WO2016152058A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2016152058A1
WO2016152058A1 PCT/JP2016/001321 JP2016001321W WO2016152058A1 WO 2016152058 A1 WO2016152058 A1 WO 2016152058A1 JP 2016001321 W JP2016001321 W JP 2016001321W WO 2016152058 A1 WO2016152058 A1 WO 2016152058A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
gate insulating
trench
gate
semiconductor device
Prior art date
Application number
PCT/JP2016/001321
Other languages
English (en)
French (fr)
Inventor
智博 三村
高司 金村
水野 祥司
雅裕 杉本
佐智子 青井
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to CN201680017256.0A priority Critical patent/CN107431092A/zh
Priority to US15/560,794 priority patent/US10128344B2/en
Publication of WO2016152058A1 publication Critical patent/WO2016152058A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/512Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being parallel to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the present disclosure relates to a semiconductor device having a trench gate structure, and is particularly suitable for being applied to a semiconductor device composed of silicon carbide (hereinafter referred to as SiC).
  • SiC silicon carbide
  • a semiconductor device having a trench gate structure is known as a structure in which a channel density is increased so that a large current can flow.
  • this trench gate structure another gate electrode (hereinafter, the upper stage side is referred to as a first gate electrode and the lower stage side is referred to as a second gate electrode) immediately below the gate electrode, and the second gate electrode is connected to the source potential.
  • the parasitic capacitance Cgd is reduced and the electric field is relaxed at the bottom of the trench gate.
  • a double gate structure having two stages of a first gate electrode and a second gate electrode is used, and a shielding effect can be obtained by the second gate electrode having a source potential, so that it occurs between the first gate electrode and the drain.
  • Parasitic capacitance Cgd feedback capacitance
  • Cgd feedback capacitance
  • the concentration of the drift layer is increased in order to achieve low on-resistance in the double gate structure MOSFET, there is a concern that a large electric field is applied to the bottom of the double gate structure, causing dielectric breakdown of the gate insulating film.
  • a semiconductor device having a double gate structure is formed of SiC
  • a larger electric field is applied to the bottom of the double gate structure than when the semiconductor device is formed of Si, and the problem of dielectric breakdown of the gate insulating film may further occur.
  • the relationship between the reduction in on-resistance and the electric field strength applied to the gate insulating film is a trade-off relationship, so it is difficult to improve the withstand voltage while achieving low on-resistance. Is desired.
  • An object of the present disclosure is to provide a semiconductor device having a structure capable of improving withstand voltage while achieving low on-resistance.
  • a semiconductor device includes a drain region formed of a first or second conductivity type semiconductor, and a first conductivity type disposed on the drain region and having a lower impurity concentration than the drain region.
  • a drift layer composed of a semiconductor, a base region disposed on the drift layer and composed of a second conductivity type semiconductor, and disposed on an upper layer portion of the base region and having a higher concentration than the drift layer.
  • the upper gate structure is disposed on an upper stage in a trench disposed deeper than the base region from the surface of the source region, and is disposed at a depth deeper than the base region from an entrance of the trench.
  • An insulating film and a first gate electrode disposed on the first gate insulating film.
  • the lower gate structure is disposed on the lower stage in the trench, is disposed on the inner wall surface of the trench at a position deeper than the first gate insulating film, and is higher than the first gate insulating film.
  • a second gate insulating film made of an insulating material having a dielectric constant; and a second gate electrode disposed on the second gate insulating film.
  • the lower second gate insulating film is made of an insulating material having a higher dielectric constant than the upper first gate insulating film, the electric field concentration can be reduced.
  • the second gate insulating film is made of an insulating material having a high dielectric constant, the high voltage can be prevented from entering the second gate insulating film as compared with a case where the second gate insulating film is made of an insulating material having a low dielectric constant.
  • the entry of the electric field into the first gate insulating film on the upper stage side is suppressed, the interval between equipotential lines in the first gate insulating film is widened, and the electric field concentration in the first gate insulating film is alleviated. .
  • the dielectric breakdown of the first gate insulating film can be suppressed in this way, the internal resistance can be reduced by increasing the impurity concentration of the drift layer in order to achieve a low on-resistance. Therefore, a semiconductor device having a structure capable of improving the withstand voltage while achieving low on-resistance can be obtained.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of the SiC semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of the SiC semiconductor device according to the second embodiment of the present disclosure
  • FIG. 3 is a diagram illustrating a cross-sectional configuration of the SiC semiconductor device according to the third embodiment of the present disclosure.
  • a first embodiment of the present disclosure will be described.
  • a SiC semiconductor device in which the semiconductor device is formed of SiC will be described as an example.
  • the semiconductor device may be formed of other semiconductor materials such as Si.
  • FIG. 1 an SiC semiconductor device having a vertical MOSFET having an inverted trench gate structure according to the present embodiment will be described with reference to FIG.
  • FIG. 1 only one cell of the vertical MOSFET is shown, but a plurality of cells having the same structure as the vertical MOSFET shown in FIG. 1 are arranged adjacent to each other.
  • One cell here means from the center of the p + -type contact region 6 described later to the center of the p + -type contact region 6 located adjacent to the trench gate structure.
  • an SiC single crystal having a thickness of about 300 ⁇ m is doped with an n-type impurity (such as phosphorus or nitrogen) at a high concentration, for example, an impurity concentration of 1 ⁇ 10 19 to 1 ⁇ 10 20 cm ⁇ 3.
  • An SiC semiconductor device is formed using the n + type semiconductor substrate 1.
  • an n type drift layer made of SiC having a thickness of about 5 to 15 ⁇ m doped with an n type impurity at an impurity concentration of 1 ⁇ 10 15 to 1 ⁇ 10 16 cm ⁇ 3 , for example. 2 is formed.
  • a p-type base region 4 made of SiC is formed on the surface of the n-type drift layer 2.
  • the p-type base region 4 is a layer constituting a channel region of the vertical MOSFET, and is formed on both sides of a trench 7 constituting a trench gate structure described later so as to be in contact with the side surface of the trench 7.
  • the p-type base region 4 is doped with p-type impurities at an impurity concentration of, for example, 1 ⁇ 10 15 to 1 ⁇ 10 18 cm ⁇ 3 and has a thickness of about 0.7 to 1.8 ⁇ m.
  • an n + -type source region 5 doped with an n-type impurity at a high concentration is formed so as to be in contact with the trench gate structure.
  • the n + type source region 5 is formed by ion implantation into the p type base region 4 and the impurity concentration is about 1 ⁇ 10 21 cm ⁇ 3 and the thickness is about 0.3 ⁇ m.
  • a p + -type contact region 6 doped with a high concentration of p-type impurities is formed on the opposite side of the trench 7 across the n + -type source region 5 in the surface layer portion of the p-type base region 4. .
  • the p + -type contact region 6 is formed by ion implantation into the p-type base region 4 and the impurity concentration is about 1 ⁇ 10 21 cm ⁇ 3 and the thickness is about 0.3 ⁇ m. Forming.
