WO2017038265A1 - 粉体混合物 - Google Patents

粉体混合物 Download PDF

Info

Publication number
WO2017038265A1
WO2017038265A1 PCT/JP2016/070828 JP2016070828W WO2017038265A1 WO 2017038265 A1 WO2017038265 A1 WO 2017038265A1 JP 2016070828 W JP2016070828 W JP 2016070828W WO 2017038265 A1 WO2017038265 A1 WO 2017038265A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
powder mixture
oco
coo
Prior art date
Application number
PCT/JP2016/070828
Other languages
English (en)
French (fr)
Inventor
一輝 初阪
桑名 康弘
浩一 延藤
融 石井
美花 山本
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020187008779A priority Critical patent/KR102129851B1/ko
Priority to EP16841297.1A priority patent/EP3345939B1/en
Priority to US15/755,217 priority patent/US20180327669A1/en
Priority to JP2017534766A priority patent/JP6403029B2/ja
Priority to CN201680050439.2A priority patent/CN107922535B/zh
Publication of WO2017038265A1 publication Critical patent/WO2017038265A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • C09K19/0208Twisted Nematic (T.N.); Super Twisted Nematic (S.T.N.); Optical Mode Interference (O.M.I.)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor

Definitions

  • the present invention is an optical compensation film, retardation film, brightness enhancement film, antireflection film, polarizing film, lens, prism, or security marking used for display elements such as liquid crystal displays, organic EL displays, and quantum dot displays.
  • the present invention relates to a nematic liquid crystal composition of a polymerizable liquid crystal compound used for a component of an optical anisotropic body such as a member for laser emission, and a powder mixture used for a solution composition of a polymerizable liquid crystal compound.
  • a composition containing a polymerizable liquid crystal compound having a polymerizable functional group is useful as a constituent member of an optical anisotropic body, such as an optical anisotropic body, for example, an optical compensation film, a retardation film. It has been applied to various liquid crystal displays as a brightness enhancement film, an antireflection film, and a polarizing film.
  • optical anisotropic bodies are usually polymerized by applying a solution composition in which a polymerizable liquid crystal composition is dissolved in an organic solvent to a substrate, drying the organic solvent, and then irradiating active energy rays or further heating. It is obtained by curing the liquid crystalline composition.
  • a solution composition for forming a liquid crystal layer comprising a solvent having a structure and an antioxidant exhibiting volatility at a temperature lower than the NI point of the liquid crystal compound is disclosed.
  • a solution composition prepared by dissolving a polymerizable liquid crystal composition in an organic solvent there is a risk that the organic solvent may ignite or a fire is likely to occur.
  • “Transportation method”, “storage location”, “storage quantity”, etc. need to be handled based on the laws of each country.
  • it is difficult to keep the solution composition constant because the contents are precipitated from the solvent, the solution leaks, or the solvent volatilizes when transported and stored in the solution state. there were.
  • an optical film can also be produced using a composition that does not contain an organic solvent and is in a fluid nematic liquid crystal state.
  • a method for preparing a uniform liquid mixture is a method for preparing a uniform liquid mixture of at least two kinds of organic substances, and at least one of the substances involved is solid at room temperature
  • a method is disclosed in which the materials to be mixed are liquefied and homogenized by vigorous mixing at room temperature below the melting point of at least one of the materials present.
  • Patent Document 3 as a method for producing a liquid crystal composition, at least one liquid crystal compound having a melting point of greater than 40 ° C. is stirred at a temperature at the start of stirring of 40 ° C. or less, heated from the outside, and organic.
  • a method for producing a liquid crystal composition in a liquid crystal state, which is performed without dissolving in a solvent is disclosed.
  • Patent Document 2 when the above prior art (Patent Document 2) is applied to a composition containing a polymerizable liquid crystal compound having a polymerizable functional group, that is, a polymerizable liquid crystal composition, the polymerizable liquid crystal compound is converted into a normal liquid crystal display. Since the viscosity is higher than the nematic liquid crystal used, handling is difficult, such as being difficult to remove from the container, and when the phase transition from nematic liquid crystal to crystals, the whole composition is not fluid in the container. Thus, there is a problem that it cannot be taken out from the container.
  • the present invention has focused on a powder mixture containing a polymerizable liquid crystal compound that does not use an organic solvent and does not have a nematic liquid crystal composition, and has provided the present invention.
  • the present invention includes at least one polymerizable liquid crystal compound having one or more polymerizable functional groups that is solid at 30 ° C. or less under atmospheric pressure, and contains 70% by mass or more of the polymerizable liquid crystal compound.
  • a body mixture is provided, and a cured product, an optical film, and a display element using the powder mixture are also provided.
  • the powder mixture containing the polymerizable liquid crystal compound of the present invention does not use an organic solvent, thus reducing the risk of fire and that the composition does not change due to the volatilization of the solvent during transportation or storage. Further, the present inventors have found that it is easy to handle because it has flow characteristics as a powder mixture even when it is in a solid state rather than sticky like a nematic liquid crystal. Furthermore, as a result of detailed studies on the properties of the powder mixture, it has been found that among the powder mixtures, the powder mixture having a specific particle size of the present invention exhibits particularly excellent properties.
  • the polymerizable liquid crystal compound used for the powder mixture of the present invention is synthesized, and the particle size and the like are controlled when purifying and crystallizing from the solution, thereby achieving the target particle size and the like.
  • a powder mixture containing a polymerizable liquid crystal compound having a particle size or the like within a preferable range can form crystals in a shorter time than when the particle size is larger than the particle size within a preferable range. It has been found that when dissolved into a solution composition, it has a high solubility in an organic solvent, and it has less adhesion and is easier to handle than when it is smaller than the particle size of the present invention.
  • powders are said to have intermediate properties between liquids and solids (Soil Physics No. 17, “Physics of Powders”, Yoichi Mogi). Another definition of powder is that it is a powder that looks like powder and behaves like powder (HP of Microtrack Bell Co., Ltd. http: // www. microtrac-bel.com/tech/particle/theory02.html).
  • the powder of the present invention is defined in the same manner as described above.
  • each individual solid aggregate is a powder.
  • a solid is a solid in a gas, liquid, or solid called the three states of a substance, regardless of whether the solid is crystalline or amorphous, the solid may be amorphous, and has a continuous fluidity. Include in solid if not liquid.
  • nematic liquid crystal is not included in the solid of the present invention, but it is soft like a finely pulverized wax or discotic liquid crystal and sticks when pressed, but external force is applied. Otherwise, the solid of the present invention shows a shape equivalent to that of ordinary powder.
  • the powder of the present invention can be limited to a solid aggregate under specific pressure and temperature conditions.
  • the powder mixture of the present invention contains one or more polymerizable liquid crystal compounds having one or more polymerizable functional groups that are solid at 30 ° C. or less under atmospheric pressure, and contain 70% by mass or more of the polymerizable liquid crystal compound. .
  • the powder mixture is called a “powder mixture” that includes two or more kinds of powders, that is, a mixture containing two or more kinds of solids.
  • the powder mixture may be a mixture using two or more kinds of powders composed of a polymerizable liquid crystal compound having one or more polymerizable functional groups, or a powder composed of a polymerizable liquid crystal compound having one or more polymerizable functional groups. It is good also as a mixture using the powder of a body and an additive, and you may use combining these two or more. Two or more different types of powder in the powder mixture may be uniformly dispersed or present in a non-uniform state.
  • powder even when two or more different solids contained in the powder mixture contact each other and cause a melting point drop, some powders show nematic liquid crystals and smectic liquid crystals. Solids having a specific volume or more remaining in the mixture and appearing as powder are regarded as a powder mixture in the present invention. Further, when a small amount of liquid additive is added to a powder mixture containing at least one polymerizable liquid crystal compound having at least one polymerizable functional group that is powder at atmospheric pressure of 30 ° C. or lower, However, solids having a specific volume or more remaining in the powder mixture and visually appearing as a powder are regarded as a powder mixture in the present invention.
  • the term “powder” refers to an aggregate of solids that exist individually, but each individual solid constituting the aggregate is called a “particle”. When one particle exists, it is called a primary particle, and when a plurality of particles are formed by aggregation, it is called a secondary particle.
  • One particle may be a particle made of one crystallite, that is, a particle made of a single crystal, or one particle may be composed of a plurality of crystallites (in the present invention, In the case where a solid is composed of a plurality of crystallites, the largest crystallite is simply referred to as “crystallite”.)
  • crystallites The presence of crystallites can be confirmed by X-ray diffraction. When a crystallite is present, an X-ray diffraction phenomenon occurs due to the periodic structure of the crystallite.
  • the polymerizable liquid crystal compound having one or more polymerizable functional groups that are solid at 30 ° C. or lower under atmospheric pressure, which is an essential component in the powder mixture of the present invention, is also composed of crystallites. Therefore, it is possible to adjust the cumulative distribution and bulk density of particles by adjusting the crystallite size.
  • Measurement method of particle diameter The particle diameter of the powder mixture of the present invention can be measured by a known method.
  • the average of the representative particle diameter is referred to as “average particle diameter”, and the distribution indicating the spread of the representative particle diameter of the powder is referred to as “particle diameter distribution, particle size distribution”.
  • the average particle diameter can be exemplified by number average diameter, area average diameter, volume average diameter, harmonic average diameter, average area diameter, average volume diameter, geometric average diameter / number median diameter, mass median diameter / volume median diameter, etc.
  • the particle size distribution can be determined by measuring the representative particle size and the particle size distribution with an optical microscope and visual observation.
  • the particle diameter of the powder mixture of the present invention is preferably a light scattering equivalent diameter by a light scattering method, and the measurement method is preferably a laser diffraction / scattering method.
  • the measurement scale it is preferable to use an apparatus capable of measuring a range from nm unit to mm unit.
  • Particle diameter is geometric diameter, scattering coefficient equivalent diameter, light scattering equivalent diameter, volume equivalent diameter, Stokes diameter, ultrasonic attenuation equivalent diameter, X-ray scattering equivalent diameter, diffusion coefficient equivalent diameter, electric mobility equivalent diameter, diffusion
  • the particle diameter of the powder mixture of the present invention can be measured by any one of the equivalent particle diameters, but the particle diameter of the powder mixture of the present invention can be measured using a method called dynamic light scattering method among light scattering methods. Is preferred.
  • the particle size can be measured by irradiating the particles dispersed in the solution with laser light and observing and analyzing the scattered light with a photon detector. .
  • the particle diameter measuring apparatus is provided with analysis software for measuring the particle diameter, and the particle diameter can be obtained using this.
  • the solvent used for the measurement is preferably a solvent that does not dissolve the powder mixture of the present invention, and particularly preferably a solvent that does not dissolve a liquid crystal compound having one or more polymerizable functional groups. Specifically, water, methanol, ethanol, isopropyl alcohol, hexane, or a mixture thereof is preferable as the solvent, and a mixed solvent of water and methanol or hexane is particularly preferable.
  • D 50 The particle diameter at which the cumulative distribution of particle diameter is 50% is called D 50 (median diameter).
  • D 50 is preferably 1.0 ⁇ m to 900 ⁇ m, preferably 3.0 ⁇ m to 700 ⁇ m, more preferably 5.0 ⁇ m to 500 ⁇ m, and particularly preferably 10 ⁇ m to 300 ⁇ m.
  • a particle diameter D 50 satisfy the above, and the cumulative distribution is 5mm or less particle size D 90 value is 90% and the particle size is preferably D 50 value is 1 ⁇ m or more , D 90 value and 3mm or less, preferably D 50 value is not less than 5um, D 90 value and 2mm or less, it is preferable that D 50 value is 10 ⁇ m or more, and 1mm or less D 90 value, D A 50 value of 20 ⁇ m or more is particularly preferable.
  • the powder mixture of the present invention is excellent in solubility in a solvent and solubility by heating, and the powder does not easily rise when handling the powder mixture. In addition to being excellent in properties, it is preferable because of its low adhesion to containers.
  • the cumulative distribution of the particle diameter of the powder mixture is larger than the above, the time until the large particles are dissolved in the solvent and the time until the particles are dissolved by heating become longer, and the solubility due to the solvent and heating is lowered.
  • the cumulative distribution of the particle size of the powder mixture is smaller than the above, the solubility by solvent and heating is improved, but the powder tends to rise when handling the powder mixture, and the handleability becomes low and charged. Since it is easy and easily enters even a small gap, the adhesion to the container is high and it is difficult to take out the powder mixture.
  • the particle size of the powder mixture of the present invention When measuring the particle size of the powder mixture of the present invention, it may be measured as it is, but it is a powder mixture after being stored for a certain period of time, and agglomeration between powders occurs and a partial lump is generated. If it is, it is preferable to measure after crushing the lump with an agate mortar. (Measurement method of bulk density)
  • the bulk (bulk) density of the powder mixture of the present invention can be measured by using a known method.
  • the bulk density measurement method of the pigment test method JIS-K-5101
  • the bulk density measurement method of the vinyl chloride resin test method JIS-K-6720
  • the bulk density measurement method of the metal powder test method JIS- Z-2504
  • bulk density measurement method of activated carbon test method JIS-K-1474
  • bulk density measurement method of plastic test method JIS-K-7365, JIS-K-6722
  • bulk density of synthetic detergent test method Measurement method JIS-K-3362
  • bulk density measurement method of alumina powder test method JIS-R-9301
  • bulk density measurement method of tetrafluoroethylene resin molding powder test method JIS-K-6891
  • artificial There are measuring methods such as the bulk density measuring method (JIS-R-6130) of the abrasive test method, but the bulk density of the powder mixture of the present invention is determined by placing a glass funnel on the measuring cylinder.
  • the volume of the measuring cylinder is preferably 500 ml to 50 ml
  • the discharge diameter of the glass funnel is preferably 2.0 cm to 1.0 cm
  • the tapping frequency is preferably 1 time / second to 10 times / second
  • the tapping time is 10 to 20 times. 10 minutes to 10 seconds is preferable.
  • the bulk density of the powder mixture of the present invention is preferably 0.01 g / ml to 1.50 g / ml, preferably 0.05 g / ml to 1.30 g / ml, when measured using a graduated cylinder method. More preferably, it is particularly preferably 0.10 g / ml to 1.20 g / ml.
  • the bulk density of the present invention is in the above range because the packing efficiency can be increased while suppressing the aggregation of powders and the melting point drop.
  • the filling efficiency is lowered.
  • the bulk density of the powder mixture is larger than the above range, aggregation of the powder mixture is likely to occur, and a melting point drop due to contact with the powder mixture is likely to occur.
  • the crystallite size of the powder mixture can be measured not only by direct observation of particles with a transmission electron microscope (TEM) but also by measurement of crystallite size distribution by X-ray diffraction (XRD) or small angle X-ray scattering (SAXS). it can.
  • the crystallite size of the powder mixture of the present invention is preferably confirmed by measuring powder X-ray diffraction.
  • D K ⁇ / ⁇ cos ⁇ (D: crystallite diameter ( ⁇ ), K: Scherrer constant, ⁇ : X-ray wavelength ( ⁇ ), ⁇ : diffraction line width (rad), ⁇ : half of the diffraction angle 2 ⁇ (rad))
  • the crystallite size of the powder mixture of the present invention is preferably from 5 nm to 500 nm, more preferably from 10 nm to 300 nm, more preferably from 15 nm to 200 nm, and particularly preferably from 20 nm to 100 nm using X-ray diffraction measurement. A child is preferred.
  • the powder mixture of the present invention is excellent in solubility in a solvent and solubility by heating, and in handling the powder mixture, the powder hardly rises and has excellent handling properties. In addition, it is preferable because of its low adhesion to the container.
  • the crystallites of the powder mixture are larger than the above, the time until the large crystallites are dissolved in the solvent and the time until the crystallites are dissolved by heating are increased, and the solubility due to the solvent and heating is lowered.
  • the crystallite of the powder mixture is smaller than the above, the solubility by solvent or heating is improved, but when handling the powder mixture, the powder is likely to rise and handling properties are low, and it is easy to be charged.
  • the powder of the present invention can be obtained by recrystallization or reprecipitation. For this reason, the solvent used in operations such as recrystallization or reprecipitation is contained in the powder. Alternatively, moisture in the air is contained in the powder by moisture absorption. The solvent contained in these powders is defined as the residual solvent.
  • a heating vacuum method or a weight method can be mentioned.
  • a powder mixture weighed in a certain amount in an aluminum dish or the like is placed in a heating vacuum desiccator or a vacuum dryer, and then at about 50 to 150 ° C. and about 10 to 50 Pa for about 1 to 5 hours. Measured by weight change before and after heating vacuum.
  • the powder mixture weighed in a certain amount in an aluminum dish or the like is placed in a heating balance, not in a vacuum, and then is heated at about 80 ° C. to 250 ° C. for about 10 to 60 minutes. taking measurement.
  • the method for measuring the residual solvent contained in the powder mixture of the present invention is preferably measured by the gravimetric method.
  • 5 to 10 g of the powder mixture is heated to a predetermined temperature (150 The amount of residual solvent can be obtained by weighing the weight loss due to heating at about 180 ° C.).
  • the amount of residual solvent contained in the powder mixture of the present invention is measured by the above weight method, preferably 10,000 ppm or less, more preferably 8,000 ppm or less, and 6,000 ppm or less. It is particularly preferred. Further, the lower limit value of the residual solvent amount is preferably zero, but in reality, there is no problem even if it is contained in an amount of 1 ppm or more.
  • the amount of the residual solvent is within the above-mentioned range since the influence of the solvent on the powder state is small and charging becomes difficult.
  • the amount of the residual solvent in the powder mixture is larger than the above range, the influence of the solvent on the dissolution of the particles and the lowering of the transition point becomes large, and it becomes difficult to maintain the powder state.
  • the powder mixture of the present invention contains one or more polymerizable liquid crystal compounds having one or more polymerizable functional groups.
  • the polymerizable liquid crystal compound is preferably a powder at 50 ° C. or less under atmospheric pressure, more preferably a powder at 40 ° C.
  • under atmospheric pressure means 800 hectopascals or more and 1100 hectopascals or less, more specifically, 950 hectopascals or more and 1050 hectopascals or less.
  • polymerizable liquid crystal compound having one or more polymerizable functional groups used in the present invention a compound having liquid crystallinity alone or in a composition with another compound and having at least one polymerizable functional group If it is, there will be no limitation in particular and a well-known and usual thing can be used.
  • a rod-like polymerizable liquid crystal compound having a polymerizable functional group such as a vinyl group, an acrylic group or a (meth) acryl group, or a maleimide as described in JP-A Nos. 2004-2373 and 2004-99446
  • a rod-like polymerizable liquid crystal compound having a group examples thereof include a rod-like polymerizable liquid crystal compound having a group.
  • the polymerizable liquid crystal compound having at least one polymerizable functional group is preferably a compound represented by the following general formula (I).
  • the compound represented by the following general formula (I) is used in the powder mixture of the present invention even if it is a compound that does not exhibit liquid crystallinity alone, as long as it exhibits liquid crystallinity in a composition with other compounds. More preferably, it is more preferable that the compound of the general formula (I) exhibits liquid crystallinity alone because the temperature range of the liquid crystal phase can be expanded.
  • P 1 represents a polymerizable functional group
  • Sp 1 represents an alkylene group having 1 to 18 carbon atoms
  • a hydrogen atom in the alkylene group may be substituted with one or more halogen atoms or a CN group, and one hydrogen atom present in the alkylene group
  • a CH 2 group or two or more non-adjacent CH 2 groups may each be independently replaced by —O—, —COO—, —OCO— or —OCO—O—
  • X 1 represents —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO.
  • q1 represents 0 or 1
  • MG represents a mesogenic group
  • R 2 represents a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a cyano group, or a linear or branched alkyl group having 1 to 12 carbon atoms, and the alkyl group is linear
  • the alkyl group may be one —CH 2 — or two or more non-adjacent —CH 2 — each independently —O—, —S—, —CO.
  • R 2 represents the general formula (Ia)
  • B1, B2 and B3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1, 3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine- 2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6- Diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydrophenant
  • P 3 represents a reactive functional group
  • Sp 3 represents the same as defined in Sp 1
  • X 3 represents —O—, —COO—, —OCO—, —OCH 2 —, —CH 2 O—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, or It represents a single bond
  • q 3 represents 0 or 1
  • q 4 represents 0 or 1.
  • Z1 and Z2 are each independently —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, —C ⁇ N—, —N ⁇ C— , -CONH-, -NHCO-, -C (CF 3 ) 2- , an alkyl group having 2 to 10 carbon atoms which may have a halogen atom or a single bond, r1 represents 0, 1, 2, or 3, and when there are a plurality of B1 and Z1, they may be the same or different. ).
  • P 1 , P 2 and P 3 each independently represent a substituent selected from a polymerizable group represented by the following formula (P-2-1) to formula (P-2-20): Is preferred.
  • Sp 1 to Sp 3 each independently represents an alkylene group having 1 to 15 carbon atoms, and one —CH 2 — in the alkylene group or two or more —CH 2 that are not adjacent to each other.
  • 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—
  • one or more hydrogen atoms of the alkylene group may be a halogen atom ( Fluorine atom, chlorine atom, bromine atom, iodine atom) or CN group
  • Sp 1 to Sp 3 each independently preferably represents an alkylene group having 1 to 12 carbon atoms
  • one —CH 2 — or two or more non-adjacent —CH 2 — are each independently substituted by —O—, —COO—, —OCO— or —OCO—O—. Also good.
  • X 1 to X 3 are each independently —O—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—.
  • P 1 , Sp 1 , X 1 , and q 1 each represent the same definition as in the above general formula (I), and preferable groups in P 1 , Sp 1 , and X 1 are the same as described above.
  • Intended R 211 is independently a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a cyano group, one —CH 2 —, or two or more non-adjacent —CH 2 —.
  • One or more hydrogen atoms of the alkyl group or alkenyl group are a halogen atom, It may be substituted by an ano group, and when multiple substitutions are made, they may be the same or different.
  • MG represents a mesogenic group and has the general formula (Ib)
  • B1, B2 and B3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1, 3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine- 2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6- Diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydrophenant
  • Z1 and Z2 are each independently —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, —C ⁇ N—, —N ⁇ C— , —CONH—, —NHCO—, —C (CF 3 ) 2 —, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or an alkyl group having 2 to 10 carbon atoms or a single atom Z1 and Z2 each independently represent —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —
  • Examples of the general formula (I-2-1) include compounds represented by the following general formulas (I-2-1-1) to (I-2-1-4). The formula is not limited.
  • P 1 , Sp 1 , X 1 , and q 1 each represent the same definition as in the general formula (I), and the same applies to the preferred groups in P 1 , Sp 1 , and X 1 .
  • Intended B11, B12, B13, B2, and B3 represent the same definitions as B1 to B3 in the general formula (Ib), and may be the same or different
  • Z11, Z12, Z13, and Z2 represent the same definitions as Z1 to Z3 in the general formula (Ib), and may be the same or different
  • R 211 represents a hydrogen atom, a halogen atom, a cyano group, one —CH 2 —, or two or more non-adjacent —CH 2 —, each independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—
  • One or more hydrogen atoms may be substituted with a halogen atom or a cyano group. Each may be the same or different.
  • R c represents a hydrogen atom or a methyl group
  • m represents an integer of 0 to 18
  • n represents 0 or 1
  • R 211 represents the above general formulas (I-2-1-1) to ( I-2-1-4) represents the same as defined above, but R 211 represents a hydrogen atom, a halogen atom, a cyano group, one —CH 2 —, or two or more non-adjacent —CH 2 —.
  • one or more hydrogen atoms of the alkyl group or alkenyl group may be substituted with a halogen atom, a cyano group, or a t-butyl group, and the halogen atom is preferably an F atom
  • the cyclic group includes one or more F, Cl, CF 3 , OCF 3 , CN groups, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, and 1 to 8 alkanoyl groups, alkanoyloxy groups having 1 to 8 carbon atoms, alkoxycarbonyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 8 carbon atoms, alkenyloxy groups having 2 to 8 carbon atoms, carbon atoms It may have an alkenoyl group of 2 to 8 and an alkenoyloxy group of 2 to 8 carbon atoms, and cyclic CH may be substituted with N.
  • Bifunctional polymerizable liquid crystal compound Among the compounds represented by the general formula (I), as a bifunctional polymerizable liquid crystal compound having two polymerizable functional groups in the molecule, a compound represented by the following general formula (I-2-2) preferable.
  • P 1 , Sp 1 , X 1 , q 1 , X 2 , Sp 2 , q 2 , P 2 represent the same definitions as in the general formula (I) and general formula (Ia), for even preferred group of P 1, Sp 1, X 1 , X 2, Sp 2 and P 2 is intended the same as those described above.
  • MG represents a mesogenic group and has the general formula (Ib)
  • B1, B2 and B3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1, 3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine- 2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6- Diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydrophenant
  • Z1 and Z2 are each independently —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, —C ⁇ N—, —N ⁇ C— , —CONH—, —NHCO—, —C (CF 3 ) 2 —, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or an alkyl group having 2 to 10 carbon atoms or a single atom Z1 and Z2 each independently represent —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —
  • Examples of the general formula (I-2-2) include compounds represented by the following general formulas (I-2-2-1) to (I-2-2-4). The formula is not limited.
  • P 1 , Sp 1 , X 1 , q 1 , X 2 , Sp 2 , q 2 , P 2 represent the same definitions as in the general formula (I) and general formula (Ia), respectively.
  • the general formulas (I-2-2-1) to (I-2-2-4) the general formulas (I-2-2-2) to (I-2-2-4)
  • a compound having three or more ring structures it is preferable because the orientation of the optically anisotropic body finally obtained is good and the curability is good.
  • R d and R e each independently represent a hydrogen atom or a methyl group
  • the cyclic group includes one or more F, Cl, CF 3 , OCF 3 , CN groups, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, and 1 to 8 alkanoyl groups, alkanoyloxy groups having 1 to 8 carbon atoms, alkoxycarbonyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 8 carbon atoms, alkenyloxy groups having 2 to 8 carbon atoms, carbon atoms It may have an alkenoyl group having 2 to 8 carbon atoms and an alkenoyloxy group having 2 to 8 carbon atoms.
  • n1 and m2 each independently represents an integer of 0 to 18, and n1, n2, n3 and n4 each independently represents 0 or 1.
  • polyfunctional polymerizable liquid crystal compound As the polyfunctional polymerizable liquid crystal compound having three or more polymerizable functional groups, it is preferable to use a compound having three polymerizable functional groups.
  • a compound represented by the following general formula (I-2-3) is provided. preferable.
  • the general formula (I) represents the same definition as in formula (Ic), and is a preferred group in P 1 , Sp 1 , X 1 , X 2 , Sp 2 , P 2 , X 3 , Sp 3 and P 3 .
  • MG represents a mesogenic group and has the general formula (Ib)
  • B1, B2 and B3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1, 3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine- 2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6- Diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydrophenant
  • Z1 and Z2 are each independently —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, —C ⁇ N—, —N ⁇ C— , —CONH—, —NHCO—, —C (CF 3 ) 2 —, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or an alkyl group having 2 to 10 carbon atoms or a single atom Z1 and Z2 each independently represent —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —
  • Examples of the general formula (I-2-3) include compounds represented by the following general formulas (I-2-3-1) to (I-2-3-3-8). The formula is not limited.
  • the general formula (I) Represents the same definition as in general formula (Ia) and general formula (Ic), and in P 1 , Sp 1 , X 1 , X 2 , Sp 2 , P 2 , X 3 , Sp 3 and P 3
  • B11, B12, B13, B2, and B3 represent the same definitions as B1 to B3 in the general formula (Ib), and may be the same or different
  • Z11, Z12, Z13, and Z2 represent the same definitions as Z1 to Z3 in the general formula (Ib), and may be the same or different.
  • Examples of the compounds represented by the general formulas (I-2-3-1) to (I-2-3-3-8) include the following formulas (I-2-3-1-1) to (I-2 -3-1-6) is exemplified, but the compound is not limited thereto.
  • R f , R g, and R h each independently represent a hydrogen atom or a methyl group
  • R i , R j, and R k are each independently a hydrogen atom, a halogen atom, or a carbon number of 1 to 6
  • n4 to n9 each independently represents 0 or 1.
  • the powder mixture of the present invention can be used by mixing a plurality of powders composed of the polymerizable liquid crystal compound.
  • the powder composed of a liquid crystal compound having one polymerizable functional group in the molecule is not used or can be used alone or in combination of two or more. When used, it is preferably 1 to 10 types. ⁇ 5 types are more preferred.
  • the powder composed of the liquid crystal compound having two polymerizable functional groups is not used or can be used alone or in combination of two or more. When used, it is preferably 1 to 10 types, preferably 2 to 5 types. More preferred.
  • the powder composed of a polyfunctional polymerizable liquid crystal compound having three or more polymerizable functional groups is not used, or one or two or more kinds can be used. Two to two species are more preferred.
  • a powder mixture can be prepared using only two or more kinds of powders composed of a bifunctional polymerizable liquid crystal compound, a powder composed of at least one kind of monofunctional polymerizable liquid crystal compound and at least one kind of 2
  • a powder mixture is prepared using a functional polymerizable liquid crystal compound and / or a powder composed of a polyfunctional polymerizable liquid crystal compound having three or more functional groups, the curability of the resulting powder mixture is improved, and It is preferable to improve the adhesion of the powder, and it is preferable to use a powder composed of at least one monofunctional polymerizable liquid crystal compound and a powder composed of at least one bifunctional polymerizable liquid crystal compound in combination. It is more preferable because both suppression of curing shrinkage and adhesion can be achieved.
  • the powder (II-2-2-2) described above is used as a powder composed of a bifunctional polymerizable liquid crystal compound. It is preferable to use a powder comprising a compound selected from (II-2-2-4), and a powder comprising a monofunctional polymerizable liquid crystal compound and a powder comprising a bifunctional polymerizable liquid crystal compound are used in combination.
  • the powder comprising the compound represented by the above (II-2-1-1) or (II-2-1-2) and the above (II-2-2-2) or (II It is particularly preferable to prepare a powder mixture using a powder composed of the compound represented by -2-2-3).
  • powders composed of monofunctional polymerizable liquid crystal compounds (II-2-1-1), (II-2-1-3), (II-2-1-5), (II-2-1) -9), (II-2-1-10), (II-2-1-11), (II-2-1-12), (II-2-1-15), (II-2-1) -23), (II-2-1-27), (II-2-1-28), (II-2-1-29), (II-2-1-30)
  • powders composed of bifunctional polymerizable liquid crystal compounds (II-2-2-1-1), (II-2-2-1-4), (II-2-2-1-4), (II-2-2-1-5), (II-2-2-1-6), (II-2-2-1-12), (II-2-2-1-15), (II
  • powders composed of trifunctional polymerizable liquid crystal compounds composed of compounds selected from (II-2-3-1), (II-2-3-3
  • the total amount of the powder composed of the monofunctional polymerizable liquid crystal compound and the powder composed of the bifunctional polymerizable liquid crystal compound is 70% by mass to 100% by mass of the total amount of the powder composed of the polymerizable liquid crystal compound to be used. %, Preferably 80% by mass to 100% by mass.
  • the total content of the powder composed of the monofunctional polymerizable liquid crystal compound is the same as the powder composed of the monofunctional polymerizable liquid crystal compound used, the powder composed of the bifunctional polymerizable liquid crystal compound, and the powder composed of the polyfunctional polymerizable liquid crystal compound.
  • the total amount is preferably 0 to 90% by mass, more preferably 0 to 85% by mass, and particularly preferably 0 to 80% by mass.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, and the optically anisotropic finally obtained.
  • the upper limit is preferably 80% by mass or less, and more preferably 70% by mass or less.
  • the total content of the powder composed of the bifunctional polymerizable liquid crystal compound is the same as the powder composed of the monofunctional polymerizable liquid crystal compound used, the powder composed of the bifunctional polymerizable liquid crystal compound and the powder composed of the polyfunctional polymerizable liquid crystal compound.
  • the total amount is preferably 10 to 100% by mass, more preferably 15 to 85% by mass, and particularly preferably 20 to 80% by mass.
  • the lower limit value is preferably 30% by mass or more, more preferably 50% by mass or more, and finally obtained.
  • the upper limit is preferably 85% by mass or less, and more preferably 80% by mass or less.
  • the total content of the powder composed of the polyfunctional polymerizable liquid crystal compound is the same as the powder composed of the monofunctional polymerizable liquid crystal compound used, the powder composed of the bifunctional polymerizable liquid crystal compound, and the powder composed of the polyfunctional polymerizable liquid crystal compound.
  • the total amount is preferably 0 to 80% by mass, more preferably 0 to 60% by mass, and particularly preferably 0 to 40% by mass.
  • the lower limit value is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more.
  • the upper limit is preferably 50% by mass or less, more preferably 35% by mass or less, and 20 It is particularly preferable that the content is not more than 10% by mass, not more than 10% by mass, not more than 5% by mass, and not more than 2% by mass.
  • the powder comprising the polymerizable liquid crystal compound of the present invention the powder comprising the positively dispersible polymerizable liquid crystal compound having optical characteristics whose birefringence is smaller on the longer wavelength side than on the shorter wavelength side in the visible light region. And / or a powder made of an inversely dispersible polymerizable liquid crystal compound having optical characteristics larger on the longer wavelength side than on the shorter wavelength side.
  • the forward-dispersible polymerizable liquid crystal compound is represented by the formula (A)
  • the reverse-dispersible polymerizable liquid crystal compound is represented by the formula (B).
  • a compound is preferable, and the above-mentioned monofunctional polymerizable liquid crystal compound, bifunctional polymerizable liquid crystal compound, and polyfunctional polymerizable liquid crystal compound correspond to the positively dispersible polymerizable liquid crystal compound.
  • Reverse dispersible polymerizable liquid crystal compound In the powder mixture of the present invention, a powder composed of a reverse dispersible polymerizable liquid crystal compound having at least one polymerizable functional group can be used.
  • the inversely dispersible polymerizable liquid crystal compound As the inversely dispersible polymerizable liquid crystal compound, a known and commonly used compound can be used, but as a guideline for molecular design, it is preferable to mix a positive and negative molecular polarizability, and a positive molecular polarizability. It is preferable that the compound having the molecular shape is rod-shaped, and the compound having a negative molecular polarizability is molecularly disk-shaped.
  • an inversely dispersible polymerizable liquid crystal compound having at least one polymerizable functional group as a method of mixing molecular structures having positive and negative molecular polarizabilities, a mesogen in the center of the molecule may have a branched structure.
  • the number of branches is preferably 1 or 2.
  • a molecular shape having one branched structure from a mesogen is preferable because both the expression of reverse dispersion and the expression of a nematic liquid crystal phase are easily achieved.
  • these compounds showing reverse dispersion preferably have a structure represented by the following general formulas (1) to (7).
  • P 11 to P 74 represent a polymerizable group
  • S 11 to S 72 represent a spacer group or a single bond
  • a plurality of S 11 to S 72 are present. They may be the same or different
  • X 11 to X 72 are —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—.
  • a 11 and A 12 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2.
  • these groups may be unsubstituted or substituted with one or more L 1 groups, and when a plurality of A 11 and / or A 12 appear, they may be the same or different from each other, Z 11 and Z 12 are each independently —O—, —S—, —OCH 2 —, —CH 2 O—, —CH 2 CH 2 —, —CO—, —COO—, —OCO—, —CO.
  • G is the following formula (G-1) to formula (G-6)
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be linear or branched, and any of the alkyl groups the hydrogen atoms may be substituted by a fluorine atom, one -CH 2 in the alkyl group - or nonadjacent two or more -CH 2 - are each independently -O -, - S- , —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO— or —C ⁇ C—.
  • W 81 represents a group having 5 to 30 carbon atoms having at least one aromatic group, and the group may be unsubstituted or substituted by one or more L 1
  • W 82 represents a hydrogen atom, or one -CH 2 - or nonadjacent two or more -CH 2 - are each independently -O -, - S -, - CO -, - COO -, - OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—.
  • W 82 is a group having 2 to 30 carbon atoms having at least one aromatic group may represent, or, W 82 is P W - (Sp W -X W ) kW - a group represented by May represent, here represents P W polymerizable group, preferably a polymerizable group represents those same as those preferred polymerizable groups below P 11 ⁇ P 74, Sp W is a spacer group or a single bond Preferred spacer groups are the same as the preferred spacer groups in the following S 11 to S 72 , and when there are a plurality of Sp W, they may be the same or different, and X W Is
  • W 83 and W 84 each independently has 5 to 30 carbon atoms having a halogen atom, a cyano group, a hydroxy group, a nitro group, a carboxyl group, a carbamoyloxy group, an amino group, a sulfamoyl group, or at least one aromatic group.
  • the above —CH 2 — is independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—.
  • G represents Formula (G-6);
  • L 1 is a fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, nitro group, isocyano group, amino group, hydroxyl group, mercapto group, methylamino group, dimethylamino group, diethylamino group, diisopropylamino.
  • R 11 and R 31 are hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, cyano group, nitro group, isocyano group, thioisocyano group, or carbon number of 1 to 20
  • the alkyl group may be linear or branched, and any hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • One —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—.
  • m11 represents an integer of 0 to 8; ⁇ M7, n2 ⁇ n7, l4 ⁇ 16, k6 are each independently 0 5 of an integer.
  • the polymerizable groups P 11 to P 74 preferably represent groups selected from the following formulas (P-1) to (P-20).
  • These polymerizable groups are polymerized by radical polymerization, radical addition polymerization, cationic polymerization and anionic polymerization.
