WO2019117281A1 - 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2019117281A1
WO2019117281A1 PCT/JP2018/046042 JP2018046042W WO2019117281A1 WO 2019117281 A1 WO2019117281 A1 WO 2019117281A1 JP 2018046042 W JP2018046042 W JP 2018046042W WO 2019117281 A1 WO2019117281 A1 WO 2019117281A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
positive electrode
lithium
electrolyte secondary
secondary battery
Prior art date
Application number
PCT/JP2018/046042
Other languages
English (en)
French (fr)
Inventor
弘将 村松
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to US16/771,499 priority Critical patent/US11251427B2/en
Priority to JP2019559222A priority patent/JP7137769B2/ja
Priority to PCT/JP2019/024376 priority patent/WO2019244956A1/ja
Priority to JP2020525783A priority patent/JP7373132B2/ja
Priority to US16/973,472 priority patent/US20210249645A1/en
Priority to CN201980041699.7A priority patent/CN112771694B/zh
Priority to EP19822786.0A priority patent/EP3793010B1/en
Publication of WO2019117281A1 publication Critical patent/WO2019117281A1/ja
Priority to JP2023109667A priority patent/JP2023123790A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a transition metal hydroxide precursor, a method for producing a transition metal hydroxide precursor, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery,
  • the present invention relates to a positive electrode for an electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
  • LiMeO 2 type active material (Me is a transition metal) having an ⁇ -NaFeO 2 type crystal structure
  • LiCoO 2 the discharge capacity of LiCoO 2 was about 120 to 130 mAh / g. It has been desired to use abundant Mn as the earth resource as the Me.
  • the “LiMeO 2 type” active material containing Mn as Me causes structural change to a spinel type when charging, when the molar ratio of Mn in Me to Mn / Me exceeds 0.5, Since the crystal structure can not be maintained, there is a problem that the charge and discharge cycle performance is significantly deteriorated.
  • the positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 which is a lithium transition metal composite oxide has a discharge capacity of 150 to 180 mAh / g Have.
  • the composition ratio Li / Me of lithium (Li) to the ratio of transition metal (Me) to the so-called “LiMeO 2 type” active material as described above is larger than 1 and the composition formula Li 1 + ⁇ Me 1- ⁇ O 2
  • so-called "lithium excess” active materials are also known, including lithium transition metal complex oxides represented by ( ⁇ > 0). It is also known to produce the above lithium transition metal complex oxide from a hydroxide precursor (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 describes lithium having a “ ⁇ -NaFeO 2 type crystal structure and represented by the composition formula Li 1 + ⁇ Me 1- ⁇ O 2 (Me is a transition metal including Co, Ni and Mn, ⁇ > 0).
  • “Transition metal composite oxide” (claim 1), which is a method for producing a cathode active material for a lithium secondary battery according to claim 1 or 2, wherein a precursor corresponding to the synthesis of the lithium transition metal composite oxide is And a method for producing a positive electrode active material for a lithium secondary battery, which is a hydroxide of a transition metal containing Co, Ni, and Mn.
  • the pH in the step of producing a precursor by coprecipitating a compound containing Co, Ni and Mn in a solution is not limited, but the aforementioned coprecipitated precursor may be used as a coprecipitated hydroxide precursor.
  • it is preferable to control the pH. can be 1.00 g / cm 3 or more, it is possible to improve the high rate discharge performance.
  • by setting the pH 11.0 or less it is possible to promote the particle growth rate, raw material aqueous solution after the completion of dropping Stirring can be shortened “(paragraph [0032]). And about the initial stage charge-discharge process of the lithium secondary battery using the positive electrode active material which concerns on an Example, it was described that "charging was performed by current 0.1CA, constant current constant voltage charge of voltage 4.6V" (Paragraph [0098]).
  • Patent Document 2 describes “a positive electrode active material for a non-aqueous electrolyte battery containing a lithium transition metal composite oxide, which is a molar ratio of Li to transition metal (Me) (Li / M) constituting the lithium transition metal composite oxide.
  • Me is greater than 1 and the transition metal (Me) contains Mn, Ni, and Co, and the lithium transition metal complex oxide has an ⁇ -NaFeO 2 type crystal structure and belongs to the space group R3-m Of the diffraction peak of the (104) plane at the Miller index hkl according to X-ray diffraction measurement using CuK ⁇ rays, with a possible X-ray diffraction pattern (FWHM (104)) of 0.21 ° or more and 0.55 °
  • FWHM (104) a possible X-ray diffraction pattern
  • the pH in the process of producing a hydroxide precursor can be 10.5 to 14.
  • the pH is controlled It is stated that it is preferable (paragraph [0031]).
  • the initial charging / discharging process of the lithium secondary battery manufactured using the positive electrode active material which concerns on an Example was performed as "charging is a constant current constant voltage charge of electric current 0.1CmA and voltage 4.6V.” Is described (paragraph [0093]).
  • Patent Document 3 describes “an active material for a lithium secondary battery including a solid solution of a lithium transition metal complex oxide having an ⁇ -NaFeO 2 type crystal structure, and the lithium, cobalt, nickel and manganese contained in the solid solution are The composition ratio is Li1 + (1/3) xCo1 -x- yNi (1/2) yMn (2/3) x + (1/2) y (x + y ⁇ 1, 0 ⁇ y, 1 ⁇ x
  • (X, y, z) are point A (0.45, 0.55, 0), point B (0.63, 0.37, 0), point C (0.7, 0.25, 0.
  • the lithium powder is characterized in that the intensity ratio of the diffraction peaks of the above is I (003) / I (104) ⁇ 1.56 before charge and discharge, and I (003) / I (104)> 1 at the discharge end. active material for a secondary battery.
  • the crystal phase of the coprecipitated hydroxide precursor obtained by adjusting to pH 11.5 is “single phase of ⁇ -Ni (OH) 2 type” (paragraph [ 0099] to [0100]).
  • Patent Document 4 states that “the following general formula (1): Li x Ni y Mn z Co 1-y-z O 1 + x (1) Lithium nickel manganese represented by (wherein x represents 1.02 ⁇ x ⁇ 1.25, y represents 0.30 ⁇ y ⁇ 0.40, z represents 0.30 ⁇ z ⁇ 0.40) A lithium composite oxide containing 0.1 mol% or more and less than 5 mol% of one or more metal atoms (Me) selected from Mg, Al, Ti, Cu and Zr in a cobalt-based composite oxide A positive electrode active material for a lithium secondary battery characterized in that the amount of Li 2 CO 3 present on the particle surface is 0.05 to 0.20% by weight. "(Claim 1) is described.
  • the lithium composite oxide has a tap density of 1.5 g / ml or more.
  • the tap density of the lithium composite oxide is smaller than 1.5 g / ml, the electrode density decreases. This is because the discharge capacity of the lithium secondary battery tends to decrease, particularly when the tap density of the lithium composite oxide is in the range of 1.7 to 2.8 g / ml, in particular, the discharge of the lithium secondary battery. It is preferable from the viewpoint of increasing the capacity. ”(Paragraph [0021]).
  • composite hydroxide samples A and B of “molar ratio of Ni: Co: Mn in composite hydroxide 0.334: 0.333: 0.333”, lithium carbonate, Me It is described that a lithium composite oxide sample having Li / (Ni + Co + Mn + Me) of 1.17 to 1.19 was obtained by mixing with a compound of the following formula and calcining at 900 ° C. (paragraphs [0067] to [0073], [0084] Table 3).
  • Patent Document 5 describes lithium-nickel-manganese having a press density of 3.3 to 4.5 g / cm 3 and a particle ratio of 10 ⁇ m or less in a volume-based particle size distribution of 10 to 70 volume%. Cobalt complex oxide.
  • (Claim 3) is described.
  • the composition is Li 1.04 [Ni 0.32 Mn 0.32 Co 0.32 ] O 2 and the press density is 3.56 g when pressurized at a pressure of 2 t / cm 2 / cm 3, 3.43g / cm 3 , 3.52g / cm 3, 3.47g / cm 3, the composite oxide is 3.31 g / cm 3 have been described (paragraph [0075], [0082] , [0086], [0090], [0094]).
  • SOC State Of Charge
  • the positive electrode containing the lithium-excitation type active material is 4.5 to 5.0 V (vs. Li / v) when the potential is charged to 5.0 V (vs. Li / Li + ).