  • a trench 7 is formed which penetrates the p-type base region 4 and the n + -type source region 5 to reach the n-type drift layer 2 and has a bottom portion having a depth separated from the surface of the n + -type semiconductor substrate 1 by a predetermined distance. Has been. Therefore, the p-type base region 4 and the n + -type source region 5 are arranged so as to be in contact with the side surface of the trench 7.
  • a double gate structure is formed in the trench 7. Specifically, in the trench 7, an upper gate structure having a first gate insulating film 8 a and a first gate electrode 9 a is provided on the upper stage which is the entrance side of the trench 7, and the second stage is provided on the lower stage side. A lower gate structure having a gate insulating film 8b and a second gate electrode 9b is provided.
  • the first gate insulating film 8a provided in the upper gate structure is made of an insulating film having a relatively low dielectric constant such as a silicon oxide film (SiO 2 ), and has a film thickness of, for example, about 50 to 100 nm. Yes.
  • the first gate electrode 9 a is formed from the surface of the trench 7 to a position deeper than the bottom of the p-type base region 4.
  • the first gate electrode 9a is made of Poly-Si doped with impurities, and a gate voltage can be applied by being connected to a gate wiring (not shown). Thus, when a gate voltage is applied, a channel can be formed on the side surface of the trench 7 in the p-type base region 4, that is, the entire region facing the first gate electrode 9 a.
  • the bottom of the first gate electrode 9a may be deeper than the bottom of the p-type base region 4.
  • the depth is set to 0.8 to 2 ⁇ m.
  • the second gate insulating film 8b provided in the lower gate structure is composed of an insulating film having a dielectric constant higher than that of the first gate insulating film 8a.
  • the second gate insulating film 8b is formed of silicon oxynitride, silicon nitride, aluminum oxide, aluminum nitride, hafnium oxide, hafnium nitride, titanium oxide, zirconium oxide, rare earth oxide (for example, lanthanum oxide, cerium oxide, yttrium oxide). Or any two or more of them, or any two or more layers.
  • the film thickness of the second gate insulating film 8b is arbitrary, but is preferably set to be equal to or larger than the first gate insulating film 8a.
  • the film thickness is, for example, about 50 to 100 nm.
  • the second gate electrode 9 b is formed at a position shallower than the n + -type semiconductor substrate 1 from the bottom of the upper gate structure in the trench 7, that is, within the thickness of the n-type drift layer 2.
  • the second gate electrode 9b is connected to a source electrode 10 (to be described later) in a cross section different from that shown in FIG.
  • the second gate electrode 9b is made of Poly-Si doped with impurities.
  • the depth of the lower gate structure including the entire second gate insulating film 8b and the second gate electrode 9b is arbitrary as long as the lower gate structure is formed within the thickness of the n-type drift layer 2. For example, the depth is set to 0.8 to 2 ⁇ m from the bottom of the upper gate structure.
  • Such a structure forms a trench gate structure in which a double gate structure having an upper gate structure and a lower gate structure is formed in the trench 7.
  • the trench gate structure is, for example, a strip with the vertical direction on the paper as the longitudinal direction, and a plurality of trench gate structures are arranged in stripes at equal intervals in the horizontal direction of the paper. As a result, the structure is provided with a plurality of cells.
  • a source electrode 10 is formed on the surfaces of the n + type source region 5 and the p + type contact region 6.
  • the source electrode 10 is composed of a plurality of metals (for example, Ni / Al). Specifically, the portion connected to n + type source region 5 is made of a metal capable of ohmic contact with n type SiC, and the portion connected to p type base region 4 via p + type contact region 6 is It is made of a metal capable of ohmic contact with p-type SiC.
  • the source electrode 10 is electrically separated from a gate wiring (not shown) that is electrically connected to the first gate electrode 9a via the interlayer insulating film 11.
  • the source electrode 10 is in electrical contact with the n + type source region 5 and the p + type contact region 6 through a contact hole formed in the interlayer insulating film 11.
  • n + -type semiconductor substrate 1 On the back side of the n + -type semiconductor substrate 1 n + -type semiconductor substrate 1 and electrically connected to the drain electrode 12 are formed. With such a structure, an n-channel type inverted MOSFET having a trench gate structure is formed.
  • the portion of the p-type base region 4 that is in contact with the side surface of the trench 7 becomes an inverted channel, and the source electrode 10 and the drain A current is passed between the electrodes 12.
  • a high voltage eg, 1200 V
  • SiC having an electric field breakdown strength close to 10 times that of a silicon device an electric field close to 10 times that of a silicon device is applied to the trench gate structure due to the influence of this voltage, and electric field concentration can occur.
  • the lower second gate insulating film 8b is made of an insulating material having a higher dielectric constant than the upper first gate insulating film 8a, electric field concentration can be reduced. That is, when the second gate insulating film 8b is formed of an insulating material having a high dielectric constant, the high voltage can be prevented from entering the second gate insulating film 8b as compared with the case where the second gate insulating film 8b is formed of an insulating material having a low dielectric constant. .
  • the entry of the electric field into the first gate insulating film 8a on the upper stage is suppressed, the interval between equipotential lines in the first gate insulating film 8a is widened, and the electric field concentration in the first gate insulating film 8a is reduced. Alleviated. Therefore, it is possible to suppress the dielectric breakdown of the first gate insulating film 8a to be insulated between the first gate electrode 9a and the drain.
  • the first gate insulating film 8a may be formed of a film having a high dielectric constant.
  • the first gate insulating film 8a is compared with the case of forming the film by a film having a low dielectric constant As a result, the film thickness increases.
  • the relative dielectric constant of a silicon oxide film as an example of an insulating material constituting the first gate insulating film 8a is 4.
  • aluminum oxide has a relative dielectric constant of about 8
  • hafnium oxide has a relative dielectric constant of about 16
  • lanthanum oxide has a relative dielectric constant of about 20
  • cerium oxide has a dielectric constant of about 20.
  • the relative dielectric constant is about 20.
  • the first gate insulating film 8a is made of Latania, it needs to be five times as thick as that made of a silicon oxide film.
  • the thickness of the first gate insulating film 8a is increased as described above, the element cannot be miniaturized. Therefore, the first gate insulating film 8a is preferably as thin as possible.
  • the insulating material constituting the first gate insulating film 8a has a lower dielectric constant than the insulating material constituting the second gate insulating film 8b. For this reason, the film thickness of the first gate insulating film 8a can be reduced as compared with the case where it is made of the same material as that of the second gate insulating film 8b. Therefore, it is possible to miniaturize the element.
  • the second gate insulating film 8b is made of an insulating material having a dielectric constant higher than that of the first gate insulating film 8a.
  • the electric field concentration in the first gate insulating film 8a can be relaxed, and the dielectric breakdown of the first gate insulating film 8a can be suppressed.
  • the internal resistance can be reduced by increasing the impurity concentration of the n-type drift layer 2 in order to achieve low on-resistance. Therefore, a SiC semiconductor device having a structure capable of improving the withstand voltage while achieving low on-resistance can be obtained.
