WO2016151983A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2016151983A1
WO2016151983A1 PCT/JP2016/000266 JP2016000266W WO2016151983A1 WO 2016151983 A1 WO2016151983 A1 WO 2016151983A1 JP 2016000266 W JP2016000266 W JP 2016000266W WO 2016151983 A1 WO2016151983 A1 WO 2016151983A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium
electrolyte secondary
active material
Prior art date
Application number
PCT/JP2016/000266
Other languages
English (en)
French (fr)
Inventor
尾形 敦
柳田 勝功
貴信 千賀
直也 森澤
村岡 芳幸
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201680003505.0A priority Critical patent/CN107112582A/zh
Priority to JP2017507353A priority patent/JPWO2016151983A1/ja
Publication of WO2016151983A1 publication Critical patent/WO2016151983A1/ja
Priority to US15/678,340 priority patent/US20170346071A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/63Halogen-containing esters of saturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/42Halogen atoms or nitro radicals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a non-aqueous electrolyte secondary battery.
  • Patent Document 1 proposes a non-aqueous electrolyte secondary battery using a positive electrode active material having a particle internal porosity of 3 to 30% in order to improve output characteristics.
  • carbonate solvents such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), propylene carbonate (PC), and ⁇ -butyrolactone, tetrahydrofuran are used. Acetonitrile is described.
  • a non-aqueous electrolyte secondary battery which is an embodiment of the present disclosure is a non-aqueous electrolyte secondary battery including a positive electrode including a lithium-containing transition metal oxide, a negative electrode, and a non-aqueous electrolyte, the lithium-containing transition metal oxide Is characterized in that the porosity inside the particles before the first charge is 0.2 to 30%, and the non-aqueous electrolyte contains a fluorinated cyclic carbonate and a fluorinated chain carboxylic acid ester.
  • the non-aqueous electrolyte secondary battery which is one embodiment of the present disclosure is less likely to cause a capacity decrease due to a charge / discharge cycle and is excellent in discharge rate characteristics.
  • a general positive electrode active material used for a non-aqueous electrolyte secondary battery has almost no voids inside the particles and has a porosity of less than 0.2% (see FIG. 5).
  • the present inventors use a lithium-containing transition metal oxide having a particle internal porosity of 0.2 to 30% before the first charge as a positive electrode active material, and a fluorinated cyclic carbonate and fluorine as a non-aqueous electrolyte solvent. It has been found that the cycle characteristics and the discharge rate characteristics are specifically improved by using a conjugated chain carboxylic acid ester.
  • FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery 10 which is an example of an embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes a positive electrode 11, a negative electrode 12, and a non-aqueous electrolyte.
  • a separator 13 is preferably provided between the positive electrode 11 and the negative electrode 12.
  • the nonaqueous electrolyte secondary battery 10 has a structure in which, for example, a wound electrode body 14 in which a positive electrode 11 and a negative electrode 12 are wound via a separator 13 and a nonaqueous electrolyte are housed in a battery case.
  • a battery case that houses the electrode body 14 and the non-aqueous electrolyte
  • examples of the battery case that houses the electrode body 14 and the non-aqueous electrolyte include a metal case such as a cylindrical shape, a square shape, a coin shape, and a button shape, and a resin case (laminated battery) formed by laminating a resin sheet. It can be illustrated.
  • a battery case is constituted by a bottomed cylindrical case body 15 and a sealing body 16.
  • the nonaqueous electrolyte secondary battery 10 includes insulating plates 17 and 18 disposed above and below the electrode body 14, respectively.
  • the positive electrode lead 19 attached to the positive electrode 11 extends to the sealing body 16 side through the through hole of the insulating plate 17, and the negative electrode lead 20 attached to the negative electrode 12 passes through the outside of the insulating plate 18. Extending to the bottom side of the case body 15.
  • the positive electrode lead 19 is connected to the lower surface of the filter 22 that is the bottom plate of the sealing body 16 by welding or the like, and the cap 26 that is the top plate of the sealing body 16 electrically connected to the filter 22 serves as the positive electrode terminal.
  • the negative electrode lead 20 is connected to the bottom inner surface of the case main body 15 by welding or the like, and the case main body 15 serves as a negative electrode terminal.
  • the sealing body 16 is provided with a current interruption mechanism (CID) and a gas discharge mechanism (safety valve). It is preferable to provide a gas discharge valve at the bottom of the case body 15 as well.
  • the case body 15 is, for example, a bottomed cylindrical metal container.
  • a gasket 27 is provided between the case main body 15 and the sealing body 16 to ensure the airtightness inside the battery case.
  • the case body 15 preferably has an overhanging portion 21 that supports the sealing body 16 formed by pressing the side surface portion from the outside, for example.
  • the overhang portion 21 is preferably formed in an annular shape along the circumferential direction of the case body 15, and supports the sealing body 16 on the upper surface thereof.
  • the sealing body 16 has a filter 22 in which a filter opening 22 a is formed, and a valve body disposed on the filter 22.
  • the valve element closes the filter opening 22a of the filter 22, and breaks when the internal pressure of the battery rises due to heat generated by an internal short circuit or the like.
  • a lower valve body 23 and an upper valve body 25 are provided as valve bodies, and an insulating member 24 disposed between the lower valve body 23 and the upper valve body 25, and a cap having a cap opening 26a. 26 is further provided.
  • the members constituting the sealing body 16 have, for example, a disk shape or a ring shape, and the members other than the insulating member 24 are electrically connected to each other.
  • the filter 22 and the lower valve body 23 are joined to each other at the peripheral portion, and the upper valve body 25 and the cap 26 are also joined to each other at the peripheral portion.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at the center, and an insulating member 24 is interposed between the peripheral edges.
  • the positive electrode includes a positive electrode current collector such as a metal foil and a positive electrode mixture layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil and a positive electrode mixture layer formed on the positive electrode current collector.
  • a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode mixture layer preferably includes a conductive material and a binder in addition to the lithium-containing transition metal oxide.
  • the lithium-containing transition metal oxide functions as a positive electrode active material.
  • the positive electrode active material one type of lithium-containing transition metal oxide may be used alone, or two or more types may be used in combination.
  • the positive electrode active material only the lithium-containing transition metal oxide is used as the positive electrode active material (the positive electrode active material and the lithium-containing transition metal oxide mean the same thing).
  • the positive electrode for example, a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, and the like is applied onto a positive electrode current collector, the coating film is dried, and then rolled to collect a positive electrode mixture layer. It can be produced by forming on both sides of the body.
  • the conductive material is used to increase the electrical conductivity of the positive electrode mixture layer.
  • Examples of the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the binder is used to maintain a good contact state between the positive electrode active material and the conductive material and to enhance the binding property of the positive electrode active material or the like to the surface of the positive electrode current collector.
  • the binder include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resin, acrylic resin, and polyolefin resin.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • polyimide resin acrylic resin
  • polyolefin resin polyolefin resin.
  • the mixing ratio of the positive electrode active material, the conductive material, and the binder is in the range of 80 to 98% by mass of the positive electrode active material, 0.8 to 20% by mass of the conductive material, and 0.8 to 20% by mass of the binder. It is desirable. When the blending ratio is within the above range, high energy density and good cycle characteristics are easily obtained. When the positive electrode active material exceeds 99% by mass, the electron conductivity in the positive electrode is lowered, and the cycle characteristics may be lowered due to capacity reduction or heterogeneous reaction.
  • FIG. 2 is an SEM image before the charge / discharge cycle
  • FIG. 3 is an SEM image after 400 cycles.
  • composite oxide A examples include composite oxides containing transition metal elements such as Co, Mn, and Ni.