  • the positive electrode potential range of Li + a region where the potential change with respect to the charge amount is relatively flat is observed.
  • the charge reaches 5.0 V (vs. Li / Li + ) thereafter. After that, no area where the potential change is flat is observed again.
  • a non-aqueous electrolyte battery having a conventional positive electrode containing a lithium excess type active material is manufactured by performing charging until the area where the potential change is flat ends at the time of initial charging.
  • a high discharge capacity can be obtained in a potential region of 4.3 V (vs. Li / Li + ) or less.
  • the present invention it is manufactured without passing through the charging process until the end of the region where the potential change is flat, and the charging is not performed until the region where the potential change is flat is finished. It is assumed to be used for By thus manufacturing and using a non-aqueous electrolyte battery comprising a positive electrode containing a lithium-excess type active material, the above-mentioned capacity band appears only when the battery is accidentally overcharged, so that the battery is fully charged ( It is possible to provide a battery in which no sudden increase in battery voltage is observed up to a higher SOC when a current is forcibly applied beyond 100% of the SOC).
  • the positive electrode containing the lithium excess type active material is manufactured without passing through the charging process until the end of the region where the potential change is flat, and the charge until the region where the potential change is flat is completed. If not used, the conventional lithium excess type active material has a problem that the discharge capacity is small as shown in Comparative Example 5 of FIG.
  • Patent Documents 1 to 3 the positive electrode containing the lithium excess active material is charged at the time of initial charge and discharge until the region where the potential change is flat ends.
  • Patent Documents 4 and 5 describe an active material containing a lithium transition metal complex oxide of 1 ⁇ Li / Me (transition metal), but the lithium transition metal complex oxide specifically described is Since the ratio of Ni: Co: Mn is 1: 1: 1 and the content of Mn is small, it is not a positive electrode active material in which a region where the potential change is flat is observed.
  • An object of the present invention is to provide a positive electrode active material which can be made into a non-aqueous electrolyte secondary battery having a large discharge capacity even when charged at a relatively low voltage and improved in safety.
  • One aspect of the present invention for solving the above problems is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide is ⁇ -NaFeO 2 having a molar ratio of Li to transition metal (Me) of 1 ⁇ Li / Me, and containing Ni and Mn as the transition metal (Me), or Ni, Co and Mn, and Mn and Me
  • the molar ratio of Mn / Me is 0.4 ⁇ Mn / Me ⁇ 0.6, and the density when the lithium transition metal complex oxide is pressed at a pressure of 40 MPa is 2.7 g / cm 3 or more
  • the lithium transition metal complex oxide has an X-ray diffraction pattern attributable to R3-m, and the half width of the diffraction peak of the (104) plane at a Miller index hkl measured by X-ray diffraction measurement using CuK ⁇ ray is 0.2 ° Or is above 0.6
  • Another aspect of the present invention is a transition used for producing a lithium transition metal complex oxide having an ⁇ -NaFeO 2 structure and having a molar ratio of Li to transition metal (Me) of 1 ⁇ Li / Me. It is a metal hydroxide precursor, and the transition metal hydroxide precursor contains Ni and Mn as a transition metal (Me), or Ni, Co and Mn, and the molar ratio Mn / Me of Mn to Me is 0.
  • Transition metal hydroxide precursor containing 4 ⁇ Mn / Me ⁇ 0.6 and containing ⁇ Me (OH) 2 and ⁇ Me (OH) 2 and containing Ni and Mn or Ni, Co and Mn
  • the method is a method for producing the transition metal hydroxide precursor, wherein the compound is reacted in an aqueous solution of pH 10.2 or less.
  • a positive electrode active material which can be made a non-aqueous electrolyte secondary battery in which the discharge capacity is large even when charging with a relatively low voltage and the battery voltage is not rapidly increased to a higher SOC. it can.
  • X-ray diffraction pattern of hydroxide precursor Charge-discharge curve of positive electrode using lithium excess type active material
  • Charge-discharge curve of positive electrode using lithium excess type active material Conceptual diagram of press density measuring device
  • the inventor has found that the potential change is flat. It was manufactured without passing through the charging process until the end of the region where the amount of charge electricity is large and the potential change is flat, and it was used without performing the charge until the end of the region where the potential change was flat. Even in the case, it was found that there is a condition under which an active material having a large discharge capacity can be obtained. The details will be described below.
  • a first embodiment of the present invention based on the above findings is a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, wherein the lithium transition metal composite oxide is ⁇ -NaFeO 2 having a molar ratio of Li to transition metal (Me) of 1 ⁇ Li / Me, and containing Ni and Mn as the transition metal (Me), or Ni, Co and Mn, and Mn and Me
  • the molar ratio of Mn / Me is 0.4 ⁇ Mn / Me ⁇ 0.6, and the density when the lithium transition metal complex oxide is pressed at a pressure of 40 MPa is 2.7 g / cm 3 or more
  • the lithium transition metal complex oxide has an X-ray diffraction pattern attributable to R3-m, and the half width of the diffraction peak of the (104) plane at a Miller index hkl measured by X-ray diffraction measurement using CuK ⁇ ray is
  • the transition metal represented by (1 + ⁇ ) / (1- ⁇ ) is greater than 1. 1.05 or more is preferable and, as for said Li / Me, 1.10 or more is more preferable. Moreover, less than 1.40 is preferable, and 1.30 or less is more preferable. Within this range, the discharge capacity of the positive electrode active material is improved.
  • the molar ratio Li / Me is more preferably 1.15 or more, and still more preferably 1.20 or more in that the amount of charge in a region where the potential change is flat can be further increased.
  • the molar ratio Mn / Me of Mn to the transition metal element Me is 0.4 or more and less than 0.6. By being 0.4 or more, the amount of charge in a region where the potential change is flat can be increased, and when it is less than 0.6, the charging process until the region where the potential change is flat ends is once A positive electrode active material can be manufactured which has a large discharge capacity when it is manufactured without passing through and charging is not performed until the region where the potential change is flat ends.
  • the molar ratio Mn / Me of Mn is more preferably 0.55 or less, further preferably 0.53 or less, and most preferably 0.50 or less. Co contained in the lithium transition metal composite oxide has an effect of improving the initial efficiency, but is expensive because it is a scarce resource.
  • the molar ratio Co / Me of Co to the transition metal element Me is preferably 0.35 or less, more preferably 0.20 or less, still more preferably 0.13 or less, and may be 0. 0.20 or more and 0.60 or less are preferable, and, as for the molar ratio Ni / Me of Ni with respect to transition metal element Me, 0.25 or more and 0.55 or less are more preferable.
  • the polarization during charge and discharge decreases, and the discharge capacity when used without performing charging until the region where the potential change is flat ends becomes large.
  • the charge amount in the region where the potential change is flat is large, and the charge process until the region where the potential change is flat ends is once It is possible to obtain a non-aqueous electrolyte secondary battery which has a large discharge capacity when manufactured without passing through and without being charged until the end of the region where the potential change is flat.
  • the lithium transition metal complex oxide according to the first embodiment has an ⁇ -NaFeO 2 structure.
  • the above-mentioned lithium transition metal complex oxide after synthesis belongs to the space group P3 1 12 or R3-m.
  • a superlattice peak is observed on the positive electrode after charge and discharge with lithium metal as the counter electrode and a low current of 0.1 C, for example, 4.35 V for charge upper limit voltage and 2.5 V for discharge lower limit voltage. Be done.
  • a superlattice peak is observed on the positive electrode after charge / discharge is performed with lithium metal as the counter electrode and a low current of 0.1 C, for example, the charge upper limit voltage is 4.6 V and the discharge lower limit voltage is 2.0 V I will not.
  • P3 1 12 is a crystal structure model in which atom positions of 3a, 3b and 6c sites in R 3 -m are subdivided, and when the atomic arrangement in R 3 -m is ordered, the P 3 1 12 model is Is adopted. Note that “R3-m” is originally described by applying a bar “-" on “3" of "R3m”.
  • the lithium transition metal complex oxide according to the first embodiment has a half value width of a diffraction peak belonging to the (104) plane when the space group R3-m is used for a crystal structure model based on an X-ray diffraction pattern. That is, the value of FWHM (104) is 0.2 degrees or more and 0.6 degrees or less.