  • the film thickness of the second gate insulating film 8b is arbitrary. This is because in the trench gate structure, the first gate insulating film 8a is desired to be protected from dielectric breakdown, and the second gate insulating film 8b is not a protection target. However, if the film thickness of the second gate insulating film 8b is too thin, there is a possibility that the switching speed of the vertical MOSFET is slowed because the capacitance formed between the second gate electrode 9b and the drain increases. For this reason, the thickness of the second gate insulating film 8b is preferably set to be equal to or greater than the thickness of the first gate insulating film 8a.
  • the manufacturing method of the SiC semiconductor device of this embodiment is basically the same as the conventional method, but only the trench gate structure forming process is changed from the conventional method.
  • the second gate insulating film 8b is formed by CVD (chemical vapor deposition) or ALD (atomic layer deposition) so as to cover the inner wall surface of the trench 7.
  • a second gate electrode 9b is formed on the surface of the second gate insulating film 8b. Thereafter, unnecessary portions of the second gate electrode 9b and the second gate insulating film 8b are removed to a position deeper than the p-type base region 4 in the trench 7 by etch back. Thereby, a lower gate structure is formed.
  • a first gate insulating film 8a is formed by CVD or ALD so as to cover the side wall surface of the trench 7 and the upper surface of the lower gate structure, and the first gate electrode 9a is further formed on the surface of the first gate insulating film 8a.
  • unnecessary portions of the first gate electrode 9a and the first gate insulating film 8a outside the trench 7 are removed by etch back.
  • an upper gate structure is formed and a trench gate structure having a double gate structure is formed. If the trench gate structure is formed by such a manufacturing method, the SiC semiconductor device according to the present embodiment can be manufactured by a method similar to the conventional method in the subsequent steps.
  • a second embodiment of the present disclosure will be described.
  • This embodiment has a structure capable of further increasing the breakdown voltage compared to the first embodiment, and the other parts are the same as those of the first embodiment, and therefore only the parts different from the first embodiment will be described.
  • the p-type deep layer 3 is formed on both sides of the trench gate structure so as to be separated from the trench 7 by a predetermined distance.
  • the p-type deep layer 3 is formed in a strip shape parallel to the trench 7, that is, in the longitudinal direction in FIG.
  • trenches 7 are arranged between the p-type deep layers 3.
  • the n-type drift layer 2 is formed with a recessed portion (first recessed portion) 2a that is partially recessed, and a p-type impurity is formed in the recessed portion 2a.
  • a p-type deep layer 3 is formed by embedding a p-type layer doped with.
  • the p-type deep layer 3 has a higher p-type impurity concentration than the p-type base region 4, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the SiC semiconductor device has a structure including the p-type deep layer 3. For this reason, the depletion layer at the PN junction between the p-type deep layer 3 and the n-type drift layer 2 greatly extends to the n-type drift layer 2 side, and a high voltage due to the influence of the drain voltage is applied to the second gate insulating film. It becomes difficult to enter 8b.
  • the electric field concentration in the first gate insulating film 8a particularly the electric field concentration at the bottom of the trench 7 in the first gate insulating film 8a is reduced. It becomes possible to do. Thereby, the dielectric breakdown of the first gate insulating film 8a is further suppressed, and a high breakdown voltage SiC semiconductor device is obtained.
  • a third embodiment of the present disclosure will be described.
  • This embodiment also has a structure capable of further increasing the breakdown voltage compared to the first embodiment, and the other parts are the same as those of the first embodiment, and therefore only the parts different from the first embodiment will be described.
  • a p-type bottom layer 20 is formed in the surface layer portion of the n-type drift layer 2 at the bottom of the trench gate structure.
  • the p-type bottom layer 20 is formed in a strip shape with the entire area of the bottom of the trench 7, that is, the vertical direction in FIG.
  • the p-type bottom layer 20 is formed by ion-implanting p-type impurities after forming the trenches 7 and covering portions other than the trenches 7 with a mask.
  • the p-type bottom layer 20 has a p-type impurity concentration higher than that of the p-type base region 4, for example, about 1 ⁇ 10 17 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the SiC semiconductor device according to the present embodiment has a structure including the p-type bottom layer 20. For this reason, the depletion layer at the PN junction between the p-type bottom layer 20 and the n-type drift layer 2 greatly extends to the n-type drift layer 2 side, and a high voltage due to the influence of the drain voltage is applied to the second gate insulating film. It becomes difficult to enter 8b.
  • the electric field concentration in the first gate insulating film 8a particularly the electric field concentration at the bottom of the trench 7 in the first gate insulating film 8a is reduced. It becomes possible to do. Thereby, the dielectric breakdown of the first gate insulating film 8a is further suppressed, and a high breakdown voltage SiC semiconductor device is obtained.
  • the side surface of the trench 7 is perpendicular to the substrate or the bottom of the trench 7 is closer to the entrance side.
  • the side surface is reversely tapered by increasing the width. This is because if the side surface of the trench 7 is inclined, ion implantation is also performed on the side surface, which may change the element characteristics of the vertical MOSFET.
  • the layout of the p-type deep layer 3 described in the second embodiment is an example, and is not limited to being formed in parallel to the trench 7, but may be formed so as to intersect with the trench 7, It may be formed in a shape or a mesh shape.
  • the trench 7 is not limited to a stripe shape, but may be a dot shape or a mesh shape.
  • a structure including both the p-type deep layer 3 described in the second embodiment and the p-type bottom layer 20 described in the third embodiment may be employed.
  • the SiC semiconductor device has been described as an example.
  • the semiconductor device may be composed of other semiconductor materials such as Si.
  • the n type drift layer 2 is formed on the n + type semiconductor substrate 1 constituting the drain region.
  • the n-type drift layer 2 is composed of an n-type substrate, and n-type impurity ion implantation is performed on the back side of the n-type substrate, thereby forming a drain region composed of the n + -type layer. You may make it.
  • the p-type deep layer 3 is formed deeper than the trench 7.
  • the p-type deep layer 3 is formed deeper than at least the upper gate structure. That is, since it is the first gate insulating film 8a that protects against breakdown in the p-type deep layer 3, it is only necessary to reduce the electric field in the first gate insulating film 8a. Therefore, the effect of electric field relaxation in the first gate insulating film 8a can be obtained by making at least the p-type deep layer 3 deeper than the upper gate structure.
  • an n-channel type MOSFET in which the first conductivity type is n-type and the second conductivity type is p-type has been described as an example.
  • the present disclosure can be applied to a channel type MOSFET.
  • a MOSFET having a trench gate structure has been described as an example, but the present disclosure can be applied to an IGBT having a similar trench gate structure.