  • the composite oxide A is, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1 -y O 2 , Li x Co y M 1 -y O z , Li x Ni 1 -y.
  • Li y O z Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni, At least one of Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3).
  • a suitable example of the composite oxide A is a composite oxide in which the ratio of Ni to the total number of moles of metal elements excluding Li is greater than 30 mol%.
  • the Ni content is preferably more than 30 mol% from the viewpoints of cost reduction and capacity increase.
  • the composite oxide A has, for example, the general formula Li a Co x Ni y M (1 - xy) O 2 ⁇ 0.1 ⁇ a ⁇ 1.2, 0 ⁇ x ⁇ 0.4, 0.3 ⁇ y ⁇ 1, 0.3 ⁇ x + y ⁇ 1, M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, B, preferably Mn, Al , At least one selected from Zr ⁇ , and has a layered rock salt type crystal structure.
  • the composite oxide A is a secondary particle formed by aggregating many primary particles. For this reason, the composite oxide A has grain boundaries of primary particles. Although the secondary particles may also aggregate, the secondary particles can be separated from each other by ultrasonic dispersion.
  • the volume average particle diameter (hereinafter referred to as “Dv”) of the composite oxide A is preferably 7 to 30 ⁇ m, more preferably 8 to 30 ⁇ m, and particularly preferably 9 to 25 ⁇ m. Dv is a particle diameter (median diameter) when the volume integrated value is 50% in the particle diameter distribution, and can be measured by a light diffraction scattering method.
  • the average crystallite size of the composite oxide A is preferably 40 to 140 nm. More preferably, it is 40 to 100 nm. If the average crystallite size is within this range, the expansion / contraction of the active material during the initial charge is equalized, and the cycle characteristics are further improved.
  • the crystallite size of the composite oxide A exceeds 140 nm, even if a high-quality film that suppresses a side reaction with the electrolytic solution is formed on the particle surface of the oxide, a specific direction of the crystal, particularly c The film may be destroyed by expansion and contraction in the axial direction. As a result, the current concentrates on the portion where the film is less deposited and the electronic resistance is low, so that the active material may be deteriorated and the cycle characteristics may be deteriorated.
  • the crystallite size is smaller than 40 nm, crystal growth becomes insufficient, lithium ion insertion and detachment hardly occur, and the positive electrode capacity may be reduced.
  • the average crystallite size is measured by the method described in Examples described later.
  • the complex oxide A has a large number of voids inside the particles.
  • the voids are spaces formed between the primary particles constituting the secondary particles of the composite oxide A, and increase the surface area of the composite oxide A that contributes to the battery reaction, that is, the reaction field with the electrolytic solution.
  • the voids present inside the composite oxide A are formed as spaces in which, for example, part of the voids communicate with each other and are connected to the surface of the secondary particles so that the electrolyte can flow in. Has been. However, not all the voids may communicate with the surface of the secondary particles, and there may be closed voids into which the electrolyte does not flow.
  • the composite oxide A has a porosity of 0.2 to 30% inside the particles before the first charge.
  • the porosity is preferably 0.5 to 20%, more preferably 2 to 15%. If the porosity is within this range, it is possible to suppress particle cracking by relaxing strain between particles caused by expansion / contraction of the active material during charge / discharge, and further increase the reaction field with the electrolyte.
  • a high-quality protective film is formed over a wide range of the oxide surface including the inside of the gap due to a synergistic effect with the solvent component of the electrolytic solution described later.
  • the porosity is less than 0.2%, the reaction field with the electrolytic solution is reduced, and the decomposition product of the electrolytic solution with low ionic conductivity is deposited thick due to current concentration on the electrochemically active surface. In addition to causing a decrease in capacity, distortion due to a volume change of the active material during charge / discharge is not alleviated, and particle breakage of the active material occurs, resulting in a decrease in capacity retention rate. On the other hand, if the porosity exceeds 30%, the discharge capacity per unit volume of the active material decreases, which is not preferable.
  • the porosity of the composite oxide A means the ratio of the area occupied by the voids to the total area of the oxide particles in the particle cross section, and can be determined by SEM observation of the particle cross section.
  • a specific method for measuring the porosity is as follows. (1) A CP cross section of the composite oxide A is obtained. For this operation, for example, a cross section polisher (ex. SM-09010) manufactured by JEOL can be used. (2) The obtained CP cross section (exposed particle cross section) is observed with an SEM, and the outline of the particle is drawn.
  • the ratio of the area of the void existing in the range surrounded by the contour line to the total area of the range surrounded by the contour line (total area of the CP cross section) is measured, and the void ratio (void area / CP The total area of the cross section) ⁇ 100 is calculated.
  • the porosity is an average value for 100 particles.
  • the porosity of the composite oxide A does not change greatly even when the charge / discharge cycle is repeated (see FIG. 3). In addition, when the particle crack accompanying a charging / discharging generate
  • the porosity in the initial cycle of less than 100 times is the first charge. It is substantially the same as the previous porosity.
  • the porosity of the composite oxide A is preferably 30% or less even after 400 cycles, for example, 0.2 to 20%, or 0.5 to 15%.
  • the porosity of the composite oxide A can be adjusted by the mixing ratio of the lithium compound and the transition metal compound, the precursor, the firing temperature, time, atmosphere, and the like. For example, in a mixture of a lithium raw material and a transition metal compound, if the molar ratio of lithium / transition metal exceeds 1.2, voids decrease with the progress of sintering during firing. In addition, when the molar ratio of lithium / transition metal becomes 0.9 or less, the proportion of compounds that do not contribute to charge / discharge increases, and the capacity may decrease. When the firing temperature is increased, sintering proceeds and voids tend to decrease. The firing time and atmosphere are equally important factors. When the firing temperature is lowered, the voids increase, but the reaction between the lithium compound and the transition metal compound becomes difficult to proceed, and the proportion of unreacted materials may increase.
  • a negative electrode is comprised with the negative electrode collector which consists of metal foil etc., for example, and the negative electrode compound-material layer formed on the said collector.
  • the negative electrode current collector a metal foil that is stable in the potential range of a negative electrode such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer preferably includes a binder in addition to the negative electrode active material.
  • the negative electrode is prepared by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. on a negative electrode current collector, drying the coating film, and rolling the negative electrode mixture layer on both sides of the current collector. It can be manufactured by forming.
  • the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium ions.
  • carbon materials such as natural graphite and artificial graphite, lithium and alloys such as silicon (Si) and tin (Sn), etc. Or an alloy containing a metal element such as Si or Sn, a composite oxide, or the like can be used.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more types.
  • CMC or a salt thereof CMC-Na, CMC-K, CMC-NH 4 or the like may be a partially neutralized salt
  • SBR rubber
  • PAA polyacrylic acid
  • PAA-Na, PAA-K, etc. or a partially neutralized salt
  • PVA polyvinyl alcohol
  • the mixing ratio of the negative electrode active material and the binder is preferably in the range of 93 to 99% by mass of the negative electrode active material and 0.5 to 10% by mass of the binder, respectively. When the blending ratio is within the above range, high energy density and good cycle characteristics are easily obtained.
  • the separator a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • the material of the separator polyolefin resin such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as a polyolefin resin.
  • the multilayer separator containing a polyethylene layer and a polypropylene layer may be sufficient, and what aramid resin etc. were apply
  • a filler layer containing an inorganic filler may be formed at the interface between the separator and at least one of the positive electrode and the negative electrode.
  • the inorganic filler include oxides containing at least one of titanium (Ti), aluminum (Al), silicon (Si), and magnesium (Mg), and phosphoric acid compounds.