  • the FWHM (104) is an indicator of the degree of crystallinity from all directions. If it is too small, the crystallization proceeds too much, the crystallites become large, and the diffusion of Li ions is not sufficiently performed, so that the discharge capacity is reduced. If it is too large, the transport efficiency of Li ions is reduced due to the low degree of crystallinity, and the discharge capacity is also reduced. Therefore, the discharge capacity can be increased by the crystal structure according to the present embodiment.
  • the diffraction peak of 2 ⁇ 44.1 ° ⁇ 1 ° is the space group P3 1 12 (114) plane, is indexed to the space group R3-m (104) plane.
  • measurement of the half width of the lithium transition metal complex oxide is performed using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II). Specifically, the following conditions and procedures are followed.
  • the X-ray source is CuK ⁇ , and the acceleration voltage and current are 30 kV and 15 mA, respectively.
  • the sampling width is 0.01 deg, the scan time is 15 minutes (scan speed is 5.0), the divergence slit width is 0.625 deg, the light receiving slit is open, and the scattering slit width is 8.0 mm.
  • the peak derived from CuK ⁇ 2 is not removed, and it is indexed to the (104) plane in the space group R3-m using “PDXL” that is the attached software of the X-ray diffractometer.
  • the lithium transition metal complex oxide according to the first embodiment further has a density at a pressure of 40 MPa (hereinafter referred to as “press density”) of 2.7 g / cm 3 or more.
  • the press density is 2.7 g / cm 3 or more, and by satisfying both the above composition and the crystallinity represented by FWHM (104), the charging process until the end of the area where the potential change is flat is passed even once It is possible to increase the discharge capacity in the case of manufacturing without using the battery until charging is completed until the region where the potential change is flat ends.
  • manufacture is performed without passing through the charging process until the end of the area where the potential change is flat, and charging is performed until the end of the area where the potential change is flat.
  • a large discharge capacity can not be obtained.
  • a region where the potential change is flat The discharge capacity is small when the battery is manufactured without passing through the charging process until the end of the period and the charging is not performed until the region where the potential change is flat ends.
  • the measurement conditions of the press density are as follows. The measurement is carried out in air at room temperature of 20 ° C. or more and 25 ° C. or less.
  • the conceptual diagram of the apparatus used for the measurement of press density is shown in FIG.
  • a pair of measurement probes 1A and 1B are prepared. Measurement probes 1A and 1B have measurement surfaces 2A and 2B obtained by planarizing one end of a cylinder made of stainless steel (SUS 304) having a diameter of 8.0 mm ( ⁇ 0.05 mm), and the other end is stainless steel pedestal 3A , And 3B (area of 10 cm 2 or more).
  • a side body 6 provided with a polished through-hole 7 is prepared at the center of an acrylic cylinder so that the stainless steel cylinder can slowly and naturally descend in air by gravity. The upper and lower surfaces of the side body 6 are polished smoothly.
  • One of the measurement probes 1A is installed on a horizontal desk with the measurement surface 2A facing upward, and the cylindrical body of the measurement probe 1A is placed in the through hole 7 of the side body 6 so as to cover the side body 6 from above. insert.
  • the other measurement probe 1B is inserted from above the through hole 7 with the measurement surface 2B down, and the distance between the measurement surfaces 2A and 2B is made zero. At this time, the distance between the pedestal 3B of the measurement probe 1B and the pedestal 3A of the measurement probe 1A is measured using a vernier caliper.
  • the measurement probe 1B is pulled out, 0.3 g of powder of the sample to be measured is charged from the upper part of the through hole 7 with a medical spoon, and the measurement probe 1B is again placed on the through hole 7 with the measurement surface 2B down. Insert from above.
  • the area of the contact portion to the jig is 10 cm 2 (the contact area to the 3A surface in this figure), and the pressure of the press from above the measuring probe 1 B using a manual hydraulic press with a pressure gauge. Pressurize until the scale reaches 2 MPa. After the scale reaches 2 MPa, additional pressurization is not performed even if the value indicated by the scale decreases.
  • the distance between the pedestal 3B of the measurement probe 1B and the pedestal 3A of the measurement probe 1A is measured again using a caliper.
  • Density of the sample to be measured in a pressurized state from the difference (cm) from the distance before sample insertion, the area of the through hole (0.50 cm 2 ) and the input amount of the sample to be measured (0.3 g) Is calculated as the press density (g / cm 3 ).
  • the pressure applied to the active material is calculated to be 40 MPa from the relationship between the area of the contact portion to the jig and the area of the measurement surface (contact area to the powder).
  • the tap density of the lithium transition metal complex oxide according to the first embodiment does not necessarily have a correlation with the effect of the present invention, the tap density may be somewhat large to obtain a large press density.
  • the tap density is preferably 1.5 g / cm 3 or more, more preferably 1.6 g / cm 3 or more, and still more preferably 1.7 g / cm 3 or more.
  • the measurement of the tap density in the present specification is performed in the following procedure. 2 g ⁇ 0.2 g of the powder of the sample to be measured is charged into a 10 -2 dm 3 measuring cylinder, and REI ELECTRIC CO. LTD. A value obtained by dividing the volume of the sample to be measured after counting 300 times by the input mass is adopted using a tapping device manufactured by the company.
  • Preparation of samples to be subjected to the above various measurements is carried out according to the following procedure. If it is lithium transition metal complex oxide powder (powder before charge and discharge) before positive electrode preparation, it uses for measurement as it is.
  • the voltage specified with a current value (A) that is 1/10 of the nominal capacity (Ah) of the battery The constant current discharge is performed to reach the battery voltage which is the lower limit of the condition, and the battery is completely discharged.
  • A current value
  • Ah nominal capacity
  • the battery When the battery is not a battery using a metal lithium electrode as the negative electrode, the battery is disassembled and the electrode is taken out in order to accurately control the positive electrode potential, and then the battery with the metal lithium electrode as a counter electrode is assembled.
  • the constant current discharge is performed until the voltage becomes 2.0 V (the potential of the positive electrode becomes 2.0 V (vs. Li / Li + )), and after adjustment to a completely discharged state, reassembly is performed.
  • the positive electrode plate taken out is thoroughly washed the non-aqueous electrolyte attached to the electrode with dimethyl carbonate and dried at room temperature overnight, and then the mixture on the current collector is collected.
  • the above-described work from disassembly of the battery to re-disassembly, and cleaning and drying of the positive electrode plate are performed in an argon atmosphere with a dew point of -60.degree.
  • the sample to be subjected to X-ray diffraction measurement is lightly crushed in a rattan mortar, placed in a sample holder for X-ray diffraction measurement, and subjected to measurement.
  • the sample to be subjected to press density measurement and tap density measurement is subjected to calcination of this mixture at 600 ° C. for 4 hours using a small electric furnace to remove the conductive agent and binder, and the lithium transition metal complex oxide particles are taken out,
  • the above measurement is performed as an active material powder (powder after charge and discharge).
  • the transition metal hydroxide precursor used for producing the lithium transition metal complex oxide contains Ni and Mn as transition metal (Me), or a compound of ⁇ Ni (OH) 2 type crystal structure (Ni, Co and Mn) hereinafter referred to as ArufaMe (OH) 2) and BetaNi (OH) compound 2 type crystal structure (hereinafter, beta] ME (OH) is preferably a mixture of 2 and described).
  • a second embodiment of the present invention is used for producing a lithium transition metal complex oxide having an ⁇ -NaFeO 2 structure and having a molar ratio of Li to transition metal (Me) of 1 ⁇ Li / Me.
  • a transition metal hydroxide precursor wherein the transition metal hydroxide precursor contains Ni and Mn as a transition metal (Me), or Ni, Co and Mn, and the molar ratio Mn / Me of Mn to Me is a 0.4 ⁇ Mn / Me ⁇ 0.6, containing ⁇ Me (OH) 2 and ⁇ Me (OH) 2, transition metal hydroxide precursor, and a manufacturing method thereof.
  • the reason for limitation of the molar ratio Mn / Me of the above-mentioned transition metal hydroxide precursor hereinafter, also simply referred to as “precursor”
  • precursor the reason for limitation of the oxide molar ratio Li / Me are the same as in the first embodiment.