  • the formula (P-1), formula (P-2), formula (P-3), formula (P-4), formula (P-5), formula (P ⁇ 7), formula (P-11), formula (P-13), formula (P-15) or formula (P-18) are preferred, and formula (P-1), formula (P-2), formula (P-18) P-7), formula (P-11) or formula (P-13) is more preferred, formula (P-1), formula (P-2) or formula (P-3) is more preferred, and formula (P- Particular preference is given to 1) or formula (P-2).
  • S 11 to S 72 represent a spacer group or a single bond. When a plurality of S 11 to S 72 are present, they may be the same or different. good.
  • the spacer group one —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —COO—, —OCO—, —OCO—O—, —CO—NH—, —NH—CO—, —CH ⁇ CH—, —C ⁇ C— or the following formula (S-1)
  • S 11 to S 72 may be the same or different and each independently represents one —CH 2 — or an adjacent group.
  • -O independently are each - - to have no more than one -CH 2 and, - COO -, - OCO- replaced by more that a good 1 -C also represents an alkylene group or a single bond 10
  • each independently represents an alkylene group having 1 to 10 carbon atoms or a single bond, and when there are a plurality of them, they may be the same or different, and each independently represents from 1 to carbon atoms. It is particularly preferred to represent 8 alkylene groups.
  • X 11 to X 72 are —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —SCH 2 —, —CH 2 S—, —CF 2 O—, — OCF 2 —, —CF 2 S—, —SCF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO— CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—
  • X 11 to X 72 When a plurality of X 11 to X 72 are present, they may be the same or different (provided that the P— (S—X) — bond includes -O-O- is not included.) From the viewpoint of easy availability of raw materials and ease of synthesis, when there are a plurality of them, they may be the same or different, and each independently represents —O—, —S—, —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —COO—CH 2 CH 2 -, - OCO- CH 2 CH 2 -, - CH 2 CH 2 -COO -, - it is preferable to represent a CH 2 CH 2 -OCO- or a single bond, each independently -O -, - OCH 2 —, —CH 2 O—,
  • a 11 and A 12 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, pyridine-2,5-diyl group, pyrimidin-2 , 5-diyl group, naphthalene-2,6-diyl group, naphthalene-1,4-diyl group, tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group or 1,3-dioxane -2,5-diyl groups, these groups may be unsubstituted or substituted by one or more L, but when multiple occurrences of A 11 and / or A 12 appear, they are the same.
  • a 11 and A 12 are each independently an unsubstituted or 1,4-phenylene group that may be substituted with one or more L 1 , 1,4-cyclohexane from the viewpoint of availability of raw materials and ease of synthesis.
  • each group independently represents a group selected from formula (A-1) to formula (A-8), and each independently represents a group selected from formula (A-1). It is particularly preferable to represent a group selected from the formula (A-4).
  • Z 11 and Z 12 are each independently —O—, —S—, —OCH 2 —, —CH 2 O—, —CH 2 CH 2 —, — CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —OCO—NH—, — NH—COO—, —NH—CO—NH—, —NH—O—, —O—NH—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, — OCO—CH 2 CH 2 —, —,
  • Z 11 and Z 12 are each independently a single bond, —OCH 2 —, —CH 2 O—, —COO—, —OCO— from the viewpoint of liquid crystallinity of the compound, availability of raw materials, and ease of synthesis.
  • M is the following formula (M-1) to formula (M-11)
  • M is each independently unsubstituted or substituted by one or more L 1 from the viewpoints of availability of raw materials and ease of synthesis, and the formula (M-1) or the formula (M-2) Alternatively, it preferably represents a group selected from unsubstituted formula (M-3) to (M-6), and may be unsubstituted or substituted by one or more L 1 . It is more preferable to represent a group selected from (M-2), and it is particularly preferable to represent a group selected from unsubstituted formula (M-1) or (M-2).
  • R 11 and R 31 are hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, cyano group, nitro group, isocyano group, A thioisocyano group, or one —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —S—, —CO—, —COO—, —OCO—, 1 to 20 carbon atoms which may be substituted by —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO— or —C ⁇ C—.
  • a linear or branched alkyl group is represented, and any hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • R 1 is a hydrogen atom in view of easiness of the liquid crystal and synthetic, fluorine atom, chlorine atom, cyano group, or one -CH 2 - or nonadjacent two or more -CH 2 - are each independently It preferably represents a linear or branched alkyl group having 1 to 12 carbon atoms which may be substituted by —O—, —COO—, —OCO—, —O—CO—O—, a hydrogen atom, fluorine It is more preferable to represent an atom, a chlorine atom, a cyano group, or a linear alkyl group or linear alkoxy group having 1 to 12 carbon atoms, and a linear alkyl group or linear alkoxy group having 1 to 12 carbon atoms. It is particularly preferred to represent.
  • G represents a group selected from the formulas (G-1) to (G-6).
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be linear or branched.
  • hydrogen atom may be substituted by a fluorine atom, one -CH 2 in the alkyl group - or nonadjacent two or more -CH 2 - are each independently -O -, - S-, By —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO— or —C ⁇ C—.
  • W 81 represents a group having 5 to 30 carbon atoms having at least one aromatic group, and the group may be unsubstituted or substituted by one or more L 1
  • W 82 represents a hydrogen atom, or one -CH 2 - or nonadjacent two or more -CH 2 - are each independently -O -, - S -, - CO -, - COO -, - OCO—, —CO—S—, —S—CO—, —O—CO—O—, —CO—NH—, —NH—CO—, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—.
  • W 82 is a group having 2 to 30 carbon atoms having at least one aromatic group may represent, or, W 82 is P W - (Sp W -X W ) kW - a group represented by May represent, here represents P W polymerizable group, preferably a polymerizable group represents those same as those preferred polymerizable groups below P 11 ⁇ P 74, Sp W is a spacer group or a single bond Preferred spacer groups are the same as the preferred spacer groups in the following S 11 to S 72 , and when there are a plurality of Sp W, they may be the same or different, and X W Is
  • the aromatic group contained in W 81 may be an aromatic hydrocarbon group or aromatic heterocyclic group may contain both. These aromatic groups may be bonded via a single bond or a linking group (—OCO—, —COO—, —CO—, —O—), and may form a condensed ring. W 81 may contain an acyclic structure and / or a cyclic structure other than the aromatic group in addition to the aromatic group. From the viewpoint of availability of raw materials and ease of synthesis, the aromatic group contained in W 81 is unsubstituted or may be substituted with one or more L 1 from the following formula (W-1) Formula (W-19)
  • Q 1 Represents —O—, —S—, —NR 5 — (wherein R 5 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms) or —CO—.
  • Each —CH ⁇ may be independently replaced by —N ⁇ , and each —CH 2 — independently represents —O—, —S—, —NR 4 — (wherein R 4 represents a hydrogen atom or carbon Represents an alkyl group having 1 to 8 atoms) or a group represented by the formula: -CO-, which may be substituted with -CO-, but does not contain an -O-O- bond.
  • R 4 represents a hydrogen atom or carbon Represents an alkyl group having 1 to 8 atoms
  • -CO- which may be substituted with -CO-, but does not contain an -O-O- bond.
  • W-1 the following formula (W-1-1) to the formula (W-1-8) which may be unsubstituted or substituted by one or more L 2 groups. )
  • these groups may have a bond at an arbitrary position), preferably a group selected from the group represented by the formula (W-7) is unsubstituted. Or the following formula (W-7-1) to formula (W-7-7) which may be substituted by one or more L 1
  • these groups may have a bond at an arbitrary position), preferably a group selected from the group represented by formula (W-10) is unsubstituted. Or one or more of L 1 may be substituted by the following formulas (W-10-1) to (W-10-8)
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • Examples of the group represented by the formula (W-12) include the following formula (W-12-1) to formula (W-12-19) which may be unsubstituted or substituted with one or more L 1 groups. )
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, each identical if R 6 there are a plurality of It is preferable that the group represented by the formula (W-13) is unsubstituted or substituted by one or more L 1 groups.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, each identical if R 6 there are a plurality of It is preferable that the group represented by the formula (W-14) is unsubstituted or substituted by one or more L 1 groups.
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • the group represented by the formula (W-15) may be unsubstituted or substituted with one or more L 1 from the following formulas (W-15-1) to (W-15-18) )
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • these groups may have a bond at an arbitrary position, and R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • Examples of the group represented by the formula (W-18) include the following formulas (W-18-1) to (W-18-6) which may be unsubstituted or substituted with one or more L 1 groups.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, each identical if R 6 there are a plurality of It is preferable that the group represented by the formula (W-19) is unsubstituted or substituted with one or more L 1 groups.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, each identical if R 6 there are a plurality of Or may be different. It is preferable to represent a group selected from:
  • the aromatic group contained in W 81 is unsubstituted or may be substituted by one or more L 1.
  • r represents an integer of 0 to 5
  • s represents an integer of 0 to 4
  • t represents an integer of 0 to 3.
  • W 82 may be a hydrogen atom, or any hydrogen atom in the group may be substituted with a fluorine atom, and one —CH 2 — or adjacent one may be substituted. Two or more —CH 2 — are each independently —O—, —CO—, —COO—, —OCO—, —O—CO—O—, —CH ⁇ CH—COO—, —CH ⁇ CH. 1 to 20 carbon atoms which may be substituted by —OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—.
  • W 82 represents a hydrogen atom or any hydrogen atom in the group May be substituted with a fluorine atom, one —CH 2 — or two or more not adjacent to each other
  • Each of —CH 2 — is independently a linear or branched alkyl group having 1 to 20 carbon atoms and may be substituted by —O—, —CO—, —COO—, —OCO—, or
  • P W - (Sp W -X W) kW - more preferably represents a group represented by, W 82 is a hydrogen atom, or one -CH 2 - or nonadjacent two or more -CH 2 -Represents a linear alkyl group having 1 to 12 carbon atoms which may be independently substituted by -O-, or a group represented by P W- (Sp W -X W
  • W 82 represents a group having 2 to 30 carbon atoms having at least one aromatic group
  • W 82 represents a group selected from the above formulas (W-1) to (W-18) Is preferred. In that case, the more preferable structure is the same as described above.
  • W 82 represents a group represented by P W — (Sp W —X W ) kW —
  • preferred structures of the groups represented by P W , Sp W , X W are the above-mentioned P 11 To P 74 , S 11 to S 72 , and the preferred structures of the groups represented by X 11 to X 72 are the same.
  • kW is preferably an integer of 0 to 3, more preferably 0 or 1.
  • the cyclic group represented by —NW 81 W 82 may be unsubstituted or substituted with one or more L 1 Formula (Wb-1) to Formula (Wb-42)
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • Wb-20 Formula (Wb-21), Formula (Wb-22), Formula (Wb-23), Formula (Wb) that may be substituted by one or more L 1
  • CW 81 W 82 may be unsubstituted or may be substituted with one or more L 1 .
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and when there are a plurality of R 6 s , they may be the same or different from each other).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and when there are a plurality of R 6 s , they may be the same or different from each other.
  • Formula (Wc-11), Formula (Wc-12), which may be unsubstituted or substituted by one or more L, Formula (Wc-13), Formula (Wc-14), Formula (Wc-53), Formula (Wc-54), Formula (Wc-55), Formula (Wc -56), a group selected from formula (Wc-57) or formula (Wc-78) is particularly preferred.
  • the total number of ⁇ electrons contained in W 81 and W 82 is preferably 4 to 24 from the viewpoints of wavelength dispersion characteristics, storage stability, liquid crystallinity, and ease of synthesis.
  • W 83 and W 84 each independently has 5 to 30 carbon atoms having a halogen atom, a cyano group, a hydroxy group, a nitro group, a carboxyl group, a carbamoyloxy group, an amino group, a sulfamoyl group, or at least one aromatic group.
  • a cyano group, a carboxyl group, one —CH 2 — or two or more non-adjacent —C H 2 — is each independently substituted by —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NH—, —NH—CO— or —C ⁇ C—
  • W84 is a cyano group, a nitro group, a carboxyl group, one —CH 2 — or adjacent group.
  • Two or more —CH 2 — that are not present are each independently —O—, —S—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O.
  • L 1 is a fluorine atom, chlorine atom, bromine atom, iodine atom, pentafluorosulfuranyl group, nitro group, isocyano group, amino group, hydroxyl group, mercapto group, methylamino group, dimethylamino group, diethylamino group, diisopropylamino.
  • L 1 represents a fluorine atom, a chlorine atom, a pentafluorosulfuranyl group, a nitro group, a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, or an arbitrary hydrogen.
  • the atom may be substituted with a fluorine atom, and one —CH 2 — or two or more non-adjacent —CH 2 — are each independently —O—, —S—, —CO—, —COO.
  • each substituent bonded to MG 11 to MG 71 is bonded to A 11 and / or A 12 of the general formula (a).
  • m11 represents an integer of 0 to 8, and preferably represents an integer of 0 to 4 from the viewpoint of liquid crystallinity, availability of raw materials and ease of synthesis, and an integer of 0 to 2 Is more preferable, 0 or 1 is more preferable, and 1 is particularly preferable.
  • m2 to m7, n2 to n7, and l2 to 17 each independently represent an integer of 0 to 5, but the liquid crystallinity, the availability of raw materials, and the ease of synthesis In view of the above, it is preferable to represent an integer of 0 to 4, more preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 1.
  • j11 and j12 each independently represent an integer of 1 to 5, but j11 + j12 represents an integer of 2 to 5. From the viewpoints of liquid crystallinity, ease of synthesis, and storage stability, j11 and j12 each independently preferably represent an integer of 1 to 4, more preferably an integer of 1 to 3, more preferably 1 or 2. It is particularly preferred to represent. j11 + j12 preferably represents an integer of 2 to 4.
  • Examples of the reverse dispersible polymerizable liquid crystal compound include compounds represented by the following formulas (8-1) to (8-31), but are not limited thereto.
  • the total content of the powder composed of the reverse-dispersible polymerizable liquid crystal compound is the total amount of the powder composed of the positively-dispersible polymerizable liquid crystal compound and the powder composed of the reverse-dispersible polymerizable liquid crystal compound used in the powder mixture.
  • the content is preferably 60 to 100% by mass, more preferably 65 to 98% by mass, and particularly preferably 70 to 95% by mass.
  • Control of the particle size of a powder composed of a positively dispersible polymerizable liquid crystal compound and a reversely dispersible polymerizable liquid crystal compound it is particularly preferable to control the particle size, bulk density, and crystallite of the polymerizable liquid crystal compound having a polymerizable functional group, and a publicly known technique can be used as a method for controlling the particle size and the like.
  • a polymerizable liquid crystal compound is synthesized from an organic solvent after synthesis. It is particularly preferable to control the particle size during separation.
  • Methods for separating polymerizable liquid crystal compounds from organic solvents include evaporation (natural drying), air blowing, decompression, heating, spraying, freezing, azeotropy, capillary action, recrystallization, reprecipitation, etc., alone or in combination. Although it can be utilized, it is preferable to prevent polymerization by the isolation operation. In order for the polymerizable functional group to react and not polymerize, it is preferable to perform a step of removing the organic solvent after adding the polymerization inhibitor, and the working place temperature is 40 ° C, 30 ° C, 25 ° C, 20 ° C, 15 ° C. and 10 ° C.
  • Work is performed in a place having an air-conditioning facility in order to maintain the work environment.
  • the recrystallization solvent is preferably cooled, and the cooling temperature is 10 ° C. or less, 5 ° C. or less, 0 ° C. or less, ⁇ 5 ° C. or less, ⁇ 10 ° C. The following is preferred.
  • the polymerizable liquid crystal compound is dissolved in the above highly soluble solvent, It is preferable to add a solvent having low solubility to lower the solubility and precipitate the polymerizable liquid crystal compound. It is preferable to minimize the use amount of the solvent having high solubility, preferably the same weight to 10 times the amount of the solvent as the saturated concentration, preferably 5 times the amount, and 2 to 3 times the weight. It is particularly preferable to dissolve in a solvent.
  • the solvent having low solubility is preferably added with stirring, and the solvent having low solubility is preferably cooled to room temperature or lower, 25 ° C. or lower, 20 ° C. or lower, 10 ° C. or lower, 5 ° C. or lower, 0 ° C. Hereinafter, it is preferably ⁇ 5 ° C. or lower and ⁇ 10 ° C. or lower.
  • the organic solvent having high solubility and low solubility in the polymerizable liquid crystal compound of the present invention is not limited to a usable solvent, and a known organic solvent can be used. Moreover, an organic solvent can also be used individually and in mixture of 2 or more types.
  • Highly soluble organic solvents include ester solvents, amide solvents, ether solvents, aromatic hydrocarbon solvents, halogenated aromatic hydrocarbon solvents, halogenated aliphatic hydrocarbon solvents, and alicyclic carbonization. Hydrogen-based solvents, ketone-based solvents, and acetate-based solvents can be used.
  • an aromatic hydrocarbon solvent As toluene, xylene, chlorobenzene as halogenated aromatic hydrocarbon solvent, chloroform, dichloromethane as halogenated aliphatic hydrocarbon solvent, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, acetate solvent as halogenated ketone solvent
  • ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, methyl acetoacetate, and 1-meth Xyl-2-propyl acetate and the like are preferable
  • ethyl acetate, toluene, chloroform, dichloromethane, acetone, methyl ethyl ketone, cyclohexanone, and cyclopentanone are preferable.
  • alcohol solvents and aliphatic hydrocarbon solvents are preferable, Among alcohol solvents, it is preferable that the number of carbon atoms is small. Specifically, methanol and ethanol are preferable. Among aliphatic hydrocarbon solvents, hexane and heptane are preferable, and a solvent having a boiling point of 100 ° C. or less is particularly preferable. .
  • the polymerizable liquid crystal compound is preferably a halogenated aliphatic hydrocarbon solvent, preferably chloroform or dichloromethane.
  • an alcohol solvent preferably methanol, ethanol, or an aliphatic hydrocarbon solvent, preferably hexane or heptane.
  • Precipitated particles are preferably separated by suction filtration or centrifugal filtration, and centrifugal filtration is particularly preferred.
  • the separated crystals are preferably blown and dried with an oven.
  • the preferred range of the particle diameter, particle diameter distribution, bulk density, and crystallite of the powder composed of the positively dispersible polymerizable liquid crystal compound and the powder composed of the reverse dispersible polymerizable liquid crystal compound used in the present invention is as described above.
  • the crystallite of the powder composed of the positively dispersible polymerizable liquid crystal compound used in the present invention is measured using X-ray diffraction measurement, it is 5 nm to 500 nm, more preferably 10 nm to 300 nm, still more preferably 15 nm to
  • the crystallite is controlled to a size of 200 nm, particularly preferably 20 nm to 100 nm, the solubility in a solvent and the solubility by heating are excellent, and the powder does not easily rise when handling a powder mixture.
  • the adhesion to the container is reduced, which is preferable.
  • the crystallites of the powder mixture are larger than the above, the time until the large crystallites are dissolved in the solvent and the time until the crystallites are dissolved by heating are increased, and the solubility due to the solvent and heating is lowered.
  • the crystallite of the powder mixture is smaller than the above, the solubility by solvent or heating is improved, but when handling the powder mixture, the powder is likely to rise and handling properties are low, and it is easy to be charged. Since it becomes easy to enter even a gap, the adhesion to the container is high and it is difficult to take out the powder mixture.
  • a general purpose additive can also be used according to each objective.
  • polymerization initiator, polymerization inhibitor, antioxidant / light stabilizer, leveling agent, alignment controller, chain transfer agent, infrared absorber, antistatic agent, dye, filler, curing agent, chiral compound, thixotropic agent, Additives such as non-liquid crystalline compounds having a polymerizable group, other liquid crystal compounds, and alignment materials can be added to such an extent that the solid ratio in the powder mixture is not significantly reduced.
  • each additive is added when the powder mixture of the present invention is dissolved in an organic solvent to produce a solution composition, or when the powder mixture of the present invention is heated to produce a nematic liquid crystal composition.
  • the additive When the additive is insoluble in the solvent, it may be dispersed in an organic solvent or a nematic liquid crystal composition.
  • the additive When the additive is in a liquid state, the amount of the compound added to the powder mixture of the present invention is small, and therefore does not affect the content ratio of the solid contained in the powder mixture of the present invention.
  • an optical anisotropic body such as an optical film by polymerizing a composition using the powder mixture of the present invention
  • a polymerization initiator that initiates a reaction of a polymerizable functional group, and is stored.
  • a polymerization inhibitor In order to suppress the reaction of the polymerizable liquid crystal compound which is not aimed by the work such as dissolution and heating, it is preferable to use a polymerization inhibitor.
  • various stabilizers may be used.
  • It is radicals and peroxides generated by the influence of oxygen, light and heat that cause deterioration of the obtained optical anisotropic body. Therefore, in order to suppress deterioration of the obtained optical anisotropic body, an additive for capturing radicals and peroxides is preferable, and an antioxidant, a light stabilizer, and a heat stabilizer are preferably used.
  • the powder mixture of the present invention preferably contains a photopolymerization initiator. It is preferable to contain at least one photopolymerization initiator.
  • the amount of the photopolymerization initiator used is preferably 0.1 to 10% by mass, particularly preferably 0.5 to 7% by mass, based on the powder mixture. These can be used alone, or two or more kinds of photopolymerization initiators can be mixed and used, and a sensitizer or the like may be added.
  • Thermal polymerization initiator A thermal polymerization initiator may be used in combination with the photopolymerization initiator in the powder mixture of the present invention. Specifically, “V-40” and “VF-096” manufactured by Wako Pure Chemical Industries, Ltd., “Perhexyl D” and “Perhexyl I” of Nippon Oil & Fats Co., Ltd. (currently Nippon Oil Co., Ltd.) Etc.
  • methyl acetoacetate peroxide cumene hydroperoxide
  • benzoyl peroxide bis (4-tert-butylcyclohexyl) peroxydicarbonate, tert-butylperoxy Benzoate, methyl ethyl ketone peroxide, 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, p-pentahydroperoxide, t-butylhydroperoxide, dicumyl peroxide, isobutyl peroxide
  • Organic peroxides such as di (3-methyl-3-methoxybutyl) peroxydicarbonate, 1,1-bis (t-butylperoxy) cyclohexane, 2,2′-azobisisobutyronitrile, , 2'-Azobis (2,4-dimethyl Azonitrile compounds such as 2,2′-azobis (2-methyl-N-
  • the amount of the thermal polymerization initiator used is preferably from 0.1 to 10% by mass, particularly preferably from 0.5 to 5% by mass, based on the powder mixture. These can be used alone or in combination of two or more thermal polymerization initiators.
  • the powder mixture of the present invention can contain a polymerization inhibitor as necessary. There is no limitation in particular as a polymerization inhibitor to be used, A well-known usual thing can be used. The polymerization inhibitor is preferably used alone or in combination of two or more kinds.
  • the method containing a polymerization inhibitor is preferably added separately to the powder mixture, and when purifying the synthesized polymerizable liquid crystal compound, the polymerization inhibitor is dissolved in the solution in which the polymerizable liquid crystal compound is dissolved.
  • the polymerization inhibitor is dissolved in the solution in which the polymerizable liquid crystal compound is dissolved.
  • a phenol compound, a quinone compound, an amine compound, a thioether compound, or a nitroso compound for example, p-methoxyphenol (MEHQ), cresol, t-butylcatechol, 5-di-t-butyl-4-hydroxytoluene, 2.2'-methylenebis (4-methyl-6-t-butylphenol), 2.2'-methylenebis (4-ethyl-6-t-butylphenol), 4 Phenolic compounds such as 4′-thiobis (3-methyl-6-tert-butylphenol), 4-methoxy-1-naphthol, 4,4′-dialkoxy-2,2′-bi-1-naphthol, Hydroquinone, methylhydroquinone, tert-butylhydroquinone, p-benzoquinone, methyl-p-benzoquinone, tert Butyl-p-benzoquinon
  • MEHQ p-methoxyphenol
  • N'-diphenyl-p-phenylenediamine Ni-propyl-N'-phenyl-p-phenylenediamine, N- (1.3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N.I.
  • Amine compounds such as N′-di-2-naphthyl-p-phenylenediamine, diphenylamine, N-phenyl- ⁇ -naphthylamine, 4.4′-dicumyl-diphenylamine, 4.4′-dioctyl-diphenylamine, phenothiazine, Thioether compounds such as distearyl thiodipropionate, N-nitrosodiphenylamine, N-nitrosophenylnaphthylamine, N-nitrosodinaphthylamine, p-nitrosophenol, nitrosobenzene, p-nitrosodiphenylamine, ⁇ -nitroso- ⁇ -naphthol N, N-dimethyl p-nitrosoaniline, p-nitrosodiphenylamine, p-nitronedimethylamine, p-nitrone-N, N-diethylamine, N
  • the addition amount of the polymerization inhibitor is preferably 10,000 ppm or less, more preferably 7,000 ppm or less, and particularly preferably 5,000 ppm or less with respect to the polymerizable liquid crystal compound contained in the powder mixture.
  • the polymerizable liquid crystal When purifying the synthesized polymerizable liquid crystal compound, when recrystallization or reprecipitation is performed after dissolving the polymerization inhibitor in the solution in which the polymerizable liquid crystal compound is dissolved, the polymerizable liquid crystal is recrystallized by recrystallization or reprecipitation. Since a large amount of polymerization inhibitor remains as an impurity in the solution rather than being incorporated into the powder composed of the compound, the amount of the polymerization inhibitor added to the solution is added directly to the powder mixture of the polymerizable liquid crystal compound. It is preferable to add a polymerization inhibitor more than in the case of carrying out.
  • the content of the polymerization inhibitor taken into the powder comprising the polymerizable liquid crystal compound after recrystallization and reprecipitation after dissolving the polymerization inhibitor in the solution may be 3,000 ppm or less. Preferably, it is 2,000 ppm or less, and particularly preferably 1,000 ppm or less.
  • an antioxidant or a light stabilizer can be contained alone or in combination, if necessary.
  • a phenol-based antioxidant an amine-based antioxidant, a sulfur-based antioxidant, a phosphorus-based antioxidant and a thioether-based antioxidant are preferable, and in addition, a heavy metal deactivator and the like can be mentioned.
  • IRGANOX1010 pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate “IRGANOX1010” manufactured by BASF Corporation, thiodiethylene bis [3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate “IRGANOX1035”, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate “IRGANOX1076”, “IRGANOX1098” , “IRGANOX1135”, “IRGANOX1330”, “IRGANOX1726”, “IRGANOX1424WL”, 4,6-bis (octylthiomethyl) -o-cresol “IRGANOX1520L”, “I” GANOX 245 ”,“ IRGANOX 259 ”,“ IRGANOX 3114 ”,“ IR
  • amine-based antioxidants include “IRGASTAB FS 301 FF”, “IRGASTAB FS 110”, “IRGASTAB FS 210 FF”, and “IRGASTAB FS 410 FF” manufactured by BASF.
  • sulfur-based antioxidant include “Sumilyzer TP-D” and “Sumilyzer MB” manufactured by Sumitomo Chemical Co., Ltd.
  • Phosphorus antioxidants include “PEP-36”, “PEP-36A”, “HP-10”, “2112”, “2112RG”, “PEP-8”, “PEP-8W” manufactured by ADEKA Corporation. ”,“ 1178 ”,“ 1500 ”,“ c ”,“ 135A ”,“ 3010 ”,“ TPP ”, and the like.
  • Examples of the thioether-based antioxidant include “AO-412S” and “AO-503” manufactured by ADEKA Corporation.
  • the metal deactivator is preferably a hydrazine compound or an amide compound. Specifically, “IRGANOX MD 1024” manufactured by BASF Corporation, “CDA-1”, “CDA-” manufactured by ADEKA Corporation. 1M ",” CDA-6 ",” CDA-10 "and the like.
  • an ultraviolet absorber is preferable for absorbing light
  • an amine light stabilizer and a phenol light stabilizer are preferable for preventing a chain of auto-oxidation due to radicals, and the peroxide is decomposed.
  • sulfur-based light stabilizers, phosphorus-based stabilizers, and thioether-based light stabilizers are preferable.
  • heavy metal deactivators and the like can be used.
  • benzotriazole compounds triazine compounds, benzophenone compounds, and benzoate compounds are preferable.
  • benzotriazole compounds include 2- (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole “TINUVIN PS”, “TINUVIN 99-2”, “TINUVIN 384-2” manufactured by BASF, 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol “TINUVIN 900”, 2- (2H-benzotriazol-2-yl) -6- ( 1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol “TINUVIN 928”, “TINUVIN 1130”, “TINUVIN 400”, “TINUVIN 405”, 2,4- Bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl)- 1,3,5-triazine “TINUVINUVIN
  • triazine compound examples include “TINUVIN 1577ED” manufactured by BASF, “ADK STAB LA-46” and “ADK STAB LA-F70” manufactured by ADEKA Corporation.
  • benzophenone compounds examples include “CHIMASSORB 81” and “CHIMASSORB 81 FL” manufactured by BASF, “Adeka Stub 1413” manufactured by ADEKA Corporation, and the like.
  • benzoate compounds include “TINUVIN 120” manufactured by BASF.
  • amine-based light stabilizer a hindered amine-based light stabilizer (HALS) is preferable.
  • the addition amount of the antioxidant and / or the light stabilizer is preferably 0.01 to 2.0% by mass with respect to the total amount of the polymerizable liquid crystal compound contained in the powder mixture, preferably 0.01 to 1.0% by mass is preferable, and 0.05 to 1.0% is more preferable.
  • the powder mixture of the present invention can contain a surfactant as required. There are no particular limitations on the surfactant used, but when forming a thin film such as an optical film, the surface tension of the coating film surface is adjusted to reduce film thickness unevenness, repellency, and pinholes, and leveling and wettability. It is preferable to improve the recoating property and antifoaming property.
  • the surfactant include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, phosphate ester derivatives, phosphate ester types Neutralized amines and the like are preferable.
  • “MegaFuck F-114”, “MegaFuck F-410”, “MegaFuck F-510”, “MegaFuck F-511” stocks manufactured by DIC Corporation Examples include “Factent 100”, “Factent 100C”, “Factent 110”, “Factent 150”, and “Factent 150CH” manufactured by Neos.
  • alkyl ammonium salts, fluoroalkyl ammonium salts and the like are preferable, and specific examples include “Fargent 300”, “Fargent 310”, “Furgent 320” and the like.
  • amphoteric surfactant a betaine derivative or the like is preferable, and specifically, “Factent 400SW” manufactured by Neos Co., Ltd. can be mentioned.
  • Nonionic surfactants include polyoxyethylene ether derivatives, polyoxypropylene derivatives, siloxane derivatives, siloxane copolymer derivatives, acrylic polymers, silicone-modified acrylate derivatives, vinyl polymers, fluorine group-containing oligomers, UV reactive groups Oligomers and the like are preferable. Specifically, “Factent 212M”, “Factent 222F”, “Factent 208G”, “Factent 240G”, “Factent 220P”, and “Factent 228P” manufactured by Neos Co., Ltd.
  • the powder mixture used in the present invention can contain an alignment control agent in order to control the alignment state of the liquid crystal compound.
  • the alignment control agent to be used include those in which the liquid crystalline compound is substantially horizontally aligned, substantially vertically aligned, or substantially hybridly aligned with respect to the substrate.
  • a chiral compound when a chiral compound is added, those which are substantially planarly oriented can be mentioned. As described above, horizontal alignment and planar alignment may be induced by the surfactant, but there is no particular limitation as long as each alignment state is induced, and a known and conventional one should be used. Can do.
  • a weight average molecular weight having a repeating unit represented by the following general formula (9) having an effect of effectively reducing the tilt angle of the air interface when an optical anisotropic body is used for example, a weight average molecular weight having a repeating unit represented by the following general formula (9) having an effect of effectively reducing the tilt angle of the air interface when an optical anisotropic body is used.
  • R 11 , R 12 , R 13 and R 14 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one hydrocarbon atom in the hydrocarbon group
  • R 11 , R 12 , R 13 and R 14 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one hydrocarbon atom in the hydrocarbon group
  • R 11 , R 12 , R 13 and R 14 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one hydrocarbon atom in the hydrocarbon group
  • a rod-like liquid crystal compound modified with a fluoroalkyl group a discotic liquid crystal compound, a polymerizable compound containing a long-chain aliphatic alkyl group which may have a branched structure, and the like are also included.
  • the powder mixture of the present invention can contain a chain transfer agent in order to further improve the adhesion between the polymer or optical anisotropic body and the substrate.
  • the chain transfer agent include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds (thiol compounds), sulfide compounds, aniline compounds, acrolein derivatives, and the like.
  • pentaphenylethane, ⁇ -methylstyrene dimer as aromatic hydrocarbons, chloroform, carbon tetrachloride, carbon tetrabromide, bromotrichloromethane as halogenated hydrocarbons, octyl as mercaptan compound (thiol compound) Mercaptan, n-butyl mercaptan, n-pentyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl merc, n-dodecyl mercaptan, t-tetradecyl mercaptan, t-dodecyl mercaptan, hexanedithiol, decandithiol, 1,4- Butanediol bisthiopropionate, 1,4-butanediol bisthioglycolate, ethylene glycol bisthioglycolate, ethylene
  • R 95 represents an alkyl group having 2 to 18 carbon atoms, and the alkyl group may be linear or branched, and one or more methylene groups in the alkyl group are oxygen atoms.
  • a sulfur atom that is not directly bonded to each other may be substituted with an oxygen atom, a sulfur atom, —CO—, —OCO—, —COO—, or —CH ⁇ CH—
  • R 96 is a carbon atom Represents an alkylene group of 2 to 18, and one or more methylene groups in the alkylene group are oxygen atoms, sulfur atoms, —CO—, —OCO—, wherein oxygen atoms and sulfur atoms are not directly bonded to each other.
  • —COO—, or —CH ⁇ CH— may be substituted.
  • the addition amount of the chain transfer agent is preferably 0.5 to 10% by mass, more preferably 1.0 to 5.0% by mass, based on the total amount of the polymerizable liquid crystal compound contained in the powder mixture. preferable.
  • a powder composed of a liquid crystalline compound having no polymerizable group or a polymerizable compound having no liquid crystallinity if necessary.
  • the amount of these compounds added is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less, based on the powder mixture.
  • the powder mixture of the present invention can contain an infrared absorber as necessary.
  • the infrared absorber to be used is not particularly limited, and any known and conventional one can be contained within a range not disturbing the orientation.
  • Examples of the infrared absorber include cyanine compounds, phthalocyanine compounds, naphthoquinone compounds, dithiol compounds, diimmonium compounds, azo compounds, and aluminum salts.
  • NIR-IM1 diimmonium salt type
  • NIR-AM1 aluminum salt type
  • Karenz IR-T cyanine IR-T
  • Karenz IR-13F aluminum salt type
  • the powder mixture of the present invention can contain an antistatic agent as required.
  • the antistatic agent to be used is not particularly limited, and a known and commonly used antistatic agent can be contained as long as the orientation is not disturbed.
  • examples of such an antistatic agent include a polymer compound having at least one sulfonate group or phosphate group in the molecule, a compound having a quaternary ammonium salt, a surfactant having a polymerizable group, and the like. Of these, anionic or nonionic surfactants having a polymerizable group are preferred.
  • surfactants having a polymerizable group as anionic ones, “Antox SAD”, “Antox MS-2N” manufactured by Nippon Emulsifier Co., Ltd., Daiichi Kogyo Seiyaku Co., Ltd.
  • nonionic surfactants include “Antox LMA-20”, “Antox LMA-27”, “Antox EMH-20”, “ Antox LMH-20, “Antox SMH-20”, “ADEKA rear soap ER-10”, “ADEKA rear soap ER-20”, “ADEKA rear soap ER-30”, “ADEKA rear soap” manufactured by ADEKA CORPORATION ER-40, alkyl ethers such as “Latemul PD-420”, “Latemul PD-430”, “Latemul PD-450” manufactured by Kao Corporation, “AQUALON RN-10” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Aldehyde alkyl ethers or alkylphenyl esters such as “ADEKA rear soap NE-10”, “ADEKA rear soap NE-20”, “ADEKA rear soap NE-30”, “ADEKA rear soap NE-40” manufactured by ADEKA, (RM) -acrylate sulfates such as “RMA-564”, “RMA-568”, “RMA-1114” manufactured by Nippon Emulsifier Co., Ltd., “Fluorad FC171”, “Fluorad FC4430”, “Fluorad FC4432” manufactured by 3M The system etc. are mentioned.
  • antistatic agents examples include polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, propoxypolyethylene glycol (meth) acrylate, and n-butoxypolyethylene glycol (meth) acrylate.
  • the antistatic agent can be used alone or in combination of two or more.
  • the addition amount of the antistatic agent is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, based on the total amount of the polymerizable liquid crystal compound contained in the powder mixture.
  • the powder mixture of the present invention may contain a pigment as necessary.
  • the dye to be used is not particularly limited, and may include known and commonly used dyes as long as the orientation is not disturbed.
  • the dye examples include a dichroic dye and a fluorescent dye.
  • examples of such dyes include polyazo dyes, anthraquinone dyes, cyanine dyes, phthalocyanine dyes, perylene dyes, perinone dyes, squarylium dyes and the like.
  • the dye is preferably a liquid crystal dye.
  • dichroic dye examples include the following formulas (d-1) to (d-8)
  • the addition amount of the dichroic dye or the like is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, based on the total amount of the polymerizable liquid crystal compound contained in the powder mixture. .
  • the powder mixture of the present invention can contain a filler as necessary.
  • the filler to be used is not particularly limited, and may contain known and commonly used fillers as long as the thermal conductivity of the obtained polymer is not lowered.
  • inorganic fillers such as alumina, titanium white, aluminum hydroxide, talc, clay, mica, barium titanate, zinc oxide, glass fiber, metal powder such as silver powder, copper powder, aluminum nitride, boron nitride, Examples thereof include thermally conductive fillers such as silicon nitride, gallium nitride, silicon carbide, magnesia (aluminum oxide), alumina (aluminum oxide), crystalline silica (silicon oxide), fused silica (silicon oxide), and silver nanoparticles. . (Curing agent)
  • the powder mixture in the present invention may be used in combination with a curing agent. Specific examples include aliphatic polyamines such as diethylenetriamine and triethylenetetramine, EH-235R-2 manufactured by ADEKA, and ketimine compounds such as jER Cure H3 and H30 manufactured by Mitsubishi Chemical.
  • the amount of the curing agent used is preferably 0.01 to 20% by mass, more preferably 0.05 to 15% by mass, and particularly preferably 0.1 to 10% by mass with respect to the powder mixture. These can be used alone or in combination of two or more.
  • the powder mixture of the present invention may contain a powder composed of a polymerizable chiral compound.
  • the polymerizable chiral compound used in the present invention preferably has one or more polymerizable functional groups.
  • examples of such compounds include JP-A-11-193287, JP-A-2001-158788, JP-T 2006-52669, JP-A-2007-269639, JP-A-2007-269640, 2009.
  • -84178 which contains chiral saccharides such as isosorbide, isomannite, glucoside, etc., and a rigid group such as 1,4-phenylene group and 1,4-cyclohexylene group, and a vinyl group
  • a polymerizable chiral compound having a polymerizable functional group such as an acryloyl group, a (meth) acryloyl group, or a maleimide group, a polymerizable chiral compound comprising a terpenoid derivative as described in JP-A-8-239666, NATURE VOL35, pages 467-469 (November 30, 1995) Issue), NATURE VOL392, pages 476-479 (issued on April 2, 1998), or the like, or a polymerizable chiral compound comprising a mesogenic group and a spacer having a chiral moiety, or JP-T-2004-504285.
  • a polymerizable chiral compound containing a binaphthyl group as described in JP-A-2007-248945 a polymerizable chiral compound containing a binaphthyl group as described in JP-A-2007-248945.
  • a chiral compound having a large helical twisting power (HTP) is preferable.
  • the compounding amount of the polymerizable chiral compound needs to be appropriately adjusted depending on the helical induction force of the compound, but it is preferably 0 to 25% by mass, preferably 0 to 20% by mass in the polymerizable liquid crystal composition. More preferably, the content is particularly preferably 0 to 15% by mass.
  • Examples of the general formula of the polymerizable chiral compound include general formulas (13-1) to (13-4), but are not limited to the following general formula.
  • Sp 3a and Sp 3b each independently represent an alkylene group having 0 to 18 carbon atoms, and the alkylene group is a carbon atom having one or more halogen atoms, a CN group, or a polymerizable functional group.
  • A1, A2, A3, A4, and A5 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4 -Cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1,3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2 ) Octylene group, decahydr
  • —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO -, - COOCH 2 CH 2 -, - OCOCH 2 CH 2 -, - CONH -, - NHCO-, represents an alkyl group or a single bond have a halogen atom having 2 to 10 carbon atoms, n5 and m5 each independently represent 0 or 1, R 3a and R 3b represent a hydrogen atom, a halogen atom, a cyano group, or an alkyl group having 1 to 18 carbon atoms, and the alkyl group may be substituted with one or more halogen atoms or CN.
  • R 3a and R 3b are represented by the general formula (13-a)
  • P 3a represents a polymerizable functional group, and Sp 3a represents the same meaning as Sp 1 ).
  • P 3a preferably represents a substituent selected from the polymerizable groups represented by the following formulas (P-1) to (P-20).