  • the filler layer can be formed, for example, by applying a slurry containing the filler to the surface of the positive electrode, the negative electrode, or the separator.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent contains at least a fluorinated cyclic carbonate and a fluorinated chain carboxylic acid ester.
  • a high-quality film is formed on the particle surface of the positive electrode active material having voids, and deposition of side reaction products is suppressed.
  • the proportion of the fluorinated cyclic carbonate and the fluorinated chain carboxylic acid ester in the total volume of the nonaqueous solvent is preferably 50% by volume or more.
  • the fluorinated chain carboxylic acid ester is preferably contained more than the fluorinated cyclic carbonate.
  • fluorinated cyclic carbonate examples include 4-fluoroethylene carbonate (FEC), 4,5-difluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, 4 -Fluoro-5-methyl-1,3-dioxolan-2-one, 4-fluoro-4-methyl-1,3-dioxolan-2-one, 4-trifluoromethyl-1,3-dioxolan-2-one 4,5-difluoro-4,5-dimethyl-1,3-dioxolan-2-one (DFBC) and the like.
  • FEC 4-fluoroethylene carbonate
  • DFBC 4,5-difluoro-1,3-dioxolan-2-one
  • DFBC 4,5-difluoro-4,5-dimethyl-1,3-dioxolan-2-one
  • the content of the fluorinated cyclic carbonate is preferably 2 to 40% by volume, more preferably 5 to 30% by volume. If the content of the fluorinated cyclic carbonate is less than 2% by volume, a sufficient film may not be formed on the surface of the positive electrode active material, and the increase in resistance of the positive electrode active material after a long-term cycle may not be suppressed. When the content of the fluorinated cyclic carbonate exceeds 40% by volume, the amount of gas generated due to decomposition of the electrolytic solution may increase.
  • fluorinated chain carboxylic acid ester examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and the like in which a part of hydrogen is substituted with fluorine.
  • methyl fluoropropionate FMP
  • FMP methyl fluoropropionate
  • the content of the fluorinated chain carboxylic acid ester is preferably 20 to 95% by volume, more preferably 30 to 90% by volume.
  • the content of the fluorinated chain carboxylic acid ester is less than 20% by volume, a sufficient film is not formed on the surface of the positive electrode active material, and the increase in resistance of the positive electrode active material after a long cycle may not be suppressed. If the content of the fluorinated chain carboxylic acid ester exceeds 95% by volume, the conductivity of the electrolytic solution is lowered, which is not desirable.
  • non-aqueous solvent examples include fluorine-containing solvents other than FEC and FMP, such as hydrogen of lower chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and methyl isopropyl carbonate. You may use together what substituted the part by the fluorine.
  • the non-aqueous solvent may contain a non-fluorinated solvent.
  • non-fluorinated solvents include cyclic carbonates, chain carbonates, carboxylic acid esters, cyclic ethers, chain ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and mixed solvents thereof. it can. *
  • Examples of the cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate and the like.
  • Examples of the chain carbonates include dimethyl carbonate, methyl ethyl carbonate (EMC), diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, and the like.
  • carboxylic acid esters examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, and ⁇ -butyrolactone.
  • cyclic ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1, 4-Dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether and the like can be mentioned.
  • chain ethers examples include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether.
  • Pentylphenyl ether methoxytoluene, benzylethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, Examples include traethylene glycol dimethyl.
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic lithium carboxylate, Li Borates such as 2 B 4 O 7 and Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) and imide salts such as ⁇ 1, m is an integer of 1 or more ⁇ .
  • lithium salts may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoint of ion conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
  • Nonaqueous electrolytes include sultone compounds such as 1,3-propane sultone (PS) and 1,3-propene sultone (PRS), 1,6-hexamethylene diisocyanate (HDMI), vinylene carbonate (VC), pimelonitrile (PN) or the like may be added.
  • PS 1,3-propane sultone
  • PRS 1,3-propene sultone
  • HDMI 1,6-hexamethylene diisocyanate
  • VC vinylene carbonate
  • PN pimelonitrile
  • Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 was obtained by filtering, washing with water and drying.
  • Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 obtained by the coprecipitation method was calcined at 520 ° C. for 5 hours while adjusting the oxygen concentration to 25% by volume to obtain Ni 0.5 Co 0.2 Mn 0.3 O x .
  • Li 2 CO 3 is mixed with the oxide at a predetermined ratio, and the mixture is baked at 870 ° C. for 12 hours while adjusting the oxygen concentration to 25% by volume to thereby form a Li 1.08 Ni 0.50 Co 0.20 having a layered structure.
  • Mn 0.30 O 2 (lithium-containing transition metal composite oxide) was produced.
  • the obtained lithium-containing transition metal composite oxide had a porosity of 10% and a crystallite size of 49 nm.
  • a 18650 cylindrical nonaqueous electrolyte secondary battery having a nominal capacity of 2300 mAh was fabricated using the above-described positive electrode, negative electrode, nonaqueous electrolyte, and a separator made of a polyethylene microporous membrane.
  • the produced non-aqueous electrolyte secondary battery has a structure as shown in FIG. 1 and includes a stainless steel battery case and an electrode plate group housed in the case.
  • the electrode plate group is formed by winding a positive electrode and a negative electrode in a spiral through a separator.
  • An upper insulating plate and a lower insulating plate are arranged above and below the electrode plate group, respectively.
  • FIG. 2 shows a CP cross-sectional SEM image of the positive electrode active material before the charge / discharge cycle
  • FIG. 3 shows a CP cross-sectional SEM image of the positive electrode active material after 400 cycles.
  • FIG. 4 shows a CP cross-sectional SEM image of the positive electrode active material after 400 cycles.
  • grain cross section before a charging / discharging cycle is the same as that of the case of Example 1 (refer FIG. 2).
  • each said lithium containing transition metal oxide the average crystallite size was measured in the following procedure.
  • An XRD pattern of each lithium-containing transition metal oxide was obtained using a powder X-ray diffractometer (manufactured by Rigaku Corporation) using CuK ⁇ as an X-ray source.
  • Each lithium-containing transition metal oxide has a hexagonal crystal system from the obtained XRD pattern, and is assigned to the space group R-3m due to its symmetry.
  • Discharge rate maintenance rate (%) (discharge capacity of 4600 mA [2 It] / 1 discharge capacity of 1150 mA [0.5 It]) ⁇ 100
  • the discharge capacity of 1150 mA [0.5 It] was measured by charging and discharging under the above charging and discharging conditions. Further, the discharge capacity of 4600 mA [2 It] was measured by changing 1150 mA [0.5 It] of the above discharge condition to 4600 mA [2 It].
  • (Cycle capacity maintenance rate) The charge / discharge was repeated 400 times under the above charge / discharge conditions, and the capacity retention rate after 400 cycles was calculated using the following formula.
  • Capacity retention rate (%) (discharge capacity at 400th cycle / discharge capacity at the first cycle) ⁇ 100
  • the battery of Example 1 includes FEC and FMP in the electrolytic solution, and at the same time, has excellent cycle characteristics and discharge compared to the batteries of Comparative Examples 1 to 3 by providing voids inside the active material particles. Rate characteristics.
  • the FEC and FMP in the electrolytic solution form a high-quality film that suppresses side reactions with the electrolytic solution on the active surface of the positive electrode active material including the inside of the voids at the beginning of the charge / discharge cycle. Further, the presence of 10% voids in the positive electrode active material particles relieves distortion caused by the volume change of the active material during charge / discharge.