  • the precursor is characterized in having a crystal structure containing ⁇ Me (OH) 2 and ⁇ Me (OH) 2 and has a crystal structure of ⁇ Me (OH) 2 single phase or ⁇ Me (OH) 2 single phase
  • the tap density can be increased compared to the precursor.
  • the lithium transition metal complex oxide with a high press density can be manufactured using the precursor which concerns on 2nd embodiment. The reason why the crystal structure of the transition metal hydroxide precursor is related to the tap density of the transition metal hydroxide precursor and the press density of the lithium transition metal complex oxide is not necessarily clear, but the inventor I guess so.
  • the transition metal hydroxide of ⁇ Me (OH) 2 single phase has a large primary particle diameter of ⁇ Me (OH) 2 having a plate-like form, so the volume of voids between primary particles constituting the secondary particles becomes large. Therefore, the density of the transition metal hydroxide precursor is considered to be low. Moreover, since the manufacturing conditions of the transition metal hydroxide which the (beta) Me (OH) 2 single phase produces
  • a transition metal hydroxide precursor with a high tap density can be obtained by adopting the production conditions of the transition metal hydroxide in which a mixed phase of ⁇ Me (OH) 2 and ⁇ Me (OH) 2 is generated.
  • a lithium transition metal complex oxide having a high press density can be obtained.
  • the precursor can be produced by reacting Ni and Mn, or a compound containing Ni, Co and Mn in an aqueous solution having a pH of 10.2 or less.
  • the pH for producing the transition metal hydroxide precursor by the coprecipitation method is usually 10.5 to 14 as described in Patent Documents 1 and 2 and the like.
  • the hydroxide precursor manufactured by pH 11.5 is a single phase of (beta) Me (OH) 2 .
  • the precursor according to the second embodiment is a precursor containing ⁇ Me (OH) 2 and ⁇ Me (OH) 2 by reacting a compound of transition metal in an aqueous solution having a pH of 10.2 or less. Can be manufactured.
  • a lithium transition metal composite oxide manufactured from such a precursor is used as a positive electrode active material
  • the resistance of the electrode is reduced, and thus the potential does not reach a flat region, for example, 4.35 V (vs.
  • the amount of Li that can be extracted by charging with an upper limit of / Li + ) is increased, and the reversible capacity can be increased (see FIG. 3).
  • an alkali solution containing an alkali metal hydroxide, a complexing agent, and a reducing agent is added to a reaction vessel maintaining alkalinity, together with a solution containing a transition metal (Me), It is preferred to coprecipitate the transition metal hydroxide.
  • a transition metal Me
  • the complexing agent ammonia, ammonium sulfate, ammonium nitrate or the like can be used, with preference given to ammonia.
  • a precursor with a higher tap density can be produced by a crystallization reaction using a complexing agent. It is preferred to use a reducing agent with the complexing agent.
  • reducing agent hydrazine, sodium borohydride and the like can be used, and in order to obtain a lithium transition metal composite oxide having a high press density of the active material, hydrazine is preferable.
  • Sodium hydroxide, lithium hydroxide or potassium hydroxide can be used as the alkali metal hydroxide (neutralizing agent).
  • Mn is easily oxidized among Ni, Co, and Mn, and a coprecipitated precursor in which Ni, Mn, or Ni, Co, or Mn is uniformly distributed in a divalent state is produced. Because mixing is not easy, uniform mixing at the atomic level of Ni, Mn, or Ni, Co, Mn tends to be insufficient.
  • the molar ratio Mn / Me of Mn to Me is 0.4 or more, it is important to remove the dissolved oxygen in the aqueous solution.
  • a method of removing dissolved oxygen there is a method of bubbling a gas not containing oxygen (O 2 ).
  • the gas not containing oxygen is not limited, but nitrogen gas, argon gas or the like can be used.
  • the pH (reaction pH in the reaction tank) in the step of coprecipitating Ni, Mn, or a compound containing Ni, Co, Mn in a solution to produce a hydroxide precursor is ⁇ Me (OH 2.)
  • the value is preferably 10.2 or less.
  • the stirring continuation time after the end of the dropping of the aqueous solution of the raw material can be shortened.
  • the pH is too low, it becomes a precursor of ⁇ Me (OH) 2 single phase (see Comparative Example 8 described later), and it is preferable that the reaction pH exceeds 9.
  • the precursor is a mixed phase of ⁇ Me (OH) 2 and ⁇ Me (OH) 2 .
  • the lower limit of I 11 / I 19 is preferably 0.04, more preferably 0.05, and most preferably 0.08.
  • the upper limit of I 11 / I 19 is preferably 3.0, more preferably 2.0, and most preferably 1.0.
  • the method of using a transition metal carbonate precursor is also known as a precursor of the positive electrode active material for nonaqueous electrolyte secondary batteries.
  • a gas mainly carbon dioxide
  • This gas generation generates many pores in the positive electrode active material, and the press density of the positive electrode active material decreases.
  • Raw materials of the hydroxide precursor are manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate and the like as the Mn compound, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, acetic acid as the Ni compound.
  • Examples of the Co compound include nickel sulfate, cobalt sulfate, cobalt nitrate and cobalt acetate.
  • an alkali metal hydroxide neutralizing agent
  • a complexing agent such as ammonia, hydrazine, etc.
  • the method of dripping the mixed alkali solution containing the reducing agent of 5 suitably is preferable.
  • the concentration of the alkali metal hydroxide to be dropped is preferably 1.0 to 8.0M.
  • the concentration of the complexing agent is preferably 0.4 M or more, more preferably 0.6 M or more. Moreover, it is preferable that it is 2.0 M or less, It is more preferable that it is 1.6 M or less, It is more preferable to set it as 1.5 M or less.
  • the concentration of the reducing agent is preferably 0.05 to 1.0 M, more preferably 0.1 to 0.5 M.
  • the tap density of the hydroxide precursor can be increased by lowering the pH of the reaction tank and setting the concentration of ammonia (complexing agent) to 0.6 M or more.
  • the dropping speed of the raw material aqueous solution greatly affects the uniformity of the element distribution in one particle of the hydroxide precursor to be produced. In particular, it is necessary to be careful because Mn does not easily form a uniform element distribution with Ni and Co.
  • the preferable dropping speed is influenced by the size of the reaction tank, stirring conditions, pH, reaction temperature and the like, but is preferably 30 mL / min or less. In order to improve the discharge capacity, the dropping rate is more preferably 10 mL / min or less, and most preferably 5 mL / min or less.
  • the rotation of the particles and the revolution in the stirring tank can be continued by further continuing the stirring after the dropping of the aqueous solution of the raw material.
  • the particles grow concentrically and spherically stepwise while the particles collide with each other. That is, the hydroxide precursor has a reaction in two steps of a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation reaction which the metal complex causes during retention in the reaction tank. It is formed through. Therefore, after the dropping of the raw material aqueous solution is completed, by appropriately selecting the time for continuing the stirring, it is possible to obtain the hydroxide precursor having the target particle diameter.
  • the preferable stirring continuation time after the end of the raw material aqueous solution dripping is influenced by the size of the reaction tank, stirring conditions, pH, reaction temperature, etc., but 0.5h or more is necessary to grow the particles as uniform spherical particles. Preferably, 1 h or more is more preferable. Moreover, in order to reduce the possibility that the output performance in the low SOC region of the battery will not be sufficient due to the particle diameter becoming too large, 15 h or less is preferable, 10 h or less is more preferable, and 5 h or less is most preferable.
  • the accumulation volume in the particle size distribution of the secondary particle of a hydroxide precursor and lithium transition metal complex oxide sets D50 which is a particle diameter used as 50% to 13 micrometers or less.
  • the stirring duration is preferably 1 to 3 h.
  • particles of a hydroxide precursor are prepared using a sodium compound such as sodium hydroxide as a neutralizing agent, it is preferable to wash away sodium ions attached to the particles in a subsequent washing step.
  • a sodium compound such as sodium hydroxide as a neutralizing agent
  • the produced hydroxide precursor is suction-filtered and taken out, it is possible to adopt a condition in which the number of times of washing with 500 mL of ion exchanged water is six or more.
  • a lithium transition metal composite oxide is produced by mixing a lithium compound with the transition metal hydroxide precursor according to the second embodiment and calcining at 750 to 1000 ° C. It is a manufacturing method of the quality of cathode active material for nonaqueous electrolyte secondary batteries. By setting the calcination temperature in the above range, the crystallinity of the lithium transition metal complex oxide represented by FWHM (104) can be made a range that meets the object of the present invention.