  • the formula (P-1) or the formulas (P-2), (P-7), (P-12), (P-13) ) are preferred, and formulas (P-1), (P-7), and (P-12) are more preferred.
  • polymerizable chiral compound examples include compounds (13-5) to (13-26), but are not limited to the following compounds.
  • m, n, k, and l each independently represent an integer of 1 to 18, R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. An alkoxy group, a carboxy group, and a cyano group. When these groups are alkyl groups having 1 to 6 carbon atoms or alkoxy groups having 1 to 6 carbon atoms, all of them may be unsubstituted or substituted by one or more halogen atoms. .
  • the powder mixture of the present invention can be mixed with powders composed of the above-mentioned various additives, and the mixing ratio of the powder composed of each additive contained in the powder mixture is preferably within the above-mentioned range,
  • the additive is added when manufacturing the solution composition by dissolving the powder mixture of the present invention in an organic solvent, or when the nematic liquid crystal composition is manufactured by heating the powder mixture of the present invention
  • the mixing ratio of the powder composed of each additive is not limited to the above range.
  • the additive is a liquid additive, it is added when the powder mixture of the present invention is dissolved in an organic solvent to produce a solution composition, or the powder mixture of the present invention is heated to nematic.
  • the powder mixture of the present invention contains one or more polymerizable liquid crystal compounds having one or more polymerizable functional groups that are solid at 30 ° C. or less under the atmospheric pressure, and optionally include the various additives described above. Can be obtained by mixing. It is not an essential condition that the obtained powder mixture is homogenized by stirring the powder. The powder mixture can be obtained by sequentially filling each powder into a container.
  • the additive is mixed in the powder mixture, more preferably 5 vol. It is preferable to add after adding the polymerizable liquid crystal compound to not less than 95% and not more than 95% by volume.
  • the powder mixture of the present invention can homogenize each powder by stirring the powder.
  • a mixer can be used. Examples of the mixer that can be used include a container rotation type, a mechanical stirring type, a flow stirring type, a non-stirring type, and a high-speed shear / impact type.
  • the container rotation type various types of containers such as V type, double cone (conical type), and cylindrical type are rotated by a rotating shaft or an external driving device.
  • a type in which convection, agitation, and convective mixing is dominant is preferred.
  • these are container rotary mixers with a stirring blade, and are classified into a container rotation type.
  • a container rotary mixer with stirring blades is preferable as a mixer because the stirring efficiency is higher than that of a container rotary mixer without stirring blades.
  • the higher the rotation speed the higher the mixing speed, which is preferable.
  • the rotation speed at which the centrifugal force is smaller than the gravity is more preferable in order to increase the stirring efficiency.
  • the speed at which the powder does not stick to the inner wall in the rotating container due to centrifugal force is called the critical rotating speed, and is preferably 60 to 90%, more preferably 50 to 80% of the critical rotating speed.
  • stirring by the container rotation method is weaker than particles, causing deformation and alteration of the particles, alteration due to frictional heat, etc. It is preferable to use it when you do not want to let it go.
  • the cylindrical major axis direction As an axis, and at the same time, the cylindrical major axis swings up and down to increase the stirring efficiency.
  • the mechanical agitation method is a type in which the mixing container is fixed and the powder in the container is agitated and dispersed by the rotation of the stirring blades in the shape of paddles, ribbons, screws, etc. mounted in the container.
  • the fluid agitation method is a type in which the mixing container is fixed and air flow such as flowing air, swirl flow, jet flow, etc. is flowed from the lower part of the container to make the powder fluidized and jetted to perform convection and diffusion. .
  • the fluid agitation method is a group of devices that exert a strong force on the powder and imparts shearing, compression, and grinding to the particles constituting the powder. Devices such as a high-speed rotation pan type, a high-speed rotation elliptic rotor type, and a high-speed rotation impact type are applicable.
  • the non-stirring type is a type in which the mixing apparatus itself is fixed and dispersed and stirred when the powder passes through the inside of the apparatus by gravity.
  • the high-speed shearing / impact method is a method in which fine powder is dispersed by a rotating pan, an elliptical rotor, and an impact blade that rotate at a higher speed than the mechanical stirring method, and gives a very strong shearing force and friction to the powder.
  • the optimum charging rate for each type of mixer is determined according to the model.
  • the charge rate is defined as the ratio of the input volume of powder to the total effective volume of the apparatus.
  • the maximum charging rate is preferably 60 vol% and 50 vol%, more preferably about 45 vol%, 40 vol% and 30 vol%, and the mechanical stirring type is preferably 80 vol% and 85%, more preferably.
  • About 70 vol%, 65 vol%, and 60 vol% are preferable.
  • an apparatus having a mechanism for dispersing the agglomerate so that the fine powder does not exist as an agglomerate. It is preferable to select or mix after finely agglomerating fine powder in advance.
  • the sampling method can be a powder mixture that has been deposited, or in the case of powder filled in a container, a rotary divider, a two-divider, or a conical quadrant, any extraction method, such as a conveyor, etc.
  • the container can be sampled by putting a container such as a scoop into the flowing powder.
  • Analytical methods for confirming the mixing ratio are confirmed by analytical methods such as liquid chromatography, gas chromatography, gel permeation chromatography, liquid chromatograph mass spectrometry, gas chromatograph mass spectrometry, NMR, IR, centrifugation, and sedimentation separation. be able to.
  • analytical methods such as liquid chromatography, gas chromatography, gel permeation chromatography, liquid chromatograph mass spectrometry, gas chromatograph mass spectrometry, NMR, IR, centrifugation, and sedimentation separation.
  • container for storing the powder mixture of the present invention a known container such as glass, plastic, metal, alloy, composite material, etc. can be used, but a container having a light-shielding property is preferable.
  • the container preferably has a sealed structure, preferably sealed with a screw, band, screw tightening, bolt, etc., and has an inner lid.
  • the inner lid preferably has a packing to prevent the contents from leaking.
  • the interior of the container may or may not be applied, and when applied, chemical conversion treatment, electrolytic treatment, oxidation treatment, etc. are preferable. When chemical conversion treatment is applied, zinc phosphate treatment and iron phosphate treatment are preferable. Treatment is preferred, and in order to further enhance the chemical resistance effect, the inner surface is preferably baked with a synthetic resin paint. Epoxy and phenolic are preferred as the synthetic resin paint.
  • plastic, metal, alloy, and composite material are preferable to glass.
  • the specific gravity (20 to 25 ° C., 1 atm) is 10 g / cm 3 or less.
  • a material having a low specific gravity is preferable, 9.0 g / cm 3 or less is preferable, and 3.0 g / cm 3 or less is particularly preferable.
  • an austenitic stainless steel material a ferritic stainless steel material, a two-phase (austenite / ferrite) stainless steel material, a martensitic stainless steel material, a precipitation hardening stainless steel material, or the like is preferable.
  • aluminum is particularly excellent because of its excellent corrosion resistance, low peripheral contamination, excellent workability, impact resistance, resistance to deformation due to external force, and low specific gravity of 3.0 g / cm 3 or less. Therefore, it is particularly preferable as a container for a powder mixture.
  • the aluminum purity is preferably 95% or more, more preferably 99% or more, and particularly preferably 99.5% or more. For example, it is preferable to use those manufactured by Touraire.
  • the atmosphere in the container preferably contains oxygen and is not preferably filled with an inert gas such as nitrogen or argon.
  • the oxygen concentration is preferably 1% to 40%, preferably 5% to 35%, 10% to 30%, more preferably 15% to 25%, and more preferably 20% to 22%, by volume ratio of the gas present in the container. Particularly preferred.
  • Transport conditions When transporting the powder mixture of the present invention, it is preferable to transport at a temperature lower than the melting point of each component of the powder.
  • the upper limit temperature applied to the powder mixture during transportation is such that the melting point minus 2 ° C., 3 ° C.
  • the maximum temperature around the container during transportation is preferably 50 ° C., 45 ° C. or less, more preferably 40 ° C., 35 ° C. or less, preferably 30 ° C. or less in order to maintain the powder shape,
  • the maximum temperature is preferably within 3 hours, 2 hours, and 1 hour in order to minimize the change in powder shape.
  • the conditions for storing the powder mixture of the present invention are preferably not more than the temperature at which the powder mixture maintains the powder.
  • the temperature and humidity are preferably 40 ° C. or lower, preferably 80% or lower, 35 ° C. or lower, and humidity 70 % Or less is preferable, and it is particularly preferable to store at a temperature of 30 ° C. or less and a humidity of 65% or less.
  • the method of preparing a solution composition using the powder mixture of the present invention can be obtained by dissolving the powder mixture of the present invention in an arbitrary solvent.
  • a solvent which can be used, A well-known organic solvent can be used.
  • an organic solvent can also be used individually and in mixture of 2 or more types.
  • solvents As solvents, ester solvents, amide solvents, alcohol solvents, ether solvents, glycol monoalkyl ether solvents, aromatic hydrocarbon solvents, halogenated aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, halogens Aliphatic hydrocarbon-based solvents, alicyclic hydrocarbon-based solvents, ketone-based solvents, and acetate-based solvents can be used.
  • ester solvent alkyl acetate, ethyl trifluoroacetate, alkyl lactate, and ⁇ -butyrolactone are preferable.
  • alkyl acetate examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, 3-methoxybutyl acetate, methyl acetoacetate
  • alkyl lactate examples include methyl lactate, ethyl lactate, and n-propyl lactate.
  • amide solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
  • alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, and n-butanol.
  • ether solvents include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, 1,4-dioxane, and tetrahydrofuran (THF).
  • glycol monoalkyl ether solvents ethylene glycol monoalkyl ether, diethylene glycol monoalkyl ether, triethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, dipropylene glycol monoalkyl ether, ethylene glycol monoalkyl ether acetate, diethylene glycol monoalkyl Ether acetate, triethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, dipropylene glycol monoalkyl ether acetate, and diethylene glycol methyl ethyl ether are preferred.
  • ethylene glycol monomethyl ether and ethylene glycol monobutyl ether as ethylene glycol monoalkyl ether
  • propylene glycol monobutyl ether as propylene glycol monoalkyl ether
  • dipropylene glycol monomethyl ether and ethylene glycol monoalkyl ether as dipropylene glycol monoalkyl ether
  • Ethylene glycol monobutyl ether acetate as acetate
  • propylene glycol monoethyl acetate Le acetate, dipropylene glycol monomethyl ether acetate, and diethylene glycol methyl ethyl ether, and the like as dipropylene glycol monoalkyl ether acetate.
  • aromatic hydrocarbon solvent examples include benzene, toluene, xylene, anisole, mesitylene, ethylbenzene, n-propylbenzene, n-butylbenzene, and tetralin.
  • halogenated aromatic hydrocarbon solvent include chlorobenzene.
  • aliphatic hydrocarbon solvent examples include hexane and heptane.
  • halogenated aliphatic hydrocarbon solvent examples include chloroform, dichloromethane, dichloroethane, trichloroethane, trichloroethylene, and tetrachloroethylene.
  • alicyclic hydrocarbon solvent examples include cyclohexane and decalin.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, and methyl propyl ketone.
  • a cured product can be prepared using a nematic liquid crystal composition prepared by heating the powder mixture of the present invention or a solution composition prepared by dissolving the powder mixture of the present invention in an organic solvent. The cured product can be obtained by the following two production methods.
  • the cured product may or may not have optical anisotropy, and the portion having anisotropy may be patterned, and the portion having an anisotropy may have anisotropy.
  • the part which is not carried out may be contained, the shape of hardened
  • optical anisotropic A nematic liquid crystal composition prepared by heating the powder mixture of the present invention, or a solution composition prepared by dissolving the powder mixture of the present invention in a solution (hereinafter these two compositions are referred to as a polymerizable liquid crystal composition). Can be used to produce an optically anisotropic body.
  • the optical anisotropic body can be obtained by the following two manufacturing methods. An optical anisotropic body obtained by applying a solution composition to a substrate, drying an organic solvent, and irradiating active energy rays. An optical anisotropic body obtained by irradiating a nematic liquid crystal composition with active energy rays.
  • the optical anisotropic body can be used as an optical element, a lenticular lens, a pickup lens, an optical film, a brightness enhancement film, an antireflection film, and a polarizing film.
  • the optical anisotropic body is obtained by sequentially laminating a base material, an alignment film as necessary, and a polymer of a polymerizable liquid crystal composition. These laminations may be repeated to form a two-layer or three-layer structure, and the optical anisotropic body may exist between the substrates, or the optical anisotropic body may be used as an in-cell display.
  • a transparent electrode such as a color filter or ITO may be laminated on the anisotropic body.
  • the optical film obtained using the polymerizable liquid crystal composition using the powder mixture of the present invention can be used as a material having a function equivalent to that of a retardation film or an optical compensation film.
  • the obtained cured product is a retardation film of a positive A plate.
  • the obtained cured product can be used as When polymerized in a state where the molecular long axis of the polymerizable liquid crystal compound is aligned perpendicular to the substrate, the obtained cured product can be used as a retardation film of a positive C plate.
  • the obtained cured product is used as a retardation film of a negative C plate. can do.
  • the cured product obtained by polymerization in a state where the molecular length of the polymerizable liquid crystal compound is inclined at a certain angle (tilted orientation) with respect to the substrate can be used as a retardation film of an O plate.
  • Polymerization can also be performed in a state (hybrid orientation) in which the molecular long axis is perpendicular to the substrate as it is perpendicular to the substrate near the interface and closer to the air interface.
  • a retardation film polymerized in the shape of a lenticular lens can be obtained.
  • a retardation film having birefringence obtained by adding the birefringence of the substrate and the birefringence of the retardation film is obtained.
  • the birefringence of the base material and the birefringence of the retardation film may be in the same direction or different directions in the plane of the base material.
  • the liquid crystal device, the display, the optical element, the optical component, the colorant, the marking for security, the member for laser emission, the optical film, and the compensation film are applied in a form suitable for the application.
  • the retardation patterning film like the optical anisotropic body, is a laminate of a base material, an alignment film, and a polymer of a polymerizable liquid crystal composition sequentially. However, a partially different retardation is obtained in the polymerization process. Patterned as described above. Examples of the patterning include patterns such as linear patterning, lattice patterning, circular patterning, and polygonal patterning, and the orientation direction may be different in each pattern portion.
  • the liquid crystal device, display, optical element, optical component, colorant, security marking, laser emission member, optical film, compensation film, and the like are used.
  • the polymerizable liquid crystal composition can be obtained when the polymerizable liquid crystal composition of the present invention is applied and dried when an orientation film is provided on the substrate and subjected to the orientation treatment.
  • Process to pattern orientation examples include a fine rubbing treatment, a polarized ultraviolet visible light irradiation treatment through a photomask, and a fine shape processing treatment.
  • the alignment film known and conventional ones are used.
  • Such alignment films include polyimide, polysiloxane, polyamide, polyvinyl alcohol, polycarbonate, polystyrene, polyphenylene ether, polyarylate, polyethylene terephthalate, polyether sulfone, epoxy resin, epoxy acrylate resin, acrylic resin, coumarin compound, chalcone.
  • the compound include compounds, cinnamate compounds, fulgide compounds, anthraquinone compounds, azo compounds, and arylethene compounds.
  • the compound subjected to the alignment treatment by fine rubbing is preferably an alignment treatment or a compound in which crystallization of the material is promoted by adding a heating step after the alignment treatment.
  • the base material used for the optical anisotropic body is a base material usually used for liquid crystal devices, displays, optical components and optical films, and has heat resistance that can withstand heating during drying after application of the polymerizable liquid crystal composition.
  • a substrate include organic materials such as a glass substrate, a metal substrate, paper, a ceramic substrate, and a plastic substrate.
  • the substrate when the substrate is an organic material, examples thereof include cellulose derivatives, polyolefins, polyesters, polycarbonates, polyacrylates (acrylic resins), polyarylate, polyether sulfone, polyimide, polyphenylene sulfide, polyphenylene ether, nylon, and polystyrene.
  • plastic base materials such as polyester, polystyrene, polyacrylate, polyolefin, cellulose derivative, polyarylate, and polycarbonate are preferable, and base materials such as polyacrylate, polyolefin, and cellulose derivative are more preferable, and COP (cycloolefin polymer) is used as the polyolefin.
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • surface treatment of these substrates may be performed.
  • the surface treatment include ozone treatment, plasma treatment, corona treatment, silane coupling treatment, and the like.
  • an organic thin film, an inorganic oxide thin film, a metal thin film, etc. are provided on the surface of the substrate by a method such as vapor deposition, or in order to add optical added value.
  • the material may be a lenticular lens, a pickup lens, a rod lens, an optical disk, a retardation film, a light diffusion film, a color filter, or the like.
  • the substrate may be subjected to a normal alignment treatment or an alignment film so that the polymerizable liquid crystal composition is aligned when the polymerizable liquid crystal composition of the present invention is applied.
  • the alignment treatment include stretching treatment, rubbing treatment, polarized ultraviolet visible light irradiation treatment, ion beam treatment, and the like.
  • Such alignment films include polyimide, polysiloxane, polyamide, polyvinyl alcohol, polycarbonate, polystyrene, polyphenylene ether, polyarylate, polyethylene terephthalate, polyether sulfone, epoxy resin, epoxy acrylate resin, acrylic resin, coumarin compound, chalcone.
  • the compound include compounds, cinnamate compounds, fulgide compounds, anthraquinone compounds, azo compounds, and arylethene compounds.
  • the compound subjected to the alignment treatment by rubbing is preferably an alignment treatment or a compound in which crystallization of the material is promoted by inserting a heating step after the alignment treatment.
  • a photo-alignment material As an application method for obtaining an optical anisotropic body that becomes a coating film or a film by irradiating the polymerizable liquid crystal composition with ultraviolet rays, an applicator method, a bar coating method, a spin coating method, a roll coating method, a direct gravure coating method, Known and conventional methods such as reverse gravure coating, flexo coating, ink jet, die coating, cap coating, dip coating, and slit coating can be used.
  • the polymerizable liquid crystal composition is a solution composition, it is preferably dried by heating or blowing as necessary after coating.
  • Examples of the method for polymerizing the polymerizable liquid crystal composition include a method of irradiating active energy rays and a thermal polymerization method, but a method of irradiating active energy rays because the reaction proceeds at room temperature without requiring heating. Among them, a method of irradiating with light such as ultraviolet rays is preferable because the operation is simple. Since polymerization is inhibited in the presence of oxygen, it is preferable to irradiate ultraviolet rays in the presence of an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • the temperature during irradiation is preferably set to 30 ° C. or less as much as possible in order to avoid the induction of thermal polymerization of the polymerizable liquid crystal compound so that the polymerizable liquid crystal compound can maintain the liquid crystal phase.
  • a liquid crystal composition comprising a liquid crystal compound usually has a C (solid phase) -N (nematic) transition temperature (hereinafter abbreviated as a CN transition temperature) to a NI transition temperature range in a temperature rising process.
  • the liquid crystal phase is shown in the figure.
  • the temperature lowering process since the thermodynamically non-equilibrium state is obtained, there is a case where the liquid crystal state is not solidified even at a temperature below the CN transition temperature.
  • This state is called a supercooled state.
  • the supercooled state is also included in the state in which the liquid crystal phase is retained.
  • irradiation with ultraviolet light of 390 nm or less is preferable, and irradiation with light having a wavelength of 250 to 370 nm is most preferable.
  • the polymerizable composition causes decomposition or the like due to ultraviolet light of 390 nm or less
  • This light is preferably diffused light and unpolarized light.
  • the ultraviolet irradiation intensity is preferably in the range of 1 mW / m 2 to 10 kW / m 2 .
  • the range of 5 mW / m 2 to 2 kW / m 2 is preferable.
  • the ultraviolet intensity is less than 1 mW / m 2 , it takes a long time to complete the polymerization.
  • the strength exceeds 2 kW / m 2 liquid crystal molecules in the polymerizable liquid crystal composition tend to be photodegraded, or a large amount of polymerization heat is generated to increase the temperature during polymerization.
  • the parameter may change, and the retardation of the film after polymerization may be distorted.
  • the irradiation energy is preferably 5 mJ to 50 J, preferably 1 J to 20 J, preferably 3 J to 15 J, and preferably 5 J to 10 J.
  • the orientation state of the unpolymerized part is changed by applying an electric field, a magnetic field or temperature, and then the unpolymerized part is polymerized.
  • An optical anisotropic body having a plurality of regions having orientation directions can also be obtained.
  • the alignment was regulated in advance by applying an electric field, magnetic field or temperature to the unpolymerized polymerizable liquid crystal composition, and the state was maintained.
  • An optical anisotropic body having a plurality of regions having different orientation directions can also be obtained by irradiating light from above the mask and polymerizing it.
  • the optical anisotropic body obtained by polymerizing the polymerizable liquid crystal composition can be peeled off from the substrate and used alone as an optical anisotropic body, or can be used as an optical anisotropic body as it is without being peeled off from the substrate. it can. In particular, since it is difficult to contaminate other members, it is useful when used as a laminated substrate or by being attached to another substrate.
  • Display element The display element using the cured product, optical anisotropic body, retardation film, and retardation patterning film of the present invention is effective in improving luminance, viewing angle dependency, visibility, etc.
  • Liquid crystal display element Liquid crystal display element
  • EL Electro Luminescence
  • EL display element Electro Luminescence
  • quantum dot display quantum dot display
  • the liquid crystal material used for the liquid crystal display is a nematic liquid crystal, a smectic liquid crystal having ferroelectricity, a blue phase, a polymer / liquid crystal composite material, for example, a polymer / liquid crystal composite material such as a polymer dispersed liquid crystal or a polymer network liquid crystal. Is preferred.
  • a liquid crystal material containing a monomer In order to expand the liquid crystal temperature range, control the pretilt angle, and improve the response speed, it is preferable to use a liquid crystal material containing a monomer, and the monomer is preferably polymerized by ultraviolet rays or a combination of ultraviolet rays and heat. .
  • liquid crystal display using the cured product, optical anisotropic body, retardation film, and retardation patterning film of the present invention
  • the following liquid crystal displays are preferable.
  • TN Transmission Nematic
  • STN Super Teisted Nematic
  • VA Very Alignmnet
  • IPS In Plane Switching
  • FFS Ringe Field Switching
  • UB-FFS Ultra-Brightness
  • MVA Multidomain Vertical Alignment
  • PVA Powerned Vertical Alignment
  • FLC Fluned Vertical Alignment
  • DHFLC Deformed Helix Ferroelectric Liquid Crystal
  • liquid crystal displays that are stabilized with polymers are also preferred: PSA (Polymer Sustained Alignment) -LCD, PS-VA (Polymer Stabilized Vertical Alignment) -LCD, PS-IPS (Polymer Stabilized In-Plane Switching) -LCD, PS -FFS (Polymer Stabilized Fringe Field Switching), PSV-FLC (Polymer Stabilized V-shaped Ferroelectric Liquid Crystal) -LCD, BP (Blue Phase) -LCD, and Nano Phase Separation Liquid Crystal Display.
  • PSA Polymer Sustained Alignment
  • PS-VA Polymer Stabilized Vertical Alignment
  • PS-IPS Polymer Stabilized In-Plane Switching
  • PS -FFS Polymer Stabilized Fringe Field Switching
  • PSV-FLC Polymer Stabilized V-shaped Ferroelectric Liquid Crystal
  • BP Blue Phase
  • Nano Phase Separation Liquid Crystal Display Nano Phase Separation Liquid Crystal Display
  • Examples of EL display elements include organic EL, inorganic EL, and organic-inorganic hybrid EL.
  • Organic EL light-emitting materials preferably use low-molecular materials and high-molecular materials, and light-emitting methods Is preferably a phosphorescent type or a fluorescent type, and is preferably a high molecular weight material and a phosphorescent type light emitting material.
  • a solution A-1 was prepared by adding dichloromethane twice the saturated dissolution amount to a solution containing the polymerizable liquid crystal compound Compound 1 synthesized by a known method.
  • Methanol which is 5 times the weight of dichloromethane, was cooled to 10 ° C., and while stirring with a magnetic stirrer, the prepared solution A-1 was added dropwise to precipitate white particles. After the precipitated particles were isolated, the solvent remaining at room temperature was dried to obtain a powder (A1).
  • Compounds 2 to 15 were subjected to the same operation as Compound 1 to obtain powders (A2) to (A15).
  • a powder as a raw material was prepared with reference to the description in JP-A-2005-177596.
  • a sample was prepared in which the raw material powder was placed in a quartz square cell, which is a processing chamber, in a high concentration suspension state with a concentration of 1 mg / ml.
  • a piezoelectric vibrator was attached as an ultrasonic vibrator to the bottom of the quartz square cell. Ultrasonic resonance treatment and photodisruption treatment were performed simultaneously. After isolation, the solvent remaining at room temperature was dried to obtain a powder (D1).
  • Compounds 2 to 6 and 8 to 15 were subjected to the same operation as Compound 1 to obtain powders (D2) to (D6) and (D8) to (D15), respectively.
  • a saturated solution E-1 was prepared by adding a saturated dissolution amount of dichloromethane to a solution containing the polymerizable liquid crystal compound Compound 1 synthesized by a known method.
  • the dichloromethane solution E-1 was added dropwise to methanol maintained at 25 ° C., which is twice the weight of dichloromethane, and then the solvent was slowly dried to grow crystals. After the precipitated particles were isolated, the solvent remaining at room temperature was dried to obtain a powder (E1).
  • Compound 2 to 6 and 8 to 15 were subjected to the same operation as Compound 1 to obtain powders (E2) to (E6) and (E8) to (E15), respectively.
  • the polymerizable liquid crystal compounds Compound 1 to 15 constituting each powder are solid polymerizable liquid crystal compounds at 30 ° C. under atmospheric pressure.
  • the above-prepared powders of the respective components were mixed in the proportions (mass%) shown in the table below, and used in Examples 1 to 50 and 90 to 139 (compositions 1 to 26, compositions 33 to 58). )
  • Chiral 1 used the following.
  • Example 1 to 12 The mixture was filled in an aluminum container (Tournaire, TYPE4 TM , 2.5 L) so that the total weight of the powder mixture was 500 g at the composition ratio of composition 1, and stored at 40 ° C. for 90 days. Then, using the whole amount of the powder mixture stored, add the organic solvent so that the blending ratio (weight ratio) of the powder mixture to the organic solvent is 4: 6, and mix by stirring with a magnetic stirrer.
  • a solution composition (Example 1) was prepared. Solution compositions used in Examples 2 to 6 and Examples 90 to 101 were produced under the same conditions except that the compositions 2 to 6 and the compositions 33 to 38 were used instead of the composition 1.
  • the powder mixtures and organic solvents used in preparing the solution compositions of Examples 1 to 6 and Examples 90 to 95 are shown in the following table.
  • an organic solvent having an amount of 4: 6 of the powder mixture and the organic solvent is added to an aluminum container (Tournaire, TYPE4 TM , 2.5 L), and then magnetically added.
  • a solution composition was prepared by adding each of the individual components constituting the composition 1 while dissolving with a stirrer while sequentially dissolving them, and then stored at 40 ° C. for 90 days as a comparative solution. Used as a composition (Comparative Example 1). Comparative solution compositions used in Comparative Examples 2 to 6 were prepared under the same conditions except that the compositions 2 to 6 were used instead of the composition 1.
  • the powder mixtures and organic solvents used in Comparative Examples 1 to 6 are shown in the following table.
  • Nematic liquid crystal compositions used in Examples 8 to 12 and Examples 96 to 101 were produced under the same conditions except that the compositions 2 to 6 and the compositions 33 to 38 were used instead of the composition 1.
  • composition 1 One individual component constituting the above composition 1 was placed in a glass screw cap tube (manufactured by Nidec Rika Glass Co., Ltd., SV-50A, 50 ml), heated at 110 ° C. and stirred with a magnetic stirrer to nematic liquid crystal. After preparing a nematic liquid crystal composition by dissolving the remaining components one by one in the nematic liquid crystal one after the other after preparing the composition, the one stored at 40 ° C. for 90 days is a comparative nematic liquid crystal composition (Comparative Example) Used as 7). Comparative nematic liquid crystal compositions used in Comparative Examples 8 to 12 were produced under the same conditions except that the compositions 2 to 6 were used instead of the composition 1.
  • Example 1 to 6 The solution compositions of Examples 1 to 6, Examples 90 to 95, and Comparative Examples 1 to 6 were spin-coated (1,500 rpm for 30 seconds) on a glass substrate on which a rubbed polyimide film was formed.
  • the film prepared by spin coating was annealed at 70 ° C. for 30 seconds, and photopolymerized in a nitrogen atmosphere for 60 seconds using a high pressure mercury lamp of 20 mW / cm 2 at 25 ° C.
  • nematic liquid crystal compositions of Examples 7 to 12, Examples 96 to 101 and Comparative Examples 7 to 12 were injected into a liquid crystal cell having a polyimide alignment film (cell gap 1.6 um) at 70 ° C. and then at 70 ° C. for 10 minutes. After annealing, photopolymerization was performed by irradiating ultraviolet rays in a nitrogen atmosphere for 60 seconds using a high pressure mercury lamp of 20 mW / cm 2 at 25 ° C. The retardation of the retardation film obtained by polymerization was measured. The change in retardation was compared between before and after 90 days of storage at 40 ° C. for 90 days. ⁇ : Retardation change is less than 0.5 nm ⁇ ...
  • Retardation change is 0.5 nm or more and less than 1 nm x ... Retardation change is 1 nm or more (polymerization generated in the prepared solution composition and nematic liquid crystal composition) Evaluation of things) It occurred in the solution compositions of Examples 1-6, Examples 90-95 and Comparative Examples 1-6, and the nematic liquid crystal compositions of Examples 7-12, Examples 96-101 and Comparative Examples 7-12. The amount of polymerization product was measured. GPC was used for the measurement. Sample preparation for GPC measurement was performed as follows. In the case of the nematic liquid crystal composition, a sample for GPC measurement was prepared by dissolving 5 mg of the nematic liquid crystal composition in 5 ml of THF.
  • a sample for GPC measurement was prepared by dissolving 12.5 mg of the solution composition in 5 ml of THF.
  • the polymerization product was examined for polymer components having a molecular weight of 7,000 or more.
  • Polymerization product is less than 200 ppm
  • Polymerization product is 200 ppm or more and less than 300 ppm ⁇
  • Polymerization product is 300 ppm or more Examples 1 to 12, Examples 90 to 101, and Comparative Examples 1 to 12
  • the measurement results are shown in the following table.
  • Examples 1 to 12 and Examples 90 to 101 which were stored in the form of a powder mixture, were used as a solution composition using an organic solvent, and a nematic liquid crystal composition. In either case, almost no polymerization product was generated, and almost no retardation change was observed.
  • Example 13 to 24 The mixture was filled in an aluminum container (Tournaire, TYPE4 TM , 2.5 L) so that the total weight of the powder mixture with the composition ratio of composition 1 was 500 g, and stored at 0 ° C. for 10 days. Then, using the total amount of the powder mixture that has been stored, add the organic solvent so that the blending ratio (weight ratio) of the powder mixture to the organic solvent is 4: 6, and mix by stirring with a magnetic stirrer.
  • a solution composition (Example 13) was prepared. Solution compositions used in Examples 14 to 18 and Examples 102 to 107 were produced under the same conditions except that the compositions 2 to 6 and the compositions 33 to 38 were used instead of the composition 1.
  • the powder mixtures and organic solvents used in preparing the solution compositions of Examples 13 to 18 and Examples 102 to 107 are shown in the following table.
  • an organic solvent having an amount of 4: 6 of the powder mixture and the organic solvent is added to an aluminum container (Tournaire, TYPE4 TM , 2.5 L), and then magnetically added. While stirring with a stirrer, a solution composition was prepared by sequentially adding each individual component constituting the composition 1 while being dissolved, and then a comparative solution was stored at 0 ° C. for 10 days. Used as a composition (Comparative Example 13). Comparative solution compositions used in Comparative Examples 14 to 18 were prepared under the same conditions except that the compositions 2 to 6 were used instead of the composition 1. The powder mixtures and organic solvents used in Comparative Examples 13 to 18 are shown in the following table.
  • Example 19 Nematic compositions used in Examples 20 to 24 and Examples 108 to 113 were produced under the same conditions except that the compositions 2 to 6 and the compositions 33 to 38 were used instead of the composition 1.
  • composition 1 One individual component constituting the above composition 1 was placed in a glass screw cap tube (manufactured by Nidec Rika Glass Co., Ltd., SV-50A, 50 ml), heated at 110 ° C. and stirred with a magnetic stirrer to nematic liquid crystal. After preparing a nematic liquid crystal composition by dissolving the remaining components one by one in the nematic liquid crystal one after another after preparing the composition, the one stored at 0 ° C. for 10 days is a comparative nematic liquid crystal composition (Comparative Example 19). Comparative nematic liquid crystal compositions used in Comparative Examples 20 to 24 were produced under the same conditions except that the compositions 2 to 6 were used instead of the composition 1.
  • Examples 13 to 24 and Examples 102 to 113 which were stored in the form of a powder mixture, were used as a solution composition using an organic solvent, and a nematic liquid crystal composition. In either case, no precipitate was observed.
  • evaluation of solubility of powder mixture As for the solubility of the powder mixture in the solvent, the powder mixture (10 g) in an aluminum container and 50 ml of acetone were added to a 200 ml beaker, and the solubility was visually observed while stirring with a stirrer (200 rpm). (Solubility in solvents) ⁇ ...
  • the powder mixture (10 g) in the aluminum container is brownish by heating.
  • the sample was placed in a sample bottle and heated in an oven at 110 ° C., and the state of dissolution in a nematic liquid crystal state or an isotropic liquid state having high fluidity instead of powder was visually observed. (Solubility by heating) ⁇ ... dissolved in less than 15 min. ⁇ ... dissolved in 15 min or more but less than 30 min ⁇ ...
  • the handling is done by tilting the aluminum container directly from the aluminum container (Tournaire, TYPE4 TM , 2.5L) containing 500 g of the powder mixture, and separating 100 g of the powder on the medicine wrapping paper. Evaluation was made based on the ease of the powder.
  • the adhesion of the powder mixture to the storage container is determined by filling 500 g of the powder mixture into an aluminum container (Tournaire, TYPE4 TM , 2.5 L), shaking the aluminum container 30 times, and then making the aluminum container The powder mixture was taken out of the aluminum container by tilting and evaluated by the weight of the powder mixture adhering to the aluminum container. ⁇ : Less than 0.1 wt% adheres ⁇ : 0.1 wt% or more, less than 0.2 wt% adheres x ... 0.2 wt% or more adheres The results are shown in the following table.
  • Powders (F1) to (F15) containing a small amount of a polymerization inhibitor in the compound were prepared.
  • the solution compositions of Examples 51 to 56 and Examples 140 to 145 and Examples 57 to 62, respectively, were performed under the same conditions as in Examples 1 and 7, except that the compositions 27 to 32 and the compositions 59 to 64 were obtained.
  • the nematic liquid crystal compositions of Examples 146 to 151 were prepared.
  • the content of the polymerization inhibitor contained in the powders (F1) to (F15) was determined by GPC measurement. Specifically, 5 mg of powders (F1) to (F15) are dissolved in 5 ml of THF solution containing p-methoxyphenol as an internal standard to prepare a sample for GPC measurement. The content was examined.
  • the polymerization product was examined for polymer components having a molecular weight of 7,000 or more.
  • ⁇ ⁇ ⁇ ⁇ Polymerization product is less than 100 ppm
  • ⁇ ⁇ ⁇ ⁇ Polymerization product is 100 ppm or more and less than 200 ppm
  • each powder of Compound 1, Compound 2, Compound 5, Compound 6, Compound 8, Compound 12, Compound 13, Irg 907, phenothiazine, and p-methoxyphenol used when preparing the powder mixture of the above composition 7 and the above composition 33 is used.
  • a method was used in which the powder was spread on a tray at a rate described in the above table, and 40 ° C. dry air passed over the tray to dry the powder. Except for adjusting the drying time, powder mixtures having Examples 63 to 69 and Examples 152 to 158 in which the residual solvent amount of the powder was different under the same conditions were prepared.
  • the resulting powder mixtures of Examples 63 to 69 and Examples 152 to 158 were evaluated for adhesion in the same manner as in Examples 25 to 50 and Examples 114 to 139.
  • nematic liquid crystal compositions having Examples 70 to 76 and Examples 159 to 165 having different residual solvent amounts of powder were prepared.
  • the nematic liquid crystal composition was produced under the same conditions as those for producing the nematic liquid crystal composition of Example 7 above.
  • the obtained nematic liquid crystals of Examples 70 to 76 and Examples 159 to 165 were evaluated by foaming properties when they were brought into a vacuum state (25 ° C., 50 Pa). (Foaming) ⁇ ⁇ ⁇ ⁇ Foaming is hardly observed visually. ⁇ ⁇ ⁇ Foaming is small visually.
  • compositions 1-AD and 33-AD were charged into a container rotary mixer equipped with stirring blades (Rocking mixer manufactured by Aichi Electric Co., Ltd., RMD-10 (s) type, capacity 10 L), and the volume of powder occupied in the cylindrical container was added to about 40%. Rotating the stirring blades at 70 Hz, the rotational speed of the cylindrical container 19min -1, swinging of the cylindrical vessel was 180min stirred at 11 min -1. (Confirmation of mixed state) The mixing state of the powder mixture obtained by stirring and mixing was confirmed by examining the ratio of each component using liquid chromatography. In the sampling of the stirred powder mixture, 2 g was sampled from the stirred powder mixture divided into four by the conical quadrant to obtain compositions 1-AD and 33-AD.
  • a 10-fold diluted solution prepared by dissolving 2 g of each of these stirred powder mixtures 1-A to D and 33-A to D in 100 ml of acetonitrile was used as a measurement sample for confirming the composition ratio.
  • a powder mixture 1-E and a composition 33-E having the same composition ratio as composition 1 and composition 33 on a 2 g scale were prepared, and a solution obtained by diluting 10 times in 100 ml of acetonitrile was measured as a reference. Used as a sample.
  • the analysis results by liquid chromatography are shown in the table below. It was found that the components in the stirred powder mixture were uniformly mixed.
  • Example 77 was carried out under the same conditions as those for preparing the solution composition of Example 1, except that the stirred powder mixture (Composition 1-A to Composition 1-D, Composition 33-A to Composition 33-D) was used.
  • the solution compositions of Example 85 and Example 166 to Example 174 were prepared.
  • the organic solvents used are shown in the following table. Further, under the same conditions as those for producing the nematic liquid crystal composition of Example 7, except that the stirred powder mixture (Composition 1-A to Composition 1-D, Composition 33-A to Composition 33-D) was used.
  • the solution compositions of Examples 86 to 89 and Examples 175 to 178 were prepared.

