 22 on the inner surface of the molding die 28 and the step of disposing the semiconductor chip 34 in the molding die 28 are not particularly limited and may be performed simultaneously. After the placement, the release film 22 may be placed, or after the release film 22 is placed, the semiconductor chip 34 may be placed.
  • the release film 22 since the release film 22 has the release layer 1A (and the release layer 1A 'if necessary) having a high release property, the semiconductor package 40 can be easily released. Moreover, since the release film 22 has moderate flexibility, it is less likely to become wrinkles due to the heat of the molding die 28 while having excellent followability to the die shape. Therefore, it is possible to obtain the semiconductor package 40 having a good appearance without transferring wrinkles on the resin sealing surface of the semiconductor package 40 or generating a portion not filled with resin (resin chipping).
  • the release film of the first invention of the present application is not limited to the process of resin-sealing a semiconductor element, but a process of molding and releasing various molded products using a molding die, such as a fiber-reinforced plastic molding and release process, plastic It can also be preferably used in lens molding and mold release processes.
  • a release film for process which is a laminated film including a release layer 2A and a heat resistant resin layer 2B,
  • the contact angle of the release film 2A of the laminated film with respect to water is 90 ° to 130 °, and the surface specific resistance value is 1 ⁇ 10 13 ⁇ / ⁇ or less
  • the heat-resistant resin layer 2B includes a layer 2B1 containing a polymer antistatic agent
  • a release film for process which is a laminated film including a release layer 2A and a heat resistant resin layer 2B,
  • the contact angle of the release film 2A of the laminated film with respect to water is 90 ° to 130 °, and the surface specific resistance value is 1 ⁇ 10 13 ⁇ / ⁇ or less
  • the heat-resistant resin layer 2B includes a layer 2B1 containing a polymer antistatic agent,
  • a release film for process which is a laminated film including a release layer 2A, a heat-resistant resin layer 2B, and a release layer 2A ′ in this order, Contact angle with respect to the release layer 2A and water of the releasing layer 2A ', the laminated film is a 130 ° from 90 °, the surface resistivity of the releasing layer 2A is 1 ⁇ 10 13 ⁇ / ⁇ or less Because
  • the heat-resistant resin layer 2B includes a layer 2B1 containing a polymer antistatic agent, The mold release film for a process as described above, wherein a thermal dimensional change rate from 23 ° C. to 120 ° C. in a transverse (TD) direction of the laminated film is 3% or less.
  • a release film for process which is a laminated film including a release layer 2A, a heat-resistant resin layer 2B, and a release layer 2A ′ in this order,
  • the contact angle with respect to water of the release layer 2A and the release layer 2A ′ of the laminated film is 90 ° to 130 °, and the surface resistivity of the release layer 2A is 1 ⁇ 10 13 ⁇ / ⁇ or less.
  • the heat-resistant resin layer 2B includes a layer 2B1 containing a polymer antistatic agent,
  • the mold release film for a process as described above, wherein a thermal dimensional change rate from 23 ° C. to 170 ° C. in a transverse (TD) direction of the laminated film is 4% or less.
  • the release film for process of the second invention of the present application (hereinafter also simply referred to as “release film”) has a release layer 2A having release properties for molded products and molds, and A laminated film including a release layer 2A ′ and a heat-resistant resin layer 2B that supports the release layer as desired, wherein the heat-resistant resin layer 2B includes a layer 2B1 containing a polymer antistatic agent. .
  • the process release film of the second invention of the present application is disposed on the inner surface of a molding die when a semiconductor element or the like is resin-sealed inside the molding die.
  • the release layer 2A of the release film (or the release layer 2A ′ when the release layer 2A ′ is present) may be placed on the resin-sealed semiconductor element or the like (molded product) side. It is preferable to arrange.
  • the contact angle of the release layer 2A with respect to water is 90 ° to 130 °.
  • the release layer 2A has low wettability and is fixed to the cured sealing resin or the mold surface. Without this, the molded product can be easily released.
  • the contact angle of the release layer 2A with respect to water is preferably 95 ° to 120 °, more preferably 98 ° to 115 °, and still more preferably 100 ° to 110 °. Further, when the surface specific resistance value of the release layer 2A is 1 ⁇ 10 13 ⁇ / ⁇ or less, adhesion of foreign matter, sealing resin, or the like to the release film can be effectively prevented.
  • the surface resistivity of the release layer 2A is preferably 5 ⁇ 10 12 ⁇ / ⁇ or less, more preferably 1 ⁇ 10 12 ⁇ / ⁇ or less, and further preferably 5 ⁇ 10 11 ⁇ / ⁇ or less.
  • the release layer 2A (in some cases, the release layer 2A ′) is disposed on the molded product side, from the viewpoint of the appearance of the molded product, the release layer 2A (in some cases, the release layer in the resin sealing process). It is preferable to suppress the generation of wrinkles in the mold layer 2A ′). This is because the generated wrinkles are transferred to the molded product and the appearance defect of the molded product is highly likely to occur.
  • the release layer 2A (and the release layer 2A ′ if necessary) and the release layer are supported.
  • a laminated film including the heat resistant resin layer 2B wherein a laminated film showing a specific value of the thermal dimensional change rate in the transverse (TD) direction is used, and the polymer antistatic agent is contained as the heat resistant resin layer 2B.
  • a layer including the layer 2B1 is used.
  • the laminated film including the release layer 2A (and the release layer 2A ′ if necessary) and the heat-resistant resin layer 2B that supports the release layer is 23 ° C. to 120 ° C. in the TD direction (lateral direction).
  • the rate of thermal dimensional change from 1 to 23 ° C. in the TD direction (lateral direction) from 23 ° C. to 170 ° C. is 4% or less.
  • the laminated film including the release layer 2A (and the release layer 2A ′ if necessary) and the heat-resistant resin layer 2B that supports the release layer is obtained from 23 ° C. in the TD direction (lateral direction).
  • the rate of thermal dimensional change up to 120 ° C. is 3% or less, or the rate of thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction) is 4% or less.
  • the laminated film has a thermal dimensional change rate of 23% to 120 ° C. in the TD direction (lateral direction) of 3% or less and a thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction). The rate is more preferably 4% or less.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) of the laminated film is 3% or less, or the thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the rate is 4% or less, generation of wrinkles in the release layer in the resin sealing step or the like can be effectively suppressed.
  • the mechanism that suppresses the occurrence of wrinkles in the release layer is not always clear by using a film having a specific rate of thermal dimensional change in the transverse (TD) direction as a laminated film constituting the release film for the process.
  • the use of a laminated film having a relatively small thermal expansion / shrinkage is related to the suppression of the thermal expansion / shrinkage of the release layer 2A (or release layer 2A ′) due to heating / cooling during the process. Presumed to be.
  • the laminated film constituting the process release film of the second invention of the present application preferably has a thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) of 2.5% or less. It is more preferably 0% or less, and further preferably 1.5% or less.
  • the laminated film preferably has a thermal dimensional change rate of ⁇ 5.0% or more from 23 ° C. to 120 ° C. in the TD direction (lateral direction).
  • the laminated film constituting the process release film of the second invention of the present application preferably has a thermal dimensional change rate from 23 ° C. to 170 ° C. in the TD direction (lateral direction) of 3.5% or less.
  • the laminated film preferably has a thermal dimensional change rate of ⁇ 5.0% or more from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the mechanism by which the generation of wrinkles in the release layer is more effectively suppressed by using a resin layer in which the thermal dimensional change rate in the transverse (TD) direction exhibits the above specific value as the heat-resistant resin layer 2B is not necessarily clear.
  • the thermal expansion / contraction of the release layer 2A (or the release layer 2A ′) due to heating / cooling during the process is suppressed by using the heat-resistant resin layer 2B having a relatively small thermal expansion / contraction. It is presumed to be related.
  • the release film for a process of the second invention of the present application which is a laminated film including the release layer 2A (and the release layer 2A ′ if necessary) and the heat-resistant resin layer 2B that supports the release layer, has a TD direction ( It is preferable that the sum of the thermal dimensional change rate in the transverse direction and the thermal dimensional change rate in the MD direction (longitudinal direction during production of the film; hereinafter referred to as “longitudinal direction”) is not more than a specific value. That is, the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction and the thermal dimensional change rate from 23 ° C. to 120 ° C.
  • the laminated film is the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the vertical (MD) direction. Is preferably ⁇ 5.0% or more.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. in the transverse (TD) direction and the longitudinal (MD) direction of the laminated film including the release layer 2A (and optionally the release layer 2A ′) and the heat-resistant resin layer 2B.
  • the rate of thermal dimensional change from 23 ° C. to 170 ° C. in the transverse (TD) direction and longitudinal (MD) of the laminated film including the release layer 2A (and the release layer 2A ′ as required) and the heat-resistant resin layer 2B is preferably 7% or less, while the laminated film has a thermal dimension from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the sum of the rate of change and the rate of change in the thermal dimension from 23 ° C. to 170 ° C. in the machine direction (MD) is preferably ⁇ 5.0% or more.
  • the release layer 2A constituting the process release film of the second invention of the present application has a contact angle with water of 90 ° to 130 °, preferably 95 ° to 120 °, more preferably 98 ° to 115. °, more preferably 100 ° to 110 °.
  • the surface resistivity of the release layer 2A is 1 ⁇ 10 13 ⁇ / ⁇ or less, preferably 5 ⁇ 10 12 ⁇ / ⁇ or less, more preferably 1 ⁇ 10 12 ⁇ / ⁇ or less, and more preferably 5 ⁇ 10 11 ⁇ / ⁇ is less than or equal to.
  • a resin selected from the group consisting of a fluororesin, 4-methyl-1-pentene (co) polymer, and a polystyrene resin.
  • the fluororesin that can be used for the release layer 2A is the same as that described for the release layer 1A.
  • the 4-methyl-1-pentene (co) polymer that can be used for the release layer 2A is the same as that described for the release layer 1A.
  • the polystyrene resin that can be used for the release layer 2A is the same as that described for the release layer 1A.
  • the release layer 2A preferably has a heat resistance that can withstand the temperature of the mold during molding (typically 120 to 180 ° C.). From this point of view, the release layer 2A preferably includes a crystalline resin having a crystal component, and the melting point of the crystalline resin is preferably 190 ° C. or higher, and more preferably 200 ° C. or higher and 300 ° C. or lower.
  • a fluororesin preferably contains at least a structural unit derived from tetrafluoroethylene
  • a 4-methyl-1-pentene (co) polymer has 4-methyl-1 -It preferably contains at least a structural unit derived from pentene
  • a polystyrene resin it preferably contains at least syndiotactic polystyrene.
  • the resin containing the crystalline component constituting the release layer 2A has a heat of crystal melting of 15 J / g or more and 60 J / g or less in the first heating step measured by differential scanning calorimetry (DSC) according to JISK7221. It is preferable that it is 20 J / g or more and 50 J / g or less. When it is 15 J / g or more, in addition to being able to more effectively express heat resistance and releasability that can withstand hot press molding in the resin sealing step, etc., it also suppresses the dimensional change rate. Therefore, generation of wrinkles can be prevented.
  • DSC differential scanning calorimetry
  • the release layer 2A has an appropriate hardness, and therefore, sufficient followability to the mold of the film can be obtained in the resin sealing step or the like. There is no risk of film damage.
  • the release layer 2A may contain other resin in addition to the fluororesin, 4-methyl-1-pentene copolymer, and / or polystyrene resin. In this case, other resins and their contents are the same as those described for the release layer 1A.
  • the release layer 2A includes a heat resistance stabilizer, weather resistance, and the like within a range not impairing the object of the second invention of the present application.
  • the content of these additives can be, for example, 0.0001 to 10 parts by weight with respect to 100 parts by weight of the fluororesin, 4-methyl-1-pentene copolymer, and / or polystyrene resin.
  • the thickness of the release layer 2A is not particularly limited as long as the release property for the molded product is sufficient, but is usually 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the surface of the release layer 2A may have a concavo-convex shape as necessary, thereby improving the releasability.
  • the method for imparting irregularities to the surface of the release layer 2A is not particularly limited, but a general method such as embossing can be employed.
  • the process release film of the second invention of the present application may further have a release layer 2A ′ in addition to the release layer 2A and the heat-resistant resin layer 2B. That is, the process release film of the second invention of the present application may be a process release film that is a laminated film including the release layer 2A, the heat-resistant resin layer 2B, and the release layer 2A ′ in this order. Good.
  • the contact angle with respect to water of the release layer 2A ′ that may constitute the process release film of the second invention of the present application is 90 ° to 130 °, preferably 95 ° to 120 °, more preferably 98. It is from ° to 115 °, more preferably from 100 ° to 110 °.
  • the preferable material, configuration, physical properties, and the like of the release layer 2A ′ are the same as those described above for the release layer 2A.
  • the surface resistivity of the release layer 2A ′ is preferably 1 ⁇ 10 13 ⁇ / ⁇ or less, more preferably 5 ⁇ 10 12 ⁇ / ⁇ or less, and further preferably 1 ⁇ 10 12 ⁇ / ⁇ or less. Particularly preferably, it is 5 ⁇ 10 11 ⁇ / ⁇ or less.
  • the release layer 2A and the release layer 2A ′ are the same when the release film for process is a laminated film including the release layer 2A, the heat-resistant resin layer 2B, and the release layer 2A ′ in this order. It may be a layer having a different structure or a layer having a different structure. From the standpoint of preventing warpage and ease of handling due to the same release properties on both surfaces, the release layer 2A and the release layer 2A ′ may have the same or substantially the same configuration. Preferably, from the viewpoint of optimally designing each in relation to the process using the release layer 2A and the release layer 2A ′, for example, the release layer 2A has excellent release properties from the mold.
  • the release layer 2A and the release layer 2A ′ have different configurations.
  • the release layer 2A and the release layer 2A ′ may be made of the same material and have different configurations such as thickness. However, the materials and other configurations may be different.
  • the heat-resistant resin layer 2B constituting the process release film of the second invention of the present application has a function of supporting the release layer 2A (and possibly the release layer 2A ′) and suppressing wrinkles due to mold temperature and the like.
  • the heat-resistant resin layer 2B constituting the process release film of the second invention of the present application includes a layer 2B1 containing a polymer antistatic agent.
  • “including” the layer 2B1 containing the polymer antistatic agent means that the entire heat resistant resin layer 2B is composed of the layer 2B1 containing the polymer antistatic agent, and the heat resistant resin layer.
  • the heat resistant resin layer 2B may or may not further include a layer other than the layer 2B1 containing the polymer antistatic agent.
  • the heat-resistant resin layer 2B constituting the process release film of the second invention of the present application includes a layer 2B1 containing a polymer antistatic agent, thereby providing a surface of the release layer 2A (and optionally the release layer 2A ′).
  • the specific resistance value is low and contributes to prevention of charging.
  • the surface resistance value of the heat resistant resin layer 2B is preferably as low as possible from the viewpoint of antistatic, and the lower limit is not particularly limited.
  • the surface resistance value of the heat-resistant resin layer 2B tends to decrease as the conductive performance of the polymer antistatic agent increases and as the content of the polymer antistatic agent increases.
  • an adhesive layer 2B2 containing an adhesive can be preferably used as another layer other than the layer 2B1 containing the polymer antistatic agent. That is, the heat resistant resin layer 2B may include a layer 2B1 containing a polymer antistatic agent and an adhesive layer 2B2 containing an adhesive. In this case, the heat-resistant resin layer 2B may be composed of only the layer 2B1 containing a polymer antistatic agent and the adhesive layer 2B2 containing an adhesive, or a layer containing a polymer antistatic agent.
  • Other layers other than 2B1 and the adhesive layer 2B2 containing an adhesive for example, a layer of a thermoplastic resin not containing an antistatic agent and an adhesive, a gas barrier layer, and the like may be further included.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat-resistant resin layer 2B is 3% or less, or the width of the heat-resistant resin layer 2B It is preferable that the thermal dimensional change rate from 23 ° C. to 170 ° C. in the (TD) direction is 3% or less. Further, the heat resistant resin layer 2B has a thermal dimensional change rate of 23% to 120 ° C. in the transverse (TD) direction of 3% or less and a thermal dimensional change from 23 ° C. to 170 ° C. in the transverse (TD) direction. The rate is more preferably 3% or less.
  • any resin layer including an unstretched film can be used for the heat-resistant resin layer 2B, it is particularly preferable to comprise a stretched film.
  • the stretched film tends to have a low or negative coefficient of thermal expansion due to the influence of stretching in the manufacturing process, and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction is 3% or less.
  • the heat resistant resin layer 2B It can be preferably used.
  • the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat-resistant resin layer 2B is preferably 2% or less, more preferably 1.5% or less, and 1% or less. More preferably, it is preferably -10% or more.
  • the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat-resistant resin layer 2B is preferably 2% or less, more preferably 1.5% or less, and 1% or less. More preferably, it is preferably -10% or more.
  • the heat-resistant resin layer 2B has heat resistance that can withstand the mold temperature during molding (typically 120 to 180 ° C.) from the viewpoint of controlling the strength of the film and the rate of thermal dimensional change within an appropriate range. It is preferable. From this viewpoint, the heat-resistant resin layer 2B preferably includes a crystalline resin having a crystalline component, and the melting point of the crystalline resin is preferably 125 ° C. or higher, and the melting point is 155 ° C. or higher and 300 ° C. or lower. Is more preferably 185 to 210 ° C., and particularly preferably 185 to 205 ° C.
  • the heat resistant resin layer 2B preferably contains a crystalline resin having a crystalline component.
  • a crystalline resin such as a polyester resin, a polyamide resin, or a polypropylene resin can be used for a part or all thereof.
  • polyethylene terephthalate or polybutylene terephthalate for the polyester resin
  • polyamide 6 or polyamide 66 for the polyamide resin
  • isotactic polypropylene for the polypropylene resin.
  • the resin constituting the heat-resistant resin layer 2B preferably has a heat of crystal melting of 20 J / g or more and 100 J / g or less in the first heating step measured by differential scanning calorimetry (DSC) according to JISK7221.
  • it is 20 J / g or more it is possible to effectively exhibit heat resistance and releasability that can withstand hot press molding in a resin sealing process and the like, and the dimensional change rate can be slightly suppressed. The occurrence of wrinkles can also be prevented.
  • the crystal melting calorie is the calorific value (J / g) on the vertical axis obtained in the first heating step in the differential scanning calorimetry (DSC) measurement according to JISK7221 and the horizontal axis.
  • DSC differential scanning calorimetry
  • the chart showing the relationship with temperature (° C.) it is a numerical value obtained by the sum of peak areas having a peak at 120 ° C. or higher.
  • the heat of crystal fusion of the heat-resistant resin layer 2B can be adjusted by appropriately setting the heating and cooling conditions and the stretching conditions during film production.
  • the thickness of the heat-resistant resin layer 2B is not particularly limited as long as the film strength can be secured, but is usually 1-1. It is 00 ⁇ m, preferably 5 to 50 ⁇ m.
  • Layer 2B1 containing a polymeric antistatic agent It is known that the polymer antistatic agent in the layer 2B1 containing a polymer antistatic agent that is suitably used in the heat resistant resin layer 2B constituting the laminate of the second invention of the present application has an antistatic function.
  • the high molecular compound which can be used can be used.
  • a cationic copolymer having a quaternary ammonium base in the side group an anionic compound containing polystyrene sulfonic acid, a compound having a polyalkylene oxide chain (a polyethylene oxide chain or a polypropylene oxide chain is preferred), a polyethylene glycol methacrylate copolymer.
  • nonionic polymers such as polymers, polyether ester amides, polyether amide imides, polyether esters, ethylene oxide-epichlorohydrin copolymers, and ⁇ -conjugated conductive polymers. These may be used alone or in combination of two or more.
  • the quaternary ammonium base in the copolymer having a quaternary ammonium base in the side group has an effect of imparting dielectric polarization and rapid dielectric polarization relaxation due to conductivity.
  • the copolymer preferably has a carboxy group together with a quaternary ammonium base in the side group. When it has a carboxy group, the copolymer has crosslinkability and can form the intermediate layer 4 alone. Further, when used in combination with an adhesive such as a urethane-based adhesive, it reacts with the adhesive to form a crosslinked structure, and the adhesiveness, durability, and other mechanical properties can be significantly improved.
  • the copolymer may further have a hydroxy group as a side group. The hydroxy group has an effect of increasing adhesiveness by reacting with a functional group in the adhesive such as an isocyanate group.
  • the copolymer can be obtained by copolymerizing monomers having the above functional groups.
  • the monomer having a quaternary ammonium base include dimethylaminoethyl acrylate quaternized compounds (including anions such as chloride, sulfate, sulfonate, and alkyl sulfonate as counter ions).
  • Specific examples of the monomer having a carboxy group include (meth) acrylic acid, (meth) acryloyloxyethyl succinic acid, phthalic acid, hexahydrophthalic acid and the like. Other monomers other than these can also be copolymerized. Examples of the other monomer include vinyl derivatives such as alkyl (meth) acrylate, styrene, vinyl acetate, vinyl halide, and olefin.
  • the ratio of copolymer units having each functional group in the copolymer can be set as appropriate.
  • the proportion of copolymerized units having a quaternary ammonium base is preferably 15 to 40 mol% with respect to the total of all copolymerized units. When this proportion is 15 mol% or more, the antistatic effect is excellent. If it exceeds 40 mol%, the hydrophilicity of the copolymer may be too high.
  • the proportion of units having a carboxy group is preferably 3 to 13 mol% with respect to the total of all units.
  • a crosslinking agent (curing agent) may be added to the copolymer.
  • the crosslinking agent include bifunctional epoxy compounds such as glycerin diglycidyl ether, trifunctional epoxy compounds such as trimethylolpropane triglycidyl ether, and polyfunctional compounds such as ethyleneimine compounds such as trimethylolpropane triaziridinyl ether.
  • An imidazole derivative such as 2-methylimidazole, 2-ethyl, 4-methylimidazole, and other amines may be added to the copolymer as a ring-opening reaction catalyst for the bifunctional or trifunctional epoxy compound.
  • the ⁇ -conjugated conductive polymer is a conductive polymer having a main chain in which ⁇ conjugation is developed.
  • ⁇ -conjugated conductive polymer known ones can be used, and examples thereof include polythiophene, polypyrrole, polyaniline, and derivatives thereof.
  • polymer antistatic agent one produced by a known method may be used, or a commercially available one may be used.
  • a commercial product of PEDOT polythiophene resin “MC-200” manufactured by Kaken Sangyo Co., Ltd. may be mentioned.
  • Preferable embodiments of the layer 2B1 containing the polymer antistatic agent include the following layers (1) and (2).
  • Layer (1) The polymer antistatic agent itself has a film-forming ability, and the polymer antistatic agent is applied as it is or dissolved in a solvent and wet-coated, and dried if necessary.
  • Layer (2) A layer formed by melt-coating the polymer antistatic agent, wherein the polymer antistatic agent itself has film-forming ability and can be melted.
  • the polymer antistatic agent itself has film-forming ability means that the polymer antistatic agent is soluble in a solvent such as an organic solvent, and the solution is applied wet and dried. This means that a film is formed.
  • the fact that the polymer antistatic agent itself can be melted means that it is melted by heating.
  • the polymer antistatic agent in the layer (1) may have crosslinkability or may not have crosslinkability.
  • a crosslinker may be used in combination.
  • the polymer antistatic agent having film forming ability and crosslinkability include a copolymer having a quaternary ammonium base and a carboxy group in the side group.
  • the cross-linking agent include those described above.
  • the thickness of the layer (1) is preferably from 0.01 to 1.0 ⁇ m, particularly preferably from 0.03 to 0.5 ⁇ m. When the thickness of the layer (1) is 0.01 ⁇ m or more, a sufficient antistatic effect can be easily obtained, and when it is 1.0 ⁇ m or less, sufficient adhesiveness can be obtained during lamination. It becomes easy.
  • Examples of the polymer antistatic agent in the layer (2) include polyolefin resins containing a surfactant and carbon black. Examples of commercially available products include Peletron HS (manufactured by Sanyo Chemical Industries).
  • the preferable range of the thickness of the layer (2) is the same as the preferable range of the thickness of the layer (1).
  • the layer 2B1 containing the polymer antistatic agent may be one layer or two or more layers. For example, it may have only one of the layers (1) to (2), or may have both the layer (1) and the layer (2). As the layer 2B1 containing the polymer antistatic agent, the layer (1) is preferable because it is easy to produce. Layer (1) and layer (2) may be used in combination.
  • Adhesive layer 2B2 As the adhesive contained in the adhesive layer 2B2 that is preferably used in the heat-resistant resin layer 2B constituting the laminate of the second invention of the present application, a conventionally known adhesive can be appropriately used. From the viewpoint of production efficiency of the laminate of the second invention of the present application, an adhesive for dry lamination can be preferably used.
  • a polyvinyl acetate adhesive for example, a polyvinyl acetate adhesive; a homopolymer or copolymer of an acrylic ester (ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.), or an acrylic ester and another monomer (methacrylic ester)
  • Polyacrylate adhesives consisting of copolymers with methyl acid, acrylonitrile, styrene, etc .
  • Cyanoacrylate adhesives Ethylene and other monomers (vinyl acetate, ethyl acrylate, acrylic acid, methacrylic)
  • An ethylene copolymer adhesive comprising a copolymer with an acid, etc .
  • a cellulose adhesive for example, a polyvinyl acetate adhesive; a homopolymer or copolymer of an acrylic ester (ethyl acrylate, butyl acrylate, 2-ethylhexyl
  • Adhesives phenolic resin adhesives; epoxy adhesives; polyols (polyether polyols) Polyurethane adhesive that crosslinks with isocyanate and / or isocyanurate; reactive (meth) acrylic adhesive; rubber adhesive composed of chloroprene rubber, nitrile rubber, styrene-butadiene rubber, etc .; silicone Adhesives such as inorganic adhesives made of alkali metal silicate, low-melting glass, etc .; other adhesives can be used.
  • the release film for process of the second invention of the present application has layers other than the release layer 2A, the heat-resistant resin layer 2B, and the release layer 2A ′ as long as the object of the second invention of the present application is not violated. May be. Details of these other layers are the same as those described for the first invention of the present application.
  • the total thickness of the process release film of the second invention of the present application is not particularly limited, but is preferably 10 to 300 ⁇ m, for example, and more preferably 30 to 150 ⁇ m.
  • the total thickness of the release film is in the above range, it is preferable because the handling property when used as a roll is good and the amount of discarded film is small.
  • FIG. 1 is a schematic diagram showing an example of a three-layer process release film.
  • the release film 10 has a heat-resistant resin layer 12 and a release layer 16 formed on one surface of the release film 16 with an adhesive layer 14 interposed therebetween.
  • the release layer 16 is the aforementioned release layer 2A, the heat-resistant resin layer 12 is the aforementioned heat-resistant resin layer 2B, and the adhesive layer 14 is the aforementioned adhesive layer.
  • the release layer 16 is preferably disposed on the side in contact with the sealing resin in the sealing process; the heat-resistant resin layer 12 is preferably disposed on the side in contact with the inner surface of the mold in the sealing process.
  • FIG. 2 is a schematic diagram showing an example of a five-layer process release film. Members having the same functions as those in FIG. 1 are denoted by the same reference numerals.
  • the release film 20 includes a heat resistant resin layer 12 and a release layer 16 ⁇ / b> A and a release layer 16 ⁇ / b> B formed on both surfaces of the release film 16 via an adhesive layer 14.
  • the release layer 16A is the aforementioned release layer 2A
  • the heat-resistant resin layer 12 is the aforementioned heat-resistant resin layer 2B
  • the release layer 16B is the aforementioned release layer 2A '
  • the adhesive layer 14 is the aforementioned It is an adhesive layer.
  • the compositions of the release layers 16A and 16B may be the same as or different from each other.
  • the thicknesses of the release layers 16A and 16B may be the same as or different from each other.
  • the release film of the second invention of the present application may be stressed by heating in the sealing process, it is preferable to suppress warping.
  • the release layers 16A and 16B are formed on both surfaces of the heat-resistant resin layer 12 because good release properties can be obtained on both the molded product and the inner surface of the mold.
  • Process Release Film Production Method The process release film of the second invention of the present application can be produced by any method, but the preferred production method is the same as that described for the first invention of the present application.
  • the mold release film of the second invention of the present application is used by placing a semiconductor chip or the like in the mold and injecting and molding the resin between the semiconductor chip and the inner surface of the mold. Can do.
  • the resin used in the manufacturing process may be either a thermoplastic resin or a thermosetting resin.
  • thermosetting resins are widely used in the technical field, and in particular, epoxy-based thermosetting resins are used. It is preferable to use it.
  • semiconductor chip sealing is the most representative, but it is not limited to this.
  • the second invention of the present application is also applicable to a fiber reinforced plastic molding process, a plastic lens molding process, and the like. Can do.
  • FIG. 3a is schematic views showing an example of a method for producing a resin-encapsulated semiconductor using the release film of the second invention of the present application.
  • the release film 1 of the second invention of the present application is supplied from the roll-shaped roll into the molding die 2 by the roll 1-2 and the roll 1-3.
  • the release film 1 is disposed on the inner surface of the upper mold 2.
  • the inner surface of the upper mold 2 may be evacuated to bring the release film 1 into close contact with the inner surface of the upper mold 2.
  • a semiconductor chip 6 disposed on a substrate is disposed in the lower mold 5 of the molding apparatus, and a granular sealing resin 4 as shown in FIG.
  • a liquid sealing resin is injected so as to cover the semiconductor chip 6 as an alternative, so that the upper mold 2 and the lower mold 5 are arranged with the release film 1 that is exhausted and sucked into close contact. A sealing resin is accommodated therebetween.
  • the upper mold 2 and the lower mold 5 are closed via the release film 1 of the second invention of the present application, and preferably a granular seal as shown in the figure. The resin is cured.
  • the sealing resin 4 is fluidized in the mold by mold closing and curing, and the sealing resin 4 flows into the space and fills and surrounds the side surface of the semiconductor chip 6.
  • the chip 6 is taken out by the upper mold 2 and the lower mold 5 being opened.
  • the release film 1 is repeatedly used for a plurality of times or a new release film is supplied and subjected to the next resin molding.
  • the mold release film of the second invention of the present application is closely attached to the upper mold, interposed between the mold and the sealing resin, and resin molding prevents the resin from adhering to the mold.
  • the molded product can be easily released from the mold.
  • the release film can be newly supplied and resin-molded for each resin molding operation, or can be newly supplied and resin-molded for each of a plurality of resin molding operations.
  • the sealing resin may be a liquid resin or a solid resin at room temperature, for example, a granular resin, but a sealing material such as a liquid that is liquid at the time of resin sealing can be appropriately employed.
  • epoxy resin biphenyl type epoxy resin, bisphenol epoxy resin, o-cresol novolac type epoxy resin, etc.
  • polyimide type resin Bismaleimide-based), silicone-based resin (thermosetting addition type), or the like that is usually used as a sealing resin can be used.
  • the resin sealing conditions vary depending on the sealing resin to be used, but may be appropriately set, for example, within a range of a curing temperature of 120 ° C. to 180 ° C., a molding pressure of 10 to 50 kg / cm 2 , and a curing time of 1 to 60 minutes. it can.
  • the step of placing the release film 1 on the inner surface of the molding die 8 and the step of placing the semiconductor chip 6 in the molding die 8 are not particularly limited and may be performed simultaneously. After the placement, the release film 1 may be placed, or after the release film 1 is placed, the semiconductor chip 6 may be placed.
  • the release film 1 since the release film 1 has the release layer 2A (and the release layer 2A 'if necessary) having a high release property, the semiconductor package 4-2 can be easily released. Moreover, since the release film 1 has moderate flexibility, it is less likely to become wrinkles due to the heat of the molding die 8 while having excellent followability to the mold shape. For this reason, a sealed semiconductor package having a good external appearance can be obtained without generating wrinkles on the resin-sealed surface of the sealed semiconductor package 4-2 or generating a portion not filled with resin (resin chipping). 4-2 can be obtained. Moreover, since the surface resistance of the release film 1 is relatively small, it is possible to effectively suppress appearance defects caused by adhesion of granular sealing resin to the release film due to static electricity.
  • the transfer is not limited to the compression molding method in which the solid sealing resin material 4 preferably in the form of granules is pressurized and heated, and the sealing resin material in a fluid state is injected as described later.
  • a molding method may be adopted.
  • FIGS. 4A and 4B are schematic views showing a transfer mold method which is an example of a method for producing a resin-encapsulated semiconductor using the release film of the second invention of the present application.
  • the release film 22 of the second invention of the present application is supplied from a roll-shaped roll into a molding die 28 by a roll 24 and a roll 26 (step a).
  • the release film 22 is disposed on the inner surface 30A of the upper mold 30 (step b).
  • the upper mold inner surface 30A may be evacuated to bring the release film 22 into close contact with the upper mold inner surface 30A.
  • the semiconductor chip 34 to be resin-sealed semiconductor chip 34 fixed to the substrate 34A
  • the sealing resin material 36 is set (step c), and the mold is clamped ( Step d).
  • a sealing resin material 36 is injected into the molding die 28 under predetermined heating and pressurizing conditions (step e).
  • the temperature (molding temperature) of the molding die 28 at this time is, for example, 165 to 185 ° C.
  • the molding pressure is, for example, 7 to 12 MPa
  • the molding time is, for example, about 90 seconds.
  • type 32 are opened, and the semiconductor package 40 and the release film 22 which were resin-sealed are released simultaneously or sequentially (process f).
  • a desired semiconductor package 44 can be obtained by removing the excess resin portion 42 from the obtained semiconductor package 40.
  • the release film 22 may be used as it is for resin sealing of other semiconductor chips as it is, but each time molding is completed, the roll is operated to feed the film, and a new release film 22 is formed as a molding die. 28 is preferably supplied.
  • the step of disposing the release film 22 on the inner surface of the molding die 28 and the step of disposing the semiconductor chip 34 in the molding die 28 are not particularly limited and may be performed simultaneously. After the placement, the release film 22 may be placed, or after the release film 22 is placed, the semiconductor chip 34 may be placed.
  • the release film 22 has the release layer 2A (and the release layer 2A 'if desired) having a high release property, the semiconductor package 40 can be easily released. Moreover, since the release film 22 has moderate flexibility, it is less likely to become wrinkles due to the heat of the molding die 28 while having excellent followability to the die shape. Therefore, it is possible to obtain the semiconductor package 40 having a good appearance without transferring wrinkles on the resin sealing surface of the semiconductor package 40 or generating a portion not filled with resin (resin chipping).
  • the release film of the second invention of the present application is not limited to a step of resin-sealing a semiconductor element, but a step of molding and releasing various molded products using a molding die, such as a fiber reinforced plastic molding and release step, a plastic It can also be preferably used in lens molding and mold release processes.
  • a release film for process which is a laminated film including a release layer 3A and a heat-resistant resin layer 3B, The contact angle of the release layer 3A with respect to water is 90 ° to 130 °, The release film for a process as described above, wherein the laminated film has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa.
  • a release film for process which is a laminated film including a release layer 3A and a heat-resistant resin layer 3B, The contact angle of the release layer 3A with respect to water is 90 ° to 130 °, The release film for a process as described above, wherein the laminated film has a tensile elastic modulus at 170 ° C. of 75 MPa to 500 MPa.
  • a release film for process which is a laminated film including the release layer 3A, the heat-resistant resin layer 3B, and the release layer 3A ′ in this order,
  • the contact angle for water of the release layer 3A and the release layer 3A ′ is 90 ° to 130 °
  • the laminated film has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa. Mold film.
  • a release film for process which is a laminated film including the release layer 3A, the heat-resistant resin layer 3B, and the release layer 3A ′ in this order,
  • the contact angle for water of the release layer 3A and the release layer 3A ′ is 90 ° to 130 °
  • the laminated film has a tensile elastic modulus at 170 ° C. of 75 MPa to 500 MPa. Mold film.
  • the release film for process of the third invention of the present application (hereinafter also simply referred to as “release film”) has a release layer 3A having release properties for molded products and molds, and A laminated film including a release layer 3A ′ and a heat-resistant resin layer 3B that supports the release layer as desired.
  • the process release film of the third invention of the present application is disposed on the inner surface of the molding die when a semiconductor element or the like is resin-sealed inside the molding die.
  • the release layer 3A of the release film (may be the release layer 3A ′ when the release layer 3A ′ is present) is placed on the resin-sealed semiconductor element or the like (molded product) side. It is preferable to arrange.
  • the contact angle of the release layer 3A with respect to water is 90 ° to 130 °.
  • the release layer 3A has low wettability and is fixed to the cured sealing resin or the mold surface. Without this, the molded product can be easily released.
  • the contact angle of the release layer 3A with respect to water is preferably 95 ° to 120 °, more preferably 98 ° to 115 °, and still more preferably 100 ° to 110 °.
  • the release layer 3A (in some cases, the release layer 3A ′) is disposed on the molded product side, so that the mold in the release layer 3A (in some cases, the release layer 3A ′) in the resin sealing process. It is preferable to suppress the occurrence of. This is because if wrinkles occur in the release layer 3A (release layer 3A 'in some cases), the generated wrinkles are transferred to the molded product, and there is a high possibility that the appearance defect of the molded product will occur.
  • the release layer 3A (and the release layer 3A ′ as required) and the release layer are supported as a laminated film constituting the process release film.
  • a laminated film including the heat-resistant resin layer 3B and having a specific value for the tensile elastic modulus is used. That is, the laminated film including the release layer 3A (and the release layer 3A ′ if necessary) and the heat-resistant resin layer 3B that supports the release layer has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa. Or a tensile elastic modulus at 170 ° C. of 75 MPa to 500 MPa.
  • the laminated film preferably has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa, and a tensile elastic modulus at 170 ° C. of 75 MPa to 500 MPa.
  • the tensile elastic modulus at 120 ° C. of the laminated film is from 75 MPa to 500 MPa, or the tensile elastic modulus at 170 ° C. is from 75 MPa to 500 MPa, generation of wrinkles in the release layer in the resin sealing process or the like It can be effectively suppressed.
  • the mechanism by which the generation of wrinkles in the release layer is suppressed when the tensile modulus at a specific temperature of the laminated film constituting the release film for the process exhibits the above specific value is not necessarily clear, but it is heated during the process. It has a tensile modulus of elasticity above a certain value in a state where it has been suppressed, and deformation that leads to generation of wrinkles is suppressed, and having a tensile modulus of elasticity below a certain value is related to the dispersion of strain It is guessed. If it exceeds 500 MPa, the mold followability is inferior, so that it is difficult to fill the sealing resin at the end portion, and there is a high possibility of appearance defects such as occurrence of resin chipping.
  • the laminated film constituting the process release film of the third invention of the present application preferably has a tensile elastic modulus at 120 ° C. of 80 MPa to 400 MPa, More preferably from 85 MPa to 350 MPa, More preferably, it is 88 MPa to 300 MPa, It is particularly preferable that the pressure is 90 MPa to 280 MPa.
  • the laminated film constituting the process release film of the third invention of the present application preferably has a tensile elastic modulus at 170 ° C.
  • the pressure is 105 MPa to 170 MPa.
  • the laminated film constituting the process release film of the third invention of the present application is free during processing that the tensile elastic modulus at 120 ° C. and the tensile elastic modulus at 170 ° C. are both within the above preferred range. It is particularly preferred because of its wide range of uses and applications.
  • the laminated film including the release layer 3A (and the release layer 3A ′ if necessary) and the heat-resistant resin layer 3B that supports the release layer is from 23 ° C. to 120 ° C. in the TD direction (lateral direction). It is preferable that the thermal dimensional change rate is 3% or less, or the thermal dimensional change rate from 23 ° C. to 170 ° C. in the TD direction (lateral direction) is 4% or less. Further, the laminated film has a thermal dimensional change rate of 23% to 120 ° C. in the TD direction (lateral direction) of 3% or less and a thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction). The rate is more preferably 4% or less.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) of the laminated film is 3% or less, or the thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the rate is 4% or less, generation of wrinkles in the release layer in the resin sealing step or the like can be further effectively suppressed.
  • the film having a specific rate of thermal dimensional change in the transverse (TD) direction described above is used to further effectively suppress generation of wrinkles in the release layer.
  • the mechanism of the release layer 3A (or the release layer 3A ′) due to heating / cooling during the process can be reduced by using a laminated film having a relatively small thermal expansion / shrinkage. It is presumed to be related to being suppressed.
  • the laminated film constituting the process release film of this embodiment preferably has a thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) of 2.5% or less. % Or less, more preferably 1.5% or less.
  • the laminated film preferably has a thermal dimensional change rate of ⁇ 5.0% or more from 23 ° C. to 120 ° C. in the TD direction (lateral direction).
  • the laminated film constituting the process release film of the present embodiment preferably has a thermal dimensional change rate from 23 ° C. to 170 ° C. in the TD direction (lateral direction) of 3.5% or less. % Or less is more preferable, and 2.0% or less is still more preferable.
  • the laminated film preferably has a thermal dimensional change rate of ⁇ 5.0% or more from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the release film for a process of the third invention of the present application which is a laminated film including the release layer 3A (and the release layer 3A ′ if necessary) and the heat-resistant resin layer 3B that supports the release layer, has a TD direction ( It is preferable that the sum of the thermal dimensional change rate in the transverse direction and the thermal dimensional change rate in the MD direction (longitudinal direction during production of the film; hereinafter referred to as “longitudinal direction”) is not more than a specific value. That is, the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction and the thermal dimensional change rate from 23 ° C. to 120 ° C.
  • the laminated film is the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the vertical (MD) direction. Is preferably ⁇ 5.0% or more.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. in the transverse (TD) direction and the longitudinal (MD) direction of the laminated film including the release layer 3A (and the release layer 3A ′ if necessary) and the heat-resistant resin layer 3B.
  • the rate of thermal dimensional change from 23 ° C. to 170 ° C. in the transverse (TD) direction and longitudinal (MD) of the laminated film including the release layer 3A (and release layer 3A ′ if necessary) and the heat-resistant resin layer 3B is preferably 7% or less, while the laminated film has a thermal dimension from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the sum of the rate of change and the rate of change in the thermal dimension from 23 ° C. to 170 ° C. in the machine direction (MD) is preferably ⁇ 5.0% or more.
  • the release layer 3A constituting the process release film of the third invention of the present application has a contact angle with water of 90 ° to 130 °, preferably 95 ° to 120 °, more preferably 98 ° to 115. °, more preferably 100 ° to 110 °.
  • a resin selected from the group consisting of a fluororesin, 4-methyl-1-pentene (co) polymer, and a polystyrene resin.
  • the fluororesin that can be used for the release layer 3A may be a resin containing a structural unit derived from tetrafluoroethylene. Although it may be a homopolymer of tetrafluoroethylene, it may be a copolymer with other olefins. Examples of other olefins include ethylene. A copolymer containing tetrafluoroethylene and ethylene as monomer constitutional units is a preferred example. In such a copolymer, the proportion of constitutional units derived from tetrafluoroethylene is 55 to 100% by mass. The proportion of the structural unit derived from is preferably 0 to 45% by mass.
  • the 4-methyl-1-pentene (co) polymer that can be used for the release layer 3A may be a homopolymer of 4-methyl-1-pentene, and 4-methyl-1-pentene, It may be a copolymer with other olefins having 2 to 20 carbon atoms (hereinafter referred to as “olefins having 2 to 20 carbon atoms”).
  • the olefin having 2 to 20 carbon atoms to be copolymerized with 4-methyl-1-pentene is 4-methyl It can give flexibility to -1-pentene.
  • olefins having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-tetradecene, 1-hexadecene, 1-heptadecene, -Octadecene, 1-eicosene and the like are included. These olefins may be used alone or in combination of two or more.
  • the proportion of structural units derived from 4-methyl-1-pentene is 96 to 99% by mass;
  • the proportion of the structural unit derived from the olefin having 2 to 20 carbon atoms is preferably 1 to 4% by mass.
  • the copolymer can be softened, that is, the storage elastic modulus E ′ can be lowered, and the mold followability can be improved. Is advantageous.
  • 4-Methyl-1-pentene (co) polymer can be produced by methods known to those skilled in the art. For example, it can be produced by a method using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • the 4-methyl-1-pentene (co) polymer is preferably a highly crystalline (co) polymer.
  • the crystalline copolymer may be either a copolymer having an isotactic structure or a copolymer having a syndiotactic structure, but in particular a copolymer having an isotactic structure. Is preferable from the viewpoint of physical properties and is easily available.
  • 4-methyl-1-pentene (co) polymer can be formed into a film and has the strength to withstand the temperature and pressure during molding, the stereoregularity and molecular weight are also particularly limited.
  • the 4-methyl-1-pentene copolymer may be a commercially available copolymer such as TPX (registered trademark) manufactured by Mitsui Chemicals, Inc.
  • Polystyrene resins that can be used for the release layer 3A include styrene homopolymers and copolymers, and the structural unit derived from styrene contained in the polymer is at least 60% by weight or more. Preferably, it is 80% by weight or more.
  • the polystyrene resin may be isotactic polystyrene or syndiotactic polystyrene, but is preferably isotactic polystyrene from the viewpoint of transparency, availability, release properties, heat resistance, etc. From this point of view, syndiotactic polystyrene is preferable. Polystyrene may be used alone or in combination of two or more.
  • the release layer 3A preferably has heat resistance that can withstand the mold temperature during molding (typically 120 to 180 ° C.). From this point of view, the release layer 3A preferably includes a crystalline resin having a crystalline component, and the melting point of the crystalline resin is preferably 190 ° C. or higher, and more preferably 200 ° C. or higher and 300 ° C. or lower. In order to bring the release layer 3A to crystallinity, for example, a fluororesin preferably contains at least a structural unit derived from tetrafluoroethylene.
  • 4-methyl-1-pentene (co) polymer 4-methyl-1 -It preferably contains at least a structural unit derived from pentene, and in a polystyrene resin, it preferably contains at least syndiotactic polystyrene.
  • a crystal component in the resin constituting the release layer 3A it is difficult for wrinkles to occur in the resin sealing process and the like, and it is suitable for suppressing wrinkles from being transferred to a molded product to cause poor appearance.
  • the resin containing the crystalline component constituting the release layer 3A has a heat of crystal melting of 15 J / g or more and 60 J / g or less in the first heating step measured by differential scanning calorimetry (DSC) according to JISK7221. It is preferable that it is 20 J / g or more and 50 J / g or less. When it is 15 J / g or more, in addition to being able to more effectively express heat resistance and releasability that can withstand hot press molding in the resin sealing step, etc., it also suppresses the dimensional change rate. Therefore, generation of wrinkles can be prevented.
  • DSC differential scanning calorimetry
  • the release layer 3A has an appropriate hardness, so that sufficient followability to the mold of the film can be obtained in the resin sealing step or the like. There is no risk of film damage.
  • the release layer 3A may further contain other resins in addition to the fluororesin, 4-methyl-1-pentene copolymer, and / or polystyrene resin. In this case, it is preferable that the hardness of the other resin is relatively high.
  • other resins include polyamide-6, polyamide-66, polybutylene terephthalate, and polyethylene terephthalate.
  • the release layer 3A contains a large amount of soft resin (for example, when the 4-methyl-1-pentene copolymer contains a large amount of olefins having 2 to 20 carbon atoms), the hardness of the release layer 3A is relatively high.
  • the release layer 3A can be hardened, which is advantageous in suppressing wrinkles in the sealing process and the like.
  • the content of these other resins is preferably, for example, 3 to 30% by mass with respect to the resin component constituting the release layer 3A.
  • the release layer 3A includes a heat resistance stabilizer, weather resistance, and the like within a range not impairing the object of the third invention of the present application.
  • the content of these additives can be, for example, 0.0001 to 10 parts by weight with respect to 100 parts by weight of the fluororesin, 4-methyl-1-pentene copolymer, and / or polystyrene resin.
  • the thickness of the release layer 3A is not particularly limited as long as the release property to the molded product is sufficient, but is usually 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the surface of the release layer 3A may have a concavo-convex shape as necessary, thereby improving the releasability.
  • the method for imparting irregularities to the surface of the release layer 3A is not particularly limited, but a general method such as embossing can be employed.
  • the process release film of the third invention of the present application may further include a release layer 3A ′ in addition to the release layer 3A and the heat-resistant resin layer 3B. That is, the process release film of the third invention of the present application may be a process release film that is a laminated film including the release layer 3A, the heat-resistant resin layer 3B, and the release layer 3A ′ in this order. Good.
  • the contact angle with respect to water of the release layer 3A ′ that may constitute the process release film of the third invention of the present application is 90 ° to 130 °, preferably 95 ° to 120 °, more preferably 98. It is from ° to 115 °, more preferably from 100 ° to 110 °.
  • the preferable material, configuration, physical properties, and the like of the release layer 3A ′ are the same as those described above for the release layer 3A.
  • the release layer 3A and the release layer 3A ′ are the same when the release film for process is a laminated film including the release layer 3A, the heat-resistant resin layer 3B, and the release layer 3A ′ in this order. It may be a layer having a different structure or a layer having a different structure. From the standpoints of warpage prevention and ease of handling due to the same release properties on both surfaces, the release layer 3A and the release layer 3A ′ may have the same or substantially the same configuration. Preferably, from the viewpoint of optimally designing each in relation to the process of using the release layer 3A and the release layer 3A ′, for example, the release layer 3A has excellent release properties from the mold.
  • the release layer 3A and the release layer 3A ′ have different configurations.
  • the release layer 3A and the release layer 3A ′ may be made of the same material and have different configurations such as thickness. However, the materials and other configurations may be different.
  • the heat-resistant resin layer 3B constituting the process release film of the third invention of the present application has a function of supporting the release layer 3A (and possibly the release layer 3A ′) and suppressing wrinkles due to mold temperature and the like. Have.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat resistant resin layer 3B is 3% or less, or the transverse direction of the heat resistant resin layer 3B. It is preferable that the thermal dimensional change rate from 23 ° C. to 170 ° C. in the (TD) direction is 3% or less.
  • the heat resistant resin layer 3B has a thermal dimensional change rate of 23% to 120 ° C. in the transverse (TD) direction of 3% or less and a thermal dimension from 23 ° C. to 170 ° C. in the transverse (TD) direction.
  • the change rate is more preferably 3% or less.
  • Thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat resistant resin layer 3B is 3% or less, or heat from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat resistant resin layer 3B
  • the dimensional change rate is 3% or less, generation of wrinkles when mounted on the inner surface of the mold can be more effectively suppressed.
  • the mechanism by which the generation of wrinkles in the release layer is more effectively suppressed by using a resin layer in which the thermal dimensional change rate in the transverse (TD) direction exhibits the above specific value as the heat-resistant resin layer 3B is not necessarily clear.
  • the thermal expansion / contraction of the release layer 3A (or the release layer 3A ′) due to heating / cooling during the process is suppressed by using the heat-resistant resin layer 3B having relatively small thermal expansion / contraction. It is presumed to be related.
  • the heat resistant resin layer 3B comprises a stretched film.
  • the stretched film tends to have a low or negative coefficient of thermal expansion due to the influence of stretching in the manufacturing process, and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction is 3% or less.
  • the heat resistant resin layer 3B It can be preferably used. The thermal dimensional change rate from 23 ° C. to 120 ° C.
  • the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat-resistant resin layer 3B is preferably 2% or less, more preferably 1.5% or less, and 1% or less. More preferably, it is preferably -10% or more.
  • the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat-resistant resin layer 3B is preferably 2% or less, more preferably 1.5% or less, and 1% or less. More preferably, it is preferably -10% or more.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat-resistant resin layer 3B and the heat from 23 ° C. to 120 ° C. in the longitudinal (MD) direction.
  • the sum of the dimensional change rates is 6% or less, or the thermal dimensional change rate in the transverse (TD) direction from 23 ° C. to 170 ° C. and the longitudinal (MD) direction from 23 ° C. to 170 ° C.
  • the sum of the thermal dimensional change rates is preferably 5% or less.
  • the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C.
  • the thermal dimensional change rate in the transverse (TD) direction of the heat-resistant resin layer 3B and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the longitudinal (MD) direction is 6% or less
  • the sum of the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat-resistant resin layer 3B and the thermal dimensional change rate from 23 ° C. to 170 ° C. in the vertical (MD) direction is 5% or less. Is more preferable.
  • the sum of the thermal dimensional change rate in the transverse (TD) direction and the thermal dimensional change rate in the longitudinal (MD) direction of the heat-resistant resin layer 3B is within the above range, generation of wrinkles when mounted on the inner surface of the mold is further increased.
  • the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the longitudinal (MD) direction of the heat resistant resin layer 3B is ⁇ 3.0% or more. It is more preferably 5.0% or less, and further preferably -2.0% or more and 4.5% or less.
  • the sum of the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat-resistant resin layer 3B and the thermal dimensional change rate from 23 ° C. to 170 ° C. in the vertical (MD) direction is ⁇ 15.5% or more.
  • It is more preferably 5.0% or less, and further preferably -10.0% or more and 4.5% or less. From the viewpoint of keeping the sum of the thermal dimensional change rate in the transverse (TD) direction and the thermal dimensional change rate in the longitudinal (MD) direction of the heat-resistant resin layer 3B within the above range, it is advantageous to use a stretched film. It is particularly advantageous to control the conditions appropriately.
  • the stretched film may be a uniaxially stretched film or a biaxially stretched film.
  • a uniaxially stretched film either longitudinal stretching or lateral stretching may be used, but it is desirable that stretching is performed at least in the transverse (TD) direction.
  • the method and apparatus for obtaining the stretched film are not particularly limited, and stretching may be performed by a method known in the art. For example, it can be stretched with a heating roll or a tenter stretching machine.
  • stretched film a stretched film selected from the group consisting of a stretched polyester film, a stretched polyamide film, and a stretched polypropylene film is preferably used.
  • stretched films are relatively easy to reduce the thermal expansion coefficient in the transverse (TD) direction or to be negative by stretching, and the mechanical properties are suitable for use in the third invention of the present application.
  • TD transverse
  • the mechanical properties are suitable for use in the third invention of the present application.
  • it since it is relatively easy to obtain at low cost, it is particularly suitable as a stretched film in the heat-resistant resin layer 3B.
  • stretched polyester film a stretched polyethylene terephthalate (PET) film and a stretched polybutylene terephthalate (PBT) film are preferable, and a biaxially stretched polyethylene terephthalate (PET) film is particularly preferable.
  • PET polyethylene terephthalate
  • PBT stretched polybutylene terephthalate
  • PET biaxially stretched polyethylene terephthalate
  • the polyamide constituting the stretched polyamide film but polyamide-6, polyamide-66, etc. can be preferably used.
  • stretched polypropylene film a uniaxially stretched polypropylene film, a biaxially stretched polypropylene film, or the like can be preferably used.
  • draw ratio and the thermal dimensional change rate can be appropriately controlled, and an appropriate value may be set as appropriate in order to achieve suitable mechanical properties.
  • the machine direction In the transverse direction the range is preferably 2.7 to 8.0 times.
  • the longitudinal direction and the transverse direction are preferably in the range of 2.7 to 5.0 times.
  • the polypropylene film in the case of a biaxially stretched polypropylene film, it is preferably in the range of 5.0 to 10.0 times in both the machine direction and the transverse direction. The range of 5 to 10.0 times is preferable.
  • the heat-resistant resin layer 3B has heat resistance that can withstand the mold temperature (typically 120 to 180 ° C.) at the time of molding from the viewpoint of controlling the strength of the film and the rate of thermal dimensional change within an appropriate range. It is preferable. From this point of view, the heat resistant resin layer 3B preferably includes a crystalline resin having a crystalline component, and the melting point of the crystalline resin is preferably 125 ° C. or higher, and the melting point is 155 ° C. or higher and 300 ° C. or lower. Is more preferably 185 to 210 ° C., and particularly preferably 185 to 205 ° C.
  • the heat resistant resin layer 3B preferably contains a crystalline resin having a crystalline component.
  • a crystalline resin such as a polyester resin, a polyamide resin, or a polypropylene resin can be used for part or all of the crystalline resin.
  • polyethylene terephthalate or polybutylene terephthalate for the polyester resin
  • polyamide 6 or polyamide 66 for the polyamide resin
  • isotactic polypropylene for the polypropylene resin.
  • the resin constituting the heat-resistant resin layer 3B preferably has a heat of crystal fusion of 20 J / g or more and 100 J / g or less in the first heating step measured by differential scanning calorimetry (DSC) according to JIS K7221.
  • it is 20 J / g or more it is possible to effectively exhibit heat resistance and releasability that can withstand hot press molding in a resin sealing process and the like, and the dimensional change rate can be slightly suppressed. The occurrence of wrinkles can also be prevented.
  • the heat resistant resin layer 3B can be provided with an appropriate hardness, so that sufficient followability of the film to the mold is ensured in the resin sealing step and the like. In addition to being able to do so, there is no risk of the film being easily damaged.
  • the crystal melting calorie is the calorific value (J / g) on the vertical axis obtained in the first heating step in the differential scanning calorimetry (DSC) measurement according to JISK7221 and the horizontal axis. In the chart showing the relationship with temperature (° C.), it is a numerical value obtained by the sum of peak areas having a peak at 120 ° C. or higher.
  • the amount of heat of crystal fusion of the heat-resistant resin layer 3B can be adjusted by appropriately setting the heating and cooling conditions during film production and the stretching conditions.
  • the thickness of the heat-resistant resin layer 3B is not particularly limited as long as the film strength can be secured, but is usually 1 to 1 It is 00 ⁇ m, preferably 5 to 50 ⁇ m.
  • the release film for a process of the third invention of the present application has layers other than the release layer 3A, the heat-resistant resin layer 3B, and the release layer 3A ′ as long as it does not contradict the purpose of the third invention of the present application. May be.
  • an adhesive layer may be provided between the release layer 3A (or the release layer 3A ′) and the heat resistant resin layer 3B as necessary.
  • the material used for the adhesive layer is not particularly limited as long as it can firmly bond the release layer 3A and the heat-resistant resin layer 3B and does not peel in the resin sealing step or the release step.
  • the adhesive layer is modified 4-methyl-1 graft-modified with an unsaturated carboxylic acid or the like. It is preferably a pentene copolymer resin, an olefin adhesive resin composed of a 4-methyl-1-pentene copolymer and an ⁇ -olefin copolymer.
  • the adhesive layer is preferably a pressure-sensitive adhesive such as polyester, acrylic, or fluororubber.
  • the thickness of the adhesive layer is not particularly limited as long as the adhesiveness between the release layer 3A (or the release layer 3A ') and the heat-resistant resin layer 3B can be improved, but is 0.5 to 10 ⁇ m, for example.
  • the total thickness of the process release film of the third invention of the present application is not particularly limited, but is preferably 10 to 300 ⁇ m, for example, and more preferably 30 to 150 ⁇ m.
  • the total thickness of the release film is in the above range, it is preferable because the handling property when used as a roll is good and the amount of discarded film is small.
  • FIG. 1 is a schematic diagram showing an example of a three-layer process release film.
  • the release film 10 has a heat-resistant resin layer 12 and a release layer 16 formed on one surface of the release film 16 with an adhesive layer 14 interposed therebetween.
  • the release layer 16 is the aforementioned release layer 3A, the heat resistant resin layer 12 is the aforementioned heat resistant resin layer 3B, and the adhesive layer 14 is the aforementioned adhesive layer.
  • the release layer 16 is preferably disposed on the side in contact with the sealing resin in the sealing process; the heat-resistant resin layer 12 is preferably disposed on the side in contact with the inner surface of the mold in the sealing process.
  • FIG. 2 is a schematic diagram showing an example of a five-layer process release film. Members having the same functions as those in FIG. 1 are denoted by the same reference numerals.
  • the release film 20 includes a heat resistant resin layer 12 and a release layer 16 ⁇ / b> A and a release layer 16 ⁇ / b> B formed on both surfaces of the release film 16 via an adhesive layer 14.
  • the release layer 16A is the aforementioned release layer 3A
  • the heat resistant resin layer 12 is the aforementioned heat resistant resin layer 3B
  • the release layer 16B is the aforementioned release layer 3A '
  • the adhesive layer 14 is the aforementioned It is an adhesive layer.
  • the compositions of the release layers 16A and 16B may be the same as or different from each other.
  • the thicknesses of the release layers 16A and 16B may be the same as or different from each other.
  • the release film of the third invention of the present application may be stressed by heating in the sealing process, it is preferable to suppress warping.
  • the release layers 16A and 16B are formed on both surfaces of the heat-resistant resin layer 12 because good release properties can be obtained on both the molded product and the inner surface of the mold.
  • the process release film of the third invention of the present application can be manufactured by any method. For example, 1) a method for producing a release film for a process by coextruding and laminating a release layer 3A and a heat resistant resin layer 3B (coextrusion forming method), and 2) on a film to be a heat resistant resin layer 3B
  • the molten resin of the resin to be the release layer 3A and the adhesive layer is applied and dried, or the resin solution in which the resin to be the release layer 3A and the adhesive layer is dissolved in a solvent is applied and dried.
  • a film to be the release layer 3A and a film to be the heat-resistant resin layer 3B are produced in advance, and these films are laminated (laminated).
  • lamination method there is a method for producing a release film for a process (lamination method).
  • the method 3 as a method for laminating the resin films, various known laminating methods can be employed, and examples thereof include an extrusion laminating method, a dry laminating method, and a thermal laminating method.
  • the dry laminating method each resin film is laminated using an adhesive.
  • the adhesive known adhesives for dry lamination can be used.
  • polyvinyl acetate adhesives for example, polyvinyl acetate adhesives; homopolymers or copolymers of acrylic esters (ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.), or acrylic esters and other monomers (methacrylic acid)
  • Polyacrylate adhesives consisting of copolymers with methyl, acrylonitrile, styrene, etc .
  • Cyanoacrylate adhesives Ethylene and other monomers (vinyl acetate, ethyl acrylate, acrylic acid, methacrylic acid) Etc.) Ethylene copolymer adhesives made of copolymers, etc .
  • Cellulose adhesives Polyester adhesives; Polyamide adhesives; Polyimide adhesives; Amino resin systems made of urea resins or melamine resins Adhesive; phenolic resin adhesive; epoxy adhesive; polyol (polyether polyol) , Polyester polyol
  • the resin film laminated by the method 3 As the resin film laminated by the method 3), a commercially available one may be used, or one produced by a known production method may be used.
  • the resin film may be subjected to surface treatment such as corona treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, and primer coating treatment. It does not specifically limit as a manufacturing method of a resin film, A well-known manufacturing method can be utilized.
  • the coextrusion molding method is preferable in that a defect due to a foreign matter biting between the resin layer to be the release layer 3A and the resin layer to be the heat-resistant resin layer 3B or a warp of the release film is difficult to occur. .
  • the laminating method is a manufacturing method suitable when a stretched film is used for the heat resistant resin layer 3B. In this case, it is preferable to form an appropriate adhesive layer at the interface between the films as necessary. In order to improve the adhesiveness between the films, a surface treatment such as a corona discharge treatment may be applied to the interface between the films as necessary.
  • the process release film may be uniaxially or biaxially stretched as necessary, whereby the film strength of the film can be increased.
  • the coating means in the above 2) coating method is not particularly limited, but various coaters such as a roll coater, a die coater, and a spray coater are used.
  • the melt extrusion means is not particularly limited. For example, an extruder having a T-type die or an inflation type die is used.
  • the release film for a process of the third invention of the present application is used by placing a semiconductor chip or the like in a mold and injecting and molding a resin between the semiconductor chip and the inner surface of the mold. Can do.
  • the resin used in the manufacturing process may be either a thermoplastic resin or a thermosetting resin.
  • thermosetting resins are widely used in the technical field, and in particular, epoxy-based thermosetting resins are used. It is preferable to use it.
  • sealing of a semiconductor chip is most representative, but it is not limited to this, and the third invention of the present application is also applicable to a fiber reinforced plastic molding process, a plastic lens molding process, etc. Can do.
  • FIG. 3a is schematic views showing an example of a method for producing a resin-encapsulated semiconductor using the release film of the third invention of the present application.
  • the release film 1 of the third invention of the present application is supplied from the roll-shaped roll into the molding die 2 by the roll 1-2 and the roll 1-3.
  • the release film 1 is disposed on the inner surface of the upper mold 2.
  • the inner surface of the upper mold 2 may be evacuated to bring the release film 1 into close contact with the inner surface of the upper mold 2.
  • a semiconductor chip 6 disposed on a substrate is disposed in a lower mold 5 of the molding apparatus, and a sealing resin is disposed on the semiconductor chip 6 or a liquid sealing resin so as to cover the semiconductor chip 6.
  • the sealing resin 4 is accommodated between the upper mold 2 and the lower mold 5 on which the release film 1 that has been sucked and adhered is exhausted. Next, as shown in FIG. 3b, the upper mold 2 and the lower mold 5 are closed through the release film 1 of the third invention of the present application, and the sealing resin 4 is cured.
  • the sealing resin 4 ⁇ flows into the mold by mold closing and curing, and the sealing resin 4 ⁇ flows into the space and fills and surrounds the side surface of the semiconductor chip 6.
  • the chip 6 is taken out by the upper mold 2 and the lower mold 5 being opened.
  • the release film 1 is repeatedly used for a plurality of times or a new release film is supplied and subjected to the next resin molding.
  • the release film of the third invention of the present application is adhered to the upper mold, interposed between the mold and the sealing resin, and resin molding prevents the resin from adhering to the mold.
  • the molded product can be easily released from the mold.
  • the release film can be newly supplied and resin-molded for each resin molding operation, or can be newly supplied and resin-molded for each of a plurality of resin molding operations.
  • the sealing resin may be a liquid resin or a resin that is solid at room temperature, but a sealing material such as a liquid that is liquid at the time of resin sealing can be appropriately employed.
  • epoxy resin biphenyl type epoxy resin, bisphenol epoxy resin, o-cresol novolac type epoxy resin, etc.
  • polyimide type resin Bismaleimide-based), silicone-based resin (thermosetting addition type), or the like that is usually used as a sealing resin can be used.
  • the resin sealing conditions vary depending on the sealing resin to be used, but may be appropriately set, for example, within a range of a curing temperature of 120 ° C. to 180 ° C., a molding pressure of 10 to 50 kg / cm 2 , and a curing time of 1 to 60 minutes. it can.
  • the step of placing the release film 1 on the inner surface of the molding die 8 and the step of placing the semiconductor chip 6 in the molding die 8 are not particularly limited and may be performed simultaneously. After the placement, the release film 1 may be placed, or after the release film 1 is placed, the semiconductor chip 6 may be placed.
  • the release film 1 since the release film 1 has the release layer 3A (and the release layer 3A 'if necessary) having a high release property, the semiconductor package 4-2 can be easily released. Moreover, since the release film 1 has moderate flexibility, it is less likely to become wrinkles due to the heat of the molding die 8 while having excellent followability to the mold shape. For this reason, a sealed semiconductor package having a good external appearance can be obtained without generating wrinkles on the resin-sealed surface of the sealed semiconductor package 4-2 or generating a portion not filled with resin (resin chipping). 4-2 can be obtained.
  • FIGS. 4A and 4B are schematic views showing a transfer mold method which is an example of a method for producing a resin-encapsulated semiconductor using the release film of the third invention of the present application.
  • the release film 22 of the third invention of the present application is supplied from the roll-shaped roll into the molding die 28 by the roll 24 and the roll 26 (step a).
  • the release film 22 is disposed on the inner surface 30A of the upper mold 30 (step b).
  • the upper mold inner surface 30A may be evacuated to bring the release film 22 into close contact with the upper mold inner surface 30A.
  • the semiconductor chip 34 to be resin-sealed semiconductor chip 34 fixed to the substrate 34A
  • the sealing resin material 36 is set (step c), and the mold is clamped ( Step d).
  • a sealing resin material 36 is injected into the molding die 28 under predetermined heating and pressurizing conditions (step e).
  • the temperature (molding temperature) of the molding die 28 at this time is, for example, 165 to 185 ° C.
  • the molding pressure is, for example, 7 to 12 MPa
  • the molding time is, for example, about 90 seconds.
  • type 32 are opened, and the semiconductor package 40 and the release film 22 which were resin-sealed are released simultaneously or sequentially (process f).
  • a desired semiconductor package 44 can be obtained by removing the excess resin portion 42 from the obtained semiconductor package 40.
  • the release film 22 may be used as it is for resin sealing of other semiconductor chips as it is, but each time molding is completed, the roll is operated to feed the film, and a new release film 22 is formed as a molding die. 28 is preferably supplied.
  • the step of disposing the release film 22 on the inner surface of the molding die 28 and the step of disposing the semiconductor chip 34 in the molding die 28 are not particularly limited and may be performed simultaneously. After the placement, the release film 22 may be placed, or after the release film 22 is placed, the semiconductor chip 34 may be placed.