Abstract

充放電サイクルに伴う容量低下が起こり難く、且つ放電レート特性に優れる非水電解質二次電池を提供することである。 実施形態の一例である非水電解質二次電池は、リチウム含有遷移金属酸化物を含む正極、負極、及び非水電解質を備える。当該リチウム含有遷移金属酸化物は、初回充電前における粒子内部の空隙率が0.2~30%である。非水電解質は、フッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルを含む。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 特許文献1では、出力特性を向上させるべく、粒子内部の空隙率が3~30%である正極活物質を用いた非水電解質二次電池が提案されている。特許文献1では、好適な非水電解質の溶媒として、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)等の炭酸エステル系溶媒、及びγ-ブチロラクトン、テトラヒドロフラン、アセトニトリルが記載されている。
国際公開第2012/137391号
 ところで、非水電解質二次電池において、充放電サイクルに伴う容量低下を抑制することは重要な課題である。また、ハイレート放電時にも高い放電容量を有することが求められている。特許文献1に開示された技術によっても、かかる課題を十分に解決することはできず、未だ改良の余地が多く残されている。
 本開示の一態様である非水電解質二次電池は、リチウム含有遷移金属酸化物を含む正極、負極、及び非水電解質を備えた非水電解質二次電池であって、リチウム含有遷移金属酸化物は、初回充電前における粒子内部の空隙率が0.2~30%であり、非水電解質は、フッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルを含むことを特徴とする。
 本開示の一態様である非水電解質二次電池は、充放電サイクルに伴う容量低下が起こり難く、且つ放電レート特性に優れる。
実施形態の一例である非水電解質二次電池の断面図である。 実施形態の一例である非水電解質二次電池を構成する正極活物質(実施例1)の充放電サイクル前における粒子断面の電子顕微鏡画像である。 実施形態の一例である非水電解質二次電池を構成する正極活物質(実施例1)の充放電サイクル後における粒子断面の電子顕微鏡画像である。 従来の非水電解質二次電池を構成する正極活物質(比較例1)の充放電サイクル後における粒子断面の電子顕微鏡画像である。 従来の非水電解質二次電池を構成する正極活物質(比較例2)の充放電サイクル前における粒子断面の電子顕微鏡画像である。
 非水電解質二次電池に使用される一般的な正極活物質は、粒子内部に空隙を殆ど有さず空隙率は0.2%未満である(図5参照)。本発明者らは、正極活物質として初回充電前における粒子内部の空隙率が0.2~30%であるリチウム含有遷移金属酸化物を用い、且つ非水電解質の溶媒としてフッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルを用いることにより、サイクル特性と放電レート特性が特異的に改善されることを見出した。なお、フッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルを含まない非水電解質二次電池において、正極活物質に空隙を導入した場合は、かえって電池特性を低下させることが本発明者らの検討により分かった(比較例1参照)。
 以下、実施形態の一例について詳細に説明する。
 実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1は、実施形態の一例である非水電解質二次電池10の断面図である。
 非水電解質二次電池10は、正極11と、負極12と、非水電解質とを備える。正極11と負極12との間には、セパレータ13を設けることが好適である。非水電解質二次電池10は、例えば正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の電極体14と、非水電解質とが電池ケースに収容された構造を有する。巻回型の電極体14の代わりに、正極及び負極がセパレータを介して交互に積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。電極体14及び非水電解質を収容する電池ケースとしては、円筒形、角形、コイン形、ボタン形等の金属製ケース、樹脂シートをラミネートして形成された樹脂製ケース(ラミネート型電池)などが例示できる。図1に示す例では、有底円筒形状のケース本体15と封口体16とにより電池ケースが構成されている。
 非水電解質二次電池10は、電極体14の上下にそれぞれ配置された絶縁板17,18を備える。図1に示す例では、正極11に取り付けられた正極リード19が絶縁板17の貫通孔を通って封口体16側に延び、負極12に取り付けられた負極リード20が絶縁板18の外側を通ってケース本体15の底部側に延びている。例えば、正極リード19は封口体16の底板であるフィルタ22の下面に溶接等で接続され、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。負極リード20はケース本体15の底部内面に溶接等で接続され、ケース本体15が負極端子となる。本実施形態では、封口体16に電流遮断機構(CID)及びガス排出機構(安全弁)が設けられている。なお、ケース本体15の底部にも、ガス排出弁を設けることが好適である。
 ケース本体15は、例えば有底円筒形状の金属製容器である。ケース本体15と封口体16との間にはガスケット27が設けられ、電池ケース内部の密閉性が確保される。ケース本体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する張り出し部21を有することが好適である。張り出し部21は、ケース本体15の周方向に沿って環状に形成されることが好ましく、その上面で封口体16を支持する。
 封口体16は、フィルタ開口部22aが形成されたフィルタ22と、フィルタ22上に配置された弁体とを有する。弁体は、フィルタ22のフィルタ開口部22aを塞いでおり、内部短絡等による発熱で電池の内圧が上昇した場合に破断する。本実施形態では、弁体として下弁体23及び上弁体25が設けられており、下弁体23と上弁体25の間に配置される絶縁部材24、及びキャップ開口部26aを有するキャップ26がさらに設けられている。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。具体的には、フィルタ22と下弁体23が各々の周縁部で互いに接合され、上弁体25とキャップ26も各々の周縁部で互いに接合されている。下弁体23と上弁体25は、各々の中央部で互いに接続され、各周縁部の間には絶縁部材24が介在している。内部短絡等による発熱で内圧が上昇すると、例えば下弁体23が薄肉部で破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。
 [正極]
 正極は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極合材層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、リチウム含有遷移金属酸化物の他に、導電材及び結着材を含むことが好適である。リチウム含有遷移金属酸化物は、正極活物質として機能する。正極活物質としては、1種類のリチウム含有遷移金属酸化物を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。本実施形態では、正極活物質としてリチウム含有遷移金属酸化物のみを用いる(正極活物質とリチウム含有遷移金属酸化物は同じものを意味する)。正極は、例えば正極集電体上に正極活物質、導電材、及び結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して正極合材層を集電体の両面に形成することにより作製できる。
 導電材は、正極合材層の電気伝導性を高めるために用いられる。導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。これらは、1種単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着材は、正極活物質及び導電材間の良好な接触状態を維持し、且つ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂等が例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、1種単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 正極活物質、導電材、及び結着材の配合割合は、それぞれ正極活物質80~98質量%、導電材0.8~20質量%、結着材0.8~20質量%の範囲とすることが望ましい。配合割合が当該範囲内であれば、高いエネルギー密度と良好なサイクル特性が得られ易い。正極活物質が99質量%を超えると、正極内の電子伝導性が低下して、容量低下や不均一反応によるサイクル特性の低下を生じる場合がある。
 以下、実施形態の一例である正極活物質(リチウム含有遷移金属酸化物)について詳説する。図2,3は、実施形態の一例であるリチウム含有遷移金属酸化物のクロスセクションポリッシャ(CP)により形成した粒子断面(以下、「CP断面」という)の走査型電子顕微鏡(SEM)画像である。図2は充放電サイクル前のSEM画像であり、図3は400サイクル後のSEM写真である。
 リチウム含有遷移金属酸化物(以下、「複合酸化物A」という)としては、Co、Mn、Ni等の遷移金属元素を含有する複合酸化物が例示できる。複合酸化物Aは、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。
 複合酸化物Aの好適な一例は、Liを除く金属元素の総モル数に対するNiの割合が30モル%よりも多い複合酸化物である。Niの含有量は、低コスト化、高容量化等の観点から、30モル%よりも多くすることが好ましい。複合酸化物Aは、例えば一般式LiaCoxNiy(1x-y)2{0.1≦a≦1.2、0<x<0.4、0.3<y<1、0.3<x+y<1、M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、好ましくはMn、Al、Zrから選択される少なくとも1種}で表される酸化物であって、層状岩塩型の結晶構造を有する。
 複合酸化物Aは、多数の一次粒子が集合して形成された二次粒子である。このため、複合酸化物Aには、一次粒子の粒界が存在する。二次粒子同士も凝集する場合があるが、二次粒子の凝集は超音波分散により互いに分離することができる。複合酸化物Aの体積平均粒子径(以下、「Dv」とする)は、7~30μmが好ましく、8~30μmがより好ましく、9~25μmが特に好ましい。Dvは、粒子径分布において体積積算値が50%のときの粒子径(メディアン径)であって、光回折散乱法によって測定することができる。