Abstract

本発明の課題は、溶剤引火性に起因する火災に対する危険性が少なく、低温保存時に内容物が析出や結晶化などによる外観の変化を起こすことがなく、長期保管時に溶剤が揮発、あるいは、長期保管時や運搬時に漏洩することによって組成が変化することがなく、また、ネマチック液晶組成物のように粘凋ではなく、流動性があり、かつ、取扱性に優れた重合性液晶化合物を用いた粉体混合物を提供することである。また、当該粉体混合物を用いたネマチック液晶組成物、溶液組成物、硬化物、光学フィルム、表示素子を提供することにある。

Description

粉体混合物
 本発明は、液晶ディスプレイ、有機ELディスプレイ、量子ドットディスプイなどの表示素子に用いられる光学補償フィルム、位相差膜、輝度向上フィルム、反射防止膜、偏光フィルム、レンズ、プリズム、あるいはセキュリティ用マーキング、レーザー発光用部材などの光学異方体の構成部材に用いられる重合性液晶化合物のネマチック液晶組成物、及び重合性液晶化合物の溶液組成物に使用される粉体混合物に関する。
 重合性官能基を有する重合性液晶化合物を含有する組成物(重合性液晶組成物)は、光学異方体の構成部材として有用であり、光学異方体、例えば、光学補償フィルム、位相差膜、輝度向上フィルム、反射防止膜、偏光フィルムとして、種々の液晶ディスプレイに応用されている。これらの光学異方体は、通常、有機溶剤に重合性液晶組成物を溶解させた溶液組成物を基材に塗布、有機溶剤を乾燥させた後、活性エネルギー線を照射、あるいはさらなる加熱によって重合性液晶組成物を硬化することにより得られる。
 例えば、特許文献1では、1分子中に2つ以上の重合性官能基を有し、且つ屈折率異方性が0.2以上である液晶化合物と、環状ケトン構造を有する溶剤と、環状エーテル構造を有する溶媒と、前記液晶化合物のN-I点より低い温度で揮発性を示す酸化防止剤とを含む、液晶層形成用溶液組成物が開示されている。しかし、重合性液晶組成物を有機溶剤に溶解させて調製した溶液組成物の場合、有機溶剤が引火する、火災が発生しやすいなどの危険があるため、「運搬容器」、「積載方法」、「運搬方法」、「保管場所」「保管数量」などは、各国の法令に基づいた対応が必要となる。また、溶液組成の問題点として、溶液の状態で輸送、保管したときに、内容物が溶剤から析出、溶液が漏洩、あるいは溶剤が揮発することにより溶液組成を一定に保つことが難しいという問題があった。
 一方、有機溶剤を含まず流動性のあるネマチック液晶状態となる組成物を用いて光学フィルムを作製することもできる。例えば特許文献2では、均一な液体混合物を調製する方法として、少なくとも2種類の有機物質の均一な液体混合物を調製する方法であって、関与する物質の少なくとも1種類は室温において固体状であり、存在する物質の少なくとも1種類の融点より低い室温において激しく混合することにより、混合される物質が液化され均一化される方法が開示されている。また特許文献3では、液晶組成物の製造方法として、少なくとも1種の融点が40℃より大きい2種以上の液晶化合物を、撹拌開始時の温度が40℃以下で撹拌し、外部より加熱及び有機溶剤に溶解することなく行う、液晶状態の液晶組成物の製造方法が開示されている。
 しかし、上記の従来技術(特許文献2)を、重合性官能基を有する重合性液晶性化合物を含む組成物、すなわち重合性液晶組成物に展開した場合、重合性液晶化合物は通常の液晶ディスプレイに使用されるネマチック液晶と比べて粘度が高くなるため、容器から取り出しにくいなど取り扱いが困難であること、またネマチック液晶から結晶に相転移した場合、容器内部で組成物全体が流動性のない固体状態となり、容器から取り出すことができなくなるという問題があった。
特開2011-158671号公報 特開2009-061451号公報 特開2009-001802号公報
 本発明が解決しようとする課題は、溶剤引火性に起因する火災に対する危険性が少なく、低温保存時に内容物が析出や結晶化などによる外観の変化を起こすことがなく、長期保管時に溶剤が揮発、あるいは、長期保管時や運搬時に漏洩することによって組成が変化することがなく、また、ネマチック液晶組成物のように粘凋ではなく、流動性があり、かつ、取扱性に優れた重合性液晶化合物を用いた粉体混合物を提供することである。また、当該粉体混合物を用いたネマチック液晶組成物、溶液組成物、硬化物、光学フィルム、表示素子を提供することにある。
 本発明は、上記課題を解決するために、有機溶剤を使用せず、ネマチック液晶組成でもない重合性液晶化合物を含む粉体混合物に着目し、本発明を提供するに至った。
 即ち、本発明は、大気圧下30℃以下において固体である、重合性官能基を1つ以上有する重合性液晶化合物を1種以上含み、前記重合性液晶化合物を70質量%以上含有する、粉体混合物を提供し、また、当該粉体混合物を用いた硬化物、光学フィルム、表示素子も提供する。
 本発明の重合性液晶化合物を含む粉体混合物は、有機溶剤を使用しないため火災に対する危険性を低減し、輸送時や保管時に溶剤の揮発よる組成の変化が生じないことを見出した。また、ネマチック液晶のように粘凋ではなく、固体状態であっても粉体混合物としての流動特性を有するために取り扱いやすいことを見出した。さらに、粉体混合物の性質を詳細に研究した結果、粉体混合物の中でも、本発明の特定の粒子径をもつ粉体混合物が、特に優れた性質を示すことを見出した。
 即ち、本発明の粉体混合物に用いる重合性液晶化合物を合成し、溶液中から精製・結晶化させる際に粒子径等を制御することによって、目的とする粒子径等となる重合性液晶性化合物を得た。好ましい範囲内にある粒子径等となる重合性液晶性化合物を含む粉体混合物は、好ましい範囲の粒子径より大きな場合よりも、短時間で結晶を生成することが可能であり、後に有機溶剤に溶解して溶液組成物にする際の有機溶剤に対する溶解性も高く、また、本発明の粒子径より小さい場合よりも、付着性が少なく取り扱い性などに優れていることを見出した。
 以下に本発明による粉体混合物の最良の形態について説明する。
<粉体、粉体混合物、粒子、結晶子>
(粉体)
 粉体とは液体と固体との中間の性質を持つものとされている(土壌の物理性 第17号, 「粉体の物理学」、素木洋一)。また、別の粉体の定義では、目で見て粉体に見え、粉体らしい挙動をするものを粉体とするとされている(マイクロトラック・ベル株式会社のHP。http://www.microtrac-bel.com/tech/particle/theory02.html)。本発明の粉体も上記と同様に定義する。
 例えば、それぞれ個々で存在する固体の集合体は粉体である。ここで、固体とは、物質の三態と呼ばれる気体、液体、固体の中の固体であり、固体は結晶、非結晶を問わず、固体はアモルファスであってもよく、連続的な流動性を示す液状でなければ固体に含める。例えば、連続的な流動性を示す液状の相として、ネマチック液晶は本発明の固体には含まないが、細かく粉砕した蝋、ディスコティック液晶のように、軟らかく、押さえるとねっとりするものの、外力を加えなければ通常の粉体と同等の形状を示すものは本発明の固体である。本発明の粉体は、特定の気圧と温度条件で固体の集合体であるものに限定することができる。具体的には、気圧が大気圧下において、100℃以下、80℃以下、60℃以下、50℃以下、40℃以下、35℃以下、30℃以下、25℃以下において固体の集合体となることが好ましく、大気圧下において、少なくとも30℃以下のときに固体であることが好ましい。
(粉体混合物)
 本発明の粉体混合物は、大気圧下30℃以下において固体である、重合性官能基を1つ以上有する重合性液晶化合物を1種類以上含み、前記重合性液晶化合物を70質量%以上含有する。
 なお、屈折率異方性を調整するためには、重合性官能基を1つ以上有する重合性液晶化合物からなる粉体を2種類以上用いることが好ましい。
 本発明において粉体混合物とは、2種類以上の粉体、すなわち、2種類以上の固体の集合体を含むものを「粉体混合物」と呼ぶ。粉体混合物は、重合性官能基を1つ以上有する重合性液晶化合物からなる粉体を2種類以上用いて混合物としても良いし、重合性官能基を1つ以上有する重合性液晶化合物からなる粉体及び添加剤の粉体を用いて混合物としても良いし、これらを複数組み合わせて用いても良い。粉体混合物中の異なる2種類以上の粉体は、均一に分散していても不均一な状態で存在していてもよい。
 上記の粉体の定義より、粉体混合物に含まれる2種類以上の異なる固体が互いに接触して融点降下を起こすことにより、一部がネマチック液晶、スメクチック液晶を示す場合であっても、粉体混合物中に特定の体積以上の固体が残されていて、見た目に粉体に見えているものは、本発明において粉体混合物とみなすものとする。また、大気圧下30℃以下において粉体である重合性官能基を1つ以上有する重合性液晶化合物を少なくとも1種以上含む粉体混合物に対し、少量の液状添加剤を加えた場合であっても、粉体混合物中に特定の体積以上の固体が残されており、目で見て粉体に見えているものは、本発明において粉体混合物とみなすものとする。すなわち、上記融点降下あるいは液状添加剤によって粉体混合物の一部が固体以外になった場合であっても、粉体混合物中の80vol%以上が固体であるものは本発明の粉体混合物とみなすことができるが、より好ましくは85vol%以上、90vol%以上、95vol%以上が固体であることがより好ましい。
(粒子)
 本発明において、粉体とは、それぞれ個々で存在する固体の集合体を意図するが、集合体を構成する1個1個それぞれの固体を「粒子」とよぶ。粒子が1つで存在する場合は1次粒子と呼び、複数の粒子が凝集して形成される場合は2次粒子と呼ぶ。粒子径は、化学反応による合成条件や合成後の溶液からの析出(=晶析)条件、溶剤留去条件などにより調製することが可能である。さらに粉砕などにより粒子の大きさを均一にする操作を加えることや、高次に会合・凝集した粒子をより低次の粒子となるようにすること、あるいは一次粒子径を小さくすることにより調製することができる。
(結晶子)
 粒子を形成する固体が結晶構造を有する場合、単結晶とみなせる最大の集合を「結晶子」と呼ぶ。1個の粒子は、1つの結晶子でできた粒子、すなわち単結晶でできた粒子であってもよく、あるいは1個の粒子は、複数の結晶子によって構成されていてもよい(本発明においては、固体が複数の結晶子によって構成されている場合、最大の結晶子を、単に「結晶子」と呼ぶ。)。なお、結晶子の存在は、X線回折により確認できる。結晶子が存在する場合、結晶子の周期構造によってX線の回折現象が発生する。測定に用いるX線は金属に加速電子流を当てて得られる特性X線に含まれるKα線であることが好ましく、Kα線はFeKα線(λ=1.08Å)あるいはCuKα(λ=1.54Å)であることが好ましい。本発明の粉体混合物において必須成分である、大気圧下30℃以下において固体である重合性官能基を1つ以上有する重合性液晶化合物も、1つ1つの固体は結晶子により構成されているため、結晶子の大きさを調製することにより粒子の累積分布及び嵩密度を調製することが可能である。
<各種測定方法>
(粒子径の測定方法)
 本発明の粉体混合物の粒子径は、公知の方法で測定することができる。すなわち、3次元の広がりをもつ1個の粒子の大きさを一つの値で表現することを「代表粒子径」、これらの個々の粒子の代表粒子径に分布がある粒子群(=粉体)の代表粒子径の平均を「平均粒子径」、粉体の代表粒子径の広がりを示す分布を「粒子径分布、粒度分布」と呼ぶ。平均粒子径は個数平均径、面積平均径、体積平均径、調和平均径、平均面積径、平均体積径、幾何平均径・個数中位径、質量中位径・体積中位径などが例示でき、粒子径分布は、光学顕微鏡および目視により代表粒子径、および粒子径分布を測定することもできる。
 本発明の粉体混合物の粒子径は光散乱法により光散乱相当径を用いることが好ましく、測定方法としてはレーザー回折・散乱法を用いることが好ましい。測定スケールは、nm単位からmm単位までのレンジを測定できる装置を用いることが好ましい。
 粒子径は、幾何学径、散乱係数相当径、光散乱相当径、体積相当径、Stokes径、超音波減衰相当径、X線散乱法相当径、拡散係数相当径、電気移動度相当径、拡散係数相当径のいずれかの粒子径により測定することができるが、本発明の粉体混合物の粒子径は、光散乱法の中でも動的光散乱法と呼ばれる方法を用いて粒子径を測定することが好ましい。
 動的光散乱法による粒子径の測定では、溶液中に分散している粒子にレーザー光を照射し、その散乱光を光子検出器で観測し、解析することによって粒子径を測定することができる。粒子径測定装置には、粒子径を測定する解析ソフトが付属しており、これを利用して粒子径を求めることができる。測定に使用する溶剤は、本発明の粉体混合物を溶解しない溶剤を使用することが好ましく、特に重合性官能基を1つ以上有する液晶化合物を溶解しない溶剤を使用することが好ましい。溶剤として具体的には、水、メタノール、エタノール、イソプロピルアルコール、ヘキサン、またはこれらの混合物が好ましく、水とメタノールの混合溶剤、あるいはヘキサンが特に好ましい。
 粒子径の累積分布が50%となる粒子径はD50(メジアン径)と呼ばれる。本発明の粒子径はD50が1.0μm~900μmであることが好ましく、3.0μm~700μmが好ましく、5.0μm~500μmが好ましく、10μm~300μmが特に好ましい。
 さらに、より好ましくは、D50が上記を満たす粒子径であり、かつ、粒子径の累積分布が90%となる粒子径D90値が5mm以下かつ、D50値が1μm以上であることが好ましく、D90値が3mm以下かつ、D50値が5um以上であることが好ましく、D90値が2mm以下かつ、D50値が10μm以上であることが好ましく、D90値が1mm以下かつ、D50値が20μm以上が特に好ましい。
 本発明の粉体混合物は、粒子径の累積分布が上記範囲内にあると、溶剤への溶解性および加熱による溶解性に優れていて、なおかつ粉体混合物を扱う際に粉体が舞い上がりにくく取扱性に優れている他、容器への付着性が少ないため好ましい。粉体混合物の粒子径の累積分布が上記よりも大きな場合、大きな粒子が溶剤に溶解するまでの時間、および加熱によって溶解するまでの時間が長くなり、溶剤や加熱による溶解性が低下する。一方、粉体混合物の粒子径の累積分布が上記よりも小さな場合、溶剤や加熱による溶解性は向上するが、粉体混合物を取り扱う際に粉体が舞い上がりやすく取扱性が低くなり、また帯電しやすく、わずかな隙間にも入り込みやすくなるために、容器への付着性が高く粉体混合物を取り出しにくくなる。
 本発明の粉体混合物の粒子径を測定する際には、そのまま測定してもよいが、一定期間保存した後の粉体混合物であり、粉体同士の凝集が発生して一部塊が生じている場合は、塊をメノウ乳鉢ですり潰したあとに測定することが好ましい。
(嵩密度の測定方法)
 本発明の粉体混合物の嵩(かさ)密度は、公知の方法を用いて測定することが可能であり、JIS規格の嵩密度、見かけ密度の測定方法、あるいは日本粉体工業技術協会規格の「粉体の使用表示方法に関するガイドライン」により測定することが好ましい。JIS規格では、顔料試験法の嵩密度測定方法(JIS-K-5101)、塩化ビニル樹脂試験方法の嵩密度測定方法(JIS-K-6720)、金属粉試験方法の嵩密度測定方法(JIS-Z-2504)、活性炭試験方法の嵩密度測定方法(JIS-K-1474)、プラスチック試験方法の嵩密度測定方法(JIS-K-7365、JIS-K-6722)、合成洗剤試験方法の嵩密度測定方法(JIS-K―3362)、アルミナ粉試験方法の嵩密度測定方法(JIS-R-9301)、四フッ化エチレン樹脂成形粉試験方法の嵩密度測定方法(JIS-K-6891)、人造研削剤試験方法の嵩密度測定方法(JIS-R-6130)などの測定方法が存在するが、本発明の粉体混合物の嵩密度は、メスシリンダーにガラス漏斗を用いて粉体混合物を自然落下させた後、合成樹脂性の天板を有する実験台上にてタッピングを行い、投入したサンプル重量を体積で割って算出することが好ましい(メスシリンダー法)。特にメスシリンダーの容積は500ml~50mlが好ましく、ガラス漏斗の吐出口径は2.0cm~1.0cmが好ましく、タッピング頻度は1回/秒~10回/秒が好ましく、10~20回タッピング時間は10分~10秒が好ましい。
 本発明の粉体混合物の嵩密度は、メスシリンダー法を用いて測定したとき、0.01g/ml~1.50g/mlであることが好ましく、0.05g/ml~1.30g/mlであることがより好ましく、0.10g/ml~1.20g/mlであることが特に好ましい。
 本発明の粉体混合物は、嵩密度が上記範囲内にあると、粉体同士の凝集や融点降下を抑制しながら充填効率を高めることができるため好ましい。粉体混合物の嵩密度が上記範囲よりも小さな場合、充填効率が低くなる。粉体混合物の嵩密度が上記範囲よりも大きな場合、粉体混合物の凝集が発生しやすく、また粉体混合物の接触による融点降下が発生しやすくなる。
(結晶子の測定方法)
 粉体混合物の結晶子の大きさは、透過電子顕微鏡(TEM)による粒子の直接観察のほか、X線回折(XRD)による結晶子径分布測定や小角X線散乱(SAXS)により測定することができる。本発明の粉体混合物の結晶子の大きさは、粉末X線回折を測定ことによって確認することが好ましい。粉末X線回折の測定では、X線源として波長1.54ÅのCuKα線を用い、走査範囲2θ=4deg~35degの範囲で測定を行う。粉末X線回折の測定で得られる回折ピークの半値幅から、下記Scherrerの式1により結晶子を算出することできる。
(式1)
 D=Kλ/βcosθ
 (D:結晶子径(Å)、K:Scherrer定数、λ:X線波長(Å)、β:回折線幅(rad)、θ:回折角2θの半分(rad))
 Scherrer定数(K)は、K=0.94、0.89、0.90、4/3、8/3πを用いることが好ましく、とくにK=0.90を用いることが好ましい。
 X線回折測定により得られたピークが複数ある場合、最も回折強度の大きなピークを用いて本発明の粉体混合物の結晶子の大きさとして算出することが好ましい。
 本発明の粉体混合物の結晶子の大きさは、X線回折測定を用いて、5nm~500nmが好ましく、より好ましくは10nm~300nm、15nm~200nmが好ましく、特に20nm~100nmの大きさの結晶子が好ましい。
 本発明の粉体混合物は、結晶子が上記範囲内にあると、溶剤への溶解性および加熱による溶解性に優れていて、なおかつ粉体混合物を扱う際に粉体が舞い上がりにくく取扱性に優れている他、容器への付着性が少ないため好ましい。粉体混合物の結晶子が上記よりも大きな場合、大きな結晶子が溶剤に溶解するまでの時間、および加熱によって溶解するまでの時間が長くなり、溶剤や加熱による溶解性が低下する。一方、粉体混合物の結晶子が上記よりも小さな場合、溶剤や加熱による溶解性は向上するが、粉体混合物を取り扱う際に粉体が舞い上がりやすく取扱性が低くなり、また帯電しやすく、わずかな隙間にも入り込みやすくなるために、容器への付着性が高く粉体混合物を取り出しにくくなる。
(粉体混合物中に含まれる残留溶剤の測定方法)
 本発明の粉体は、再結晶あるいは再沈澱などによって得られる。このため、再結晶あるいは再沈澱などの操作で使用した溶剤が粉体中に含有される。あるいは、空気中の水分が吸湿によって粉体中に含有される。これら粉体中に含まれる溶剤を残留溶剤と定義する。
 粉体混合物の残留溶剤を測定する方法としては、加熱真空法あるいは重量法が挙げられる。加熱真空法は、アルミ皿などに一定量秤量された粉体混合物を加熱真空デシケーター、あるいは真空乾燥機などに入れた後、約50℃~150℃、約10~50Paで約1~5時間程度、加熱真空する前後での重量変化によって測定する。重量法では、真空ではなく、アルミ皿などに一定量秤量された粉体混合物を加熱式天秤に入れた後、約80℃~250℃で約10~60分、加熱する前後での重量変化によって測定する。本発明の粉体混合物中に含まれる残留溶剤の測定方法は、重量法により測定することが好ましく、通常、重量法による残留溶剤の測定では、5~10gの粉体混合物を所定の温度(150~180℃程度)で加熱することによる重量減少を秤量することによって残留溶剤量が得られる。
 本発明の粉体混合物中に含まれる残留溶剤量は、上記の重量法により測定を行い、10,000ppm以下であることが好ましく、8,000ppm以下であることがより好ましく、6,000ppm以下であることが特に好ましい。また、残留溶剤量の下限値は、ゼロであることが好ましいが、現実的には、1ppm以上含有していても問題はない。
 本発明の粉体混合物は、残留溶剤の量が上記範囲内にあると、溶剤による粉体状態への影響が少なく、また、帯電しにくくなるため好ましい。一方、粉体混合部物の残留溶剤の量が上記の範囲よりも多い場合、溶剤による粒子の溶解や転移点降下への影響が大きくなり、粉体状態を保ちにくくなる。
(粉体混合物を構成する成分)
(重合性液晶化合物)
 本発明の粉体混合物には、1つ以上の重合性官能基を有する重合性液晶化合物を1種以上含有する。当該重合性液晶化合物としては、大気圧下、50℃以下において粉体であるものが好ましく、大気圧下40℃以下において粉体であるものがより好ましく、大気圧下35℃以下において粉体であるものがさらに好ましく、大気圧、30℃以下において粉体であるものが、特殊な圧力や温度条件ではなく取り扱いが容易となるために特に好ましい。本発明において、大気圧下とは800ヘクトパスカル以上1100ヘクトパスカル以下を意図し、より厳密には950ヘクトパスカル以上1050ヘクトパスカル以下を意図する。
 本発明において用いられる、1つ以上の重合性官能基を有する重合性液晶化合物としては、単独または他の化合物との組成物において液晶性を示し、少なくとも1つ以上の重合性官能基を有する化合物であれば、特に限定はなく、公知慣用のものを用いることができる。
 例えば、Handbook of Liquid Crystals(D.Demus,J.W.Goodby,G.W.Gray,H.W.Spiess,V.Vill編集、Wiley-VCH社発行,1998年)、季刊化学総説No.22、液晶の化学(日本化学会編,1994年)、あるいは、特開平7-294735号公報、特開平8-3111号公報、特開平8-29618号公報、特開平11-80090号公報、特開平11-116538号公報、特開平11-148079号公報、等に記載されているような、1,4-フェニレン基1,4-シクロヘキレン基等の構造が複数繋がったメソゲンと呼ばれる剛直な部位と、ビニル基、アクリル基、(メタ)アクリル基といった重合性官能基を有する棒状重合性液晶化合物、あるいは特開2004-2373号公報、特開2004-99446号公報に記載されているようなマレイミド基を有する棒状重合性液晶化合物が挙げられる。
 少なくとも1つ以上の重合性官能基を有する重合性液晶化合物は、具体的には以下の一般式(I)で表される化合物が好ましい。下記一般式(I)で表される化合物は、他の化合物との組成物において液晶性を示すものであれば、単独では液晶性を示さない化合物であっても本発明の粉体混合物に用いることができ、より好ましくは一般式(I)の単独で液晶性を示すことが液晶相の温度範囲を広げることが可能となるため、より好ましい。
Figure JPOXMLDOC01-appb-C000003
 式中、Pは重合性官能基を表し、
Spは炭素原子数1~18のアルキレン基を表し、該アルキレン基中の水素原子は、1つ以上のハロゲン原子、CN基により置換されていても良く、該アルキレン基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、-O-、-COO-、-OCO-又は-OCO-O-により置き換えられていても良く、
は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P-Sp、及びSp-Xは、ヘテロ原子同士の直接結合を含まない。なお本発明においてヘテロ原子とは炭素原子及び水素原子以外の原子を意図し、ヘテロ原子同士の直接結合とは、例えば-O-O-結合等を意図する。)、
q1は0又は1を表し、
MGはメソゲン基を表し、
は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、又は炭素原子数1から12の直鎖又は分岐アルキル基を表し、該アルキル基は直鎖状であっても分岐していてもよく、該アルキル基は1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良く、あるいはRは、一般式(I-a)
Figure JPOXMLDOC01-appb-C000004
(式中、Pは重合性官能基を表し、Spは、Spで定義されたものと同一のものを表し、Xは、Xで定義されたものと同一のものを表し(ただし、P-Sp、及びSp-Xは、ヘテロ原子同士の直接結合を含まない。)、
は0又は1を表す。)を表し、
上記MGで表されるメソゲン基は、一般式(I-b)
Figure JPOXMLDOC01-appb-C000005
(式中、B1、B2及びB3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基、及び/又は一般式(I-c)
Figure JPOXMLDOC01-appb-C000006
(式中、Pは反応性官能基を表し、
Spは、Spで定義されたものと同一のものを表し、
は、-O-、-COO-、-OCO-、-OCH2-、-CH2O-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、又は単結合を表し、qは0又は1を表し、qは0又は1を表す。(ただし、P-Sp、及びSp-Xは、ヘテロ原子同士の直接結合を含まない。))を有していても良く、
Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2 CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、
r1は0、1、2又は3を表し、B1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。)で表される。
 上記P、P及びPは、それぞれ独立して、下記の式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000007
 これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 上記Sp~Spはそれぞれ独立して、炭素原子数1~15のアルキレン基を表すことが好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、Sp~Spはそれぞれ独立して、炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。
 上記X~Xはそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、X~Xはそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。
(単官能重合性液晶化合物)
前記一般式(I)で表される化合物のうち、分子内に1個の重合性官能基を有する単官能重合性液晶化合物として、下記一般式(I-2-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
式中、P、Sp、X、及びq1は、それぞれ、上記一般式(I)の定義と同じものを表し、P、Sp、及びXにおいて好ましい基についても上記と同じものを意図し、
211は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-NH-、-N(CH)-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い、炭素原子数1から12の直鎖又は分岐アルキル基、炭素原子数1から12の直鎖又は分岐アルケニル基を表し、該アルキル基、アルケニル基の有する1個又は2個以上の水素原子は、ハロゲン原子、シアノ基によって置換されても良く、複数置換されている場合それぞれ同一であっても、異なっていても良い。
MGはメソゲン基を表し、一般式(I-b)
Figure JPOXMLDOC01-appb-C000009
(式中、B1、B2及びB3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良く、このうち、B1、B2及びB3はそれぞれ独立的に、上記置換基を有していても良い1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましい。r1は0、1、2又は3を表し、B1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。)で表される。
 R211は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、炭素原子数1から8の直鎖又は分岐アルキル基、炭素原子数1から8の直鎖又は分岐アルケニル基を表すことがより好ましく、該アルキル基及びアルケニル基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、又は-C≡C-によって置換されても良く、該アルキル基及び該アルケニル基の有する1個又は2個以上の水素原子はそれぞれ独立して、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はシアノ基によって置換されても良く、複数置換されている場合それぞれ同一であっても、異なっていても良い。
 一般式(I-2-1)の例として、下記一般式(I-2-1-1)~(I-2-1-4)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000010
 式中、P、Sp、X、及び、q1は、それぞれ、上記一般式(I)の定義と同じものを表し、P、Sp、及びXにおいて好ましい基についても上記と同じものを意図し、
B11、B12、B13、B2、B3は、上記一般式(I-b)のB1~B3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
Z11、Z12、Z13、Z2は、上記一般式(I-b)のZ1~Z3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
211は、水素原子、ハロゲン原子、シアノ基、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-NH-、-N(CH)-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い、炭素原子数1から12の直鎖又は分岐アルキル基、炭素原子数1から12の直鎖又は分岐アルケニル基を表し、該アルキル基、アルケニル基の有する1個又は2個以上の水素原子は、ハロゲン原子、シアノ基によって置換されても良く、複数置換されている場合それぞれ同一であっても、異なっていても良い。
 上記一般式(I-2-1-1)~(I-2-1-4)で表される化合物としては、以下の式(I-2-1-1-1)~式(I-2-1-1-30)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 式中、Rは水素原子又はメチル基を表し、mは0~18の整数を表し、nは0又は1を表し、R211は、上記一般式(I-2-1-1)~(I-2-1-4)の定義と同じものを表すが、R211は、水素原子、ハロゲン原子、シアノ基、1個の-CH-又は隣接していない2個以上の-CH-が-O-、-CO-、-COO-、-OCO-によって置換されても良い、炭素原子数1から15の直鎖アルキル基又は炭素原子数1から15の直鎖アルケニル基を表すことが好ましく、該アルキル基またはアルケニル基の有する1個または2個以上の水素原子は、ハロゲン原子、シアノ基、t-ブチル基によって置換されていても良く、ハロゲン原子はF原子であることが好ましく、
上記環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良く、環状のCHはNに置換されても良い。
(2官能重合性液晶化合物)
 前記一般式(I)で表される化合物のうち、分子内に2個の重合性官能基を有する2官能重合性液晶化合物として、下記一般式(I-2-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000017
式中、P、Sp、X、q1、X、Sp、q2、Pは、それぞれ、上記一般式(I)、一般式(I-a)の定義と同じものを表し、P、Sp、X、X、Sp及びPにおいて好ましい基についても上記と同じものを意図する。
MGはメソゲン基を表し、一般式(I-b)
Figure JPOXMLDOC01-appb-C000018
(式中、B1、B2及びB3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良く、このうち、B1、B2及びB3はそれぞれ独立的に、上記置換基を有していても良い1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましい。r1は0、1、2又は3を表し、B1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。)で表される。
 一般式(I-2-2)の例として、下記一般式(I-2-2-1)~(I-2-2-4)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000019
 式中、P、Sp、X、q1、X、Sp、q2、Pは、それぞれ、上記一般式(I)、一般式(I-a)の定義と同じものを表し、P、Sp、X、X、Sp及びPにおいて好ましい基についても上記と同じものを意図し、
B11、B12、B13、B2、B3は、上記一般式(I-b)のB1~B3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
Z11、Z12、Z13、Z2は、上記一般式(I-b)のZ1~Z3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良い。
 上記一般式(I-2-2-1)~(I-2-2-4)で表される化合物のうち、一般式(I-2-2-2)~(I-2-2-4)で表される、化合物中に3つ以上の環構造を有する化合物を用いると、最終的に得られる光学異方体の配向性が良好で、かつ硬化性も良好であるため好ましく、化合物中に2つの環構造を有する一般式(I-2-2-1)で表される化合物、化合物中に3つの環構造を有する一般式(I-2-2-2)で表される化合物を用いることが特に好ましい。
 上記一般式(I-2-2-1)~(I-2-2-4)で表される化合物としては、以下の式(I-2-2-1-1)~式(I-2-2-1-22)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 式中、R及びRは、それぞれ独立して水素原子又はメチル基を表し、
上記環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良い。
 m1、m2はそれぞれ独立して0~18の整数を表し、n1、n2、n3、n4はそれぞれ独立して0又は1を表す。
(多官能重合性液晶化合物)
 3つ以上の重合性官能基を有する多官能重合性液晶化合物としては、3つの重合性官能基を有する化合物を用いることが好ましい。前記一般式(I)で表される化合物のうち、分子内に3個の重合性官能基を有する多官能重合性液晶化合物として、下記一般式(I-2-3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000025
 式中、P、Sp、X、q1、X、Sp、q2、P、X、q4、Sp、q3、Pは、それぞれ、上記一般式(I)、一般式(I-a)、一般式(I-c)の定義と同じものを表し、P、Sp、X、X、Sp、P、X、Sp及びPにおいて好ましい基についても上記と同じものを意図する。
MGはメソゲン基を表し、一般式(I-b)
Figure JPOXMLDOC01-appb-C000026
(式中、B1、B2及びB3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良く、このうち、B1、B2及びB3はそれぞれ独立的に、上記置換基を有していても良い1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましい。r1は0、1、2又は3を表し、B1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。)で表される。
 一般式(I-2-3)の例として、下記一般式(I-2-3-1)~(I-2-3-8)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 式中、P、S、X、q1、MG、X、S、q2、P、X、q4、S、q3、Pは、それぞれ、上記一般式(I)、一般式(I-a)、一般式(I-c)の定義と同じものを表し、P、Sp、X、X、Sp、P、X、Sp及びPにおいて好ましい基についても上記と同じものを意図し、
B11、B12、B13、B2、B3は、上記一般式(I-b)のB1~B3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
Z11、Z12、Z13、Z2は、上記一般式(I-b)のZ1~Z3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良い。
 上記一般式(I-2-3-1)~(I-2-3-8)で表される化合物としては、以下の式(I-2-3-1-1)~式(I-2-3-1-6)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 式中、R、R及びRは、それぞれ独立して水素原子又はメチル基を表し、R、R及びRはそれぞれ独立して水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基を表し、これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよく、上記環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良い。
 m4~m9はそれぞれ独立して0~18の整数を表し、n4~n9はそれぞれ独立して0又は1を表す。
(重合性液晶化合物の複数種併用)
 本発明の粉体混合物は、上記重合性液晶化合物からなる粉体を複数種混合して用いることができる。
 分子内に1個の重合性官能基を有する液晶化合物からなる粉体は、使用しない、または1種又は2種以上用いることができるが、使用する場合は1種~10種が好ましく、2種~5種がより好ましい。2つの重合性官能基を有する液晶化合物からなる粉体は、使用しない、または1種又は2種以上用いることができるが、使用する場合は1種~10種が好ましく、2種~5種がより好ましい。3個以上の重合性官能基を有する多官能重合性液晶化合物からなる粉体は、使用しない、または1種又は2種以上用いることができ、使用する場合は1種~5種が好ましく、1種~2種がより好ましい。
 2官能重合性液晶化合物からなる粉体のみ2種類以上用いて粉体混合物を調製することもできるが、少なくとも1種以上の単官能重合性液晶化合物からなる粉体と、少なくとも1種以上の2官能重合性液晶化合物及び/又は3官能以上の多官能重合性液晶化合物からなる粉体とを併用して粉体混合物を調製すると、得られる粉体混合物の硬化性が向上し、かつ基材との密着性も良好となるために好ましく、少なくとも1種以上の単官能重合性液晶化合物からなる粉体と、少なくとも1種以上の2官能重合性液晶化合物からなる粉体とを併用することが、硬化収縮の抑制と密着性を両立できるためより好ましい。
 中でも、本発明の粉体混合物を用いて光学異方体とした時に、より硬化性を向上させたい場合、2官能重合性液晶化合物からなる粉体として、上記(II-2-2-2)~(II-2-2-4)から選択される化合物からなる粉体を用いることが好ましく、単官能重合性液晶化合物からなる粉体と2官能重合性液晶化合物からなる粉体とを併用する場合は、上記(II-2-1-1)、あるいは上記(II-2-1-2)で表される化合物からなる粉体及び、上記(II-2-2-2)、あるいは(II-2-2-3)で表される化合物からなる粉体を併用した粉体混合物とすることが特に好ましい。
 単官能重合性液晶化合物からなる粉体の中では、(II-2-1-1)、(II-2-1-3)、(II-2-1-5)、(II-2-1-9)、(II-2-1-10)、(II-2-1-11)、(II-2-1-12)、(II-2-1-15)、(II-2-1-23)、(II-2-1-27)、(II-2-1-28)、(II-2-1-29)、(II-2-1-30)から選択される化合物からなる粉体を用いることが好ましく、
 2官能重合性液晶化合物からなる粉体の中では、(II-2-2-1-1)、(II-2-2-1-4)、(II-2-2-1-4)、(II-2-2-1-5)、(II-2-2-1-6)、(II-2-2-1-12)、(II-2-2-1-15)、(II-2-2-1-22)から選択される化合物からなる粉体を用いることが好ましく、
 3官能重合性液晶化合物からなる粉体の中では、(II-2-3-1)、(II-2-3-2)、(II-2-3-3)から選択される化合物からなる粉体を用いることが好ましい。
 上記の単官能重合性液晶化合物からなる粉体と2官能重合性液晶化合物からなる粉体との合計量は、用いる重合性液晶化合物からなる粉体の合計量のうち、70質量%~100質量%とすることが好ましく、80質量%~100質量%とすることが特に好ましい。
 単官能重合性液晶化合物からなる粉体の合計含有量は、用いる単官能重合性液晶化合物からなる粉体、2官能重合性液晶化合物からなる粉体及び多官能重合性液晶化合物からなる粉体の合計量のうち、0~90質量%含有することが好ましく、0~85質量%含有することがより好ましく、0~80質量%含有することが特に好ましい。最終的に得られる光学異方体の配向性を重視する場合には下限値を5質量%以上にすることが好ましく、10質量%以上にすることがより好ましく、最終的に得られる光学異方体の塗膜の硬さを重視する場合には上限値を80質量%以下とすることが好ましく、70質量%以下とすることがより好ましい。
 2官能重合性液晶化合物からなる粉体の合計含有量は、用いる単官能重合性液晶化合物からなる粉体、2官能重合性液晶化合物からなる粉体及び多官能重合性液晶化合物からなる粉体の合計量のうち、10~100質量%含有することが好ましく、15~85質量%含有することがより好ましく20~80質量%含有することが特に好ましい。最終的に得られる光学異方体の塗膜の硬さを重視する場合には下限値を30質量%以上にすることが好ましく、50質量%以上にすることがより好ましく、最終的に得られる光学異方体の配向性を重視する場合には上限値を85質量%以下とすることが好ましく、80質量%以下とすることがより好ましい。
 多官能重合性液晶化合物からなる粉体の合計含有量は、用いる単官能重合性液晶化合物からなる粉体、2官能重合性液晶化合物からなる粉体及び多官能重合性液晶化合物からなる粉体の合計量のうち、0~80質量%含有することが好ましく、0~60質量%含有することがより好ましく、0~40質量%含有することが特に好ましい。最終的に得られる光学異方体の剛直性を重視する場合には、下限値を10質量%以上にすることが好ましく、20質量%以上にすることがより好ましく、30質量%以上にすることが特に好ましく、一方、最終的に得られる光学異方体の硬化収縮性を重視する場合には上限値を50質量%以下とすることが好ましく、35質量%以下とすることがより好ましく、20質量%以下、10質量%以下、5質量%以下、2質量%以下とすることが特に好ましい。
(正分散性重合性液晶化合物及び逆分散性重合性液晶化合物)
 本発明の重合性液晶化合物からなる粉体としては、その複屈折性が可視光領域において、短波長側より長波長側で小さい光学的な特徴を有する正分散性重合性液晶化合物からなる粉体、及び/又は、短波長側より長波長側で大きい光学的な特徴を有する逆分散性重合性液晶化合物からなる粉体とを用いることができる。
 ここで、正分散性重合性液晶化合物としては式(A)、逆分散性重合性液晶化合物としては式(B)
Re(450nm)/Re(550nm)>1.0 (A)
Re(450nm)/Re(550nm)<1.0 (B)
(式中、Re(450nm)は、重合性液晶化合物を基板上に分子の長軸方向が実質的に基板に対して水平に配向させたときの450nmの波長における面内位相差、Re(550nm)は、重合性液晶化合物を基板上に分子の長軸方向が実質的に基板に対して水平に配向させたときの550nmの波長における面内位相差、を表す。)を満たす重合性液晶性化合物が好ましく、正分散性重合性液晶化合物としては、上述の単官能重合性液晶化合物、2官能重合性液晶化合物、多官能重合性液晶化合物が該当する。
(逆分散性重合性液晶化合物)