  • the release film 22 since the release film 22 has the release layer 3A (and the release layer 3A 'if necessary) having a high release property, the semiconductor package 40 can be easily released. Moreover, since the release film 22 has moderate flexibility, it is less likely to become wrinkles due to the heat of the molding die 28 while having excellent followability to the die shape. Therefore, it is possible to obtain the semiconductor package 40 having a good appearance without transferring wrinkles on the resin sealing surface of the semiconductor package 40 or generating a portion not filled with resin (resin chipping).
  • the release film of the third invention of the present application is not limited to the step of resin-sealing a semiconductor element, but a step of molding and releasing various molded products using a molding die, for example, fiber reinforced plastic molding and release step, plastic It can also be preferably used in lens molding and mold release processes.
  • a release film for process which is a laminated film including a release layer 4A and a heat resistant resin layer 4B, The contact angle of the release layer 4A with respect to water is 90 ° to 130 °,
  • the heat-resistant resin layer 4B includes a layer 4B1 containing a polymer antistatic agent,
  • the release film for a process as described above, wherein the laminated film has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa.
  • a release film for process which is a laminated film including a release layer 4A and a heat resistant resin layer 4B, The contact angle of the release layer 4A with respect to water is 90 ° to 130 °,
  • the heat-resistant resin layer 4B includes a layer 4B1 containing a polymer antistatic agent,
  • the release film for a process as described above, wherein the laminated film has a tensile elastic modulus at 170 ° C. of 75 MPa to 500 MPa.
  • a release film for process which is a laminated film including a release layer 4A, a heat-resistant resin layer 4B, and a release layer 4A ′ in this order,
  • the contact angle of the release layer 4A and the release layer 4A ′ with respect to water is 90 ° to 130 °
  • the heat-resistant resin layer 4B includes a layer 4B1 containing a polymer antistatic agent
  • the release film for a process as described above, wherein the laminated film has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa.
  • a release film for process which is a laminated film including a release layer 4A, a heat-resistant resin layer 4B, and a release layer 4A ′ in this order,
  • the contact angle of the release layer 4A and the release layer 4A ′ with respect to water is 90 ° to 130 °
  • the heat-resistant resin layer 4B includes a layer 4B1 containing a polymer antistatic agent
  • the release film for a process as described above, wherein the laminated film has a tensile elastic modulus at 170 ° C. of 75 MPa to 500 MPa.
  • the release film for process of the fourth invention of the present application (hereinafter also simply referred to as “release film”) has a release layer 4A having release properties for molded products and molds, and A laminated film including a release layer 4A ′ and a heat-resistant resin layer 4B that supports the release layer as desired, wherein the heat-resistant resin layer 4B includes a layer 4B1 containing a polymer antistatic agent. .
  • the process release film of the fourth invention of the present application is disposed on the inner surface of a molding die when a semiconductor element or the like is resin-sealed inside the molding die.
  • the release layer 4A of the release film (or the release layer 4A ′ if the release layer 4A ′ is present) may be placed on the resin-encapsulated semiconductor element or the like (molded product) side. It is preferable to arrange.
  • the contact angle of the release layer 4A with respect to water is 90 ° to 130 °.
  • the release layer 4A has low wettability and is fixed to the cured sealing resin or the mold surface. Without this, the molded product can be easily released.
  • the contact angle of the release layer 4A with respect to water is preferably 95 ° to 120 °, more preferably 98 ° to 115 °, and still more preferably 100 ° to 110 °.
  • the release layer 4A (in some cases, the release layer 4A ′) is disposed on the molded product side, from the viewpoint of the appearance of the molded product, the release layer 4A in the resin sealing process (in some cases, the release layer 4A ′). It is preferable to suppress the generation of wrinkles in the mold layer 4A ′). This is because if wrinkles are generated in the release layer 4A (in some cases, the release layer 4A '), the generated wrinkles are transferred to the molded product, and there is a high possibility that an appearance defect of the molded product will occur.
  • the release layer 4A (and the release layer 4A ′ if necessary) and the release layer are supported.
  • a laminated film including the heat-resistant resin layer 4B wherein a laminated film having a specific value of the tensile elastic modulus is used, and the heat-resistant resin layer 4B includes a layer 4B1 containing a polymer antistatic agent.
  • the laminated film including the release layer 4A (and optionally the release layer 4A ′) and the heat-resistant resin layer 4B that supports the release layer has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa.
  • the tensile elastic modulus at 170 ° C. is 75 MPa to 500 MPa.
  • Mechanism in which appearance defects of molded products are extremely effectively suppressed by combining a laminated film having the above-mentioned specific value with a tensile elastic modulus and a heat-resistant resin layer including a layer containing a polymeric antistatic agent Although it is not always clear, to suppress the generation of wrinkles due to the tensile modulus of the laminated film being the above specific value, to the suppression of static electricity and to the process by having a layer containing a polymeric antistatic agent It is presumed that the suppression of the uptake of foreign matters such as powders exhibits some synergistic effect.
  • the surface specific resistance value in the release layer 4A (and release layer 4A ′ if necessary) of the laminated film is preferably 1 ⁇ 10 13 ⁇ / ⁇ or less from the viewpoint of preventing adhesion of dust and the like in the semiconductor manufacturing process.
  • the surface specific resistance value in the release layer 4A (and optionally the release layer 4A ′) of the laminated film can be measured by, for example, the method described in Examples of the present application.
  • the laminated film including the release layer 4A (and optionally the release layer 4A ′) and the heat-resistant resin layer 4B that supports the release layer has a tensile elastic modulus at 120 ° C. of 75 MPa. 500 MPa, or its tensile elastic modulus at 170 ° C. is 75 MPa to 500 MPa. Furthermore, the laminated film preferably has a tensile elastic modulus at 120 ° C. of 75 MPa to 500 MPa, and a tensile elastic modulus at 170 ° C. of 75 MPa to 500 MPa. When the tensile elastic modulus at 120 ° C.
  • the tensile elastic modulus at 170 ° C. is from 75 MPa to 500 MPa, generation of wrinkles in the release layer in the resin sealing process or the like It can be effectively suppressed.
  • the mechanism by which the generation of wrinkles in the release layer is suppressed when the tensile modulus at a specific temperature of the laminated film constituting the release film for the process exhibits the above specific value is not necessarily clear, but it is heated during the process.
  • the laminated film constituting the process release film of the fourth invention of the present application preferably has a tensile elastic modulus at 120 ° C. of 80 MPa to 400 MPa, More preferably from 85 MPa to 350 MPa, More preferably, it is 88 MPa to 300 MPa, It is particularly preferable that the pressure is 90 MPa to 280 MPa.
  • the laminated film constituting the process release film of the fourth invention of the present application preferably has a tensile elastic modulus at 170 ° C.
  • the pressure is 105 MPa to 170 MPa.
  • the laminated film constituting the process release film of the fourth invention of the present application is free during processing that the tensile elastic modulus at 120 ° C. and the tensile elastic modulus at 170 ° C. are both within the above preferred range. It is particularly preferred because of its wide range of uses and applications.
  • the laminated film including the release layer 4A (and the release layer 4A ′ if necessary) and the heat-resistant resin layer 4B that supports the release layer is from 23 ° C. to 120 ° C. in the TD direction (lateral direction). It is preferable that the thermal dimensional change rate is 3% or less, or the thermal dimensional change rate from 23 ° C. to 170 ° C. in the TD direction (lateral direction) is 4% or less. Further, the laminated film has a thermal dimensional change rate of 23% to 120 ° C. in the TD direction (lateral direction) of 3% or less and a thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction). The rate is more preferably 4% or less.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) of the laminated film is 3% or less, or the thermal dimensional change from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the rate is 4% or less, generation of wrinkles in the release layer in the resin sealing step or the like can be further effectively suppressed.
  • the film having a specific rate of thermal dimensional change in the transverse (TD) direction described above is used to further effectively suppress generation of wrinkles in the release layer.
  • the mechanism of the release layer 4A (or the release layer 4A ′) due to heating / cooling during the process can be reduced by using a laminated film having a relatively small thermal expansion / shrinkage. It is presumed to be related to being suppressed.
  • the laminated film constituting the process release film of this embodiment preferably has a thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) of 2.5% or less. % Or less, more preferably 1.5% or less.
  • the laminated film preferably has a thermal dimensional change rate of ⁇ 5.0% or more from 23 ° C. to 120 ° C. in the TD direction (lateral direction).
  • the laminated film constituting the process release film of the present embodiment preferably has a thermal dimensional change rate from 23 ° C. to 170 ° C. in the TD direction (lateral direction) of 3.5% or less. % Or less is more preferable, and 2.0% or less is still more preferable.
  • the laminated film preferably has a thermal dimensional change rate of ⁇ 5.0% or more from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the process release film of the fourth invention of the present application which is a laminated film including the release layer 4A (and the release layer 4A ′ if necessary) and the heat-resistant resin layer 4B that supports the release layer, has a TD direction ( It is preferable that the sum of the thermal dimensional change rate in the horizontal direction and the thermal dimensional change rate in the MD direction (longitudinal direction at the time of manufacturing the film; hereinafter also referred to as “longitudinal (MD) direction”) is not more than a specific value. That is, the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction and the thermal dimensional change rate from 23 ° C. to 120 ° C.
  • the laminated film is the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the TD direction (lateral direction) and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the vertical (MD) direction. Is preferably ⁇ 5.0% or more.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. in the transverse (TD) direction and the longitudinal (MD) direction of the laminated film including the release layer 4A (and the release layer 4A ′ if necessary) and the heat-resistant resin layer 4B.
  • the rate of thermal dimensional change from 23 ° C. to 170 ° C. in the transverse (TD) direction and longitudinal (MD) of the laminated film including the release layer 4A (and the release layer 4A ′ if necessary) and the heat-resistant resin layer 4B is preferably 7% or less, while the laminated film has a thermal dimension from 23 ° C. to 170 ° C. in the TD direction (lateral direction).
  • the sum of the rate of change and the rate of change in the thermal dimension from 23 ° C. to 170 ° C. in the machine direction (MD) is preferably ⁇ 5.0% or more.
  • the release layer 4A constituting the process release film of the fourth invention of the present application has a water contact angle of 90 ° to 130 °, preferably 95 ° to 120 °, more preferably 98 ° to 115. °, more preferably 100 ° to 110 °.
  • a resin selected from the group consisting of a fluororesin, 4-methyl-1-pentene (co) polymer, and a polystyrene resin.
  • the fluororesin that can be used for the release layer 4A is the same as that described for the release layer 3A.
  • the 4-methyl-1-pentene (co) polymer that can be used for the release layer 4A is the same as that described for the release layer 3A.
  • the polystyrene resin that can be used for the release layer 4A is the same as that described for the release layer 3A.
  • the release layer 4A preferably has heat resistance that can withstand the mold temperature during molding (typically 120 to 180 ° C.). From this point of view, the release layer 4A preferably includes a crystalline resin having a crystal component, and the melting point of the crystalline resin is preferably 190 ° C. or higher, and more preferably 200 ° C. or higher and 300 ° C. or lower.
  • a fluororesin preferably contains at least a structural unit derived from tetrafluoroethylene
  • a 4-methyl-1-pentene (co) polymer has 4-methyl-1 -It preferably contains at least a structural unit derived from pentene, and in a polystyrene resin, it preferably contains at least syndiotactic polystyrene.
  • the resin containing the crystalline component constituting the release layer 4A has a heat of crystal melting of 15 J / g or more and 60 J / g or less in the first heating step measured by differential scanning calorimetry (DSC) according to JISK7221. It is preferable that it is 20 J / g or more and 50 J / g or less. When it is 15 J / g or more, in addition to being able to more effectively express heat resistance and releasability that can withstand hot press molding in the resin sealing step, etc., it also suppresses the dimensional change rate. Therefore, generation of wrinkles can be prevented.
  • DSC differential scanning calorimetry
  • the release layer 4A has an appropriate hardness, so that sufficient followability to the mold of the film can be obtained in the resin sealing step or the like. There is no risk of film damage.
  • the release layer 4A may further contain other resins in addition to the fluororesin, 4-methyl-1-pentene copolymer, and / or polystyrene resin. In this case, other resins and their contents are the same as those described for the release layer 3A.
  • the release layer 4A includes a heat resistance stabilizer, weather resistance, and the like as long as the object of the fourth invention of the present application is not impaired.
  • the content of these additives can be, for example, 0.0001 to 10 parts by weight with respect to 100 parts by weight of the fluororesin, 4-methyl-1-pentene copolymer, and / or polystyrene resin.
  • the thickness of the release layer 4A is not particularly limited as long as the release property for the molded product is sufficient, but is usually 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the surface of the release layer 4A may have a concavo-convex shape as necessary, thereby improving the releasability.
  • the method for imparting irregularities to the surface of the release layer 4A is not particularly limited, but a general method such as embossing can be employed.
  • the process release film of the fourth invention of the present application may further include a release layer 4A ′ in addition to the release layer 4A and the heat-resistant resin layer 4B. That is, the process release film of the fourth invention of the present application is a process release film that is a laminated film including the release layer 4A, the heat-resistant resin layer 4B, and the release layer 4A ′ in this order. Good.
  • the contact angle with respect to water of the release layer 4A ′ that may constitute the process release film of the fourth invention of the present application is 90 ° to 130 °, preferably 95 ° to 120 °, more preferably 98. It is from ° to 115 °, more preferably from 100 ° to 110 °.
  • the preferable material, configuration, physical properties, and the like of the release layer 4A ′ are the same as those described above for the release layer 4A.
  • the release layer 4A and the release layer 4A ′ are the same when the release film for process is a laminated film including the release layer 4A, the heat-resistant resin layer 4B, and the release layer 4A ′ in this order. It may be a layer having a different structure or a layer having a different structure. From the standpoints of warpage prevention and ease of handling due to the same releasability on both surfaces, the release layer 4A and the release layer 4A ′ may have the same or substantially the same configuration. Preferably, from the viewpoint of optimally designing each in relation to the process using the release layer 4A and the release layer 4A ′, for example, the release layer 4A has excellent release properties from the mold.
  • the release layer 4A and the release layer 4A ′ have different configurations.
  • the release layer 4A and the release layer 4A ′ may be made of the same material and have different configurations such as thickness. However, the materials and other configurations may be different.
  • the heat-resistant resin layer 4B constituting the process release film of the fourth invention of the present application has a function of supporting the release layer 4A (and possibly the release layer 4A ') and suppressing wrinkles due to mold temperature and the like. Have.
  • the heat-resistant resin layer 4B constituting the process release film of the fourth invention of the present application includes a layer 4B1 containing a polymeric antistatic agent.
  • “including” the layer 4B1 containing the polymeric antistatic agent means that the entire heat resistant resin layer 4B is composed of the layer 4B1 containing the polymeric antistatic agent, and the heat resistant resin layer.
  • the heat-resistant resin layer 4B may or may not further include a layer other than the layer 4B1 containing the polymer antistatic agent.
  • the heat-resistant resin layer 4B constituting the process release film of the fourth invention of the present application includes a layer 4B1 containing a high-molecular antistatic agent, and thus has a low surface resistivity and contributes to antistatic.
  • the surface resistivity of the heat-resistant resin layer 4B is preferably 10 10 ⁇ / ⁇ or less, preferably 10 9 ⁇ / ⁇ or less, from the viewpoint of preventing dust and the like from adhering to the release layer 4A of the laminated film of the fourth invention of the present application. Particularly preferred.
  • the surface specific resistance value is 10 10 ⁇ / ⁇ or less, the antistatic property is effectively expressed also on the surface of the release film for process of the present invention.
  • the surface specific resistance value of the heat-resistant resin layer 4B is preferably as low as possible from the viewpoint of preventing adhesion of dust and the like to the release layer 4A of the laminated film of the fourth invention of the present application, and the lower limit is not particularly limited.
  • the surface specific resistance value of the heat resistant resin layer 4B tends to decrease as the conductive performance of the polymer antistatic agent increases and as the content of the polymer antistatic agent increases.
  • the surface specific resistance value of the heat-resistant resin layer 4B can be measured by, for example, the method described in the examples of the present application. However, the heat-resistant resin layer 4B before lamination is used as a sample.
  • an adhesive layer 4B2 containing an adhesive can be preferably used as another layer other than the layer 4B1 containing the polymer antistatic agent. That is, the heat resistant resin layer 4B may include a layer 4B1 containing a polymer antistatic agent and an adhesive layer 4B2 containing an adhesive. In this case, the heat-resistant resin layer 4B may be composed of only the layer 4B1 containing a polymer antistatic agent and the adhesive layer 4B2 containing an adhesive, or a layer containing a polymer antistatic agent.
  • Other layers other than 4B1 and the adhesive layer 4B2 containing an adhesive for example, a layer of a thermoplastic resin not containing an antistatic agent and an adhesive, a gas barrier layer, and the like may be further included.
  • the layer 4B1 containing a polymer antistatic agent may also contain an adhesive. That is, the heat resistant resin layer 4B may include a layer 4B3 containing a polymer antistatic agent and an adhesive. In this case, the heat-resistant resin layer 4B may be composed only of the layer 4B3 containing the polymer antistatic agent and the adhesive, or other than the layer 4B3 containing the polymer antistatic agent and the adhesive.
  • Other layers for example, a layer 4B1 containing a polymer antistatic agent, an adhesive layer 4B2 containing an adhesive, a layer of a thermoplastic resin not containing an antistatic agent and an adhesive, a gas barrier layer, and the like may further be included. .
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat resistant resin layer 4B is 3% or less, or the transverse direction of the heat resistant resin layer 4B. It is preferable that the thermal dimensional change rate from 23 ° C. to 170 ° C. in the (TD) direction is 3% or less. Further, the heat-resistant resin layer 4B has a thermal dimensional change rate of 23% to 120 ° C. in the transverse (TD) direction of 3% or less and a thermal dimension from 23 ° C. to 170 ° C. in the transverse (TD) direction. The change rate is more preferably 3% or less.
  • the heat dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat resistant resin layer 4B is 3% or less, or the heat from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat resistant resin layer 4B.
  • the dimensional change rate is 3% or less, generation of wrinkles when mounted on the inner surface of the mold can be more effectively suppressed.
  • the mechanism by which the generation of wrinkles in the release layer is more effectively suppressed by using a resin layer in which the rate of thermal dimensional change in the transverse (TD) direction exhibits the above specific value is not necessarily clear.
  • the thermal expansion / contraction of the release layer 4A (or the release layer 4A ′) due to heating / cooling during the process is suppressed by using the heat-resistant resin layer 4B having relatively small thermal expansion / contraction. It is presumed to be related.
  • any resin layer including an unstretched film can be used for the heat-resistant resin layer 4B, it is particularly preferable to comprise a stretched film.
  • the stretched film tends to have a low or negative coefficient of thermal expansion due to the influence of stretching in the manufacturing process, and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction is 3% or less.
  • the heat resistant resin layer 4B It can be preferably used.
  • the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat resistant resin layer 4B is preferably 2% or less, more preferably 1.5% or less, and 1% or less. More preferably, it is preferably -10% or more.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat-resistant resin layer 4B and the heat from 23 ° C. to 120 ° C. in the longitudinal (MD) direction.
  • the sum of the dimensional change rates is 6% or less, or the thermal dimensional change rate in the transverse (TD) direction from 23 ° C. to 170 ° C. and the longitudinal (MD) direction from 23 ° C. to 170 ° C.
  • the sum of the thermal dimensional change rates is preferably 5% or less.
  • the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C.
  • the thermal dimensional change rate in the transverse (TD) direction of the heat resistant resin layer 4B and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the longitudinal (MD) direction is 6% or less
  • the sum of the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction and the thermal dimensional change rate from 23 ° C. to 170 ° C. in the longitudinal (MD) direction of the heat-resistant resin layer 4B is 5% or less. Is more preferable.
  • the sum of the thermal dimensional change rate in the transverse (TD) direction and the thermal dimensional change rate in the longitudinal (MD) direction of the heat-resistant resin layer 4B is in the above range, generation of wrinkles when mounted on the inner surface of the mold is further increased.
  • the sum of the thermal dimensional change rate from 23 ° C. to 120 ° C. in the transverse (TD) direction of the heat resistant resin layer 4B and the thermal dimensional change rate from 23 ° C. to 120 ° C. in the vertical (MD) direction is ⁇ 3.0% or more. It is more preferably 5.0% or less, and further preferably -2.0% or more and 4.5% or less.
  • the sum of the thermal dimensional change rate from 23 ° C. to 170 ° C. in the transverse (TD) direction of the heat resistant resin layer 4B and the thermal dimensional change rate from 23 ° C. to 170 ° C. in the vertical (MD) direction is ⁇ 15.5% or more.
  • It is more preferably 5.0% or less, and further preferably -10.0% or more and 4.5% or less. From the viewpoint of keeping the sum of the thermal dimensional change rate in the transverse (TD) direction and the thermal dimensional change rate in the longitudinal (MD) direction of the heat-resistant resin layer 4B within the above range, it is advantageous to use a stretched film. It is particularly advantageous to control the conditions appropriately.
  • the heat-resistant resin layer 4B has heat resistance that can withstand the mold temperature (typically 120 to 180 ° C.) at the time of molding from the viewpoint of controlling the strength of the film and the rate of thermal dimensional change within an appropriate range. It is preferable. From this viewpoint, the heat-resistant resin layer 4B preferably includes a crystalline resin having a crystalline component, and the melting point of the crystalline resin is preferably 125 ° C. or higher, and the melting point is 155 ° C. or higher and 300 ° C. or lower. Is more preferably 185 to 210 ° C., and particularly preferably 185 to 205 ° C.
  • the heat resistant resin layer 4B preferably contains a crystalline resin having a crystalline component.
  • a crystalline resin to be contained in the heat resistant resin layer 4B for example, a crystalline resin such as a polyester resin, a polyamide resin, or a polypropylene resin can be used for a part or all thereof.
  • a crystalline resin such as a polyester resin, a polyamide resin, or a polypropylene resin can be used for a part or all thereof.
  • polyethylene terephthalate or polybutylene terephthalate for the polyester resin
  • polyamide 6 or polyamide 66 for the polyamide resin
  • isotactic polypropylene for the polypropylene resin.
  • the resin constituting the heat-resistant resin layer 4B preferably has a heat of crystal melting in the first heating step measured by differential scanning calorimetry (DSC) according to JISK7221 of 20 J / g or more and 100 J / g or less.
  • it is 20 J / g or more it is possible to effectively exhibit heat resistance and releasability that can withstand hot press molding in a resin sealing process and the like, and the dimensional change rate can be slightly suppressed. The occurrence of wrinkles can also be prevented.
  • the heat resistant resin layer 4B can be provided with an appropriate hardness, so that sufficient followability of the film to the mold is ensured in the resin sealing step and the like. In addition to being able to do so, there is no risk of the film being easily damaged.
  • the crystal melting calorie is the calorific value (J / g) on the vertical axis obtained in the first heating step in the differential scanning calorimetry (DSC) measurement according to JISK7221 and the horizontal axis. In the chart showing the relationship with temperature (° C.), it is a numerical value obtained by the sum of peak areas having a peak at 120 ° C. or higher.
  • the heat of crystal fusion of the heat-resistant resin layer 4B can be adjusted by appropriately setting the heating and cooling conditions and the stretching conditions during film production.
  • the thickness of the heat-resistant resin layer 4B is not particularly limited as long as the film strength can be ensured, but usually 1 to 1 It is 00 ⁇ m, preferably 5 to 50 ⁇ m.
  • Layer 4B1 containing a polymeric antistatic agent It is known that the polymer antistatic agent in the layer 4B1 containing the polymer antistatic agent that is suitably used in the heat resistant resin layer 4B constituting the laminate of the fourth invention of the present application has an antistatic function.
  • the high molecular compound which can be used can be used.
  • a cationic copolymer having a quaternary ammonium base in the side group an anionic compound containing polystyrene sulfonic acid, a compound having a polyalkylene oxide chain (a polyethylene oxide chain or a polypropylene oxide chain is preferred), a polyethylene glycol methacrylate copolymer.
  • nonionic polymers such as polymers, polyether ester amides, polyether amide imides, polyether esters, ethylene oxide-epichlorohydrin copolymers, and ⁇ -conjugated conductive polymers. These may be used alone or in combination of two or more.
  • the quaternary ammonium base in the copolymer having a quaternary ammonium base in the side group has an effect of imparting dielectric polarization and rapid dielectric polarization relaxation due to conductivity.
  • the copolymer preferably has a carboxy group together with a quaternary ammonium base in the side group. When it has a carboxy group, the copolymer has crosslinkability and can form the layer 4B1 alone. Further, when used in combination with an adhesive such as a urethane-based adhesive, it reacts with the adhesive to form a crosslinked structure, and the adhesiveness, durability, and other mechanical properties can be significantly improved.
  • the copolymer may further have a hydroxy group as a side group. The hydroxy group has an effect of increasing adhesiveness by reacting with a functional group in the adhesive such as an isocyanate group.
  • the copolymer can be obtained by copolymerizing monomers having the above functional groups.
  • the monomer having a quaternary ammonium base include dimethylaminoethyl acrylate quaternized compounds (including anions such as chloride, sulfate, sulfonate, and alkyl sulfonate as counter ions).
  • Specific examples of the monomer having a carboxy group include (meth) acrylic acid, (meth) acryloyloxyethyl succinic acid, phthalic acid, hexahydrophthalic acid and the like. Other monomers other than these can also be copolymerized. Examples of the other monomer include vinyl derivatives such as alkyl (meth) acrylate, styrene, vinyl acetate, vinyl halide, and olefin.
  • the ratio of copolymer units having each functional group in the copolymer can be set as appropriate.
  • the proportion of copolymerized units having a quaternary ammonium base is preferably 15 to 40 mol% with respect to the total of all copolymerized units. When this proportion is 15 mol% or more, the antistatic effect is excellent. If it exceeds 40 mol%, the hydrophilicity of the copolymer may be too high.
  • the proportion of units having a carboxy group is preferably 3 to 13 mol% with respect to the total of all units.
  • a crosslinking agent (curing agent) may be added to the copolymer.
  • the crosslinking agent include bifunctional epoxy compounds such as glycerin diglycidyl ether, trifunctional epoxy compounds such as trimethylolpropane triglycidyl ether, and polyfunctional compounds such as ethyleneimine compounds such as trimethylolpropane triaziridinyl ether.
  • An imidazole derivative such as 2-methylimidazole, 2-ethyl, 4-methylimidazole, and other amines may be added to the copolymer as a ring-opening reaction catalyst for the bifunctional or trifunctional epoxy compound.
  • the ⁇ -conjugated conductive polymer is a conductive polymer having a main chain in which ⁇ conjugation is developed.
  • ⁇ -conjugated conductive polymer known ones can be used, and examples thereof include polythiophene, polypyrrole, polyaniline, and derivatives thereof.
  • the polymer antistatic agent one produced by a known method may be used, or a commercially available one may be used.
  • a commercial product of a copolymer having a quaternary ammonium base and a carboxy group in the side group “BONDEIP (trade name) -PA100 main agent” manufactured by Konishi Co., Ltd. and the like can be mentioned.
  • Preferable embodiments of the layer 4B1 containing the polymer antistatic agent include the following layers (1) to (4).
  • Layer (1) The polymer antistatic agent itself has a film-forming ability, and the polymer antistatic agent is applied as it is or dissolved in a solvent and wet-coated, and dried if necessary.
  • Layer 2. A layer formed by melt-coating the polymer antistatic agent, wherein the polymer antistatic agent itself has film-forming ability and can be melted.
  • Layer (3) The binder has film-forming ability and can be melted, and is formed by melt-coating a composition in which a polymer antistatic agent is dispersed or dissolved in the binder.
  • Layer (4) The binder has film-forming ability, and the composition containing the binder and the polymeric antistatic agent is applied as it is or dissolved in a solvent, and wet-coated, and dried if necessary. Layer formed. However, what corresponds to layer (1) shall not correspond to layer (4).
  • the polymer antistatic agent itself has film-forming ability means that the polymer antistatic agent is soluble in a solvent such as an organic solvent, and the solution is applied wet and dried. This means that a film is formed.
  • the fact that the polymer antistatic agent itself can be melted means that it is melted by heating.
  • the terms “having film-forming ability” and “fusible” for the binder in layers (3) and (4) have the same meaning.
  • the polymer antistatic agent in the layer (1) may have crosslinkability or may not have crosslinkability.
  • a crosslinker may be used in combination.
  • the polymer antistatic agent having film forming ability and crosslinkability include a copolymer having a quaternary ammonium base and a carboxy group in the side group.
  • the cross-linking agent include those described above.
  • the thickness of the layer (1) is preferably from 0.01 to 1.0 ⁇ m, particularly preferably from 0.03 to 0.5 ⁇ m. When the thickness of the layer (1) is 0.01 ⁇ m or more, a sufficient antistatic effect can be easily obtained, and when it is 1.0 ⁇ m or less, sufficient adhesiveness can be obtained during lamination. It becomes easy.
  • Examples of the polymer antistatic agent in the layer (2) include polyolefin resins containing a surfactant and carbon black. Examples of commercially available products include Peletron HS (manufactured by Sanyo Chemical Industries).
  • the preferable range of the thickness of the layer (2) is the same as the preferable range of the thickness of the layer (1).
  • thermoplastic resin is mentioned as a binder in a layer (3).
  • the thermoplastic resin is preferably a resin having a functional group contributing to adhesion so as to adhere at the time of melt molding.
  • the functional group include a carbonyl group.
  • the content of the polymer antistatic agent in the layer (3) is preferably 10 to 40 parts by weight, particularly preferably 10 to 30 parts by weight, based on the total weight of the layer (3).
  • the preferable range of the thickness of the layer (3) is the same as the preferable range of the thickness of the layer (1).
  • the adhesive means a material containing a main agent and a curing agent, which is cured by heating or the like and exhibits adhesiveness.
  • the layer 4B1 containing the polymer antistatic agent also corresponds to the layer 4B3 containing the polymer antistatic agent and the adhesive.
  • the adhesive may be a one-component adhesive or a two-component adhesive.
  • an adhesive for forming the layer (4) for example, a polymer antistatic agent is added to an adhesive not containing a polymer antistatic agent. And the like.
  • the polymer antistatic agent added to the adhesive may have a film forming ability or may not have a film forming ability (for example, a ⁇ -conjugated conductive polymer).
  • a polymer antistatic agent those known as adhesives for dry lamination can be used.
  • polyvinyl acetate adhesive for example, polyvinyl acetate adhesive; homopolymer or copolymer of acrylic acid ester (ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.), or acrylic acid ester and other monomers (methacrylic acid)
  • Polyacrylate adhesives consisting of copolymers with methyl, acrylonitrile, styrene, etc .
  • Cyanoacrylate adhesives Ethylene and other monomers (vinyl acetate, ethyl acrylate, acrylic acid, methacrylic acid) Etc.) Ethylene copolymer adhesives made of copolymers, etc .
  • Cellulose adhesives Polyester adhesives; Polyamide adhesives; Polyimide adhesives; Amino resin systems made of urea resins or melamine resins Adhesive; phenolic resin adhesive; epoxy adhesive; polyol (polyether polyol) Polyurethane adhesive that
  • the content of the polymer antistatic agent in the layer (4) forming adhesive is preferably such that the surface specific resistance value of the layer (4) is 10 10 ⁇ / ⁇ or less, preferably 10 9 ⁇ / ⁇ or less. Particularly preferred. From the viewpoint of antistatic, the higher the content of the polymeric antistatic agent in the layer (4) forming adhesive, the better.
  • the polymeric antistatic agent is a ⁇ -conjugated conductive polymer
  • the content of the high molecular antistatic agent When the amount increases, the adhesiveness of the layer (4) decreases, and the adhesion between the first thermoplastic resin layer 2 and the second thermoplastic resin layer 3 may be insufficient. Therefore, the content of the polymer antistatic agent in the layer (4) forming adhesive in this case is preferably 40% by mass or less, and preferably 30% by mass or less, based on the solid content of the resin serving as the binder. Is particularly preferred. The lower limit is preferably 1% by mass, particularly preferably 5% by mass.
  • the thickness of the layer (4) is preferably 0.2 to 5 ⁇ m, particularly preferably 0.5 to 2 ⁇ m.
  • the thickness of the layer (4) is not less than the lower limit of the above range, the adhesion between the first thermoplastic resin layer and the second thermoplastic resin layer is excellent, and the antistatic property is excellent. It is excellent in productivity as it is below the upper limit of the said range.
  • the polymer antistatic layer of the layer 4B1 may be one layer or two or more layers. For example, it may have only one of the layers (1) to (4), or may have two or more. As the polymer antistatic layer, the layer (1) is preferable because it is easy to produce. Layer (1) and any one or more of layers (2) to (4) may be used in combination.
  • Adhesive layer 4B2 As the adhesive contained in the adhesive layer 4B2 that is preferably used in the heat-resistant resin layer 4B constituting the laminate of the fourth invention of the present application, a conventionally known adhesive can be appropriately used. From the viewpoint of the manufacturing party of the laminate of the fourth invention of the present application, an adhesive for dry lamination can be preferably used.
  • a polyvinyl acetate adhesive for example, a polyvinyl acetate adhesive; a homopolymer or copolymer of an acrylic ester (ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.), or an acrylic ester and another monomer (methacrylic ester)
  • Polyacrylate adhesives consisting of copolymers with methyl acid, acrylonitrile, styrene, etc .
  • Cyanoacrylate adhesives Ethylene and other monomers (vinyl acetate, ethyl acrylate, acrylic acid, methacrylic)
  • An ethylene copolymer adhesive comprising a copolymer with an acid, etc .
  • a cellulose adhesive for example, a polyvinyl acetate adhesive; a homopolymer or copolymer of an acrylic ester (ethyl acrylate, butyl acrylate, 2-ethylhexyl
  • Adhesives phenolic resin adhesives; epoxy adhesives; polyols (polyether polyols) Polyurethane adhesive that crosslinks with isocyanate and / or isocyanurate; reactive (meth) acrylic adhesive; rubber adhesive composed of chloroprene rubber, nitrile rubber, styrene-butadiene rubber, etc .; silicone Adhesives such as inorganic adhesives made of alkali metal silicate, low-melting glass, etc .; other adhesives can be used.
  • Layer 4B3 containing polymer antistatic agent and adhesive As the polymer antistatic agent contained in the layer 4B3 containing the polymer antistatic agent and the adhesive suitably used in the heat resistant resin layer 4B constituting the laminate of the fourth invention of the present application, a polymer The same polymer-based antistatic agent as that described above with respect to the layer 4B1 containing the antistatic agent can be suitably used. As the adhesive, the same adhesive as described above with respect to the adhesive layer 4B2 containing the adhesive Can be suitably used. In the above-mentioned layer (4), when the composition forming the layer (4) is an adhesive, it is a particularly preferable example as an aspect of the layer 4B3 containing a polymer antistatic agent and an adhesive.
  • the process release film of the fourth invention of the present application has layers other than the release layer 4A, the heat-resistant resin layer 4B, and the release layer 4A ′ as long as it does not contradict the purpose of the fourth invention of the present application. May be. Details of these other layers are the same as those described for the third invention of the present application.
  • the total thickness of the process release film of the fourth invention of the present application is not particularly limited, but is preferably 10 to 300 ⁇ m, for example, and more preferably 30 to 150 ⁇ m.
  • the total thickness of the release film is in the above range, it is preferable because the handling property when used as a roll is good and the amount of discarded film is small.
  • FIG. 1 is a schematic diagram showing an example of a three-layer process release film.
  • the release film 10 has a heat-resistant resin layer 12 and a release layer 16 formed on one surface of the release film 16 with an adhesive layer 14 interposed therebetween.
  • the release layer 16 is the aforementioned release layer 4A, the heat resistant resin layer 12 is the aforementioned heat resistant resin layer 4B, and the adhesive layer 14 is the aforementioned adhesive layer.
  • the release layer 16 is preferably disposed on the side in contact with the sealing resin in the sealing process; the heat-resistant resin layer 12 is preferably disposed on the side in contact with the inner surface of the mold in the sealing process.
  • FIG. 2 is a schematic diagram showing an example of a five-layer process release film. Members having the same functions as those in FIG. 1 are denoted by the same reference numerals.
  • the release film 20 includes a heat resistant resin layer 12 and a release layer 16 ⁇ / b> A and a release layer 16 ⁇ / b> B formed on both surfaces of the release film 16 via an adhesive layer 14.
  • the release layer 16A is the aforementioned release layer 4A
  • the heat-resistant resin layer 12 is the aforementioned heat-resistant resin layer 4B
  • the release layer 16B is the aforementioned release layer 4A '
  • the adhesive layer 14 is the aforementioned It is an adhesive layer.
  • the compositions of the release layers 16A and 16B may be the same as or different from each other.
  • the thicknesses of the release layers 16A and 16B may be the same as or different from each other.
  • the release film of the fourth invention of the present application may be stressed by heating in the sealing process, it is preferable to suppress warpage.
  • the release layers 16A and 16B are formed on both surfaces of the heat-resistant resin layer 12 because good release properties can be obtained on both the molded product and the inner surface of the mold.
  • Process Release Film Production Method The process release film of the fourth invention of the present application can be produced by any method, but the preferred production method is the same as that described for the third invention of the present application.
  • the release film for a process of the fourth invention of the present application is used by placing a semiconductor chip or the like in a mold and injecting and molding a resin between the semiconductor chip and the inner surface of the mold. Can do.
  • the resin used in the manufacturing process may be either a thermoplastic resin or a thermosetting resin.
  • thermosetting resins are widely used in the technical field, and in particular, epoxy-based thermosetting resins are used. It is preferable to use it.
  • semiconductor chip sealing is the most representative, but is not limited to this, and the fourth invention of the present application is also applicable to a fiber reinforced plastic molding process, a plastic lens molding process, and the like. Can do. Details of the manufacturing process using the process release film of the fourth invention of the present application are the same as those described for the third invention of the present application.
  • the release film of the fourth invention of the present application is not limited to the step of resin-sealing a semiconductor element, but a step of molding and releasing various molded products using a molding die, such as a fiber-reinforced plastic molding and release step, plastic It can also be preferably used in lens molding and mold release processes.
  • Thermal dimensional change rate The film sample was cut into a length (20 mm) and a width (4 mm) in the longitudinal (MD) direction and transverse (TD) direction of the film, respectively, and the distance between chucks was 8 mm using a TA Instruments TMA (thermomechanical analyzer, product name: Q400). After holding at 23 ° C. for 5 minutes under a load of 0.005 N, the temperature was raised from 23 ° C. to 120 ° C. at a rate of 10 ° C./min, and the dimensional change in each direction was measured. The dimensional change rate was calculated from (1).
  • Thermal dimensional change rate (%) (23 ⁇ 120 ° C.) ⁇ [(L 2 ⁇ L 1 ) / L 1 ] ⁇ 100 ⁇ ...
  • L 1 Sample length at 23 ° C. (mm)
  • L 2 Sample length at 120 ° C. (mm)
  • the temperature was raised from 23 ° C. to 170 ° C. at a rate of 10 ° C./min, the dimensional change in each direction was measured, and the dimensional change rate was calculated by the following formula (2).
  • Thermal dimensional change rate (%) (23 ⁇ 170 ° C.) ⁇ [(L 3 ⁇ L 1 ) / L 1 ] ⁇ 100 ⁇ ...
  • L 1 Sample length at 23 ° C. (mm)
  • L 3 Sample length at 170 ° C. (mm)
  • Water contact angle (water contact angle) Based on JIS R 3 2 5 7, the water contact angle of the surface of the release layer A or the like was measured using a contact angle measuring device (manufactured by Kyowa Interface Science, FACECA-W).
  • Tensile modulus Measurement method of tensile elastic modulus Based on JIS K7127, the tensile elastic modulus at 23 ° C, 120 ° C and 170 ° C was determined. Measurement conditions: Tensile mode Measurement direction: Film longitudinal (MD) direction (film transport direction)
  • Tm Melting point
  • DSC differential scanning calorimeter
  • the releasability of the release film was evaluated according to the following criteria.
  • the mold following property of the release film at the time of releasing in the above process was evaluated according to the following criteria.
  • Example 1-1 A biaxially stretched PET (polyethylene terephthalate) film (product name: Lumirror F865 manufactured by Toray Industries, Inc.) having a film thickness of 16 ⁇ m was used as the heat resistant resin layer 1B.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the biaxially stretched PET film was ⁇ 1.6% in the machine (MD) direction and ⁇ 1.2% in the transverse (TD) direction.
  • MD machine
  • TD transverse
  • the melting point of the biaxially stretched PET film was 187 ° C.
  • the heat of crystal fusion was 30.6 J / g.
  • unstretched 4-methyl-1-pentene copolymer resin films were used. Specifically, 4-methyl-1-pentene copolymer resin (product name: TPX, brand name: MX022) manufactured by Mitsui Chemicals, Inc. is melt extruded at 270 ° C. to adjust the slit width of the T-type die. Thus, a non-stretched film having a thickness of 15 ⁇ m was used. The non-stretched 4-methyl-1-pentene copolymer resin film has improved adhesion by an adhesive so that one film surface has a water contact angle of 30 ° or more based on JIS R3257, which is 30 or less. Corona treatment was applied from the viewpoint. The thermal dimensional change rate from 23 ° C. to 120 ° C. of the 4-methyl-1-pentene copolymer resin film was 6.5% in the longitudinal (MD) direction and 3.1% in the transverse (TD) direction. .
  • TPX product name: TPX, brand name: MX02
  • urethane-based adhesive A The following urethane-based adhesive A was used as the adhesive used in the dry lamination process for bonding each film.
  • Main agent Takelac A-616 (manufactured by Mitsui Chemicals).
  • Curing agent Takenate A-65 (Mitsui Chemicals). The main agent and the curing agent were mixed so that the mass ratio (main agent: curing agent) was 16: 1, and ethyl acetate was used as a diluent.
  • urethane adhesive A was applied at 1.5 g / m 2 on the side of the biaxially stretched PET (polyethylene terephthalate) film surface of the laminate film.
  • the corona-treated surface of the stretched 4-methyl-1-pentene copolymer resin film is bonded by dry lamination to form a 5-layer structure (release layer 1A / adhesive layer / heat-resistant resin layer 1B / adhesive layer / release layer 1A).
  • a release film for the process was obtained.
  • the dry lamination conditions were a substrate width of 900 mm, a conveyance speed of 30 m / min, a drying temperature of 50 to 60 ° C., a laminate roll temperature of 50 ° C., and a roll pressure of 3.0 MPa.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the release film for the process was 2.1% in the machine direction (MD) and 1.5% in the transverse (TD) direction.
  • Table 1-1 shows the evaluation results of releasability, wrinkles, and mold followability.
  • the release film exhibits good release properties that peel off spontaneously at the same time as the mold is opened, and there is no wrinkle in both the release film and the semiconductor package, that is, wrinkles are sufficiently suppressed, and the semiconductor package lacks resin.
  • the mold following ability was excellent without any. That is, the process release film of Example 1-1 was a process release film having good release properties, suppression of wrinkles, and mold followability.
  • Examples 1-2 to 1-12 A process release film was prepared in the same manner as in Example 1-1 except that the films shown in Table 1-1 were used as the release layers 1A and 1A ′ and the heat-resistant resin layer 1B in the combinations shown in Table 1-1. It produced, sealed and released, and evaluated the characteristic. The results are shown in Table 1-1. In some cases, the suppression of wrinkles or mold followability did not reach that of Example 1-1. However, all the examples had high levels of mold release, wrinkle suppression, and mold followability. It was a well-balanced release film for process use
  • Unstretched 4MP-1 (TPX) film A 50 ⁇ m-thick unstretched film was formed using 4-methyl-1-pentene copolymer resin (product name: TPX, brand name: MX022) manufactured by Mitsui Chemicals, Inc. What you did.
  • Unstretched 4MP-1 (TPX) film A non-stretched film having a thickness of 50 ⁇ m was formed using 4-methyl-1-pentene copolymer resin (product name: TPX, brand name: DX818) manufactured by Mitsui Chemicals, Inc. What you did.
  • Unstretched polybutylene terephthalate film An unstretched film having a thickness of 50 ⁇ m formed using a polybutylene terephthalate resin (brand name: 5505S) manufactured by Mitsubishi Engineering Plastics. (Melting point: 219 ° C., crystal melting heat: 48.3 J / g)
  • Examples 13 to 20 In the same manner as in Example 1-1, release films for processes were used in the same manner as in Example 1-1, using release films in which the films shown in Table 1-2 were used as release layers 1A and 1A ′ and heat-resistant resin layer 1B in the combinations shown in Table 1-2.
  • a mold film was prepared, sealed and released, and evaluated for characteristics. As shown in FIG. 4, the release film was placed in a state where a tension of 20 N was applied between the upper mold and the lower mold, and then vacuum-adsorbed on the upper parting surface. Next, after filling the substrate with sealing resin so as to cover the semiconductor chip, the semiconductor chip fixed to the substrate was placed in the lower mold and clamped.
  • Example 1 the temperature of the molding die (molding temperature) was 170 ° C., the molding pressure was 10 MPa, and the molding time was 100 seconds. Then, as shown in FIG. 3C, after sealing the semiconductor chip with a sealing resin, the resin-sealed semiconductor chip (semiconductor package) was released from the release film.
  • Table 1-2 Although some of the mold followability did not reach that of Example 1-1, each of the examples had a good process with a balance between mold release, wrinkle suppression, and mold followability. In particular, Example 1-11 and Examples 1-13 to 1-15 were process release films having good release properties, suppression of wrinkles, and mold followability. .
  • Example 2-1 A biaxially stretched PET (polyethylene terephthalate) film (product name: Lumirror F865, manufactured by Toray Industries, Inc.) having a film thickness of 16 ⁇ m was used as the base material 2B0a of the heat-resistant resin layer 2B.
  • the antistatic resin a a PEDOT polythiophene resin (product name: MC-200, manufactured by Kaken Sangyo Co., Ltd.) was used to form a layer containing a polymer antistatic agent.
  • the antistatic resin a is applied to one side of the base material 2B0a of the heat-resistant resin layer 2B at a coating amount of 0.1 g / m 2 and dried to obtain a layer 2B1a containing a polymer antistatic agent. Formed.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. of the biaxially stretched PET film (heat-resistant resin layer 2Ba) provided with the layer containing the polymer antistatic agent obtained above is in the longitudinal (MD) direction. 1.8% and -1.4% in the transverse (TD) direction.
  • the melting point of the biaxially stretched PET film was 187 ° C.
  • the heat of crystal fusion was 30.6 J / g.
  • unstretched 4-methyl-1-pentene copolymer resin film 2Aa (2A′a) was used as the release layers 2A and 2A ′.
  • 4-methyl-1-pentene copolymer resin product name: TPX, brand name: MX022
  • TPX product name: TPX
  • MX022 Mitsui Chemicals, Inc.
  • a non-stretched film having a thickness of 15 ⁇ m was used.
  • the non-stretched 4-methyl-1-pentene copolymer resin film has improved adhesion by an adhesive so that one film surface has a water contact angle of 30 ° or more based on JIS R3257, which is 30 or less.
  • Corona treatment was applied from the viewpoint.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the 4-methyl-1-pentene copolymer resin film Aa was 6.5% in the longitudinal (MD) direction and 3.1% in the transverse (TD) direction. It was.
  • urethane adhesive ⁇ The following urethane adhesive ⁇ was used as an adhesive used in the dry lamination process for bonding the films.
  • Main agent Takelac A-616 (manufactured by Mitsui Chemicals).
  • Curing agent Takenate A-65 (Mitsui Chemicals). The main agent and the curing agent were mixed so that the mass ratio (main agent: curing agent) was 16: 1, and ethyl acetate was used as a diluent.
  • the corona-treated surface of unstretched 4-methyl-1-pentene copolymer resin film 2A'a is bonded by dry lamination to form a five-layer structure (release layer 2A / adhesive layer / heat-resistant resin layer)
  • a release film for process of 2B / adhesive layer / release layer 2A ′) was obtained.
  • the dry lamination conditions were a substrate width of 900 mm, a conveyance speed of 30 m / min, a drying temperature of 50 to 60 ° C., a laminate roll temperature of 50 ° C., and a roll pressure of 3.0 MPa.
  • the thermal dimensional change rate of the process release film from 23 ° C. to 120 ° C. was 2.2% in the machine direction (MD) and 1.4% in the transverse (TD) direction.
  • Table 2-1 shows the evaluation results of releasability, appearance of the molded product, and mold followability.
  • the mold release film shows good mold release properties that peel off spontaneously at the same time as the mold is opened, and neither the mold release film nor the semiconductor package has any wrinkles or burrs. Good mold followability with no resin chipping. That is, the process release film of Example 2-1 was a process release film having good release properties, appearance of the molded product, and mold followability.
  • Example 2-2 to 2-8 A process release film was prepared in the same manner as in Example 2-1, except that the film configuration shown in Table 2-1 was used, and sealing and release were performed to evaluate the characteristics. The results are shown in Table 2-1.
  • the details of the polymer antistatic agents 2b to 2e and the layers 2B1b to 2B1e containing the same as described in Table 2-1 are as follows.
  • As the antistatic resin 2b a PEDOT polythiophene resin (manufactured by Chukyo Yushi Co., Ltd., product name: S-495) was used to form a layer containing a polymer antistatic agent.
  • the antistatic resin 2b is applied to one side of the heat-resistant resin layer 2B, such as the base material 2B0a, at a coating amount of 0.3 g / m 2 and dried to contain a polymer antistatic agent. 2B1b was formed.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. of the biaxially stretched PET film provided with the layer containing the polymer antistatic agent obtained above was the result shown in Table 2-1.
  • As the antistatic resin 2c a PEDOT polythiophene resin (manufactured by Nagase Sangyo Co., Ltd., product name: P-530RL) was used to form a layer containing a polymer antistatic agent.
  • the antistatic resin 2c is coated on one surface of the heat-resistant resin layer 2B such as the base material 2B0a at a coating amount of 0.1 g / m 2 and dried to contain a polymer antistatic agent. 2B1c was formed.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. of the biaxially stretched PET film provided with the layer containing the polymer antistatic agent obtained above was the result shown in Table 2-1.
  • As the antistatic resin 2d a quaternary ammonium salt-containing resin (manufactured by Taisei Fine Chemical Co., Ltd., product name: 1SX-1090) was used to form a layer containing a polymeric antistatic agent.
  • the antistatic resin 2d is applied to one surface of the heat-resistant resin layer 2B, such as the base material 2B0a, at a coating amount of 0.4 g / m 2 and dried to contain a polymer antistatic agent. 2B1d was formed.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. of the biaxially stretched PET film provided with the layer containing the polymer antistatic agent obtained above was the result shown in Table 2-1.
  • an anionic synthetic clay mineral-containing polyester resin manufactured by Takamatsu Yushi Co., Ltd., product name: ASA-2050
  • the antistatic resin 2e is applied to one side of the heat-resistant resin layer 2B, such as the base material 2B0a, at a coating amount of 0.4 g / m 2 and dried to contain the polymer antistatic agent 2B1e. Formed.
  • the test items and evaluation results, such as thermal dimensional change rate from 23 ° C. to 120 ° C. and water contact angle, of the biaxially stretched PET film provided with the layer containing the polymer antistatic agent obtained above are shown in Table 2- As shown in FIG.
  • Unstretched polybutylene terephthalate film An unstretched film having a thickness of 50 ⁇ m formed using a polybutylene terephthalate resin (brand name: 5020) manufactured by Mitsubishi Engineering Plastics. (Melting point: 223 ° C., heat of crystal melting: 49.8 J / g)
  • Examples 2-9 to 2-16 A process release film was prepared in the same manner as in Example 2-1, except that each film shown in Table 2-2 was changed to the release layers 2A and 2A ′ and the heat-resistant resin layer 2B in the combinations shown in Table 2-2. Then, sealing and releasing were performed, and the characteristics were evaluated. As shown in FIG. 3a, the release film was placed between the upper mold and the lower mold in a state where a tension of 20N was applied, and then was vacuum-adsorbed on the parting surface of the upper mold. Next, after filling the substrate with sealing resin so as to cover the semiconductor chip, the semiconductor chip fixed to the substrate was placed in the lower mold and clamped.
  • the temperature of the molding die was 170 ° C.
  • the molding pressure was 10 MPa
  • the molding time was 100 seconds.
  • the resin-sealed semiconductor chip semiconductor package
  • the results are shown in Table 2-2.
  • the mold release property, the appearance of the molded product, and the mold followability are good in all the test items of the ash adhesion test, and are balanced from the viewpoint of performance. It was a release film for process.
  • Example 2-11 and Examples 2-13 to 2-15 were process release films having good release properties, appearance of molded products, and mold followability.
  • Thermal dimensional change rate The film sample was cut into a length (20 mm) and a width (4 mm) in the longitudinal (MD) direction and transverse (TD) direction of the film, respectively, and the distance between chucks was 8 mm using a TA Instruments TMA (thermomechanical analyzer, product name: Q400). After holding at 23 ° C. for 5 minutes under a load of 0.005 N, the temperature was raised from 23 ° C. to 120 ° C. at a rate of 10 ° C./min, and the dimensional change in each direction was measured. The dimensional change rate was calculated from (1).
  • Thermal dimensional change rate (%) (23 ⁇ 120 ° C.) ⁇ [(L 2 ⁇ L 1 ) / L 1 ] ⁇ 100 ⁇ ...
  • L 1 Sample length at 23 ° C. (mm)
  • L 2 Sample length at 120 ° C. (mm)
  • the temperature was raised from 23 ° C. to 170 ° C. at a rate of 10 ° C./min, the dimensional change in each direction was measured, and the dimensional change rate was calculated by the following formula (2).
  • Thermal dimensional change rate (%) (23 ⁇ 170 ° C.) ⁇ [(L 3 ⁇ L 1 ) / L 1 ] ⁇ 100 ⁇ ...
  • L 1 Sample length at 23 ° C. (mm)
  • L 3 Sample length at 170 ° C. (mm)
  • Water contact angle (water contact angle) Based on JIS R3257, the water contact angle on the surface of the release layer A or the like was measured using a contact angle measuring device (manufactured by Kyowa Interface Science, FACECA-W).
  • (Tensile modulus) Measurement method of tensile elastic modulus Based on JIS K7127, the tensile elastic modulus at 23 ° C, 120 ° C and 170 ° C was determined. Measurement conditions: Tensile mode Measurement direction: Film longitudinal (MD) direction (film transport direction)
  • Tm Melting point
  • DSC differential scanning calorimeter
  • the process release film produced in each example / reference example was placed in a state where a tension of 10 N was applied between the upper mold and the lower mold, and then the upper mold parting was performed. The surface was vacuum-adsorbed.
  • the semiconductor chip fixed to the substrate was placed in the lower mold and clamped.
  • the temperature of the molding die was 120 ° C.
  • the molding pressure was 10 MPa
  • the molding time was 400 seconds.
  • the releasability of the release film was evaluated according to the following criteria.
  • the mold following property of the release film at the time of releasing in the above process was evaluated according to the following criteria.
  • Example 3-1 A biaxially stretched PET (polyethylene terephthalate) film (product name: Lumirror S10 manufactured by Toray Industries, Inc.) having a film thickness of 12 ⁇ m was used as the heat resistant resin layer 3B.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the biaxially stretched PET film was ⁇ 0.3% in the machine direction (MD) and ⁇ 0.3% in the transverse (TD) direction.
  • MD machine direction
  • TD transverse
  • the melting point of the biaxially stretched PET film was 258 ° C.
  • the heat of crystal fusion was 39.4 J / g.
  • unstretched 4-methyl-1-pentene copolymer resin films were used. Specifically, 4-methyl-1-pentene copolymer resin (product name: TPX, brand name: MX022) manufactured by Mitsui Chemicals, Inc. is melt extruded at 270 ° C. to adjust the slit width of the T-type die. Thus, a non-stretched film having a thickness of 15 ⁇ m was used. The non-stretched 4-methyl-1-pentene copolymer resin film has improved adhesion by an adhesive so that one film surface has a water contact angle of 30 ° or more based on JIS R3257, which is 30 or less. Corona treatment was applied from the viewpoint. The thermal dimensional change rate from 23 ° C. to 120 ° C. of the 4-methyl-1-pentene copolymer resin film was 6.5% in the longitudinal (MD) direction and 3.1% in the transverse (TD) direction. .
  • TPX product name: TPX, brand name: MX02
  • urethane-based adhesive A The following urethane-based adhesive A was used as the adhesive used in the dry lamination process for bonding each film.
  • Main agent Takelac A-616 (manufactured by Mitsui Chemicals).
  • Curing agent Takenate A-65 (Mitsui Chemicals). The main agent and the curing agent were mixed so that the mass ratio (main agent: curing agent) was 16: 1, and ethyl acetate was used as a diluent.
  • urethane adhesive A was applied at 1.5 g / m 2 on the side of the biaxially stretched PET (polyethylene terephthalate) film surface of the laminate film.
  • the corona-treated surface of the stretched 4-methyl-1-pentene copolymer resin film is bonded by dry lamination to form a 5-layer structure (release layer 3A / adhesive layer / heat-resistant resin layer 3B / adhesive layer / release layer 3A).
  • a release film for the process was obtained.
  • the dry lamination conditions were a substrate width of 900 mm, a conveyance speed of 30 m / min, a drying temperature of 50 to 60 ° C., a laminate roll temperature of 50 ° C., and a roll pressure of 3.0 MPa.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the release film for the process was 2.1% in the machine direction (MD) and 1.5% in the transverse (TD) direction.
  • Table 3-1 shows the evaluation results of releasability, wrinkles, and mold followability.
  • the release film exhibits good release properties that peel off spontaneously at the same time as the mold is opened, and there is no wrinkle in both the release film and the semiconductor package, that is, wrinkles are sufficiently suppressed, and the semiconductor package lacks resin.
  • the mold following ability was excellent without any. That is, the process release film of Example 3-1 was a process release film having good release characteristics, suppression of wrinkles, and mold followability.
  • Examples 3-2 to 3-9 A process release film was prepared in the same manner as in Example 3-1, except that the films shown in Table 3-1 were used as the release layers 3A and 3A ′ and the heat-resistant resin layer 3B in the combinations shown in Table 3-1. It produced, sealed and released, and evaluated the characteristic. The results are shown in Table 3-1. In some cases, wrinkle suppression or mold followability did not reach that of Example 3-1, but all of the examples had high levels of mold release, wrinkle suppression, and mold followability. It was a well-balanced release film for process use
  • Unstretched 4MP-1 (TPX) film A non-stretched film with a thickness of 15 ⁇ m was formed using 4-methyl-1-pentene copolymer resin (product name: TPX, brand name: DX818) manufactured by Mitsui Chemicals, Inc. What you did.
  • Unstretched 4MP-1 (TPX) film A non-stretched film having a thickness of 50 ⁇ m was formed using 4-methyl-1-pentene copolymer resin (product name: TPX, brand name: MX022) manufactured by Mitsui Chemicals, Inc. What you did.
  • Unstretched polybutylene terephthalate film An unstretched film having a thickness of 20 ⁇ m formed using a polybutylene terephthalate resin (brand name: 5505S) manufactured by Mitsubishi Engineering Plastics Co., Ltd. (Melting point: 219 ° C., crystal melting heat: 48.3 J / g) (3B9) Unstretched polybutylene terephthalate film An unstretched film having a thickness of 50 ⁇ m formed using a polybutylene terephthalate resin (brand name: 5020) manufactured by Mitsubishi Engineering Plastics.
  • Unstretched polybutylene terephthalate film An unstretched film having a thickness of 50 ⁇ m is formed using a polybutylene terephthalate resin (brand name: 5505S) manufactured by Mitsubishi Engineering Plastics. (Melting point: 219 ° C., crystal melting heat: 48.3 J / g)
  • Examples 3-10 to 3-14 In the same manner as in Example 3-1, release films for processes were used in the same manner as in Example 3-1, using release films in which the films shown in Table 3-2 were used as release layers 3A and 3A ′ and heat-resistant resin layer 3B in the combinations shown in Table 3-2.
  • a mold film was prepared, sealed and released, and evaluated for characteristics. As shown in FIG. 4, the release film was placed in a state where a tension of 20 N was applied between the upper mold and the lower mold, and then vacuum-adsorbed on the upper parting surface. Next, after filling the substrate with sealing resin so as to cover the semiconductor chip, the semiconductor chip fixed to the substrate was placed in the lower mold and clamped.
  • the temperature of the molding die was 170 ° C.
  • the molding pressure was 10 MPa
  • the molding time was 100 seconds.
  • the resin-sealed semiconductor chip semiconductor package
  • Table 3-2 The results are shown in Table 3-2. Although some of the mold followability did not reach that of Example 3-1, each example had a good process that balanced the mold release property, the suppression of wrinkles, and the mold followability at a high level. In particular, Examples 3-11 to 3-13 were process release films having good release properties, suppression of wrinkles, and mold followability.
  • Example 4-1 As the base material 4B0a of the heat-resistant resin layer 4B, a biaxially stretched PET (polyethylene terephthalate) film (manufactured by Toray Industries, Inc., product name: Lumirror S10) having a film thickness of 12 ⁇ m was used.
  • a PEDOT polythiophene resin product name: MC-200, manufactured by Kaken Sangyo Co., Ltd.
  • MC-200 manufactured by Kaken Sangyo Co., Ltd.
  • the antistatic resin 4a is applied to one surface of the base material 4B0a of the heat-resistant resin layer 4B at a coating amount of 0.1 g / m 2 and dried to contain the polymer antistatic agent 4B1a. Formed.
  • the rate of thermal dimensional change from 23 ° C. to 120 ° C. of the biaxially stretched PET film (heat-resistant resin layer 4Ba) provided with the layer containing the polymer antistatic agent obtained above is in the longitudinal (MD) direction ⁇ 0.1% and 0.6% in the transverse (TD) direction.
  • the melting point of the biaxially stretched PET film was 258 ° C.
  • the heat of crystal fusion was 39.4 J / g.
  • unstretched 4-methyl-1-pentene copolymer resin film 4Aa (4A′a) was used as the release layers 4A and 4A ′. Specifically, an unstretched film having a thickness of 15 ⁇ m was formed using 4-methyl-1-pentene copolymer resin (product name: TPX, brand name: MX022) manufactured by Mitsui Chemicals, Inc. (Melting point: 229 ° C., heat of crystal melting: 21.7 J / g)
  • the non-stretched 4-methyl-1-pentene copolymer resin film has improved adhesion by an adhesive so that one film surface has a water contact angle of 30 ° or more based on JIS R3257, which is 30 or less.
  • Corona treatment was applied from the viewpoint.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the 4-methyl-1-pentene copolymer resin film 4Aa was 6.5% in the longitudinal (MD) direction and 3.1% in the transverse (TD) direction. It was.
  • urethane adhesive ⁇ The following urethane adhesive ⁇ was used as an adhesive used in the dry lamination process for bonding the films.
  • Main agent Takelac A-616 (manufactured by Mitsui Chemicals).
  • Curing agent Takenate A-65 (Mitsui Chemicals). The main agent and the curing agent were mixed so that the mass ratio (main agent: curing agent) was 16: 1, and ethyl acetate was used as a diluent.
  • urethane adhesive ⁇ was applied at 1.5 g / m 2 by gravure coating, and unstretched 4-methyl After the corona-treated surfaces of the -1-pentene copolymer resin film 4Aa are bonded together by dry lamination, 1.5 g / m 2 of urethane-based adhesive ⁇ is subsequently applied to the biaxially stretched PET film surface side of the laminate film.
  • the corona-treated surface of the unstretched 4-methyl-1-pentene copolymer resin film 4A'a is bonded by dry lamination to form a five-layer structure (release layer 4A / adhesive layer / heat-resistant resin layer)
  • a release film for process of 4B / adhesive layer / release layer 4A ′) was obtained.
  • the dry lamination conditions were a substrate width of 900 mm, a conveyance speed of 30 m / min, a drying temperature of 50 to 60 ° C., a laminate roll temperature of 50 ° C., and a roll pressure of 3.0 MPa.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the release film for the process was 1.0% in the longitudinal (MD) direction and 1.4% in the transverse (TD) direction.
  • Table 4-1 shows the evaluation results of tensile modulus, releasability, appearance of molded product, mold followability, surface resistivity, and ash adhesion test.
  • the mold release film shows good mold release properties that peel off spontaneously at the same time as the mold is opened, and neither the mold release film nor the semiconductor package has any wrinkles or burrs. Good mold followability with no resin chipping. That is, the process release film of Example 4-1 was a process release film having good release properties, appearance of the molded product, and mold followability. Moreover, no ash adhesion was observed.
  • Example 4-2 to 4-9 A process release film was prepared in the same manner as in Example 4-1, except that the film configuration shown in Table 4-1 was used, and sealing and release were performed to evaluate the characteristics. The results are shown in Table 4-1.
  • the details of the polymer antistatic agents 4b to 4e and the layers 4B1b to 4B1e containing the polymer antistatic agents described in Table 4-1 are as follows.
  • As the antistatic resin 4b a PEDOT polythiophene resin (manufactured by Chukyo Yushi Co., Ltd., product name: S-495) was used to form a layer containing a polymer antistatic agent.
  • the antistatic resin 4b is coated on one surface of the heat-resistant resin layer 4B such as the base material 4B0a at a coating amount of 0.3 g / m 2 and dried to contain a polymer antistatic agent. 4B1b was formed.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the biaxially stretched PET film provided with the layer containing the polymer antistatic agent obtained above was the result shown in Table 4-1.
  • As the antistatic resin 4c a PEDOT polythiophene resin (manufactured by Nagase Sangyo Co., Ltd., product name: P-530RL) was used to form a layer containing a polymer antistatic agent.
  • the antistatic resin 4c is applied to one side of the heat-resistant resin layer 4B, such as the base material 4B0a, at a coating amount of 0.1 g / m 2 and dried to contain a polymer antistatic agent. 4B1c was formed.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the biaxially stretched PET film provided with the layer containing the polymer antistatic agent obtained above was the result shown in Table 4-1.
  • As the antistatic resin 4d a quaternary ammonium salt-containing resin (manufactured by Taisei Fine Chemical Co., Ltd., product name: 1SX-1090) was used to form a layer containing a polymeric antistatic agent.
  • the antistatic resin 4d is applied to one surface of the heat-resistant resin layer 4B, such as the base material 4B0a, at a coating amount of 0.4 g / m 2 and dried to contain a polymer antistatic agent. 4B1d was formed.
  • the thermal dimensional change rate from 23 ° C. to 120 ° C. of the biaxially stretched PET film provided with the layer containing the polymer antistatic agent obtained above was the result shown in Table 4-1.
  • As the antistatic resin 4e a polyester resin containing an anionic synthetic clay mineral (manufactured by Takamatsu Yushi Co., Ltd., product name: ASA-2050) was used to form a layer containing a polymer antistatic agent.
  • the antistatic resin 4e is applied to one side of the heat-resistant resin layer 4B, such as the base material 4B0a, at a coating amount of 0.4 g / m 2 and dried to contain the polymer antistatic agent 4B1e.
  • An anionic synthetic clay mineral-containing polyester resin (product name: ASA-2050, manufactured by Takamatsu Yushi Co., Ltd.) was used to form a layer containing a polymeric antistatic agent.
  • the antistatic resin 4e is applied to one side of the heat-resistant resin layer 4B, such as the base material 4B0a, at a coating amount of 0.4 g / m 2 and dried to contain the polymer antistatic agent 4B1e.
  • Table 4- shows the test items and evaluation results of the biaxially stretched PET film provided with the layer containing the polymer antistatic agent obtained above, such as the thermal dimensional change rate from 23 ° C. to 120 ° C. and the water contact angle. As shown in FIG.
  • Unstretched 4MP-1 (TPX) film A non-stretched film having a thickness of 50 ⁇ m was formed using 4-methyl-1-pentene copolymer resin (product name: TPX, brand name: MX022) manufactured by Mitsui Chemicals, Inc. What you did.
  • Unstretched polybutylene terephthalate film An unstretched film having a thickness of 50 ⁇ m formed using a polybutylene terephthalate resin (brand name: 5505S) manufactured by Mitsubishi Engineering Plastics. (Melting point: 219 ° C., crystal melting heat: 48.3 J / g)
  • Reference Examples 4-1 to 4-3 Except for the film configuration shown in Table 4-1, sealing and mold release were performed in the same manner as in Example 4-1, and the characteristics of the process release film were evaluated. All of the reference examples were generally inferior in performance to the examples, and the ash adhesion test results were particularly inferior. Further, regarding the appearance, good results were not obtained except in Reference Example 4-1.
  • Examples 4-10 to 4-17 A process release film was prepared in the same manner as in Example 4-1, except that the films shown in Table 4-2 were changed to the release layers 4A and 4A ′ and the heat-resistant resin layer 4B in the combinations shown in Table 4-2. Then, sealing and releasing were performed, and the characteristics were evaluated. As shown in FIG. 3a, the release film was placed between the upper mold and the lower mold in a state where a tension of 20N was applied, and then was vacuum-adsorbed on the parting surface of the upper mold. Next, after filling the substrate with sealing resin so as to cover the semiconductor chip, the semiconductor chip fixed to the substrate was placed in the lower mold and clamped.
  • the temperature of the molding die was 170 ° C.
  • the molding pressure was 10 MPa
  • the molding time was 100 seconds.
  • the resin-sealed semiconductor chip was released from the release film.
  • Table 4-2 The results are shown in Table 4-2.
  • the mold release property, the appearance of the molded product, and the mold followability are good in all the test items of the ash adhesion test, and are balanced from the viewpoint of performance. It was a release film for process.
  • Examples 4-15 to 4-17 were process release films having good release properties, appearance of molded products, mold followability, and ash adhesion test results.
  • the process release film of the first invention of the present application has a high level of releasability, suppression of wrinkles, and mold followability that could not be realized by the prior art.
  • the technical effect of high value in practical use is that the molded product obtained by sealing etc. can be easily released and the molded product without appearance defects such as wrinkles and chips can be produced with high productivity. It has high availability in various fields of industries including the semiconductor process industry.
  • the process release film of the first invention of the present application can be used not only for semiconductor packages but also for various mold moldings in fiber reinforced plastic molding processes, plastic lens molding processes, etc. It has high applicability also in each field of the industry that performs mold forming.
  • the process release film of the second invention of the present application has a high level of mold release property, suppression of appearance defects, and mold followability that could not be realized by the prior art. By using this, a semiconductor chip or the like can be obtained. Molded products obtained by resin sealing can be easily released, and molded products with no appearance defects such as wrinkles, chips, and abnormal shapes (such as burrs and foreign matter adhesion) can be produced with high productivity. It has a technical effect of high value in practical use and has high applicability in various fields of industries including the semiconductor process industry.
  • the process release film of the second invention of the present application can be used not only for semiconductor packages but also for various mold moldings in fiber reinforced plastic molding processes, plastic lens molding processes, etc.
  • the process release film of the third invention of the present application has a high level of releasability, suppression of wrinkles, and mold followability that could not be realized by the prior art.
  • the technical effect of high value in practical use is that the molded product obtained by sealing etc. can be easily released and the molded product without appearance defects such as wrinkles and chips can be produced with high productivity. It has high availability in various fields of industries including the semiconductor process industry.
  • the process release film according to the third invention of the present application can be used not only for semiconductor packages but also for various molds in fiber reinforced plastic molding processes, plastic lens molding processes, etc. It has high applicability also in each field of the industry that performs mold forming.
  • the process release film according to the fourth invention of the present application combines a high level of mold release, wrinkle suppression, and mold followability that could not be realized with the prior art.
  • the technical effect of high value in practical use is that the molded product obtained by sealing etc. can be easily released and the molded product without appearance defects such as wrinkles and chips can be produced with high productivity. It has high availability in various fields of industries including the semiconductor process industry.
  • the process release film of the fourth invention of the present application can be used not only for semiconductor packages but also for various mold moldings in fiber reinforced plastic molding processes, plastic lens molding processes, etc. It has high applicability also in each field of the industry that performs mold forming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