  • the IGBT only changes the conductivity type of the substrate 1 from the n-type to the p-type with respect to the above-described embodiments, and the other structures and manufacturing methods are the same as those of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 半導体装置は、第1または第2導電型半導体にて構成されたドレイン領域(1)と、第1導電型半導体で構成されたドリフト層(2)と、第2導電型半導体で構成されたベース領域(4)と、高濃度の第1導電型半導体で構成されたソース領域(5)と、高濃度の第2導電型半導体で構成されたコンタクト領域(6)と、上段側ゲート構造、および、下段側ゲート構造を含むトレンチゲート構造と、前記ソース領域および前記コンタクト領域に接続されたソース電極(10)と、前記ドレイン領域の裏面側に配置されたドレイン電極(12)と、を備える。前記上段側ゲート構造は、トレンチ(7)内における上段側に配置され、第1ゲート絶縁膜(8a)と第1ゲート電極(9a)とを有する。また、前記下段側ゲート構造は、前記トレンチ内における下段側に配置され、高い誘電率の絶縁材料で構成された第2ゲート絶縁膜(8b)と第2ゲート電極(9b)とを有する。

Description

半導体装置 関連出願の相互参照
 本出願は、2015年3月24日に出願された日本特許出願番号2015-61395号に基づくもので、ここにその記載内容を援用する。
 本開示は、トレンチゲート構造を有する半導体装置に関し、特に、炭化珪素(以下、SiCという)にて構成される半導体装置に適用されて好適である。
 従来より、大電流が流せるようにチャネル密度を高くした構造としてトレンチゲート構造を有する半導体装置が知られている。このトレンチゲート構造において、ゲート電極の直下にもう一つのゲート電極(以下、上段側を第1ゲート電極、下段側を第2ゲート電極という)を備え、第2ゲート電極をソース電位に接続する構造がある(例えば、特許文献1参照)。このような構造とすることで、寄生容量Cgdの低減やトレンチゲート底部での電界緩和を図っている。
 第1ゲート電極と第2ゲート電極の2段を備えたダブルゲート構造とし、ソース電位とされた第2ゲート電極によってシールド効果を得ることができることから、第1ゲート電極とドレインとの間に生じる寄生容量Cgd(帰還容量)を低減できる。したがって、第2ゲート電極を持たないシングルゲート構造のMOSFETと比較して、高速スイッチングを実現することが可能となる。また、第2ゲート電極を備えることにより、上段のゲート絶縁膜中への高電圧の入り込みが抑制される。したがって、上段のトレンチゲート底部での電界集中が緩和され、耐圧向上を図ることが可能となる。
 しかしながら、ダブルゲート構造のMOSFETにおいて低オン抵抗を図るべくドリフト層を高濃度にすると、ダブルゲート構造の底部に大きな電界が掛かり、ゲート絶縁膜の絶縁破壊が生じることが懸念される。特に、SiCによってダブルゲート構造を有する半導体装置を構成する場合、Siによって構成する場合よりも大きな電界がダブルゲート構造の底部に掛かり、ゲート絶縁膜の絶縁破壊の問題がさらに発生し得る。オン抵抗の低減とゲート絶縁膜にかかる電界強度との関係はトレードオフの関係があるため、低オン抵抗を図りつつ、絶縁耐圧の向上を図ることが困難であるが、これらの両立が図れる構造が望まれている。
特開2011-199109号公報
 本開示は、低オン抵抗を図りつつ、絶縁耐圧を向上させることが可能な構造の半導体装置を提供することを目的とする。
 本開示の一態様に係る半導体装置は、第1または第2導電型半導体にて構成されたドレイン領域と、前記ドレイン領域の上に配置され、前記ドレイン領域よりも低不純物濃度の第1導電型半導体で構成されたドリフト層と、前記ドリフト層の上に配置され、第2導電型半導体で構成されたベース領域と、前記ベース領域の上層部に配置され、前記ドリフト層よりも高濃度の第1導電型半導体で構成されたソース領域と、前記ベース領域の上層部に配置され、前記ベース層よりも高濃度とされた第2導電型半導体で構成されたコンタクト領域と、上段側ゲート構造、および、下段側ゲート構造を含むトレンチゲート構造と、前記ソース領域および前記コンタクト領域に電気的に接続されたソース電極と、前記ドレイン領域の裏面側に配置されたドレイン電極と、を備えている。前記上段側ゲート構造は、前記ソース領域の表面から前記ベース領域よりも深くまで配置されたトレンチ内における上段側に配置され、前記トレンチの入口から前記ベース領域よりも深くまで配置された第1ゲート絶縁膜と該第1ゲート絶縁膜上に配置された第1ゲート電極とを有する。また、前記下段側ゲート構造は、前記トレンチ内における下段側に配置され、前記第1ゲート絶縁膜よりも深い位置において前記トレンチの内壁面上に配置されると共に前記第1ゲート絶縁膜よりも高い誘電率の絶縁材料で構成された第2ゲート絶縁膜と該第2ゲート絶縁膜上に配置された第2ゲート電極とを有する。
 このように、下段側の第2ゲート絶縁膜を上段側の第1ゲート絶縁膜よりも誘電率の高い絶縁材料によって構成していることから、電界集中を緩和できる。すなわち、誘電率の高い絶縁材料によって第2ゲート絶縁膜を構成すると、誘電率の低い絶縁材料で構成する場合と比較して、第2ゲート絶縁膜内への高電圧の入り込みを抑制できる。これにより、上段側の第1ゲート絶縁膜への電界の入り込みが抑制され、第1ゲート絶縁膜内における等電位線の間隔が広がって、第1ゲート絶縁膜内での電界集中が緩和される。これにより、第1ゲート電極とドレインとの間の絶縁を図るべき第1ゲート絶縁膜の絶縁破壊を抑制することが可能となる。
 そして、このように第1ゲート絶縁膜の絶縁破壊を抑制できることから、低オン抵抗を図るためにドリフト層の不純物濃度を高くして内部抵抗の低減を図ることが可能となる。よって、低オン抵抗を図りつつ、絶縁耐圧を向上させることが可能な構造の半導体装置にできる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態にかかるSiC半導体装置の断面構成を示す図であり、 図2は、本開示の第2実施形態にかかるSiC半導体装置の断面構成を示す図であり、及び、 図3は、本開示の第3実施形態にかかるSiC半導体装置の断面構成を示す図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態について説明する。ここでは、半導体装置をSiCによって形成したSiC半導体装置を例に挙げて説明するが、Siなどの他の半導体材料によって半導体装置を構成しても良い。
 まず、本実施形態にかかる反転型のトレンチゲート構造の縦型MOSFETを有するSiC半導体装置について、図1を参照して説明する。なお、図1では、縦型MOSFETの1セル分しか記載していないが、図1に示す縦型MOSFETと同様の構造のものが複数セル隣り合うように配置されている。ここでいう1セルとは、後述するp+型コンタク
ト領域6の中心からトレンチゲート構造を挟んで隣に位置するp+型コンタクト領域6の中心までのことを意味している。
 図1に示すように、n型不純物(リンもしくは窒素など)が高濃度、例えば1×1019~1×1020cm-3の不純物濃度でドープされた厚さ300μm程度のSiC単結晶からなるn+型半導体基板1を用いてSiC半導体装置を形成している。このn+型半導体基板1の上に、n型不純物が例えば1×1015~1×1016cm-3の不純物濃度でドープされた厚さが5~15μm程度のSiCからなるn型ドリフト層2が形成されている。
 また、n型ドリフト層2の表面上に、SiCからなるp型ベース領域4が形成されている。p型ベース領域4は、縦型MOSFETのチャネル領域を構成する層であり、後述するトレンチゲート構造を構成するトレンチ7の両側において、トレンチ7の側面に接するように形成されている。p型ベース領域4は、p型不純物が例えば1×1015~1×1018cm-3の不純物濃度でドープされ、厚さが0.7~1.8μm程度で構成されている。