  • lithium compound lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate or the like can be used.
  • amount of the lithium compound it is preferable to charge in an excess of about 1 to 5 mol% in anticipation of disappearance of a part of the lithium compound during firing.
  • the firing temperature affects the reversible capacity of the active material.
  • the calcination temperature is too high, the obtained active material is disintegrated with an oxygen releasing reaction, and in addition to the main phase hexagonal crystal, it becomes a monoclinic Li [Li 1/3 Mn 2/3 ] O 2 type A defined phase tends to be observed as phase separation, not as a solid solution phase. It is not preferable that such phase separation is contained too much, which leads to a decrease in the reversible capacity of the active material. In such materials, impurity peaks are observed around 35 ° and around 45 ° on the X-ray diffraction pattern. Therefore, the firing temperature is preferably lower than the temperature affected by the oxygen release reaction of the active material.
  • the oxygen release temperature of the active material is slightly different depending on the composition of the active material, and is about 1000 ° C. or higher in the case of producing the lithium excess active material using the precursor according to the second embodiment. It is preferable to confirm the oxygen release temperature of the active material. In particular, it has been confirmed that the oxygen release temperature of the hydroxide precursor shifts to a lower temperature side as the amount of Co contained in the sample increases.
  • a mixture of a hydroxide precursor and a lithium compound may be subjected to thermal mass spectrometry (TG-DTA measurement) in order to simulate a firing reaction process.
  • the precursor according to the second embodiment similarly, there is almost no distortion of lattices in the system, and a firing temperature that can be made into particles in which the crystallite size is sufficiently grown, specifically, It is preferable to produce an active material by employing a calcination temperature at which the amount of strain exerted on the lattice constant is 2% or less and the crystallite size grows to 50 nm or more. It was found that when charge and discharge were performed on an electrode using this active material, the crystallite size was maintained at 30 nm or more in the charge and discharge process, though it changes due to expansion and contraction. That is, by selecting the calcination temperature as close as possible to the above-described oxygen release temperature of the active material, it is possible to obtain an active material having a significantly large reversible capacity.
  • the firing temperature is set to 750 in order to obtain an active material having a sufficient discharge capacity under the use conditions premised on the present invention. It is preferable to set the temperature to 1000 ° C., and more preferably set to 750 to 950 ° C.
  • a fourth embodiment of the present invention is a positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material of the first embodiment, and a non-aqueous electrolyte secondary battery including the positive electrode.
  • the positive electrode according to the fourth embodiment includes a powder containing the positive electrode active material according to the first embodiment as a main component.
  • a conductive agent, a binder, a thickener, a filler and the like may be contained.
  • the powder of the positive electrode active material preferably has an average particle size of 100 ⁇ m or less.
  • the powder of the positive electrode active material is preferably 15 ⁇ m or less in order to improve the high output characteristics of the non-aqueous electrolyte battery.
  • a method of producing a precursor of a predetermined size a method of using a grinder, a classifier and the like. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirl flow jet mill, a sieve or the like is used.
  • wet pulverization in the presence of water or an organic solvent such as hexane can also be used.
  • an organic solvent such as hexane
  • the conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the cell performance, but natural graphite (scaly graphite, scaly graphite, earthy graphite etc.), artificial graphite, carbon black, acetylene black, etc.
  • a conductive material such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold etc.) powder, metal fiber, conductive ceramic material, etc. can be included as one or a mixture thereof. .
  • acetylene black is preferable as the conductive agent from the viewpoint of electron conductivity and coatability.
  • the addition amount of the conductive agent is preferably 0.1% by mass to 50% by mass, particularly preferably 0.5% by mass to 30% by mass, with respect to the total mass of the positive electrode or the negative electrode.
  • These mixing methods are physical mixing, and the ideal place is uniform mixing. Therefore, it is possible to perform dry or wet mixing using a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, or a planetary ball mill.
  • the binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, etc., ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene terpolymer
  • SBR rubber
  • fluororubber can be used as a mixture of one or more kinds.
  • the addition amount of the binder is preferably 1 to 50% by mass, particularly preferably 2 to 30% by mass, with respect to the total mass of the positive electrode or the negative electrode.
  • the filler is not limited as long as the material does not adversely affect the battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by mass or less with respect to the total mass of the positive electrode or the negative electrode.
  • the negative electrode active material used for the negative electrode of the non-aqueous electrolyte secondary battery is not limited. Any form that can occlude and release lithium ions may be selected.
  • titanium-based materials such as lithium titanate having a spinel-type crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , alloy materials such as Si, Sb, and Sn-based materials lithium metal, lithium alloy (Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium complex oxide (lithium-titanium), silicon oxide Other than the above, alloys capable of absorbing and desorbing lithium, carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) and the like can be mentioned.
  • the negative electrode active material may be used as a powder, and the negative electrode may
  • the positive electrode and the negative electrode are obtained by mixing the main component (each active material) and other materials into a combined agent, mixing it with an organic solvent such as N-methylpyrrolidone, toluene or the like, or water, and It is suitably produced by applying or pressure-bonding on the current collector to be described in detail and heat-treating it at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • the application method is preferably, for example, roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater or the like to apply any thickness and any shape. It is not limited.
  • a current collector foil such as an aluminum foil or a copper foil can be used.
  • An aluminum foil is preferred as the current collector foil of the positive electrode, and a copper foil is preferred as the current collector foil of the negative electrode.
  • the thickness of the current collector foil is preferably 10 to 30 ⁇ m.
  • the thickness of the mixture layer is preferably 40 to 150 ⁇ m (excluding the thickness of the current collector foil) after pressing.
  • the non-aqueous electrolyte used for the non-aqueous electrolyte secondary battery is not limited, and those generally proposed for use in lithium secondary batteries and the like can be used.
  • the nonaqueous solvent used for the nonaqueous electrolyte includes cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; dimethyl carbonate, Linear carbonates such as diethyl carbonate and ethyl methyl carbonate; Linear esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane, methyl diglyme and the like
  • Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr ,
  • An inorganic ion salt containing one of lithium (Li) such as KClO 4 and KSCN, sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3) 4 NBr, (C 2 H 5) 4 NClO 4, (C 2 H 5) 4 NI, (C 3 H 7)
  • the viscosity of the electrolyte can be further reduced by mixing and using LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 .
  • Low temperature characteristics can be further enhanced, and self-discharge can be suppressed, which is more preferable.
  • a normal temperature molten salt or an ionic liquid may be used as the non-aqueous electrolyte.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / L to 5 mol / L, more preferably 0.5 mol / L to 2 in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. .5 mol / L.
  • separator of the non-aqueous electrolyte secondary battery it is preferable to use, alone or in combination, a porous film, a non-woven fabric, or the like exhibiting excellent high-rate discharge performance.
  • materials constituting separators for non-aqueous electrolyte batteries include polyolefin resins represented by polyethylene and polypropylene, polyester resins represented by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride and vinylidene fluoride-hexa Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer,
  • the porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. In addition, the porosity is preferably 20% by volume or more from the viewpoint of charge and discharge characteristics.
  • a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride and the like and an electrolyte may be used.
  • a non-aqueous electrolyte is used in the gel state as described above, it is preferable in that it has the effect of preventing liquid leakage.
  • a separator in combination with the above-mentioned porous film, non-woven fabric, and the like, and a polymer gel, because the liquid retention of the electrolyte is improved. That is, a film is formed by coating a surface and microporous wall surface of a polyethylene microporous membrane with a solvophilic polymer having a thickness of several ⁇ m or less, and the electrolyte is held in the pores of the film to obtain the above-mentioned solvophilic polymer Is gelled.
  • the lyophilic polymer examples include, in addition to polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, a polymer obtained by crosslinking an epoxy monomer, a monomer having an isocyanate group, and the like.
  • the monomer can carry out a crosslinking reaction by electron beam (EB) irradiation, or by adding a radical initiator and performing heating or ultraviolet (UV) irradiation.
  • EB electron beam
  • UV ultraviolet
  • FIG. 6 is an external perspective view of a rectangular non-aqueous electrolyte secondary battery 1 according to an embodiment of the present invention. In addition, the same figure is a view seen through the inside of the container. In the non-aqueous electrolyte secondary battery 1 shown in FIG. 6, the electrode group 2 is accommodated in the battery case 3.