樹脂封止後の成形品を、金型構造や離型剤量によることなく容易に離型でき、かつ皺や欠け等の外観不良のない成形品を得ることができるプロセス用離型フィルムを提供する。 上記課題は、離型層Aと、耐熱樹脂層Bと、所望により離型層A'と、を含む積層フィルムであるプロセス用離型フィルムであって、前記離型層A(及び存在する場合離型層A')の水に対する接触角が、90°から130°であり、前記積層フィルムが、所定の熱寸法変化率及び/若しくは引張弾性率を有する、上記プロセス用離型フィルム、又は離型層Aと、耐熱樹脂層Bと、所望により離型層A'と、を含む積層フィルムであるプロセス用離型フィルムであって、前記積層フィルムの離型層A(及び存在する場合離型層A')の水に対する接触角が、90°から130°であり、離型層Aの表面固有抵抗値が1×1013Ω/□以下であって、前記耐熱樹脂層Bが、高分子系帯電防止剤を含有する層B1を含み、前記積層フィルムが、所定の熱寸法変化率及び/若しくは引張弾性率を有する、上記プロセス用離型フィルムによって解決される。

Description

プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
 本願第1及び第2発明は、プロセス用離型フィルム、好適には半導体封止プロセス用離型フィルムに関し、特に金型内に半導体チップ等を配置して樹脂を注入成形する際に、半導体チップ等と金型内面との間に配置されるプロセス用離型フィルム、及びそれを用いた樹脂封止半導体の製造方法に関する。
 本願第3及び第4発明は、成形品の外観不良、特に皺による外観不良を効果的に抑制できるプロセス用離型フィルム、好適には半導体封止プロセス用離型フィルムに関し、特に金型内に半導体チップ等を配置して樹脂を注入成形する際に、半導体チップ等と金型内面との間に配置されるプロセス用離型フィルム、及びそれを用いた樹脂封止半導体の製造方法に関する。
 近年、半導体パッケージ等の小型軽量化に伴い、封止樹脂の使用量を減らすことが検討されている。そして、封止樹脂の使用量を減らしても、半導体チップ等と樹脂との界面を強固に接着できるようにするため、封止樹脂に含まれる離型剤の量を減らすことが望まれている。このため、硬化成形後の封止樹脂と金型との離型性を得る方法として、金型内面と半導体チップ等との間に離型フィルムを配置する方法が採られている。
 このような離型フィルムとして、離型性および耐熱性に優れる、フッ素系樹脂フィルム(例えば、特許文献1~2)、ポリ4-メチル-1-ペンテン樹脂フィルム(例えば、特許文献3)等が提案されている。しかしながら、これらの離型フィルムは、金型内面に装着された際に皺が発生し易く、この皺が成形品の表面に転写されて外観不良を生じるという問題があった。
 これに対して、離型層と、耐熱層とを有する積層離型フィルムが提案されている。これらの離型フィルムは、離型層で離型性を得るとともに、耐熱層で皺や外観不良を抑制しようとするものである。これらの提案の代表的なものは、離型層と、耐熱層との貯蔵弾性率の関係に着目したものである(例えば、特許文献4から6参照。)。例えば、特許文献4には、離型層の貯蔵弾性率が比較的低く、耐熱層の貯蔵弾性率が比較的高い構成の積層離型フィルム、より具体的には、離型層の175℃における貯蔵弾性率E’が、45MPa以上105MPa以下であり、耐熱層の175℃における貯蔵弾性率E’が100MPa以上250MPa以下である、半導体封止プロセス用離型フィルムが記載されている。
 なお、この様なプロセス用離型フィルムは、半導体封止プロセスのみならず、発光ダイオード等の発光素子用のリフレクタの成形プロセス等においても使用できるものである(例えば、特許文献7参照。)。
 また、離型フィルムの帯電も、成形品の外観不良の原因となる。半導体封止工程において用いられる離型フィルムは、上記の様に樹指フィルムであるので、一般に帯電しやすい。例えば離型フィルムを巻き出して使用する場合、離型フィルムの剥離時に静電気が発生し、製造雰囲気下に存在する粉塵等の異物が帯電した離型フィルムに付着して成形品の形状異常(異物付着等)や金型汚れの原因になる。とりわけ、半導体チップの封止装置のなかには封止用樹脂として顆粒樹脂を採用するものがあり、離型フィルムに顆粒樹脂から発生する粉じんが付着することによる形状異常や金型汚れ、及びそれによりもたらされる外観不良は無視できないものとなっている。
 また、近年はパッケージの薄型化や、放熱性の向上の要請から、半導体チップをフリップチップ接合し、チップの背面を露出させるパッケージが増えてきている。この工程はモールドアンダーフィル(Molded Under Film; MUF)工程と呼ばれる。MUF工程では、半導体チップの保護とマスキングのために、離型フィルムと半導体チップとが直接接触した状態で封止が行われる。この際、離型フィルムが帯電しやすいと、剥離時の帯電-放電により半導体チップが破壊される懸念がある。
 このため、封止フィルムの帯電を防止する技術が種々提案されている。例えば、特許文献6には、形成時に硬化性樹脂と接する第1の熱可塑性樹脂層と、金型と接する第2の熱可塑性樹脂層と、第1の熱可塑性樹脂層と第2の熱可塑性樹脂層との間に配置された中間層とを備え、該中間層が高分子系帯電防止剤を含有する層を含むことを特徴とする離型フィルムが記載されている。
特開2001-310336号公報 特開2002-110722号公報 特開2002-361643号公報 特開2010-208104号公報 国際公開第2015/133631 A1号パンフレット 国際公開第2015/133630 A1号パンフレット 特開2014- 14928号公報
 しかしながら、当該技術分野の発展に伴い半導体封止プロセス用離型フィルム等のプロセス用離型フィルムに対する要求水準は年々高まっており、より過酷なプロセス条件においても皺の発生が抑制されたプロセス用離型フィルムが求められており、特に、離型性、皺の抑制、及び金型追従性が更に高いレベルでバランスしたプロセス用離型フィルムが強く求められている。
 更に、より過酷なプロセス条件においても成形品の外観不良が抑制されたプロセス用離型フィルムが求められており、特に、離型性、外観不良の抑制、及び金型追従性が極めて高いレベルや特に高いレベルでバランスしたプロセス用離型フィルムが強く求められている。
 本願第1発明は、このような事情を鑑みてなされたものであり、樹脂封止後の成形品を、金型構造や離型剤量によることなく容易に離型でき、かつ皺や欠け等の外観不良のない成形品を得ることができるプロセス用離型フィルムを提供することを目的とする。
 本願第2発明は、このような事情を鑑みてなされたものであり、樹脂封止後の成形品を、金型構造や離型剤によることなく容易に離型でき、かつ皺や欠け、形状異常(例えば、常温で顆粒状の封止樹脂の離型フィルムへの静電気による付着等に起因して発生するバリ、異物付着等)等の外観不良のない成形品を得ることができるプロセス用離型フィルムを提供することを目的とする。
 本願第3発明は、このような事情を鑑みてなされたものであり、樹脂封止後の成形品を、金型構造や離型剤量によることなく容易に離型でき、かつ皺や欠け等の外観不良のない成形品を得ることができるプロセス用離型フィルムを提供することを目的とする。
 本願第4発明は、このような事情を鑑みてなされたものであり、樹脂封止後の成形品を、金型構造や離型剤によることなく容易に離型でき、かつ皺や欠け、形状異常(異物付着等)等の外観不良のない成形品を得ることができるプロセス用離型フィルムを提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意検討を重ねた結果、プロセス用離型フィルムの特定の温度における熱寸法変化率、とりわけプロセス用離型フィルムを構成する積層フィルムのTD方向(フィルムの面内であって、フィルムの製造時の長手方向に対して直行する方向。以下、「横方向」ともいう。)の熱寸法変化率を適切に制御することが、金型内面に装着された際の皺の抑制に重要であることを見出し、本願第1発明を完成するに至った。
 更に本発明者らは上記課題を解決するために鋭意検討を重ねた結果、プロセス用離型フィルムの特定の温度における熱寸法変化率、とりわけプロセス用離型フィルムを構成する積層フィルムのTD方向の熱寸法変化率を適切に制御し、かつ当該積層フィルムを構成する耐熱樹脂層に、高分子系帯電剤を含有する層を設けることが、外観不良の抑制に重要であることを見出し、本願第2発明を完成するに至った。
 また本発明者らは上記課題を解決するために鋭意検討を重ねた結果、プロセス用離型フィルムの特定の温度における熱寸法変化率、とりわけプロセス用離型フィルムを構成する積層フィルムのTD方向(フィルムの面内であって、フィルムの製造時の長手方向に対して直行する方向。以下、「横方向」ともいう。)の熱寸法変化率を適切に制御することが、金型内面に装着された際の皺の抑制に重要であることを見出し、本願第3発明を完成するに至った。
 加えて本発明者らは上記課題を解決するために鋭意検討を重ねた結果、プロセス用離型フィルムの特定の温度における引張弾性率を適切に制御し、かつ当該積層フィルムを構成する耐熱樹脂層に、高分子系帯電剤を含有する層を設けることが、外観不良の抑制に特に重要であることを見出し、本願第4発明を完成するに至った。
 すなわち本願第1発明及びその各態様は、下記[1]から[19]に記載のとおりである。
[1]
 離型層1Aと、耐熱樹脂層1Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層1Aの水に対する接触角(以下、「水に対する接触角」を「水接触角」と表記することがある。)が、90°から130°であり、
 前記耐熱樹脂層1Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、上記プロセス用離型フィルム。
[2]
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、[1]に記載のプロセス用離型フィルム。
[3]
 離型層1Aと、耐熱樹脂層1Bと、を含むを含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層1Aの水に対する接触角が、90°から130°であり、
 前記耐熱樹脂層1Bの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、上記プロセス用離型フィルム。
[4]
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下である、[3]に記載のプロセス用離型フィルム。
[5]
 前記耐熱樹脂層1Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、[1]から[4]のいずれかに記載のプロセス用離型フィルム。
[6]
 前記耐熱樹脂層1Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、[5]に記載のプロセス用離型フィルム。
[7]
 前記耐熱樹脂層1Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下である、[1]から[4]のいずれかに記載のプロセス用離型フィルム。
[8]
 前記耐熱樹脂層1Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が4%以下である、[7]に記載のプロセス用離型フィルム。
[9]
 前記離型層1Aが、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、[1]から[8]のいずれか一項に記載のプロセス用離型フィルム。
[10]
 前記耐熱樹脂層1Bが、延伸フィルムを含んでなる、[1]から[9]のいずれか一項に記載のプロセス用離型フィルム。
[11]
 前記延伸フィルムが、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる、[10]に記載のプロセス用離型フィルム。
[12]
 前記耐熱樹脂層1BのJISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が15J/g以上、60J/g以下である、[1]から[11]のいずれか一項に記載のプロセス用離型フィルム。
 