 p型ベース領域4の表層部のうちのトレンチ7側には、トレンチゲート構造に接するようにn型不純物が高濃度にドープされたn+型ソース領域5が形成されている。本実施形態の場合、例えばn+型ソース領域5をp型ベース領域4へのイオン注入などによって形成しており、不純物濃度が1×1021cm-3程度、厚さが0.3μm程度で形成している。また、p型ベース領域4の表層部のうちn+型ソース領域5を挟んでトレンチ7と反対側には、p型不純物が高濃度にドープされたp+型コンタクト領域6が形成されている。本実施形態の場合、例えばp+型コンタクト領域6をp型ベース領域4へのイオン注入などによって形成しており、不純物濃度が1×1021cm-3程度、厚さが0.3μm程度で形成している。
 さらに、p型ベース領域4およびn+型ソース領域5を貫通してn型ドリフト層2に達し、かつ、底部がn+型半導体基板1の表面から所定距離離れる深さとされたトレンチ7が形成されている。このため、トレンチ7の側面と接するようにp型ベース領域4およびn+型ソース領域5が配置された状態になっている。
 そして、このトレンチ7内にダブルゲート構造が構成されている。具体的には、トレンチ7内において、トレンチ7の入口側となる上段側に、第1ゲート絶縁膜8aと第1ゲート電極9aを有する上段側ゲート構造が備えられ、その下段側に、第2ゲート絶縁膜8bと第2ゲート電極9bを有する下段側ゲート構造が備えられている。
 上段側ゲート構造に備えられる第1ゲート絶縁膜8aは、例えばシリコン酸化膜(SiO2)などの比較的誘電率の小さな絶縁膜によって構成されており、例えば50~100nm程度の膜厚とされている。第1ゲート電極9aは、トレンチ7の表面からp型ベース領域4の底部よりも深い位置まで形成されている。第1ゲート電極9aは、不純物がドープされたPoly-Siにて構成されており、図示しないゲート配線に接続されることでゲート電圧が印加可能とされている。これにより、ゲート電圧印加時には、p型ベース領域4のうちトレンチ7の側面、つまり第1ゲート電極9aと対向する部分の全域にチャネルが形成可能とされている。第1ゲート絶縁膜8aおよび第1ゲート電極9aの全体を含めた上段側ゲート構造の深さについては、第1ゲート電極9aの底部がp型ベース領域4の底部よりも深い位置となっていれば良く、例えば0.8~2μmの深さに設定してある。
 下段側ゲート構造に備えられる第2ゲート絶縁膜8bは、第1ゲート絶縁膜8aよりも高い誘電率の絶縁膜によって構成されている。例えば、第2ゲート絶縁膜8bは、酸窒化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、窒化ハフニウム、酸化チタニウム、酸化ジルコニウム、希土類酸化物(例えば、酸化ランタン、酸化セリウム、酸化イットリウム)のいずれか1つ、もしくはいずれか2つ以上の混合、もしくはいずれか2つ以上の積層によって形成されている。第2ゲート絶縁膜8bの膜厚については任意であるが、好ましくは第1ゲート絶縁膜8a以上の膜厚とされていると良く、本実施形態では例えば50~100nm程度の膜厚とされている。第2ゲート電極9bは、トレンチ7のうち上段側ゲート構造の底部からn+型半導体基板1よりも浅い位置、つまりn型ドリフト層2の厚み内に形成されている。第2ゲート電極9bは、図1とは別断面において後述するソース電極10に接続されてソース電位とされる。第2ゲート電極9bは、不純物がドープされたPoly-Siにて構成されている。第2ゲート絶縁膜8bおよび第2ゲート電極9bの全体を含めた下段側ゲート構造の深さについては、下段ゲート構造がn型ドリフト層2の厚み内に形成されていれば任意であるが、例えば上段側ゲート構造の底部より0.8~2μmの深さに設定してある。
 このような構造により、トレンチ7内において上段側ゲート構造および下段側ゲート構造のダブルゲート構造が形成されたトレンチゲート構造が構成されている。
 なお、図1では示されていないが、トレンチゲート構造は、例えば紙面垂直方向を長手方向とした短冊状とされており、複数本のトレンチゲート構造が紙面左右方向に等間隔にストライプ状に並べられることで複数セルが備えられた構造とされている。
 また、n+型ソース領域5およびp+型コンタクト領域6の表面には、ソース電極10が形成されている。ソース電極10は、複数の金属(例えばNi/Al等)にて構成されている。具体的には、n+型ソース領域5に接続される部分はn型SiCとオーミック接触
可能な金属で構成され、p+型コンタクト領域6を介してp型ベース領域4に接続される
部分はp型SiCとオーミック接触可能な金属で構成されている。なお、ソース電極10は、層間絶縁膜11を介して、第1ゲート電極9aに電気的に接続される図示しないゲート配線と電気的に分離されている。そして、層間絶縁膜11に形成されたコンタクトホールを通じて、ソース電極10はn+型ソース領域5およびp+型コンタクト領域6と電気的に接触させられている。
 さらに、n+型半導体基板1の裏面側にはn+型半導体基板1と電気的に接続されたドレイン電極12が形成されている。このような構造により、nチャネルタイプの反転型のトレンチゲート構造の縦型MOSFETが構成されている。
 このように構成された縦型MOSFETは、第1ゲート電極9aに対してゲート電圧を印加すると、p型ベース領域4のうちトレンチ7の側面に接する部分が反転型チャネルとなり、ソース電極10とドレイン電極12との間に電流を流す。
 一方、ゲート電圧を印加しない場合はドレイン電圧として高電圧(例えば1200V)が印加される。シリコンデバイスの10倍近い電界破壊強度を有するSiCでは、この電圧の影響によりトレンチゲート構造にもシリコンデバイスの10倍近い電界がかかり、電界集中が発生し得る。
 しかしながら、本実施形態では、下段側の第2ゲート絶縁膜8bを上段側の第1ゲート絶縁膜8aよりも誘電率の高い絶縁材料によって構成していることから、電界集中を緩和できる。すなわち、誘電率の高い絶縁材料によって第2ゲート絶縁膜8bを構成すると、誘電率の低い絶縁材料で構成する場合と比較して、第2ゲート絶縁膜8b内への高電圧の入り込みを抑制できる。これにより、上段側の第1ゲート絶縁膜8aへの電界の入り込みが抑制され、第1ゲート絶縁膜8a内における等電位線の間隔が広がって、第1ゲート絶縁膜8a内での電界集中が緩和される。したがって、第1ゲート電極9aとドレインとの間の絶縁を図るべき第1ゲート絶縁膜8aの絶縁破壊を抑制することが可能となる。
 ここで、誘電率の高い膜で構成する第2ゲート絶縁膜8bと同様、第1ゲート絶縁膜8aについても誘電率の高い膜で構成することも考えられる。しかしながら、誘電率の高い膜で第1ゲート絶縁膜8aを構成する場合、誘電率の低い膜で形成する場合と同じ酸化膜容量を得るためには、誘電率の低い膜で形成する場合と比較して膜厚が厚くなる。
 例えば、第1ゲート絶縁膜8aを構成する絶縁材料の一例としたシリコン酸化膜の比誘電率は4である。また、第2ゲート絶縁膜8bを構成する絶縁材料の一例とした酸化アルミニウムの比誘電率は約8、酸化ハフニウムの比誘電率は約16、酸化ランタンの比誘電率は約20、酸化セリウムの比誘電率は約20である。第1ゲート絶縁膜8aを第2ゲート絶縁膜8bと同じ材料で構成する場合、その誘電率の比に対応する厚み分、第1ゲート絶縁膜8aの膜厚を厚くする必要がある。例えば、第1ゲート絶縁膜8aをラタニアで構成する場合、シリコン酸化膜で構成する場合の5倍の膜厚が必要になる。このように第1ゲート絶縁膜8aの膜厚が厚くなると、素子を微細化することができなくなることから、第1ゲート絶縁膜8aの膜厚はできるだけ薄い方が好ましい。
 これに対して、本実施形態では、第1ゲート絶縁膜8aを構成する絶縁材料を第2ゲート絶縁膜8bを構成する絶縁材料よりも誘電率の低いものとしている。このため、第1ゲート絶縁膜8aの膜厚を第2ゲート絶縁膜8bと同じ材料で構成する場合と比較して薄くすることが可能となる。したがって、素子の微細化を図ることが可能となる。