 本発明の粉体混合物には、少なくとも1つ以上の重合性官能基を有する逆分散性重合性液晶化合物からなる粉体を用いることができる。逆分散性重合性液晶化合物としては、公知慣用の化合物を用いることが可能であるが、分子設計の指針として、分子分極率が正と負のものを混在させることが好ましく、分子分極率が正となる化合物は分子の形状が棒状となり、分子分極率が負となる化合物は分子形状が円盤状となることが好ましい。少なくとも1つ以上の重合性官能基を有する逆分散性重合性液晶化合物としては、分子分極率が正と負の分子構造を混在させる方法として、分子中心部分にあるメソゲンに分岐構造を有することが好ましく、分岐の数は1つまたは2つが好ましく、中でもメソゲンからの1つの分岐構造を有する分子形状は逆分散性の発現とネマチック液晶相の発現を両立しやすいので好ましい。これらの逆分散性を示す化合物は、具体的には下記一般式(1)~(7)の構造となることが好ましい。
Figure JPOXMLDOC01-appb-C000031
上記一般式(1)~(7)中、P11~P74は重合性基を表し、S11~S72はスペーサー基を又は単結合を表すが、S11~S72が複数存在する場合それらは各々同一であっても異なっていても良く、X11~X72は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、X11~X72が複数存在する場合それらは各々同一であっても異なっていても良く(ただし、各P-(S-X)-結合には-O-O-を含まない。)、MG11~MG71は各々独立して式(a)を表し、
Figure JPOXMLDOC01-appb-C000032
(式中、A11、A12は各々独立して1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良いが、A11及び/又はA12が複数現れる場合は各々同一であっても異なっていても良く、
11及びZ12は各々独立して-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、Z11及び/又はZ12が複数現れる場合は各々同一であっても異なっていても良く、
Mは下記の式(M-1)から式(M-11)
Figure JPOXMLDOC01-appb-C000033
から選ばれる基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良く、
Gは下記の式(G-1)から式(G-6)
Figure JPOXMLDOC01-appb-C000034
(式中、Rは水素原子、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、
81は少なくとも1つの芳香族基を有する、炭素原子数5から30の基を表すが、当該基は無置換又は1つ以上のLによって置換されても良く、
82は水素原子、又は、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、若しくは、W82は少なくとも1つの芳香族基を有する、炭素原子数2から30の基を表しても良く、若しくは、W82はP-(Sp-XkW-で表される基を表しても良く、ここでPは重合性基を表し、好ましい重合性基は下記P11~P74で好ましい重合性基としたものと同一のものを表し、Spはスペーサー基又は単結合を表すが、好ましいスペーサー基は下記S11~S72で好ましいスペーサー基としたものと同一のものを表し、Spが複数存在する場合それらは同一であっても異なっていても良く、Xは-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、Xが複数存在する場合それらは同一であっても異なっていても良く(ただし、P-(Sp-XkW-には-O-O-結合を含まない。)、kWは0から10の整数を表し、また、W81及びW82は互いに連結し同一の環構造を形成しても良く、
83及びW84はそれぞれ独立してハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、カルボキシル基、カルバモイルオキシ基、アミノ基、スルファモイル基、少なくとも1つの芳香族基を有する炭素原子数5から30の基、炭素原子数1から20のアルキル基、炭素原子数3から20のシクロアルキル基、炭素原子数2から20のアルケニル基、炭素原子数3から20のシクロアルケニル基、炭素原子数1から20のアルコキシ基、炭素原子数2から20のアシルオキシ基、炭素原子数2から20の又は、アルキルカルボニルオキシ基を表すが、前記アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルコキシ基、アシルオキシ基、アルキルカルボニルオキシ基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、但し、上記Mが式(M-1)~式(M-10)から選択される場合Gは式(G-1)~式(G-5)から選択され、Mが式(M-11)である場合Gは式(G-6)を表し、
はフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ニトロ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-から選択される基によって置換されても良いが、化合物内にLが複数存在する場合それらは同一であっても異なっていても良く、
j11は1から5の整数、j12は1~5の整数を表すが、j11+j12は2から5の整数を表す。)、R11及びR31は水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、m11は0~8の整数を表し、m2~m7、n2~n7、l4~l6、k6は各々独立して0から5の整数を表す。
 一般式(1)から一般式(7)において、重合性基P11~P74は下記の式(P-1)から式(P-20)から選ばれる基を表すことが好ましい。
Figure JPOXMLDOC01-appb-C000035
 これらの重合性基はラジカル重合、ラジカル付加重合、カチオン重合及びアニオン重合により重合する。特に重合方法として紫外線重合を行う場合には、式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-5)、式(P-7)、式(P-11)、式(P-13)、式(P-15)又は式(P-18)が好ましく、式(P-1)、式(P-2)、式(P-7)、式(P-11)又は式(P-13)がより好ましく、式(P-1)、式(P-2)又は式(P-3)がさらに好ましく、式(P-1)又は式(P-2)が特に好ましい。
 一般式(1)から一般式(7)において、S11~S72はスペーサー基又は単結合を表すが、S11~S72が複数存在する場合、それらは同一であっても異なっていても良い。また、スペーサー基としては、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-、-OCO-O-、-CO-NH-、-NH-CO-、-CH=CH-、-C≡C-又は下記の式(S-1)
Figure JPOXMLDOC01-appb-C000036
に置き換えられても良い炭素原子数1から20のアルキレン基を表すことが好ましい。S11~S72は原料の入手容易さ及び合成の容易さの観点から複数存在する場合は各々同一であっても異なっていても良く、各々独立して、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-に置き換えられても良い炭素原子数1から10のアルキレン基又は単結合を表すことがより好ましく、各々独立して炭素原子数1から10のアルキレン基又は単結合を表すことがさらに好ましく、複数存在する場合は各々同一であっても異なっていても良く各々独立して炭素原子数1から8のアルキレン基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、X11~X72は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、X11~X72が複数存在する場合それらは同一であっても異なっていても良い(ただし、P-(S-X)-結合には-O-O-を含まない。)。また、原料の入手容易さ及び合成の容易さの観点から、複数存在する場合は各々同一であっても異なっていても良く、各々独立して-O-、-S-、-OCH-、-CHO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-又は単結合を表すことが好ましく、各々独立して-O-、-OCH-、-CHO-、-COO-、-OCO-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-又は単結合を表すことがより好ましく、複数存在する場合は各々同一であっても異なっていても良く、各々独立して-O-、-COO-、-OCO-又は単結合を表すことが特に好ましい。
 一般式(1)から一般式(7)において、A11及びA12は各々独立して1,4-フェニレン基、1,4-シクロヘキシレン基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、これらの基は無置換であるか又は1つ以上のLによって置換されても良いが、A11及び/又はA12が複数現れる場合は各々同一であっても異なっていても良い。A11及びA12は原料の入手容易さ及び合成の容易さの観点から各々独立して無置換又は1つ以上のLによって置換されても良い1,4-フェニレン基、1,4-シクロへキシレン基又はナフタレン-2,6-ジイルを表すことが好ましく、各々独立して下記の式(A-1)から式(A-11)
Figure JPOXMLDOC01-appb-C000037
から選ばれる基を表すことがより好ましく、各々独立して式(A-1)から式(A-8)から選ばれる基を表すことがさらに好ましく、各々独立して式(A-1)から式(A-4)から選ばれる基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、Z11及びZ12は各々独立して-O-、-S-、-OCH-、-CHO-、-CHCH-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、Z11及び/又はZ12が複数現れる場合は各々同一であっても異なっていても良い。Z11及びZ12は化合物の液晶性、原料の入手容易さ及び合成の容易さの観点から、各々独立して単結合、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、各々独立して-OCH-、-CHO-、-CHCH-、-COO-、-OCO-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-CH=CH-、-C≡C-又は単結合を表すことがより好ましく、各々独立して-CHCH-、-COO-、-OCO-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-又は単結合を表すことがさらに好ましく、各々独立して-CHCH-、-COO-、-OCO-又は単結合を表すことが特に好ましい。
 一般式(1)から一般式(7)において、Mは下記の式(M-1)から式(M-11)
Figure JPOXMLDOC01-appb-C000038
から選ばれる基を表すが、これらの基は無置換又は1つ以上のLによって置換されても良い。Mは原料の入手容易さ及び合成の容易さの観点から各々独立して無置換であるか又は1つ以上のLによって置換されても良い式(M-1)又は式(M-2)若しくは無置換の式(M-3)から式(M-6)から選ばれる基を表すことが好ましく、無置換又は1つ以上のLによって置換されても良い式(M-1)又は式(M-2)から選ばれる基を表すことがより好ましく、無置換の式(M-1)又は式(M-2)から選ばれる基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、R11及びR31は水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、シアノ基、ニトロ基、イソシアノ基、チオイソシアノ基、又は、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良い。Rは液晶性及び合成の容易さの観点から水素原子、フッ素原子、塩素原子、シアノ基、若しくは、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-、-O-CO-O-によって置換されても良い炭素原子数1から12の直鎖又は分岐アルキル基を表すことが好ましく、水素原子、フッ素原子、塩素原子、シアノ基、若しくは、炭素原子数1から12の直鎖アルキル基又は直鎖アルコキシ基を表すことがより好ましく、炭素原子数1から12の直鎖アルキル基又は直鎖アルコキシ基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、Gは式(G-1)から式(G-6)から選ばれる基を表す。
Figure JPOXMLDOC01-appb-C000039
 式中、Rは水素原子、又は、炭素原子数1から20のアルキル基を表すが、当該アルキル基は直鎖状であっても分岐状であっても良く、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、当該アルキル基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、
81は少なくとも1つの芳香族基を有する、炭素原子数5から30の基を表すが、当該基は無置換であるか又は1つ以上のLによって置換されても良く、
82は水素原子、又は、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良く、若しくは、W82は少なくとも1つの芳香族基を有する、炭素原子数2から30の基を表しても良く、若しくは、W82はP-(Sp-XkW-で表される基を表しても良く、ここでPは重合性基を表し、好ましい重合性基は下記P11~P74で好ましい重合性基としたものと同一のものを表し、Spはスペーサー基又は単結合を表すが、好ましいスペーサー基は下記S11~S72で好ましいスペーサー基としたものと同一のものを表し、Spが複数存在する場合それらは同一であっても異なっていても良く、Xは-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すが、Xが複数存在する場合それらは同一であっても異なっていても良く(ただし、P-(Sp-XkW-には-O-O-結合を含まない。)、kWは0から10の整数を表し、また、W81及びW82は一緒になって環構造を形成しても良い。
 W81に含まれる芳香族基は芳香族炭化水素基又は芳香族複素基であっても良く、両方を含んでいても良い。これらの芳香族基は単結合又は連結基(-OCO-、-COO-、-CO-、-O-)を介して結合していても良く、縮合環を形成しても良い。また、W81は芳香族基に加えて芳香族基以外の非環式構造及び/又は環式構造を含んでいても良い。W81に含まれる芳香族基は原料の入手容易さ及び合成の容易さの観点から、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-1)から式(W-19)
Figure JPOXMLDOC01-appb-C000040
(式中、これらの基は任意の位置に結合手を有していて良く、これらの基から選ばれる2つ以上の芳香族基を単結合で連結した基を形成しても良く、Qは-O-、-S-、-NR-(式中、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)又は-CO-を表す。これらの芳香族基中の-CH=は各々独立して-N=に置き換えられても良く、-CH-は各々独立して-O-、-S-、-NR-(式中、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)又は-CO-に置き換えられても良いが、-O-O-結合を含まない。)で表される基が好ましい。式(W-1)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-1-1)から式(W-1-8)
Figure JPOXMLDOC01-appb-C000041
(式中、これらの基は任意の位置に結合手を有していて良い。)から選ばれる基を表すことが好ましく、式(W-7)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-7-1)から式(W-7-7)
Figure JPOXMLDOC01-appb-C000042
(式中、これらの基は任意の位置に結合手を有していて良い。)から選ばれる基を表すことが好ましく、式(W-10)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-10-1)から式(W-10-8)
Figure JPOXMLDOC01-appb-C000043
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-11)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-11-1)から式(W-11-13)
Figure JPOXMLDOC01-appb-C000044
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-12)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-12-1)から式(W-12-19)
Figure JPOXMLDOC01-appb-C000045
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましく、式(W-13)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-13-1)から式(W-13-10)
Figure JPOXMLDOC01-appb-C000046
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましく、式(W-14)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-14-1)から式(W-14-4)
Figure JPOXMLDOC01-appb-C000047
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-15)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-15-1)から式(W-15-18)
Figure JPOXMLDOC01-appb-C000048
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-16)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-16-1)から式(W-16-4)
Figure JPOXMLDOC01-appb-C000049
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-17)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-17-1)から式(W-17-6)
Figure JPOXMLDOC01-appb-C000050
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、式(W-18)で表される基としては、無置換又は1つ以上のLによって置換されても良い下記の式(W-18-1)から式(W-18-6)
Figure JPOXMLDOC01-appb-C000051
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましく、式(W-19)で表される基としては、無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-19-1)から式(W-19-9)
Figure JPOXMLDOC01-appb-C000052
(式中、これらの基は任意の位置に結合手を有していて良く、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましい。W81に含まれる芳香族基は、無置換であるか又は1つ以上のLによって置換されても良い式(W-1-1)、式(W-7-1)、式(W-7-2)、式(W-7-7)、式(W-8)、式(W-10-6)、式(W-10-7)、式(W-10-8)、式(W-11-8)、式(W-11-9)、式(W-11-10)、式(W-11-11)、式(W-11-12)又は式(W-11-13)から選ばれる基を表すことがより好ましく、無置換であるか又は1つ以上のLによって置換されても良い式(W-1-1)、式(W-7-1)、式(W-7-2)、式(W-7-7)、式(W-10-6)、式(W-10-7)又は式(W-10-8)から選ばれる基を表すことが特に好ましい。さらに、W81は下記の式(W-a-1)から式(W-a-6)
Figure JPOXMLDOC01-appb-C000053
(式中、rは0から5の整数を表し、sは0から4の整数を表し、tは0から3の整数を表す。)から選ばれる基を表すことが特に好ましい。
 原料の入手容易さ及び合成の容易さの観点から、W82は水素原子、又は、基中の任意の水素原子がフッ素原子に置換されても良く、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基、若しくは、P-(Sp-XkW-で表される基を表すことがより好ましく、W82は水素原子、又は、基中の任意の水素原子がフッ素原子に置換されても良く、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-CO-、-COO-、-OCO-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基、若しくは、P-(Sp-XkW-で表される基を表すことがさらに好ましく、W82は水素原子、又は、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-によって置換されても良い炭素原子数1から12の直鎖状アルキル基、若しくは、P-(Sp-XkW-で表される基を表すことがさらにより好ましい。
 また、W82が少なくとも1つの芳香族基を有する炭素原子数2から30の基を表す場合、W82は上記の式(W-1)から式(W-18)から選ばれる基を表すことが好ましい。その場合、より好ましい構造としては上記と同様である。
 また、W82がP-(Sp-XkW-で表される基を表す場合、P、Sp、X、で表される基の好ましい構造は、それぞれ、上記P11~P74、上記S11~S72、上記X11~X72で表される基の好ましい構造と同様である。さらに、kWは、0~3の整数が好ましく、0又は1がより好ましい。
 また、W81及びW82が一緒になって環構造を形成する場合、-NW8182で表される環状基は無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-b-1)から式(W-b-42)
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
(式中、Rは水素原子又は炭素原子数1から8のアルキル基を表す。)から選ばれる基を表すことが好ましく、原料の入手容易さ及び合成の容易さの観点から、無置換又は1つ以上のLによって置換されても良い式(W-b-20)、式(W-b-21)、式(W-b-22)、式(W-b-23)、式(W-b-24)、式(W-b-25)又は式(W-b-33)から選ばれる基を表すことが特に好ましい。
 また、=CW8182で表される環状基は無置換であるか又は1つ以上のLによって置換されても良い下記の式(W-c-1)から式(W-c-81)
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
(式中、Rは水素原子又は炭素原子数1から8のアルキル基を表すが、Rが複数存在する場合それぞれ同一であっても、異なっていてもよい。)から選ばれる基を表すことが好ましく、原料の入手容易さ及び合成の容易さの観点から、無置換又は1つ以上のLによって置換されても良い式(W-c-11)、式(W-c-12)、式(W-c-13)、式(W-c-14)、式(W-c-53)、式(W-c-54)、式(W-c-55)、式(W-c-56)、式(W-c-57)又は式(W-c-78)から選ばれる基を表すことが特に好ましい。
 W81及びW82に含まれるπ電子の総数は、波長分散特性、保存安定性、液晶性及び合成の容易さの観点から4から24であることが好ましい。
 W83、W84はそれぞれ独立してハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、カルボキシル基、カルバモイルオキシ基、アミノ基、スルファモイル基、少なくとも1つの芳香族基を有する炭素原子数5から30の基、炭素原子数1から20のアルキル基、炭素原子数3から20のシクロアルキル基、炭素原子数2から20のアルケニル基、炭素原子数3から20のシクロアルケニル基、炭素原子数1から20のアルコキシ基、炭素原子数2から20のアシルオキシ基、炭素原子数2から20の又は、アルキルカルボニルオキシ基を表すが、前記アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルコキシ基、アシルオキシ基、アルキルカルボニルオキシ基中の1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換されても良く、W83はシアノ基、ニトロ基、カルボキシル基、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換された、炭素原子数1から20のアルキル基、アルケニル基、アシルオキシ基、アルキルカルボニルオキシ基から選択される基がより好ましく、シアノ基、カルボキシル基、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換された、炭素原子数1から20のアルキル基、アルケニル基、アシルオキシ基、アルキルカルボニルオキシ基で選択される基が特に好ましく、W84はシアノ基、ニトロ基、カルボキシル基、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換された、炭素原子数1から20のアルキル基、アルケニル基、アシルオキシ基、アルキルカルボニルオキシ基から選択される基がより好ましく、シアノ基、カルボキシル基、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-又は-C≡C-によって置換された、炭素原子数1から20のアルキル基、アルケニル基、アシルオキシ基、アルキルカルボニルオキシ基で選択される基で選択される基が特に好ましい。
 Lはフッ素原子、塩素原子、臭素原子、ヨウ素原子、ペンタフルオロスルフラニル基、ニトロ基、イソシアノ基、アミノ基、ヒドロキシル基、メルカプト基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、トリメチルシリル基、ジメチルシリル基、チオイソシアノ基、又は、1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すが、当該アルキル基中の任意の水素原子はフッ素原子に置換されても良い。液晶性、合成の容易さの観点から、Lはフッ素原子、塩素原子、ペンタフルオロスルフラニル基、ニトロ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、又は、任意の水素原子はフッ素原子に置換されても良く、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CH=CH-、-CF=CF-又は-C≡C-から選択される基によって置換されても良い炭素原子数1から20の直鎖状又は分岐状アルキル基を表すことが好ましく、フッ素原子、塩素原子、又は、任意の水素原子はフッ素原子に置換されても良く、1個の-CH-又は隣接していない2個以上の-CH-は各々独立して-O-、-COO-又は-OCO-から選択される基によって置換されても良い炭素原子数1から12の直鎖状又は分岐状アルキル基を表すことがより好ましく、フッ素原子、塩素原子、又は、任意の水素原子はフッ素原子に置換されても良い炭素原子数1から12の直鎖状又は分岐状アルキル基若しくはアルコキシ基を表すことがさらに好ましく、フッ素原子、塩素原子、又は、炭素原子数1から8の直鎖アルキル基若しくは直鎖アルコキシ基を表すことが特に好ましい。
 一般式(1)から一般式(7)において、MG11からMG71に結合する各々の置換基は、上記一般式(a)のA11及び/又はA12に結合する。
 一般式(1)において、m11は0から8の整数を表すが、液晶性、原料の入手容易さ及び合成の容易さの観点から0から4の整数を表すことが好ましく、0から2の整数を表すことがより好ましく、0又は1を表すことがさらに好ましく、1を表すことが特に好ましい。
 一般式(2)から一般式(7)において、m2~m7、n2~n7、l2~l7は各々独立して0から5の整数を表すが、液晶性、原料の入手容易さ及び合成の容易さの観点から0から4の整数を表すことが好ましく、0から2の整数を表すことがより好ましく、0又は1を表すことがさらに好ましく、1を表すことが特に好ましい。
 一般式(a)において、j11及びj12は各々独立して1から5の整数を表すが、j11+j12は2から5の整数を表す。液晶性、合成の容易さ及び保存安定性の観点から、j11及びj12は各々独立して1から4の整数を表すことが好ましく、1から3の整数を表すことがより好ましく、1又は2を表すことが特に好ましい。j11+j12は2から4の整数を表すことが好ましい。 上記逆分散性重合性液晶化合物としては、以下の式(8-1)~式(8-31)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000066
(逆分散性重合性液晶化合物の複数種併用)
 上記逆分散性重合性液晶化合物からなる粉体の合計含有量は、粉体混合物に用いる正分散性重合性液晶性化合物からなる粉体及び逆分散性重合性液晶化合物からなる粉体の総量に対し、60~100質量%含有することが好ましく、65~98質量%含有することがより好ましく、70~95質量%含有することが特に好ましい。
(正分散性重合性液晶化合物及び逆分散性重合性液晶化合物からなる粉体の粒子径の制御)
 本発明においては、重合性官能基を有する重合性液晶化合物の粒子径、嵩密度、結晶子を制御することが特に好ましく、粒子径等を制御する方法は、公知公用の技術を用いることが可能であり、また、今後においても本発明の粒子径の範囲となる粒子を得る方法である場合、その技術を排除するものではないが、本発明においては、合成後有機溶剤から重合性液晶化合物を分離する際に粒子径を制御することが特に好ましい。
 有機溶剤から重合性液晶化合物を分離する方法としては、蒸発(自然乾燥)、送風、減圧、加熱、噴霧、凍結、共沸、毛管現象、再結晶、再沈澱などの現象を単独および複数組み合わせて利用することができるが、単離操作による重合を防ぐことが好ましい。重合性官能基が反応して重合しないためには、重合禁止剤を添加した後に有機溶剤を除去する工程を行うことが好ましく、作業場所の気温は40℃、30℃、25℃、20℃、15℃、10℃以下が好ましく、好ましくは28℃、25℃、20℃、15℃以下の気温で作業することが好ましく、作業環境を維持するために空調設備を有する場所において作業されることが好ましく、光重合を避けるためは、直射日光を避けること、UVカットの照明を使用することが好ましく、真空減圧などにより有機溶剤を除去する場合は、エアーバブリングなどにより酸素が存在している雰囲気で行うことが好ましい。
 より精密に重合性液晶化合物からなる粉体の粒子径を制御するためには、再結晶、再沈澱により有機溶剤から重合性液晶化合物を分離することが好ましく、再沈澱がより好ましい。再結晶を行う場合、短時間で結晶化させることが好ましく、再結晶溶剤は冷却することが好ましく、冷却温度は、10℃以下、5℃以下、0℃以下、-5℃以下、-10℃以下が好ましい。
 再沈澱により重合性液晶化合物からなる粉体の粒子径を本発明において好ましい粒子径の範囲となる粒子を得るためには、重合性液晶化合物を上記の溶解性の高い溶剤に溶解させた後、溶解性の低い溶剤を添加することで、溶解性を低下させ、重合性液晶化合物を析出させることが好ましい。溶解性の高い溶剤の使用量は最小限にすることが好ましく、飽和濃度となる溶剤量と同じ重量~10倍量の重量が好ましく、5倍量が好ましく、2~3倍以下となる重量の溶剤に溶解させることが特に好ましい。溶解性の低い溶剤は攪拌しながら添加することが好ましく、溶解性の低い溶剤は室温以下に冷却していることが好ましく、25℃以下、20℃以下、10℃以下、5℃以下、0℃以下、-5℃以下、-10℃以下が好ましい。
 本発明の重合性液晶化合物に対して溶解性の高い有機溶剤および溶解性の低い溶剤は、使用可能な溶剤に限定はなく、公知の有機溶剤を用いることができる。また、有機溶剤を単独、および2種類以上混合して使用することもできる。
 溶解性の高い有機溶剤としては、エステル系溶剤、アミド系溶剤、エーテル系溶剤、芳香族炭化水素系溶剤、ハロゲン化芳香族炭化水素系溶剤、ハロゲン化脂肪族炭化水素系溶剤および脂環式炭化水素系溶剤、ケトン系溶剤、およびアセテート系溶剤を用いることができる。
 具体的には、エステル系溶剤として酢酸エチル、γ-ブチロラクトン、アミド系溶剤としてN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、エーテル系溶剤としてテトラヒドロフラン(THF)、芳香族炭化水素系溶剤としてトルエン、キシレン、ハロゲン化芳香族炭化水素系溶剤としてクロロベンゼン、ハロゲン化脂肪族炭化水素系溶剤としてクロロホルム、ジクロロメタン、 ケトン系溶剤としてアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、アセテート系溶剤としてエチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸メチル、および1-メトキシ-2-プロピルアセテートなどが好ましく、特に沸点が100℃以下となる溶剤が好ましく、酢酸エチル、トルエン、クロロホルム、ジクロロメタン、アセトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンが好ましい。
 溶解性の低い有機溶剤としては、アルコール系溶剤、脂肪族炭化水素系溶剤が好ましく、
 アルコール系溶剤の中では炭素数が少ないことが好ましく、具体的にはメタノール、エタノールが好ましく、脂肪族炭化水素系溶剤の中ではヘキサン、ヘプタンが好ましく、特に沸点が100℃以下となる溶剤が好ましい。
 重合性液晶化合物からなる粉体の粒子径をより制御するためには、溶剤の種類を選定することが好ましく、重合性液晶化合物を特にハロゲン化脂肪族炭化水素系溶剤、好ましくはクロロホルム、ジクロロメタンに溶解させた後、アルコール系溶剤、好ましくはメタノール、エタノール、または脂肪族炭化水素系溶剤、好ましくはヘキサン、ヘプタンを加えることが好ましい。
 析出した粒子は吸引ろ過あるいは遠心ろ過で分離することが好ましく、遠心ろ過が特に好ましく、分離した結晶は送風乾燥、オーブンにより溶剤を乾燥させることが好ましい。
 本発明に用いる正分散性重合性液晶化合物からなる粉体、及び、逆分散性重合性液晶化合物からなる粉体の粒子径、粒子径分布、嵩密度、及び結晶子の好ましい範囲は、上記本発明の粉体混合物として好ましい、粒子径、粒子径分布、嵩密度、及び結晶子の範囲がそれぞれ当てはまる。特に、本発明に用いる正分散性重合性液晶化合物からなる粉体の結晶子を、X線回折測定を用いて測定した場合に、5nm~500nm、より好ましくは10nm~300nm、さらに好ましくは15nm~200nm、特に好ましくは20nm~100nmの大きさの結晶子に制御することにより、溶剤への溶解性および加熱による溶解性に優れていて、なおかつ粉体混合物を扱う際に粉体が舞い上がりにくく取扱性に優れている他、容器への付着性が少なくなるため好ましい。粉体混合物の結晶子が上記よりも大きな場合、大きな結晶子が溶剤に溶解するまでの時間、および加熱によって溶解するまでの時間が長くなり、溶剤や加熱による溶解性が低下する。一方、粉体混合物の結晶子が上記よりも小さな場合、溶剤や加熱による溶解性は向上するが、粉体混合物を取り扱う際に粉体が舞い上がりやすく取扱性が低くなり、また帯電しやすく、わずかな隙間にも入り込みやすくなるために、容器への付着性が高く粉体混合物を取り出しにくくなる。
(添加剤)
 本発明に用いる粉体混合物には、当該粉体混合物を有機溶剤に溶解して得られる溶液組成物、又は、当該粉体混合物を加熱して得られるネマチック液晶組成物を均一に塗布するため、あるいは、各々の目的に応じて汎用の添加剤を使用することもできる。例えば、重合開始剤、重合禁止剤、酸化防止剤・光安定剤、レベリング剤、配向制御剤、連鎖移動剤、赤外線吸収剤、帯電防止剤、色素、フィラー、硬化剤、キラル化合物、チキソ剤、重合性基を有する非液晶性化合物、その他液晶化合物、配向材料等の添加剤を粉体混合物中の固体割合を著しく低下させない程度添加することができる。また、各添加剤は、本発明の粉体混合物を有機溶剤に溶解して溶液組成物を製造する際において、又は、本発明の粉体混合物を加熱してネマチック液晶組成物を製造する際に添加することも可能であり、添加剤が溶剤に対し不溶性である場合、有機溶剤やネマチック液晶組成物中に分散して存在していてもよい。なお、添加剤が液体状である場合、本発明の粉体混合物への配合量は、少量であるため、本発明の粉体混合物中に含まれる固体の含有割合には影響を及ぼさない。
 本発明の粉体混合物を用いた組成物を重合させることによって光学フィルムなどの光学異方体を得るためには、重合性官能基の反応を開始する重合開始剤を用いることが好ましく、保管、溶解、加熱などの作業により目的としない重合性液晶化合物の反応を抑制するためには、重合禁止剤を使用することが好ましい。
 本発明の粉体混合物を用いた組成物を重合させることによって得られた光学異方体が、酸素、光、熱から影響を受けて生じる劣化を防ぐためには、各種の安定剤を用いることが好ましい。得られる光学異方体の劣化の原因となるのは酸素、光、熱からの影響によって発生したラジカルや過酸化物である。したがって、得られる光学異方体の劣化を抑制するためには、ラジカルや過酸化物を捕捉する添加剤が好ましく、酸化防止剤、光安定剤、熱安定剤を用いることが好ましい。酸化防止剤、光安定剤、熱安定剤を単独で用いる他、複数の添加剤を用いることにより得られる光学異方体の劣化防止の効果を高められるために好ましい。
(重合開始剤)
(光重合開始剤)
 本発明の粉体混合物には光重合開始剤を含有することが好ましい。光重合開始剤は少なくとも1種類以上含有することが好ましい。具体的には、BASFジャパン株式会社製の「イルガキュア651」、「イルガキュア184」、「イルガキュア907」、「イルガキュア127」、「イルガキュア369」、「イルガキュア379」、「イルガキュア819」、「イルガキュア2959」、「イルガキュア1800」、「イルガキュア250」、「イルガキュア754」、「イルガキュア784」、「イルガキュアOXE01」、「イルガキュアOXE02」、「イルガキュアOXE04」「ルシリンTPO」、「ダロキュア1173」、「ダロキュアMBF」、「ダロキュア1116」やLamberti社製の「エサキュア1001M」、「エサキュアKIP150」、「エサキュアONE」、「エサキュアEPA」、「エサキュアA198」、「エサキュアKIP160」、「エサキュアA198」、「エサキュアKIP IT」、「エサキュアKTO46」、「エサキュアTZT」、LAMBSON社製の「スピードキュアBEM」、「スピードキュアBMS」、「スピードキュアMBP」、「スピードキュアPBZ」、「スピードキュアITX」、「スピードキュアDETX」、「スピードキュアEBD」、「スピードキュアMBB」、「スピードキュアBP」や日本化薬株式会社製の「カヤキュアDMBI」、「カヤキュアDETX」、「カヤキュアEPA」、日本シイベルヘグナー株式会社製(現DKSHジャパン株式会社)の「TAZ-A」、株式会社ADEKA製の「アデカオプトマーSP-152」、「アデカオプトマーSP-170」、「アデカオプトマーN-1414」、「アデカオプトマーN-1606」、「アデカオプトマーN-1717」、「アデカオプトマーN-1919」等が挙げられる。
 光重合開始剤の使用量は粉体混合物に対して0.1~10質量%が好ましく、0.5~7質量%が特に好ましい。これらは、単独で使用することもできるし、2種類以上の光重合開始剤を混合して使用することもでき、また、増感剤等を添加しても良い。
(熱重合開始剤)
 本発明の粉体混合物には、光重合開始剤とともに、熱重合開始剤を併用してもよい。具体的には、和光純薬工業株式会社製の「V-40」、「VF-096」、日本油脂株式会社(現日油株式会社)の「パーへキシルD」、「パーへキシルI」等が挙げられる。この他にも公知慣用のものが使用でき、例えば、メチルアセトアセテイトパーオキサイド、キュメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パ-オキシジカーボネイト、t-ブチルパーオキシベンゾエイト、メチルエチルケトンパーオキサイド、1,1-ビス(t-ヘキシルパ-オキシ)3,3,5-トリメチルシクロヘキサン、p-ペンタハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、ジクミルパーオキサイド、イソブチルパーオキサイド、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネイト、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾニトリル化合物、2,2’-アゾビス(2-メチル-N-フェニルプロピオン-アミヂン)ジハイドロクロライド等のアゾアミヂン化合物、2,2’アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}等のアゾアミド化合物、2,2’アゾビス(2,4,4-トリメチルペンタン)等のアルキルアゾ化合物等を使用することができる。
 熱重合開始剤の使用量は粉体混合物に対して0.1~10質量%が好ましく、0.5~5質量%が特に好ましい。これらは、単独で使用することもできるし、2種類以上の熱重合開始剤を混合して使用することもできる。
(重合禁止剤)
 本発明の粉体混合物には、必要に応じて重合禁止剤を含有することができる。用いる重合禁止剤としては、特に限定はなく、公知慣例のものが使用できる。また重合禁止剤は、単独あるいは2種類以上の重合禁止剤を使用することが好ましい。
 重合禁止剤を含有する方法は、粉体混合物に対して別途添加することも好ましく、また合成した重合性液晶化合物を精製する際に、重合性液晶化合物が溶解した溶液中に重合禁止剤を溶解させた状態で再結晶や再沈澱を行うことで、重合性液晶化合物からなる粉体中に含有させることが好ましく、より好ましくは、両方の方法により重合性官能基を含有させることが好ましい。 