[13]
 前記積層フィルムが、更に離型層1A’を有し、かつ、該離型層1Aと、前記耐熱樹脂層1Bと、前記離型層1A’と、をこの順で含み、
 該離型層1A’の水に対する接触角が、90°から130°である、[1]から[12]のいずれか一項に記載のプロセス用離型フィルム。
[14]
 前記離型層1A及び前記離型層1A’の少なくとも一方が、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、[13]に記載のプロセス用離型フィルム。
[15]
 熱硬化性樹脂による封止プロセスに用いる、[1]から[14]のいずれか一項に記載のプロセス用離型フィルム
[16]
 半導体封止プロセスに用いる、[1]から[15]のいずれか一項に記載のプロセス用離型フィルム。
[17]
 繊維強化プラスチック成形プロセス、またはプラスチックレンズ成形プロセスに用いる、[1]から[15]のいずれか一項に記載のプロセス用離型フィルム。
[18]
 樹脂封止半導体の製造方法であって、
 成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
 前記成形金型内面に、[1]から[14]のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層1Aが前記半導体装置と対向するように配置する工程と、
 前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
 を有する、上記樹脂封止半導体の製造方法。
[19]
 樹脂封止半導体の製造方法であって、
 成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
 前記成形金型内面に、[13]又は[14]に記載の半導体封止プロセス用離型フィルムを、前記離型層1A’が前記半導体装置と対向するように配置する工程と、
 前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
 を有する、上記樹脂封止半導体の製造方法。
 また、本願第2発明及びその各態様は、下記[20]から[40]に記載のとおりである。
[20]
 離型層2Aと、耐熱樹脂層2Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記積層フィルムの離型層2Aの水に対する接触角が、90°から130°であり、表面固有抵抗値が1×1013Ω/□以下であって、
 前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含み、
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、上記プロセス用離型フィルム。
[21]
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、[20]に記載のプロセス用離型フィルム。
[22]
 離型層2Aと、耐熱樹脂層2Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記積層フィルムの離型層2Aの水に対する接触角が、90°から130°であり、表面固有抵抗値が1×1013Ω/□以下であって、
 前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含み、
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、上記プロセス用離型フィルム。
[23]
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下である、[22]に記載のプロセス用離型フィルム。
[24]
 前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1と、接着剤を含有する接着層2B2とを含んでなる、[20]から[23]のいずれか一項に記載のプロセス用離型フィルム。
[25]
 前記耐熱樹脂層2Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、[20]から[24]のいずれか一項に記載のプロセス用離型フィルム。
[26]
 前記耐熱樹脂層2Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、[25]に記載のプロセス用離型フィルム。
[27]
 前記耐熱樹脂層2Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下である、[20]から[24]のいずれか一項に記載のプロセス用離型フィルム。
[28]
 前記耐熱樹脂層2Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が4%以下である、[27]に記載のプロセス用離型フィルム。
[29]
 前記離型層2Aが、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、[20]から[28]のいずれか一項に記載のプロセス用離型フィルム。
[30]
 前記耐熱樹脂層2Bが、延伸フィルムを含んでなる、[20]から[29]のいずれか一項に記載のプロセス用離型フィルム。
[31]
 前記延伸フィルムが、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる、[30]に記載のプロセス用離型フィルム。
[32]
 前記耐熱樹脂層2BのJISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量15J/g以上、60J/g以下である、[20]から[31]のいずれか一項に記載のプロセス用離型フィルム。
[33]
 前記積層フィルムが、更に離型層2A’を有し、かつ、該離型層2Aと、前記耐熱樹脂層2Bと、前記離型層2A’と、をこの順で含み、
 該離型層2A’の水に対する接触角が、90°から130°である、[20]から[32]のいずれか一項に記載のプロセス用離型フィルム。
[34]
 前記離型層2A’の表面固有抵抗値が1×1013Ω/□以下である、[33]に記載のプロセス用離型フィルム。
[35]
 前記離型層2A及び前記離型層2A’の少なくとも一方が、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、[14]又は[15]に記載のプロセス用離型フィルム。
[36]
 熱硬化性樹脂による封止プロセスに用いる、[20]から[35]のいずれか一項に記載のプロセス用離型フィルム
[37]
 半導体封止プロセスに用いる、[20]から[36]のいずれか一項に記載のプロセス用離型フィルム。
[38]
 繊維強化プラスチック成形プロセス、またはプラスチックレンズ成形プロセスに用いる、[20]から[36]のいずれか一項に記載のプロセス用離型フィルム。
[39]
 樹脂封止半導体の製造方法であって、
 成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
 前記成形金型内面に、[20]から[35]のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層2Aが前記半導体装置と対向するように配置する工程と、
 前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
 を有する、上記樹脂封止半導体の製造方法。
[40]
 樹脂封止半導体の製造方法であって、
 成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
 前記成形金型内面に、[33]から[35]のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層2A’が前記半導体装置と対向するように配置する工程と、
 前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
 を有する、上記樹脂封止半導体の製造方法。
 また、本願第3発明及びその各態様は、下記[41]から[61]に記載のとおりである。
[41]
 離型層3Aと、耐熱樹脂層3Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層3Aの水に対する接触角が、90°から130°であり、
 前記積層フィルムの120℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
[42]
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、[41]に記載のプロセス用離型フィルム。
[43]
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、[41]又は[42]に記載のプロセス用離型フィルム。
[44]
 離型層3Aと、耐熱樹脂層3Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層3Aの水に対する接触角が、90°から130°であり、
 前記積層フィルムの170℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
[45]
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、[44]に記載のプロセス用離型フィルム。
[46]
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下である、[44]又は[45]に記載のプロセス用離型フィルム。
[47]
 前記耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、[41]から[46]のいずれか一項に記載のプロセス用離型フィルム。
[48]
 前記耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、[47]に記載のプロセス用離型フィルム。
[49]
 前記耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下である、[41]から[46]のいずれか一項に記載のプロセス用離型フィルム。
[50]
 前記耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が5%以下である、[49]に記載のプロセス用離型フィルム。
[51]
 前記離型層3Aが、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、[41]から[50]のいずれか一項に記載のプロセス用離型フィルム。
[52]
 前記耐熱樹脂層3Bが、延伸フィルムを含んでなる、[41]から[51]のいずれか一項に記載のプロセス用離型フィルム。
[53]
 前記延伸フィルムが、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる、[52]に記載のプロセス用離型フィルム。
[54]
 前記耐熱樹脂層3BのJISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量20J/g以上、100J/g以下である、[41]から53]のいずれか一項に記載のプロセス用離型フィルム。
[55]
 前記積層フィルムが、更に離型層3A’を有し、かつ、該離型層3Aと、前記耐熱樹脂層3Bと、前記離型層3A’と、をこの順で含み、
 該離型層3A’の水に対する接触角が、90°から130°である、[41]から[54]のいずれか一項に記載のプロセス用離型フィルム。
[56]
 前記離型層3A及び前記離型層3A’の少なくとも一方が、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、[55]に記載のプロセス用離型フィルム。
[57]
 熱硬化性樹脂による封止プロセスに用いる、[41]から[56]のいずれか一項に記載のプロセス用離型フィルム
[58]
 半導体封止プロセスに用いる、[41]から[57]のいずれか一項に記載のプロセス用離型フィルム。
[59]
 繊維強化プラスチック成形プロセス、またはプラスチックレンズ成形プロセスに用いる、[41]から[57]のいずれか一項に記載のプロセス用離型フィルム。
[60]
 樹脂封止半導体の製造方法であって、
 成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
 前記成形金型内面に、[41]から[56]のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層3Aが前記半導体装置と対向するように配置する工程と、
 前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
 を有する、上記樹脂封止半導体の製造方法。
[61]
 樹脂封止半導体の製造方法であって、
 成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
 前記成形金型内面に、[55]又は[56]に記載の半導体封止プロセス用離型フィルムを、前記離型層3A’が前記半導体装置と対向するように配置する工程と、
 前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
 を有する、上記樹脂封止半導体の製造方法。
 また、本願第4発明及びその各態様は、下記[62]から[86]に記載のとおりである。
[62]
 離型層4Aと、耐熱樹脂層4Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層4Aの水に対する接触角が、90°から130°であり、
 前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含み、
 前記積層フィルムの120℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
[63]
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、[62]に記載のプロセス用離型フィルム。
[64]
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、[62]又は[63]に記載のプロセス用離型フィルム。
[65]
 離型層4Aと、耐熱樹脂層4Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層4Aの水に対する接触角が、90°から130°であり、
 前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含み、
 前記積層フィルムの170℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
[66]
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、[65]に記載のプロセス用離型フィルム。
[67]
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下である、[65]又は[66]に記載のプロセス用離型フィルム。
[68]
 前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1と、接着剤を含有する接着層4B2とを含んでなる、[62]から[67]のいずれか一項に記載のプロセス用離型フィルム。
[69]
 前記耐熱樹脂層4Bが、高分子系帯電防止剤、及び接着剤を含有する層4B3を含んでなる、[62]から[67]のいずれか一項に記載のプロセス用離型フィルム。
[70]
 前記耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、[62]から[69]のいずれか一項に記載のプロセス用離型フィルム。
[71]
 前記耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、[70]に記載のプロセス用離型フィルム。
[72]
 前記耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下である、[62]から[69]のいずれか一項に記載のプロセス用離型フィルム。
[73]
 前記耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が5%以下である、[72]に記載のプロセス用離型フィルム。
[74]
 前記離型層4Aが、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、[62]から[73]のいずれか一項に記載のプロセス用離型フィルム。
[75]
 前記耐熱樹脂層4Bが、延伸フィルムを含んでなる、[62]から[74]のいずれか一項に記載のプロセス用離型フィルム。
[76]
 前記延伸フィルムが、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる、[75]に記載のプロセス用離型フィルム。
[77]
 前記耐熱樹脂層4BのJISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量20J/g以上、100J/g以下である、[62]から[76]のいずれか一項に記載のプロセス用離型フィルム。
[78]
 前記離型層4Aの表面固有抵抗値が1×1013Ω/□以下である、[62]から[77]のいずれか一項に記載のプロセス用離型フィルム。
[79]
 前記積層フィルムが、更に離型層4A’を有し、かつ、該離型層4Aと、前記耐熱樹脂層4Bと、前記離型層4A’と、をこの順で含み、
 該離型層4A’の水に対する接触角が、90°から130°である、[62]から[78]のいずれか一項に記載のプロセス用離型フィルム。
[80]
 前記離型層4A及び前記離型層4A’の少なくとも一方が、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、[79]に記載のプロセス用離型フィルム。
[81]
 前記離型層4A‘の表面固有抵抗値が1×1013Ω/□以下である、[79]または[80]に記載のプロセス用離型フィルム。
[82]
 熱硬化性樹脂による封止プロセスに用いる、[62]から[81]のいずれか一項に記載のプロセス用離型フィルム
[83]
 半導体封止プロセスに用いる、[62]から[82]のいずれか一項に記載のプロセス用離型フィルム。
[84]
 繊維強化プラスチック成形プロセス、またはプラスチックレンズ成形プロセスに用いる、[62]から[82]のいずれか一項に記載のプロセス用離型フィルム。
[85]
 樹脂封止半導体の製造方法であって、
 成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
 前記成形金型内面に、[62]から[83]のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層4Aが前記半導体装置と対向するように配置する工程と、
 前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
 を有する、上記樹脂封止半導体の製造方法。
[86]
 樹脂封止半導体の製造方法であって、
 成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
 前記成形金型内面に、[79]から[81]のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層4A’が前記半導体装置と対向するように配置する工程と、
 前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
 を有する、上記樹脂封止半導体の製造方法。
 なお、本願において「半導体装置」とは、半導体素子(チップ)をも含む概念である。
 本願第1発明のプロセス用離型フィルムは、従来技術では実現できなかった高いレベルの離型性、皺の抑制、及び金型追従性を兼ね備えるので、これを用いることで、半導体チップ等を樹脂封止等して得られる成形品を容易に離型できるとともに、皺や欠けなどの外観不良のない成形品を、高い生産性で製造することができる。
 本願第2発明のプロセス用離型フィルムは、従来技術では実現できなかった高いレベルの離型性、外観不良の抑制、及び金型追従性を兼ね備えるので、これを用いることで、半導体チップ等を樹脂封止等して得られる成形品を容易に離型できるとともに、皺や欠け、形状異常(異物付着等)などの外観不良のない成形品を、高い生産性で製造することができる。さらに封止樹脂が常温で固体の顆粒状であっても、静電気による離型フィルムへの封止樹脂の付着に起因するバリ等の成形不良を未然に抑止することができる。本願第2発明のプロセス用離型フィルムは、封止用樹脂として顆粒樹脂を採用する封止装置における使用に特に好適である。
 本願第3発明のプロセス用離型フィルムは、従来技術では実現できなかった高いレベルの離型性、皺の抑制、及び金型追従性を兼ね備えるので、これを用いることで、半導体チップ等を樹脂封止等して得られる成形品を容易に離型できるとともに、皺や欠けなどの外観不良のない成形品を、高い生産性で製造することができる。
 本願第4発明のプロセス用離型フィルムは、従来技術では実現できなかった高いレベルの離型性、外観不良の抑制、及び金型追従性を兼ね備えるので、これを用いることで、半導体チップ等を樹脂封止等して得られる成形品を容易に離型できるとともに、皺や欠け、形状異常(異物付着等)などの外観不良のない成形品を、高い生産性で製造することができる。本願第4発明のプロセス用離型フィルムは、封止用樹脂として顆粒樹脂を採用する封止装置における使用に特に好適である。
本発明のプロセス用離型フィルムの一例を示す模式図である。 本発明のプロセス用離型フィルムの他の例を示す模式図である。 本願第1発明、第3発明、及び第4発明のプロセス用離型フィルムを用いた樹脂封止半導体の製造方法の一例を示す模式図である。 本願第2発明のプロセス用離型フィルムを用いた樹脂封止半導体の製造方法の一例を示す模式図である。 本発明のプロセス用離型フィルムを用いた樹脂封止半導体の製造方法の一例を示す模式図である。 本発明のプロセス用離型フィルムを用いた樹脂封止半導体の製造方法の一例を示す模式図である。 図4Aおよび図4Bの樹脂封止半導体の製造方法で得られた樹脂封止半導体の一例を示す模式図である。
 プロセス用離型フィルム
 本願第1発明のプロセス用離型フィルムは、以下の4態様を含む。
(第1-1態様)
 離型層1Aと、耐熱樹脂層1Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層1Aの水に対する接触角が、90°から130°であり、
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、上記プロセス用離型フィルム。
(第1-2態様)
 離型層1Aと、耐熱樹脂層1Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層1Aの水に対する接触角が、90°から130°であり、
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、上記プロセス用離型フィルム。
(第1-3態様)
 離型層1Aと、耐熱樹脂層1Bと、離型層1A’と、をこの順で含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層1A、及び前記離型層1A’の水に対する接触角が、90°から130°であり、
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、上記プロセス用離型フィルム。
(第1-4態様)
 離型層1Aと、耐熱樹脂層1Bと、離型層1A’と、をこの順で含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層1A、及び前記離型層1A’の水に対する接触角が、90°から130°であり、
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、上記プロセス用離型フィルム。
 上記各態様から明らかな様に、本願第1発明のプロセス用離型フィルム(以下、単に「離型フィルム」ともいう)は、成形品や金型に対する離型性を有する離型層1A、及び所望により離型層1A’、並びに該離型層を支持する耐熱樹脂層1B、を含む積層フィルムである。
 本願第1発明のプロセス用離型フィルムは、成形金型の内部で半導体素子等を樹脂封止するときに、成形金型の内面に配置される。このとき、離型フィルムの離型層1A(離型層1A’が存在する場合には離型層1A’であってもよい)を、樹脂封止される半導体素子等(成形品)側に配置することが好ましい。本願第1発明の離型フィルムを配置することで、樹脂封止された半導体素子等を、金型から容易に離型することができる。
 離型層1Aの水に対する接触角は、90°から130°であり、この様な接触角を有することにより離型層1Aは濡れ性が低く、硬化した封止樹脂や金型表面に固着することなく、成形品を容易に離型することができる。
 離型層1Aの水に対する接触角は、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。
 前記の通り、離型層1A(場合によっては離型層1A’)は成形品側に配置されるので、樹脂封止工程における離型層1A(場合によっては離型層1A’)での皺の発生を抑制することが好ましい。発生した皺が成形品に転写されて、成形品の外観不良が生じる可能性が高いためである。
 本願第1発明においては、上記目的を達成するために、プロセス用離型フィルムを構成する積層フィルムとして、離型層1A(及び所望により離型層1A’)、並びに該離型層を支持する耐熱樹脂層1B、を含む積層フィルムであって、その横(TD)方向の熱寸法変化率が特定の値を示す積層フィルムを用いる。
 すなわち、離型層1A(及び所望により離型層1A’)、並びに該離型層を支持する耐熱樹脂層1B、を含む積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下である。さらに、前記積層フィルムは、TD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であってかつTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることがより好ましい。
 上記積層フィルムのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることにより、樹脂封止工程等における離型層の皺の発生を有効に抑制することができる。プロセス用離型フィルムを構成する積層フィルムとして横(TD)方向の熱寸法変化率が上記の特定の値を示すもの用いることで、離型層の皺の発生が抑制されるメカニズムは必ずしも明らかではないが、比較的熱膨張/収縮の小さい積層フィルムを用いることにより、プロセス時の加熱/冷却による離型層1A(又は離型層1A’)の熱膨張/収縮が抑制されることと関連があるものと推測される。
 本願第1発明のプロセス用離型フィルムを構成する積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が2.5%以下であることが好ましく、2.0%以下であることより好ましく、1.5%以下であることが更に好ましくい。一方、積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が-5.0%以上であることが好ましい。
 本願第1発明のプロセス用離型フィルムを構成する積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が3.5%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下であることが更に好ましくい。一方、積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が-5.0%以上であることが好ましい。
 耐熱樹脂層1Bとして、横(TD)方向の熱寸法変化率が上記の特定の値を示す樹脂層を用いることで、より効果的に離型層の皺の発生が抑制されるメカニズムは必ずしも明らかではないが、比較的熱膨張/収縮の小さい耐熱樹脂層1Bを用いることにより、プロセス時の加熱/冷却による離型層1A(又は離型層1A’)の熱膨張/収縮が抑制されることと関連があるものと推測される。
 離型層1A(及び所望により離型層1A’)、並びに該離型層を支持する耐熱樹脂層1B、を含む積層フィルムである本願第1発明のプロセス用離型フィルムは、そのTD方向(横方向)の熱寸法変化率とMD方向(フィルムの製造時の長手方向。以下、「縦方向」ともいう)の熱寸法変化率の和が特定の値以下であることが好ましい。
 すなわち、上記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和は、6%以下であることが好ましく、一方、前記積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が-5.0%以上であることが好ましい。
 離型層1A(及び所望により離型層1A’)、並びに耐熱樹脂層1B、を含む積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下であることにより、金型内面に装着された際の皺の発生を一層有効に抑制することができる。
 また、離型層1A(及び所望により離型層1A’)、並びに耐熱樹脂層1B、を含む積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和は、7%以下であることが好ましく、一方、前記積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が-5.0%以上であることが好ましい。
 上記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下であることにより、金型内面に装着された際の皺の発生を更に有効に抑制することができる。
 離型層1A
 本願第1発明のプロセス用離型フィルムを構成する離型層1Aは、水に対する接触角が、90°から130°であり、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。成形品の離型性に優れること、入手の容易さなどから、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含むことが好ましい。
 離型層1Aに用いることができるフッ素樹脂は、テトラフルオロエチレンに由来する構成単位を含む樹脂であってもよい。テトラフルオロエチレンの単独重合体であってもよいが、他のオレフィンとの共重合体であってもよい。他のオレフィンの例には、エチレンが含まれる。モノマー構成単位としてテトラフルオロエチレンとエチレンとを含む共重合体は好ましい一例であり、この様な共重合体においては、テトラフルオロエチレンに由来する構成単位の割合が55~100質量%であり、エチレンに由来する構成単位の割合が0~45質量%であることが好ましい。
 離型層1Aに用いることができる4-メチル-1-ペンテン(共)重合体は、4-メチル-1-ペンテンの単独重合体であってもよく、また4-メチル-1-ペンテンと、それ以外の炭素原子数2~20のオレフィン(以下「炭素原子数2~20のオレフィン」という)との共重合体であってもよい。
 4-メチル-1-ペンテンと、炭素原子数2~20のオレフィンとの共重合体の場合、4-メチル-1-ペンテンと共重合される炭素原子数2~20のオレフィンは、4-メ
チル-1-ペンテンに可とう性を付与し得る。炭素原子数2~20のオレフィンの例には、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセン等が含まれる。これらのオレフィンは、1種のみを用いてもよいし、2種以上を組み合せて用いてもよい。
 4-メチル-1-ペンテンと、炭素原子数2~20のオレフィンとの共重合体の場合、4-メチル-1-ペンテンに由来する構成単位の割合が96~99質量%であり、それ以外の炭素原子数2~20のオレフィンに由来する構成単位の割合が1~4質量%であることが好ましい。炭素原子数2~20のオレフィン由来の構成単位の含有量が少なくすることで、共重合体を硬く、すなわち貯蔵弾性率E’が高くすることができ、封止工程等における皺が発生の抑制に有利である。一方、炭素原子数2~20のオレフィン由来の構成単位の含有量が多くすることで、共重合体を軟らかく、すなわち貯蔵弾性率E’を低くすることができ、金型追従性を向上させるのに有利である。
 4-メチル-1-ペンテン(共)重合体は、当業者において公知の方法で製造されうる。例えば、チーグラ・ナッタ触媒、メタロセン系触媒等の公知の触媒を用いた方法により製造されうる。4-メチル-1-ペンテン(共)重合体は、結晶性の高い(共)重合体であることが好ましい。結晶性の共重合体としては、アイソタクチック構造を有する共重合体、シンジオタクチック構造を有する共重合体のいずれであってもよいが、特にアイソタクチック構造を有する共重合体であることが物性の点からも好ましく、また入手も容易である。さらに、4-メチル-1-ペンテン(共)重合体は、フィルム状に成形でき、金型成形時の温度や圧力等に耐える強度を有していれば、立体規則性や分子量も、特に制限されない。4-メチル-1-ペンテン共重合体は、例えば、三井化学株式会社製TPX(登録商標)等、市販の共重合体であってもよい。
 離型層1Aに用いることができるポリスチレン系樹脂には、スチレンの単独重合体及び共重合体が包含され、その重合体中に含まれるスチレン由来の構造単位は少なくとも60重量%以上であることが好ましく、より好ましくは80重量%以上である。
 ポリスチレン系樹脂は、アイソタクチックポリスチレンであってもシンジオタクチックポリスチレンであってもよいが、透明性、入手の容易さなどの観点からはアイソタクチックポリスチレンが好ましく、離型性、耐熱性などの観点からは、シンジオタクチックポリスチレンが好ましい。ポリスチレンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 離型層1Aは、成形時の金型の温度(典型的には120~180℃)に絶え得る耐熱性を有することが好ましい。かかる観点から、離型層1Aとしては、結晶成分を有する結晶性樹脂を含むことが好ましく、当該結晶性樹脂の融点は190℃以上であることが好ましく、200℃以上300℃以下がより好ましい。
 離型層1Aに結晶性をもたらすため、例えばフッ素樹脂においてはテトラフルオロエチレンから導かれる構成単位を少なくとも含むことが好ましく、4-メチル-1-ペンテン(共)重合体においては4-メチル-1-ペンテンから導かれる構成単位を少なくとも含むことが好ましく、ポリスチレン系樹脂においてはシンジオタクチックポリスチレンを少なくとも含むことが好ましい。離型層1Aを構成する樹脂に結晶成分が含まれることにより、樹脂封止工程等において皺が発生し難く、皺が成形品に転写されて外観不良を生じることを抑制するのに好適である。
 離型層1Aを構成する上記結晶性成分を含む樹脂は、JISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が15J/g以上、60J/g以下であることが好ましく、20J/g以上、50J/g以下であることがより好ましい。15J/g以上であると、樹脂封止工程等での熱プレス成形に耐え得る耐熱性及び離型性をより効果的に発現することが可能であることに加え、寸法変化率も抑制することができるため、皺の発生も防止することができる。一方、前記結晶融解熱量が60J/g以下であると、離型層1Aが適切な硬度となるため、樹脂封止工程等においてフィルムの金型への十分な追随性を得ることができるため、フィルムの破損のおそれもない。
 離型層1Aは、フッ素樹脂、4-メチル-1-ペンテン共重合体、及び/又はポリスチレン系樹脂の他に、さらに他の樹脂を含んでもよい。この場合、他の樹脂の硬度が比較的高いことが好ましい。他の樹脂の例には、ポリアミド-6、ポリアミド-66、ポリブチレンテレフタレート、ポリエチレンテレフタレートが含まれる。このように、離型層1Aが、例えば柔らかい樹脂を多く含む場合(例えば、4-メチル-1-ペンテン共重合体において炭素原子数2~20のオレフィンを多く含む場合)でも、硬度の比較的高い樹脂をさらに含むことで、離型層1Aを硬くすることができ、封止工程等における皺が発生の抑制に有利である。
 これらの他の樹脂の含有量は、離型層1Aを構成する樹脂成分に対して例えば3~30質量%であることが好ましい。他の樹脂の含有量を3質量以上とすることで、添加による効果を実質的なものとすることができ、30質量%以下とすることで、金型や成形品に対する離型性を維持することができる。
 また離型層1Aは、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及び/又はポリスチレン系樹脂に加えて、本願第1発明の目的を損なわない範囲で、耐熱安定剤、耐候安定剤、発錆防止剤、耐銅害安定剤、帯電防止剤等、フィルム用樹脂に一般的に配合される公知の添加剤を含んでもよい。これらの添加剤の含有量は、フッ素樹脂、4-メチル-1-ペンテン共重合体、及び/又はポリスチレン系樹脂100重量部に対して、例えば0.0001~10重量部とすることができる。
 離型層1Aの厚みは、成形品に対する離型性が十分であれば、特に制限はないが、通常1~50μmであり、好ましくは5~30μmである。
 離型層1Aの表面は、必要に応じて凹凸形状を有していてもよく、それにより離型性を向
上させることができる。離型層1Aの表面に凹凸を付与する方法は、特に制限はないが、エ
ンボス加工等の一般的な方法が採用できる。
 離型層1A’
 本願第1発明のプロセス用離型フィルムは、離型層1A及び耐熱樹脂層1Bに加えて、更に離型層1A’を有していてもよい。すなわち、本願第1発明のプロセス用離型フィルムは、離型層1Aと、耐熱樹脂層1Bと、離型層1A’とをこの順で含む積層フィルムであるプロセス用離型フィルムであってもよい。
 本願第1発明のプロセス用離型フィルムを構成してもよい離型層1A’の水に対する接触角は、90°から130°であり、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。そして、離型層1A’の好ましい材質、構成、物性等は、上記において離型層1Aについて説明したものと同様である。
 プロセス用離型フィルムが、離型層1Aと、耐熱樹脂層1Bと、離型層1A’とをこの順で含む積層フィルムである場合の離型層1Aと離型層1A’とは同一の構成の層であってもよいし、異なる構成の層であってもよい。
 反りの防止や、いずれの面も同様の離型性を有することによる取り扱いの容易さ等の観点からは、離型層1Aと離型層1A’とは同一または略同一の構成であることが好ましく、離型層1Aと離型層1A’とを使用するプロセスとの関係でそれぞれ最適に設計する観点、例えば、離型層1Aを金型からの離型性に優れたものとし、離型層1A’を成形物からの剥離性に優れたものとする等の観点からは、離型層1Aと離型層1A’とを異なる構成のものとすることが好ましい。
 離型層1Aと離型層1A’とを異なる構成のものとする場合には、離型層1Aと離型層1A’とを同一の材料であって厚み等の構成が異なるものとしてもよいし、材料もそれ以外の構成も異なるものとしてもよい。
 耐熱樹脂層1B
 本願第1発明のプロセス用離型フィルムを構成する耐熱樹脂層1Bは、離型層1A(及び場合により離型層1A’)を支持し、かつ金型温度等による皺発生を抑制する機能を有する。
 本願第1発明のプロセス用離型フィルムにおいては、耐熱樹脂層1Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層1Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることが好ましい。さらに、耐熱樹脂層1Bは、その横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であってかつ横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることがより好ましい。
 耐熱樹脂層1Bには、無延伸フィルムも含め任意の樹脂層を用いることができるが、延伸フィルムを含んでなることが特に好ましい。
 延伸フィルムは、製造のプロセスにおける延伸の影響で、熱膨張率が低いか又は負となる傾向があり、横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層1Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であるという特性を実現することが比較的容易であるので、耐熱樹脂層1Bとして好適に使用することができる。
 耐熱樹脂層1Bの横(TD)方向の23℃から120℃までの熱寸法変化率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが更に好ましく、一方、-10%以上であることが好ましい。
 耐熱樹脂層1Bの横(TD)方向の23℃から170℃までの熱寸法変化率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが更に好ましく、一方、-10%以上であることが好ましい。
 上記延伸フィルムは、一軸延伸フィルムであってもよく、二軸延伸フィルムであってもよい。一軸延伸フィルムである場合には、縦延伸、横延伸のいずれであっても良いが、少なくとも横(TD)方向に延伸が行われたものであることが望ましい。
 上記延伸フィルムを得るための方法、装置にも特に限定は無く、当業界において公知の方法で延伸を行えばよい。例えば、加熱ロールやテンター式延伸機で延伸することができる。
 上記延伸フィルムとしては、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる延伸フィルムを使用することが好ましい。これらの延伸フィルムは、延伸により、横(TD)方向の熱膨張率を低下させ、又は負とすることが比較的容易であり、機械的物性が本願第1発明の用途に適したものであり、また低コストで入手が比較的容易であるため、耐熱樹脂層1Bにおける延伸フィルムとして特に好適である。
 延伸ポリエステルフィルムとしては、延伸ポリエチレンテレフタレート(PET)フィルム、延伸ポリブチレンテレフタレート(PBT)フィルムが好ましく、二軸延伸ポリエチレンテレフタレート(PET)フィルムが特に好ましい。
 延伸ポリアミドフィルムを構成するポリアミドには特に限定は無いが、ポリアミド-6、ポリアミド-66等を好ましく用いることができる。
 延伸ポリプロピレンフィルムとしては、一軸延伸ポリプロピレンフィルム、二軸延伸ポリプロピレンフィルム等を好ましく用いることができる。
 延伸倍率には特に限定はなく、熱寸法変化率を適切に制御し、好適な機械的性質を実現するために適切な値を適宜設定すれば良いが、例えば延伸ポリエステルフィルムの場合は、縦方向、横方向ともに2.7~8.0倍の範囲であることが好ましく、延伸ポリアミドフィルムの場合は、縦方向、横方向ともに2.7~5.0倍の範囲であることが好ましく、延伸ポリプロピレンフィルムの場合は、二軸延伸ポリプロピレンフィルムの場合は、縦方向、横方向ともに5.0~10.0倍の範囲であることが好ましく、一軸延伸ポリプロピレンフィルムの場合は、縦方向に1.5~10.0倍の範囲であることが好ましい。
 耐熱樹脂層1Bは、フィルムの強度や、その熱寸法変化率を適切な範囲に制御する観点から、成形時の金型の温度(典型的には120~180℃)に絶え得る耐熱性を有することが好ましい。かかる観点から、耐熱樹脂層1Bは、結晶成分を有する結晶性樹脂を含むことが好ましく、当該結晶性樹脂の融点は125℃以上であることが好ましく、融点が155℃以上300℃以下であることがより好ましく、185以上210℃以下であることが更に好ましく、185以上205℃以下であることが特に好ましい。
 上述の1様に、耐熱樹脂層1Bは結晶成分を有する結晶性樹脂を含むことが好ましい。耐熱樹脂層1Bに含有させる結晶性樹脂として、例えばポリエステル樹脂、ポリアミド樹脂、ポリプロピレン樹脂等の結晶性樹脂をその一部または全部に用いることができる。具体的にはポリエステル樹脂においてはポリエチレンテレフタレートまたはポリブチレンテレフタレート、ポリアミド樹脂においてはポリアミド6やポリアミド66、ポリプロピレン樹脂においてはアイソタクチックポリプロピレンを用いることが好ましい。
 耐熱樹脂層1Bに前記結晶性樹脂の結晶成分を含ませることにより、樹脂封止工程等において皺が発生し難く、皺が成形品に転写されて外観不良を生じることを抑制するのにより有利となる。
 耐熱樹脂層1Bを構成する樹脂は、JISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が20J/g以上、100J/g以下であることが好ましく、25J/g以上、65J/g以下であることがより好ましく、25J/g以上、55J/g以下であることがより好ましく、28J/g以上、50J/g以下であることがより好ましく、28J/g以上、40J/g以下であることがより好ましく、28J/g以上、35J/g以下であることがさらに好ましい。20J/g以上であると、樹脂封止工程等での熱プレス成形に耐え得る耐熱性及び離型性を効果的に発現させることができ、また寸法変化率も僅少に抑制することができるため、皺の発生も防止することができる。一方、前記結晶融解熱量が100J/g以下であることにより、耐熱樹脂層1Bに適度な硬度を付与することができるため樹脂封止工程等においてフィルムの十分な金型への追随性が確保することができることに加えフィルムが破損しやすくなるおそれもない。なお、本実施形態において、結晶融解熱量とは、JISK7221に準じて示差走査熱量測定(DSC)による測定での第1回昇温工程で得られた縦軸の熱量(J/g)と横軸の温度(℃)との関係を示すチャート図において、120℃以上でピークを有するピーク面積の和によって求められる数値をいう。
 耐熱樹脂層1Bの結晶融解熱量は、フィルム製造時の加熱、冷却の条件や、延伸の条件を適宜設定することで調節することができる。
 耐熱樹脂層1Bの厚みは、フィルム強度を確保できれば、特に制限はないが、通常1~1
00μm、好ましくは5~50μmである。
 それ以外の層
 本願第1発明のプロセス用離型フィルムは、本願第1発明の目的に反しない限りにおいて、離型層1A、耐熱樹脂層1B及び離型層1A’以外の層を有していてもよい。例えば、離型層1A(又は離型層1A’)と耐熱樹脂層1Bとの間に、必要に応じて接着層を有してもよい。接着層に用いる材料は、離型層1Aと耐熱樹脂層1Bとを強固に接着でき、樹脂封止工程や離型工程においても剥離しないものであれば、特に制限されない。
 例えば、離型層1A(又は離型層1A’)が4-メチル-1-ペンテン共重合体を含む場合は、接着層は、不飽和カルボン酸等によりグラフト変性された変性4-メチル-1-ペンテン系共重合体樹脂、4-メチル-1-ペンテン系共重合体とα-オレフィン系共重合体とからなるオレフィン系接着樹脂等であることが好ましい。離型層1A(又は離型層1A’)がフッ素樹脂を含む場合は、接着層は、ポリエステル系、アクリル系、フッ素ゴム系等の粘着剤であることが好ましい。接着層の厚みは、離型層1A(又は離型層1A’)と耐熱樹脂層1Bとの接着性を向上できれば、特に制限はないが、例えば0.5~10μmである。
 本願第1発明のプロセス用離型フィルムの総厚みには特に制限は無いが、例えば10~300μmであることが好ましく、30~150μmであることがより好ましい。離型フィルムの総厚みが上記範囲にあると、巻物として使用する際のハンドリング性が良好であるとともに、フィルムの廃棄量が少ないため好ましい。
 以下、本願第1発明のプロセス用離型フィルムの好ましい実施形態について更に具体的に説明する。図1は、3層構造のプロセス用離型フィルムの一例を示す模式図である。図1に示されるように、離型フィルム10は、耐熱樹脂層12と、その片面に接着層14を介して形成された離型層16とを有する。
 離型層16は前述の離型層1Aであり、耐熱樹脂層12は前述の耐熱樹脂層1Bであり、接着層14は前述の接着層である。離型層16は、封止プロセスにおいて封止樹脂と接する側に配置されることが好ましく;耐熱樹脂層12は、封止プロセスにおいて金型の内面と接する側に配置されることが好ましい。
 図2は、5層構造のプロセス用離型フィルムの一例を示す模式図である。図1と同一の機能を有する部材には同一の符号を付する。図2に示されるように、離型フィルム20は、耐熱性樹脂層12と、その両面に接着層14を介して形成された離型層16Aおよび離型層16Bとを有する。離型層16Aは前述の離型層1Aであり、耐熱樹脂層12は前述の耐熱樹脂層1Bであり、離型層16Bは前述の離型層1A’であり、接着層14はそれぞれ前述の接着層である。
 離型層16Aおよび16Bの組成は、互いに同一でも異なってもよい。離型層16Aおよび16Bの厚みも、互いに同一でも異なってもよい。ただし、離型層16Aおよび16Bが互いに同一の組成および厚みを有すると、対称な構造となり、離型フィルム自体の反りが生じ難くなるため好ましい。特に、本願第1発明の離型フィルムには、封止プロセスにおける加熱により応力が生じることがあるので、反りを抑制することが好ましい。このように、離型層16Aおよび16Bが、耐熱樹脂層12の両面に形成されていると、成形品および金型内面のいずれおいても、良好な離型性が得られるため好ましい。
 プロセス用離型フィルムの製造方法
 本願第1発明のプロセス用離型フィルムは、任意の方法で製造されうる。例えば、1)離型層1Aと耐熱樹脂層1Bを共押出成形して積層することにより、プロセス用離型フィルムを製造する方法(共押出し形成法)、2)耐熱樹脂層1Bとなるフィルム上に、離型層1Aや接着層となる樹脂の溶融樹脂を塗布・乾燥したり、または離型層1Aや接着層となる樹脂を溶剤に溶解させた樹脂溶液を塗布・乾燥したりして、プロセス用離型フィルムを製造する方法(塗布法)、3)予め離型層1Aとなるフィルムと、耐熱樹脂層1Bとなるフィルムとを製造しておき、これらのフィルムを積層(ラミネート)することにより、プロセス用離型フィルムを製造する方法(ラミネート法)などがある。
 3)の方法において、各樹脂フィルムを積層する方法としては、公知の種々のラミネート方法が採用でき、例えば押出ラミネート法、ドライラミネート法、熱ラミネート法等が挙げられる。
 ドライラミネート法では、接着剤を用いて各樹脂フィルムを積層する。接着剤としては、ドライラミネート用の接着剤として公知のものを使用できる。例えばポリ酢酸ビニル系接着剤;アクリル酸エステル(アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルエステル等)の単独重合体もしくは共重合体、またはアクリル酸エステルと他の単量体(メタクリル酸メチル、アクリロニトリル、スチレン等)との共重合体等からなるポリアクリル酸エステル系接着剤;シアノアクリレ-ト系接着剤;エチレンと他の単量体(酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等)との共重合体等からなるエチレン共重合体系接着剤;セルロ-ス系接着剤;ポリエステル系接着剤;ポリアミド系接着剤;ポリイミド系接着剤;尿素樹脂またはメラミン樹脂等からなるアミノ樹脂系接着剤;フェノ-ル樹脂系接着剤;エポキシ系接着剤;ポリオール(ポリエーテルポリオール、ポリエステルポリオール等)とイソシアネートおよび/またはイソシアヌレートと架橋させるポリウレタン系接着剤;反応型(メタ)アクリル系接着剤;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等からなるゴム系接着剤;シリコーン系接着剤;アルカリ金属シリケ-ト、低融点ガラス等からなる無機系接着剤;その他等の接着剤を使用できる。3)の方法で積層する樹脂フィルムは、市販のものを用いてもよく、公
知の製造方法により製造したものを用いてもよい。樹脂フィルムには、コロナ処理、大気圧プラズマ処理、真空プラズマ処理、プライマー塗工処理等の表面処理が施されてもよい。樹脂フィルムの製造方法としては、特に限定されず、公知の製造方法を利用できる。
 1)共押出し成形法は、離型層1Aとなる樹脂層と耐熱樹脂層1Bとなる樹脂層との間に、異物が噛み込む等による欠陥や、離型フィルムの反りが生じ難い点で好ましい。3)ラミネート法は、耐熱樹脂層1Bに延伸フィルムを用いる場合に好適な製造方法である。この場合は、必要に応じてフィルム同士の界面に適切な接着層を形成することが好ましい。フィルム同士の接着性を高める上で、フィルム同士の界面に、必要に応じてコロナ放電処理等の表面処理を施してもよい。
 プロセス用離型フィルムは、必要に応じて1軸または2軸延伸されていてもよく、それによりフィルムの膜強度を高めることができる。
 上記2)塗布法における塗布手段は、特に限定されないが、例えばロールコータ、ダイコータ、スプレーコータ等の各種コータが用いられる。溶融押出手段は、特に限定されないが、例えばT型ダイやインフレーション型ダイを有する押出機などが用いられる。
 製造プロセス
 本願第1発明のプロセス用離型フィルムは、金型内に半導体チップ等を配置して樹脂を注入成形する際に、半導体チップ等と金型内面との間に配置して使用することができる。本願第1発明のプロセス用離型フィルムを用いることで、金型からの離型不良、バリの発生等を効果的に防止することができる。
 上記製造プロセスに用いる樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよいが、当該技術分野においては熱硬化性樹脂が広く用いられており、特にエポキシ系の熱硬化性樹脂を用いることが好ましい。
 上記製造プロセスとしては、半導体チップの封止が最も代表的であるが、これに限定されるものではなく、本願第1発明は、繊維強化プラスチック成形プロセス、プラスチックレンズ成形プロセス等にも適用することができる。
 図3-1、図4Aおよび図4Bは、本願第1発明の離型フィルムを用いた樹脂封止半導体の製造方法の一例を示す模式図である。
 図3-1aに示すように、本願第1発明の離型フィルム1を、ロール状の巻物からロール1-2およびロール1-3により、成形金型2内に供給する。次いで、離型フィルム1を上型2の内面に配置する。必要に応じて、上型2内面を真空引きして、離型フィルム1を上型2内面に密着させてもよい。モールディング成形装置の下金型5に、基板上に配置した半導体チップ6が配置されており、その半導体チップ6上に封止樹脂を配するか、又は半導体チップ6を覆うように液状封止樹脂を注入することで、排気吸引され密着された離型フィルム1を配置した上金型2と下金5型との間に封止樹脂4が収容される。次に図3-1bに示すように、上金型2と下金型5とを、本願第1発明の離型フィルム1を介して型閉じし、封止樹脂4を硬化させる。
 型閉め硬化により、図3-1cに示すように封止樹脂4 が金型内に流動化し、封止樹脂4 が空間部に流入し半導体チップ6の側面周囲を囲むようにして充填され、封止された半導体チップ6を上金型2と下金型5とが型開きして取り出す。型開きし、成形品を取り出した後、離型フィルム1を複数回繰り返して利用するか、新たな離型フィルムを供給し、次の、樹脂モールディング成形に付される。
 本願第1発明の離型フィルムを上金型に密着させ、金型と封止樹脂との間に介在させ、樹脂モ
ールドすることにより金型への樹脂の付着を防ぎ、金型の樹脂モールド面を汚さず、かつ
成形品を容易に離型させることができる。
 なお、離型フィルムは一回の樹脂モールド操作ごとに新たに供給して樹脂モールドする
こともできるし複数回の樹脂モールド操作ごとに新たに供給して樹脂モールドすることも
できる。
 封止樹脂としては、液状樹脂であっても、常温で固体状の樹脂であってもよいが、樹脂封止時液状となるものなどの封止材を適宜採用できる。封止樹脂材料として、具体的には、主としてエポキシ系(ビフェニル型エポキシ樹脂、ビスフェノールエポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂など)が用いられ、エポキシ樹脂以外の封止樹脂として、ポリイミド系樹脂(ビスマレイミド系)、シリコーン系樹脂(熱硬化付加型)など封止樹脂として通常使用されているものを用いることができる。また、樹脂封止条件としては、使用する封止樹脂により異なるが、例えば硬化温度120℃~180℃、成形圧力10~50kg/cm、硬化時間1~60分の範囲で適宜設定することができる。
 離型フィルム1を成形金型8の内面に配置する工程と、半導体チップ6を成形金型8内に配置する工程の前後は、特に限定されず、同時に行ってもよいし、半導体チップ6を配置した後、離型フィルム1を配置してもよいし、離型フィルム1を配置した後、半導体チップ6を配置してもよい。
 このように、離型フィルム1は、離型性の高い離型層1A(及び所望により離型層1A’)を有するため、半導体パッケージ4-2を容易に離型することができる。また、離型フィルム1は、適度な柔軟性を有するので、金型形状に対する追従性に優れながらも、成形金型8の熱によって皺になり難い。このため、封止された半導体パッケージ4-2の樹脂封止面に皺が転写されたり、樹脂が充填されない部分(樹脂欠け)が生じたりすることなく、外観の良好な封止された半導体パッケージ4-2を得ることができる。
 また、図3-1で示したような、固体の封止樹脂材料4を加圧加熱する圧縮成型法に限らず、後述の様に流動状態の封止樹脂材料を注入するトランスファーモールド法を採用してもよい。
 図4Aおよび図4Bは、本願第1発明の離型フィルムを用いた樹脂封止半導体の製造方法の一例であるトランスファーモールド法を示す模式図である。
 図4Aに示されるように、本願第1発明の離型フィルム22を、ロール状の巻物からロール24およびロール26により、成形金型28内に供給する(工程a)。次いで、離型フィルム22を上型30の内面30Aに配置する(工程b)。必要に応じて、上型内面30Aを真空引きして、離型フィルム22を上型内面30Aに密着させてもよい。次いで、成形金型28内に、樹脂封止すべき半導体チップ34(基板34Aに固定された半導体チップ34)を配置するとともに、封止樹脂材料36をセットし(工程c)、型締めする(工程d)。
 次いで、図4Bに示されるように、所定の加熱および加圧条件下、成形金型28内に封止樹脂材料36を注入する(工程e)。このときの成形金型28の温度(成形温度)は、例えば165~185℃であり、成形圧力は、例えば7~12MPaであり、成形時間は、例えば90秒程度である。そして、一定時間保持した後、上型30と下型32を開き、樹脂封止された半導体パッケージ40や離型フィルム22、を同時にまたは順次離型する(工程f)。
 そして、図5に示されるように、得られた半導体パッケージ40のうち、余分な樹脂部分42を除去することで、所望の半導体パッケージ44を得ることができる。離型フィルム22は、そのまま他の半導体チップの樹脂封止に使用してもよいが、成形が1回終了するごとにロールを操作してフィルムを送り、新たに離型フィルム22を成形金型28に供給することが好ましい。
 離型フィルム22を成形金型28の内面に配置する工程と、半導体チップ34を成形金型28内に配置する工程の前後は、特に限定されず、同時に行ってもよいし、半導体チップ34を配置した後、離型フィルム22を配置してもよいし、離型フィルム22を配置した後、半導体チップ34を配置してもよい。
 このように、離型フィルム22は、離型性の高い離型層1A(及び所望により離型層1A’)を有するため、半導体パッケージ40を容易に離型することができる。また、離型フィルム22は、適度な柔軟性を有するので、金型形状に対する追従性に優れながらも、成形金型28の熱によって皺になり難い。このため、半導体パッケージ40の樹脂封止面に皺が転写されたり、樹脂が充填されない部分(樹脂欠け)が生じたりすることなく、外観の良好な半導体パッケージ40を得ることができる。
 本願第1発明の離型フィルムは、半導体素子を樹脂封止する工程に限らず、成型金型を用いて
各種成形品を成形および離型する工程、例えば繊維強化プラスチック成形および離型工程、プラスチックレンズ成形および離型工程等においても好ましく使用できる。
 プロセス用離型フィルム
 本願第2発明のプロセス用離型フィルムは、以下の4態様を含む。
(第2-1態様)
 離型層2Aと、耐熱樹脂層2Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記積層フィルムの離型層2Aの水に対する接触角が、90°から130°であり、表面固有抵抗値が1×1013Ω/□以下であって、
 前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含み、
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、上記プロセス用離型フィルム。
(第2-2態様)
 離型層2Aと、耐熱樹脂層2Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記積層フィルムの離型層2Aの水に対する接触角が、90°から130°であり、表面固有抵抗値が1×1013Ω/□以下であって、
 前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含み、
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、上記プロセス用離型フィルム。
(第2-3態様)
 離型層2Aと、耐熱樹脂層2Bと、離型層2A’と、をこの順で含む積層フィルムであるプロセス用離型フィルムであって、
 前記積層フィルムの離型層2A、及び前記離型層2A’の水に対する接触角が、90°から130°であり、前記離型層2Aの表面固有抵抗値が1×1013Ω/□以下であって、
 前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含み、
 前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、上記プロセス用離型フィルム。
(第2-4態様)
 離型層2Aと、耐熱樹脂層2Bと、離型層2A’と、をこの順で含む積層フィルムであるプロセス用離型フィルムであって、