  • the electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 through the positive electrode lead 4 ′
  • the negative electrode is electrically connected to the negative electrode terminal 5 through the negative electrode lead 5 ′.
  • a power storage device in which a plurality of the above-mentioned non-aqueous electrolyte secondary batteries are collected is also included in the embodiment of the present invention.
  • a power storage device 30 shown in FIG. 7 includes a plurality of power storage units 20. Each storage unit 20 includes a plurality of non-aqueous electrolyte secondary batteries 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • the non-aqueous electrolyte secondary battery according to the fourth embodiment is manufactured without passing through the charging process until the end of the region where the potential change is flat, and the region where the potential change is flat is completed. It is assumed to be used without charging up.
  • the charging voltage employed during the manufacturing process and in use is set such that the potential reached by the positive electrode by the charging, that is, the charging upper limit potential is lower than the potential at which the region where the potential change is flat starts. preferable.
  • the charge upper limit potential may be, for example, 4.40 V (vs. Li / Li + ).
  • the charging upper limit voltage may be 4.38V (vs.Li/Li +), may be 4.36V (vs.Li/Li +), 4.34V ( vs.Li/Li + And may be 4.32 V (vs. Li / Li + ).
  • Example 1 In preparation of the active material, a transition metal hydroxide precursor was prepared using a reactive crystallization method. First, 315.4 g of nickel sulfate hexahydrate, 168.6 g of cobalt sulfate heptahydrate, and 530.4 g of manganese sulfate pentahydrate are weighed, and the whole amount thereof is dissolved in 4 liters of ion-exchanged water to obtain Ni: Co. An aqueous solution of 1.0 M sulfate was prepared such that the molar ratio of Mn: Mn was 30:15:55.
  • the pH in the reaction tank can be reduced by appropriately dropping a mixed alkaline solution consisting of 4.0 M sodium hydroxide, 1.25 M ammonia and 0.1 M hydrazine.
  • the total amount of the reaction solution was controlled so as not to always exceed 2 L by controlling so as to always keep 9.8 ( ⁇ 0.1) and discharging a part of the reaction solution by overflow.
  • stirring in the reaction vessel was continued for another 1 h. After stopping the stirring, it was allowed to stand at room temperature for 12 hours or more.
  • a suction filtration device is used to separate hydroxide precursor particles generated in the reaction tank, and further ion exchange water is used to wash away sodium ions adhering to the particles, and an electric furnace is used.
  • the resultant was dried at 80.degree. C. for 20 h in an air atmosphere under normal pressure. After that, it was crushed for several minutes with a smoked automatic mortar to adjust the particle size. Thus, a transition metal hydroxide precursor was produced.
  • Example 2 in the same manner as Example 1, except that the mixed powder of the transition metal hydroxide precursor and lithium hydroxide monohydrate was calcined at 850 ° C., 900 ° C., 1000 ° C. and 750 ° C., respectively. Lithium transition metal complex oxides according to 5 were produced.
  • Example 6 In the preparation of the transition metal hydroxide precursor, in the same manner as in Example 1 except that the pH of the reaction vessel was set to 10.0 and 10.2, the lithium transition metal complex oxide according to Examples 6 and 7 was obtained. Made.
  • Comparative Examples 1 to 4 Comparative Example 1 to Example 1 in the same manner as Example 1 except that the mixed powder of the transition metal hydroxide precursor and lithium hydroxide monohydrate was calcined at 700 ° C., 650 ° C., 1050 ° C., and 1200 ° C., respectively. A lithium transition metal composite oxide according to 4 was produced.
  • Comparative Examples 5 to 9 Comparative Examples 5 to 8 in the same manner as in Example 1 except that the pH of the reaction tank was changed to 10.5, 10.7, 11.0, and 9.0 in the preparation of the transition metal hydroxide precursor.
  • Crystal phase of the transition metal hydroxide precursor prepared in the above-described Examples, Comparative Examples, and Examples and Comparative Examples to be described later is treated using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II) to obtain It measured according to the method of the X-ray-diffraction measurement.
  • X-ray diffractometer manufactured by Rigaku, model name: MiniFlex II
  • Example 7 synthesized with the pH of the reaction vessel being 11.0, diffraction lines derived from the ⁇ Ni (OH) 2 type crystal structure were observed.
  • Comparative Example 8 in which the pH of the reaction vessel was set to 9.0, diffraction lines derived from the ⁇ Ni (OH) 2 type crystal structure were observed.
  • Example 1 in which the pH of the reaction tank was set to 9.8, a mixed phase of ⁇ Ni (OH) 2 type crystal structure and ⁇ Ni (OH) 2 type crystal structure was observed.
  • a coating paste was prepared, in which N-methylpyrrolidone was used as a dispersion medium, and the positive electrode active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) were kneaded and dispersed in a mass ratio of 90: 5: 5.
  • the application paste was applied to one side of a 20 ⁇ m thick aluminum foil current collector, dried, and pressed to prepare a positive electrode plate. In addition, it adjusted so that the mass of the active material apply
  • a part of the positive electrode for a non-aqueous electrolyte secondary battery produced as described above was cut out, and a test battery which is a non-aqueous electrolyte secondary battery was produced according to the following procedure.
  • metallic lithium was used in close contact with the nickel foil current collector at the counter electrode, that is, the negative electrode.
  • a sufficient amount of metal lithium was disposed on the negative electrode so that the capacity of the non-aqueous electrolyte secondary battery was not limited by the negative electrode.
  • a non-aqueous electrolyte dissolve LiPF 6 in a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) in a volume ratio of 6: 7: 7 to a concentration of 1 mol / L.
  • the solution was used.
  • a separator a microporous film made of polypropylene surface-modified with polyacrylate was used.
  • a metal resin composite film consisting of polyethylene terephthalate (15 ⁇ m) / aluminum foil (50 ⁇ m) / metal adhesive polypropylene film (50 ⁇ m) was used.
  • the electrode is housed so that the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside, and the fusion bond where the inner surfaces of the metal resin composite films face each other is hermetically sealed except for the portion to be the liquid injection hole, After injecting the non-aqueous electrolyte, the injection hole was sealed. Since the counter electrode is metal lithium, the battery voltage (V) may be read as the positive electrode potential (V. vs Li / Li + ) as it is.
  • ⁇ Initial charge / discharge process> The non-aqueous electrolyte secondary battery assembled according to the above procedure is completed through an initial charge and discharge process.
  • the process was divided into a first group to which the initial charge / discharge condition 1 is applied and a second group to which the initial charge / discharge condition 2 is applied.
  • Initial charge and discharge condition 1 The following conditions were applied to the initial charge and discharge step using the first group of batteries.
  • charging was constant current constant voltage charging at a current of 0.1 C and a voltage of 4.35 V, and a charge termination condition was at a point when the current value was attenuated to 0.02 C.
  • the discharge was constant current discharge with a current of 0.1 C and a final voltage of 2.5 V. This charge and discharge was performed for one cycle. In addition, a 10-minute pause process was provided after charging. The charge amount and discharge capacity at this time were recorded as "4.35 V charge charge amount" and "4.35 V charge discharge capacity", respectively.
  • “4.35 V charge discharge capacity” is manufactured without passing through the charging process until the end of the area where the potential change is flat, and charging until the end of the area where the potential change is flat. It is an index showing discharge capacity at the time of not using and using in a lower electric potential range.
  • FIG. 3 is a charge / discharge curve when the “initial charge / discharge condition 1” is adopted
  • FIG. 4 is a charge / discharge curve when the above “initial charge / discharge condition 2” is adopted.
  • Example 1 and Comparative Example 5 show equivalent discharge capacities, but when the charge voltage is set to 4.35 V, in Comparative Example 5, the discharge capacity is reduced by 10% or more. ing.
  • the positive electrode active materials shown in Table 1 all have the same composition.
  • the reaction pH at the time of producing the transition metal hydroxide precursor is also the same 9.8, and the precursors have crystal phases of ⁇ type and ⁇ type.
  • the FWHM (104) of the lithium transition metal complex oxide is in the range of 0.2 to 0.6 °
  • Comparative Examples 1 to 4 in which the firing temperature is outside the range of 750 to 1000 ° C. when the firing temperature is below 750 ° C., the lithium transition metal complex oxide has a FWHM (104) exceeding 0.6 °.