 複合酸化物Aの平均結晶子サイズは、40~140nmであることが好ましい。さらに好ましくは、40~100nmである。平均結晶子サイズが当該範囲内であれば、初期充電時の活物質の膨張・収縮が均等化され、サイクル特性がさらに向上する。複合酸化物Aの結晶子サイズが140nmを超えると、当該酸化物の粒子表面に電解液との副反応を抑制する良質な皮膜が形成されても、充放電時に結晶の特定の方向、特にc軸方向に膨張・収縮して皮膜が破壊される場合がある。これによって、皮膜の堆積が少なく電子抵抗の低い部分に電流が集中するため、活物質が劣化し、サイクル特性が低下する可能性がある。一方、結晶子サイズが40nmより小さくなると、結晶成長が不十分となり、リチウムイオンの挿入、離脱が起こり難くなり正極の容量が低下する場合がある。平均結晶子サイズは、後述の実施例に記載の方法により測定される。
 図2,3に示すように、複合酸化物Aは、粒子内部に多数の空隙を有する。空隙は、複合酸化物Aの二次粒子を構成する一次粒子間に形成される空間であって、電池反応に寄与する複合酸化物Aの表面積、即ち電解液との反応場を増加させる。つまり、複合酸化物A(二次粒子)の内部に存在する空隙は、例えば空隙の一部が互いに連通して、二次粒子の表面までつながっており、電解液の流入が可能な空間として形成されている。但し、全ての空隙が二次粒子の表面まで連通していなくてもよく、電解液が流入しない閉じられた空隙が存在してもよい。
 複合酸化物Aは、初回充電前における粒子内部の空隙率が0.2~30%である。空隙率は、0.5~20%が好ましく、2~15%がより好ましい。空隙率が当該範囲内であれば、充放電中の活物質の膨張・収縮によって生じる粒子間の歪みを緩和することで粒子割れを抑制することが可能となり、さらに電解液との反応場が増加すると共に、後述する電解液の溶媒成分との相乗効果により空隙内を含む酸化物表面の広範囲に良質な保護皮膜が形成される。なお、空隙率が0.2%未満であると、電解液との反応場が少なくなり、電気化学活性面への電流集中によってイオン伝導性の低い電解液の分解生成物が厚く堆積して放電容量の低下を招くと共に、充放電時における活物質の体積変化による歪みが緩和されず、活物質の粒子割れが発生して容量維持率が低下する。一方、空隙率が30%を超えると、活物質の単位体積当たりの放電容量が減少するため好ましくない。
 複合酸化物Aの空隙率は、粒子断面における当該酸化物粒子の総面積に対する空隙が占める面積の割合を意味し、粒子断面のSEM観察により求めることができる。空隙率の具体的な測定方法は、下記の通りである。
(1)複合酸化物AのCP断面を得る。当該操作には、例えばJEOL社製のクロスセクションポリッシャ(ex.SM-09010)を用いることができる。
(2)得られたCP断面(露出させた粒子断面)をSEMで観察して、粒子の輪郭線を描く。(3)当該輪郭線に囲まれた範囲の総面積(CP断面の総面積)に対する当該輪郭線に囲まれた範囲に存在する空隙の面積の割合を測定し、空隙率(空隙の面積/CP断面の総面積)×100を算出する。空隙率は、粒子100個についての平均値とする。
 複合酸化物Aの空隙率は、充放電サイクルを繰り返しても大きく変化しない(図3参照)。なお、充放電に伴う粒子割れが発生すると、空隙率は大幅に増加する(図4参照)。換言すると、本実施形態の非水電解質二次電池では、充放電に伴う正極活物質(複合酸化物A)の粒子割れが発生し難く、例えば100回未満の初期サイクルにおける空隙率は、初回充電前における空隙率と実質的に同一である。複合酸化物Aの空隙率は、400サイクル後においても30%以下であることが好ましく、例えば0.2~20%、或いは0.5~15%である。
 複合酸化物Aの空隙率は、リチウム化合物と遷移金属化合物の混合する割合、前駆体、焼成時の温度、時間、雰囲気等によって調整することができる。例えば、リチウム原料と遷移金属化合物との混合において、リチウム/遷移金属のモル比が1.2を超えると、焼成時に焼結の進行と共に空隙が減少する。なお、リチウム/遷移金属のモル比が0.9以下になると、充放電に寄与しない化合物の割合が増加し、容量の低下が生じる場合がある。焼成温度を高くすると、焼結が進行し空隙は減少する傾向にある。焼成時間、雰囲気もまた同様に重要な要素である。焼成温度を低くすると、空隙は増加するが、リチウム化合物と遷移金属化合物との反応が進行し難くなり、未反応物の割合が増加する場合がある。
 [負極]
 負極は、例えば金属箔等からなる負極集電体と、当該集電体上に形成された負極合材層とで構成される。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質の他に、結着材を含むことが好適である。負極は、例えば負極集電体上に負極活物質、結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合材層を集電体の両面に形成することにより作製できる。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、ケイ素(Si)、錫(Sn)等のリチウムと合金化する金属、又はSi、Sn等の金属元素を含む合金、複合酸化物などを用いることができる。負極活物質は、1種単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着材としては、正極の場合と同様にフッ素樹脂、PAN、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂等を用いることができる。水系溶媒を用いて合材スラリーを調製する場合は、CMC又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、スチレン-ブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等を用いることが好ましい。
 負極活物質及び結着材の配合割合は、それぞれ負極活物質93~99質量%、結着材0.5~10質量%の範囲とすることが望ましい。配合割合が当該範囲内であれば、高いエネルギー密度と良好なサイクル特性が得られ易い。
 [セパレータ]
 セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びポリオレフィン樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド樹脂等が塗布されたものを用いてもよい。
 セパレータと正極及び負極の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されていてもよい。無機物のフィラーとしては、例えばチタン(Ti)、アルミニウム(Al)、ケイ素(Si)、マグネシウム(Mg)の少なくとも1種を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、例えば当該フィラーを含有するスラリーを正極、負極、又はセパレータの表面に塗布して形成することができる。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒は、少なくともフッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルを含む。非水電解質がフッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルを含むことにより、空隙を有する正極活物質の粒子表面に良質な皮膜が形成され、副反応生成物の堆積が抑制される。非水溶媒の総体積に占めるフッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルの割合は、50体積%以上であることが好ましい。フッ素化鎖状カルボン酸エステルは、フッ素化環状カーボネートよりも多く含まれることが好ましい。
 上記フッ素化環状カーボネートとしては、4-フルオロエチレンカーボネート(FEC)、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン、4-フルオロ‐4-メチル-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-4,5-ジメチル-1,3-ジオキソラン-2-オン(DFBC)等が例示できる。これらのうち、FECが特に好ましい。フッ素化環状カーボネートの含有量は、2~40体積%であることが好ましく、5~30体積%がより好ましい。フッ素化環状カーボネートの含有量が2体積%未満では、正極活物質表面に十分な皮膜が形成されず、長期サイクル後の正極活物質の抵抗上昇を抑制できない場合がある。フッ素化環状カーボネートの含有量が40体積%を超えると、電解液の分解によるガス発生量が多くなる場合がある。
 上記フッ素化鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル等の水素の一部をフッ素で置換したもの等が例示できる。これらのうち、フルオロプロピオン酸メチル(FMP)が特に好ましい。なお、FMPとしては、メチル3,3,3-トリフルオロプロピオネートが好適である。フッ素化鎖状カルボン酸エステルの含有量は、20~95体積%であることが好ましく、30~90体積%がより好ましい。フッ素化鎖状カルボン酸エステルの含有量が20体積%未満では、正極活物質表面に十分な皮膜が形成されず、長期サイクル後の正極活物質の抵抗上昇を抑制できない場合がある。フッ素化鎖状カルボン酸エステルの含有量が95体積%を超えると、電解液の導電率が低下してしまうため、望ましくない。
 上記非水溶媒には、FEC、FMP以外の含フッ素系溶媒、例えばジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の低級鎖状炭酸エステルの水素の一部をフッ素で置換したもの等を併用してもよい。
 上記非水溶媒は、非フッ素系溶媒を含んでいてもよい。非フッ素系溶媒としては、環状カーボネート類、鎖状カーボネート類、カルボン酸エステル類、環状エーテル類、鎖状エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの混合溶媒が例示できる。 
 上記環状カーボネート類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等が挙げられる。上記鎖状カーボネート類の例としては、ジメチルカーボネート、メチルエチルカーボネート(EMC)、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等が挙げられる。
 上記カルボン酸エステル類の例としては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等が挙げられる。
 上記環状エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等が挙げられる。
 上記鎖状エーテル類の例としては、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等が挙げられる。