 前記積層フィルムの離型層2A、及び前記離型層2A’の水に対する接触角が、90°から130°であり、前記離型層2Aの表面固有抵抗値が1×1013Ω/□以下であって、
 前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含み、
 前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、上記プロセス用離型フィルム。
 上記各態様から明らかな様に、本願第2発明のプロセス用離型フィルム(以下、単に「離型フィルム」ともいう)は、成形品や金型に対する離型性を有する離型層2A、及び所望により離型層2A’、並びに該離型層を支持する耐熱樹脂層2B、を含む積層フィルムであって、該耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含むものである。
 本願第2発明のプロセス用離型フィルムは、成形金型の内部で半導体素子等を樹脂封止するときに、成形金型の内面に配置される。このとき、離型フィルムの離型層2A(離型層2A’が存在する場合には離型層2A’であってもよい)を、樹脂封止される半導体素子等(成形品)側に配置することが好ましい。本願第2発明の離型フィルムを配置することで、樹脂封止された半導体素子等を、金型から容易に離型することができる。
 離型層2Aの水に対する接触角は、90°から130°であり、この様な接触角を有することにより離型層2Aは濡れ性が低く、硬化した封止樹脂や金型表面に固着することなく、成形品を容易に離型することができる。
 離型層2Aの水に対する接触角は、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。
 また、離型層2Aの表面固有抵抗値が1×1013Ω/□以下であることにより、離型フィルムへの異物や封止樹脂等の付着を効果的に防止することができる。離型層2Aの表面固有抵抗値は好ましくは5×1012Ω/□以下、より好ましくは1×1012Ω/□以下、さらに好ましくは5×1011Ω/□以下である。
 前記の通り、離型層2A(場合によっては離型層2A’)は成形品側に配置されるので、成形品の外観の観点から、樹脂封止工程における離型層2A(場合によっては離型層2A’)での皺の発生を抑制することが好ましい。発生した皺が成形品に転写されて、成形品の外観不良が生じる可能性が高いためである。
 本願第2発明においては、上記目的を達成するために、プロセス用離型フィルムを構成する積層フィルムとして、離型層2A(及び所望により離型層2A’)、並びに該離型層を支持する耐熱樹脂層2B、を含む積層フィルムであって、その横(TD)方向の熱寸法変化率が特定の値を示す積層フィルムを用い、かつ耐熱樹脂層2Bとして高分子系帯電防止剤を含有する層2B1を含むものを用いる。ここで、離型層2A(及び所望により離型層2A’)、並びに該離型層を支持する耐熱樹脂層2B、を含む積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下である。
 横(TD)方向の熱寸法変化率が上記の特定の値を示す積層フィルムと、高分子系帯電防止剤を含有する層を含む耐熱樹脂層とを組み合わせることで、成形品の外観不良が極めて効果的に抑制されるメカニズムは必ずしも明らかではないが、積層フィルムの横(TD)方向の熱寸法変化率が上記の特定の値であることによる皺の発生の抑制と、高分子系帯電防止剤を含有する層を有することによる静電気の抑制及びプロセスへの粉体等の異物の取り込みの抑制とが、何らかの相乗効果を発揮しているものと推定される。すなわち、粉体等の異物が皺の起点となり得るところから、異物の取り込みを抑制することによって、皺の発生の抑制が一層効果的となる一方で、皺が異物の凝集点となり得るところ、皺の発生を抑制することによって、異物の凝集、成長が一層効果的に抑制されることが、従来技術では予測できなかった高いレベルでの成形品の外観不良の抑制と、何らかの関係があるものと推定される。
 上述のように、離型層2A(及び所望により離型層2A’)、並びに該離型層を支持する耐熱樹脂層2B、を含む積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下である。さらに、前記積層フィルムは、TD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であってかつTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることがより好ましい。
 上記積層フィルムのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることにより、樹脂封止工程等における離型層の皺の発生を有効に抑制することができる。プロセス用離型フィルムを構成する積層フィルムとして横(TD)方向の熱寸法変化率が上記の特定の値を示すもの用いることで、離型層の皺の発生が抑制されるメカニズムは必ずしも明らかではないが、比較的熱膨張/収縮の小さい積層フィルムを用いることにより、プロセス時の加熱/冷却による離型層2A(又は離型層2A’)の熱膨張/収縮が抑制されることと関連があるものと推測される。
 本願第2発明のプロセス用離型フィルムを構成する積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が2.5%以下であることが好ましく、2.0%以下であることより好ましく、1.5%以下であることが更に好ましくい。一方、積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が-5.0%以上であることが好ましい。
 本願第2発明のプロセス用離型フィルムを構成する積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が3.5%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下であることが更に好ましくい。一方、積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が-5.0%以上であることが好ましい。
 耐熱樹脂層2Bとして、横(TD)方向の熱寸法変化率が上記の特定の値を示す樹脂層を用いることで、より効果的に離型層の皺の発生が抑制されるメカニズムは必ずしも明らかではないが、比較的熱膨張/収縮の小さい耐熱樹脂層2Bを用いることにより、プロセス時の加熱/冷却による離型層2A(又は離型層2A’)の熱膨張/収縮が抑制されることと関連があるものと推測される。
 離型層2A(及び所望により離型層2A’)、並びに該離型層を支持する耐熱樹脂層2B、を含む積層フィルムである本願第2発明のプロセス用離型フィルムは、そのTD方向(横方向)の熱寸法変化率とMD方向(フィルムの製造時の長手方向。以下、「縦方向」ともいう)の熱寸法変化率の和が特定の値以下であることが好ましい。
 すなわち、上記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和は、6%以下であることが好ましく、一方、前記積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が-5.0%以上であることが好ましい。
 離型層2A(及び所望により離型層2A’)、並びに耐熱樹脂層2B、を含む積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下であることにより、金型内面に装着された際の皺の発生を一層有効に抑制することができる。
 また、離型層2A(及び所望により離型層2A’)、並びに耐熱樹脂層2B、を含む積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和は、7%以下であることが好ましく、一方、前記積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が-5.0%以上であることが好ましい。
 上記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下であることにより、金型内面に装着された際の皺の発生を更に有効に抑制することができる。
 離型層2A
 本願第2発明のプロセス用離型フィルムを構成する離型層2Aは、水に対する接触角が、90°から130°であり、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。また、離型層2Aの表面固有抵抗値は1×1013Ω/□以下であり、好ましくは5×1012Ω/□以下、より好ましくは1×1012Ω/□以下、さらに好ましくは5×1011Ω/□以下である。
 成形品の離型性に優れること、入手の容易さなどから、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含むことが好ましい。
 離型層2Aに用いることができるフッ素樹脂は、離型層1Aについて説明したものと同様である。
 また、離型層2Aに用いることができる4-メチル-1-ペンテン(共)重合体は、離型層1Aについて説明したものと同様である。
 さらに、離型層2Aに用いることができるポリスチレン系樹脂は、離型層1Aについて説明したものと同様である。
 離型層2Aは、成形時の金型の温度(典型的には120~180℃)に絶え得る耐熱性を有することが好ましい。かかる観点から、離型層2Aとしては、結晶成分を有する結晶性樹脂を含むことが好ましく、当該結晶性樹脂の融点は190℃以上であることが好ましく、200℃以上300℃以下がより好ましい。
 離型層2Aに結晶性をもたらすため、例えばフッ素樹脂においてはテトラフルオロエチレンから導かれる構成単位を少なくとも含むことが好ましく、4-メチル-1-ペンテン(共)重合体においては4-メチル-1-ペンテンから導かれる構成単位を少なくとも含むことが好ましく、ポリスチレン系樹脂においてはシンジオタクチックポリスチレンを少なくとも含むことが好ましい。離型層2Aを構成する樹脂に結晶成分が含まれることにより、樹脂封止工程等において皺が発生し難く、皺が成形品に転写されて外観不良を生じることを抑制するのに好適である。
 離型層2Aを構成する上記結晶性成分を含む樹脂は、JISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が15J/g以上、60J/g以下であることが好ましく、20J/g以上、50J/g以下であることがより好ましい。15J/g以上であると、樹脂封止工程等での熱プレス成形に耐え得る耐熱性及び離型性をより効果的に発現することが可能であることに加え、寸法変化率も抑制することができるため、皺の発生も防止することができる。一方、前記結晶融解熱量が60J/g以下であると、離型層2Aが適切な硬度となるため、樹脂封止工程等においてフィルムの金型への十分な追随性を得ることができるため、フィルムの破損のおそれもない。
 離型層2Aは、フッ素樹脂、4-メチル-1-ペンテン共重合体、及び/又はポリスチレン系樹脂の他に、さらに他の樹脂を含んでもよい。この場合の他の樹脂及びその含有量は、離型層1Aについて説明したものと同様である。
 また離型層2Aは、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及び/又はポリスチレン系樹脂に加えて、本願第2発明の目的を損なわない範囲で、耐熱安定剤、耐候安定剤、発錆防止剤、耐銅害安定剤、帯電防止剤等、フィルム用樹脂に一般的に配合される公知の添加剤を含んでもよい。これらの添加剤の含有量は、フッ素樹脂、4-メチル-1-ペンテン共重合体、及び/又はポリスチレン系樹脂100重量部に対して、例えば0.0001~10重量部とすることができる。
 離型層2Aの厚みは、成形品に対する離型性が十分であれば、特に制限はないが、通常1~50μmであり、好ましくは5~30μmである。
 離型層2Aの表面は、必要に応じて凹凸形状を有していてもよく、それにより離型性を向
上させることができる。離型層2Aの表面に凹凸を付与する方法は、特に制限はないが、エ
ンボス加工等の一般的な方法が採用できる。
 離型層2A’
 本願第2発明のプロセス用離型フィルムは、離型層2A及び耐熱樹脂層2Bに加えて、更に離型層2A’を有していてもよい。すなわち、本願第2発明のプロセス用離型フィルムは、離型層2Aと、耐熱樹脂層2Bと、離型層2A’とをこの順で含む積層フィルムであるプロセス用離型フィルムであってもよい。
 本願第2発明のプロセス用離型フィルムを構成してもよい離型層2A’の水に対する接触角は、90°から130°であり、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。そして、離型層2A’の好ましい材質、構成、物性等は、上記において離型層2Aについて説明したものと同様である。
 また、離型層2A’の表面固有抵抗値は1×1013Ω/□以下であることが好ましく、より好ましくは5×1012Ω/□以下、更に好ましくは1×1012Ω/□以下、特に好ましくは5×1011Ω/□以下である。離型層2A’の表面固有抵抗値が上記範囲にあることで、プロセス時等における異物付着を一層効果的に抑制できる。
 プロセス用離型フィルムが、離型層2Aと、耐熱樹脂層2Bと、離型層2A’とをこの順で含む積層フィルムである場合の離型層2Aと離型層2A’とは同一の構成の層であってもよいし、異なる構成の層であってもよい。
 反りの防止や、いずれの面も同様の離型性を有することによる取り扱いの容易さ等の観点からは、離型層2Aと離型層2A’とは同一または略同一の構成であることが好ましく、離型層2Aと離型層2A’とを使用するプロセスとの関係でそれぞれ最適に設計する観点、例えば、離型層2Aを金型からの離型性に優れたものとし、離型層2A’を成形物からの剥離性に優れたものとする等の観点からは、離型層2Aと離型層2A’とを異なる構成のものとすることが好ましい。
 離型層2Aと離型層2A’とを異なる構成のものとする場合には、離型層2Aと離型層2A’とを同一の材料であって厚み等の構成が異なるものとしてもよいし、材料もそれ以外の構成も異なるものとしてもよい。
 耐熱樹脂層2B
 本願第2発明のプロセス用離型フィルムを構成する耐熱樹脂層2Bは、離型層2A(及び場合により離型層2A’)を支持し、かつ金型温度等による皺発生を抑制する機能を有する。
 本願第2発明のプロセス用離型フィルムを構成する耐熱樹脂層2Bは、高分子系帯電防止剤を含有する層2B1を含むものである。ここで、高分子系帯電防止剤を含有する層2B1を「含む」とは、耐熱樹脂層2Bの全体が高分子系帯電防止剤を含有する層2B1で構成されている場合、及び耐熱樹脂層2Bの一部が高分子系帯電防止剤を含有する層2B1で構成されている場合、の双方を包含する趣旨で用いられる。したがって、耐熱樹脂層2Bは、高分子系帯電防止剤を含有する層2B1以外の他の層をさらに含んでいてもよいし、含んでいなくともよい
 本願第2発明のプロセス用離型フィルムを構成する耐熱樹脂層2Bは、高分子系帯電防止剤を含有する層2B1を含むことにより離型層2A(及び場合により離型層2A’)の表面固有抵抗値が低く、帯電防止に寄与する。
 高分子系帯電防止剤を含有する層2B1が存在することにより、本願第2発明のプロセス用離型フィルムの表面においても帯電防止性が効果的に発現される。そのため、静電気による粉塵等の異物の付着を効果的に抑制できるとともに、例えば半導体パッケージの製造時に、半導体素子の一部がプロセス用離型フィルムに直接接するような場合でも、プロセス用離型フィルムの帯電-放電による半導体素子の破壊を効果的に抑制できる。
 耐熱樹脂層2Bの表面抵抗値は、帯電防止の観点からは低いほど好ましく、下限は特に限定されない。耐熱樹脂層2Bの表面抵抗値は、高分子系帯電防止剤の導電性能が高いほど、また高分子系帯電防止剤の含有量が多いほど、小さくなる傾向がある。
 高分子系帯電防止剤を含有する層2B1以外の他の層としては、例えば接着剤を含む接着層2B2を好ましく用いることができる。すなわち、耐熱樹脂層2Bは、高分子系帯電防止剤を含有する層2B1と、接着剤を含む接着層2B2とを含むものであってもよい。
 この場合において、耐熱樹脂層2Bは、高分子系帯電防止剤を含有する層2B1、及び接着剤を含む接着層2B2のみで構成されていてもよいし、高分子系帯電防止剤を含有する層2B1、及び接着剤を含む接着層2B2以外の他の層、例えば帯電防止剤及び接着剤を含まない熱可塑性樹脂の層、ガスバリア層等を更に含んでいても良い。
 本願第2発明のプロセス用離型フィルムにおいては、耐熱樹脂層2Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層2Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることが好ましい。さらに、耐熱樹脂層2Bは、その横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であってかつ横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることがより好ましい。
 耐熱樹脂層2Bには、無延伸フィルムも含め任意の樹脂層を用いることができるが、延伸フィルムを含んでなることが特に好ましい。
 延伸フィルムは、製造のプロセスにおける延伸の影響で、熱膨張率が低いか又は負となる傾向があり、横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層2Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であるという特性を実現することが比較的容易であるので、耐熱樹脂層2Bとして好適に使用することができる。
 耐熱樹脂層2Bの横(TD)方向の23℃から120℃までの熱寸法変化率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが更に好ましく、一方、-10%以上であることが好ましい。
 耐熱樹脂層2Bの横(TD)方向の23℃から170℃までの熱寸法変化率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが更に好ましく、一方、-10%以上であることが好ましい。
 上記延伸フィルムの詳細は、耐熱樹脂層1Bについて説明したものと同様である。
 耐熱樹脂層2Bは、フィルムの強度や、その熱寸法変化率を適切な範囲に制御する観点から、成形時の金型の温度(典型的には120~180℃)に絶え得る耐熱性を有することが好ましい。かかる観点から、耐熱樹脂層2Bは、結晶成分を有する結晶性樹脂を含むことが好ましく、当該結晶性樹脂の融点は125℃以上であることが好ましく、融点が155℃以上300℃以下であることがより好ましく、185以上210℃以下であることが更に好ましく、185以上205℃以下であることが特に好ましい。
 上述の様に、耐熱樹脂層2Bは結晶成分を有する結晶性樹脂を含むことが好ましい。耐熱樹脂層2Bに含有させる結晶性樹脂として、例えばポリエステル樹脂、ポリアミド樹脂、ポリプロピレン樹脂等の結晶性樹脂をその一部または全部に用いることができる。具体的にはポリエステル樹脂においてはポリエチレンテレフタレートまたはポリブチレンテレフタレート、ポリアミド樹脂においてはポリアミド6やポリアミド66、ポリプロピレン樹脂においてはアイソタクチックポリプロピレンを用いることが好ましい。
 耐熱樹脂層2Bに前記結晶性樹脂の結晶成分を含ませることにより、樹脂封止工程等において皺が発生し難く、皺が成形品に転写されて外観不良を生じることを抑制するのにより有利となる。
 耐熱樹脂層2Bを構成する樹脂は、JISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が20J/g以上、100J/g以下であることが好ましく、25J/g以上、65J/g以下であることがより好ましく、25J/g以上、55J/g以下であることがより好ましく、28J/g以上、50J/g以下であることがより好ましく、28J/g以上、40J/g以下であることがより好ましく、28J/g以上、35J/g以下であることがさらに好ましい。20J/g以上であると、樹脂封止工程等での熱プレス成形に耐え得る耐熱性及び離型性を効果的に発現させることができ、また寸法変化率も僅少に抑制することができるため、皺の発生も防止することができる。一方、前記結晶融解熱量が100J/g以下であることにより、耐熱樹脂層2Bに適度な硬度を付与することができるため樹脂封止工程等においてフィルムの十分な金型への追随性が確保することができることに加えフィルムが破損しやすくなるおそれもない。なお、本実施形態において、結晶融解熱量とは、JISK7221に準じて示差走査熱量測定(DSC)による測定での第1回昇温工程で得られた縦軸の熱量(J/g)と横軸の温度(℃)との関係を示すチャート図において、120℃以上でピークを有するピーク面積の和によって求められる数値をいう。
 耐熱樹脂層2Bの結晶融解熱量は、フィルム製造時の加熱、冷却の条件や、延伸の条件を適宜設定することで調節することができる。
 耐熱樹脂層2Bの厚みは、フィルム強度を確保できれば、特に制限はないが、通常1~1
00μm、好ましくは5~50μmである。
 高分子系帯電防止剤を含有する層2B1
 本願第2発明の積層体を構成する耐熱樹脂層2Bにおいて好適に用いられる、高分子系帯電防止剤を含有する層2B1における高分子系帯電防止剤としては、帯電防止機能を有することが知られている高分子化合物を用いることができる。たとえば、側基に4級アンモニウム塩基を有するカチオン系共重合体、ポリスチレンスルホン酸を含むアニオン系化合物、ポリアルキレンオキシド鎖を有する化合物(ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい。)、ポリエチレングリコールメタクリレート共重合体、ポリエーテルエステルアミド、ポリエーテルアミドイミド、ポリエーテルエステル、エチレンオキシド-エピクロルヒドリン共重合体等の非イオン系高分子、π共役系導電性高分子等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 側基に4級アンモニウム塩基を有する共重合体中の4級アンモニウム塩基は、誘電分極性と導電性による速やかな誘電分極緩和性を付与する効果を有する。
 前記共重合体は、側基に、4級アンモニウム塩基とともに、カルボキシ基を有することが好ましい。カルボキシ基を有すると、前記共重合体は架橋性を有し、単独でも中間層4を形成し得る。また、ウレタン系接着剤等の接着剤と併用した場合に、該接着剤と反応して架橋構造を形成し、接着性、耐久性、その他力学特性を著しく向上させ得る。
 前記共重合体は、側基にヒドロキシ基をさらに有してもよい。ヒドロキシ基は接着剤中の官能基、例えばイソシアネート基と反応して接着性を高める効果を有する。
 前記共重合体は、上記の各官能基を有する単量体を共重合することによって得ることができる。4級アンモニウム塩基をもつ単量体の具体例としてはジメチルアミノエチルアクリレート4級化物(対イオンとしてのクロライド、サルフェート、スルホネート、アルキルスルホネート等のアニオンを含む)等が挙げられる。カルボキシ基を有する単量体の具体例としては(メタ)アクリル酸、(メタ)アクロイルオキシエチルコハク酸、フタル酸、ヘキサヒドロフタル酸等が挙げられる。
 これら以外の他の単量体を共重合させることもできる。他の単量体としては、アルキル(メタ)アクリレート、スチレン、酢酸ビニル、ハロゲン化ビニル、オレフィン等のビニル誘導体等が挙げられる。
 前記共重合体中の各官能基を有する共重合単位の割合は適宜設定し得る。4級アンモニウム塩基を有する共重合単位の割合は、全共重合単位の合計に対して15~40モル%が好ましい。この割合が15モル%以上であると、帯電防止効果に優れる。40モル%を越えると、共重合体の親水性が高くなり過ぎるおそれがある。カルボキシ基を有する単位の割合は、全単位の合計に対して3~13モル%が好ましい。
 前記共重合体が側基にカルボキシ基を有する場合、前記共重合体に、架橋剤(硬化剤)が添加されてもよい。架橋剤としては、グリセリンジグリシジルエーテル等の2官能エポキシ化合物、トリメチロールプロパントリグリシジルエーテル等の3官能エポキシ化合物、トリメチロールプロパントリアジリジニルエーテル等のエチレンイミン化合物等の多官能化合物が挙げられる。
 前記共重合体に、前記2官能、3官能のエポキシ化合物の開環反応触媒として、2-メチルイミダゾール、2-エチル、4-メチルイミダゾール等のイミダゾール誘導体やその他アミン類が添加されてもよい。
 π共役系導電性高分子は、π共役が発達した主鎖を持つ導電性高分子である。π共役系導電性高分子としては、公知のものを用いることができ、たとえばポリチオフェン、ポリピロール、ポリアニリン、それらの誘導体等が挙げられる。
 高分子系帯電防止剤は、公知の方法により製造したものを用いてもよく、市販品のものを用いてもよい。たとえばPEDOTポリチオフェン系樹脂の市販品として、化研産業社製の「MC-200」等が挙げられる。
 高分子系帯電防止剤を含有する層2B1の好ましい態様としては、以下の層(1)および層(2)等が挙げることができる。
 層(1):高分子系帯電防止剤自体がフィルム形成能を有するものであり、前記高分子系帯電防止剤をそのまま、または溶媒に溶解させて湿式塗布し、必要に応じて乾燥して形成された層。
 層(2):高分子系帯電防止剤自体がフィルム形成能を有し、かつ溶融可能なものであり、前記高分子系帯電防止剤を溶融塗布して形成された層。
 層(1)において、高分子系帯電防止剤自体がフィルム形成能を有するとは、高分子帯電防止剤が有機溶剤等の溶媒に可溶であり、その溶液を湿式塗布し、乾燥させたときに膜が形成されることを意味する。
 層(2)において、高分子系帯電防止剤自体が溶融可能とは、加熱により溶融することを意味する。
 層(1)における高分子系帯電防止剤は架橋性を有するものでもよく、架橋性を有しないものでもよい。高分子系帯電防止剤が架橋性を有する場合、架橋剤を併用してもよい。
 フィルム形成能および架橋性を有する高分子系帯電防止剤としては、前記側基に4級アンモニウム塩基およびカルボキシ基を有する共重合体等が挙げられる。
 架橋剤としては前記と同様のものが挙げられる。
 層(1)の厚さは、0.01~1.0μmが好ましく、0.03~0.5μmが特に好ましい。層(1)の厚さが0.01μm以上であることにより充分な帯電防止効果を容易に獲ることが可能であり、1.0μm以下であることにより、積層時に十分な接着性を得ることが容易になる。
 層(2)における高分子系帯電防止剤としては、界面活性剤やカーボンブラック等を含有したポリオレフィン樹脂等が挙げられる。市販品としては、ペレクトロンHS(三洋化成工業社製)等が挙げられる。層(2)の厚さの好ましい範囲は、層(1)の厚さの好ましい範囲と同様である。
 高分子系帯電防止剤を含有する層2B1は、1層でもよく2層以上でもよい。たとえば層(1)~(2)のいずれか1種のみを有してもよく、層(1)および層(2)の双方を有してもよい。
 高分子系帯電防止剤を含有する層2B1としては、製造しやすい点で、層(1)が好ましい。層(1)と層(2)とを併用してもよい。
 接着層2B2
 本願第2発明の積層体を構成する耐熱樹脂層2Bにおいて好適に用いられる、接着層2B2に含有される接着剤としては、従来公知の接着剤を適宜使用することができる。本願第2発明の積層体の製造効率の観点からは、ドライラミネート用の接着剤を好ましく使用することができる。例えば、ポリ酢酸ビニル系接着剤;アクリル酸エステル(アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルエステル等)の単独重合体もしくは共重合体、またはアクリル酸エステルと他の単量体(メタクリル酸メチル、アクリロニトリル、スチレン等)との共重合体等からなるポリアクリル酸エステル系接着剤;シアノアクリレ-ト系接着剤;エチレンと他の単量体(酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等)との共重合体等からなるエチレン共重合体系接着剤;セルロ-ス系接着剤;ポリエステル系接着剤;ポリアミド系接着剤;ポリイミド系接着剤;尿素樹脂またはメラミン樹脂等からなるアミノ樹脂系接着剤;フェノ-ル樹脂系接着剤;エポキシ系接着剤;ポリオール(ポリエーテルポリオール、ポリエステルポリオール等)とイソシアネートおよび/またはイソシアヌレートと架橋させるポリウレタン系接着剤;反応型(メタ)アクリル系接着剤;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等からなるゴム系接着剤;シリコーン系接着剤;アルカリ金属シリケ-ト、低融点ガラス等からなる無機系接着剤;その他等の接着剤を用いることができる。
 それ以外の層
 本願第2発明のプロセス用離型フィルムは、本願第2発明の目的に反しない限りにおいて、離型層2A、耐熱樹脂層2B及び離型層2A’以外の層を有していてもよい。これらそれ以外の層の詳細は、本願第1発明について説明したものと同様である。
 本願第2発明のプロセス用離型フィルムの総厚みには特に制限は無いが、例えば10~300μmであることが好ましく、30~150μmであることがより好ましい。離型フィルムの総厚みが上記範囲にあると、巻物として使用する際のハンドリング性が良好であるとともに、フィルムの廃棄量が少ないため好ましい。
 以下、本願第2発明のプロセス用離型フィルムの好ましい実施形態について更に具体的に説明する。図1は、3層構造のプロセス用離型フィルムの一例を示す模式図である。図1に示されるように、離型フィルム10は、耐熱樹脂層12と、その片面に接着層14を介して形成された離型層16とを有する。
 離型層16は前述の離型層2Aであり、耐熱樹脂層12は前述の耐熱樹脂層2Bであり、接着層14は前述の接着層である。離型層16は、封止プロセスにおいて封止樹脂と接する側に配置されることが好ましく;耐熱樹脂層12は、封止プロセスにおいて金型の内面と接する側に配置されることが好ましい。
 図2は、5層構造のプロセス用離型フィルムの一例を示す模式図である。図1と同一の機能を有する部材には同一の符号を付する。図2に示されるように、離型フィルム20は、耐熱性樹脂層12と、その両面に接着層14を介して形成された離型層16Aおよび離型層16Bとを有する。離型層16Aは前述の離型層2Aであり、耐熱樹脂層12は前述の耐熱樹脂層2Bであり、離型層16Bは前述の離型層2A’であり、接着層14はそれぞれ前述の接着層である。
 離型層16Aおよび16Bの組成は、互いに同一でも異なってもよい。離型層16Aおよび16Bの厚みも、互いに同一でも異なってもよい。ただし、離型層16Aおよび16Bが互いに同一の組成および厚みを有すると、対称な構造となり、離型フィルム自体の反りが生じ難くなるため好ましい。特に、本願第2発明の離型フィルムには、封止プロセスにおける加熱により応力が生じることがあるので、反りを抑制することが好ましい。このように、離型層16Aおよび16Bが、耐熱樹脂層12の両面に形成されていると、成形品および金型内面のいずれおいても、良好な離型性が得られるため好ましい。
 プロセス用離型フィルムの製造方法
 本願第2発明のプロセス用離型フィルムは、任意の方法で製造されうるが、その好ましい製造方法は、本願第1発明について説明したものと同様である。
 製造プロセス
 本願第2発明のプロセス用離型フィルムは、金型内に半導体チップ等を配置して樹脂を注入成形する際に、半導体チップ等と金型内面との間に配置して使用することができる。本願第2発明のプロセス用離型フィルムを用いることで、金型からの離型不良、バリの発生等を効果的に防止することができる。
 上記製造プロセスに用いる樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよいが、当該技術分野においては熱硬化性樹脂が広く用いられており、特にエポキシ系の熱硬化性樹脂を用いることが好ましい。
 上記製造プロセスとしては、半導体チップの封止が最も代表的であるが、これに限定されるものではなく、本願第2発明は、繊維強化プラスチック成形プロセス、プラスチックレンズ成形プロセス等にも適用することができる。
 図3、図4Aおよび図4Bは、本願第2発明の離型フィルムを用いた樹脂封止半導体の製造方法の一例を示す模式図である。
 図3aに示すように、本願第2発明の離型フィルム1を、ロール状の巻物からロール1-2およびロール1-3により、成形金型2内に供給する。次いで、離型フィルム1を上型2の内面に配置する。必要に応じて、上型2内面を真空引きして、離型フィルム1を上型2内面に密着させてもよい。モールディング成形装置の下金型5に、基板上に配置した半導体チップ6が配置されており、その半導体チップ6上に好ましくは図示されている様な顆粒状の封止樹脂4を配するか、又は図示されていないが別法として半導体チップ6を覆うように液状封止樹脂を注入することで、排気吸引され密着された離型フィルム1を配置した上金型2と下金5型との間に封止樹脂が収容される。次に図3bに示すように、上金型2と下金型5とを、本願第2発明の離型フィルム1を介して型閉じし、好ましくは図示されている様な顆粒状の封止樹脂を硬化させる。
 型閉め硬化により、図3cに示すように封止樹脂4が金型内に流動化し、封止樹脂4が空間部に流入し半導体チップ6の側面周囲を囲むようにして充填され、封止された半導体チップ6を上金型2と下金型5とが型開きして取り出す。型開きし、成形品を取り出した後、離型フィルム1を複数回繰り返して利用するか、新たな離型フィルムを供給し、次の、樹脂モールディング成形に付される。
 本願第2発明の離型フィルムを上金型に密着させ、金型と封止樹脂との間に介在させ、樹脂モ
ールドすることにより金型への樹脂の付着を防ぎ、金型の樹脂モールド面を汚さず、かつ
成形品を容易に離型させることができる。
 なお、離型フィルムは一回の樹脂モールド操作ごとに新たに供給して樹脂モールドする
こともできるし複数回の樹脂モールド操作ごとに新たに供給して樹脂モールドすることも
できる。
 封止樹脂としては、液状樹脂であっても、常温で固体状、例えば顆粒状の樹脂であってもよいが、樹脂封止時液状となるものなどの封止材を適宜採用できる。封止樹脂材料として、具体的には、主としてエポキシ系(ビフェニル型エポキシ樹脂、ビスフェノールエポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂など)が用いられ、エポキシ樹脂以外の封止樹脂として、ポリイミド系樹脂(ビスマレイミド系)、シリコーン系樹脂(熱硬化付加型)など封止樹脂として通常使用されているものを用いることができる。また、樹脂封止条件としては、使用する封止樹脂により異なるが、例えば硬化温度120℃~180℃、成形圧力10~50kg/cm、硬化時間1~60分の範囲で適宜設定することができる。
 離型フィルム1を成形金型8の内面に配置する工程と、半導体チップ6を成形金型8内に配置する工程の前後は、特に限定されず、同時に行ってもよいし、半導体チップ6を配置した後、離型フィルム1を配置してもよいし、離型フィルム1を配置した後、半導体チップ6を配置してもよい。
 このように、離型フィルム1は、離型性の高い離型層2A(及び所望により離型層2A’)を有するため、半導体パッケージ4-2を容易に離型することができる。また、離型フィルム1は、適度な柔軟性を有するので、金型形状に対する追従性に優れながらも、成形金型8の熱によって皺になり難い。このため、封止された半導体パッケージ4-2の樹脂封止面に皺が転写されたり、樹脂が充填されない部分(樹脂欠け)が生じたりすることなく、外観の良好な封止された半導体パッケージ4-2を得ることができる。また、離型フィルム1は、その表面抵抗が比較的小さいので、顆粒状の封止樹脂の離型フィルムへの静電気による付着等に起因する外観不良を有効に抑制できる。
 また、図3で示したような、好ましくは顆粒状である固体の封止樹脂材料4を加圧加熱する圧縮成型法に限らず、後述の様に流動状態の封止樹脂材料を注入するトランスファーモールド法を採用してもよい。
 図4Aおよび図4Bは、本願第2発明の離型フィルムを用いた樹脂封止半導体の製造方法の一例であるトランスファーモールド法を示す模式図である。
 図4Aに示されるように、本願第2発明の離型フィルム22を、ロール状の巻物からロール24およびロール26により、成形金型28内に供給する(工程a)。次いで、離型フィルム22を上型30の内面30Aに配置する(工程b)。必要に応じて、上型内面30Aを真空引きして、離型フィルム22を上型内面30Aに密着させてもよい。次いで、成形金型28内に、樹脂封止すべき半導体チップ34(基板34Aに固定された半導体チップ34)を配置するとともに、封止樹脂材料36をセットし(工程c)、型締めする(工程d)。
 次いで、図4Bに示されるように、所定の加熱および加圧条件下、成形金型28内に封止樹脂材料36を注入する(工程e)。このときの成形金型28の温度(成形温度)は、例えば165~185℃であり、成形圧力は、例えば7~12MPaであり、成形時間は、例えば90秒程度である。そして、一定時間保持した後、上型30と下型32を開き、樹脂封止された半導体パッケージ40や離型フィルム22、を同時にまたは順次離型する(工程f)。
 そして、図5に示されるように、得られた半導体パッケージ40のうち、余分な樹脂部分42を除去することで、所望の半導体パッケージ44を得ることができる。離型フィルム22は、そのまま他の半導体チップの樹脂封止に使用してもよいが、成形が1回終了するごとにロールを操作してフィルムを送り、新たに離型フィルム22を成形金型28に供給することが好ましい。
 離型フィルム22を成形金型28の内面に配置する工程と、半導体チップ34を成形金型28内に配置する工程の前後は、特に限定されず、同時に行ってもよいし、半導体チップ34を配置した後、離型フィルム22を配置してもよいし、離型フィルム22を配置した後、半導体チップ34を配置してもよい。
 このように、離型フィルム22は、離型性の高い離型層2A(及び所望により離型層2A’)を有するため、半導体パッケージ40を容易に離型することができる。また、離型フィルム22は、適度な柔軟性を有するので、金型形状に対する追従性に優れながらも、成形金型28の熱によって皺になり難い。このため、半導体パッケージ40の樹脂封止面に皺が転写されたり、樹脂が充填されない部分(樹脂欠け)が生じたりすることなく、外観の良好な半導体パッケージ40を得ることができる。
 本願第2発明の離型フィルムは、半導体素子を樹脂封止する工程に限らず、成型金型を用いて
各種成形品を成形および離型する工程、例えば繊維強化プラスチック成形および離型工程、プラスチックレンズ成形および離型工程等においても好ましく使用できる。
 プロセス用離型フィルム
 本願第3発明のプロセス用離型フィルムは、以下の4態様を含む。
(第3-1態様)
 離型層3Aと、耐熱樹脂層3Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層3Aの水に対する接触角が、90°から130°であり、
 前記積層フィルムの120℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
(第3-2態様)
 離型層3Aと、耐熱樹脂層3Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層3Aの水に対する接触角が、90°から130°であり、
 前記積層フィルムの170℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
(第3-3態様)
 離型層3Aと、耐熱樹脂層3Bと、離型層3A’と、をこの順で含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層3A、及び前記離型層3A’の水に対する接触角が、90°から130°であり、前記積層フィルムの120℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
(第3-4態様)
 離型層3Aと、耐熱樹脂層3Bと、離型層3A’と、をこの順で含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層3A、及び前記離型層3A’の水に対する接触角が、90°から130°であり、前記積層フィルムの170℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
 上記各態様から明らかな様に、本願第3発明のプロセス用離型フィルム(以下、単に「離型フィルム」ともいう)は、成形品や金型に対する離型性を有する離型層3A、及び所望により離型層3A’、並びに該離型層を支持する耐熱樹脂層3B、を含む積層フィルムである。
 本願第3発明のプロセス用離型フィルムは、成形金型の内部で半導体素子等を樹脂封止するときに、成形金型の内面に配置される。このとき、離型フィルムの離型層3A(離型層3A’が存在する場合には離型層3A’であってもよい)を、樹脂封止される半導体素子等(成形品)側に配置することが好ましい。本願第3発明の離型フィルムを配置することで、樹脂封止された半導体素子等を、金型から容易に離型することができる。
 離型層3Aの水に対する接触角は、90°から130°であり、この様な接触角を有することにより離型層3Aは濡れ性が低く、硬化した封止樹脂や金型表面に固着することなく、成形品を容易に離型することができる。
 離型層3Aの水に対する接触角は、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。
 前記の通り、離型層3A(場合によっては離型層3A’)は成形品側に配置されるので、樹脂封止工程における離型層3A(場合によっては離型層3A’)での皺の発生を抑制することが好ましい。離型層3A(場合によっては離型層3A’)に皺が発生すると、発生した皺が成形品に転写されて、成形品の外観不良が生じる可能性が高いためである。
 本願第3発明においては、上記目的を達成するために、プロセス用離型フィルムを構成する積層フィルムとして、離型層3A(及び所望により離型層3A’)、並びに該離型層を支持する耐熱樹脂層3B、を含む積層フィルムであって、その引張弾性率が特定の値を示す積層フィルムを用いる。
 すなわち、離型層3A(及び所望により離型層3A’)、並びに該離型層を支持する耐熱樹脂層3B、を含む積層フィルムは、その120℃での引張弾性率が75MPaから500MPaであるか、又はその170℃での引張弾性率が75MPaから500MPaである。さらに、前記積層フィルムは、120℃での引張弾性率が75MPaから500MPaであって、かつ、170℃での引張弾性率が75MPaから500MPaであることが好ましい。
 上記積層フィルムの120℃での引張弾性率が75MPaから500MPaであるか、又は170℃での引張弾性率が75MPaから500MPaであることにより、樹脂封止工程等における離型層の皺の発生を有効に抑制することができる。プロセス用離型フィルムを構成する積層フィルムの特定温度における引張弾性率が上記の特定の値を示すことで離型層の皺の発生が抑制されるメカニズムは、必ずしも明らかではないが、プロセス時に加熱された状態で一定値以上の引張弾性率を有することで皺の発生に繋がる変形が抑制されるとともに、一定値以下の引張弾性率を有することで、歪が分散されることと関連があるものと推測される。500MPaを超えると、金型追随性が劣るため、端部において封止樹脂が充填され難く、樹脂欠けが発生するなどの外観不良を生じる可能性が高い。
 本願第3発明のプロセス用離型フィルムを構成する積層フィルムは、その120℃での引張弾性率が
80MPaから400MPaであることが好ましく、
85MPaから350MPaであることがより好ましく、
88MPaから300MPaであることがさらに好ましく、
90MPaから280MPaであることが特に好ましい。
 本願第3発明のプロセス用離型フィルムを構成する積層フィルムは、その170℃での引張弾性率が
80MPaから400MPaであることが好ましく、
85MPaから350MPaであることがより好ましく、
88MPaから300MPaであることがより好ましく
90MPaから280MPaであることがより好ましく
95MPaから200MPaであることがさらに好ましく、
105MPaから170MPaであることが特に好ましい。
 本願第3発明のプロセス用離型フィルムを構成する積層フィルムは、その120℃での引張弾性率、及び170℃での引張弾性率が共に上記の好ましい範囲内であることが加工の際の自由度および用途が広がるため特に好ましい。
 また、離型層3A(及び所望により離型層3A’)、並びに該離型層を支持する耐熱樹脂層3B、を含む積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることが好ましい。さらに、前記積層フィルムは、TD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であってかつTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることがより好ましい。
 上記積層フィルムのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることにより、樹脂封止工程等における離型層の皺の発生を更に有効に抑制することができる。この実施形態においてプロセス用離型フィルムを構成する積層フィルムとして横(TD)方向の熱寸法変化率が上記の特定の値を示すもの用いることで、離型層の皺の発生が更に有効に抑制されるメカニズムは必ずしも明らかではないが、比較的熱膨張/収縮の小さい積層フィルムを用いることにより、プロセス時の加熱/冷却による離型層3A(又は離型層3A’)の熱膨張/収縮が抑制されることと関連があるものと推測される。
 本実施形態のプロセス用離型フィルムを構成する積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が2.5%以下であることが好ましく、2.0%以下であることより好ましく、1.5%以下であることが更に好ましくい。一方、積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が-5.0%以上であることが好ましい。
 本実施形態のプロセス用離型フィルムを構成する積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が3.5%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下であることが更に好ましくい。一方、積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が-5.0%以上であることが好ましい。
 離型層3A(及び所望により離型層3A’)、並びに該離型層を支持する耐熱樹脂層3B、を含む積層フィルムである本願第3発明のプロセス用離型フィルムは、そのTD方向(横方向)の熱寸法変化率とMD方向(フィルムの製造時の長手方向。以下、「縦方向」ともいう)の熱寸法変化率の和が特定の値以下であることが好ましい。
 すなわち、上記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和は、6%以下であることが好ましく、一方、前記積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が-5.0%以上であることが好ましい。
 離型層3A(及び所望により離型層3A’)、並びに耐熱樹脂層3B、を含む積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下であることにより、金型内面に装着された際の皺の発生を一層有効に抑制することができる。
 また、離型層3A(及び所望により離型層3A’)、並びに耐熱樹脂層3B、を含む積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和は、7%以下であることが好ましく、一方、前記積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が-5.0%以上であることが好ましい。
 上記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下であることにより、金型内面に装着された際の皺の発生を更に有効に抑制することができる。
 離型層3A
 本願第3発明のプロセス用離型フィルムを構成する離型層3Aは、水に対する接触角が、90°から130°であり、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。成形品の離型性に優れること、入手の容易さなどから、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含むことが好ましい。
 離型層3Aに用いることができるフッ素樹脂は、テトラフルオロエチレンに由来する構成単位を含む樹脂であってもよい。テトラフルオロエチレンの単独重合体であってもよいが、他のオレフィンとの共重合体であってもよい。他のオレフィンの例には、エチレンが含まれる。モノマー構成単位としてテトラフルオロエチレンとエチレンとを含む共重合体は好ましい一例であり、この様な共重合体においては、テトラフルオロエチレンに由来する構成単位の割合が55~100質量%であり、エチレンに由来する構成単位の割合が0~45質量%であることが好ましい。
 離型層3Aに用いることができる4-メチル-1-ペンテン(共)重合体は、4-メチル-1-ペンテンの単独重合体であってもよく、また4-メチル-1-ペンテンと、それ以外の炭素原子数2~20のオレフィン(以下「炭素原子数2~20のオレフィン」という)との共重合体であってもよい。
 4-メチル-1-ペンテンと、炭素原子数2~20のオレフィンとの共重合体の場合、4-メチル-1-ペンテンと共重合される炭素原子数2~20のオレフィンは、4-メ
チル-1-ペンテンに可とう性を付与し得る。炭素原子数2~20のオレフィンの例には、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセン等が含まれる。これらのオレフィンは、1種のみを用いてもよいし、2種以上を組み合せて用いてもよい。
 4-メチル-1-ペンテンと、炭素原子数2~20のオレフィンとの共重合体の場合、4-メチル-1-ペンテンに由来する構成単位の割合が96~99質量%であり、それ以外の炭素原子数2~20のオレフィンに由来する構成単位の割合が1~4質量%であることが好ましい。炭素原子数2~20のオレフィン由来の構成単位の含有量が少なくすることで、共重合体を硬く、すなわち貯蔵弾性率E’が高くすることができ、封止工程等における皺が発生の抑制に有利である。一方、炭素原子数2~20のオレフィン由来の構成単位の含有量が多くすることで、共重合体を軟らかく、すなわち貯蔵弾性率E’を低くすることができ、金型追従性を向上させるのに有利である。
 4-メチル-1-ペンテン(共)重合体は、当業者において公知の方法で製造されうる。例えば、チーグラ・ナッタ触媒、メタロセン系触媒等の公知の触媒を用いた方法により製造されうる。4-メチル-1-ペンテン(共)重合体は、結晶性の高い(共)重合体であることが好ましい。結晶性の共重合体としては、アイソタクチック構造を有する共重合体、シンジオタクチック構造を有する共重合体のいずれであってもよいが、特にアイソタクチック構造を有する共重合体であることが物性の点からも好ましく、また入手も容易である。さらに、4-メチル-1-ペンテン(共)重合体は、フィルム状に成形でき、金型成形時の温度や圧力等に耐える強度を有していれば、立体規則性や分子量も、特に制限されない。4-メチル-1-ペンテン共重合体は、例えば、三井化学株式会社製TPX(登録商標)等、市販の共重合体であってもよい。
 離型層3Aに用いることができるポリスチレン系樹脂には、スチレンの単独重合体及び共重合体が包含され、その重合体中に含まれるスチレン由来の構造単位は少なくとも60重量%以上であることが好ましく、より好ましくは80重量%以上である。
 ポリスチレン系樹脂は、アイソタクチックポリスチレンであってもシンジオタクチックポリスチレンであってもよいが、透明性、入手の容易さなどの観点からはアイソタクチックポリスチレンが好ましく、離型性、耐熱性などの観点からは、シンジオタクチックポリスチレンが好ましい。ポリスチレンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 離型層3Aは、成形時の金型の温度(典型的には120~180℃)に絶え得る耐熱性を有することが好ましい。かかる観点から、離型層3Aとしては、結晶成分を有する結晶性樹脂を含むことが好ましく、当該結晶性樹脂の融点は190℃以上であることが好ましく、200℃以上300℃以下がより好ましい。
 離型層3Aに結晶性をもたらすため、例えばフッ素樹脂においてはテトラフルオロエチレンから導かれる構成単位を少なくとも含むことが好ましく、4-メチル-1-ペンテン(共)重合体においては4-メチル-1-ペンテンから導かれる構成単位を少なくとも含むことが好ましく、ポリスチレン系樹脂においてはシンジオタクチックポリスチレンを少なくとも含むことが好ましい。離型層3Aを構成する樹脂に結晶成分が含まれることにより、樹脂封止工程等において皺が発生し難く、皺が成形品に転写されて外観不良を生じることを抑制するのに好適である。
 離型層3Aを構成する上記結晶性成分を含む樹脂は、JISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が15J/g以上、60J/g以下であることが好ましく、20J/g以上、50J/g以下であることがより好ましい。15J/g以上であると、樹脂封止工程等での熱プレス成形に耐え得る耐熱性及び離型性をより効果的に発現することが可能であることに加え、寸法変化率も抑制することができるため、皺の発生も防止することができる。一方、前記結晶融解熱量が60J/g以下であると、離型層3Aが適切な硬度となるため、樹脂封止工程等においてフィルムの金型への十分な追随性を得ることができるため、フィルムの破損のおそれもない。
 離型層3Aは、フッ素樹脂、4-メチル-1-ペンテン共重合体、及び/又はポリスチレン系樹脂の他に、さらに他の樹脂を含んでもよい。この場合、他の樹脂の硬度が比較的高いことが好ましい。他の樹脂の例には、ポリアミド-6、ポリアミド-66、ポリブチレンテレフタレート、ポリエチレンテレフタレートが含まれる。このように、離型層3Aが、例えば柔らかい樹脂を多く含む場合(例えば、4-メチル-1-ペンテン共重合体において炭素原子数2~20のオレフィンを多く含む場合)でも、硬度の比較的高い樹脂をさらに含むことで、離型層3Aを硬くすることができ、封止工程等における皺が発生の抑制に有利である。
 これらの他の樹脂の含有量は、離型層3Aを構成する樹脂成分に対して例えば3~30質量%であることが好ましい。他の樹脂の含有量を3質量以上とすることで、添加による効果を実質的なものとすることができ、30質量%以下とすることで、金型や成形品に対する離型性を維持することができる。
 また離型層3Aは、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及び/又はポリスチレン系樹脂に加えて、本願第3発明の目的を損なわない範囲で、耐熱安定剤、耐候安定剤、発錆防止剤、耐銅害安定剤、帯電防止剤等、フィルム用樹脂に一般的に配合される公知の添加剤を含んでもよい。これらの添加剤の含有量は、フッ素樹脂、4-メチル-1-ペンテン共重合体、及び/又はポリスチレン系樹脂100重量部に対して、例えば0.0001~10重量部とすることができる。
 離型層3Aの厚みは、成形品に対する離型性が十分であれば、特に制限はないが、通常1~50μmであり、好ましくは5~30μmである。
 離型層3Aの表面は、必要に応じて凹凸形状を有していてもよく、それにより離型性を向
上させることができる。離型層3Aの表面に凹凸を付与する方法は、特に制限はないが、エ
ンボス加工等の一般的な方法が採用できる。
 離型層A’
 本願第3発明のプロセス用離型フィルムは、離型層3A及び耐熱樹脂層3Bに加えて、更に離型層3A’を有していてもよい。すなわち、本願第3発明のプロセス用離型フィルムは、離型層3Aと、耐熱樹脂層3Bと、離型層3A’とをこの順で含む積層フィルムであるプロセス用離型フィルムであってもよい。
 本願第3発明のプロセス用離型フィルムを構成してもよい離型層3A’の水に対する接触角は、90°から130°であり、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。そして、離型層3A’の好ましい材質、構成、物性等は、上記において離型層3Aについて説明したものと同様である。
 プロセス用離型フィルムが、離型層3Aと、耐熱樹脂層3Bと、離型層3A’とをこの順で含む積層フィルムである場合の離型層3Aと離型層3A’とは同一の構成の層であってもよいし、異なる構成の層であってもよい。
 反りの防止や、いずれの面も同様の離型性を有することによる取り扱いの容易さ等の観点からは、離型層3Aと離型層3A’とは同一または略同一の構成であることが好ましく、離型層3Aと離型層3A’とを使用するプロセスとの関係でそれぞれ最適に設計する観点、例えば、離型層3Aを金型からの離型性に優れたものとし、離型層3A’を成形物からの剥離性に優れたものとする等の観点からは、離型層3Aと離型層3A’とを異なる構成のものとすることが好ましい。
 離型層3Aと離型層3A’とを異なる構成のものとする場合には、離型層3Aと離型層3A’とを同一の材料であって厚み等の構成が異なるものとしてもよいし、材料もそれ以外の構成も異なるものとしてもよい。
 耐熱樹脂層
 本願第3発明のプロセス用離型フィルムを構成する耐熱樹脂層3Bは、離型層3A(及び場合により離型層3A’)を支持し、かつ金型温度等による皺発生を抑制する機能を有する。
 本願第3発明のプロセス用離型フィルムにおいては、耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることが好ましい。さらに、耐熱樹脂層3Bは、その横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であって、かつ横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることがより好ましい。
 耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることにより、金型内面に装着された際の皺の発生をより効果的に抑制することができる。
 耐熱樹脂層3Bとして、横(TD)方向の熱寸法変化率が上記の特定の値を示す樹脂層を用いることで、より効果的に離型層の皺の発生が抑制されるメカニズムは必ずしも明らかではないが、比較的熱膨張/収縮の小さい耐熱樹脂層3Bを用いることにより、プロセス時の加熱/冷却による離型層3A(又は離型層3A’)の熱膨張/収縮が抑制されることと関連があるものと推測される。
 耐熱樹脂層3Bには、無延伸フィルムも含め任意の樹脂層を用いることができるが、延伸フィルムを含んでなることが特に好ましい。
 延伸フィルムは、製造のプロセスにおける延伸の影響で、熱膨張率が低いか又は負となる傾向があり、横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であるという特性を実現することが比較的容易であるので、耐熱樹脂層3Bとして好適に使用することができる。
 耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが更に好ましく、一方、-10%以上であることが好ましい。
 耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが更に好ましく、一方、-10%以上であることが好ましい。
 本願第3発明のプロセス用離型フィルムにおいては、耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下であるか、又は耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が5%以下であることが好ましい。耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下であり、かつ、耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が5%以下であることが更に好ましい。耐熱樹脂層3Bの横(TD)方向の熱寸法変化率と縦(MD)方向の熱寸法変化率の和が上記範囲にあることにより、金型内面に装着された際の皺の発生を更に有効に抑制することができる。
 耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和は、-3.0%以上5.0%以下であることがより好ましく、-2.0%以上4.5%以下であることが更に好ましい。
 耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和は、-15.5%以上5.0%以下であることがより好ましく、-10.0%以上4.5%以下であることが更に好ましい。
 耐熱樹脂層3Bの横(TD)方向の熱寸法変化率と縦(MD)方向の熱寸法変化率の和を上記範囲内とする観点からも、延伸フィルムを使用することが有利であり、延伸条件を適切に制御することが特に有利である。
 上記延伸フィルムは、一軸延伸フィルムであってもよく、二軸延伸フィルムであってもよい。一軸延伸フィルムである場合には、縦延伸、横延伸のいずれであっても良いが、少なくとも横(TD)方向に延伸が行われたものであることが望ましい。
 上記延伸フィルムを得るための方法、装置にも特に限定は無く、当業界において公知の方法で延伸を行えばよい。例えば、加熱ロールやテンター式延伸機で延伸することができる。
 上記延伸フィルムとしては、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる延伸フィルムを使用することが好ましい。これらの延伸フィルムは、延伸により、横(TD)方向の熱膨張率を低下させ、又は負とすることが比較的容易であり、機械的物性が本願第3発明の用途に適したものであり、また低コストで入手が比較的容易であるため、耐熱樹脂層3Bにおける延伸フィルムとして特に好適である。