 重合禁止剤としては、フェノール系化合物、キノン系化合物、アミン系化合物、チオエーテル系化合物、ニトロソ化合物を使用することが好ましく、例えば、p-メトキシフェノール(MEHQ)、クレゾール、t-ブチルカテコール、3.5-ジ-t-ブチル-4-ヒドロキシトルエン、2.2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2.2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、4.4'-チオビス(3-メチル-6-t-ブチルフェノール)、4-メトキシ-1-ナフトール、4,4’-ジアルコキシ-2,2’-ビ-1-ナフトール、等のフェノール系化合物、ヒドロキノン、メチルヒドロキノン、tert-ブチルヒドロキノン、p-ベンゾキノン、メチル-p-ベンゾキノン、tert-ブチル-p-ベンゾキノン、2,5-ジフェニルベンゾキノン、2-ヒドロキシ-1,4-ナフトキノン、1,4-ナフトキノン、2,3-ジクロロ-1,4-ナフトキノン、アントラキノン、ジフェノキノン、川崎化成工業のキノパワーQS-10、キノパワーQS-20、キノパワーQS-30、キノパワーQS-40、キノパワーQS-W10等のキノン系化合物、p-フェニレンジアミン、4-アミノジフェニルアミン、N.N'-ジフェニル-p-フェニレンジアミン、N-i-プロピル-N'-フェニル-p-フェニレンジアミン、N-(1.3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン、N.N'-ジ-2-ナフチル-p-フェニレンジアミン、ジフェニルアミン、N-フェニル-β-ナフチルアミン、4.4'-ジクミル-ジフェニルアミン、4.4'-ジオクチル-ジフェニルアミン、等のアミン系化合物、フェノチアジン、ジステアリルチオジプロピオネート、等のチオエーテル系化合物、N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、N-ニトロソジナフチルアミン、p-ニトロソフェノール、ニトロソベンゼン、p-ニトロソジフェニルアミン、α-ニトロソ-β-ナフトール等、N、N-ジメチルp-ニトロソアニリン、p-ニトロソジフェニルアミン、p-ニトロンジメチルアミン、p-ニトロン-N、N-ジエチルアミン、N-ニトロソエタノールアミン、N-ニトロソジ-n-ブチルアミン、N-ニトロソ-N -n-ブチル-4-ブタノールアミン、N-ニトロソ-ジイソプロパノールアミン、N-ニトロソ-N-エチル-4-ブタノールアミン、5-ニトロソ-8-ヒドロキシキノリン、N-ニトロソモルホリン、N-二トロソーN-フェニルヒドロキシルアミンアンモニウム塩、二トロソベンゼン、2,4.6-トリーtert-ブチルニトロンベンゼン、N-ニトロソ-N-メチル-p-トルエンスルホンアミド、N-ニトロソ-N-エチルウレタン、N-ニトロソ-N-n-プロピルウレタン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、1-ニトロソ-2-ナフトール-3,6-スルホン酸ナトリウム、2-ニトロソ-1-ナフトール-4-スルホン酸ナトリウム、2-ニトロソ-5-メチルアミノフェノール塩酸塩、2-ニトロソ-5-メチルアミノフェノール塩酸塩、等のニトロソ系化合物が挙げられる。
 重合禁止剤の添加量は、粉体混合物に含まれる重合性液晶性化合物に対し、10,000ppm以下が好ましく、7,000ppm以下が好ましく、5,000ppm以下であることが特に好ましい。
 合成した重合性液晶化合物を精製する際に、重合性液晶化合物が溶解した溶液中に重合禁止剤を溶解させた後に再結晶や再沈殿を行う場合は、再結晶や再沈殿により、重合性液晶化合物からなる粉体中に取り込まれるよりは、溶液中に重合禁止剤が不純物として多く残留するため、溶液中への重合性禁止剤の添加量は、重合性液晶化合物の粉体混合物に直接添加する場合と比較して多く重合禁止剤を添加することが好ましい。具体的には、溶液中に30,000ppm以下の重合禁止剤を添加した後に再結晶や再沈殿を行うことが好ましく、より好ましくは、20,000ppm以下の重合禁止剤を添加することが好ましく、10,000ppm以下の重合性禁止剤を添加することが特に好ましい。溶液中に重合禁止剤を溶解させた後に再結晶や再沈殿を行った後、重合性液晶化合物からなる粉体中に取り込まれた重合禁止剤の含有量は、3,000ppm以下であることが好ましく、2,000ppm以下であることが好ましく、特に1,000ppm以下であることが好ましい。
(酸化防止剤・光安定剤)
 本発明の粉体混合物には、必要に応じて酸化防止剤あるいは光安定剤をそれぞれ単独あるいは併用して含有することができる。
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤が好ましく、このほか重金属不活性化剤等が挙げられる。
 より具体的には、フェノール系酸化防止剤として、BASF株式会社製のペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート「IRGANOX1010」、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート「IRGANOX1035」、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート「IRGANOX1076」、「IRGANOX1098」、「IRGANOX1135」、「IRGANOX1330」、「IRGANOX1726」、「IRGANOX1424WL」、4,6-ビス(オクチルチオメチル)-o-クレゾール「IRGANOX1520L」、「IRGANOX245」、「IRGANOX259」、「IRGANOX3114」、「IRGANOX3790」、「IRGANOX5057」、「IRGANOX565」、「IRGAMOD295」、株式会社ADEKA製のアデカスタブ「AO-20」、「AO-30」、「AO-40」、「AO-50」、「AO-50F」、「AO-60」、「AO-60G」、「AO-80」、「AO-330」、住友化学株式会社製の「スミライザーBHT」、「スミライザーBBM-S」、「スミライザーGA-80」、「スミライザーMDP-S」、「スミライザーWX-R」、「スミライザーWX-RC」、などが挙げられる。アミン系酸化防止剤としては、BASF社製の、「IRGASTAB FS 301 FF」、「IRGASTAB FS 110」、「IRGASTAB FS 210 FF」、「IRGASTAB FS 410 FF」などが挙げられる。イオウ系酸化防止剤としては、住友化学株式会社製の、「スミライザーTP-D」、「スミライザー MB」などが挙げられる。リン系酸化防止剤としては、株式会社ADEKA製の、「PEP-36」、「PEP-36A」、「HP-10」、「2112」、「2112RG」、「PEP-8」、「PEP-8W」、「1178」、「1500」、「c」、「135A」、「3010」、「TPP」などが挙げられる。チオエーテル系酸化防止剤としては、株式会社ADEKA製の、「AO-412S」、「AO-503」などが挙げられる。また、金属不活性化剤としては、ヒドラジン系化合物、アミド系化合物が好ましく、具体的にはBASF株式会社製の「IRGANOX MD 1024」、株式会社ADEKA製の、「CDA-1」、「CDA-1M」、「CDA-6」、「CDA-10」などが挙げられる。
 光安定剤として、光を吸収するためには紫外線吸収剤が好ましく、ラジカルによる自動酸化の連鎖を防止するためには、アミン系光安定剤、フェノール系光安定剤が好ましく、過酸化物を分解するためにはイオウ系光安定剤、リン系安定剤、チオエーテル系光安定剤が好ましく、このほか重金属不活性化剤等が挙げられる。
 紫外線吸収剤としては、ベンゾトリアゾール系化合物、トリアジン系化合物、ベンゾフェノン系化合物、ベンゾエート系化合物が好ましい。ベンゾトリアゾール系化合物としては、BASF社製の、2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール「TINUVIN PS」、「TINUVIN 99-2」、「TINUVIN 384-2」、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール「TINUVIN 900」、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール「TINUVIN 928」、「TINUVIN 1130」、「TINUVIN 400」、「TINUVIN 405」、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン「TINUVIN 460」、「INUVIN 470」、「INUVIN 479」、「TINUVIN P」、「TINUVIN P FL」、「TINUVIN 234」、「TINUVIN 326」、「TINUVIN 326 FL」、「TINUVIN 329」、「TINUVIN 213」、「TINUVIN 571」、株式会社ADEKA製の、「アデカスタブLA-29」、「アデカスタブLA-31」、「アデカスタブLA-32RG」、「アデカスタブLA-32G」、「アデカスタブLA-32」、「アデカスタブLA-36」、などが挙げられる。トリアジン系化合物としては、BASF社製の、「TINUVIN 1577ED」、株式会社ADEKA製の、「アデカスタブLA-46」、「アデカスタブLA-F70」、などが挙げられる。ベンゾフェノン系化合物としては、BASF社製の、「CHIMASSORB 81」、「CHIMASSORB 81 FL」、株式会社ADEKA製の、「アデカスタブ1413」、などが挙げられる。ベンゾエート系化合物としては、BASF社製の、「TINUVIN 120」、などが挙げられる。アミン系光安定剤としては、ヒンダードアミン系光安定剤(HALS)が好ましく、具体的には、BASF社製の、「CHIMASSORB 2020 FDL」、「CHIMASSORB 944FDL」、「CHIMASSORB 622SF」、「TINUVIN PA144」、「TINUVIN 765」、「TINUVIN 770 DF」、「TINUVIN 111FDL」、「TINUVIN 783 FDL」、「TINUVIN 791 FB」、「TINUVIN 123」、「TINUVIN 144」、「TINUVIN 292」、「TINUVIN 5100」、「TINUVIN 5050」、「TINUVIN 5060」、「TINUVIN 5151」、株式会社ADEKA製の、「アデカスタブLA-52」、「アデカスタブLA-57」、「アデカスタブLA-63P」、「アデカスタブLA-68」、「アデカスタブLA-72」、「アデカスタブLA-77Y」、「アデカスタブLA-77G」、「アデカスタブLA-81」、「アデカスタブLA-82」、「アデカスタブLA-87」、「アデカスタブLA-402AF」、「アデカスタブLA-502XP」などが挙げられる。 酸化防止剤、及び/又は光安定剤の添加量は、粉体混合物に含まれる重合性液晶性化合物の総量に対し、0.01~2.0質量%であることが好ましく、0.01~1.0質量%が好ましく、0.05から1.0%であることがより好ましい。
(界面活性剤)
 本発明の粉体混合物は、必要に応じて界面活性剤を含有することができる。用いる界面活性剤は特に限定はないが、光学フィルム等の薄膜を形成する場合に、塗膜表面の表面張力を調整することによって膜厚ムラやハジキ、ピンホールを低減し、レベリング性、濡れ性、リコート性、消泡性を向上させることが好ましい。前記界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤、ノニオン系界面活性剤を挙げることができる。
 アニオン系界面活性剤としては、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、リン酸エステル誘導体、リン酸エステル型アミン中和物などが好ましく、具体的には、DIC株式会社製の「メガファックF-114」、「メガファックF-410」、「メガファックF-510」、「メガファックF-511」株式会社ネオス製の「フタージェント100」、「フタージェント100C」、「フタージェント110」、「フタージェント150」、「フタージェント150CH」などが挙げられる。
 カチオン系界面活性剤としてはアルキルアンモニウム塩、フルオロアルキルアンモニウム塩などが好ましく、具体的には、「フタージェント300」、「フタージェント310」、「フタージェント320」などが挙げられる。
両性界面活性剤としては、ベタイン誘導体などが好ましく、具体的には株式会社ネオス製の「フタージェント400SW」が挙げられる。
 ノニオン系界面活性剤としてはポリオキシエチレンエーテル誘導体、ポリオキシプロピレン誘導体、シロキサン誘導体、シロキサンコポリマー誘導体、アクリル系重合物、シリコーン変性アクリレート誘導体、ビニル系重合物、フッ素基含有オリゴマー、UV反応性基含有オリゴマーなどが好ましく、具体的には、株式会社ネオス製の「フタージェント212M」、「フタージェント222F」、「フタージェント208G」、「フタージェント240G」、「フタージェント220P」、「フタージェント228P」、「FTX-218」、「フタージェント710FM」、「フタージェント710FS」、「フタージェント601AD」、「フタージェント602A」、「フタージェント650A」、AGCセイミケミカル株式会社製の「サーフロンS-242」、「サーフロンS-243」、「サーフロンS-420」、「サーフロンS-611」、「サーフロンS-651」、「サーフロンS-386」、OMNOVA SOLUTIONS社製の「PF-636」、「PF-6320」、「PF-656」、「PF-6520」、「PF-652-NF」等、「PF-3320」、BYK株式会社製の「BYK-300」、「BYK-302」、「BYK-306」、「BYK-307」、「BYK-310」、「BYK-315」、「BYK-320」、「BYK-322」、「BYK-323」、「BYK-325」、「BYK-330」、「BYK-331」、「BYK-333」、「BYK-350」、「BYK-354」、「BYK-355」、「BYK-356」、「BYK-358N」、「BYK-361N」、「BYK-392」、「BYK-Silclean3700」、「BYK-UV3500」、「BYK-UV3510」、「BYK-UV3570」、楠本化成株式会社製の「DISPARLON 1930N」、「DISPARLON 1931」、「DISPARLON 1933」、「DISPARLON 1711EF」、「DISPARLON 1751N」、「DISPARLON LS-009」、「DISPARLON LS-001」、「DISPARLON LS-050」、「DISPARLON OX-880EF」、「DISPARLON OX-881」、「DISPARLON OX-883」、「DISPARLON OX-77EF」、「DISPARLON OX-710」、「DISPARLON 1970」、「DISPARLON 230」、「DISPARLON LF-1980」、「DISPARLON LF-1982」、「DISPARLON LF-1084」、「DISPARLON LHP-95」、「DISPARLON OX-715」、「DISPARLON 1922」、「DISPARLON 1958」、「DISPARLON P-410EF」、「DISPARLON P-420」、「DISPARLON P-425」、「DISPARLON PD-7」、「DISPARLON LHP-90」、「DISPARLON LHP-96」、DISPARLON LHP-91」共栄社化学株式会社製の「ポリフローKL-400X」、「ポリフローKL-401」、「ポリフローKL-403」、「フローレンAO-82」、「フローレンAO-98」、「フローレンAO-108」、「ポリフローNo.7」、「ポリフローNo.50E」、「ポリフローNo.54N」、「ポリフローNo.75」、「ポリフローNo.77」、「ポリフローNo.85」、「ポリフローNo.85HF」、「ポリフローNo.90D-50」、「ポリフローNo.95」、「ポリフローNo.99C」、「フローレンAC-530」、「フローレンAC-903」、フローレンAC-326F」、「フローレンAC-300」、「フローレンAC-324」エボニック・インダストリーズ株式会社製の「TEGO Twin4000」、「TEGO Twin4100」、「TEGO Wet270」、「TEGO Rad2100」、「TEGO Rad2011」、「TEGO Rad2200N」、「TEGO Rad2250」、「TEGO Rad2300」、「TEGO Rad2600」、「TEGO Rad2650」、「TEGO Flow 300」、「TEGO Flow ZFS460」、「TEGO Flow 425」、東レ・ダウコーニング社製の「L-7001」、「L-7002」、「8032ADDITIVE」、「57ADDTIVE」、「L-7064」、「FZ-2110」、「FZ-2105」、「67ADDTIVE」、「8616ADDTIVE」、ダイキン工業株式会社製の「ユニダインNS」、DIC株式会社製の「メガファックF-444」、「メガファックF-477」、「メガファックF-553」、「メガファックF-554」、「メガファックF-556」、「メガファックF-557」、「メガファックF-560」、「メガファックF-563」、「メガファックF-568」、「メガファックRS-75」、「メガファックRS-76-E」、「メガファックRS-76-NS」、「メガファックRS-90」、スリーエムジャパン株式会社製の「FC-4430」、「FC-4432」、等が挙げられる。 
 界面活性剤の添加量は、粉体混合物に含まれる重合性液晶化合物の総量に対し、0.01~2質量%であることが好ましく、0.05~0.5質量%であることがより好ましい。
 また、上記界面活性剤を使用することで、本発明の粉体混合物を用いた組成物を光学異方体とした場合、空気界面のチルト角を効果的に減じることができるものもある。
(配向制御剤)
 本発明に用いる粉体混合物は、液晶性化合物の配向状態を制御するために、配向制御剤を含有することができる。用いる配向制御剤としては、液晶性化合物が、基材に対して実質的に水平配向、実質的に垂直配向、実質的にハイブリッド配向するものが挙げられる。また、キラル化合物を添加した場合には実質的に平面配向するものが挙げられる。前述したように、界面活性剤によって、水平配向、平面配向が誘起される場合もあるが、各々の配向状態が誘起されるものであれば、特に限定はなく、公知慣用のものを使用することができる。
 そのような配向制御剤としては、例えば、光学異方体とした場合の空気界面のチルト角を効果的に減じる効果を持つ、下記一般式(9)で表される繰り返し単位を有する重量平均分子量が100以上1000000以下である化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000067
 (式中、R11、R12、R13及びR14はそれぞれ独立的に水素原子、ハロゲン原子又は炭素原子数1~20の炭化水素基を表し、該炭化水素基中の水素原子は1つ以上のハロゲン原子で置換されていても良い。)
 また、フルオロアルキル基で変性された棒状液晶性化合物、円盤状液晶性化合物、分岐構造を有してもよい長鎖脂肪族アルキル基を含有した重合性化合物、等も挙げられる。
 光学異方体とした場合の空気界面のチルト角を効果的に増加させる効果を持つものとしては、硝酸セルロース、酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、複素芳香族環塩変性された棒状液晶性化合物、シアノ基、シアノアルキル基で変性された棒状液晶性化合物、等が挙げられる。
(連鎖移動剤)
 本発明の粉体混合物は、重合体や光学異方体と基材との密着性をより向上させるため、連鎖移動剤を含有することができる。連鎖移動剤としては、芳香族炭化水素類、ハロゲン化炭化水素類、メルカプタン化合物(チオール化合物)、スルフィド化合物、アニリン化合物、アクロレイン誘導体などが挙げられる。
 具体的には、芳香族炭化水素類としてペンタフェニルエタン、α-メチルスチレンダイマー、ハロゲン化炭化水素類としてクロロホルム、四塩化炭素、四臭化炭素、ブロモトリクロロメタン、メルカプタン化合物(チオール化合物)としてオクチルメルカプタン、n―ブチルメルカプタン、n―ペンチルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメル、n―ドデシルメルカプタン、t-テトラデシルメルカプタン、t―ドデシルメルカプタン、ヘキサンジチオール、デカンジチオール、1,4-ブタンジオールビスチオプロピオネート、1,4-ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,4-ジメチルメルカプトベンゼン、2、4、6-トリメルカプト-s-トリアジン、2-(N,N-ジブチルアミノ)-4,6-ジメルカプト-s-トリアジン、スルフィド化合物としてジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、アニリン化合物としてN,N-ジメチルアニリン、N,N-ジビニルアニリン等が挙げられ、その他、アリルアルコール、α-テルピネン、γ-テルピネン、ジペンテン、ターピオネールを挙げることができ、2,4-ジフェニル-4-メチル-1-ペンテン、チオール化合物がより好ましい。
 また、下記一般式(10-1)~(10-12)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
 式中、R95は炭素原子数2~18のアルキル基を表し、該アルキル基は直鎖であっても分岐鎖であっても良く、該アルキル基中の1つ以上のメチレン基は酸素原子、及び硫黄原子が相互に直接結合しないものとして、酸素原子、硫黄原子、-CO-、-OCO-、-COO-、又は-CH=CH-で置換されていてもよく、R96は炭素原子数2~18のアルキレン基を表し、該アルキレン基中の1つ以上のメチレン基は酸素原子、及び硫黄原子が相互に直接結合しないものとして、酸素原子、硫黄原子、-CO-、-OCO-、-COO-、又は-CH=CH-で置換されていてもよい。
 連鎖移動剤の添加量は、粉体混合物に含まれる重合性液晶化合物の総量に対し、0.5~10質量%であることが好ましく、1.0~5.0質量%であることがより好ましい。
 更に物性調整のため、重合性基を有さない液晶性化合物や液晶性のない重合性化合物からなる粉体も必要に応じて添加することも可能である。これらの化合物の添加量は粉体混合物に対して、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更により好ましい。
(赤外線吸収剤)
 本発明の粉体混合物には、必要に応じて赤外線吸収剤を含有することができる。用いる赤外線吸収剤は、特に限定はなく、配向性を乱さない範囲で公知慣用のものを含有することができる。
 前記赤外線吸収剤としては、シアニン化合物、フタロシアニン化合物、ナフトキノン化合物、ジチオール化合物、ジインモニウム化合物、アゾ化合物、アルミニウム塩等が挙げられる。具体的には、ナガセケムテック株式会社製、ジインモニウム塩タイプの「NIR-IM1」、アルミニウム塩タイプの「NIR-AM1」、昭和電工株式会社製の「カレンズIR-T」、「カレンズIR-13F」、山本化成株式会社製の「YKR-2200」、「YKR-2100」、INDECO株式会社の「IRA908」、「IRA931」、「IRA955」、「IRA1034」等が挙げられる。
(帯電防止剤)
 本発明の粉体混合物には、必要に応じて帯電防止剤を含有することができる。用いる帯電防止剤は、特に限定はなく、配向性を乱さない範囲で公知慣用のものを含有することができる。そのような帯電防止剤としては、スルホン酸塩基またはリン酸塩基を分子内に少なくとも1種類以上有する高分子化合物、4級アンモニウム塩を有する化合物、重合性基を有する界面活性剤等が挙げられる。中でも重合性基を有するアニオン系またはノニオン系の界面活性剤が好ましい。具体的には、重合性基を有する界面活性剤の内、アニオン系のものとして、日本乳化剤株式会社製の「アントックスSAD」、「アントックスMS-2N」、第一工業製薬株式会社製の「アクアロンKH-05」、「アクアロンKH-10」、「アクアロンKH-20」、「アクアロンKH-0530」、「アクアロンKH-1025」、株式会社ADEKA製の「アデカリアソープSR-10N」、「アデカリアソープSR-20N」、花王株式会社製の「ラテムルPD-104」等のアルキルエーテル系、「ラテムルS-120」、「ラテムルS-120A」、「ラテムルS-180P」、「ラテムルS-180A」、三洋化成株式会社製の「エレミノールJS-2」等のスルフォコハク酸エステル系、第一工業製薬株式会社製の「アクアロンH-2855A」、「アクアロンH-3855B」、「アクアロンH-3855C」、「アクアロンH-3856」、「アクアロンHS-05」、「アクアロンHS-10」、「アクアロンHS-20」、「アクアロンHS-30」、「アクアロンHS-1025」、「アクアロンBC-05」、「アクアロンBC-10」、「アクアロンBC-20」、「アクアロンBC-1025」、「アクアロンBC-2020」、株式会社ADEKA製の「アデカリアソープSDX-222」、「アデカリアソープSDX-223」、「アデカリアソープSDX-232」、「アデカリアソープSDX-233」、「アデカリアソープSDX-259」、「アデカリアソープSE-10N」、「アデカリアソープSE-20N」等のアルキルフェニルエーテルあるいはアルキルフェニルエステル系、日本乳化剤株式会社製の「アントックスMS-60」、「アントックスMS-2N」、三洋化成株式会社製の「エレミノールRS-30」等の(メタ)アクリレート硫酸エステル系、第一工業製薬株式会社製の「H-3330P」、株式会社ADEKA製の「アデカリアソープPP-70」等のリン酸エステル系が挙げられる。
 重合性基を有する界面活性剤の内、ノニオン系のものとして、例えば、日本乳化剤株式会社製の「アントックスLMA-20」、「アントックスLMA-27」、「アントックスEMH-20」、「アントックスLMH-20、「アントックスSMH-20」、株式会社ADEKA製の「アデカリアソープER-10」、「アデカリアソープER-20」、「アデカリアソープER-30」、「アデカリアソープER-40」、花王株式会社製の「ラテムルPD-420」、「ラテムルPD-430」、「ラテムルPD-450」等のアルキルエーテル系、第一工業製薬株式会社製の「アクアロンRN-10」、「アクアロンRN-20」、「アクアロンRN-30」、「アクアロンRN-50」、「アクアロンRN-2025」、株式会社ADEKA製の「アデカリアソープNE-10」、「アデカリアソープNE-20」、「アデカリアソープNE-30」、「アデカリアソープNE-40」等のアルキルフェニルエーテル系もしくはアルキルフェニルエステル系、日本乳化剤株式会社製の「RMA-564」、「RMA-568」、「RMA-1114」、3M社製の「フルオラッドFC171」、「フルオラッドFC4430」、「フルオラッドFC4432」等の(メタ)アクリレート硫酸エステル系などが挙げられる。
 その他の帯電防止剤としては、例えば、ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレート、n-ブトキシポリエチレングリコール(メタ)アクリレート、n-ペンタキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシポリプロピレングリコール(メタ)アクリレート、n-ブトキシポリプロピレングリコール(メタ)アクリレート、n-ペンタキシポリプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート、メトキシポリテトラメチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ヘキサエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレート等が挙げられる。
 前記帯電防止剤は、1種類のみで使用することも2種類以上組み合わせて使用することもできる。前記帯電防止剤の添加量は、粉体混合物に含まれる重合性液晶化合物の総量に対し、0.001~10重量%が好ましく、0.01~5重量%がより好ましい。
(色素)
 本発明の粉体混合物には、必要に応じて色素を含有することができる。用いる色素は、特に限定はなく、配向性を乱さない範囲で公知慣用のものを含有することができる。
 前記色素としては、例えば、2色性色素、蛍光色素等が挙げられる。そのような色素としては、例えば、ポリアゾ色素、アントラキノン色素、シアニン色素、フタロシアニン色素、ペリレン色素、ペリノン色素、スクアリリウム色素等が挙げられるが、添加する観点から、前記色素は液晶性を示す色素が好ましい。例えば、米国特許第2,400,877号公報、DreyerJ. F., Phys. and Colloid Chem., 1948, 52, 808., "The Fixing of MolecularOrientation"、Dreyer J. F., Journal de Physique, 1969, 4, 114., "LightPolarization from Films of Lyotropic Nematic Liquid Crystals"、及び、J.Lydon, "Chromonics" in "Handbook of Liquid Crystals Vol.2B: Low MolecularWeight Liquid Crystals II", D. Demus,J. Goodby, G. W. Gray, H. W. Spiessm,V. Vill ed, Willey-VCH, P.981-1007(1998) 、Dichroic Dyes for Liquid Crystal Display A.V.lvashchenko
CRC Press、1994年、および「機能性色素市場の新展開」、第一章、1頁、1994年、CMC株式会社発光、等に記載の色素を使用することができる。
 2色性色素としては、例えば、以下の式(d-1)~式(d-8)
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
が挙げられる。前記2色性色素等の色素の添加量は、粉体混合物に含まれる重合性液晶化合物の総量の総量に対し、0.001~10重量%が好ましく、0.01~5重量%がより好ましい。
(フィラー)
 本発明の粉体混合物には、必要に応じてフィラーを含有することができる。用いるフィラーは、特に限定はなく、得られた重合物の熱伝導性が低下しない範囲で公知慣用のものを含有することができる。具体的には、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレイ、マイカ、チタン酸バリウム、酸化亜鉛、ガラス繊維等の無機質充填材、銀粉、銅粉などの金属粉末や窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化ガリウム、炭化ケイ素、マグネシア(酸化アルミニウム)、アルミナ(酸化アルミニウム)、結晶性シリカ(酸化ケイ素)、溶融シリカ(酸化ケイ素)等などの熱伝導性フィラー、銀ナノ粒子等が挙げられる。
(硬化剤)
 本発明における粉体混合物は、硬化剤を併用してもよい。具体的には、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族ポリアミン、ADEKA社製のEH-235R-2等や、三菱化学社製のjERキュアH3、H30等のケチミン化合物などが挙げられる。
 上記硬化剤の使用量は粉体混合物に対して0.01~20質量%が好ましく、0.05~15質量%がより好ましく、0.1~10質量%が特に好ましい。これらは、単独で使用することもできるし、2種類以上混合して使用することもできる。
(キラル化合物)
 本発明の粉体混合物には、重合性キラル化合物からなる粉体を含有することもできる。
 本発明に使用する重合性キラル化合物としては、重合性官能基を1つ以上有することが好ましい。このような化合物としては、例えば、特開平11-193287号公報、特開2001-158788号公報、特表2006-52669号公報、特開2007-269639号公報、特開2007-269640号公報、2009-84178号公報等に記載されているような、イソソルビド、イソマンニット、グルコシド等のキラルな糖類を含み、かつ、1,4-フェニレン基1,4-シクロヘキレン基等の剛直な部位と、ビニル基、アクリロイル基、(メタ)アクリロイル基、また、マレイミド基といった重合性官能基を有する重合性キラル化合物、特開平8-239666号公報に記載されているような、テルペノイド誘導体からなる重合性キラル化合物、NATURE VOL35 467~469ページ(1995年11月30日発行)、NATURE VOL392 476~479ページ(1998年4月2日発行)等に記載されているような、メソゲン基とキラル部位を有するスペーサーからなる重合性キラル化合物、あるいは特表2004-504285号公報、特開2007-248945号公報に記載されているような、ビナフチル基を含む重合性キラル化合物が挙げられる。中でも、らせんねじれ力(HTP)の大きなキラル化合物が好ましい。
 重合性キラル化合物の配合量は、化合物の螺旋誘起力によって適宜調整することが必要であるが、重合性液晶組成物の内、0~25質量%含有することが好ましく、0~20質量%含有することがより好ましく、0~15質量%含有することが特に好ましい。
 重合性キラル化合物の一般式の一例として、一般式(13-1)~(13-4)を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000072
 式中、Sp3a、及び、Sp3bはそれぞれ独立して炭素原子数0~18のアルキレン基を表し、該アルキレン基は1つ以上のハロゲン原子、CN基、又は重合性官能基を有する炭素原子数1~8のアルキル基により置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良く、
 上記一般式(13-1)~(13-4)中、A1、A2、A3、A4、及びA5はそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、n、l及びkはそれぞれ独立して、0又は1を表し、0≦n+l+k≦3となり、
 上記一般式(13-1)~(13-4)中、Z0、Z1、Z2、Z3、Z4、Z5、及び、Z6はそれぞれ独立して、-COO-、-OCO-、-CH2 CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-CONH-、-NHCO-、炭素数2~10のハロゲン原子を有してもよいアルキル基又は単結合を表し、
n5、及び、m5はそれぞれ独立して0又は1を表し、
3a及びR3bは、水素原子、ハロゲン原子、シアノ基又は炭素原子数1~18のアルキル基を表すが、該アルキル基は1つ以上のハロゲン原子又はCNにより置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良く、
あるいはR3a及びR3bは一般式(13-a)
Figure JPOXMLDOC01-appb-C000073
(式中、P3aは重合性官能基を表し、Sp3aはSpと同じ意味を表す。)
 P3aは、下記の式(P-1)から式(P-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000074
 これらの重合性官能基のうち、重合性および保存安定性を高める観点から、式(P-1)又は式(P-2)、(P-7)、(P-12)、(P-13)が好ましく、式(P-1)、(P-7)、(P-12)がより好ましい。
 重合性キラル化合物の具体的例としては、化合物(13-5)~(13-26)の化合物を挙げることができるが、下記の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
 式中、m、n、k、lはそれぞれ独立して1~18の整数を表し、R~Rはそれぞれ独立して水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、カルボキシ基、シアノ基を示す。これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。
(添加剤の混合方法)
 本発明の粉体混合物には、上記各種添加剤からなる粉体を混合することができ、粉体混合物中に含まれる各添加剤からなる粉体の混合割合はそれぞれ上記の範囲が好ましいが、本発明の粉体混合物を有機溶剤に溶解して溶液組成物を製造する際において添加剤を添加する場合、又は、本発明の粉体混合物を加熱してネマチック液晶組成物を製造する際に添加剤を添加する場合は、各添加剤からなる粉体の混合割合は上記の範囲に限定されない。また、添加剤が液状添加剤である場合、本発明の粉体混合物を有機溶剤に溶解して溶液組成物を製造する際に添加するか、又は、本発明の粉体混合物を加熱してネマチック液晶組成物を製造する際に添加することが好ましいが、上述のとおり、粉体混合物中に特定の体積以上の固体が残される場合、少量の液状添加剤を加えることは可能である。
(粉体混合物の調製方法)
(攪拌しないで調製された粉体混合物)
 本発明の粉体混合物は、上記の大気圧下30℃以下において固体である、1つ以上の重合性官能基を有する重合性液晶化合物を1種以上含有し、任意に上記の各種添加剤を混合して得ることができる。得られる粉体混合物は、粉体を攪拌して均質化することは必須条件ではなく、各粉体を順次容器に充填して粉体混合物を得ることができるが、粉体混合物を別の容器に移して使用する場合、少量の添加剤が容器の壁に付着して移し替えできないことを防ぐため、添加剤は粉体混合物の中に混合されていることが好ましく、より好ましくは容積の5vol%以上95vol%以下まで重合性液晶化合物を添加した後に、添加することが好ましい。容器に本発明の粉体混合物を充填した後、輸送、保管に際して容器が回転、傾斜するなどの動きによる攪拌動作が生じても特に問題はない。
(攪拌して調製された粉体混合物)
 本発明の粉体混合物は、粉体を攪拌して各粉体を均質化することができる。攪拌を行うためには、混合機を使用することができる。使用できる混合機としては、容器回転式、機械攪拌式、流動攪拌式、無攪拌式、高速せん断・衝撃式等が例示できる。
 容器回転式としては、V型、二重円錐(コニカル型)、円筒型などの各種容器を、回転軸や外部の駆動装置により回転する方式で、容器内の粉体は、その回転の作用により対流、攪拌され、対流混合が支配的になっている型式が好ましい。なお、回転容器内に攪拌羽根を装備したものがあるが、これらは、攪拌羽根付き容器回転式混合機であり、容器回転式に分類される。攪拌羽根付き容器回転式混合機は、攪拌羽根がついていない容器回転式混合機よりも攪拌効率が高くなるため、混合機として好ましい。容器回転方式では、回転速度を高速にするほど混合速度が増加するので好ましいが、重力よりも遠心力が小さくなる回転速度が攪拌効率を高めるためにより好ましい。遠心力により回転容器内で粉体が内壁に張り付き移動しなくなる速度は臨界回転速度と呼ばれ、臨界回転速度の60~90%の回転速度が好ましく、50~80%がより好ましい。容器回転式による攪拌は、その他の機械攪拌式、流動攪拌式、無攪拌式、高速せん断・衝撃式に比べて、粒子に加わる力が弱く、粒子の変形や変質、摩擦熱による変質などが発生させたくない場合に使用することが好ましい。
 容器回転式混合機の形状として円筒型を用いる場合は、円筒長軸方向を軸として回転すると同時に、円筒長軸が上下に傾く揺動することが攪拌効率を高めるために好ましい。回転と揺動に加え、さらに円筒の内部で攪拌羽根が独立して回転して粉体を攪拌することが攪拌効率を高める上で最も好ましい。
 機械攪拌式は、混合容器は固定され、容器内に装着したパドル、リボン、スクリューなどの形状の攪拌羽根の回転により、容器内の粉体を攪拌、分散する型式であり、粉体にかかる力が比較的強い装置群に分類することができ、機械攪拌式のリボンミキサーやパドルミキサー、高速攪拌羽根を装備した容器回転式などの装置が好ましい。付着性、凝集性が強い粉体であっても分散が行えるため、凝集塊を発生しやすいものの分散混合に適している。
 流動攪拌式は、混合容器は固定され、容器の下部より流動空気や旋回流、ジェット流などの空気流を流すことで、粉体を流動化、噴流化させて対流、拡散を行う型式である。該流動攪拌式は、粉体にかかる力が強い装置群で、粉体を構成する粒子にせん断、圧縮、摩砕作用を与えている。高速回転パン型、高速回転楕円ローター型、高速回転衝撃型などの装置が該当する。
 無攪拌式は、混合装置自体が固定され、重力で粉体が装置内部を通過するときに分散、攪拌される型式である。
 高速せん断・衝撃式は、機械攪拌式よりも高速で回転する回転パン、楕円ローターや衝撃翼により微粉体が分散される方式で、粉体に非常に強いせん断力と摩擦を与える方式である。
 各種混合機にはその型式に応じた最適な仕込み率が定められている。仕込み率とは、装置の全有効容積に対する粉体の投入容積の比率として定義される。容器回転式混合機の場合、最大仕込み率は60vol%、50vol%が好ましく、より好ましくは45vol%、40vol%、30vol%程度が好ましく、機械攪拌式は80vol%、85%が好ましく、より好ましくは70vol%、65vol%、60vol%程度が好ましい。
 攪拌に際しては、投入位置と投入順序に細心の注意を払うことが好ましく、微量成分が微粉末である場合、微粉末が凝集塊として存在しないように、凝集塊を分散させる機構をもった装置を選定する、あるいは、事前に微粉末の凝集塊を解砕させた後に混合することが好ましい。
 容器に含まれる粉体を母集合とすると、サンプリングは母集合の各成分比率を統計的に反映したものであることが好ましいが、現実の各成分比率を確認する際には、必ずしも厳密に統計的な代表を必須とするものではなく、誤差を含んでいてもよい。サンプリングの方法は、堆積した粉体混合物、容器に充填された粉体の場合は、回転分割機、二分割器、あるいは円錐四分法、任意の抜き取りなどの手法を用いることができ、コンベアーなどで粉体搬送されて粉体が流動している場合は、流動している粉体にスコップなどの容器を入れてサンプリングすることができる。
 混合比率を確認する分析手法としては、液体クロマトグラフィー、ガスクロマトグラフィー、ゲル浸透クロマトグラフィー、液体クロマトグラフ質量分析、ガスクロマトグラフ質量分析、NMR、IR、遠心分離、沈降分離などの分析手法により確認することができる。特に液体クロマトグラフィー、ガスクロマトグラフィー、ゲル浸透クロマトグラフィー、液体クロマトグラフ質量分析、ガスクロマトグラフ質量分析で確認することが好ましい。
(容器)
 本発明の粉体混合物を保存する容器としては、ガラス、プラスチック、金属、合金、複合素材など、公知の容器を利用することができるが、遮光性を有する容器が好ましく、ガラスの場合は茶褐色あるいは外装により遮光されていることが好ましく、プラスチックの場合は不透明であることが好ましい。容器の形状は公知のものを利用することができ、18リッター以上400リッター以下の円筒形容器、いわゆるドラム缶、18リッター以上200リッター未満の容器を中小型缶、取っ手(つるあるいは手環)の付いた18リッター、20リッターの容器、すなわちペール缶、その他、一斗缶、スクリュー缶・管、箱型容器、ボトルなどが利用できる。粉体混合物の流出、湿度、外気、風雨などの侵入を防ぐために、容器は密閉される構造が好ましく、スクリュー、バンド、ねじ締め、ボルトなどにより密閉されることが好ましく、内蓋を有することがより好ましく、内蓋には内容物が漏れるのを防ぐためにパッキンを有することが好ましい。容器の内装は、施されていても施されていなくてもよく、施す場合には、化成処理、電解処理、酸化処理などが好ましく、化成処理を施す場合は、リン酸亜鉛処理とリン酸鉄処理が好ましく、耐薬品性の効果を一層高めるためには内面を合成樹脂塗料により塗装焼き付けすることが好ましく、合成樹脂塗料としては、エポキシ系、フェノール系が好ましい。
 耐衝撃性を高めるためには、ガラスよりも、プラスチック、金属、合金、複合素材であることが好ましく、金属、合金の場合、比重(20~25℃、1気圧)は10g/cm以下であることが好ましく、軽量性を高めるためには比重の低い材料が好ましく、9.0g/cm以下が好ましく、3.0g/cm以下が特に好ましい。
 材質がステンレスの場合、オーステナイト系ステンレス鋼材、フェライト系ステンレス鋼材、二相(オーステナイト・フェライト)系ステンレス鋼材、マルテンサイト系ステンレス鋼材、析出硬化系ステンレス鋼材などが好ましい。
 各種の材料中でもアルミニウムは、耐食性に優れ 周辺汚染が少なく、加工性に優れ、耐衝撃性があり、外力による変形に強い、比重が3.0g/cm以下と低いなどの理由により、特に優れた材料であるので粉体混合物の容器として特に好ましい。アルミニウム純度は95%以上が好ましく、99%以上がより好ましく、99.5%以上のものを使用することが特に好ましい。例えば、Tournaire社製のものを使用することが好ましい。
 容器中の雰囲気は、酸素が存在することが好ましく、窒素、アルゴンなどの不活性ガスを充填することは好ましくない。酸素濃度は容器中に存在する気体の体積比で1%~40%が好ましく、5%~35%、10%~30%が好ましく、15%~25%がさらに好ましく、20%~22%が特に好ましい。
(輸送条件)
 本発明の粉体混合物を輸送する際は、粉体各成分の融点よりも低い温度で輸送することが好ましい。好ましくは、輸送中に粉体混合物に加わる上限の温度は、粉体混合物中に含まれる、重合性液晶化合物のうち融点が一番低い成分の融点に対して、融点マイナス2℃、3℃、5℃を越えない温度で輸送されることが好ましく、10℃を越えない温度で輸送されることがより好ましい。輸送中の容器周辺の最高温度は、好ましくは50℃、45℃以下であることが好ましく、より好ましくは40℃、35℃以下、30℃以下であること粉体形状を維持するために好ましく、最高気温は3時間、2時間、1時間以内に収まることが粉体形状の変化を最小限にとどめるために好ましい。最低温度に制限はなく、摂氏マイナスの温度になってもよい。輸送中の温度変化を確認したい場合には、データーロガーなど、温度センサーと記録媒体を有する小型の装置、例えば、株式会社ティアンドデイの「おんどとり」(各品番を含む)を用いて確認することができる。