  • Example 6 and 7 and Comparative Examples 5 to 8 the pH of the reaction tank was 10.0, 10.2, and 10 with respect to 9.8 of Example 1, respectively, in the preparation of the transition metal hydroxide precursor.
  • C.5, 10.7, 11.0 and 9.0, and Comparative Example 9 is an example in which the pH of the reaction tank is 11.0 and the firing temperature is 650.degree.
  • the precursor contains ⁇ -type and ⁇ -type crystal phases, and the lithium transition metal complex oxide produced using this precursor has a press density Is over 2.7 g / cm 3 .
  • Comparative Example 8 in which the precursor according to Comparative Examples 5 to 7 in which the pH of the reaction tank exceeds 10.2 is a single phase of ⁇ type, and the pH of the reaction tank is 9.0. , ⁇ -type single phase.
  • the lithium transition metal complex oxide produced using the single-phase precursor according to Comparative Examples 5 to 9 has a press density exceeding 2.7 g / cm 3 even when the firing temperature is 800 ° C. There is no
  • Comparative Example 9 has a low firing temperature, and FWHM (104) is greater than 0.6 °, so crystallization is insufficient. Further, in Comparative Examples 5 to 9, it can be seen that the “4.35 V charge discharge capacity” does not exceed Examples 1 to 7.
  • Example 8 The composition of the transition metal hydroxide precursor is prepared so that the molar ratio of Ni: Co: Mn is 40: 5: 55, and the Li: (mixed powder of the transition metal hydroxide precursor and the lithium compound): ( A lithium transition metal complex oxide according to Example 8 was produced in the same manner as Example 1 except that the molar ratio of Ni, Co, Mn) was 110: 100.
  • Example 9 The composition of the transition metal hydroxide precursor is prepared to have a molar ratio of Ni: Co: Mn of 45: 5: 50, and the pH of the reaction vessel is 10.0 in the preparation of the transition metal hydroxide precursor. And that the molar ratio of Li: (Ni, Co, Mn) of the mixed powder of the transition metal hydroxide precursor and the lithium compound is 110: 100 and fired at 850 ° C.
  • a lithium transition metal composite oxide according to Example 9 was produced in the same manner as Example 1 except for the above.
  • Example 10 to 23 The molar ratio of Ni: Co: Mn of the transition metal hydroxide precursor, the molar ratio Li / Me of the transition metal to the lithium compound of the precursor, the pH of the reaction tank, and the calcination temperature of the precursor and the lithium compound Lithium transition metal composite oxides according to Examples 10 to 23 were produced in the same manner as Example 1 except that the conditions shown in Table 2 of Table 1 were used.
  • composition of the transition metal hydroxide precursor is prepared to have a molar ratio of Ni: Co: Mn of 30:10:60, the ammonia concentration dropped to the reaction tank is 0.6 M, and the hydrazine concentration is 0.3 M ( Precursors were prepared under the conditions shown in Table 2 described later under the conditions of Comparative Examples 10 and 11) or 0.2 M (Comparative Examples 12 and 13), and the transition metal of the precursor and the lithium compound were used. Lithium transition metal complex oxides according to Comparative Examples 10 to 13 in the same manner as Example 1, except that the molar ratio Li / Me was adjusted to 1.3 and calcination was performed at the calcination temperature shown in Table 2 described later. Was produced.
  • Comparative example 14 It concerns on the comparative example 14 similarly to Example 1 except having prepared so that molar ratio Li / Me of the mixed powder of a transition metal hydroxide precursor and a lithium compound may be set to 1.0. Lithium transition metal complex oxide was prepared.
  • Comparative Examples 15 and 16 The composition of the transition metal hydroxide precursor is prepared so that the molar ratio of Ni: Co: Mn is 33:33:33 (1: 1: 1), and the pH of the reaction tank is 10.0. And Comparative Example 15 and 16 in the same manner as Example 1, except that the molar ratio Li / Me of the transition metal hydroxide precursor and the lithium compound was 1.0 or 1.1, and firing was performed at 900 ° C. The lithium transition metal composite oxide was produced. The results of charge / discharge tests of non-aqueous electrolyte secondary batteries using the lithium transition metal complex oxide according to the above-described Examples and Comparative Examples as the positive electrode active material are shown in Table 2 below.
  • the composition of the transition metal hydroxide precursor is prepared such that the molar ratio Mn / Me is 0.4 ⁇ Mn / Me ⁇ 0.6, and the transition metal hydroxide precursor
  • a hydroxide precursor containing ⁇ Mn (OH) 2 and ⁇ Mn (OH) 2 is prepared with the pH of the reaction tank being 10.2 or less, and this precursor and the lithium compound are represented by the molar ratio of Li to Me.
  • the lithium transition metal complex oxide obtained by mixing so that the ratio Li / Me exceeds 1 and firing at a temperature of 1000 ° C. or less has a press density of 2.7 g / cm 3 or more, and FWHM (104) Is in the range of 0.2 to 0.6 °.
  • a battery using this lithium transition metal composite oxide as a positive electrode active material has a large "4.35 V charge capacity at the time of charge” and a large "charge amount between 4.35-4.6 V" I understand.
  • the molar ratio Mn / Me of the transition metal hydroxide precursor is 0.6 or more.
  • a battery using this lithium transition metal complex oxide as a positive electrode active material can not obtain a large "4.35 V charge discharge capacity", although "the charge amount between 4.35 V and 4.6 V" is large. I understand that.
  • the firing temperature of the transition metal hydroxide precursor and the lithium compound is as low as 650 ° C., and the FWHM (104) exceeds 0.6 ° in both cases. It can be seen that the crystallization is not sufficient.
  • the pH of the reaction tank is as high as 11.0, a precursor of ⁇ Me (OH) 2 single phase is produced, and the press density of the active material is low.
  • the lithium transition metal complex oxide according to Comparative Example 13 differs from Comparative Example 12 only in that the firing temperature of the transition metal hydroxide precursor and the lithium compound is 800 ° C., and the FWHM (104) is 0.2 to 0 Meets .6 °.
  • Comparative Example 12 it is the same as Comparative Example 12 in that the pH of the reaction tank is as high as 11.0, and a ⁇ -type single phase precursor is produced, and the press density of the active material is low. Further, it is understood that any of the batteries using the lithium transition metal complex oxide according to Comparative Examples 10 to 13 as the positive electrode active material can not obtain a large “4. 35 V charge capacity at the time of charge”.
  • the molar ratio Mn / Me satisfies the composition range of the present invention, but the molar ratio Li / Me is 1.0 (not in the lithium excess type). It does not satisfy the composition range of the present invention. It can be seen that the “4.35 V charge discharge capacity” is extremely small despite the same manufacturing conditions as Example 1.
  • the lithium transition metal complex oxide according to Comparative Example 15 is an example of a LiMeO 2 -type active material in which Ni: Co: Mn is 1: 1: 1 and Li / Me is 1.0.
  • the LiMeO 2 type active material is 4.5 to 5.0 V (vs. Li / Li) even if it is initially charged up to a potential of 5.0 V (vs. Li / Li + ) unlike the lithium excess type active material.
  • a region where the potential change relative to the charge amount is relatively flat is not observed, and "the charge amount between 4.35 and 4.6 V" is small.
  • the lithium transition metal complex oxide according to Comparative Example 16 is an example of a type active material in which Li / Me is 1.1, but Mn / Me is less than 0.4 and 0.33.
  • the active material of Comparative Example 16 even if the initial charging potential reaches 5.0V (vs.Li/Li +), the potential range of 4.5 ⁇ 5.0V (vs.Li/Li +) In the inside, a region where the potential change relative to the charge amount is relatively flat is not observed, and “the charge amount between 4.35 and 4.6 V” is small. Therefore, the batteries according to Comparative Examples 15 and 16 sufficiently expand the SOC until a sharp increase in the battery voltage is observed when the current is forcibly applied further beyond the fully charged state (SOC 100%). I understand that I can not
  • a large “4.35 V charge discharge capacity” may be obtained depending on the composition if the molar ratio Li / Me is 1.1, but a large “4.35 V” may be obtained.