 上記電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C24)F4)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li247、Li(B(C24)F2)等のホウ酸塩類、LiN(SO2CF32、LiN(C12l+1SO2)(Cm2m+1SO2){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPF6を用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
 非水電解質には、1,3-プロパンスルトン(PS)、1,3-プロペンスルトン(PRS)等のスルトン系化合物、1,6-ヘキサメチレンジイソシアネート(HDMI)、ビニレンカーボネート(VC)、ピメロニトリル(PN)などを添加してもよい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [リチウム含有遷移金属複合酸化物(正極活物質)の作製]
 反応槽に、硫酸コバルト、硫酸ニッケル、硫酸マンガンから調整したコバルトイオン、ニッケルイオン、マンガンイオンを含有する水溶液を用意し、水溶液中のコバルトと、ニッケルと、マンガンとのモル比(ニッケル:コバルト:マンガン)が、5:2:3となるように調整した。次に、水溶液の温度を30℃、pH=9に保持しつつ、2時間かけて水酸化ナトリウム水溶液を滴下した。これにより、コバルト、ニッケル、及びマンガンを含む沈殿物を得た。その後、当該沈殿物をろ過、水洗後に乾燥することにより、Ni0.5Co0.2Mn0.3(OH)2を得た。共沈法によって得たNi0.5Co0.2Mn0.3(OH)2を酸素濃度25体積%に調整しながら520℃で5時間焼成し、Ni0.5Co0.2Mn0.3xを得た。次いで、当該酸化物にLi2CO3を所定の割合で混合し、当該混合物を酸素濃度25体積%に調整しながら870℃で12時間、焼成することにより層状構造を有するLi1.08Ni0.50Co0.20Mn0.302(リチウム含有遷移金属複合酸化物)を作製した。得られたリチウム含有遷移金属複合酸化物の空隙率は10%、結晶子サイズは49nmであった。
 [正極の作製]
 正極活物質として上記リチウム含有遷移金属複合酸化物を用い、当該活物質と、アセチレンブラックと、ポリフッ化ビニリデンとを、質量比で95:2.5:2.5となるように混合した後、N-メチル-2-ピロリドン(NMP)を適量加えて、正極合材スラリーを調製した。次に、この正極合材スラリーを、アルミニウム箔から成る正極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラを用いて圧延することにより、正極集電体の両面に正極合材層が形成された正極を作製した。正極の充填密度は3.4g/cm3であった。
 [負極の作製]
 人造黒鉛と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレンブタジエン共重合体(SBR)とを、98:1:1の質量比で水溶液中において混合し、負極合材スラリーを調製した。次に、この負極合材スラリーを銅箔から成る負極集電体の両面に均一に塗布し、塗膜を乾燥させた後、圧延ローラを用いて圧延することにより、負極集電体の両面に負極合材層が形成された負極を得た。負極の負極活物質の充填密度は1.6g/cm3であった。
 [非水電解液の調整]
 フルオロエチレンカーボネート(FEC)と、メチル3,3,3-トリフルオロプロピオネートとを、15:85の体積比で混合した混合溶媒に対し、六フッ化リン酸リチウム(LiPF6)を1.2モル/リットルの割合で溶解させて、非水電解液を調製した。
 [非水電解質二次電池の作製]
 上記の正極、負極、非水電解液、及びポリエチレン微多孔膜からなるセパレータを用いて、公称容量2300mAhの18650円筒型の非水電解質二次電池を作製した。
 作製した非水電解質二次電池は、図1に示すような構造を有し、ステンレス鋼製の電池ケースと当該ケース内に収容された極板群とを備える。極板群は、正極及び負極がセパレータを介して渦巻状に捲回されてなる。極板群の上下には、上部絶縁板及び下部絶縁板がそれぞれ配置されている。電池ケースの開口端部がガスケットを介して封口板にかしめつけられ、電池ケース内部が密閉されている。なお、正極にはアルミニウム製の正極リードの一端が取り付けられており、正極リードの他端は正極端子を兼ねる封口板に溶接されている。負極にはニッケル製の負極リードの一端が取り付けられており、負極リードの他端は負極端子を兼ねる電池ケースに溶接されている。図2に充放電サイクル前の正極活物質のCP断面SEM画像を、図3に400サイクル後の正極活物質のCP断面SEM画像をそれぞれ示す。
 <比較例1>
 非水電解液として、FECと、エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、10:10:5:45:30の体積比で混合した混合溶媒に対し、六フッ化リン酸リチウム(LiPF6)を1.2モル/リットルの割合で溶解させて調製したものを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。図4に400サイクル後の正極活物質のCP断面SEM画像を示す。なお、充放電サイクル前の粒子断面の様子は、実施例1の場合と同様である(図2参照)。
 <比較例2>
 リチウム含有遷移金属複合酸化物の作製において、コバルト、ニッケル、及びマンガンを含む沈殿物を得る工程で水溶液の温度を40℃に変更したこと、及びNi0.5Co0.2Mn0.3xにLi2CO3を所定の割合で混合した混合物の焼成過程で酸素濃度を28体積%に、焼成温度を900℃に変更したこと以外は、実施例1と同様にしてリチウム含有遷移金属複合酸化物(正極活物質)及び非水電解質二次電池を作製した。得られたリチウム含有遷移金属複合酸化物の結晶子サイズの空隙率は0.1%、結晶子サイズは57nmであった。図5に充放電サイクル前の正極活物質のCP断面SEM画像を示す。なお、400サイクル後の粒子断面の様子は、比較例1の場合と同様である(図4参照)。
 <比較例3>
 非水電解液に比較例1で調製した非水電解液を用い、正極活物質に比較例2で作製したリチウム含有遷移金属複合酸化物を用いたこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
 [平均結晶子サイズの測定]
 上記各リチウム含有遷移金属酸化物について、下記の手順で平均結晶子サイズを測定した。
(1)X線源としてCuKαを用いた粉体X線回折装置(株式会社リガク社製)を用いて、上記各リチウム含有遷移金属酸化物のXRDパターンを得た。各リチウム含有遷移金属酸化物は、得られたXRDパターンからいずれも結晶系が六方晶系であり、その対称性から空間群R-3mに帰属された。
(2)X線回折用標準資料(National Institute of Standards and Technology(NIST) Standard Reference Materials(SRM) 660b(LaB6))のX線回折パターンから、ミラー指数100、110、111、200、210、211、220、221、310、311の10本のピークを用いてPawley法で分割型擬voigt関数を用いて、積分強度、ピーク高さから積分幅β1を算出した。
(3)測定サンプル(リチウム遷移金属複合酸化物)のX線回折パターンの中からミラー指数003、101、006、012、104、015、107、018、110、113の10本のピークを用いてPawley法で分割型擬voigt関数を用いて、フィッティングし、積分強度、ピーク高さから積分幅β2を算出した。
(4)上記結果から下記(a)式に基づき測定サンプルに由来する積分幅βを算出した。
 測定サンプルに由来する積分幅β=β2-β1・・・(a)
 そして、Halder-wagner法を用いて、β2/tan2θを、β/(tanθsinθ)に対してプロットして近似する直線の傾きから測定サンプルに由来する平均結晶子サイズを算出した。
 [電池の評価]
 上記各電池について、下記の条件で各放電レートにおける容量維持率(放電レート維持率)、及び400サイクル後の容量維持率(サイクル容量維持率)を測定した。
(充放電条件)
 1150mA[0.5It]で電池電圧4.1Vとなるまで定電流充電を行い、さらに4.1Vの電圧で電流値が46mAとなるまで定電圧充電を行った。10分間休止した後、1150mA[0.5It]で電池電圧3.0Vまで放電し、その後20分間休止した。なお、充放電時の温度は25℃である。
(放電レート維持率)
 放電レート維持率は、下記の式を用いて算出した。
 放電レート維持率(%)=(4600mA[2It]の放電容量/1150mA[0.5It]の放電容量)×100
 1150mA[0.5It]の放電容量は、上記充放電条件で充放電を行って測定した。また、4600mA[2It]の放電容量は、上記放電条件の1150mA[0.5It]を4600mA[2It]に変更して測定した。
(サイクル容量維持率)
 上記充放電条件で400回充放電を繰り返し、下記の式を用いて400サイクル後の容量維持率を算出した。
 容量維持率(%)=(400サイクル目の放電容量/1サイクル目の放電容量)×100
  [表1]
Figure JPOXMLDOC01-appb-I000001
 表1の結果から、実施例1の電池は、電解液中にFEC且つFMPを含むと同時に活物質粒子内部に空隙を設けることで比較例1~3の電池と比べて優れたサイクル特性と放電レート特性とを有する。実施例1の電池では、電解液中のFECとFMPにより、充放電サイクル初期に空隙内を含む正極活物質の活性面に電解液との副反応を抑制する良質な皮膜が形成される。さらに、正極活物質粒子内に10%の空隙が存在することで充放電時における活物質の体積変化により生じる歪みが緩和される。この理由は定かではないが、実施例1の電池では、FEC,FMPを含むことで、活物質の空隙に活物質表面とは異なるリチウムイオン伝導性が高い特異的な被膜を形成したためと推測される。これら2つの作用が揃うことで、充放電中の活物質の膨張・収縮による活物質粒子の割れを抑制でき、優れたサイクル特性と放電レート特性が得られたと考えられる。
 一方、比較例1の電池では、電解液中にFECとFMPが含まれていないため、充放電を繰り返すと電解液の分解生成物が空隙内に堆積し、充放電時における活物質の膨張収縮を阻害して歪みを生じさせる。これにより、活物質内部から亀裂が入り粒子割れが発生して、電子伝導性の低下と共に容量維持率が低下したと考えられる(図4参照)。
比較例2,3の電池では、正極活物質粒子内に空隙が殆ど存在しないため(図5参照)、充放電時における活物質の体積変化による歪みが緩和されず、活物質の粒子割れが発生するため、実施例1と比べてサイクル特性が低下したと考えられる。また、比較例2の電池では、放電レート特性が特に低くなっていた。