(保管条件)
 本発明の粉体混合物を保管する条件は、粉体混合物が粉体を維持する温度以下とすることが好ましい。特に、直射日光を避け、屋内に保管することが温度変化を最小限にとどめられるために好ましく、温湿度は、40℃以下の温度、湿度80%以下が好ましく、35℃以下の温度、湿度70%以下が好ましく、30℃以下の温度、湿度65%以下で保管することが特に好ましい。
(粉体混合物を用いて溶液組成物を調製する方法)
 本発明の粉体混合物を用いて溶液組成物を調製する方法は、本発明の粉体混合物を任意の溶剤に溶解させることで得られる。使用可能な溶剤に限定はなく、公知の有機溶剤を用いることができる。また、有機溶剤を単独、および2種類以上混合して使用することもできる。
 溶剤として、エステル系溶剤、アミド系溶剤、アルコール系溶剤、エーテル系溶剤、グリコールモノアルキルエーテル系溶剤、芳香族炭化水素系溶剤、ハロゲン化芳香族炭化水素系溶剤、脂肪族炭化水素系溶剤、ハロゲン化脂肪族炭化水素系溶剤および脂環式炭化水素系溶剤、ケトン系溶剤、およびアセテート系溶剤を用いることができる。
 エステル系溶剤としては酢酸アルキル、トリフルオロ酢酸エチル、乳酸アルキル、およびγ-ブチロラクトンが好ましい。
 具体的には、酢酸アルキルとして酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸3-メトキシブチル、アセト酢酸メチル、乳酸アルキルとして、乳酸メチル、乳酸エチル、乳酸n-プロピル等を挙げることができる。
 アミド系溶剤としては、具体的には、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等が挙げられる。
 アルコール系溶剤としては、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-メトキシ-2-プロパノール、n-ブタノール等が挙げられる。
 エーテル系溶剤としては、具体的には、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、1,4-ジオキサンおよびテトラヒドロフラン(THF)等が挙げられる。
 グリコールモノアルキルエーテル系溶剤としては、エチレングリコールモノアルキルエーテル、ジエチレングリコールモノアルキルエーテル、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ジプロピレングリコールモノアルキルエーテル、エチレングリコールモノアルキルエーテルアセテート、ジエチレングリコールモノアルキルエーテルアセテート、トリエチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート、ジプロピレングリコールモノアルキルエーテルアセテート、およびジエチレングリコールメチルエチルエーテルが好ましい。
 具体的には、エチレングリコールモノアルキルエーテルとしてエチレングリコールモノメチルエーテルおよびエチレングリコールモノブチルエーテル、プロピレングリコールモノアルキルエーテルとしてプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノアルキルエーテルとしてジプロピレングリコールモノメチルエーテル、エチレングリコールモノアルキルエーテルアセテートとしてエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノアルキルエーテルアセテートとしてトリエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテートとしてプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノアルキルエーテルアセテートとしてジプロピレングリコールモノメチルエーテルアセテート、およびジエチレングリコールメチルエチルエーテル等が挙げられる。
 芳香族炭化水素系溶剤としては、具体的には、ベンゼン、トルエン、キシレン、アニソール、メシチレン、エチルベンゼン、n-プロピルベンゼン、n-ブチルベンゼン、およびテトラリン等が上げられる。ハロゲン化芳香族炭化水素系溶剤としては、具体的にははクロロベンゼンが挙げられる。脂肪族炭化水素系溶剤としては、具体的には、ヘキサンおよびヘプタンが挙げられる。ハロゲン化脂肪族炭化水素系溶剤としては、具体的にはクロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、トリクロロエチレンおよびテトラクロロエチレン等が挙げられる。る脂環式炭化水素系溶剤としては、具体的にはシクロヘキサンおよびデカリン等が挙げられる。
 ケトン系溶剤としては、具体的にはアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、およびメチルプロピルケトン等が挙げられる。
(粉体混合物を用いてネマチック液晶性組成物を調製する方法)
 本発明の粉体混合物を用いてネマチック液晶組成物を調製するためには、本発明の粉体混合物を構成する粒子をネマチック液晶相となる温度まで加熱する方法、等方性液体になる温度(クリアリングポイント)まで加熱した後にネマチック液晶になるまで冷却する方法が挙げられる。より均一な組成物を得るためには、等方性液体になるまで加熱した後にネマチック液晶になる温度まで冷却することが好ましく、等方性液体の状態で振とうあるいは攪拌することが好ましい。攪拌する際は、攪拌翼を使用することが好ましい。等方性液体から冷却して得られるネマチック液晶は、モノトロピックでもエナンチオトロピックでも、どちらの過程において発現してもよい。
(硬化物)
 本発明の粉体混合物を加熱して作製したネマチック液晶組成物、あるいは本発明の粉体混合物を有機溶剤に溶解させて作製した溶液組成物を用いて硬化物を作製することができる。硬化物は、次の2つの製造方法によって得ることができる。溶液組成物を基材に塗布、有機溶剤を乾燥後、活性エネルギー線を照射して得られる硬化物。ネマチック液晶組成物に活性エネルギー線を照射して得られる硬化物。硬化物は光学的な異方性を有していてもいなくてもよく、異方性をもつ部分がパターン化されていてもよく、異方性を有している部分と異方性を有していない部分が含まれていてもよく、硬化物の形状はフィルム、ブロック、鋳型などにより任意の形状となっていてもよく、硬化物は積層されていてもよい。
(光学異方体)
 本発明の粉体混合物を加熱して作製したネマチック液晶組成物、あるいは本発明の粉体混合物を溶液に溶解させて作製した溶液組成物(以下、これら2つの組成物を、重合性液晶組成物、という)を用いて光学異方性体を作製することができる。光学異方体は、次の2つの製造方法によって得ることができる。溶液組成物を基材に塗布、有機溶剤を乾燥後、活性エネルギー線を照射して得られる光学異方体。ネマチック液晶組成物に活性エネルギー線を照射して得られる光学異方体。光学異方体は、光学素子、レンチキュラレンズ、ピックアップレンズ、光学フィルム、輝度向上フィルム、反射防止膜、偏光フィルムとして使用することができる。光学異方体は、基材、必要に応じて配向膜、及び、重合性液晶組成物の重合体を順次積層したものである。これらの積層は、繰り返し行うことにより2層、3層構造となってもよく、光学異方体は基材の間に存在していてもよく、あるいはインセル方式のディスプレイとして利用するために、光学異方体の上にカラーフィルター、ITOなどの透明電極が積層されていてもよい。
(位相差膜)
 本発明の粉体混合物を使用した重合性液晶組成物を用いて得られる光学フィルムとしては、位相差フィルム、光学補償フィルムと同等の機能を有する材料などに利用することができる。具体的には、重合性液晶組成物中の重合性液晶化合物の分子長軸が基板に対して水平に配向した状態で重合した場合は、得られた硬化物は、ポジティブAプレートの位相差膜として使用することができる。重合性液晶化合物の分子長軸が基板に対して垂直に配向した状態で重合した場合は、得られた硬化物は、ポジティブCプレートの位相差膜として使用することができる。重合性液晶化合物、及び、重合性キラル化合物が螺旋を形成し、螺旋軸が基板に対して垂直となる状態で重合した場合は、得られた硬化物は、ネガティブCプレートの位相差膜として使用することができる。この他、重合性液晶化合物の分子長が基板に対して一定の角度で傾いた状態(傾斜配向)で重合は、得られた硬化物は、Oプレートの位相差膜として使用することができる。基板に対して界面付近では基板に垂直となり、空気界面に近くなるほど分子長軸が基板に対して垂直となる状態(ハイブリッド配向)で重合することもできる。また、レンチキュラレンズの形状で重合した位相差膜を得ることができる。また、基材が位相差を有する場合には、基材の有する複屈折性、及び、位相差膜の複屈折性を加算した複屈折性を有する位相差膜が得られる。前記位相差膜は、基材の有する複屈折性と位相差膜の有する複屈折性が基材の面内で同じ方向の場合もあれば、異なる方向の場合もある。液晶デバイス、ディスプレイ、光学素子、光学部品、着色剤、セキュリティ用マーキング、レーザー発光用部材、光学フィルム、及び、補償フィルム等の用途に応じて、用途に適した形で適用される。
(位相差パターニング膜)
 位相差パターニング膜は、光学異方体同様に、基材、配向膜、及び、重合性液晶組成物の重合体を順次積層したものであるが、重合工程において、部分的に異なる位相差が得られるようにパターニングされたものである。パターニングは、線状のパターニング、格子状のパターニング、円状のパターニング、多角形状のパターニング等のパターンをあげることができ、それぞれのパターンの部分で配向方向が異なる場合もある。液晶デバイス、ディスプレイ、光学素子、光学部品、着色剤、セキュリティ用マーキング、レーザー発光用部材、光学フィルム、及び、補償フィルム等の用途に応じて、適用される。
 部分的に異なる配向となる位相差パターニング膜を得る方法としては、基材に配向膜を設け、配向処理する際に本発明の重合性液晶組成物を塗布乾燥した際に重合性液晶組成物がパターニング配向するように処理する。そのような配向処理は、微細ラビング処理、フォトマスクを介しての偏光紫外可視光照射処理、微細形状加工処理等が挙げられる。配向膜は、公知慣用のものが用いられる。そのような配向膜としては、ポリイミド、ポリシロキサン、ポリアミド、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリフェニレンエーテル、ポリアリレート、ポリエチレンテレフタレート、ポリエーテルサルホン、エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、クマリン化合物、カルコン化合物、シンナメート化合物、フルギド化合物、アントラキノン化合物、アゾ化合物、アリールエテン化合物等の化合物が挙げられる。微細ラビングにより配向処理する化合物は、配向処理、もしくは配向処理の後に加熱工程を入れることで材料の結晶化が促進されるものが好ましい。ラビング以外の配向処理を行う化合物の中では光配向材料を用いることが好ましい。
(基材)
 光学異方体に用いられる基材は、液晶デバイス、ディスプレイ、光学部品や光学フィルムに通常使用する基材であって、重合性液晶組成物の塗布後の乾燥時における加熱に耐えうる耐熱性を有する材料であれば、特に制限はない。そのような基材としては、ガラス基材、金属基材、紙、セラミックス基材やプラスチック基材等の有機材料が挙げられる。特に基材が有機材料の場合、セルロース誘導体、ポリオレフィン、ポリエステル、ポリカーボネート、ポリアクリレート(アクリル樹脂)、ポリアリレート、ポリエーテルサルホン、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンエーテル、ナイロン又はポリスチレン等が挙げられる。中でもポリエステル、ポリスチレン、ポリアクリレート、ポリオレフィン、セルロース誘導体、ポリアリレート、ポリカーボネート等のプラスチック基材が好ましく、ポリアクリレート、ポリオレフィン、セルロース誘導体等の基材がさらに好ましく、ポリオレフィンとしてCOP(シクロオレフィンポリマー)を用い、セルロース誘導体としてTAC(トリアセチルセルロース)を用い、ポリアクリレートとしてPMMA(ポリメチルメタクリレート)を用いることが特に好ましい。基材の形状としては、平板の他、曲面を有するものであっても良い。これらの基材は、必要に応じて、電極層、反射防止機能、反射機能を有していてもよい。
 重合性液晶組成物の塗布性や接着性向上のために、これらの基材の表面処理を行っても良い。表面処理として、オゾン処理、プラズマ処理、コロナ処理、シランカップリング処理などが挙げられる。また、光の透過率や反射率を調節するために、基材表面に有機薄膜、無機酸化物薄膜や金属薄膜等を蒸着など方法によって設ける、あるいは、光学的な付加価値をつけるために、基材がレンチキュラレンズ、ピックアップレンズ、ロッドレンズ、光ディスク、位相差フィルム、光拡散フィルム、カラーフィルター、等であっても良い。中でも付加価値がより高くなるレンチキュラレンズ、ピックアップレンズ、位相差フィルム、光拡散フィルム、カラーフィルターは好ましい。
(配向処理)
 また、上記基材には、本発明の重合性液晶組成物を塗布した際に重合性液晶組成物が配向するように、通常配向処理が施されている、あるいは配向膜が設けられていても良い。配向処理としては、延伸処理、ラビング処理、偏光紫外可視光照射処理、イオンビーム処理等が挙げられる。配向膜を用いる場合、配向膜は公知慣用のものが用いられる。そのような配向膜としては、ポリイミド、ポリシロキサン、ポリアミド、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリフェニレンエーテル、ポリアリレート、ポリエチレンテレフタレート、ポリエーテルサルホン、エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、クマリン化合物、カルコン化合物、シンナメート化合物、フルギド化合物、アントラキノン化合物、アゾ化合物、アリールエテン化合物等の化合物が挙げられる。ラビングにより配向処理する化合物は、配向処理、もしくは配向処理の後に加熱工程を入れることで材料の結晶化が促進されるものが好ましい。ラビング以外の配向処理を行う化合物の中では光配向材料を用いることが好ましい。
(塗布)
 重合性液晶組成物を紫外線照射して塗膜あるいはフィルム状となる光学異方体を得るための塗布法としては、アプリケーター法、バーコーティング法、スピンコーティング法、ロールコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、フレキソコーティング法、インクジェット法、ダイコーティング法、キャップコーティング法、ディップコーティング法、スリットコーティング法等、公知慣用の方法を行うことができる。重合性液晶組成物が、溶液組成物である場合、塗布後、必要に応じて加熱あるいは送風などにより乾燥させることが好ましい。
(重合方法)
 重合性液晶組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましく、中でも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。酸素が存在すると重合が阻害されるため、窒素、アルゴンなどの不活性ガスの存在下で紫外線を照射することが好ましい。
 照射時の温度は、重合性液晶化合物が液晶相を保持できる温度とし、重合性液晶化合物の熱重合の誘起を避けるため、可能な限り30℃以下とすることが好ましい。尚、液晶化合物からなる液晶組成物は、通常、昇温過程において、C(固相)-N(ネマチック)転移温度(以下、C-N転移温度と略す。)から、N-I転移温度範囲内で液晶相を示す。一方、降温過程においては、熱力学的に非平衡状態を取るため、C-N転移温度以下でも凝固せず液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態も液晶相を保持している状態に含めるものとする。具体的には390nm以下の紫外光を照射することが好ましく、250~370nmの波長の光を照射することが最も好ましい。但し、390nm以下の紫外光により重合性組成物が分解などを引き起こす場合は、390nm以上の紫外光で重合処理を行ったほうが好ましい場合もある。この光は、拡散光で、かつ偏光していない光であることが好ましい。紫外線照射強度は、1mW/m~10kW/mの範囲が好ましい。特に、5mW/m~2kW/mの範囲が好ましい。紫外線強度が1mW/m未満の場合、重合を完了させるのに多大な時間がかかる。一方、2kW/mを超える強度では、重合性液晶組成物中の液晶分子が光分解する傾向にあることや、重合熱が多く発生して重合中の温度が上昇し、重合性液晶のオーダーパラメーターが変化して、重合後のフィルムのリタデーションに狂いが生じる可能性がある。照射エネルギーは5mJ~50Jまでが好ましく、1J~20Jが好ましく、3J~15Jが好ましく、5J~10Jが好ましい。マスクを使用して特定の部分のみを紫外線照射で重合させた後、該未重合部分の配向状態を、電場、磁場又は温度等をかけて変化させ、その後該未重合部分を重合させると、異なる配向方向をもった複数の領域を有する光学異方体を得ることもできる。
 また、マスクを使用して特定の部分のみを紫外線照射で重合させる際に、予め未重合状態の重合性液晶組成物に電場、磁場又は温度等をかけて配向を規制し、その状態を保ったままマスク上から光を照射して重合させることによっても、異なる配向方向をもった複数の領域を有する光学異方体を得ることができる。
 重合性液晶組成物を重合させて得られる光学異方体は、基板から剥離して単体で光学異方体として使用することも、基板から剥離せずにそのまま光学異方体として使用することもできる。特に、他の部材を汚染し難いので、被積層基板として使用したり、他の基板に貼り合わせて使用したりするときに有用である。
(表示素子)
 本発明の硬化物、光学異方体、位相差フィルム、位相差パターニング膜を用いた表示素子は、輝度、視野角依存性、視認性などの改善に有効であり、表示素子としては、液晶ディスプレイ(液晶表示素子)、EL(Electro Luminescence)ディスプレイ(EL表示素子)、量子ドットディスプレイ(量子ドット表示素子)などに有用である。
 液晶ディスプレイに用いる液晶材料はネマチック液晶、強誘電性を有するスメクチック液晶、ブルー相、高分子と液晶の複合材料、例えば高分子分散液晶やポリマーネットワーク液晶などの高分子と液晶の複合材料を用いることが好ましい。また、液晶温度範囲の拡大、プレチルト角の制御、応答速度を改善するために、モノマーを含有した液晶材料を用いることが好ましく、モノマーは紫外線、あるいは紫外線と熱との併用によって重合することが好ましい。
 本発明の硬化物、光学異方体、位相差フィルム、位相差パターニング膜を用いた液晶ディスプレイ(LCD)としては、以下の液晶ディスプレイが好ましい。TN(Twisted Nematic)-LCD、STN(Super Teisted Nematic)-LCD、VA(Vertical Alignmnet)-LCD、IPS(In Plane Switching)-LCD、FFS(Fringe Field Switching)-LCD、UB-FFS(Ultra-Brightness Fringe Field Switching)、MVA(Multidomain Vertical Alignment)-LCD、PVA(Patterned Vertical Alignment)-LCD、FLC(Ferroelectric Liquid Crystal)-LCD、DHFLC(Deformed Helix Ferroelectric Liquid Crystal)が挙げられる。
 さらに、高分子で安定化する以下の液晶ディスプレイも好ましく、PSA(Polymer Sustained Alignment)-LCD、PS-VA(Polymer Stabilized Vertical Alignment)-LCD、PS-IPS(Polymer Stabilized In Plane Switching)-LCD、PS-FFS(Polymer Stabilized Fringe Field Switching)、PSV-FLC(Polymer Stabilized V-shaped Ferroelectric Liquid Crystal)-LCD、BP(Blue Phase)-LCD、ナノ相分離液晶表示素子が挙げられる。
 EL表示素子としては、有機EL、無機EL、有機無機ハイブリッドELなどを挙げることができ、有機ELの発光材料としては、低分子系材料、高分子系材料を用いたものが好ましく、発光方式としては燐光型、蛍光型が好ましく、高分子系材料で燐光型の発光材料が特に好ましい。
 以下に、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。
(実施例等で使用する各粉体の作製)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
 公知の方法により合成した上記重合性液晶化合物Compound1を含有する溶液に、飽和溶解量の2倍重量のジクロロメタンを加えて溶液A-1を調製した。ジクロロメタンの5倍重量となるメタノールを10℃まで冷却し、マグネチックスターラーで攪拌しながら、調製した溶液A-1を滴下して白色粒子を析出させた。析出した粒子を単離した後、室温で残留する溶剤を乾燥させて、粉体(A1)を得た。Compound2~15もCompound1と同一条件で同様な操作を行い、粉体(A2)~(A15)を得た。
 公知の方法により合成した上記重合性液晶化合物Compound1を含有する溶液に、飽和溶解量の3倍重量のジクロロメタンを加えて溶液B-1を調製した。ジクロロメタンの10倍重量となるメタノールを-10℃まで冷却し、マグネチックスターラーで攪拌しながら、調製した溶液B-1を滴下して白色粒子を析出させた。析出した粒子を単離した後、室温で残留する溶剤を乾燥させて、粉体(B1)を得た。Compound2、5、6、8、12、13もCompound1と同一条件で同様な操作を行い、粉体(B2)、(B5)、(B6)、(B8)、(B12)、(B13)をそれぞれ得た。
 公知の方法により合成した上記重合性液晶化合物Compound1を含有する溶液に、飽和溶解量の等倍重量のジクロロメタンを加えて溶液C-1を調製した。ジクロロメタンの5倍重量となるメタノールを25℃に保ち、マグネチックスターラーで攪拌しながら、調製した溶液C-1を滴下して白色粒子を析出させた。析出した粒子を単離した後、室温で残留する溶剤を乾燥させて、粉体(C1)を得た。Compound2、5、6、8、12、13もCompound1と同一条件で同様な操作を行い、粉体(C2)、(C5)、(C6)、(C8)、(C12)、(C13)をそれぞれ得た。
 公知の方法により合成した上記重合性液晶化合物Compound1を使用し、特開2005-177596号公報の記載を参考にして原料となる粉体を作製した。次に原料となる粉体を濃度1mg/mlの高濃度懸濁状態で処理チャンバである石英角セルに入れたサンプルを作製した。石英角セルの底面にピエゾ振動子を超音波振動子として取り付けた。超音波共鳴処理及び光破砕処理を同時に実施した。単離した後、室温で残留する溶剤を乾燥させて、粉体(D1)を得た。Compound2~6、8~15もCompound1と同一条件で同様な操作を行い、粉体(D2)~(D6)、(D8)~(D15)をそれぞれ得た。
 公知の方法により合成した上記重合性液晶化合物Compound1を含有する溶液に、それぞれ、飽和溶解量のジクロロメタンを加えて飽和溶液E-1を調製した。ジクロロメタンの2倍重量となる25℃に保ったメタノールに上記ジクロロメタン溶液E-1を滴下した後、溶剤をゆっくりと乾燥させることで結晶を成長させた。析出した粒子を単離した後、室温で残留する溶剤を乾燥させて、粉体(E1)を得た。Compound2~6、8~15もCompound1と同一条件で同様な操作を行い、粉体(E2)~(E6)、(E8)~(E15)をそれぞれ得た。
 なお、各粉体を構成する上記重合性液晶化合物Compound1~15は、それぞれ、大気圧下30℃において固体の重合性液晶化合物である。
(粉体混合物の調製)
 上記で作製した各成分の粉体を下表に示した割合(質量%)で混合し、実施例1~50、90~139において使用する粉体混合物(組成1~組成26、組成33~58)を得た。
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
 なお、キラル化合物として、Chiral 1は下記を使用した。
Figure JPOXMLDOC01-appb-C000093
(実施例1~12、実施例90~101、比較例1~12)
 上記組成1の組成比で粉体混合物重量の合計が500gとなるようにアルミ製容器(Tournaire社製、TYPE4TM、2.5L)に充填し、90日間40℃の条件下において保存した。その後、保存しておいた粉体混合物全量を用いて、粉体混合物と有機溶剤との配合比率(重量比)が4:6となるように有機溶剤を加え、マグネチックスターラーで攪拌して混合し溶液組成物(実施例1)を作製した。上記組成1を用いる代わりに組成2~6、組成33~38を用いる以外同様な条件で、実施例2~6、実施例90~101に用いる溶液組成物を作製した。実施例1~6、実施例90~95の溶液組成物を作製する際に用いた粉体混合物、及び有機溶剤を下記表に示す。
 アルミ製容器(Tournaire社製、TYPE4TM、2.5L)に、粉体混合物と有機溶剤との配合比率(重量比)が4:6となる量の有機溶剤を先に加えた後、マグネチックスターラーで攪拌しながら、上記組成1の組成を構成する個別の成分1つ1つを、順次溶解させながら加えることで溶液組成物を調製した後に、90日間、40℃で保存したものを比較溶液組成物(比較例1)として用いた。上記組成1を用いる代わりに組成2~6を用いる以外同様な条件で、比較例2~6に用いる比較溶液組成物を作製した。比較例1~6において用いた粉体混合物、及び有機溶剤を下記表に示す。
 上記組成1の組成比で粉体混合物重量の合計が20gとなるようにガラス製ねじ口管瓶(日電理化硝子社製、SV-50A、50ml)に充填し、90日間40℃の条件下において保存した。その後、保存しておいた粉体混合物全量を用いて、110℃で加熱、マグネチックスターラーで攪拌して、ネマチック液晶組成物(実施例7)を作製した。上記組成1を用いる代わりに組成2~6、組成33~38を用いる以外同様な条件で、実施例8~12、実施例96~101に用いるネマチック液晶組成物を作製した。
 上記組成1を構成する個別の成分1つをガラス製ねじ口管瓶(日電理化硝子社製、SV-50A、50ml)に入れた後、110℃で加熱、マグネチックスターラーで攪拌してネマチック液晶組成物とした後に、残りの成分を順次1つずつネマチック液晶に溶解させながら加えることでネマチック液晶組成物を調製した後、90日間、40℃で保存したものを比較ネマチック液晶組成物(比較例7)として用いた。上記組成1を用いる代わりに組成2~6を用いる以外同様な条件で、比較例8~12に用いる比較ネマチック液晶組成物を作製した。
(作製した溶液組成物及びネマチック液晶組成物の揮発性およびRe変化の評価)
(揮発性測定)
 実施例1~12、実施例96~101及び比較例1~12の溶液組成物、又はネマチック液晶組成物の重量変化を測定した。
〇・・・重量変化率が0.01重量%未満
△・・・重量変化率が0.01重量%以上0.5%未満
×・・・重量変化率が0.5重量%以上
(Re変化の評価)
 重量変化を測定した後、下記の方法で位相差膜(光学フィルム)を作製し、面内の位相差(リタデーション、Re)を測定した。
 実施例1~6、実施例90~95及び比較例1~6の溶液組成物は、ラビングしたポリイミド膜が成膜されているガラス基板上に、スピンコートした(1,500rpmで30秒)。スピンコートして作製した膜を、70℃で30秒間アニールし、25℃で20mW/cmの高圧水銀ランプを用いて60秒間、窒素雰囲気中で光重合した。
 実施例7~12、実施例96~101及び比較例7~12のネマチック液晶組成物は、ポリイミド配向膜をもつ液晶セル(セルギャップ1.6um)に70℃で注入後、70℃で10min間アニールした後、25℃で20mW/cmの高圧水銀ランプを用いて60秒間、窒素雰囲気中で紫外線を照射して光重合した。重合して得られた位相差膜のリタデーションを測定した。リタデーションの変化は90日間40℃の条件で保存する直前と90日後を比較した。
〇・・・リタデーション変化が0.5nm未満
△・・・リタデーション変化が0.5nm以上1nm未満
×・・・リタデーション変化が1nm以上
(作製した溶液組成物及びネマチック液晶組成物中に発生する重合生成物の評価)
 実施例1~6、実施例90~95及び比較例1~6の溶液組成物、及び、実施例7~12、実施例96~101及び比較例7~12のネマチック液晶組成物中に生じた重合生成物量の測定を行った。測定にはGPCを用いた。GPC測定のサンプル調製は次のようにして行った。ネマチック液晶組成物の場合は、ネマチック液晶組成物5mgを5mlのTHFに溶解してGPC測定用のサンプルを調製した。溶液組成の場合は、溶液組成物12.5mgを5mlのTHFに溶解してGPC測定用のサンプルを調製した。重合生成物は、分子量7,000以上のポリマー成分を調べた。
〇・・・重合生成物が200ppm未満
△・・・重合生成物が200ppm以上300ppm未満
×・・・重合生成物が300ppm以上
 実施例1~12、実施例90~101、比較例1~12の測定結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000094
 この結果、粉体混合物の形状にて保存しておいた実施例1~実施例12、実施例90~実施例101は、その後、有機溶剤を用いた溶液組成物にした場合、及びネマチック液晶組成物にした場合のいずれの場合においても、重合生成物はほとんど発生せず、また、リタデーション変化もほとんど観測されなかった。
 一方、重合性液晶化合物を有機溶剤に溶解させ溶液組成物にした状態で保存した場合、重合生成物が多く発生し、リタデーション変化も観察された。これは保存期間中に有機溶剤の揮発が観察されたため、溶液中に含まれる重合性液晶化合物濃度が変わり、当初想定される膜厚と異なる光学フィルムとなった可能性がある。リタデーションは膜厚と屈折率の積であるため、比較例1~6はリタデーションが変化したと考察する。また、ネマチック液晶状態で保存した場合も、重合生成物が多く発生する結果となった。
(実施例13~24、実施例102~113、比較例13~24)
 上記組成1の組成比で粉体混合物重量の合計が500gとなるようにアルミ製容器(Tournaire社製、TYPE4TM、2.5L)に充填し、10日間0℃の条件下において保存した。その後、保存しておいた粉体混合物全量を用いて、粉体混合物と有機溶剤との配合比率(重量比)が4:6となるように有機溶剤を加え、マグネチックスターラーで攪拌して混合し溶液組成物(実施例13)を作製した。上記組成1を用いる代わりに組成2~6、組成33~38を用いる以外同様な条件で、実施例14~18、実施例102~107に用いる溶液組成物を作製した。実施例13~18、実施例102~107の溶液組成物を作製する際に用いた粉体混合物、及び有機溶剤を下記表に示す。
 アルミ製容器(Tournaire社製、TYPE4TM、2.5L)に、粉体混合物と有機溶剤との配合比率(重量比)が4:6となる量の有機溶剤を先に加えた後、マグネチックスターラーで攪拌しながら、上記組成1の組成を構成する個別の成分1つ1つを、順次溶解させながら加えることで溶液組成物を調製した後に、10日間、0℃で保存したものを比較溶液組成物(比較例13)として用いた。上記組成1を用いる代わりに組成2~6を用いる以外同様な条件で、比較例14~18に用いる比較溶液組成物を作製した。比較例13~18において用いた粉体混合物、及び有機溶剤を下記表に示す。
 上記組成1の組成比で粉体混合物重量の合計が20gとなるようにガラス製ねじ口管瓶(日電理化硝子社製、SV-50A、50ml)に充填し、10日間0℃の条件下において保存した。その後、保存しておいた粉体混合物全量を用いて、110℃で加熱、マグネチックスターラーで攪拌して、ネマチック液晶組成物(実施例19)を作製した。上記組成1を用いる代わりに組成2~6、組成33~38を用いる以外同様な条件で、実施例20~24、実施例108~113に用いるネマチック組成物を作製した。
 上記組成1を構成する個別の成分1つをガラス製ねじ口管瓶(日電理化硝子社製、SV-50A、50ml)に入れた後、110℃で加熱、マグネチックスターラーで攪拌してネマチック液晶組成物とした後に、残りの成分を順次1つずつネマチック液晶に溶解させながら加えることでネマチック液晶組成物を調製した後、10日間、0℃で保存したものを比較ネマチック液晶組成物(比較例19)として用いた。上記組成1を用いる代わりに組成2~6を用いる以外同様な条件で、比較例20~24に用いる比較ネマチック液晶組成物を作製した。
(作製した溶液組成物及びネマチック液晶組成物の析出物の評価)
(溶液組成物及びネマチック液晶組成物の析出物)
 実施例13~実施例18、実施例102~107、比較例13~比較例18で得られた溶液組成物、及び、実施例19~実施例24、実施例108~113、比較例19~比較例24で得られたネマチック液晶組成物をそれぞれメスシリンダー(溶液組成物:200ml、ネマチック液晶:50ml)に移し入れ、溶液組成物、及び、ネマチック液晶組成物の結晶析出割合を目視で体積を測定した。
〇・・・目視で析出なし
△・・・目視で析出が10体積%未満
×・・・目視で析出が10体積%以上
 実施例13~24、実施例102~113、比較例13~24の測定結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000095
 この結果、粉体混合物の形状にて保存しておいた実施例13~実施例24、実施例102~実施例113は、その後、有機溶剤を用いた溶液組成物にした場合、及びネマチック液晶組成物にした場合のいずれの場合においても、析出物が観察されなかった。
 一方、重合性液晶化合物を有機溶剤に溶解させ溶液組成物にした状態で保存した場合や、ネマチック液晶状態で保存した場合は、析出物が多く発生する結果となった。
(実施例25~50、実施例114~139)
(粉体混合物の各種測定)
 上記組成1の組成比で粉体混合物重量の合計が500gとなるようにアルミ製容器(Tournaire社製、TYPE4TM、2.5L)に充填し、90日間25℃の条件下において保存し、実施例25で用いる粉体混合物を作製した。各測定は、粉体混合物の異なる任意の場所からサンプリングを行い、20回ずつ計測しその平均値を数値として用いた。
 上記組成1を用いる代わりに上記組成2~26、上記組成33~58を用いる以外同様な条件で、それぞれ実施例26~50、実施例114~139で用いる粉体混合物を作製し、以下の同様な測定を行った。
(粉体混合物の結晶子の測定)
 粉体混合物の結晶子の大きさは、粉末X線回折装置X’Pert Pro(PANalytical社製)にて測定した。測定条件は以下の通りである。CuKα管球使用。X線出力=45KV,40mA。検出器=半導体アレイ検出器X’Celeratorを使用。走査範囲2θ=4°~35°、計数時間=150秒。測定データについては、データ処理用ソフトX’Pert High Score(PANalytical社製)を用い、半値幅を算出し、シェラーの式に基づき、結晶子計を求めた。
(粉体混合物の粒子径D50の測定)
 粒子径D50(メジアン径)は、日機装のマイクロトラックMT-3000を用いて動的光散乱法により湿式方式で測定した。粉体混合物をメノウ乳鉢ですり潰した後、粉体混合物1gに対してメタノール-水の混合溶剤(メタノール:水=3:1)を5g加えて、15分間、超音波で分散させて測定サンプルを調製した。測定に使用する溶剤は、メタノール-水の混合溶剤(メタノール:水=3:1)を使用した。
(粉体混合物の嵩密度の測定)
 50mlのメスシリンダーにガラス漏斗(吐出口径1.2cm)を用いて粉体混合物を25mlの体積となるまで自然落下させた後、投入したサンプル重量を体積で割って算出した。
(粉体混合物の溶解性の評価)
 粉体混合物の溶剤に対する溶解性は、200mlビーカーにアルミ製容器中の粉体混合物(10g)及びアセトン50mlを加え、スターラーで攪拌(200rpm)しながら溶解性を目視観察した。
(溶剤に対する溶解性)
○・・・2min未満で溶解
△・・・2min以上5min未満で溶解
×・・・5min以上で溶解
 粉体混合物の加熱による溶解性は、アルミ製容器中の粉体混合物(10g)を茶褐色のサンプル瓶に入れ、110℃のオーブンで加熱し、粉体ではなく流動性の高いネマチック液晶状態または等方性液体の状態に溶解する様子を目視観察した。
(加熱による溶解性)
○・・・15min未満で溶解
△・・・15min以上30min未満で溶解
×・・・30min以上で溶解
(粉体混合物の取扱性の評価)
 取扱性は、粉体混合物500gが入ったアルミ製容器(Tournaire社製、TYPE4TM、2.5L)から、直接アルミ製容器を傾けて薬包紙の上に粉体を100g取り分ける作業を行い、目視において粉体の舞い上がりやすさで評価した。
○・・・目視において舞い上がりにくい
△・・・目視において注意して慎重に取り扱えば舞い上がらない
×・・・目視において舞い上がりやすい
(粉体混合物の容器への付着性)
 粉体混合物の保存容器への付着性は、粉体混合物500gをアルミ製容器(Tournaire社製、TYPE4TM、2.5L)に充填し、アルミ製容器を30回振とうした後、アルミ製容器を傾けてアルミ製容器から粉体混合物を取り出した後にアルミ製容器に付着した粉体混合物の重さで評価した。
○・・・0.1wt%未満が付着
△・・・0.1wt%以上、0.2wt%未満が付着
×・・・0.2wt%以上が付着
 結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
 この結果、特定の範囲の結晶子、粒子径(分布)、嵩密度を有する粉体混合物を用いることにより、溶解性が良好で、取扱い性に優れ、容器等への付着が少ない粉体混合物が得られることが明らかとなった。
(実施例51~62、実施例140~151)
(粉体中への重合禁止剤の添加)
 重合性液晶化合物compound1~6を含むジクロロメタン溶液にp-メトキシフェノールを3,000ppm加える以外は、上記粉体(A1)~(A6)を得る方法と同様に再沈澱を行うことによって、重合性液晶化合物中に微量の重合禁止剤を含んだ粉体(F1)~(F15)を調製した。組成27~32、組成59~64となる他は実施例1、実施例7と同一条件で、それぞれ、実施例51~56、実施例140~145の溶液組成物および実施例57~62、実施例146~151のネマチック液晶組成物を調製した。粉体(F1)~(F15)に含まれる重合禁止剤の含有量は、GPC測定により求めた。具体的には、5mgの粉体(F1)~(F15)をp-メトキシフェノールを内部標準とするTHF溶液5mlに溶解してGPC測定用のサンプルを調製し、検量線からp-メトキシフェノールの含有量を調べた。
(作製した溶液組成物及びネマチック液晶組成物の重合生成物の評価)
実施例51~実施例56、実施例140~145の溶液組成物、及び、実施例57~実施例62、実施例146~151のネマチック液晶組成物中に生じた重合生成物量の測定を行った。測定にはGPCを用いた。GPC測定のサンプル調製は次のようにして行った。ネマチック液晶組成物の場合は、ネマチック液晶組成物5mgを5mlのTHFに溶解してGPC測定用のサンプルを調製した。溶液組成の場合は、溶液組成物12.5mgを5mlのTHFに溶解してGPC測定用のサンプルを調製した。重合生成物は、分子量7,000以上のポリマー成分を調べた。
◎・・・重合生成物が100ppm未満
〇・・・重合生成物が100ppm以上200ppm未満
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
 この結果、重合性液晶化合物からなる粉体それぞれに、重合禁止剤を含有させることにより、重合性液晶化合物からなる粉体それぞれに、重合禁止剤を含有しない場合より、重合生成物の発生を抑制できることが明らかとなった。
(実施例63~76、実施例152~165)
(残留溶剤による影響の評価)
 粉体の残留溶剤による影響を調べるため、乾燥時間を調整することによって残留溶剤量の異なる粉体を調製した。具体的には、上記組成7および上記組成33の粉体混合物を作製する際に、用いるCompound1、Compound2、Compound5、Compound6、Compound8、Compound12、Compound13、Irg907、フェノチアジン、p-メトキシフェノールの各粉体を上述の表に記載の割合でトレーの上に広げ、その上を40℃の乾燥空気が通過して粉体を乾燥させる方式を用いた。乾燥時間を調整すること以外は、同一の条件で粉体の残留溶剤量が異なる実施例63~69、実施例152~158となる粉体混合物を調製した。得られた実施例63~69、実施例152~158の粉体混合物は、実施例25~50、実施例114~139と同様に付着性を評価した。
 また、粉体の残留溶剤量が異なる実施例70~76、実施例159~165となるネマチック液晶組成物を調製した。なお、ネマチック液晶組成物は、上記実施例7のネマチック液晶組成物を作製する条件と同一条件で作製した。得られた実施例70~76、実施例159~165のネマチック液晶を真空状態(25℃,50Pa)にしたときの発泡性により評価した。
(発泡性)
◎・・・発泡が目視でほとんどなし
○・・・発泡が目視で少ない
×・・・発泡が目視で多い
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
 この結果、粉体(粉体混合物)中の残留溶剤量を少なくすることにより、容器等への付着する量を軽減することができ、移し替え時の重量ロスなどを軽減することができる。また、粉体(粉体混合物)中の残留溶剤量を少なくすることにより、ネマチック液晶中に含まれる溶剤の量が減少し、脱法作業時に残留溶剤が気体となって発泡することを軽減することが可能となることが明らかとなった。
(実施例77~89、実施例166~178)
(粉体混合物の攪拌混合)
 攪拌混合の処理をした粉体混合物は、次のようにして調製した。組成1と同じ組成比となる各粉体を攪拌羽根付き容器回転式混合機(愛知電機社製ロッキングミキサー、RMD-10(s)型、容量10L)に仕込み、円筒容器に占める粉体の体積が約4割となるように投入した。攪拌羽根を70Hzで回転、円筒容器の回転速度は19min―1、円筒容器の揺動は11min―1で180min攪拌した。
(混合状態の確認)
 攪拌混合を行って得られた粉体混合物の混合状態は、液体クロマトグラフィーを用いて各成分の比率を調べることによって確認した。攪拌した粉体混合物のサンプリングは、円すい四分法により4分割した攪拌した粉体混合物から2gを採取して組成1-A~D、組成33-A~Dを得た。これらの攪拌粉体混合物1-A~D、攪拌混合物33―A~Dの各々2gを100mlのアセトニトリルに溶解させた溶液を10倍希釈したものを組成比確認用の測定サンプルとして用いた。別途、2gのスケールで組成1、組成33と同じ組成比となる粉体混合物1-E、組成33-Eを調製し、100mlのアセトニトリルに溶解させた溶液を10倍希釈したものをリファレンスの測定サンプルとして用いた。液体クロマトグラフィーによる分析結果を下表に示した。攪拌した粉体混合物は、各成分が均一に混合していることがわかった。
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
 攪拌した粉体混合物(組成1-A~組成1-D、組成33-A~組成33-D)を使用する以外は、実施例1の溶液組成物を作製する条件と同一条件で実施例77~実施例85、実施例166~実施例174の溶液組成物を作製した。なお、用いた有機溶剤は下記表に示す。また、攪拌した粉体混合物(組成1-A~組成1-D、組成33-A~組成33-D)を使用する以外は、実施例7のネマチック液晶組成物を作製する条件と同一条件で実施例86~実施例89、実施例175~178の溶液組成物を作製した。
Figure JPOXMLDOC01-appb-T000105
 上記表において、揮発性、リタデーション、重合生成物の評価方法は実施例1と同一条件である。その結果、攪拌した粉体混合物を使用した場合も、攪拌していない粉体混合物を使用した場合と同様の効果が得られることが確認できた。