 延伸ポリエステルフィルムとしては、延伸ポリエチレンテレフタレート(PET)フィルム、延伸ポリブチレンテレフタレート(PBT)フィルムが好ましく、二軸延伸ポリエチレンテレフタレート(PET)フィルムが特に好ましい。
 延伸ポリアミドフィルムを構成するポリアミドには特に限定は無いが、ポリアミド-6、ポリアミド-66等を好ましく用いることができる。
 延伸ポリプロピレンフィルムとしては、一軸延伸ポリプロピレンフィルム、二軸延伸ポリプロピレンフィルム等を好ましく用いることができる。
 延伸倍率には特に限定はなく、熱寸法変化率を適切に制御し、好適な機械的性質を実現するために適切な値を適宜設定すれば良いが、例えば延伸ポリエステルフィルムの場合は、縦方向、横方向ともに2.7~8.0倍の範囲であることが好ましく、延伸ポリアミドフィルムの場合は、縦方向、横方向ともに2.7~5.0倍の範囲であることが好ましく、延伸ポリプロピレンフィルムの場合は、二軸延伸ポリプロピレンフィルムの場合は、縦方向、横方向ともに5.0~10.0倍の範囲であることが好ましく、一軸延伸ポリプロピレンフィルムの場合は、縦方向に1.5~10.0倍の範囲であることが好ましい。
 耐熱樹脂層3Bは、フィルムの強度や、その熱寸法変化率を適切な範囲に制御する観点から、成形時の金型の温度(典型的には120~180℃)に絶え得る耐熱性を有することが好ましい。かかる観点から、耐熱樹脂層3Bは、結晶成分を有する結晶性樹脂を含むことが好ましく、当該結晶性樹脂の融点は125℃以上であることが好ましく、融点が155℃以上300℃以下であることがより好ましく、185以上210℃以下であることが更に好ましく、185以上205℃以下であることが特に好ましい。
 上述の様に、耐熱樹脂層3Bは結晶成分を有する結晶性樹脂を含むことが好ましい。耐熱樹脂層3Bに含有させる結晶性樹脂として、例えばポリエステル樹脂、ポリアミド樹脂、ポリプロピレン樹脂等の結晶性樹脂をその一部または全部に用いることができる。具体的にはポリエステル樹脂においてはポリエチレンテレフタレートまたはポリブチレンテレフタレート、ポリアミド樹脂においてはポリアミド6やポリアミド66、ポリプロピレン樹脂においてはアイソタクチックポリプロピレンを用いることが好ましい。
 耐熱樹脂層3Bに前記結晶性樹脂の結晶成分を含ませることにより、樹脂封止工程等において皺が発生し難く、皺が成形品に転写されて外観不良を生じることを抑制するのにより有利となる。
 耐熱樹脂層3Bを構成する樹脂は、JISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が20J/g以上、100J/g以下であることが好ましく、25J/g以上、65J/g以下であることがより好ましく、25J/g以上、55J/g以下であることがより好ましく、28J/g以上、50J/g以下であることがより好ましく、28J/g以上、40J/g以下であることがより好ましく、28J/g以上、35J/g以下であることがさらに好ましい。20J/g以上であると、樹脂封止工程等での熱プレス成形に耐え得る耐熱性及び離型性を効果的に発現させることができ、また寸法変化率も僅少に抑制することができるため、皺の発生も防止することができる。一方、前記結晶融解熱量が100J/g以下であることにより、耐熱樹脂層3Bに適度な硬度を付与することができるため樹脂封止工程等においてフィルムの十分な金型への追随性が確保することができることに加えフィルムが破損しやすくなるおそれもない。なお、本実施形態において、結晶融解熱量とは、JISK7221に準じて示差走査熱量測定(DSC)による測定での第1回昇温工程で得られた縦軸の熱量(J/g)と横軸の温度(℃)との関係を示すチャート図において、120℃以上でピークを有するピーク面積の和によって求められる数値をいう。
 耐熱樹脂層3Bの結晶融解熱量は、フィルム製造時の加熱、冷却の条件や、延伸の条件を適宜設定することで調節することができる。
 耐熱樹脂層3Bの厚みは、フィルム強度を確保できれば、特に制限はないが、通常1~1
00μm、好ましくは5~50μmである。
 それ以外の層
 本願第3発明のプロセス用離型フィルムは、本願第3発明の目的に反しない限りにおいて、離型層3A、耐熱樹脂層3B及び離型層3A’以外の層を有していてもよい。例えば、離型層3A(又は離型層3A’)と耐熱樹脂層3Bとの間に、必要に応じて接着層を有してもよい。接着層に用いる材料は、離型層3Aと耐熱樹脂層3Bとを強固に接着でき、樹脂封止工程や離型工程においても剥離しないものであれば、特に制限されない。
 例えば、離型層3A(又は離型層3A’)が4-メチル-1-ペンテン共重合体を含む場合は、接着層は、不飽和カルボン酸等によりグラフト変性された変性4-メチル-1-ペンテン系共重合体樹脂、4-メチル-1-ペンテン系共重合体とα-オレフィン系共重合体とからなるオレフィン系接着樹脂等であることが好ましい。離型層3A(又は離型層3A’)がフッ素樹脂を含む場合は、接着層は、ポリエステル系、アクリル系、フッ素ゴム系等の粘着剤であることが好ましい。接着層の厚みは、離型層3A(又は離型層3A’)と耐熱樹脂層3Bとの接着性を向上できれば、特に制限はないが、例えば0.5~10μmである。
 本願第3発明のプロセス用離型フィルムの総厚みには特に制限は無いが、例えば10~300μmであることが好ましく、30~150μmであることがより好ましい。離型フィルムの総厚みが上記範囲にあると、巻物として使用する際のハンドリング性が良好であるとともに、フィルムの廃棄量が少ないため好ましい。
 以下、本願第3発明のプロセス用離型フィルムの好ましい実施形態について更に具体的に説明する。図1は、3層構造のプロセス用離型フィルムの一例を示す模式図である。図1に示されるように、離型フィルム10は、耐熱樹脂層12と、その片面に接着層14を介して形成された離型層16とを有する。
 離型層16は前述の離型層3Aであり、耐熱樹脂層12は前述の耐熱樹脂層3Bであり、接着層14は前述の接着層である。離型層16は、封止プロセスにおいて封止樹脂と接する側に配置されることが好ましく;耐熱樹脂層12は、封止プロセスにおいて金型の内面と接する側に配置されることが好ましい。
 図2は、5層構造のプロセス用離型フィルムの一例を示す模式図である。図1と同一の機能を有する部材には同一の符号を付する。図2に示されるように、離型フィルム20は、耐熱性樹脂層12と、その両面に接着層14を介して形成された離型層16Aおよび離型層16Bとを有する。離型層16Aは前述の離型層3Aであり、耐熱樹脂層12は前述の耐熱樹脂層3Bであり、離型層16Bは前述の離型層3A’であり、接着層14はそれぞれ前述の接着層である。
 離型層16Aおよび16Bの組成は、互いに同一でも異なってもよい。離型層16Aおよび16Bの厚みも、互いに同一でも異なってもよい。ただし、離型層16Aおよび16Bが互いに同一の組成および厚みを有すると、対称な構造となり、離型フィルム自体の反りが生じ難くなるため好ましい。特に、本願第3発明の離型フィルムには、封止プロセスにおける加熱により応力が生じることがあるので、反りを抑制することが好ましい。このように、離型層16Aおよび16Bが、耐熱樹脂層12の両面に形成されていると、成形品および金型内面のいずれおいても、良好な離型性が得られるため好ましい。
 プロセス用離型フィルムの製造方法
 本願第3発明のプロセス用離型フィルムは、任意の方法で製造されうる。例えば、1)離型層3Aと耐熱樹脂層3Bを共押出成形して積層することにより、プロセス用離型フィルムを製造する方法(共押出し形成法)、2)耐熱樹脂層3Bとなるフィルム上に、離型層3Aや接着層となる樹脂の溶融樹脂を塗布・乾燥したり、または離型層3Aや接着層となる樹脂を溶剤に溶解させた樹脂溶液を塗布・乾燥したりして、プロセス用離型フィルムを製造する方法(塗布法)、3)予め離型層3Aとなるフィルムと、耐熱樹脂層3Bとなるフィルムとを製造しておき、これらのフィルムを積層(ラミネート)することにより、プロセス用離型フィルムを製造する方法(ラミネート法)などがある。
 3)の方法において、各樹脂フィルムを積層する方法としては、公知の種々のラミネート方法が採用でき、例えば押出ラミネート法、ドライラミネート法、熱ラミネート法等が挙げられる。
 ドライラミネート法では、接着剤を用いて各樹脂フィルムを積層する。接着剤としては、ドライラミネート用の接着剤として公知のものを使用できる。例えばポリ酢酸ビニル系接着剤;アクリル酸エステル(アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルエステル等)の単独重合体もしくは共重合体、またはアクリル酸エステルと他の単量体(メタクリル酸メチル、アクリロニトリル、スチレン等)との共重合体等からなるポリアクリル酸エステル系接着剤;シアノアクリレ-ト系接着剤;エチレンと他の単量体(酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等)との共重合体等からなるエチレン共重合体系接着剤;セルロ-ス系接着剤;ポリエステル系接着剤;ポリアミド系接着剤;ポリイミド系接着剤;尿素樹脂またはメラミン樹脂等からなるアミノ樹脂系接着剤;フェノ-ル樹脂系接着剤;エポキシ系接着剤;ポリオール(ポリエーテルポリオール、ポリエステルポリオール等)とイソシアネートおよび/またはイソシアヌレートと架橋させるポリウレタン系接着剤;反応型(メタ)アクリル系接着剤;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等からなるゴム系接着剤;シリコーン系接着剤;アルカリ金属シリケ-ト、低融点ガラス等からなる無機系接着剤;その他等の接着剤を使用できる。3)の方法で積層する樹脂フィルムは、市販のものを用いてもよく、公
知の製造方法により製造したものを用いてもよい。樹脂フィルムには、コロナ処理、大気圧プラズマ処理、真空プラズマ処理、プライマー塗工処理等の表面処理が施されてもよい。樹脂フィルムの製造方法としては、特に限定されず、公知の製造方法を利用できる。
 1)共押出し成形法は、離型層3Aとなる樹脂層と耐熱樹脂層3Bとなる樹脂層との間に、異物が噛み込む等による欠陥や、離型フィルムの反りが生じ難い点で好ましい。3)ラミネート法は、耐熱樹脂層3Bに延伸フィルムを用いる場合に好適な製造方法である。この場合は、必要に応じてフィルム同士の界面に適切な接着層を形成することが好ましい。フィルム同士の接着性を高める上で、フィルム同士の界面に、必要に応じてコロナ放電処理等の表面処理を施してもよい。
 プロセス用離型フィルムは、必要に応じて1軸または2軸延伸されていてもよく、それによりフィルムの膜強度を高めることができる。
 上記2)塗布法における塗布手段は、特に限定されないが、例えばロールコータ、ダイコータ、スプレーコータ等の各種コータが用いられる。溶融押出手段は、特に限定されないが、例えばT型ダイやインフレーション型ダイを有する押出機などが用いられる。
 製造プロセス
 本願第3発明のプロセス用離型フィルムは、金型内に半導体チップ等を配置して樹脂を注入成形する際に、半導体チップ等と金型内面との間に配置して使用することができる。本願第3発明のプロセス用離型フィルムを用いることで、金型からの離型不良、バリの発生等を効果的に防止することができる。
 上記製造プロセスに用いる樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよいが、当該技術分野においては熱硬化性樹脂が広く用いられており、特にエポキシ系の熱硬化性樹脂を用いることが好ましい。
 上記製造プロセスとしては、半導体チップの封止が最も代表的であるが、これに限定されるものではなく、本願第3発明は、繊維強化プラスチック成形プロセス、プラスチックレンズ成形プロセス等にも適用することができる。
 図3、図4Aおよび図4Bは、本願第3発明の離型フィルムを用いた樹脂封止半導体の製造方法の一例を示す模式図である。
 図3aに示すように、本願第3発明の離型フィルム1を、ロール状の巻物からロール1-2およびロール1-3により、成形金型2内に供給する。次いで、離型フィルム1を上型2の内面に配置する。必要に応じて、上型2内面を真空引きして、離型フィルム1を上型2内面に密着させてもよい。モールディング成形装置の下金型5に、基板上に配置した半導体チップ6が配置されており、その半導体チップ6上に封止樹脂を配するか、又は半導体チップ6を覆うように液状封止樹脂を注入することで、排気吸引され密着された離型フィルム1を配置した上金型2と下金5型との間に封止樹脂4が収容される。次に図3bに示すように、上金型2と下金型5とを、本願第3発明の離型フィルム1を介して型閉じし、封止樹脂4を硬化させる。
 型閉め硬化により、図3cに示すように封止樹脂4 が金型内に流動化し、封止樹脂4 が空間部に流入し半導体チップ6の側面周囲を囲むようにして充填され、封止された半導体チップ6を上金型2と下金型5とが型開きして取り出す。型開きし、成形品を取り出した後、離型フィルム1を複数回繰り返して利用するか、新たな離型フィルムを供給し、次の、樹脂モールディング成形に付される。
 本願第3発明の離型フィルムを上金型に密着させ、金型と封止樹脂との間に介在させ、樹脂モ
ールドすることにより金型への樹脂の付着を防ぎ、金型の樹脂モールド面を汚さず、かつ
成形品を容易に離型させることができる。
 なお、離型フィルムは一回の樹脂モールド操作ごとに新たに供給して樹脂モールドする
こともできるし複数回の樹脂モールド操作ごとに新たに供給して樹脂モールドすることも
できる。
 封止樹脂としては、液状樹脂であっても、常温で固体状の樹脂であってもよいが、樹脂封止時液状となるものなどの封止材を適宜採用できる。封止樹脂材料として、具体的には、主としてエポキシ系(ビフェニル型エポキシ樹脂、ビスフェノールエポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂など)が用いられ、エポキシ樹脂以外の封止樹脂として、ポリイミド系樹脂(ビスマレイミド系)、シリコーン系樹脂(熱硬化付加型)など封止樹脂として通常使用されているものを用いることができる。また、樹脂封止条件としては、使用する封止樹脂により異なるが、例えば硬化温度120℃~180℃、成形圧力10~50kg/cm、硬化時間1~60分の範囲で適宜設定することができる。
 離型フィルム1を成形金型8の内面に配置する工程と、半導体チップ6を成形金型8内に配置する工程の前後は、特に限定されず、同時に行ってもよいし、半導体チップ6を配置した後、離型フィルム1を配置してもよいし、離型フィルム1を配置した後、半導体チップ6を配置してもよい。
 このように、離型フィルム1は、離型性の高い離型層3A(及び所望により離型層3A’)を有するため、半導体パッケージ4-2を容易に離型することができる。また、離型フィルム1は、適度な柔軟性を有するので、金型形状に対する追従性に優れながらも、成形金型8の熱によって皺になり難い。このため、封止された半導体パッケージ4-2の樹脂封止面に皺が転写されたり、樹脂が充填されない部分(樹脂欠け)が生じたりすることなく、外観の良好な封止された半導体パッケージ4-2を得ることができる。
 また、図3で示したような、固体の封止樹脂材料4を加圧加熱する圧縮成型法に限らず、後述の様に流動状態の封止樹脂材料を注入するトランスファーモールド法を採用してもよい。
 図4Aおよび図4Bは、本願第3発明の離型フィルムを用いた樹脂封止半導体の製造方法の一例であるトランスファーモールド法を示す模式図である。
 図4Aに示されるように、本願第3発明の離型フィルム22を、ロール状の巻物からロール24およびロール26により、成形金型28内に供給する(工程a)。次いで、離型フィルム22を上型30の内面30Aに配置する(工程b)。必要に応じて、上型内面30Aを真空引きして、離型フィルム22を上型内面30Aに密着させてもよい。次いで、成形金型28内に、樹脂封止すべき半導体チップ34(基板34Aに固定された半導体チップ34)を配置するとともに、封止樹脂材料36をセットし(工程c)、型締めする(工程d)。
 次いで、図4Bに示されるように、所定の加熱および加圧条件下、成形金型28内に封止樹脂材料36を注入する(工程e)。このときの成形金型28の温度(成形温度)は、例えば165~185℃であり、成形圧力は、例えば7~12MPaであり、成形時間は、例えば90秒程度である。そして、一定時間保持した後、上型30と下型32を開き、樹脂封止された半導体パッケージ40や離型フィルム22、を同時にまたは順次離型する(工程f)。
 そして、図5に示されるように、得られた半導体パッケージ40のうち、余分な樹脂部分42を除去することで、所望の半導体パッケージ44を得ることができる。離型フィルム22は、そのまま他の半導体チップの樹脂封止に使用してもよいが、成形が1回終了するごとにロールを操作してフィルムを送り、新たに離型フィルム22を成形金型28に供給することが好ましい。
 離型フィルム22を成形金型28の内面に配置する工程と、半導体チップ34を成形金型28内に配置する工程の前後は、特に限定されず、同時に行ってもよいし、半導体チップ34を配置した後、離型フィルム22を配置してもよいし、離型フィルム22を配置した後、半導体チップ34を配置してもよい。
 このように、離型フィルム22は、離型性の高い離型層3A(及び所望により離型層3A’)を有するため、半導体パッケージ40を容易に離型することができる。また、離型フィルム22は、適度な柔軟性を有するので、金型形状に対する追従性に優れながらも、成形金型28の熱によって皺になり難い。このため、半導体パッケージ40の樹脂封止面に皺が転写されたり、樹脂が充填されない部分(樹脂欠け)が生じたりすることなく、外観の良好な半導体パッケージ40を得ることができる。
 本願第3発明の離型フィルムは、半導体素子を樹脂封止する工程に限らず、成型金型を用いて
各種成形品を成形および離型する工程、例えば繊維強化プラスチック成形および離型工程、プラスチックレンズ成形および離型工程等においても好ましく使用できる。
 プロセス用離型フィルム
 本願第4発明のプロセス用離型フィルムは、以下の4態様を含む。
(第4-1態様)
 離型層4Aと、耐熱樹脂層4Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層4Aの水に対する接触角が、90°から130°であり、
 前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含み、
 前記積層フィルムの120℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
(第4-2態様)
 離型層4Aと、耐熱樹脂層4Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層4Aの水に対する接触角が、90°から130°であり、
 前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含み、
 前記積層フィルムの170℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
(第4-3態様)
 離型層4Aと、耐熱樹脂層4Bと、離型層4A’と、をこの順で含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層4A、及び前記離型層4A’の水に対する接触角が、90°から130°であり、
 前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含み、
前記積層フィルムの120℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
(第4-4態様)
 離型層4Aと、耐熱樹脂層4Bと、離型層4A’と、をこの順で含む積層フィルムであるプロセス用離型フィルムであって、
 前記離型層4A、及び前記離型層4A’の水に対する接触角が、90°から130°であり、
 前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含み、
前記積層フィルムの170℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
 上記各態様から明らかな様に、本願第4発明のプロセス用離型フィルム(以下、単に「離型フィルム」ともいう)は、成形品や金型に対する離型性を有する離型層4A、及び所望により離型層4A’、並びに該離型層を支持する耐熱樹脂層4B、を含む積層フィルムであって、該耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含むものである。
 本願第4発明のプロセス用離型フィルムは、成形金型の内部で半導体素子等を樹脂封止するときに、成形金型の内面に配置される。このとき、離型フィルムの離型層4A(離型層4A’が存在する場合には離型層4A’であってもよい)を、樹脂封止される半導体素子等(成形品)側に配置することが好ましい。本願第4発明の離型フィルムを配置することで、樹脂封止された半導体素子等を、金型から容易に離型することができる。
 離型層4Aの水に対する接触角は、90°から130°であり、この様な接触角を有することにより離型層4Aは濡れ性が低く、硬化した封止樹脂や金型表面に固着することなく、成形品を容易に離型することができる。
 離型層4Aの水に対する接触角は、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。
 前記の通り、離型層4A(場合によっては離型層4A’)は成形品側に配置されるので、成形品の外観の観点から、樹脂封止工程における離型層4A(場合によっては離型層4A’)での皺の発生を抑制することが好ましい。離型層4A(場合によっては離型層4A’)に皺が発生すると、発生した皺が成形品に転写されて、成形品の外観不良が生じる可能性が高いためである。
 本願第4発明においては、上記目的を達成するために、プロセス用離型フィルムを構成する積層フィルムとして、離型層4A(及び所望により離型層4A’)、並びに該離型層を支持する耐熱樹脂層4B、を含む積層フィルムであって、その引張弾性率が特定の値を示す積層フィルムを用い、かつ耐熱樹脂層4Bとして高分子系帯電防止剤を含有する層4B1を含むものを用いる。ここで、離型層4A(及び所望により離型層4A’)、並びに該離型層を支持する耐熱樹脂層4B、を含む積層フィルムは、その120℃での引張弾性率が75MPaから500MPaであるか、又はその170℃での引張弾性率が75MPaから500MPaである。
 引張弾性率が上記の特定の値を示す積層フィルムと、高分子系帯電防止剤を含有する層を含む耐熱樹脂層とを組み合わせることで、成形品の外観不良が極めて効果的に抑制されるメカニズムは必ずしも明らかではないが、積層フィルムの引張弾性率が上記の特定の値であることによる皺の発生の抑制と、高分子系帯電防止剤を含有する層を有することによる静電気の抑制及びプロセスへの粉体等の異物の取り込みの抑制とが、何らかの相乗効果を発揮しているものと推定される。すなわち、粉体等の異物が皺の起点となり得るところから、異物の取り込みを抑制することによって、皺の発生の抑制が一層効果的となる一方で、皺が異物の凝集点となり得るところ、皺の発生を抑制することによって、異物の凝集、成長が一層効果的に抑制されることが、従来技術では予測できなかった高いレベルでの成形品の外観不良の抑制と、何らかの関係があるものと推定される。
 また、積層フィルムの離型層4A(及び所望により離型層4A’)における表面固有抵抗値は半導体製造工程での塵等の付着防止の観点から、好ましくは1×1013Ω/□以下、より好ましくは5×1012Ω/□以下、さらに好ましくは1×12Ω/□以下、特に好ましくは5×1011Ω/□以下である。
 積層フィルムの離型層4A(及び所望により離型層4A’)における表面固有抵抗値は、例えば本願実施例に記載の方法で測定することができる。
 上述の様に、離型層4A(及び所望により離型層4A’)、並びに該離型層を支持する耐熱樹脂層4B、を含む積層フィルムは、その120℃での引張弾性率が75MPaから500MPaであるか、又はその170℃での引張弾性率が75MPaから500MPaである。さらに、前記積層フィルムは、120℃での引張弾性率が75MPaから500MPaであって、かつ、170℃での引張弾性率が75MPaから500MPaであることが好ましい。
 上記積層フィルムの120℃での引張弾性率が75MPaから500MPaであるか、又は170℃での引張弾性率が75MPaから500MPaであることにより、樹脂封止工程等における離型層の皺の発生を有効に抑制することができる。プロセス用離型フィルムを構成する積層フィルムの特定温度における引張弾性率が上記の特定の値を示すことで離型層の皺の発生が抑制されるメカニズムは、必ずしも明らかではないが、プロセス時に加熱された状態で一定値以上の引張弾性率を有することで皺の発生に繋がる変形が抑制されるとともに、一定値以下の引張弾性率を有することで、歪が分散されることと関連があるものと推測される。500MPaを超えると、金型追随性が劣るため、端部において封止樹脂が充填され難く、樹脂欠けが発生するなどの外観不良を生じる可能性が高い。
 本願第4発明のプロセス用離型フィルムを構成する積層フィルムは、その120℃での引張弾性率が
80MPaから400MPaであることが好ましく、
85MPaから350MPaであることがより好ましく、
88MPaから300MPaであることがさらに好ましく、
90MPaから280MPaであることが特に好ましい。
 本願第4発明のプロセス用離型フィルムを構成する積層フィルムは、その170℃での引張弾性率が
80MPaから400MPaであることが好ましく、
85MPaから350MPaであることがより好ましく、
88MPaから300MPaであることがより好ましく
90MPaから280MPaであることがより好ましく
95MPaから200MPaであることがさらに好ましく、
105MPaから170MPaであることが特に好ましい。
 本願第4発明のプロセス用離型フィルムを構成する積層フィルムは、その120℃での引張弾性率、及び170℃での引張弾性率が共に上記の好ましい範囲内であることが加工の際の自由度および用途が広がるため特に好ましい。
 また、離型層4A(及び所望により離型層4A’)、並びに該離型層を支持する耐熱樹脂層4B、を含む積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることが好ましい。さらに、前記積層フィルムは、TD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であってかつTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることがより好ましい。
 上記積層フィルムのTD方向(横方向)の23℃から120℃までの熱寸法変化率が3%以下であるか、又は、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が4%以下であることにより、樹脂封止工程等における離型層の皺の発生を更に有効に抑制することができる。この実施形態においてプロセス用離型フィルムを構成する積層フィルムとして横(TD)方向の熱寸法変化率が上記の特定の値を示すもの用いることで、離型層の皺の発生が更に有効に抑制されるメカニズムは必ずしも明らかではないが、比較的熱膨張/収縮の小さい積層フィルムを用いることにより、プロセス時の加熱/冷却による離型層4A(又は離型層4A’)の熱膨張/収縮が抑制されることと関連があるものと推測される。
 本実施形態のプロセス用離型フィルムを構成する積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が2.5%以下であることが好ましく、2.0%以下であることより好ましく、1.5%以下であることが更に好ましくい。一方、積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率が-5.0%以上であることが好ましい。
 本実施形態のプロセス用離型フィルムを構成する積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が3.5%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下であることが更に好ましくい。一方、積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率が-5.0%以上であることが好ましい。
 離型層4A(及び所望により離型層4A’)、並びに該離型層を支持する耐熱樹脂層4B、を含む積層フィルムである本願第4発明のプロセス用離型フィルムは、そのTD方向(横方向)の熱寸法変化率とMD方向(フィルムの製造時の長手方向。以下、「縦(MD)方向」ともいう)の熱寸法変化率の和が特定の値以下であることが好ましい。
 すなわち、上記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和は、6%以下であることが好ましく、一方、前記積層フィルムは、そのTD方向(横方向)の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が-5.0%以上であることが好ましい。
 離型層4A(及び所望により離型層4A’)、並びに耐熱樹脂層4B、を含む積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下であることにより、金型内面に装着された際の皺の発生を一層有効に抑制することができる。
 また、離型層4A(及び所望により離型層4A’)、並びに耐熱樹脂層4B、を含む積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和は、7%以下であることが好ましく、一方、前記積層フィルムは、そのTD方向(横方向)の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が-5.0%以上であることが好ましい。
 上記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下であることにより、金型内面に装着された際の皺の発生を更に有効に抑制することができる。
 離型層4A
 本願第4発明のプロセス用離型フィルムを構成する離型層4Aは、水に対する接触角が、90°から130°であり、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。成形品の離型性に優れること、入手の容易さなどから、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含むことが好ましい。
 離型層4Aに用いることができるフッ素樹脂は、離型層3Aについて説明したものと同様である。
 また、離型層4Aに用いることができる4-メチル-1-ペンテン(共)重合体は、離型層3Aについて説明したものと同様である。
 更に、離型層4Aに用いることができるポリスチレン系樹脂には、離型層3Aについて説明したものと同様である。
 離型層4Aは、成形時の金型の温度(典型的には120~180℃)に絶え得る耐熱性を有することが好ましい。かかる観点から、離型層4Aとしては、結晶成分を有する結晶性樹脂を含むことが好ましく、当該結晶性樹脂の融点は190℃以上であることが好ましく、200℃以上300℃以下がより好ましい。
 離型層4Aに結晶性をもたらすため、例えばフッ素樹脂においてはテトラフルオロエチレンから導かれる構成単位を少なくとも含むことが好ましく、4-メチル-1-ペンテン(共)重合体においては4-メチル-1-ペンテンから導かれる構成単位を少なくとも含むことが好ましく、ポリスチレン系樹脂においてはシンジオタクチックポリスチレンを少なくとも含むことが好ましい。離型層4Aを構成する樹脂に結晶成分が含まれることにより、樹脂封止工程等において皺が発生し難く、皺が成形品に転写されて外観不良を生じることを抑制するのに好適である。
 離型層4Aを構成する上記結晶性成分を含む樹脂は、JISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が15J/g以上、60J/g以下であることが好ましく、20J/g以上、50J/g以下であることがより好ましい。15J/g以上であると、樹脂封止工程等での熱プレス成形に耐え得る耐熱性及び離型性をより効果的に発現することが可能であることに加え、寸法変化率も抑制することができるため、皺の発生も防止することができる。一方、前記結晶融解熱量が60J/g以下であると、離型層4Aが適切な硬度となるため、樹脂封止工程等においてフィルムの金型への十分な追随性を得ることができるため、フィルムの破損のおそれもない。
 離型層4Aは、フッ素樹脂、4-メチル-1-ペンテン共重合体、及び/又はポリスチレン系樹脂の他に、さらに他の樹脂を含んでもよい。この場合の他の樹脂及びその含有量は、離型層3Aについて説明したものと同様である。
 また離型層4Aは、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及び/又はポリスチレン系樹脂に加えて、本願第4発明の目的を損なわない範囲で、耐熱安定剤、耐候安定剤、発錆防止剤、耐銅害安定剤、帯電防止剤等、フィルム用樹脂に一般的に配合される公知の添加剤を含んでもよい。これらの添加剤の含有量は、フッ素樹脂、4-メチル-1-ペンテン共重合体、及び/又はポリスチレン系樹脂100重量部に対して、例えば0.0001~10重量部とすることができる。
 離型層4Aの厚みは、成形品に対する離型性が十分であれば、特に制限はないが、通常1~50μmであり、好ましくは5~30μmである。
 離型層4Aの表面は、必要に応じて凹凸形状を有していてもよく、それにより離型性を向
上させることができる。離型層4Aの表面に凹凸を付与する方法は、特に制限はないが、エ
ンボス加工等の一般的な方法が採用できる。
 離型層4A’
 本願第4発明のプロセス用離型フィルムは、離型層4A及び耐熱樹脂層4Bに加えて、更に離型層4A’を有していてもよい。すなわち、本願第4発明のプロセス用離型フィルムは、離型層4Aと、耐熱樹脂層4Bと、離型層4A’とをこの順で含む積層フィルムであるプロセス用離型フィルムであってもよい。
 本願第4発明のプロセス用離型フィルムを構成してもよい離型層4A’の水に対する接触角は、90°から130°であり、好ましくは95°から120°であり、より好ましくは98°から115°、更に好ましくは100°から110°である。そして、離型層4A’の好ましい材質、構成、物性等は、上記において離型層4Aについて説明したものと同様である。
 プロセス用離型フィルムが、離型層4Aと、耐熱樹脂層4Bと、離型層4A’とをこの順で含む積層フィルムである場合の離型層4Aと離型層4A’とは同一の構成の層であってもよいし、異なる構成の層であってもよい。
 反りの防止や、いずれの面も同様の離型性を有することによる取り扱いの容易さ等の観点からは、離型層4Aと離型層4A’とは同一または略同一の構成であることが好ましく、離型層4Aと離型層4A’とを使用するプロセスとの関係でそれぞれ最適に設計する観点、例えば、離型層4Aを金型からの離型性に優れたものとし、離型層4A’を成形物からの剥離性に優れたものとする等の観点からは、離型層4Aと離型層4A’とを異なる構成のものとすることが好ましい。
 離型層4Aと離型層4A’とを異なる構成のものとする場合には、離型層4Aと離型層4A’とを同一の材料であって厚み等の構成が異なるものとしてもよいし、材料もそれ以外の構成も異なるものとしてもよい。
 耐熱樹脂層4B
 本願第4発明のプロセス用離型フィルムを構成する耐熱樹脂層4Bは、離型層4A(及び場合により離型層4A’)を支持し、かつ金型温度等による皺発生を抑制する機能を有する。
 本願第4発明のプロセス用離型フィルムを構成する耐熱樹脂層4Bは、高分子系帯電防止剤を含有する層4B1を含むものである。ここで、高分子系帯電防止剤を含有する層4B1を「含む」とは、耐熱樹脂層4Bの全体が高分子系帯電防止剤を含有する層4B1で構成されている場合、及び耐熱樹脂層4Bの一部が高分子系帯電防止剤を含有する層4B1で構成されている場合、の双方を包含する趣旨で用いられる。したがって、耐熱樹脂層4Bは、高分子系帯電防止剤を含有する層4B1以外の他の層をさらに含んでいてもよいし、含んでいなくともよい
 本願第4発明のプロセス用離型フィルムを構成する耐熱樹脂層4Bは、高分子系帯電防止剤を含有する層4B1を含むことにより表面固有抵抗値が低く、帯電防止に寄与する。
 耐熱樹脂層4Bの表面固有抵抗値は、本願第4発明の積層フィルムの離型層4Aへの塵等の付着防止の観点から、1010Ω/□以下が好ましく、109Ω/□以下が特に好ましい。前記表面固有抵抗値が1010Ω/□以下であると、本発明のプロセス用離型フィルムの表面においても帯電防止性が効果的に発現される。そのため、静電気による粉塵等の異物の付着を効果的に抑制できるとともに、例えば半導体パッケージの製造時に、半導体素子の一部がプロセス用離型フィルムに直接接するような場合でも、プロセス用離型フィルムの帯電-放電による半導体素子の破壊を効果的に抑制できる。
 耐熱樹脂層4Bの表面固有抵抗値は、本願第4発明の積層フィルムの離型層4Aへの塵等の付着防止の観点からは低いほど好ましく、下限は特に限定されない。耐熱樹脂層4Bの表面固有抵抗値は、高分子系帯電防止剤の導電性能が高いほど、また高分子系帯電防止剤の含有量が多いほど、小さくなる傾向がある。
 耐熱樹脂層4Bの表面固有抵抗値は、例えば本願実施例に記載の方法で測定することができる。但し、積層前の耐熱樹脂層4Bを試料として用いる。
 高分子系帯電防止剤を含有する層4B1以外の他の層としては、例えば接着剤を含む接着層4B2を好ましく用いることができる。すなわち、耐熱樹脂層4Bは、高分子系帯電防止剤を含有する層4B1と、接着剤を含む接着層4B2とを含むものであってもよい。
 この場合において、耐熱樹脂層4Bは、高分子系帯電防止剤を含有する層4B1、及び接着剤を含む接着層4B2のみで構成されていてもよいし、高分子系帯電防止剤を含有する層4B1、及び接着剤を含む接着層4B2以外の他の層、例えば帯電防止剤及び接着剤を含まない熱可塑性樹脂の層、ガスバリア層等を更に含んでいても良い。
 また、高分子系帯電防止剤を含有する層4B1が、接着剤をも含有していてもよい。すなわち、耐熱樹脂層4Bが、高分子系帯電防止剤及び接着剤を含有する層4B3を含むものであってもよい。
 この場合において、耐熱樹脂層4Bは、高分子系帯電防止剤及び接着剤を含有する層4B3のみで構成されていてもよいし、高分子系帯電防止剤及び接着剤を含有する層4B3以外の他の層、例えば高分子系帯電防止剤を含有する層4B1、接着剤を含む接着層4B2、帯電防止剤及び接着剤を含まない熱可塑性樹脂の層、ガスバリア層等を更に含んでいても良い。
 本願第4発明のプロセス用離型フィルムにおいては、耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることが好ましい。さらに、耐熱樹脂層4Bは、その横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であって、かつ横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることがより好ましい。
 耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であることにより、金型内面に装着された際の皺の発生をより効果的に抑制することができる。
 耐熱樹脂層4Bとして、横(TD)方向の熱寸法変化率が上記の特定の値を示す樹脂層を用いることで、より効果的に離型層の皺の発生が抑制されるメカニズムは必ずしも明らかではないが、比較的熱膨張/収縮の小さい耐熱樹脂層4Bを用いることにより、プロセス時の加熱/冷却による離型層4A(又は離型層4A’)の熱膨張/収縮が抑制されることと関連があるものと推測される。
 耐熱樹脂層4Bには、無延伸フィルムも含め任意の樹脂層を用いることができるが、延伸フィルムを含んでなることが特に好ましい。
 延伸フィルムは、製造のプロセスにおける延伸の影響で、熱膨張率が低いか又は負となる傾向があり、横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下であるか、又は耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下であるという特性を実現することが比較的容易であるので、耐熱樹脂層4Bとして好適に使用することができる。
 耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが更に好ましく、一方、-10%以上であることが好ましい。
 耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることが更に好ましく、一方、-10%以上であることが好ましい。
 本願第4発明のプロセス用離型フィルムにおいては、耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下であるか、又は耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が5%以下であることが好ましい。耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下であり、かつ、耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が5%以下であることが更に好ましい。耐熱樹脂層4Bの横(TD)方向の熱寸法変化率と縦(MD)方向の熱寸法変化率の和が上記範囲にあることにより、金型内面に装着された際の皺の発生を更に有効に抑制することができる。
 耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和は、-3.0%以上5.0%以下であることがより好ましく、-2.0%以上4.5%以下であることが更に好ましい。
 耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和は、-15.5%以上5.0%以下であることがより好ましく、-10.0%以上4.5%以下であることが更に好ましい。
 耐熱樹脂層4Bの横(TD)方向の熱寸法変化率と縦(MD)方向の熱寸法変化率の和を上記範囲内とする観点からも、延伸フィルムを使用することが有利であり、延伸条件を適切に制御することが特に有利である。
 上記延伸フィルムの詳細は、耐熱樹脂層3Bについて説明したものと同様である。
 耐熱樹脂層4Bは、フィルムの強度や、その熱寸法変化率を適切な範囲に制御する観点から、成形時の金型の温度(典型的には120~180℃)に絶え得る耐熱性を有することが好ましい。かかる観点から、耐熱樹脂層4Bは、結晶成分を有する結晶性樹脂を含むことが好ましく、当該結晶性樹脂の融点は125℃以上であることが好ましく、融点が155℃以上300℃以下であることがより好ましく、185以上210℃以下であることが更に好ましく、185以上205℃以下であることが特に好ましい。
 上述の様に、耐熱樹脂層4Bは結晶成分を有する結晶性樹脂を含むことが好ましい。耐熱樹脂層4Bに含有させる結晶性樹脂として、例えばポリエステル樹脂、ポリアミド樹脂、ポリプロピレン樹脂等の結晶性樹脂をその一部または全部に用いることができる。具体的にはポリエステル樹脂においてはポリエチレンテレフタレートまたはポリブチレンテレフタレート、ポリアミド樹脂においてはポリアミド6やポリアミド66、ポリプロピレン樹脂においてはアイソタクチックポリプロピレンを用いることが好ましい。
 耐熱樹脂層4Bに前記結晶性樹脂の結晶成分を含ませることにより、樹脂封止工程等において皺が発生し難く、皺が成形品に転写されて外観不良を生じることを抑制するのにより有利となる。
 耐熱樹脂層4Bを構成する樹脂は、JISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量が20J/g以上、100J/g以下であることが好ましく、25J/g以上、65J/g以下であることがより好ましく、25J/g以上、55J/g以下であることがより好ましく、28J/g以上、50J/g以下であることがより好ましく、28J/g以上、40J/g以下であることがより好ましく、28J/g以上、35J/g以下であることがさらに好ましい。20J/g以上であると、樹脂封止工程等での熱プレス成形に耐え得る耐熱性及び離型性を効果的に発現させることができ、また寸法変化率も僅少に抑制することができるため、皺の発生も防止することができる。一方、前記結晶融解熱量が100J/g以下であることにより、耐熱樹脂層4Bに適度な硬度を付与することができるため樹脂封止工程等においてフィルムの十分な金型への追随性が確保することができることに加えフィルムが破損しやすくなるおそれもない。なお、本実施形態において、結晶融解熱量とは、JISK7221に準じて示差走査熱量測定(DSC)による測定での第1回昇温工程で得られた縦軸の熱量(J/g)と横軸の温度(℃)との関係を示すチャート図において、120℃以上でピークを有するピーク面積の和によって求められる数値をいう。
 耐熱樹脂層4Bの結晶融解熱量は、フィルム製造時の加熱、冷却の条件や、延伸の条件を適宜設定することで調節することができる。
 耐熱樹脂層4Bの厚みは、フィルム強度を確保できれば、特に制限はないが、通常1~1
00μm、好ましくは5~50μmである。
 高分子系帯電防止剤を含有する層4B1
 本願第4発明の積層体を構成する耐熱樹脂層4Bにおいて好適に用いられる、高分子系帯電防止剤を含有する層4B1における高分子系帯電防止剤としては、帯電防止機能を有することが知られている高分子化合物を用いることができる。たとえば、側基に4級アンモニウム塩基を有するカチオン系共重合体、ポリスチレンスルホン酸を含むアニオン系化合物、ポリアルキレンオキシド鎖を有する化合物(ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい。)、ポリエチレングリコールメタクリレート共重合体、ポリエーテルエステルアミド、ポリエーテルアミドイミド、ポリエーテルエステル、エチレンオキシド-エピクロルヒドリン共重合体等の非イオン系高分子、π共役系導電性高分子等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 側基に4級アンモニウム塩基を有する共重合体中の4級アンモニウム塩基は、誘電分極性と導電性による速やかな誘電分極緩和性を付与する効果を有する。
 前記共重合体は、側基に、4級アンモニウム塩基とともに、カルボキシ基を有することが好ましい。カルボキシ基を有すると、前記共重合体は架橋性を有し、単独でも層4B1を形成し得る。また、ウレタン系接着剤等の接着剤と併用した場合に、該接着剤と反応して架橋構造を形成し、接着性、耐久性、その他力学特性を著しく向上させ得る。
 前記共重合体は、側基にヒドロキシ基をさらに有してもよい。ヒドロキシ基は接着剤中の官能基、例えばイソシアネート基と反応して接着性を高める効果を有する。
 前記共重合体は、上記の各官能基を有する単量体を共重合することによって得ることができる。4級アンモニウム塩基をもつ単量体の具体例としてはジメチルアミノエチルアクリレート4級化物(対イオンとしてのクロライド、サルフェート、スルホネート、アルキルスルホネート等のアニオンを含む)等が挙げられる。カルボキシ基を有する単量体の具体例としては(メタ)アクリル酸、(メタ)アクロイルオキシエチルコハク酸、フタル酸、ヘキサヒドロフタル酸等が挙げられる。
 これら以外の他の単量体を共重合させることもできる。他の単量体としては、アルキル(メタ)アクリレート、スチレン、酢酸ビニル、ハロゲン化ビニル、オレフィン等のビニル誘導体等が挙げられる。
 前記共重合体中の各官能基を有する共重合単位の割合は適宜設定し得る。4級アンモニウム塩基を有する共重合単位の割合は、全共重合単位の合計に対して15~40モル%が好ましい。この割合が15モル%以上であると、帯電防止効果に優れる。40モル%を越えると、共重合体の親水性が高くなり過ぎるおそれがある。カルボキシ基を有する単位の割合は、全単位の合計に対して3~13モル%が好ましい。
 前記共重合体が側基にカルボキシ基を有する場合、前記共重合体に、架橋剤(硬化剤)が添加されてもよい。架橋剤としては、グリセリンジグリシジルエーテル等の2官能エポキシ化合物、トリメチロールプロパントリグリシジルエーテル等の3官能エポキシ化合物、トリメチロールプロパントリアジリジニルエーテル等のエチレンイミン化合物等の多官能化合物が挙げられる。
 前記共重合体に、前記2官能、3官能のエポキシ化合物の開環反応触媒として、2-メチルイミダゾール、2-エチル、4-メチルイミダゾール等のイミダゾール誘導体やその他アミン類が添加されてもよい。
 π共役系導電性高分子は、π共役が発達した主鎖を持つ導電性高分子である。π共役系導電性高分子としては、公知のものを用いることができ、たとえばポリチオフェン、ポリピロール、ポリアニリン、それらの誘導体等が挙げられる。
 高分子系帯電防止剤は、公知の方法により製造したものを用いてもよく、市販品のものを用いてもよい。たとえば側基に4級アンモニウム塩基およびカルボキシ基を有する共重合体の市販品として、コニシ社製の「ボンディップ(BONDEIP、商標名)-PA100主剤」等が挙げられる。
 高分子系帯電防止剤を含有する層4B1の好ましい態様としては、以下の層(1)~(4)等が挙げることができる。
 層(1):高分子系帯電防止剤自体がフィルム形成能を有するものであり、前記高分子系帯電防止剤をそのまま、または溶媒に溶解させて湿式塗布し、必要に応じて乾燥して形成された層。
 層(2):高分子系帯電防止剤自体がフィルム形成能を有し、かつ溶融可能なものであり、前記高分子系帯電防止剤を溶融塗布して形成された層。
 層(3):結合剤がフィルム形成能を有するものであり、かつ溶融可能なものであり、前記結合剤に高分子系帯電防止剤を分散または溶解させた組成物を溶融塗布して形成された層。
 層(4):結合剤がフィルム形成能を有するものであり、前記結合剤と高分子系帯電防止剤とを含む組成物をそのまま、または溶媒に溶解させて湿式塗布し、必要に応じて乾燥して形成された層。ただし層(1)に該当するものは、層(4)には該当しないものとする。
 層(1)において、高分子系帯電防止剤自体がフィルム形成能を有するとは、高分子帯電防止剤が有機溶剤等の溶媒に可溶であり、その溶液を湿式塗布し、乾燥させたときに膜が形成されることを意味する。
 層(2)において、高分子系帯電防止剤自体が溶融可能とは、加熱により溶融することを意味する。層(3)(4)における結合剤についての「フィルム形成能を有する」、「溶融可能」も同様の意味である。
 層(1)における高分子系帯電防止剤は架橋性を有するものでもよく、架橋性を有しないものでもよい。高分子系帯電防止剤が架橋性を有する場合、架橋剤を併用してもよい。
 フィルム形成能および架橋性を有する高分子系帯電防止剤としては、前記側基に4級アンモニウム塩基およびカルボキシ基を有する共重合体等が挙げられる。
 架橋剤としては前記と同様のものが挙げられる。
 層(1)の厚さは、0.01~1.0μmが好ましく、0.03~0.5μmが特に好ましい。層(1)の厚さが0.01μm以上であることにより充分な帯電防止効果を容易に獲ることが可能であり、1.0μm以下であることにより、積層時に十分な接着性を得ることが容易になる。
 層(2)における高分子系帯電防止剤としては、界面活性剤やカーボンブラック等を含有したポリオレフィン樹脂等が挙げられる。市販品としては、ペレクトロンHS(三洋化成工業社製)等が挙げられる。層(2)の厚さの好ましい範囲は、層(1)の厚さの好ましい範囲と同様である。
 層(3)における結合剤としては、汎用の熱可塑性樹脂が挙げられる。熱可塑性樹脂は、溶融成形時に接着するように、接着に寄与する官能基をもつ樹脂であることが好ましい。該官能基としては、カルボニル基等が挙げられる。
 層(3)における高分子系帯電防止剤の含有量は、層(3)の全体の質量に対して10~40質量部が好ましく、10~30質量部が特に好ましい。層(3)の厚さの好ましい範囲は、層(1)の厚さの好ましい範囲と同様である。
 層(4)を形成する組成物の1例は、接着剤である。接着剤は、主剤と硬化剤とを含有し、加熱等により硬化して接着性を発揮するものを意味する。
 このとき、高分子系帯電防止剤を含有する層4B1は、高分子系帯電防止剤、及び接着剤を含有する層4B3にも該当することになる。
 接着剤は、1液型接着剤でもよく、2液型接着剤でもよい。
 層(4)を形成する接着剤(以下、層(4)形成用接着剤ともいう。)としては、たとえば、高分子系帯電防止剤を含有しない接着剤に高分子系帯電防止剤を添加したもの等が挙げられる。
 接着剤に添加する高分子系帯電防止剤は、フィルム形成能を有するものでもよく、フィルム形成能を有しないもの(たとえばπ共役系導電性高分子)でもよい。
 高分子系帯電防止剤を含有しない接着剤としては、ドライラミネート用の接着剤として公知のものを使用できる。たとえばポリ酢酸ビニル系接着剤;アクリル酸エステル(アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルエステル等)の単独重合体もしくは共重合体、またはアクリル酸エステルと他の単量体(メタクリル酸メチル、アクリロニトリル、スチレン等)との共重合体等からなるポリアクリル酸エステル系接着剤;シアノアクリレ-ト系接着剤;エチレンと他の単量体(酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等)との共重合体等からなるエチレン共重合体系接着剤;セルロ-ス系接着剤;ポリエステル系接着剤;ポリアミド系接着剤;ポリイミド系接着剤;尿素樹脂またはメラミン樹脂等からなるアミノ樹脂系接着剤;フェノ-ル樹脂系接着剤;エポキシ系接着剤;ポリオール(ポリエーテルポリオール、ポリエステルポリオール等)とイソシアネートおよび/またはイソシアヌレートと架橋させるポリウレタン系接着剤;反応型(メタ)アクリル系接着剤;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等からなるゴム系接着剤;シリコーン系接着剤;アルカリ金属シリケ-ト、低融点ガラス等からなる無機系接着剤;その他等の接着剤を使用できる。
 層(4)形成用接着剤中の高分子系帯電防止剤の含有量は、層(4)の表面固有抵抗値が1010Ω/□以下となる量が好ましく、10Ω/□以下が特に好ましい。
 帯電防止の観点からは、層(4)形成用接着剤中の高分子系帯電防止剤の含有量は多いほど好ましいが、高分子系帯電防止剤がπ共役系導電性高分子であり、高分子系帯電防止剤を含有しない接着剤にπ共役系導電性高分子を添加したものを層(4)形成用接着剤として用いて層4B1を形成する場合、高分子系帯電防止剤の含有量が多くなると、層(4)の接着性が低下し、第1の熱可塑性樹脂層2と第2の熱可塑性樹脂層3との間の密着性が不充分になるおそれがある。そのため、この場合の層(4)形成用接着剤中の高分子系帯電防止剤の含有量は、バインダーとなる樹脂の固形分に対し、40質量%以下であることが好ましく、30質量%以下が特に好ましい。下限値は1質量%が好ましく、5質量%が特に好ましい。
 層(4)の厚さは、0.2~5μmが好ましく、0.5~2μmが特に好ましい。層(4)の厚さが前記範囲の下限値以上であると、第1の熱可塑性樹脂層と第2の熱可塑性樹脂層との接着性に優れ、また、帯電防止性に優れる。前記範囲の上限値以下であると生産性に優れる。
 層4B1が有する高分子系帯電防止層は、1層でもよく2層以上でもよい。たとえば層(1)~(4)のいずれか1種のみを有してもよく、2種以上を有してもよい。
 高分子系帯電防止層としては、製造しやすい点で、層(1)が好ましい。層(1)と層(2)~(4)のいずれか1種以上とを併用してもよい。
 接着層4B2
 本願第4発明の積層体を構成する耐熱樹脂層4Bにおいて好適に用いられる、接着層4B2に含有される接着剤としては、従来公知の接着剤を適宜使用することができる。本願第4発明の積層体の製造政党の観点からは、ドライラミネート用の接着剤を好ましく使用することができる。例えば、ポリ酢酸ビニル系接着剤;アクリル酸エステル(アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルエステル等)の単独重合体もしくは共重合体、またはアクリル酸エステルと他の単量体(メタクリル酸メチル、アクリロニトリル、スチレン等)との共重合体等からなるポリアクリル酸エステル系接着剤;シアノアクリレ-ト系接着剤;エチレンと他の単量体(酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等)との共重合体等からなるエチレン共重合体系接着剤;セルロ-ス系接着剤;ポリエステル系接着剤;ポリアミド系接着剤;ポリイミド系接着剤;尿素樹脂またはメラミン樹脂等からなるアミノ樹脂系接着剤;フェノ-ル樹脂系接着剤;エポキシ系接着剤;ポリオール(ポリエーテルポリオール、ポリエステルポリオール等)とイソシアネートおよび/またはイソシアヌレートと架橋させるポリウレタン系接着剤;反応型(メタ)アクリル系接着剤;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等からなるゴム系接着剤;シリコーン系接着剤;アルカリ金属シリケ-ト、低融点ガラス等からなる無機系接着剤;その他等の接着剤を用いることができる。
 高分子系帯電防止剤及び接着剤を含有する層4B3
 本願第4発明の積層体を構成する耐熱樹脂層4Bにおいて好適に用いられる、高分子系帯電防止剤及び接着剤を含有する層4B3に含有される高分子系帯電防止剤としては、高分子系帯電防止剤を含有する層4B1に関して上述したものと同様の高分子系帯電防止剤を好適に用いることができ、接着剤としては、接着剤を含む接着層4B2に関して上述したものと同様の接着剤を好適に用いることができる。
 上述の層(4)において、層(4)を形成する組成物が接着剤である場合は、高分子系帯電防止剤及び接着剤を含有する層4B3の態様として、特に好ましい一例である。
 それ以外の層
 本願第4発明のプロセス用離型フィルムは、本願第4発明の目的に反しない限りにおいて、離型層4A、耐熱樹脂層4B及び離型層4A’以外の層を有していてもよい。これらそれ以外の層の詳細は、本願第3発明について説明したものと同様である。
 本願第4発明のプロセス用離型フィルムの総厚みには特に制限は無いが、例えば10~300μmであることが好ましく、30~150μmであることがより好ましい。離型フィルムの総厚みが上記範囲にあると、巻物として使用する際のハンドリング性が良好であるとともに、フィルムの廃棄量が少ないため好ましい。
 以下、本願第4発明のプロセス用離型フィルムの好ましい実施形態について更に具体的に説明する。図1は、3層構造のプロセス用離型フィルムの一例を示す模式図である。図1に示されるように、離型フィルム10は、耐熱樹脂層12と、その片面に接着層14を介して形成された離型層16とを有する。
 離型層16は前述の離型層4Aであり、耐熱樹脂層12は前述の耐熱樹脂層4Bであり、接着層14は前述の接着層である。離型層16は、封止プロセスにおいて封止樹脂と接する側に配置されることが好ましく;耐熱樹脂層12は、封止プロセスにおいて金型の内面と接する側に配置されることが好ましい。
 図2は、5層構造のプロセス用離型フィルムの一例を示す模式図である。図1と同一の機能を有する部材には同一の符号を付する。図2に示されるように、離型フィルム20は、耐熱性樹脂層12と、その両面に接着層14を介して形成された離型層16Aおよび離型層16Bとを有する。離型層16Aは前述の離型層4Aであり、耐熱樹脂層12は前述の耐熱樹脂層4Bであり、離型層16Bは前述の離型層4A’であり、接着層14はそれぞれ前述の接着層である。
 離型層16Aおよび16Bの組成は、互いに同一でも異なってもよい。離型層16Aおよび16Bの厚みも、互いに同一でも異なってもよい。ただし、離型層16Aおよび16Bが互いに同一の組成および厚みを有すると、対称な構造となり、離型フィルム自体の反りが生じ難くなるため好ましい。特に、本願第4発明の離型フィルムには、封止プロセスにおける加熱により応力が生じることがあるので、反りを抑制することが好ましい。このように、離型層16Aおよび16Bが、耐熱樹脂層12の両面に形成されていると、成形品および金型内面のいずれおいても、良好な離型性が得られるため好ましい。
 プロセス用離型フィルムの製造方法
 本願第4発明のプロセス用離型フィルムは、任意の方法で製造されうるが、その好ましい製造方法は、本願第3発明について説明したものと同様である。
 製造プロセス
 本願第4発明のプロセス用離型フィルムは、金型内に半導体チップ等を配置して樹脂を注入成形する際に、半導体チップ等と金型内面との間に配置して使用することができる。本願第4発明のプロセス用離型フィルムを用いることで、金型からの離型不良、バリの発生等を効果的に防止することができる。
 上記製造プロセスに用いる樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよいが、当該技術分野においては熱硬化性樹脂が広く用いられており、特にエポキシ系の熱硬化性樹脂を用いることが好ましい。
 上記製造プロセスとしては、半導体チップの封止が最も代表的であるが、これに限定されるものではなく、本願第4発明は、繊維強化プラスチック成形プロセス、プラスチックレンズ成形プロセス等にも適用することができる。
 本願第4発明のプロセス用離型フィルムを用いる上記製造プロセスの詳細は、本願第3発明について説明したものと同様である。
 本願第4発明の離型フィルムは、半導体素子を樹脂封止する工程に限らず、成型金型を用いて各種成形品を成形および離型する工程、例えば繊維強化プラスチック成形および離型工程、プラスチックレンズ成形および離型工程等においても好ましく使用できる。
 以下、本願第1から第4発明を実施例によりさらに詳細に説明するが、本願第1及び第2発明は、これにより何ら限定されるものではない。
 以下の実施例/参考例において、物性/特性の評価は下記の方法で行った。
(熱寸法変化率)
 フィルムサンプルをフィルムの縦(MD)方向および横(TD)方向にそれぞれ長さ20mm、幅4mmに切り出し、TAインスツルメンツ社製TMA(熱機械分析装置、製品名:Q400)を用い、チャック間距離8mmにて0.005Nの荷重をかけた状態で23℃5分間保持後、23℃から120℃まで10℃/分の昇温速度で昇温させ、それぞれの方向の寸法変化を測定し、下記式(1)により寸法変化率を算出した。
 