 このように、第2ゲート絶縁膜8bを第1ゲート絶縁膜8aよりも誘電率の高い絶縁材料で構成している。これにより、第1ゲート絶縁膜8a内での電界集中を緩和でき、第1ゲート絶縁膜8aの絶縁破壊を抑制することが可能となる。そして、このように第1ゲート絶縁膜8aの絶縁破壊を抑制できることから、低オン抵抗を図るためにn型ドリフト層2の不純物濃度を高くして内部抵抗の低減を図ることが可能となる。よって、低オン抵抗を図りつつ、絶縁耐圧を向上させることが可能な構造のSiC半導体装置にできる。
 また、第2ゲート絶縁膜8bの膜厚については任意である。これは、トレンチゲート構造において、絶縁破壊から保護したいのは第1ゲート絶縁膜8aの方で、第2ゲート絶縁膜8bについては保護対象ではないためである。ただし、第2ゲート絶縁膜8bの膜厚が薄すぎると、第2ゲート電極9bとドレインとの間に構成される容量が大きくなることで縦型MOSFETのスイッチング速度を遅くする可能性がある。このため、好ましくは第2ゲート絶縁膜8bの膜厚を第1ゲート絶縁膜8aの膜厚以上に設定するのが良い。
 なお、本実施形態のSiC半導体装置の製造方法については、基本的には従来と同様であるが、トレンチゲート構造の形成工程についてのみ、従来から変更する。例えば、エッチングによってトレンチ7を形成したのち、トレンチ7の内壁面を覆うようにCVD(chemical vapor deposition)またはALD(atomic layer deposition)等によって第2ゲート絶縁膜8bを形成する。さらに、第2ゲート絶縁膜8bの表面に第2ゲート電極9bを形成する。その後、エッチバックによって、トレンチ7のうちのp型ベース領域4よりも深い位置まで第2ゲート電極9bおよび第2ゲート絶縁膜8bの不要部分を除去する。これにより、下段側ゲート構造が形成される。続いて、トレンチ7の側壁面および下段側ゲート構造の上面を覆うように、CVDまたはALD等によって第1ゲート絶縁膜8aを形成し、さらに第1ゲート絶縁膜8aの表面に第1ゲート電極9aを形成する。その後、エッチバックによって、トレンチ7の外部における第1ゲート電極9aおよび第1ゲート絶縁膜8aの不要部分を除去する。これにより、上段側ゲート構造が形成され、ダブルゲート構造のトレンチゲート構造が形成される。このような製造方法によってトレンチゲート構造を形成すれば、後の工程については従来と同様の方法によって本実施形態にかかるSiC半導体装置を製造することができる。
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して更に高耐圧化できる構造としたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図2に示すように、本実施形態のSiC半導体装置では、トレンチゲート構造の両側において、トレンチ7から所定距離離れるようにp型ディープ層3が形成されている。本実施形態の場合、p型ディープ層3は、トレンチ7と平行に、つまり図2の紙面垂直方向を長手方向とした短冊状とされ、複数本のp型ディープ層3がストライプ状に並べられ、各p型ディープ層3の間にトレンチ7が配置されたレイアウトとされている。具体的には、トレンチ7が形成される位置の両側において、n型ドリフト層2には部分的に凹まされた凹部(第1凹部)2aが形成されており、この凹部2a内にp型不純物がドープされたp型層が埋め込まれることによってp型ディープ層3が形成されている。p型ディープ層3は、p型ベース領域4よりもp型不純物濃度が高濃度とされており、例えば1×1017~1×1019cm-3程度とされている。
 このように、本実施形態にかかるSiC半導体装置では、p型ディープ層3を備えた構造としている。このため、p型ディープ層3とn型ドリフト層2とのPN接合部での空乏層がn型ドリフト層2側に大きく伸びることになり、ドレイン電圧の影響による高電圧が第2ゲート絶縁膜8bに入り込み難くなる。
 したがって、第1ゲート絶縁膜8aへは更に高電圧が入り込み難くなり、第1ゲート絶縁膜8a内での電界集中、特に第1ゲート絶縁膜8aのうちのトレンチ7の底部での電界集中を緩和することが可能となる。これにより、より第1ゲート絶縁膜8aの絶縁破壊が抑制され、高耐圧のSiC半導体装置となる。
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態も、第1実施形態に対して更に高耐圧化できる構造としたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図3に示すように、本実施形態のSiC半導体装置では、トレンチゲート構造の底部におけるn型ドリフト層2の表層部に、p型ボトム層20が形成されている。本実施形態の場合、p型ボトム層20は、トレンチ7の底部の全域、つまり図3の紙面垂直方向を長手方向とした短冊状に形成されている。例えば、p型ボトム層20は、トレンチ7を形成したのち、トレンチ7以外の部分をマスクで覆った状態でp型不純物をイオン注入することで形成される。p型ボトム層20は、p型ベース領域4よりもp型不純物濃度が高濃度とされており、例えば1×1017~1×1019cm-3程度とされている。
 このように、本実施形態にかかるSiC半導体装置では、p型ボトム層20を備えた構造としている。このため、p型ボトム層20とn型ドリフト層2とのPN接合部での空乏層がn型ドリフト層2側に大きく伸びることになり、ドレイン電圧の影響による高電圧が第2ゲート絶縁膜8bに入り込み難くなる。
 したがって、第1ゲート絶縁膜8aへは更に高電圧が入り込み難くなり、第1ゲート絶縁膜8a内での電界集中、特に第1ゲート絶縁膜8aのうちのトレンチ7の底部での電界集中を緩和することが可能となる。これにより、より第1ゲート絶縁膜8aの絶縁破壊が抑制され、高耐圧のSiC半導体装置となる。
 なお、本実施形態のようなトレンチ7の底部に形成されるp型ボトム層20をイオン注入によって形成する場合、トレンチ7の側面が基板に対して垂直もしくはトレンチ7の底部の方が入口側よりも幅広となることで側面が逆テーパ状とされるのが好ましい。これは、トレンチ7の側面が傾斜していると、その側面にもイオン注入が行われることになり、縦型MOSFETの素子特性を変動させる可能性があるためである。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、本開示に記載した技術の範囲内において適宜変更が可能である。
 例えば、第2実施形態で説明したp型ディープ層3のレイアウトは一例であり、トレンチ7に対して平行に形成されている場合に限らず、トレンチ7と交差するように形成されていたり、ドット状や網目状に形成されていても良い。また、トレンチ7についてもストライプ状に限らず、ドット状とされていたり、網目状とされていても良い。
 また、第2実施形態で説明したp型ディープ層3と第3実施形態で説明したp型ボトム層20の両方を備えた構造としても良い。
 また、上記実施形態では、SiC半導体装置を例に挙げて説明したが、Siなどの他の半導体材料によって半導体装置を構成しても良い。上記各実施形態で説明したSiC半導体装置の場合、ドレイン領域を構成するn+型半導体基板1の上にn型ドリフト層2を成
膜するようにしている。これに対して、n型ドリフト層2をn型基板で構成し、n型基板の裏面側にn型不純物イオン注入を行うことなどにより、n+型層にて構成されるドレイン領域が形成されるようにしても良い。
 また、上記第2実施形態では、p型ディープ層3をトレンチ7よりも深くまで形成しているが、少なくとも上段側ゲート構造よりも深くまで形成されていれば良い。すなわち、p型ディープ層3にて絶縁破壊から保護するのは第1ゲート絶縁膜8aであることから、第1ゲート絶縁膜8a内での電界緩和が図れれば良い。したがって、少なくともp型ディープ層3を上段側ゲート構造よりも深くすることで、第1ゲート絶縁膜8a内での電界緩和の効果を得ることができる。