 上記の結果から、単に正極活物質内に空隙を形成するだけでは、サイクル特性の向上効果は得られず、また、単に電解液にFEC、FMPを混合することだけでは放電レート特性の向上効果は得られないことがわかる。つまり、電解液中にフッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルを含み、且つ正極活物質として空隙率が0.2~30%であるリチウム含有遷移金属酸化物を用いた場合にのみ、サイクル特性が飛躍的に向上し、また放電レート特性も特異的に向上する(予期できない効果が発現する)。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 ケース本体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、22 フィルタ、22a フィルタ開口部、23 下弁体、24 絶縁部材、25 上弁体、26 キャップ、26a キャップ開口部、27 ガスケット

Claims (7)

  1.  リチウム含有遷移金属酸化物を含む正極、負極、及び非水電解質を備えた非水電解質二次電池であって、
     前記リチウム含有遷移金属酸化物は、初回充電前における粒子内部の空隙率が0.2~30%であり、
     前記非水電解質は、フッ素化環状カーボネート及びフッ素化鎖状カルボン酸エステルを含む、非水電解質二次電池。
  2.  前記リチウム含有遷移金属酸化物は、一般式LiaCoxNiy(1x-y)2{0.1≦a≦1.2、0<x<0.4、0.3<y<1、0.3<x+y<1、MはMn、Al、Zrから選択される少なくとも1種}で表される酸化物である、請求項1に記載の非水電解質二次電池。
  3.  前記リチウム含有遷移金属酸化物の平均結晶子サイズは、40~140nmである、請求項1又は2に記載の非水電解質二次電池。
  4.  前記フッ素化環状カーボネートは、フルオロエチレンカーボネートである、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記フッ素化環状カーボネートは、前記非水電解質を構成する溶媒に対して5~40体積%の割合で含まれている、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記フッ素化鎖状カルボン酸エステルは、フルオロプロピオン酸メチルである、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記フッ素化鎖状カルボン酸エステルは、前記非水電解質を構成する溶媒に対して20~90体積%の割合で含まれている、請求項1~6のいずれか1項に記載の非水電解質二次電池。
PCT/JP2016/000266 2015-03-26 2016-01-20 非水電解質二次電池 WO2016151983A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680003505.0A CN107112582A (zh) 2015-03-26 2016-01-20 非水电解质二次电池
JP2017507353A JPWO2016151983A1 (ja) 2015-03-26 2016-01-20 非水電解質二次電池
US15/678,340 US20170346071A1 (en) 2015-03-26 2017-08-16 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-064920 2015-03-26
JP2015064920 2015-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/678,340 Continuation US20170346071A1 (en) 2015-03-26 2017-08-16 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2016151983A1 true WO2016151983A1 (ja) 2016-09-29

Family

ID=56977940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000266 WO2016151983A1 (ja) 2015-03-26 2016-01-20 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20170346071A1 (ja)
JP (1) JPWO2016151983A1 (ja)
CN (1) CN107112582A (ja)
WO (1) WO2016151983A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106944A (ja) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池用正極
WO2018139065A1 (ja) * 2017-01-30 2018-08-02 パナソニック株式会社 非水電解質二次電池
CN108933292A (zh) * 2017-05-27 2018-12-04 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
WO2019105840A1 (en) * 2017-11-30 2019-06-06 Gs Yuasa International Ltd. Energy storage device
WO2019117281A1 (ja) * 2017-12-15 2019-06-20 株式会社Gsユアサ 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
EP3591755A4 (en) * 2017-03-31 2021-04-14 Daikin Industries, Ltd. ELECTROLYTIC SOLUTION, ELECTROCHEMICAL DEVICE, RECHARGEABLE LITHIUM-ION BATTERY AND MODULE
US11177506B2 (en) 2017-04-28 2021-11-16 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11302956B2 (en) 2017-04-28 2022-04-12 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11302963B2 (en) 2017-04-28 2022-04-12 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11380937B2 (en) 2017-07-31 2022-07-05 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11398644B2 (en) 2017-07-31 2022-07-26 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11489190B2 (en) 2017-04-28 2022-11-01 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
WO2023204077A1 (ja) * 2022-04-21 2023-10-26 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500001B2 (ja) * 2016-08-31 2019-04-10 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019044238A1 (ja) * 2017-08-30 2019-03-07 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2019230077A1 (ja) * 2018-06-01 2019-12-05 パナソニックIpマネジメント株式会社 二次電池
CN113557623A (zh) * 2019-03-11 2021-10-26 松下知识产权经营株式会社 非水电解质二次电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275277A (ja) * 1992-05-18 1994-09-30 Mitsubishi Cable Ind Ltd リチウム二次電池
JP2009289414A (ja) * 2007-02-20 2009-12-10 Sanyo Electric Co Ltd 二次電池用非水電解液及び非水電解液二次電池
JP2010062132A (ja) * 2008-08-05 2010-03-18 Sanyo Electric Co Ltd 二次電池用非水電解液及び非水電解液二次電池
WO2012165207A1 (ja) * 2011-05-31 2012-12-06 三洋電機株式会社 非水電解質電池
WO2014083834A1 (ja) * 2012-11-29 2014-06-05 三洋電機株式会社 非水電解質二次電池
JP2014110122A (ja) * 2012-11-30 2014-06-12 Sanyo Electric Co Ltd 非水電解質二次電池
WO2015041167A1 (ja) * 2013-09-20 2015-03-26 日立マクセル株式会社 非水二次電池
JP2015111549A (ja) * 2013-10-29 2015-06-18 パナソニック株式会社 非水電解質二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977431B1 (ko) * 2005-06-10 2010-08-24 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 이차 전지, 그리고카보네이트 화합물
WO2008102493A1 (ja) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. 二次電池用非水電解液及び非水電解液二次電池
KR101020346B1 (ko) * 2007-09-12 2011-03-08 주식회사 엘지화학 비수 전해액 리튬 이차전지
WO2012137391A1 (ja) * 2011-04-07 2012-10-11 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
US20140087265A1 (en) * 2012-09-25 2014-03-27 Ngk Insulators, Ltd. Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275277A (ja) * 1992-05-18 1994-09-30 Mitsubishi Cable Ind Ltd リチウム二次電池