 熱寸法変化率(%)(23→120℃) = {[(L-L)/L]×100}
                                  ・・・(1)
 L:23℃時のサンプル長(mm)
 L:120℃時のサンプル長(mm)
 
 同様に、23℃から170℃まで10℃/分の昇温速度で昇温させ、それぞれの方向の寸法変化を測定し、下記式(2)により寸法変化率を算出した。
 
 熱寸法変化率(%)(23→170℃) = {[(L-L)/L]×100}
                                  ・・・(2)
 L:23℃時のサンプル長(mm)
 L:170℃時のサンプル長(mm)
 水に対する接触角(水接触角)
 JIS R 3 2 5 7 に準拠して、接触角測定器(Kyowa Inter face Science社製、FACECA-W)を用いて離型層A等の表面の水接触角を測定した。
(引張弾性率)
引張弾性率の測定方法
JIS K7127に準拠し、23℃、120℃、170℃での引張弾性率を求めた。
測定条件:引張モード
測定方向:フィルムの縦(MD)方向(フィルム搬送方向)
(表面固有抵抗値)
 得られた離型フィルムから切り出した10×10cmの試験片を、温度23℃、湿度50%RHに24時間保管した。その後、アドバンテスト社製デジタル超高抵抗/微量電流計(8340A)とレジスチビティチェンバ(R12704)を用いて、印加電圧を0.10V、温度23℃、湿度50%RHにて測定した。
(灰付着試験)
 離型フィルムの帯電防止性は、20℃、50%RHの雰囲気下で、離型フィルムをポリエステル繊維の布で10回摩擦した後、灰の付着を調べ、
 付着無し:○
 付着が著しい:×
 とした。
(融点(Tm)、結晶融解熱量)
 示差走査熱量計(DSC)としてティー・エイ・インスツルメント社製Q100を用い、重合体試料約5mgを精秤し、JISK7121に準拠し、窒素ガス流入量:50ml/分の条件下で、25℃から加熱速度:10℃/分で280℃まで昇温して熱融解曲線を測定し、得られた熱融解曲線から、試料の融点(Tm)及び結晶融解熱量を求めた。
(離型性)
 各実施例/参考例で作製したプロセス用離型フィルムを、図3-1、3-2に示されるように、上型と下型との間に10Nの張力を印加した状態で配置した後、上型のパーティング面に真空吸着させた。次いで、半導体チップを覆うように基板上に封止樹脂を充填後、基板に固定された半導体チップを下型に配置し、型締めした。このとき、成形金型の温度(成形温度)を120℃、成形圧力を10MPa、成形時間を400秒とした。そして、図3-1c、3-2cに示されるように、半導体チップを封止樹脂で封止した後、樹脂封止された半導体チップ(半導体パッケージ)を離型フィルムから離型した。
 離型フィルムの離型性を、以下の基準で評価した。
◎:離型フィルムが、金型の開放と同時に自然に剥がれる。
○:離型フィルムは自然には剥がれないが、手で引っ張ると(張力を加えると)簡単に剥がれる。
×:離型フィルムが、半導体パッケージの樹脂封止面に密着しており、手では剥がせない。
(皺)
 上記工程で離型を行った後の、離型フィルム、および半導体パッケージの樹脂封止面の皺の状態を、以下の基準で評価した。
 ◎:離型フィルムおよび半導体パッケージのいずれにも皺が全くない。
 ○:離型フィルムにはわずかに皺があるが、半導体パッケージへの皺の転写はない。
 ×:離型フィルムはもちろん、半導体パッケージにも多数の皺あり。
(成形品の外観)
 上記工程で離型を行った後の、離型フィルム、および半導体パッケージの樹脂封止面の外観を、以下の基準で評価した。
 ◎:離型フィルムおよび半導体パッケージのいずれにも皺が全くなく、半導体パッケージ外周部のバリも全くない。
 ○:離型フィルムおよび半導体パッケージのいずれにも皺が全くないか又はわずかに皺があり、半導体パッケージ外周部にわずかにバリがある。
 ×:離型フィルムはもちろん、半導体パッケージにも多数の皺あるか、または半導体パッケージ外周部にバリが多くある。
(金型追従性)
 上記工程で離型を行った際の離型フィルムの金型追従性を、以下の基準で評価した。
 ◎:半導体パッケージに、樹脂欠け(樹脂が充填されない部分)が全くない。
 ○:半導体パッケージの端部に、樹脂欠けが僅かにある(ただし皺による欠けは除く) ×:半導体パッケージの端部に、樹脂欠けが多くある(ただし皺による欠けは除く)
 [実施例1-1]
 耐熱樹脂層1Bとして、膜厚16μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーF865)を使用した。当該二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率は、縦(MD)方向で-1.6%、横(TD)方向で-1.2%であった。また、当該二軸延伸PETフィルムの融点は、187℃であり、結晶融解熱量は、30.6J/gであった。
 離型層1A及び1A’として、無延伸の4-メチル-1-ペンテン共重合樹脂フィルムを使用した。具体的には、三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)」を270℃で溶融押出して、T型ダイのスリット幅を調整することにより、厚み15μmの無延伸フィルムを成膜したものを使用した。
 無延伸の4-メチル-1-ペンテン共重合樹脂フィルムは、一方のフィルム表面が、JIS R3257に基づく水接触角が30°以上の場合、30以下となるように、接着剤による接着性向上の観点からコロナ処理を施した。
 当該4-メチル-1-ペンテン共重合樹脂フィルムの23℃から120℃までの熱寸法変化率は、縦(MD)方向で6.5%、横(TD)方向で3.1%であった。
 (接着剤)
 各フィルムを貼り合せるドライラミ工程で使用する接着剤としては、以下のウレタン系接着剤Aを用いた。
[ウレタン系接着剤A]
主剤:タケラックA-616(三井化学社製)。硬化剤:タケネートA-65(三井化学社製)。主剤と硬化剤とを、質量比(主剤:硬化剤)が16:1となるように混合し、希釈剤として酢酸エチルを用いた。
(離型フィルムの製造)
 二軸延伸PET(ポリエチレンテレフタレート)フィルムの一方の面に、グラビアコートでウレタン系接着剤Aを1.5g/mで塗工し、無延伸の4-メチル-1-ペンテン共重合樹脂フィルムのコロナ処理面をドライラミネートにて貼り合わせ後、続いてこのラミネートフィルムの二軸延伸PET(ポリエチレンテレフタレート)フィルム面の側に、ウレタン系接着剤Aを1.5g/mで塗工し、無延伸の4-メチル-1-ペンテン共重合樹脂フィルムのコロナ処理面をドライラミネートにて貼り合わせて、5層構造(離型層1A/接着層/耐熱樹脂層1B/接着層/離型層1A’)のプロセス用離型フィルムを得た。
 ドライラミネート条件は、基材幅900mm、搬送速度30m/分、乾燥温度50~60℃、ラミネートロール温度50℃、ロール圧力3.0MPaとした。
 当該プロセス用離型フィルムの23℃から120℃までの熱寸法変化率は、縦(MD)方向で2.1%、横(TD)方向で1.5%であった。
 離型性、皺、及び金型追従性の評価結果を表1-1に示す。離型フィルムが、金型の開放と同時に自然に剥がれる良好な離型性を示し、離型フィルムおよび半導体パッケージのいずれにも皺が全くなく、すなわち皺が十分に抑制され、半導体パッケージに樹脂欠けが全くない良好な金型追従性を示した。すなわち、実施例1-1のプロセス用離型フィルムは、離型性、皺の抑制、及び金型追従性が良好なプロセス用離型フィルムであった。
[実施例1-2~1-12]
 表1-1に示す組み合わせで表1-1記載の各フィルムを離型層1A及び1A’並びに耐熱樹脂層1Bとして用いた他は、実施例1-1と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。結果を表1-1に示す。
 一部に皺の抑制、又は金型追従性が実施例1-1には及ばないものもあったが、いずれの実施例も離型性、皺の抑制、及び金型追従性が高いレベルでバランスした良好なプロセス用離型フィルムであった
 なお、表1-1に記載の各フィルムの詳細は、以下のとおりである。
(1A1)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み15μmの無延伸フィルムを成膜したもの。(融点:229℃、結晶融解熱量:21.7J/g)
(1A2)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:DX818)を用いて厚み15μmの無延伸フィルムを成膜したもの。(融点:235℃、結晶融解熱量:28.1J/g)
(1A3)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:229℃、結晶融解熱量:21.7J/g)
(1A4)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:DX818)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:235℃、結晶融解熱量:28.1J/g)
(1A5)フッ素樹脂フィルム
 膜厚25μmのETFE(エチレン-テトラフルオロエチレン)フィルム(旭硝子株式会社製、製品名:アフレックス25N)(融点:256℃、結晶融解熱量:33.7J/g)
(1A6)ポリスチレン系樹脂フィルム
 膜厚50μmのポリスチレン系フィルム(倉敷紡績株式会社製、製品名:オイディスCA-F)(融点:253℃、結晶融解熱量:19.2J/g)
(1B1)2軸延伸PETフィルム
 膜厚16μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーF865)(融点:187℃、結晶融解熱量:30.6J/g)
(1B2)2軸延伸PETフィルム
 膜厚12μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーS10)(融点:258℃、結晶融解熱量:39.4J/g)
(1B3)2軸延伸ナイロンフィルム
 膜厚15μmの二軸延伸ナイロンフィルム(興人フィルム&ケミカルズ株式会社製、製品名:ボニールRX)(融点:212℃、結晶融解熱量:53.1J/g)
(1B4)2軸延伸ナイロンフィルム
 膜厚15μmの二軸延伸ナイロンフィルム(出光ユニテック株式会社製、製品名:ユニロンS330)(融点:221℃、結晶融解熱量:60.3J/g)
(1B5)2軸延伸ポリプロピレンフィルム
 膜厚20μmの二軸延伸ポリプロピレンフィルム(三井化学東セロ株式会社製、製品名:U-2)(融点:160℃、結晶融解熱量:93.3J/g)
(1B6)無延伸ナイロンフィルム
 膜厚20μmの無延伸ナイロンフィルム(三菱樹脂株式会社製、製品名:ダイナミロンC)(融点:220℃、結晶融解熱量:39.4J/g)
(1B7)2軸延伸PETフィルム
 膜厚25μmの2軸延伸PETフィルム(帝人デュポンフィルム株式会社製、製品名:FT3PE)(融点:214℃、結晶融解熱量:40.3J/g)
(1B8)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5020)を用いて厚み20μmの無延伸フィルムを成膜したもの。(融点:223℃、結晶融解熱量:49.8J/g)
(1B9)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5505S)を用いて厚み20μmの無延伸フィルムを成膜したもの。(融点:219℃、結晶融解熱量:48.3J/g)
(1B10)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5020)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:223℃、結晶融解熱量:49.8J/g)
(1B11)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5505S)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:219℃、結晶融解熱量:48.3J/g)
[参考例1-1~1-4]
 表1-1に示すフィルム1A3、1A4、1B10、及び1B11を、それぞれ単独でプロセス用離型フィルムとして使用して、実施例1-1と同様にして封止、離型を行い、プロセス用離型フィルムの特性を評価した。
 いずれの参考例も、総合的に実施例には及ばない性能に留まり、特に皺の発生を抑制することができなかった。
Figure JPOXMLDOC01-appb-T000001
[実施例13~20]
 表1-2に示す組み合わせで表1-2記載の各フィルムを離型層1A及び1A’並びに耐熱樹脂層1Bとした離型フィルムを用いて、実施例1-1と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。
 図4に示されるように、離型フィルムを上型と下型との間に20Nの張力を印加した状態で配置した後、上型のパーティング面に真空吸着させた。次いで、半導体チップを覆うように基板上に封止樹脂を充填後、基板に固定された半導体チップを下型に配置し、型締めした。このとき、成形金型の温度(成形温度)を170℃、成形圧力を10MPa、成形時間を100秒とした。そして、図3-1cに示されるように、半導体チップを封止樹脂で封止した後、樹脂封止された半導体チップ(半導体パッケージ)を離型フィルムから離型した。結果を表1-2に示す。
 一部に金型追従性が実施例1-1には及ばないものもあったが、いずれの実施例も離型性、皺の抑制、及び金型追従性が高いレベルでバランスした良好なプロセス用離型フィルムであり、特に実施例1-11、及び実施例1-13から1-15は、離型性、皺の抑制、及び金型追従性が良好なプロセス用離型フィルムであった。
[参考例1-5~1-7]
 表1-2に示す組み合わせで表1-2記載の各フィルムを離型層1A及び1A’並びに耐熱樹脂層1Bとして用いたこと以外は、実施例1-11から1-16と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。結果を表1-2に示す。
 離型性、及び金型追従性は実施例と同様に良好であったが、皺の発生を抑制することができなかった。
[参考例1-8~1-11]
 表1-2に示すフィルム1A1、1A2、1B10、及び1B11を、それぞれ単独でプロセス用離型フィルムとして使用して、実施例1-11から1-16と同様にして封止、離型を行い、プロセス用離型フィルムの特性を評価した。
 いずれの参考例も、総合的に各実施例には及ばない性能に留まり、特に皺の発生を抑制することができなかった。
Figure JPOXMLDOC01-appb-T000002
 [実施例2-1]
 耐熱樹脂層2Bの基材2B0aとして、膜厚16μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーF865)を使用した。
 帯電防止樹脂aとして、PEDOTポリチオフェン系樹脂(化研産業社製、製品名:MC-200)を使用し、高分子系帯電防止剤を含有する層を形成した。より具体的には、 帯電防止樹脂aを、耐熱樹脂層2Bの基材2B0aの片面に0.1g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層2B1aを形成した。
 上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルム(耐熱樹脂層2Ba)の23℃から120℃までの熱寸法変化率は、縦(MD)方向で-1.8%、横(TD)方向で-1.4%であった。また、当該二軸延伸PETフィルムの融点は、187℃であり、結晶融解熱量は、30.6J/gであった。
 離型層2A及び2A’として、無延伸の4-メチル-1-ペンテン共重合樹脂フィルム2Aa(2A’a)を使用した。具体的には、三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)」を270℃で溶融押出して、T型ダイのスリット幅を調整することにより、厚み15μmの無延伸フィルムを成膜したものを使用した。
 無延伸の4-メチル-1-ペンテン共重合樹脂フィルムは、一方のフィルム表面が、JIS R3257に基づく水接触角が30°以上の場合、30以下となるように、接着剤による接着性向上の観点からコロナ処理を施した。
 当該4-メチル-1-ペンテン共重合樹脂フィルムAaの23℃から120℃までの熱寸法変化率は、縦(MD)方向で6.5%、横(TD)方向で3.1%であった。
(接着剤)
 各フィルムを貼り合せるドライラミ工程で使用する接着剤としては、以下のウレタン系接着剤αを用いた。
[ウレタン系接着剤α]
主剤:タケラックA-616(三井化学社製)。硬化剤:タケネートA-65(三井化学社製)。主剤と硬化剤とを、質量比(主剤:硬化剤)が16:1となるように混合し、希釈剤として酢酸エチルを用いた。
(離型フィルムの製造)
 当該帯電防止層を付与した二軸延伸PETフィルム(耐熱樹脂層2Ba)の一方の面に、グラビアコートでウレタン系接着剤αを1.5g/mで塗工し、無延伸の4-メチル-1-ペンテン共重合樹脂フィルム2Aaのコロナ処理面をドライラミネートにて貼り合わせ後、続いてこのラミネートフィルムの二軸延伸PETフィルム面の側に、ウレタン系接着剤αを1.5g/mで塗工し、無延伸の4-メチル-1-ペンテン共重合樹脂フィルム2A’aのコロナ処理面をドライラミネートにて貼り合わせて、5層構造(離型層2A/接着層/耐熱樹脂層2B/接着層/離型層2A’)のプロセス用離型フィルムを得た。
 ドライラミネート条件は、基材幅900mm、搬送速度30m/分、乾燥温度50~60℃、ラミネートロール温度50℃、ロール圧力3.0MPaとした。
 当該プロセス用離型フィルムの23℃から120℃までの熱寸法変化率は、縦(MD)方向で2.2%、横(TD)方向で1.4%であった。
 離型性、成形品の外観、及び金型追従性の評価結果を表2-1に示す。離型フィルムが、金型の開放と同時に自然に剥がれる良好な離型性を示し、離型フィルムおよび半導体パッケージのいずれにも皺やバリが全くなく、すなわち皺が十分に抑制され、半導体パッケージに樹脂欠けが全くない良好な金型追従性を示した。すなわち、実施例2-1のプロセス用離型フィルムは、離型性、成形品の外観、及び金型追従性が良好なプロセス用離型フィルムであった。
[実施例2-2~2-8]
 表2-1に示すフィルム構成となるようにした他は、実施例2-1と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。結果を表2-1に示す。
 なお、表2-1の記載の高分子系帯電防止剤2bから2e、及びそれを含む層2B1bから2B1eの詳細は、以下のとおりである。
 帯電防止樹脂2bとして、PEDOTポリチオフェン系樹脂(中京油脂社製、製品名:S-495)を使用し、高分子系帯電防止剤を含有する層を形成した。より具体的には、帯電防止樹脂2bを、耐熱樹脂層2Bの基材2B0a等の片面に0.3g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層2B1bを形成した。上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率は、表2-1記載の結果であった。
 帯電防止樹脂2cとして、PEDOTポリチオフェン系樹脂(長瀬産業社製、製品名:P-530RL)を使用し、高分子系帯電防止剤を含有する層を形成した。より具体的には、帯電防止樹脂2cを、耐熱樹脂層2Bの基材2B0a等の片面に0.1g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層2B1cを形成した。上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率は、表2-1記載の結果であった。
 帯電防止樹脂2dとして、4級アンモニウム塩含有樹脂(大成ファインケミカル社製、製品名:1SX-1090)を使用し、高分子系帯電防止剤を含有する層を形成した。より具体的には、帯電防止樹脂2dを、耐熱樹脂層2Bの基材2B0a等の片面に0.4g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層2B1dを形成した。上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率は、表2-1記載の結果であった。
 帯電防止樹脂2eとして、アニオン系合成粘土鉱物含有ポリエステル系樹脂(高松油脂社製、製品名:ASA-2050)を使用し、高分子系帯電防止剤を含有する層を形成した。具体的には、帯電防止樹脂2eを、耐熱樹脂層2Bの基材2B0a等の片面に0.4g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層2B1eを形成した。上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率、水接触角等の試験項目および評価結果は表2-1に示す通りであった。
 いずれの実施例も離型性、成形品の外観、金型追従性、および灰付着試験のすべての試験項目で良好であり性能面においてバランスの取れたプロセス用離型フィルムであった
 なお、表に記載の各フィルムの詳細は、以下のとおりである。
(2Aa)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み15μmの無延伸フィルムを成膜したもの。(融点:229℃、結晶融解熱量:21.7J/g)
(2Ab)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:229℃、結晶融解熱量:21.7J/g)
(2Ac)フッ素樹脂フィルム
 膜厚25μmのETFE(エチレン-テトラフルオロエチレン)フィルム(旭硝子株式会社製、製品名:アフレックス25N)(融点:256℃、結晶融解熱量:33.7J/g)
(2B0a)2軸延伸PETフィルム
 膜厚16μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーF865)(融点:187℃、結晶融解熱量:30.6J/g)
(2B0b)2軸延伸ポリプロピレンフィルム
 膜厚20μmの二軸延伸ポリプロピレンフィルム(三井化学東セロ株式会社製、製品名:U-2)(融点:160℃、結晶融解熱量:93.3J/g)
(2B0c)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5505S)を用いて厚み20μmの無延伸フィルムを成膜したもの。(融点:219℃、結晶融解熱量:48.3J/g)
(2B0d)2軸延伸ナイロンフィルム
 膜厚15μmの二軸延伸ナイロンフィルム(出光ユニテック株式会社製、製品名:ユニロンS330)(融点:221℃、結晶融解熱量:60.3J/g)
(2B0e)無延伸ナイロンフィルム
 膜厚20μmの無延伸ナイロンフィルム(三菱樹脂株式会社製、製品名:ダイナミロンC)(融点:220℃、結晶融解熱量:39.4J/g)
(2B0f)2軸延伸PETフィルム
 膜厚25μmの2軸延伸PETフィルム(帝人デュポンフィルム株式会社製、製品名:FT3PE)(融点:214℃、結晶融解熱量:40.3J/g)
(2B0g)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5020)を用いて厚み20μmの無延伸フィルムを成膜したもの。(融点:223℃、結晶融解熱量:49.8J/g)
(2B0h)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5020)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:223℃、結晶融解熱量:49.8J/g)
[参考例2-1~2-4]
 表2-1に示すフィルム構成となるようにした他は、実施例2-1と同様にして封止、離型を行い、プロセス用離型フィルムの特性を評価した。
 いずれの参考例も、総合的に実施例には及ばない性能に留まり、特に成形品の外観は劣っていた。さらに、灰付着試験においては参考例2-2を除いて良好な結果が得られなかった。
Figure JPOXMLDOC01-appb-T000003
[実施例2-9~2-16]
 表2-2に示す組み合わせで表2-2記載の各フィルムを離型層2A及び2A’並びに耐熱樹脂層2Bとした他は、実施例2-1と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。
 図3aに示されるように、離型フィルムを上型と下型との間に20Nの張力を印加した状態で配置した後、上型のパーティング面に真空吸着させた。次いで、半導体チップを覆うように基板上に封止樹脂を充填後、基板に固定された半導体チップを下型に配置し、型締めした。このとき、成形金型の温度(成形温度)を170℃、成形圧力を10MPa、成形時間を100秒とした。そして、図3cに示されるように、半導体チップを封止樹脂で封止した後、樹脂封止された半導体チップ(半導体パッケージ)を離型フィルムから離型した。結果を表2-2に示す。
 いずれの実施例も170℃での高温域の評価にもかかわらず、離型性、成形品の外観、及び金型追従性がおよび灰付着試験のすべての試験項目で良好であり性能面からバランスの取れたプロセス用離型フィルムであった。特に実施例2-11、及び実施例2-13から2-15は、離型性、成形品の外観、及び金型追従性が良好なプロセス用離型フィルムであった。
[参考例2-5~2-7]
 表2-2に示すフィルム構成となるようにした他は、実施例2-11から2-16と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。結果を表2-2に示す。
 離型性は実施例と同様に良好であったが、皺の発生を抑制することができず、成形品の外観は劣っていた。さらに灰付着試験においても参考例2-6を除き良好な結果は得られなかった。
[参考例2-8~2-10]
 表2-2に示すフィルム構成となるようにした他は、実施例2-9と同様にして封止、離型を行い、プロセス用離型フィルムの特性を評価した。結果を表2-2に示す。
 いずれの参考例も、総合的に各実施例には及ばない性能に留まり、特に皺の発生を抑制することができず、成形品の外観は劣っていた。
 以下、本願第3及び第4発明を実施例によりさらに詳細に説明するが、本願第3及び第4発明は、これにより何ら限定されるものではない。
 以下の実施例/参考例において、物性/特性の評価は下記の方法で行った。
(熱寸法変化率)
 フィルムサンプルをフィルムの縦(MD)方向および横(TD)方向にそれぞれ長さ20mm、幅4mmに切り出し、TAインスツルメンツ社製TMA(熱機械分析装置、製品名:Q400)を用い、チャック間距離8mmにて0.005Nの荷重をかけた状態で23℃5分間保持後、23℃から120℃まで10℃/分の昇温速度で昇温させ、それぞれの方向の寸法変化を測定し、下記式(1)により寸法変化率を算出した。
 
 熱寸法変化率(%)(23→120℃) = {[(L-L)/L]×100}
                                  ・・・(1)
 L:23℃時のサンプル長(mm)
 L:120℃時のサンプル長(mm)
 