 また、上記各実施形態では、第1導電型をn型、第2導電型をp型としたnチャネルタイプのMOSFETを例に挙げて説明したが、各構成要素の導電型を反転させたpチャネルタイプのMOSFETに対しても本開示を適用することができる。また、上記説明では、トレンチゲート構造のMOSFETを例に挙げて説明したが、同様のトレンチゲート構造のIGBTに対しても本開示を適用することができる。IGBTは、上記各実施形態に対して基板1の導電型をn型からp型に変更するだけであり、その他の構造や製造方法に関しては上記各実施形態と同様である。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  第1または第2導電型半導体にて構成されたドレイン領域(1)と、
     前記ドレイン領域の上に配置され、前記ドレイン領域よりも低不純物濃度の第1導電型半導体で構成されたドリフト層(2)と、
     前記ドリフト層の上に配置され、第2導電型半導体で構成されたベース領域(4)と、
     前記ベース領域の上層部に配置され、前記ドリフト層よりも高濃度の第1導電型半導体で構成されたソース領域(5)と、
     前記ベース領域の上層部に配置され、前記ベース層よりも高濃度とされた第2導電型半導体で構成されたコンタクト領域(6)と、
     上段側ゲート構造、および、下段側ゲート構造を含むトレンチゲート構造と、
     前記ソース領域および前記コンタクト領域に電気的に接続されたソース電極(10)と、
     前記ドレイン領域の裏面側に配置されたドレイン電極(12)と、を備えている半導体装置であって、
     前記上段側ゲート構造は、前記ソース領域の表面から前記ベース領域よりも深くまで配置されたトレンチ(7)内における上段側に配置され、前記トレンチの入口から前記ベース領域よりも深くまで配置された第1ゲート絶縁膜(8a)と該第1ゲート絶縁膜上に配置された第1ゲート電極(9a)とを有し、
     前記下段側ゲート構造は、前記トレンチ内における下段側に配置され、前記第1ゲート絶縁膜よりも深い位置において前記トレンチの内壁面上に配置されると共に前記第1ゲート絶縁膜よりも高い誘電率の絶縁材料で構成された第2ゲート絶縁膜(8b)と該第2ゲート絶縁膜上に配置された第2ゲート電極(9b)とを有する半導体装置。
  2.  前記第1ゲート絶縁膜はシリコン酸化膜によって構成されており、
     前記第2ゲート絶縁膜はシリコン酸化膜よりも誘電率の高い絶縁材料によって構成されている請求項1に記載の半導体装置。
  3.  前記第2ゲート絶縁膜は酸窒化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、窒化ハフニウム、酸化チタニウム、酸化ジルコニウム、希土類酸化物のいずれか1つによって構成されている請求項2に記載の半導体装置。
  4.  前記第2ゲート絶縁膜は酸窒化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、窒化ハフニウム、酸化チタニウム、酸化ジルコニウム、希土類酸化物のいずれか2つ以上の混合材料によって構成されている請求項2に記載の半導体装置。
  5.  前記第2ゲート絶縁膜は酸窒化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、窒化ハフニウム、酸化チタニウム、酸化ジルコニウム、希土類酸化物のいずれか2つ以上の積層によって構成されている請求項2に記載の半導体装置。
  6.  前記ベース領域よりも下方に位置する前記ドリフト層内において、前記上段側ゲート構造よりも深くまで配置され、前記ベース領域よりも第2導電型の不純物濃度が高濃度とされた第2導電型のディープ層(3)を有している請求項1ないし5のいずれか1つに記載の半導体装置。
  7.  前記トレンチの底部における前記ドリフト層内において、前記ベース領域よりも第2導電型の不純物濃度が高濃度とされた第2導電型のボトム層(20)を有している請求項1ないし6のいずれか1つに記載の半導体装置。
  8.  請求項1ないし7のいずれか1つに記載の半導体装置を構成する半導体が炭化珪素によって構成されている炭化珪素半導体装置。
PCT/JP2016/001321 2015-03-24 2016-03-10 半導体装置 WO2016152058A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680017256.0A CN107431092A (zh) 2015-03-24 2016-03-10 半导体装置
US15/560,794 US10128344B2 (en) 2015-03-24 2016-03-10 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061395 2015-03-24
JP2015061395A JP2016181618A (ja) 2015-03-24 2015-03-24 半導体装置

Publications (1)

Publication Number Publication Date
WO2016152058A1 true WO2016152058A1 (ja) 2016-09-29

Family

ID=56977193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001321 WO2016152058A1 (ja) 2015-03-24 2016-03-10 半導体装置

Country Status (4)

Country Link
US (1) US10128344B2 (ja)
JP (1) JP2016181618A (ja)
CN (1) CN107431092A (ja)
WO (1) WO2016152058A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048177A (ja) * 2019-09-17 2021-03-25 株式会社デンソー 半導体装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181617A (ja) * 2015-03-24 2016-10-13 株式会社デンソー 半導体装置
JP6560141B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP6560142B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP2018152460A (ja) * 2017-03-13 2018-09-27 サンケン電気株式会社 制御装置、及び制御装置とその制御装置により制御される半導体装置とを含むシステム
DE102018104581B4 (de) * 2017-03-24 2021-11-04 Infineon Technologies Ag Siliziumcarbid-Halbleitervorrichtung und Herstellungsverfahren
CN109103180B (zh) * 2018-08-15 2023-09-05 深圳市金誉半导体股份有限公司 一种功率器件芯片及其制造方法
US10580878B1 (en) 2018-08-20 2020-03-03 Infineon Technologies Ag SiC device with buried doped region
JP2020047726A (ja) * 2018-09-18 2020-03-26 トヨタ自動車株式会社 半導体装置
JP7101101B2 (ja) * 2018-11-15 2022-07-14 ルネサスエレクトロニクス株式会社 半導体装置
JP7193371B2 (ja) * 2019-02-19 2022-12-20 株式会社東芝 半導体装置
US20210050420A1 (en) * 2019-08-13 2021-02-18 Semiconductor Components Industries, Llc Silicon carbide trench power device
JP7370781B2 (ja) * 2019-09-24 2023-10-30 株式会社東芝 半導体装置
CN113690293B (zh) * 2020-05-18 2024-04-12 华润微电子(重庆)有限公司 Igbt器件及其制备方法