Claims (17)

  1.  大気圧下30℃以下において固体である、重合性官能基を1つ以上有する重合性液晶化合物を1種類以上含み、前記重合性液晶化合物を70質量%以上含有する、粉体混合物。
  2.  前記重合性液晶化合物を2種以上含有する請求項1記載の粉体混合物。
  3.  前記重合性液晶化合物が、一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Pは重合性官能基を表し、
    Spは炭素原子数1~18のアルキレン基を表し、該アルキレン基中の水素原子は1つ以上のハロゲン原子又はCNにより置換されていても良く、また、該アルキレン基中に存在する1個のCH2基又は隣接していない2個以上のCH2基はそれぞれ相互に独立して、-O-、-COO-、-OCO-又は-OCO-O-により置き換えられていても良く、
    は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P-Sp、及びSp-Xは、ヘテロ原子同士の直接結合を含まない。)、
    q1は0又は1を表し、
    MGはメソゲン基を表し、
    は、水素原子、ハロゲン原子、シアノ基、又は炭素原子数1から12の直鎖又は分岐アルキル基を表し、該アルキル基は直鎖状であっても分岐していても良く、また、該アルキル基は1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良く、あるいは、Rは、一般式(I-a)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Pは反応性官能基を表し、
    Spは、Spで定義されたものと同一のものを表し、
    は、Xで定義されたものと同一のものを表し(ただし、P-Sp、及びSp-Xは、ヘテロ原子同士の直接結合を含まない。)、
    は0又は1を表す。)で表される基を表す。)
    で表される、請求項1又は請求項2に記載の粉体混合物。
  4.  前記一般式(I)中、Rが一般式(I-a)で表される基である重合性液晶化合物を少なくとも1種以上用いる、請求項3に記載の粉体混合物。
  5.  少なくとも1種類以上の添加剤を含有する、請求項1~請求項3のいずれか一項に記載の粉体混合物。
  6.  前記粉体混合物の残留溶剤含有量が1ppm~10,000ppmである、請求項1~請求項5のいずれか一項に記載の粉体混合物。
  7.  請求項1~6のいずれか一項に記載の粉体混合物を有機溶剤に溶解した溶液組成物。
  8.  請求項1~6のいずれか一項に記載の粉体混合物を用いたネマチック液晶組成物。
  9.  請求項7に記載の溶液組成物を用いた硬化物。
  10.  請求項8に記載のネマチック液晶組成物を用いた硬化物。
  11.  請求項7に記載の溶液組成物を用いた光学フィルム。
  12.  請求項8に記載のネマチック液晶組成物を用いた光学フィルム。
  13.  請求項9に記載の硬化物を用いた表示素子。
  14.  請求項9又は請求項10に記載の硬化物を用いた表示素子。
  15.  請求項1~請求項6の何れか一項に記載の粉体混合物の製造方法。
  16.  請求項1~請求項6の何れか一項に記載の粉体混合物を航空機、列車、電車、船舶、車を利用して運搬する輸送方法。
  17.  請求項1~請求項6の何れか一項に記載の粉体混合物が粉体を維持する温度以下で保管する方法。
PCT/JP2016/070828 2015-09-01 2016-07-14 粉体混合物 WO2017038265A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187008779A KR102129851B1 (ko) 2015-09-01 2016-07-14 분체 혼합물
EP16841297.1A EP3345939B1 (en) 2015-09-01 2016-07-14 Powder mixture
US15/755,217 US20180327669A1 (en) 2015-09-01 2016-07-14 Powder mixture
JP2017534766A JP6403029B2 (ja) 2015-09-01 2016-07-14 粉体混合物
CN201680050439.2A CN107922535B (zh) 2015-09-01 2016-07-14 粉体混合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015171977 2015-09-01
JP2015-171977 2015-09-01

Publications (1)

Publication Number Publication Date
WO2017038265A1 true WO2017038265A1 (ja) 2017-03-09

Family

ID=58187201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070828 WO2017038265A1 (ja) 2015-09-01 2016-07-14 粉体混合物

Country Status (7)

Country Link
US (1) US20180327669A1 (ja)
EP (1) EP3345939B1 (ja)
JP (3) JP6403029B2 (ja)
KR (1) KR102129851B1 (ja)
CN (1) CN107922535B (ja)
TW (1) TWI713553B (ja)
WO (1) WO2017038265A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088591A (ja) * 2015-11-09 2017-05-25 Dic株式会社 重合性化合物及び光学異方体
WO2019013520A1 (ko) * 2017-07-10 2019-01-17 주식회사 엘지화학 원편광판
KR20190006455A (ko) * 2017-07-10 2019-01-18 주식회사 엘지화학 원편광판
JP2021001972A (ja) * 2019-06-21 2021-01-07 Dic株式会社 光学異方体、およびその製造方法
JP2021021901A (ja) * 2019-07-30 2021-02-18 住友化学株式会社 重合性液晶組成液含有容器および重合性液晶組成液の保管方法
JP2021532411A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 積層フィルム
JP2021532412A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 偏光板
US11186669B2 (en) 2015-01-16 2021-11-30 Dic Corporation Polymerizable composition and optically anisotropic body using same
US11261378B2 (en) 2014-12-25 2022-03-01 Dic Corporation Polymerizable compound and optically anisotropic object
WO2022107601A1 (ja) * 2020-11-17 2022-05-27 Dic株式会社 インクジェット用インク組成物、光変換層及びカラーフィルタ
US11697695B2 (en) 2015-01-16 2023-07-11 Dic Corporation Polymerizable composition and optically anisotropic body using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016105063A1 (de) * 2016-03-18 2017-09-21 Osram Opto Semiconductors Gmbh Diffraktives optisches Element, Verfahren zum Herstellen eines diffraktiven optischen Elements und Laserbauelement
KR102595272B1 (ko) * 2018-06-26 2023-10-26 도쿄 오카 고교 가부시키가이샤 액상 조성물, 양자 도트 함유막, 광학 필름, 발광 표시 소자 패널, 및 발광 표시 장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007650A1 (fr) * 2006-07-14 2008-01-17 Otsuka Chemical Co., Ltd. résine d'accumulation de l'hydrazine
JP2009001802A (ja) * 2007-03-23 2009-01-08 Dic Corp 液晶組成物の製造方法
JP2011508048A (ja) * 2007-12-28 2011-03-10 ダウ グローバル テクノロジーズ インコーポレイティド 微小機能性材料
JP2013527259A (ja) * 2010-03-09 2013-06-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 重合性化合物ならびに液晶媒体および液晶ディスプレイにおけるその使用
JP2014520196A (ja) * 2011-06-23 2014-08-21 ダウ グローバル テクノロジーズ エルエルシー 水再分散性エポキシポリマー粉体および同粉体を製造するための方法
WO2014169984A1 (en) * 2013-04-18 2014-10-23 Merck Patent Gmbh Layer or article comprising cholesteric polymer particles
WO2014192627A1 (ja) * 2013-05-27 2014-12-04 Jnc株式会社 液晶媒体、光素子および液晶化合物
WO2015045441A1 (ja) * 2013-09-24 2015-04-02 Dic株式会社 液晶表示装置
WO2016114252A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2016114253A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208957A (ja) * 1996-01-31 1997-08-12 Teijin Ltd 光学異方体の製造方法
JP2003207642A (ja) * 2001-11-09 2003-07-25 Dainippon Printing Co Ltd 光学素子
JP2003207644A (ja) * 2001-11-09 2003-07-25 Dainippon Printing Co Ltd 光学素子の製造方法
JP2003167126A (ja) * 2001-12-03 2003-06-13 Dainippon Printing Co Ltd 光学素子
JP4608852B2 (ja) * 2002-10-15 2011-01-12 チッソ株式会社 液晶性ビニルケトン誘導体およびその重合体
JP2005055486A (ja) * 2003-08-05 2005-03-03 Dainippon Printing Co Ltd 光学素子の製造方法およびその製造方法により得られた光学素子
CN1972895B (zh) * 2004-06-23 2010-08-18 旭硝子株式会社 聚合性液晶化合物、液晶组合物、光学各向异性材料及光学元件
WO2007064039A1 (en) * 2005-12-01 2007-06-07 Fujifilm Corporation Optical compensation film, polarizing plate and liquid crystal display device
ATE500883T1 (de) 2007-09-07 2011-03-15 Merck Patent Gmbh Verfahren zur herstellung einer homogenen flüssigen mischung
JP5463666B2 (ja) * 2007-12-28 2014-04-09 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
JP5532974B2 (ja) 2010-01-29 2014-06-25 日本ゼオン株式会社 液晶層形成用組成物、円偏光分離シート及びその製造方法、並びに輝度向上フィルム及び液晶表示装置
TWI611213B (zh) * 2010-02-18 2018-01-11 住友化學股份有限公司 立體顯示系統、立體顯示系統用眼鏡及立體顯示系統用顯示裝置
JP5890390B2 (ja) * 2010-03-29 2016-03-22 レイブンブリック,エルエルシー ポリマ安定化型サーモトロピック液晶デバイス
KR101829941B1 (ko) * 2010-07-22 2018-02-19 메르크 파텐트 게엠베하 중합체-안정화 액정 매질 및 디스플레이
EP2698388B1 (en) * 2011-04-15 2015-12-09 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
WO2013018526A1 (ja) * 2011-07-29 2013-02-07 日本ゼオン株式会社 光学異方体の波長分散調整方法及び重合性組成物
CN107253935B (zh) * 2012-07-09 2020-10-09 日本瑞翁株式会社 肼化合物、聚合性化合物的制备方法及将肼化合物作为聚合性化合物的制造原料使用的方法
KR101767854B1 (ko) * 2013-07-23 2017-08-11 제이엑스티지 에네루기 가부시키가이샤 위상차판, 타원 편광판 및 그것을 이용한 표시장치
JP6246570B2 (ja) * 2013-11-21 2017-12-13 マクセルホールディングス株式会社 熱線反射フィルム及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007650A1 (fr) * 2006-07-14 2008-01-17 Otsuka Chemical Co., Ltd. résine d'accumulation de l'hydrazine
JP2009001802A (ja) * 2007-03-23 2009-01-08 Dic Corp 液晶組成物の製造方法
JP2011508048A (ja) * 2007-12-28 2011-03-10 ダウ グローバル テクノロジーズ インコーポレイティド 微小機能性材料
JP2013527259A (ja) * 2010-03-09 2013-06-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 重合性化合物ならびに液晶媒体および液晶ディスプレイにおけるその使用
JP2014520196A (ja) * 2011-06-23 2014-08-21 ダウ グローバル テクノロジーズ エルエルシー 水再分散性エポキシポリマー粉体および同粉体を製造するための方法
WO2014169984A1 (en) * 2013-04-18 2014-10-23 Merck Patent Gmbh Layer or article comprising cholesteric polymer particles
WO2014192627A1 (ja) * 2013-05-27 2014-12-04 Jnc株式会社 液晶媒体、光素子および液晶化合物
WO2015045441A1 (ja) * 2013-09-24 2015-04-02 Dic株式会社 液晶表示装置
WO2016114252A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2016114253A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261378B2 (en) 2014-12-25 2022-03-01 Dic Corporation Polymerizable compound and optically anisotropic object
US11697695B2 (en) 2015-01-16 2023-07-11 Dic Corporation Polymerizable composition and optically anisotropic body using same
US11186669B2 (en) 2015-01-16 2021-11-30 Dic Corporation Polymerizable composition and optically anisotropic body using same
JP2017088591A (ja) * 2015-11-09 2017-05-25 Dic株式会社 重合性化合物及び光学異方体
US10919870B2 (en) 2015-11-09 2021-02-16 Dic Corporation Polymerizable compound and optically anisotropic body
KR102113487B1 (ko) * 2017-07-10 2020-05-22 주식회사 엘지화학 원편광판
CN110914722B (zh) * 2017-07-10 2022-03-08 株式会社Lg化学 圆偏光板
WO2019013520A1 (ko) * 2017-07-10 2019-01-17 주식회사 엘지화학 원편광판
KR102063046B1 (ko) * 2017-07-10 2020-01-07 주식회사 엘지화학 원편광판
US11411206B2 (en) 2017-07-10 2022-08-09 Lg Chem, Ltd. Circularly polarizing plate
CN110914722A (zh) * 2017-07-10 2020-03-24 株式会社Lg化学 圆偏光板
US11314007B2 (en) * 2017-07-10 2022-04-26 Lg Chem, Ltd. Circularly polarizing plate
KR20190006455A (ko) * 2017-07-10 2019-01-18 주식회사 엘지화학 원편광판
KR20190006458A (ko) * 2017-07-10 2019-01-18 주식회사 엘지화학 원편광판
JP2021532411A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 積層フィルム
JP2021532412A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 偏光板
JP7205981B2 (ja) 2018-11-02 2023-01-17 エルジー・ケム・リミテッド 偏光板
JP7205980B2 (ja) 2018-11-02 2023-01-17 エルジー・ケム・リミテッド 積層フィルム
US11892669B2 (en) 2018-11-02 2024-02-06 Lg Chem, Ltd. Polarizing plate and display device
JP2021001972A (ja) * 2019-06-21 2021-01-07 Dic株式会社 光学異方体、およびその製造方法
JP2021021901A (ja) * 2019-07-30 2021-02-18 住友化学株式会社 重合性液晶組成液含有容器および重合性液晶組成液の保管方法
JP7402633B2 (ja) 2019-07-30 2023-12-21 住友化学株式会社 重合性液晶組成液含有容器および重合性液晶組成液の保管方法
WO2022107601A1 (ja) * 2020-11-17 2022-05-27 Dic株式会社 インクジェット用インク組成物、光変換層及びカラーフィルタ
JP7151929B1 (ja) * 2020-11-17 2022-10-12 Dic株式会社 インクジェット用インク組成物、光変換層及びカラーフィルタ

Also Published As

Publication number Publication date
JP2019007010A (ja) 2019-01-17
TW201718670A (zh) 2017-06-01
JP2019007009A (ja) 2019-01-17
EP3345939B1 (en) 2020-10-14
TWI713553B (zh) 2020-12-21
CN107922535B (zh) 2021-06-29
EP3345939A4 (en) 2019-04-03
JPWO2017038265A1 (ja) 2017-10-19
KR102129851B1 (ko) 2020-07-06
EP3345939A1 (en) 2018-07-11
KR20180048837A (ko) 2018-05-10
JP6604403B2 (ja) 2019-11-13
US20180327669A1 (en) 2018-11-15
CN107922535A (zh) 2018-04-17
JP6403029B2 (ja) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6604403B2 (ja) 粉体混合物
KR102444525B1 (ko) 중합성 조성물 및 그것을 사용한 광학 이방체
CN107209307B (zh) 聚合性组合物和使用其的光学各向异性体
KR102635854B1 (ko) 중합성 조성물 및 그것을 사용한 광학 이방체
KR102082201B1 (ko) 중합성 조성물 및 그것을 사용한 광학 이방체
WO2016114348A1 (ja) 重合性組成物及び光学異方体
JP6590075B2 (ja) 重合性液晶組成物、及び、それを用いた光学フィルム
JP6674161B2 (ja) 重合性液晶組成物、その重合体、光学異方体、及び表示素子
WO2018012390A1 (ja) 位相差フィルム、楕円偏光板及びそれを用いた表示装置
JP6627978B2 (ja) 重合性組成物及びそれを用いた光学異方体
US20180346614A1 (en) Polymerizable composition and optically anisotropic body using same
WO2018012579A1 (ja) 重合性組成物、及び、それを用いた光学異方体
WO2018101122A1 (ja) 重合性組成物及びそれを用いた光学異方体
JPWO2019124090A1 (ja) 位相差フィルム、楕円偏光板及びそれを用いた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187008779

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016841297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15755217

Country of ref document: US