JP2009289414A (ja) * 2007-02-20 2009-12-10 Sanyo Electric Co Ltd 二次電池用非水電解液及び非水電解液二次電池
JP2010062132A (ja) * 2008-08-05 2010-03-18 Sanyo Electric Co Ltd 二次電池用非水電解液及び非水電解液二次電池
WO2012165207A1 (ja) * 2011-05-31 2012-12-06 三洋電機株式会社 非水電解質電池
WO2014083834A1 (ja) * 2012-11-29 2014-06-05 三洋電機株式会社 非水電解質二次電池
JP2014110122A (ja) * 2012-11-30 2014-06-12 Sanyo Electric Co Ltd 非水電解質二次電池
WO2015041167A1 (ja) * 2013-09-20 2015-03-26 日立マクセル株式会社 非水二次電池
JP2015111549A (ja) * 2013-10-29 2015-06-18 パナソニック株式会社 非水電解質二次電池

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106944A (ja) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池用正極
WO2018139065A1 (ja) * 2017-01-30 2018-08-02 パナソニック株式会社 非水電解質二次電池
US11201355B2 (en) 2017-01-30 2021-12-14 Panasonic Corporation Nonaqueous electrolyte secondary battery
EP3591755A4 (en) * 2017-03-31 2021-04-14 Daikin Industries, Ltd. ELECTROLYTIC SOLUTION, ELECTROCHEMICAL DEVICE, RECHARGEABLE LITHIUM-ION BATTERY AND MODULE
US11888122B2 (en) 2017-03-31 2024-01-30 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery and module
US11489204B2 (en) 2017-03-31 2022-11-01 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery and module
US11489190B2 (en) 2017-04-28 2022-11-01 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11302963B2 (en) 2017-04-28 2022-04-12 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11302956B2 (en) 2017-04-28 2022-04-12 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11177506B2 (en) 2017-04-28 2021-11-16 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
KR20190134668A (ko) * 2017-05-27 2019-12-04 선천 캡쳄 테크놀로지 컴퍼니 리미티드 리튬이온 배터리 비수전해액 및 리튬이온 배터리
US11398642B2 (en) 2017-05-27 2022-07-26 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
CN108933292A (zh) * 2017-05-27 2018-12-04 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108933292B (zh) * 2017-05-27 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
KR102412568B1 (ko) * 2017-05-27 2022-06-23 선천 캡쳄 테크놀로지 컴퍼니 리미티드 리튬이온 배터리 비수전해액 및 리튬이온 배터리
US11398644B2 (en) 2017-07-31 2022-07-26 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11380937B2 (en) 2017-07-31 2022-07-05 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
WO2019105840A1 (en) * 2017-11-30 2019-06-06 Gs Yuasa International Ltd. Energy storage device
WO2019117282A1 (ja) * 2017-12-15 2019-06-20 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JPWO2019117281A1 (ja) * 2017-12-15 2021-01-07 株式会社Gsユアサ 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP7137769B2 (ja) 2017-12-15 2022-09-15 株式会社Gsユアサ 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
WO2019117281A1 (ja) * 2017-12-15 2019-06-20 株式会社Gsユアサ 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11545662B2 (en) 2017-12-15 2023-01-03 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7296044B2 (ja) 2017-12-15 2023-06-22 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JPWO2019117282A1 (ja) * 2017-12-15 2021-01-07 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
WO2023204077A1 (ja) * 2022-04-21 2023-10-26 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Also Published As

Publication number Publication date
CN107112582A (zh) 2017-08-29
US20170346071A1 (en) 2017-11-30
JPWO2016151983A1 (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
WO2016151983A1 (ja) 非水電解質二次電池
US20230032577A1 (en) Positive-electrode active material for nonaqueous-electrolyte secondary battery, method for producing positive-electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
CN107078340B (zh) 非水电解质二次电池
JP2016164869A (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2016157677A (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6929514B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2018061298A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
CN111656578B (zh) 非水电解质二次电池用正极和非水电解质二次电池
WO2019021806A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2019163483A1 (ja) 非水電解質二次電池
CN108713265B (zh) 非水电解质二次电池
US20200243856A1 (en) Non-aqueous electrolyte secondary battery
US20220407062A1 (en) Non-aqueous electrolyte secondary battery
WO2021039239A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
CN116195092A (zh) 非水电解质二次电池用正极活性物质、及非水电解质二次电池
WO2020262100A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
JP7300658B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2019107160A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極活物質の製造方法
WO2022138846A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023181848A1 (ja) 非水電解質二次電池
WO2022138840A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
US20230290941A1 (en) Positive-electrode active material for nonaqueous-electrolyte secondary cell, and nonaqueous-electrolyte secondary cell
WO2021095360A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021117748A1 (ja) 非水電解質二次電池
CN116601785A (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767897

Country of ref document: EP

Kind code of ref document: A1