CN111697077B (zh) * 2020-06-18 2022-04-22 电子科技大学 一种SiC沟槽栅功率MOSFET器件及其制备方法
US20220069073A1 (en) * 2020-08-28 2022-03-03 Nanjing Zizhu Microelectronics Co., Ltd. Integrated circuit system with super junction transistor mechanism and method of manufacture thereof
CN113097297A (zh) * 2021-03-26 2021-07-09 上海埃积半导体有限公司 功率器件结构及制作方法
CN115188767A (zh) * 2021-04-02 2022-10-14 长鑫存储技术有限公司 与门结构及与门结构的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319583A (ja) * 2001-02-02 2002-10-31 Samsung Electronics Co Ltd 半導体素子の誘電体膜及びその製造方法
JP2004039813A (ja) * 2002-07-02 2004-02-05 Fujitsu Ltd 半導体装置および非晶質高誘電体膜の堆積方法
JP2010129973A (ja) * 2008-12-01 2010-06-10 Toyota Motor Corp 半導体装置
JP2011108701A (ja) * 2009-11-13 2011-06-02 Renesas Electronics Corp 半導体装置の製造方法
JP2014146666A (ja) * 2013-01-28 2014-08-14 Toshiba Corp 半導体装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
CN103199017B (zh) 2003-12-30 2016-08-03 飞兆半导体公司 形成掩埋导电层方法、材料厚度控制法、形成晶体管方法
JP4955222B2 (ja) 2005-05-20 2012-06-20 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
US8653589B2 (en) * 2009-04-15 2014-02-18 Force Mos Technology Co., Ltd. Low Qgd trench MOSFET integrated with schottky rectifier
JP2011159763A (ja) * 2010-01-29 2011-08-18 Toshiba Corp 電力用半導体装置
JP2011199109A (ja) 2010-03-23 2011-10-06 Renesas Electronics Corp パワーmosfet
JP5717661B2 (ja) * 2011-03-10 2015-05-13 株式会社東芝 半導体装置とその製造方法
US8507978B2 (en) * 2011-06-16 2013-08-13 Alpha And Omega Semiconductor Incorporated Split-gate structure in trench-based silicon carbide power device
JP2014216572A (ja) * 2013-04-26 2014-11-17 株式会社東芝 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319583A (ja) * 2001-02-02 2002-10-31 Samsung Electronics Co Ltd 半導体素子の誘電体膜及びその製造方法
JP2004039813A (ja) * 2002-07-02 2004-02-05 Fujitsu Ltd 半導体装置および非晶質高誘電体膜の堆積方法
JP2010129973A (ja) * 2008-12-01 2010-06-10 Toyota Motor Corp 半導体装置
JP2011108701A (ja) * 2009-11-13 2011-06-02 Renesas Electronics Corp 半導体装置の製造方法
JP2014146666A (ja) * 2013-01-28 2014-08-14 Toshiba Corp 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048177A (ja) * 2019-09-17 2021-03-25 株式会社デンソー 半導体装置
WO2021054259A1 (ja) * 2019-09-17 2021-03-25 株式会社デンソー 半導体装置
JP7120192B2 (ja) 2019-09-17 2022-08-17 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JP2016181618A (ja) 2016-10-13
US20180114845A1 (en) 2018-04-26
CN107431092A (zh) 2017-12-01
US10128344B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2016152058A1 (ja) 半導体装置
US9214526B2 (en) Semiconductor device
JP5530602B2 (ja) 半導体装置およびその製造方法
US8643091B2 (en) Semiconductor device
WO2016152059A1 (ja) 半導体装置
US8541834B2 (en) Semiconductor device and method for manufacturing same
US8680608B2 (en) Power semiconductor device with a low on resistence
TWI407564B (zh) 具有溝槽底部多晶矽結構之功率半導體及其製造方法
JP2013125827A (ja) 半導体装置およびその製造方法
US20140209999A1 (en) Semiconductor device
JP2014135494A (ja) 二重並列チャネル構造を持つ半導体素子及びその半導体素子の製造方法
US20200295150A1 (en) Semiconductor device
JP2012204590A (ja) 半導体装置およびその製造方法
US9041100B2 (en) Semiconductor device, and manufacturing method for same
US9112023B2 (en) Multi-gate VDMOS transistor and method for forming the same
JP5700027B2 (ja) 半導体装置
JP2008543044A (ja) 終端構造を有する半導体デバイス
JP5687582B2 (ja) 半導体素子およびその製造方法
US20200266293A1 (en) Semiconductor device
KR101371495B1 (ko) 반도체 소자 및 그 제조 방법
WO2018147466A1 (ja) 半導体装置
JP2012238898A (ja) ワイドバンドギャップ半導体縦型mosfet
JP2019176104A (ja) スイッチング素子
TW201814904A (zh) 雙擴散金屬氧化物半導體元件及其製造方法
JP6438247B2 (ja) 横型半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15560794

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767968

Country of ref document: EP

Kind code of ref document: A1