 同様に、23℃から170℃まで10℃/分の昇温速度で昇温させ、それぞれの方向の寸法変化を測定し、下記式(2)により寸法変化率を算出した。
 
 熱寸法変化率(%)(23→170℃) = {[(L-L)/L]×100}
                                  ・・・(2)
 L:23℃時のサンプル長(mm)
 L:170℃時のサンプル長(mm)
 水に対する接触角(水接触角)
 JIS R3257に準拠して、接触角測定器(Kyowa Inter face Science社製、FACECA-W)を用いて離型層A等の表面の水接触角を測定した。
(引張弾性率)
引張弾性率の測定方法
JIS K7127に準拠し、23℃、120℃、170℃での引張弾性率を求めた。
測定条件:引張モード
測定方向:フィルムの縦(MD)方向(フィルム搬送方向)
(表面固有抵抗値)
 得られた離型フィルムから切り出した10×10cmの試験片を、温度23℃、湿度50%RHに24時間保管した。その後、アドバンテスト社製デジタル超高抵抗/微量電流計(8340A)とレジスチビティチェンバ(R12704)を用いて、印加電圧を0.10V、温度23℃、湿度50%RHにて測定した。
(灰付着試験)
 離型フィルムの帯電防止性は、20℃、50%RHの雰囲気下で、離型フィルムをポリエステル繊維の布で10回摩擦した後、灰の付着を調べ、
 付着無し:○
 付着が著しい:×
 とした。
(融点(Tm)、結晶融解熱量)
 示差走査熱量計(DSC)としてティー・エイ・インスツルメント社製Q100を用い、重合体試料約5mgを精秤し、JISK7121に準拠し、窒素ガス流入量:50ml/分の条件下で、25℃から加熱速度:10℃/分で280℃まで昇温して熱融解曲線を測定し、得られた熱融解曲線から、試料の融点(Tm)及び結晶融解熱量を求めた。
(離型性)
 各実施例/参考例で作製したプロセス用離型フィルムを、図3に示されるように、上型と下型との間に10Nの張力を印加した状態で配置した後、上型のパーティング面に真空吸着させた。次いで、半導体チップを覆うように基板上に封止樹脂を充填後、基板に固定された半導体チップを下型に配置し、型締めした。このとき、成形金型の温度(成形温度)を120℃、成形圧力を10MPa、成形時間を400秒とした。そして、図3cに示されるように、半導体チップを封止樹脂で封止した後、樹脂封止された半導体チップ(半導体パッケージ)を離型フィルムから離型した。
 離型フィルムの離型性を、以下の基準で評価した。
◎:離型フィルムが、金型の開放と同時に自然に剥がれる。
○:離型フィルムは自然には剥がれないが、手で引っ張ると(張力を加えると)簡単に剥がれる。
×:離型フィルムが、半導体パッケージの樹脂封止面に密着しており、手では剥がせない。
(皺)
 上記工程で離型を行った後の、離型フィルム、および半導体パッケージの樹脂封止面の皺の状態を、以下の基準で評価した。
 ◎:離型フィルムおよび半導体パッケージのいずれにも皺が全くない。
 ○:離型フィルムにはわずかに皺があるが、半導体パッケージへの皺の転写はない。
 ×:離型フィルムはもちろん、半導体パッケージにも多数の皺あり。
(成形品の外観)
 上記工程で離型を行った後の、離型フィルム、および半導体パッケージの樹脂封止面の外観を、以下の基準で評価した。
 ◎:離型フィルムおよび半導体パッケージのいずれにも皺が全くなく、半導体パッケージ外周部のバリも全くない。
 ○:離型フィルムおよび半導体パッケージのいずれにも皺が全くないか又はわずかに皺があり、半導体パッケージ外周部にわずかにバリがある。
 ×:離型フィルムはもちろん、半導体パッケージにも多数の皺あるか、または半導体パッケージ外周部にバリが多くある。
(金型追従性)
 上記工程で離型を行った際の離型フィルムの金型追従性を、以下の基準で評価した。
 ◎:半導体パッケージに、樹脂欠け(樹脂が充填されない部分)が全くない。
 ○:半導体パッケージの端部に、樹脂欠けが僅かにある(ただし皺による欠けは除く) ×:半導体パッケージの端部に、樹脂欠けが多くある(ただし皺による欠けは除く)
 [実施例3-1]
 耐熱樹脂層3Bとして、膜厚12μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーS10)を使用した。当該二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率は、縦(MD)方向で-0.3%、横(TD)方向で-0.3%であった。また、当該二軸延伸PETフィルムの融点は、258℃であり、結晶融解熱量は、39.4J/gであった。
 離型層3A及び3A’として、無延伸の4-メチル-1-ペンテン共重合樹脂フィルムを使用した。具体的には、三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)」を270℃で溶融押出して、T型ダイのスリット幅を調整することにより、厚み15μmの無延伸フィルムを成膜したものを使用した。
 無延伸の4-メチル-1-ペンテン共重合樹脂フィルムは、一方のフィルム表面が、JIS R3257に基づく水接触角が30°以上の場合、30以下となるように、接着剤による接着性向上の観点からコロナ処理を施した。
 当該4-メチル-1-ペンテン共重合樹脂フィルムの23℃から120℃までの熱寸法変化率は、縦(MD)方向で6.5%、横(TD)方向で3.1%であった。
 (接着剤)
 各フィルムを貼り合せるドライラミ工程で使用する接着剤としては、以下のウレタン系接着剤Aを用いた。
[ウレタン系接着剤A]
主剤:タケラックA-616(三井化学社製)。硬化剤:タケネートA-65(三井化学社製)。主剤と硬化剤とを、質量比(主剤:硬化剤)が16:1となるように混合し、希釈剤として酢酸エチルを用いた。
(離型フィルムの製造)
 二軸延伸PET(ポリエチレンテレフタレート)フィルムの一方の面に、グラビアコートでウレタン系接着剤Aを1.5g/mで塗工し、無延伸の4-メチル-1-ペンテン共重合樹脂フィルムのコロナ処理面をドライラミネートにて貼り合わせ後、続いてこのラミネートフィルムの二軸延伸PET(ポリエチレンテレフタレート)フィルム面の側に、ウレタン系接着剤Aを1.5g/mで塗工し、無延伸の4-メチル-1-ペンテン共重合樹脂フィルムのコロナ処理面をドライラミネートにて貼り合わせて、5層構造(離型層3A/接着層/耐熱樹脂層3B/接着層/離型層3A’)のプロセス用離型フィルムを得た。
 ドライラミネート条件は、基材幅900mm、搬送速度30m/分、乾燥温度50~60℃、ラミネートロール温度50℃、ロール圧力3.0MPaとした。
 当該プロセス用離型フィルムの23℃から120℃までの熱寸法変化率は、縦(MD)方向で2.1%、横(TD)方向で1.5%であった。
 離型性、皺、及び金型追従性の評価結果を表3-1に示す。離型フィルムが、金型の開放と同時に自然に剥がれる良好な離型性を示し、離型フィルムおよび半導体パッケージのいずれにも皺が全くなく、すなわち皺が十分に抑制され、半導体パッケージに樹脂欠けが全くない良好な金型追従性を示した。すなわち、実施例3-1のプロセス用離型フィルムは、離型性、皺の抑制、及び金型追従性が良好なプロセス用離型フィルムであった。
[実施例3-2~3-9]
 表3-1に示す組み合わせで表3-1記載の各フィルムを離型層3A及び3A’並びに耐熱樹脂層3Bとして用いた他は、実施例3-1と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。結果を表3-1に示す。
 一部に皺の抑制、又は金型追従性が実施例3-1には及ばないものもあったが、いずれの実施例も離型性、皺の抑制、及び金型追従性が高いレベルでバランスした良好なプロセス用離型フィルムであった
 なお、表に記載の各フィルムの詳細は、以下のとおりである。
(3A1)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み15μmの無延伸フィルムを成膜したもの。(融点:229℃、結晶融解熱量:21.7J/g)
(3A2)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:DX818)を用いて厚み15μmの無延伸フィルムを成膜したもの。(融点:235℃、結晶融解熱量:28.1J/g)
(3A3)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:229℃、結晶融解熱量:21.7J/g)
(3B1)2軸延伸PETフィルム
 膜厚12μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーS10)(融点:258℃、結晶融解熱量:39.4J/g)
(3B2)2軸延伸ナイロンフィルム
 膜厚15μmの二軸延伸ナイロンフィルム(興人フィルム&ケミカルズ株式会社製、製品名:ボニールRX)(融点:212℃、結晶融解熱量:53.1J/g)
(3B3)2軸延伸ナイロンフィルム
 膜厚15μmの二軸延伸ナイロンフィルム(出光ユニテック株式会社製、製品名:ユニロンS330)(融点:221℃、結晶融解熱量:60.3J/g)
(3B4)2軸延伸ポリプロピレンフィルム
 膜厚20μmの二軸延伸ポリプロピレンフィルム(三井化学東セロ株式会社製、製品名:U-2)(融点:160℃、結晶融解熱量:93.3J/g)
(3B5)無延伸ナイロンフィルム
 膜厚20μmの無延伸ナイロンフィルム(三菱樹脂株式会社製、製品名:ダイナミロンC)(融点:220℃、結晶融解熱量:39.4J/g)
(3B6)2軸延伸PETフィルム
 膜厚25μmの2軸延伸PETフィルム(帝人デュポンフィルム株式会社製、製品名:FT3PE)(融点:214℃、結晶融解熱量:40.3J/g)
(3B7)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5020)を用いて厚み20μmの無延伸フィルムを成膜したもの。(融点:223℃、結晶融解熱量:49.8J/g)
(3B8)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5505S)を用いて厚み20μmの無延伸フィルムを成膜したもの。(融点:219℃、結晶融解熱量:48.3J/g)
(3B9)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5020)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:223℃、結晶融解熱量:49.8J/g)
(3B10)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5505S)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:219℃、結晶融解熱量:48.3J/g)
[参考例3-1~3-3]
 表3-1に示すフィルム3A3、3B9、及び3B10を、それぞれ単独でプロセス用離型フィルムとして使用して、実施例3-1と同様にして封止、離型を行い、プロセス用離型フィルムの特性を評価した。
 いずれの参考例も、総合的に実施例には及ばない性能に留まり、特に皺の発生を抑制することができなかった。
Figure JPOXMLDOC01-appb-T000005
[実施例3-10~3-14]
 表3-2に示す組み合わせで表3-2記載の各フィルムを離型層3A及び3A’並びに耐熱樹脂層3Bとした離型フィルムを用いて、実施例3-1と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。
 図4に示されるように、離型フィルムを上型と下型との間に20Nの張力を印加した状態で配置した後、上型のパーティング面に真空吸着させた。次いで、半導体チップを覆うように基板上に封止樹脂を充填後、基板に固定された半導体チップを下型に配置し、型締めした。このとき、成形金型の温度(成形温度)を170℃、成形圧力を10MPa、成形時間を100秒とした。そして、図3cに示されるように、半導体チップを封止樹脂で封止した後、樹脂封止された半導体チップ(半導体パッケージ)を離型フィルムから離型した。結果を表3-2に示す。
 一部に金型追従性が実施例3-1には及ばないものもあったが、いずれの実施例も離型性、皺の抑制、及び金型追従性が高いレベルでバランスした良好なプロセス用離型フィルムであり、特に実施例3-11から3-13は、離型性、皺の抑制、及び金型追従性が良好なプロセス用離型フィルムであった。
[参考例3-4~3-6]
 表3-2に示す組み合わせで表3-2記載の各フィルムを離型層3A及び3A’並びに耐熱樹脂層3Bとして用いたこと以外は、実施例3-10から3-14と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。結果を表3-2に示す。
 離型性、及び金型追従性は実施例と同様に良好であったが、皺の発生を抑制することができなかった。
[参考例3-7~3-10]
 表3-2に示すフィルム3A1、3A2、3B9、及び3B10を、それぞれ単独でプロセス用離型フィルムとして使用して、実施例3-10から3-14と同様にして封止、離型を行い、プロセス用離型フィルムの特性を評価した。
 いずれの参考例も、総合的に各実施例には及ばない性能に留まり、特に皺の発生を抑制することができなかった。
Figure JPOXMLDOC01-appb-T000006
 [実施例4-1]
 耐熱樹脂層4Bの基材4B0aとして、膜厚12μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーS10)を使用した。
 帯電防止樹脂4aとして、PEDOTポリチオフェン系樹脂(化研産業社製、製品名:MC-200)を使用し、高分子系帯電防止剤を含有する層を形成した。より具体的には、帯電防止樹脂4aを、耐熱樹脂層4Bの基材4B0aの片面に0.1g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層4B1aを形成した。
 上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルム(耐熱樹脂層4Ba)の23℃から120℃までの熱寸法変化率は、縦(MD)方向で-0.1%、横(TD)方向で0.6%であった。また、当該二軸延伸PETフィルムの融点は、258℃であり、結晶融解熱量は、39.4J/gであった。
 離型層4A及び4A’として、無延伸の4-メチル-1-ペンテン共重合樹脂フィルム4Aa(4A’a)を使用した。具体的には、三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み15μmの無延伸フィルムを成膜したものを使用した。(融点:229℃、結晶融解熱量:21.7J/g)
 無延伸の4-メチル-1-ペンテン共重合樹脂フィルムは、一方のフィルム表面が、JIS R3257に基づく水接触角が30°以上の場合、30以下となるように、接着剤による接着性向上の観点からコロナ処理を施した。
 当該4-メチル-1-ペンテン共重合樹脂フィルム4Aaの23℃から120℃までの熱寸法変化率は、縦(MD)方向で6.5%、横(TD)方向で3.1%であった。
(接着剤)
 各フィルムを貼り合せるドライラミ工程で使用する接着剤としては、以下のウレタン系接着剤αを用いた。
[ウレタン系接着剤α]
主剤:タケラックA-616(三井化学社製)。硬化剤:タケネートA-65(三井化学社製)。主剤と硬化剤とを、質量比(主剤:硬化剤)が16:1となるように混合し、希釈剤として酢酸エチルを用いた。
(離型フィルムの製造)
 当該帯電防止層を付与した二軸延伸PETフィルム(耐熱樹脂層4Ba)の一方の面に、グラビアコートでウレタン系接着剤αを1.5g/mで塗工し、無延伸の4-メチル-1-ペンテン共重合樹脂フィルム4Aaのコロナ処理面をドライラミネートにて貼り合わせ後、続いてこのラミネートフィルムの二軸延伸PETフィルム面の側に、ウレタン系接着剤αを1.5g/mで塗工し、無延伸の4-メチル-1-ペンテン共重合樹脂フィルム4A’aのコロナ処理面をドライラミネートにて貼り合わせて、5層構造(離型層4A/接着層/耐熱樹脂層4B/接着層/離型層4A’)のプロセス用離型フィルムを得た。
 ドライラミネート条件は、基材幅900mm、搬送速度30m/分、乾燥温度50~60℃、ラミネートロール温度50℃、ロール圧力3.0MPaとした。
 当該プロセス用離型フィルムの23℃から120℃までの熱寸法変化率は、縦(MD)方向で1.0%、横(TD)方向で1.4%であった。
 引張弾性率、離型性、成形品の外観、金型追従性、表面固有抵抗値、及び灰付着試験の評価結果を表4-1に示す。離型フィルムが、金型の開放と同時に自然に剥がれる良好な離型性を示し、離型フィルムおよび半導体パッケージのいずれにも皺やバリが全くなく、すなわち皺が十分に抑制され、半導体パッケージに樹脂欠けが全くない良好な金型追従性を示した。すなわち、実施例4-1のプロセス用離型フィルムは、離型性、成形品の外観、及び金型追従性が良好なプロセス用離型フィルムであった。また、灰付着は認められなかった。
[実施例4-2~4-9]
 表4-1に示すフィルム構成となるようにした他は、実施例4-1と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。結果を表4-1に示す。
 なお、表4-1の記載の高分子系帯電防止剤4bから4e、及びそれを含む層4B1bから4B1eの詳細は、以下のとおりである。
 帯電防止樹脂4bとして、PEDOTポリチオフェン系樹脂(中京油脂社製、製品名:S-495)を使用し、高分子系帯電防止剤を含有する層を形成した。より具体的には、帯電防止樹脂4bを、耐熱樹脂層4Bの基材4B0a等の片面に0.3g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層4B1bを形成した。上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率は、表4-1記載の結果であった。
 帯電防止樹脂4cとして、PEDOTポリチオフェン系樹脂(長瀬産業社製、製品名:P-530RL)を使用し、高分子系帯電防止剤を含有する層を形成した。より具体的には、帯電防止樹脂4cを、耐熱樹脂層4Bの基材4B0a等の片面に0.1g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層4B1cを形成した。上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率は、表4-1記載の結果であった。
 帯電防止樹脂4dとして、4級アンモニウム塩含有樹脂(大成ファインケミカル社製、製品名:1SX-1090)を使用し、高分子系帯電防止剤を含有する層を形成した。より具体的には、帯電防止樹脂4dを、耐熱樹脂層4Bの基材4B0a等の片面に0.4g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層4B1dを形成した。上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率は、表4-1記載の結果であった。
 帯電防止樹脂4eとして、アニオン系合成粘土鉱物含有ポリエステル系樹脂(高松油脂社製、製品名:ASA-2050)を使用し、高分子系帯電防止剤を含有する層を形成した。具体的には、帯電防止樹脂4eを、耐熱樹脂層4Bの基材4B0a等の片面に0.4g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層4B1eを形成した。
 
アニオン系合成粘土鉱物含有ポリエステル系樹脂(高松油脂社製、製品名:ASA-2050)を使用し、高分子系帯電防止剤を含有する層を形成した。具体的には、帯電防止樹脂4eを、耐熱樹脂層4Bの基材4B0a等の片面に0.4g/mの塗布量で塗工し乾燥して高分子系帯電防止剤を含有する層4B1eを形成した。上記で得られた高分子系帯電防止剤を含有する層を付与した二軸延伸PETフィルムの23℃から120℃までの熱寸法変化率、水接触角等の試験項目および評価結果は表4-1に示す通りであった。
 いずれの実施例も離型性、成形品の外観、金型追従性、および灰付着試験のすべての試験項目で良好であり性能面においてバランスの取れたプロセス用離型フィルムであった
 なお、表4-1に記載の各フィルムの詳細は、以下のとおりである。
(4Aa)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み15μmの無延伸フィルムを成膜したもの。(融点:229℃、結晶融解熱量:21.7J/g)
(4Ab)無延伸4MP-1(TPX)フィルム
 三井化学株式会社製4-メチル-1-ペンテン共重合樹脂(製品名:TPX、銘柄名:MX022)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:229℃、結晶融解熱量:21.7J/g)
(4B0a)2軸延伸PETフィルム
 膜厚12μmの二軸延伸PET(ポリエチレンテレフタレート)フィルム(東レ株式会社製、製品名:ルミラーS10)(融点:258℃、結晶融解熱量:39.4J/g)
(4B0b)2軸延伸ナイロンフィルム
 膜厚15μmの二軸延伸ナイロンフィルム(興人フィルム&ケミカルズ株式会社製、製品名:ボニールRX)(融点:212℃、結晶融解熱量:53.1J/g)
(B0c)2軸延伸ポリプロピレンフィルム
 膜厚20μmの二軸延伸ポリプロピレンフィルム(三井化学東セロ株式会社製、製品名:U-2)(融点:160℃、結晶融解熱量:93.3J/g)
(4B0d)無延伸ナイロンフィルム
 膜厚20μmの無延伸ナイロンフィルム(三菱樹脂株式会社製、製品名:ダイナミロンC)(融点:220℃、結晶融解熱量:39.4J/g)
(4B0e)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5505S)を用いて厚み20μmの無延伸フィルムを成膜したもの。(融点:219℃、結晶融解熱量:48.3J/g)
(4B0f)無延伸ポリブチレンテレフタレートフィルム
 三菱エンジニアリングプラスチックス株式会社製のポリブチレンテレフタレート樹脂(銘柄名:5505S)を用いて厚み50μmの無延伸フィルムを成膜したもの。(融点:219℃、結晶融解熱量:48.3J/g)
[参考例4-1~4-3]
 表4-1に示すフィルム構成となるようにした他は、実施例4-1と同様にして封止、離型を行い、プロセス用離型フィルムの特性を評価した。
 いずれの参考例も、総合的に実施例には及ばない性能に留まり、特に灰付着試験結果は劣っていた。さらに、外観については、参考例4-1を除いて良好な結果が得られなかった。
Figure JPOXMLDOC01-appb-T000007
[実施例4-10~4-17]
 表4-2に示す組み合わせで表4-2記載の各フィルムを離型層4A及び4A’並びに耐熱樹脂層4Bとした他は、実施例4-1と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。
 図3aに示されるように、離型フィルムを上型と下型との間に20Nの張力を印加した状態で配置した後、上型のパーティング面に真空吸着させた。次いで、半導体チップを覆うように基板上に封止樹脂を充填後、基板に固定された半導体チップを下型に配置し、型締めした。このとき、成形金型の温度(成形温度)を170℃、成形圧力を10MPa、成形時間を100秒とした。そして、図3cに示されるように、半導体チップを封止樹脂で封止した後、樹脂封止された半導体チップ(半導体パッケージ)を離型フィルムから離型した。結果を表4-2に示す。
 いずれの実施例も170℃での高温域の評価にもかかわらず、離型性、成形品の外観、及び金型追従性がおよび灰付着試験のすべての試験項目で良好であり性能面からバランスの取れたプロセス用離型フィルムであった。特に実施例4-15から4-17は、離型性、成形品の外観、金型追従性、及び灰付着試験結果が良好なプロセス用離型フィルムであった。
[参考例4-4~4-9]
 表4-2に示すフィルム構成となるようにした他は、実施例4-10から4-17と同様にしてプロセス用離型フィルムを作製し、封止、離型を行い、特性を評価した。結果を表4-2に示す。
 いずれの参考例も、総合的に各実施例には及ばない性能に留まり、特に成形品の外観及び灰付着試験の両方で良好な結果が得られたものは無かった。
 なお、表4-2に記載の各フィルムの詳細は、表4-1に記載の各フィルムについて上記で説明したものと同様である。
 表4-2にのみ記載された耐熱樹脂層の基材4B0g、及び4B0hの詳細は、以下のとおりである。
(4B0g)2軸延伸ナイロンフィルム
 膜厚15μmの二軸延伸ナイロンフィルム(出光ユニテック株式会社製、製品名:ユニロンS330)(融点:221℃、結晶融解熱量:60.3J/g)
(4B0h)2軸延伸PETフィルム
 膜厚25μmの2軸延伸PETフィルム(帝人デュポンフィルム株式会社製、製品名:FT3PE)(融点:214℃、結晶融解熱量:40.3J/g)
Figure JPOXMLDOC01-appb-T000008
 本願第1発明のプロセス用離型フィルムは、従来技術では実現できなかった高いレベルの離型性、皺の抑制、及び金型追従性を兼ね備えるので、これを用いることで、半導体チップ等を樹脂封止等して得られる成形品を容易に離型できるとともに、皺や欠けなどの外観不良のない成形品を、高い生産性で製造することができるという実用上高い価値を有する技術的効果をもたらすものであり、半導体プロセス産業をはじめとする産業の各分野において、高い利用可能性を有する。
 また、本願第1発明のプロセス用離型フィルムは、半導体パッケージに限らず、繊維強化プラスチック成形プロセス、プラスチックレンズ成形プロセス等における種々の金型成形にも用いることができるので、半導体産業以外の金型成形を行う産業の各分野においても、高い利用可能性を有する。
 本願第2発明のプロセス用離型フィルムは、従来技術では実現できなかった高いレベルの離型性、外観不良の抑制、及び金型追従性を兼ね備えるので、これを用いることで、半導体チップ等を樹脂封止等して得られる成形品を容易に離型できるとともに、皺や欠け、形状異常(バリ、異物付着等)などの外観不良のない成形品を、高い生産性で製造することができるという実用上高い価値を有する技術的効果をもたらすものであり、半導体プロセス産業をはじめとする産業の各分野において、高い利用可能性を有する。
 また、本願第2発明のプロセス用離型フィルムは、半導体パッケージに限らず、繊維強化プラスチック成形プロセス、プラスチックレンズ成形プロセス等における種々の金型成形にも用いることができるので、半導体産業以外の金型成形を行う産業の各分野においても、高い利用可能性を有する。
 本願第3発明のプロセス用離型フィルムは、従来技術では実現できなかった高いレベルの離型性、皺の抑制、及び金型追従性を兼ね備えるので、これを用いることで、半導体チップ等を樹脂封止等して得られる成形品を容易に離型できるとともに、皺や欠けなどの外観不良のない成形品を、高い生産性で製造することができるという実用上高い価値を有する技術的効果をもたらすものであり、半導体プロセス産業をはじめとする産業の各分野において、高い利用可能性を有する。
 また、本願第3発明のプロセス用離型フィルムは、半導体パッケージに限らず、繊維強化プラスチック成形プロセス、プラスチックレンズ成形プロセス等における種々の金型成形にも用いることができるので、半導体産業以外の金型成形を行う産業の各分野においても、高い利用可能性を有する。
 本願第4発明のプロセス用離型フィルムは、従来技術では実現できなかった高いレベルの離型性、皺の抑制、及び金型追従性を兼ね備えるので、これを用いることで、半導体チップ等を樹脂封止等して得られる成形品を容易に離型できるとともに、皺や欠けなどの外観不良のない成形品を、高い生産性で製造することができるという実用上高い価値を有する技術的効果をもたらすものであり、半導体プロセス産業をはじめとする産業の各分野において、高い利用可能性を有する。
 また、本願第4発明のプロセス用離型フィルムは、半導体パッケージに限らず、繊維強化プラスチック成形プロセス、プラスチックレンズ成形プロセス等における種々の金型成形にも用いることができるので、半導体産業以外の金型成形を行う産業の各分野においても、高い利用可能性を有する。
1、1-2、1-3: 離型フィルム
2: 上金型
3: 吸引口
4: 封止樹脂
4-2:半導体パッケージ
5: 下金型
6: 半導体チップ
7: 基板
8: 成形金型
10、20、22: 離型フィルム
12: 耐熱樹脂層1B、2B、3B、4B
14: 接着層
16、16A:離型層1A、2A、3A、4A
16B: 離型層1A’、2A’、3A’、4A’
24、26: ロール
28: 成形金型
30: 上型
32: 下型
34: 半導体チップ
34A: 基板
36: 封止樹脂
40、44: 半導体パッケージ
 

Claims (86)

  1.  離型層1Aと、耐熱樹脂層1Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
     前記離型層1Aの水に対する接触角が、90°から130°であり、
     前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、上記プロセス用離型フィルム。
  2.  前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、請求項1に記載のプロセス用離型フィルム。
  3.  離型層1Aと、耐熱樹脂層1Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
     前記離型層1Aの水に対する接触角が、90°から130°であり、
     前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、上記プロセス用離型フィルム。
  4.  前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下である、請求項3に記載のプロセス用離型フィルム。
  5.  前記耐熱樹脂層1Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、請求項1から4のいずれか一項に記載のプロセス用離型フィルム。
  6.  前記耐熱樹脂層1Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、請求項5に記載のプロセス用離型フィルム。
  7.  前記耐熱樹脂層1Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下である、請求項1から4のいずれか一項に記載のプロセス用離型フィルム。
  8.  前記耐熱樹脂層1Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が4%以下である、請求項7に記載のプロセス用離型フィルム。
  9.  前記離型層1Aが、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、請求項1から8のいずれか一項に記載のプロセス用離型フィルム。
  10.  前記耐熱樹脂層1Bが、延伸フィルムを含んでなる、請求項1から9のいずれか一項に記載のプロセス用離型フィルム。
  11.  前記延伸フィルムが、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる、請求項10に記載のプロセス用離型フィルム。
  12.  前記耐熱樹脂層1BのJISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量15J/g以上、60J/g以下である、請求項1から11のいずれか一項に記載のプロセス用離型フィルム。
  13.  前記積層フィルムが、更に離型層1A’を有し、かつ、該離型層1Aと、前記耐熱樹脂層1Bと、前記離型層1A’と、をこの順で含み、
     該離型層1A’の水に対する接触角が、90°から130°である、請求項1から12のいずれか一項に記載のプロセス用離型フィルム。
  14.  前記離型層1A及び前記離型層1A’の少なくとも一方が、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、請求項13に記載のプロセス用離型フィルム。
  15.  熱硬化性樹脂による封止プロセスに用いる、請求項1から14のいずれか一項に記載のプロセス用離型フィルム
  16.  半導体封止プロセスに用いる、請求項1から15のいずれか一項に記載のプロセス用離型フィルム。
  17.  繊維強化プラスチック成形プロセス、またはプラスチックレンズ成形プロセスに用いる、請求項1から15のいずれか一項に記載のプロセス用離型フィルム。
  18.  樹脂封止半導体の製造方法であって、
     成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
     前記成形金型内面に、請求項1から14のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層1Aが前記半導体装置と対向するように配置する工程と、
     前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
     を有する、上記樹脂封止半導体の製造方法。
  19.  樹脂封止半導体の製造方法であって、
     成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
     前記成形金型内面に、請求項13又は14に記載の半導体封止プロセス用離型フィルムを、前記離型層1A’が前記半導体装置と対向するように配置する工程と、
     前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
     を有する、上記樹脂封止半導体の製造方法。
  20.  離型層2Aと、耐熱樹脂層2Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
     前記積層フィルムの離型層2Aの水に対する接触角が、90°から130°であり、表面固有抵抗値が1×1013Ω/□以下であって、
     前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含み、
     前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、上記プロセス用離型フィルム。
  21.  前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、請求項20に記載のプロセス用離型フィルム。
  22.  離型層2Aと、耐熱樹脂層2Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
     前記積層フィルムの離型層2Aの水に対する接触角が、90°から130°であり、表面固有抵抗値が1×1013Ω/□以下であって、
     前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1を含み、
     前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、上記プロセス用離型フィルム。
  23.  前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下である、請求項22に記載のプロセス用離型フィルム。
  24.  前記耐熱樹脂層2Bが、高分子系帯電防止剤を含有する層2B1と、接着剤を含有する接着層2B2とを含んでなる、請求項20から23のいずれか一項に記載のプロセス用離型フィルム。
  25.  前記耐熱樹脂層2Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、請求項20から24のいずれか一項に記載のプロセス用離型フィルム。
  26.  前記耐熱樹脂層2Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、請求項25に記載のプロセス用離型フィルム。
  27.  前記耐熱樹脂層2Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下である、請求項20から24のいずれか一項に記載のプロセス用離型フィルム。
  28.  前記耐熱樹脂層2Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が4%以下である、請求項27に記載のプロセス用離型フィルム。
  29.  前記離型層2Aが、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、請求項20から28のいずれか一項に記載のプロセス用離型フィルム。
  30.  前記耐熱樹脂層2Bが、延伸フィルムを含んでなる、請求項20から29のいずれか一項に記載のプロセス用離型フィルム。
  31.  前記延伸フィルムが、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる、請求項30に記載のプロセス用離型フィルム。
  32.  前記耐熱樹脂層2BのJISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量15J/g以上、60J/g以下である、請求項20から31のいずれか一項に記載のプロセス用離型フィルム。
  33.  前記積層フィルムが、更に離型層2A’を有し、かつ、該離型層2Aと、前記耐熱樹脂層2Bと、前記離型層2A’と、をこの順で含み、
     該離型層2A’の水に対する接触角が、90°から130°である、請求項20から32のいずれか一項に記載のプロセス用離型フィルム。
  34.  前記離型層2A’の表面固有抵抗値が1×1013Ω/□以下である、請求項33に記載のプロセス用離型フィルム。
  35.  前記離型層2A及び前記離型層2A’の少なくとも一方が、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、請求項14又は15に記載のプロセス用離型フィルム。
  36.  熱硬化性樹脂による封止プロセスに用いる、請求項20から35のいずれか一項に記載のプロセス用離型フィルム
  37.  半導体封止プロセスに用いる、請求項20から36のいずれか一項に記載のプロセス用離型フィルム。
  38.  繊維強化プラスチック成形プロセス、またはプラスチックレンズ成形プロセスに用いる、請求項20から36のいずれか一項に記載のプロセス用離型フィルム。
  39.  樹脂封止半導体の製造方法であって、
     成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
     前記成形金型内面に、請求項20から35のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層2Aが前記半導体装置と対向するように配置する工程と、
     前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
     を有する、上記樹脂封止半導体の製造方法。
  40.  樹脂封止半導体の製造方法であって、
     成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
     前記成形金型内面に、請求項33から35のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層2A’が前記半導体装置と対向するように配置する工程と、
     前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
     を有する、上記樹脂封止半導体の製造方法。
  41.  離型層3Aと、耐熱樹脂層3Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
     前記離型層3Aの水に対する接触角が、90°から130°であり、
     前記積層フィルムの120℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
  42.  前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、請求項41に記載のプロセス用離型フィルム。
  43.  前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、請求項41又は42に記載のプロセス用離型フィルム。
  44.  離型層3Aと、耐熱樹脂層3Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
     前記離型層3Aの水に対する接触角が、90°から130°であり、
     前記積層フィルムの170℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
  45.  前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、請求項44に記載のプロセス用離型フィルム。
  46.  前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下である、請求項44又は45に記載のプロセス用離型フィルム。
  47.  前記耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、請求項41から46のいずれか一項に記載のプロセス用離型フィルム。
  48.  前記耐熱樹脂層3Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、請求項47に記載のプロセス用離型フィルム。
  49.  前記耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下である、請求項41から46のいずれか一項に記載のプロセス用離型フィルム。
  50.  前記耐熱樹脂層3Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が5%以下である、請求項49に記載のプロセス用離型フィルム。
  51.  前記離型層3Aが、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、請求項41から50のいずれか一項に記載のプロセス用離型フィルム。
  52.  前記耐熱樹脂層3Bが、延伸フィルムを含んでなる、請求項41から51のいずれか一項に記載のプロセス用離型フィルム。
  53.  前記延伸フィルムが、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる、請求項52に記載のプロセス用離型フィルム。
  54.  前記耐熱樹脂層3BのJISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量20J/g以上、100J/g以下である、請求項41から53のいずれか一項に記載のプロセス用離型フィルム。
  55.  前記積層フィルムが、更に離型層3A’を有し、かつ、該離型層3Aと、前記耐熱樹脂層3Bと、前記離型層3A’と、をこの順で含み、
     該離型層3A’の水に対する接触角が、90°から130°である、請求項41から54のいずれか一項に記載のプロセス用離型フィルム。
  56.  前記離型層3A及び前記離型層3A’の少なくとも一方が、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、請求項55に記載のプロセス用離型フィルム。
  57.  熱硬化性樹脂による封止プロセスに用いる、請求項41から56のいずれか一項に記載のプロセス用離型フィルム
  58.  半導体封止プロセスに用いる、請求項41から57のいずれか一項に記載のプロセス用離型フィルム。
  59.  繊維強化プラスチック成形プロセス、またはプラスチックレンズ成形プロセスに用いる、請求項41から57のいずれか一項に記載のプロセス用離型フィルム。
  60.  樹脂封止半導体の製造方法であって、
     成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
     前記成形金型内面に、請求項41から56のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層3Aが前記半導体装置と対向するように配置する工程と、
     前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
     を有する、上記樹脂封止半導体の製造方法。
  61.  樹脂封止半導体の製造方法であって、
     成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
     前記成形金型内面に、請求項55又は56に記載の半導体封止プロセス用離型フィルムを、前記離型層3A’が前記半導体装置と対向するように配置する工程と、
     前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
     を有する、上記樹脂封止半導体の製造方法。
  62.  離型層4Aと、耐熱樹脂層4Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
     前記離型層4Aの水に対する接触角が、90°から130°であり、
     前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含み、
     前記積層フィルムの120℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
  63.  前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、請求項62に記載のプロセス用離型フィルム。
  64.  前記積層フィルムの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、請求項62又は63に記載のプロセス用離型フィルム。
  65.  離型層4Aと、耐熱樹脂層4Bと、を含む積層フィルムであるプロセス用離型フィルムであって、
     前記離型層4Aの水に対する接触角が、90°から130°であり、
     前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1を含み、
     前記積層フィルムの170℃での引張弾性率が75MPaから500MPaである、上記プロセス用離型フィルム。
  66.  前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率が4%以下である、請求項65に記載のプロセス用離型フィルム。
  67.  前記積層フィルムの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が7%以下である、請求項65又は66に記載のプロセス用離型フィルム。
  68.  前記耐熱樹脂層4Bが、高分子系帯電防止剤を含有する層4B1と、接着剤を含有する接着層4B2とを含んでなる、請求項62から67のいずれか一項に記載のプロセス用離型フィルム。
  69.  前記耐熱樹脂層4Bが、高分子系帯電防止剤、及び接着剤を含有する層4B3を含んでなる、請求項62から67のいずれか一項に記載のプロセス用離型フィルム。
  70.  前記耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率が3%以下である、請求項62から69のいずれか一項に記載のプロセス用離型フィルム。
  71.  前記耐熱樹脂層4Bの横(TD)方向の23℃から120℃までの熱寸法変化率と縦(MD)方向の23℃から120℃までの熱寸法変化率の和が6%以下である、請求項70に記載のプロセス用離型フィルム。
  72.  前記耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率が3%以下である、請求項62から69のいずれか一項に記載のプロセス用離型フィルム。
  73.  前記耐熱樹脂層4Bの横(TD)方向の23℃から170℃までの熱寸法変化率と縦(MD)方向の23℃から170℃までの熱寸法変化率の和が5%以下である、請求項72に記載のプロセス用離型フィルム。
  74.  前記離型層4Aが、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、請求項62から73のいずれか一項に記載のプロセス用離型フィルム。
  75.  前記耐熱樹脂層4Bが、延伸フィルムを含んでなる、請求項62から74のいずれか一項に記載のプロセス用離型フィルム。
  76.  前記延伸フィルムが、延伸ポリエステルフィルム、延伸ポリアミドフィルム、及び延伸ポリプロピレンフィルムからなる群より選ばれる、請求項75に記載のプロセス用離型フィルム。
  77.  前記耐熱樹脂層4BのJISK7221に準じて示差走査熱量測定(DSC)によって測定した第1回昇温工程での結晶融解熱量20J/g以上、100J/g以下である、請求項62から76のいずれか一項に記載のプロセス用離型フィルム。
  78.  前記離型層4Aの表面固有抵抗値が1×1013Ω/□以下である、請求項62から77のいずれか一項に記載のプロセス用離型フィルム。
  79.  前記積層フィルムが、更に離型層4A’を有し、かつ、該離型層4Aと、前記耐熱樹脂層4Bと、前記離型層4A’と、をこの順で含み、
     該離型層4A’の水に対する接触角が、90°から130°である、請求項62から78のいずれか一項に記載のプロセス用離型フィルム。
  80.  前記離型層4A及び前記離型層4A’の少なくとも一方が、フッ素樹脂、4-メチル-1-ペンテン(共)重合体、及びポリスチレン系樹脂からなる群より選ばれる樹脂を含む、請求項79に記載のプロセス用離型フィルム。
  81.  前記離型層4A‘の表面固有抵抗値が1×1013Ω/□以下である、請求項79または80に記載のプロセス用離型フィルム。
  82.  熱硬化性樹脂による封止プロセスに用いる、請求項62から81のいずれか一項に記載のプロセス用離型フィルム
  83.  半導体封止プロセスに用いる、請求項62から82のいずれか一項に記載のプロセス用離型フィルム。
  84.  繊維強化プラスチック成形プロセス、またはプラスチックレンズ成形プロセスに用いる、請求項62から82のいずれか一項に記載のプロセス用離型フィルム。
  85.  樹脂封止半導体の製造方法であって、
     成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
     前記成形金型内面に、請求項62から83のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層4Aが前記半導体装置と対向するように配置する工程と、
     前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
     を有する、上記樹脂封止半導体の製造方法。
  86.  樹脂封止半導体の製造方法であって、
     成形金型内の所定位置に、樹脂封止される半導体装置を配置する工程と、
     前記成形金型内面に、請求項79から81のいずれか一項に記載の半導体封止プロセス用離型フィルムを、前記離型層4A’が前記半導体装置と対向するように配置する工程と、
     前記成形金型を型締めした後、前記半導体装置と、前記半導体封止プロセス用離型フィルムとの間に封止樹脂を注入成形する工程と、
     を有する、上記樹脂封止半導体の製造方法。
     
PCT/JP2016/085859 2015-12-03 2016-12-02 プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法 WO2017094871A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680065928.5A CN108349122B (zh) 2015-12-03 2016-12-02 工艺用脱模膜、其用途、以及使用其的树脂密封半导体的制造方法
KR1020187012541A KR102172867B1 (ko) 2015-12-03 2016-12-02 공정용 이형 필름, 그 용도 및 이를 이용한 수지 밀봉 반도체의 제조 방법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-236639 2015-12-03
JP2015236639A JP6818406B2 (ja) 2015-12-03 2015-12-03 プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
JP2016014872A JP6785558B2 (ja) 2016-01-28 2016-01-28 外観性能に優れたプロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
JP2016-014872 2016-01-28
JP2016-066240 2016-03-29
JP2016066240A JP6767763B2 (ja) 2016-03-29 2016-03-29 成形品の外観に優れるプロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
JP2016098224A JP6731782B2 (ja) 2016-05-16 2016-05-16 成形品の外観不良を抑制するプロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
JP2016-098224 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017094871A1 true WO2017094871A1 (ja) 2017-06-08

Family

ID=58797016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085859 WO2017094871A1 (ja) 2015-12-03 2016-12-02 プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法

Country Status (3)

Country Link
KR (1) KR102172867B1 (ja)
CN (1) CN108349122B (ja)
WO (1) WO2017094871A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078485A (ko) 2017-11-17 2020-07-01 에이지씨 가부시키가이샤 적층 필름 및 반도체 소자의 제조 방법
JP2021062582A (ja) * 2019-10-16 2021-04-22 株式会社コバヤシ 離型フィルム及び離型フィルムの製造方法
US11373881B2 (en) * 2017-12-25 2022-06-28 Toray Industries, Inc. Release film
WO2023190617A1 (ja) * 2022-03-30 2023-10-05 日東電工株式会社 賦形方法及び樹脂部材の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196497A1 (ja) * 2019-03-28 2020-10-01 三井化学東セロ株式会社 プリント配線基板製造プロセス用離型フィルム、プリント基板の製造方法、プリント基板製造装置、及びプリント基板
WO2021166560A1 (ja) * 2020-02-19 2021-08-26 三井化学東セロ株式会社 離型フィルムおよび電子装置の製造方法
WO2021172257A1 (ja) * 2020-02-28 2021-09-02 三井化学東セロ株式会社 多層離型フィルム
CN112026140A (zh) * 2020-07-08 2020-12-04 南京工业职业技术学院 一种用于汽车制造的模具支撑架
KR102252387B1 (ko) * 2020-07-29 2021-05-14 이호돈 거푸집 박리필름

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037426A1 (ja) * 2013-09-10 2015-03-19 旭化成ケミカルズ株式会社 離型フィルム、成型体の製造方法、半導体部品及びリフレクター部品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW490392B (en) * 1998-12-18 2002-06-11 Tokuyama Corp Laminate film having gas barrier property
JP2001310336A (ja) 2000-04-28 2001-11-06 Asahi Glass Co Ltd 樹脂モールド成形用離型フィルム
JP2002110722A (ja) 2000-10-03 2002-04-12 Nitto Denko Corp 半導体チップの樹脂封止方法及び半導体チップ樹脂封止用離型フィルム
JP2002361643A (ja) 2001-06-01 2002-12-18 Hitachi Chem Co Ltd 半導体モールド用離型シート
WO2010023907A1 (ja) * 2008-08-28 2010-03-04 三井化学株式会社 半導体樹脂パッケージ製造用金型離型フィルム、およびそれを用いた半導体樹脂パッケージの製造方法
JP5297233B2 (ja) 2009-03-09 2013-09-25 三井化学株式会社 半導体封止プロセス用離型フィルム、およびそれを用いた樹脂封止半導体の製造方法
KR20140014928A (ko) 2012-07-27 2014-02-06 현대모비스 주식회사 차량용 에어백 장치
JP6071762B2 (ja) * 2013-06-04 2017-02-01 日東電工株式会社 ポリ塩化ビニル系樹脂フィルムおよびポリ塩化ビニル系粘着テープ
SG10201807671QA (en) 2014-03-07 2018-10-30 Agc Inc Mold release film, process for its production and process for producing semiconductor package
MY176963A (en) 2014-03-07 2020-08-28 Agc Inc Process for producing package for mounting a semiconductor element and mold release film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037426A1 (ja) * 2013-09-10 2015-03-19 旭化成ケミカルズ株式会社 離型フィルム、成型体の製造方法、半導体部品及びリフレクター部品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078485A (ko) 2017-11-17 2020-07-01 에이지씨 가부시키가이샤 적층 필름 및 반도체 소자의 제조 방법
DE112018005759T5 (de) 2017-11-17 2020-07-16 AGC Inc. Laminierte Folie und Verfahren zur Herstellung eines Halbleiterelements
US11318641B2 (en) 2017-11-17 2022-05-03 AGC Inc. Laminated film and method for producing semiconductor element
US11373881B2 (en) * 2017-12-25 2022-06-28 Toray Industries, Inc. Release film
JP2021062582A (ja) * 2019-10-16 2021-04-22 株式会社コバヤシ 離型フィルム及び離型フィルムの製造方法
WO2023190617A1 (ja) * 2022-03-30 2023-10-05 日東電工株式会社 賦形方法及び樹脂部材の製造方法

Also Published As

Publication number Publication date
CN108349122B (zh) 2021-07-09
KR102172867B1 (ko) 2020-11-02
CN108349122A (zh) 2018-07-31
KR20180072716A (ko) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2017094871A1 (ja) プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
KR102389429B1 (ko) 이형 필름, 그 제조 방법, 및 반도체 패키지의 제조 방법
JP6818406B2 (ja) プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
JP5297233B2 (ja) 半導体封止プロセス用離型フィルム、およびそれを用いた樹脂封止半導体の製造方法
JP6785558B2 (ja) 外観性能に優れたプロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
JP7463478B2 (ja) 圧縮成形法による樹脂封止プロセス用離型フィルム
WO2010023907A1 (ja) 半導体樹脂パッケージ製造用金型離型フィルム、およびそれを用いた半導体樹脂パッケージの製造方法
TW201634630A (zh) 薄膜、其製造方法及使用該薄膜之半導體元件之製造方法
JP6731782B2 (ja) 成形品の外観不良を抑制するプロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
JP6767763B2 (ja) 成形品の外観に優れるプロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
TW201332763A (zh) 保護片材
US20230348759A1 (en) Film, and method for manufacturing semiconductor package
TWI723093B (zh) 製程用離型薄膜,其用途,及使用其的樹脂封裝半導體的製造方法
JP7177623B2 (ja) 樹脂モールド成形品の製造方法、樹脂モールド成形品、及びその用途。
JP6928924B2 (ja) プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
TWI823831B (zh) 外觀性能佳的製程用離型薄膜,其用途,及使用其的樹脂封裝半導體的製造方法
JP4334858B2 (ja) 電子部品のテーピング包装用カバーテープ
KR102601956B1 (ko) 프린트 배선기판 제조공정용 이형필름, 프린트 기판의 제조방법, 프린트 기판 제조장치 및 프린트 기판
JP7461281B2 (ja) プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
JP2023106440A (ja) プロセス用離型フィルム、その用途、及びそれを用いた樹脂封止半導体の製造方法
TW202012140A (zh) 半導體封裝製程用離型膜及使用其之電子零件之製造方法
JP2020167212A (ja) プリント配線基板製造プロセス用離型フィルム、及びその用途
KR20240042018A (ko) 공정용 이형 필름, 그 제조 방법 및 용도
JP2021062923A (ja) 電子部品包装用カバーテープおよび包装体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187012541

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870806

Country of ref document: EP

Kind code of ref document: A1