  • Example 8 For example, comparing Example 8 and Example 23 in which the composition ratio of Ni: Co: Mn, the reaction pH, and the condition of the calcination temperature are all the same except that the molar ratio Li / Me is different, Compared with Example 8 in which Li / Me is 1.1, “charge amount of charge between 4.35 and 4.6 V” is significantly improved in Example 23 in which the molar ratio Li / Me is 1.2. I understand that.
  • this non-aqueous electrolyte secondary battery is useful as a non-aqueous electrolyte secondary battery for hybrid vehicles, electric vehicles, plug-in hybrid vehicles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO2構造を有し、Liと遷移金属(Me)のモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、MnとMeのモル比Mn/Meが0.4≦Mn/Me<0.6であり、前記リチウム遷移金属複合酸化物を40MPaの圧力でプレスした際の密度が2.7g/cm3以上であり、前記リチウム遷移金属複合酸化物が、R3-mに帰属可能なエックス線回折パターンを有し、CuKα線を用いたエックス線回折測定によるミラー指数hklにおける(104)面の回折ピークの半値幅が0.2°以上0.6°以下であるか、又は、P3112に帰属可能なエックス線回折パターンを有し、CuKα線を用いたエックス線回折測定によるミラー指数hklにおける(114)面の回折ピークの半値幅が0.2°以上0.6°以下である、非水電解質二次電池用正極活物質。

Description

非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池に関する。
 従来、リチウム二次電池に代表される非水電解質二次電池用の正極活物質として、α-NaFeO型結晶構造を有する「LiMeO型」活物質(Meは遷移金属)が検討され、LiCoOを用いたリチウム二次電池が広く実用化されていた。しかし、LiCoOの放電容量は120~130mAh/g程度であった。前記Meとして、地球資源として豊富なMnを用いることが望まれてきた。しかし、MeとしてMnを含有させた「LiMeO型」活物質は、Me中のMnのモル比Mn/Meが0.5を超える場合には、充電をするとスピネル型へと構造変化が起こり、結晶構造が維持できないため、充放電サイクル性能が著しく劣るという問題があった。
 そこで、Me中のMnのモル比Mn/Meが0.5以下であり、充放電サイクル性能の点でも優れる「LiMeO型」活物質が種々提案され、一部実用化されている。例えば、リチウム遷移金属複合酸化物であるLiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3を含有する正極活物質は150~180mAh/gの放電容量を有する。
 一方、上記のようないわゆる「LiMeO型」活物質に対し、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meが1より大きく、組成式Li1+αMe1-α(α>0)で表されるリチウム遷移金属複合酸化物を含む、いわゆる「リチウム過剰型」活物質も知られている。上記のリチウム遷移金属複合酸化物を水酸化物前駆体から製造することも知られている(例えば、特許文献1~3参照)。
 特許文献1には、「α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属、α>0)で表されるリチウム遷移金属複合酸化物」(請求項1)について、「請求項1又は2に記載のリチウム二次電池用正極活物質の製造方法であって、前記リチウム遷移金属複合酸化物の合成にあたる前駆体は、Co、Ni及びMnを含む遷移金属の水酸化物であることを特徴とするリチウム二次電池用正極活物質の製造方法。」(請求項3)が記載されている。
 また、「溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈水酸化物前駆体として作製しようとする場合には、10.5~14とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることにより、タップ密度を1.00g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを11.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。」(段落[0032])と記載されている。
 そして、実施例に係る正極活物質を用いたリチウム二次電池の初期充放電工程について、「充電は、電流0.1CA、電圧4.6Vの定電流定電圧充電」で行ったことが記載されている(段落[0098])。
 特許文献2には、「リチウム遷移金属複合酸化物を含む非水電解質電池用正極活物質であって、前記リチウム遷移金属複合酸化物を構成するLiと遷移金属(Me)のモル比(Li/Me)が1より大きく、前記遷移金属(Me)がMn、Ni、及びCoを含み、前記リチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有し、空間群R3-mに帰属可能なX線回折パターンを有し、CuKα線を用いたX線回折測定によるミラー指数hklにおける(104)面の回折ピークの半値幅(FWHM(104))が0.21°以上0.55°以下であり、前記(104)面の回折ピークの半値幅に対する(003)面の回折ピークの半値幅の比(FWHM(003)/FWHM(104))が0.72以下であり、前記リチウム遷移金属複合酸化物の粒子の窒素ガス吸着法を用いた吸着等温線からBJH法で求めたピーク微分細孔容積が0.33mm/(g・nm)以下である、非水電解質二次電池用正極活物質。」(請求項1)、「請求項1~7のいずれかに記載の非水電解質二次電池用正極活物質の製造方法であって、前記遷移金属の水酸化物前駆体とリチウム化合物とを800℃以上940℃以下の温度で焼成する、非水電解質二次電池用正極活物質の製造方法。」(請求項8)が記載されている。
 また、特許文献1の段落[0032]と同様、水酸化物前駆体を製造する工程におけるpHは、10.5~14とすることができ、タップ密度を大きくするためには、pHを制御することが好ましい旨が記載されている(段落[0031])。
 そして、実施例に係る正極活物質を用いて作製されたリチウム二次電池の初期充放電工程を、「充電は、電流0.1CmA、電圧4.6Vの定電流定電圧充電」として行ったことが記載されている(段落[0093])。
 特許文献3には、「α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体が含有するLi,Co,Ni及びMnの組成比が、Li1+(1/3)xCo1-x-yNi(1/2)yMn(2/3)x+(1/2)y(x+y≦1、0≦y、1-x-y=z)を満たし、Li[Li1/3Mn2/3]O(x)-LiNi1/2Mn1/2(y)-LiCoO(z)系三角相図において、(x,y,z)が、点A(0.45,0.55,0)、点B(0.63,0.37,0)、点C(0.7,0.25,0.05)、点D(0.67,0.18,0.15)、点E(0.75,0,0.25)、点F(0.55,0,0.45)、及び点G(0.45,0.2,0.35)を頂点とする七角形ABCDEFGの線上又は内部に存在する範囲の値で表され、かつ、X線回折測定による(003)面と(104)面の回折ピークの強度比が、充放電前においてI(003)/I(104)≧1.56であり、放電末においてI(003)/I(104)>1であることを特徴とするリチウム二次電池用活物質。」(請求項1)、「4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る初期充電を行う工程を経た場合に、4.3V(vs.Li/Li)以下の電位領域において放電可能な電気量が180mAh/g以上となることを特徴とする請求項1に記載のリチウム二次電池用活物質。」(請求項2)が記載されている。
 そして、実施例には、pH11.5に調整して得た共沈水酸化物前駆体の結晶相が「β-Ni(OH)型の単相」であることが記載されている(段落[0099]~[0100])。
 また、実施例に係る正極活物質を用いて作製されたリチウム二次電池の初期充放電工程について、「充電は、電流0.1ItA、電圧4.5Vの定電流定電圧充電」で行ったことが記載されている(段落[0114])。
 また、特許文献4には、「下記一般式(1):
  LiNiMnCo1-y-z1+x   (1)
(式中、xは1.02≦x≦1.25、yは0.30≦y≦0.40、zは0.30≦z≦0.40を示す。)で表されるリチウムニッケルマンガンコバルト系複合酸化物に、Mg、Al、Ti、Cu及びZrから選ばれる1種または2種以上の金属原子(Me)を0.1モル%以上5モル%未満含有させたリチウム複合酸化物であって、粒子表面に存在するLiCO量が0.05~0.20重量%であることを特徴とするリチウム二次電池用正極活物質。」(請求項1)が記載されている。
 また、「前記リチウム複合酸化物は、タップ密度が1.5g/ml以上である。この理由は、該リチウム複合酸化物のタップ密度が1.5g/mlより小さくなると、電極密度が低下し、リチウム二次電池の放電容量が低下する傾向があるからである。特に、該リチウム複合酸化物のタップ密度が1.7~2.8g/mlの範囲にあると、特にリチウム二次電池の放電容量が高くなる観点から好ましい。」(段落[0021])と記載されている。
 そして、実施例には、「複合水酸化物中のNi:Co:Mnのモル比=0.334:0.333:0.333」の複合水酸化物試料A及びBを、炭酸リチウム、Meの化合物と混合し、900℃で焼成し、Li/(Ni+Co+Mn+Me)が1.17~1.19のリチウム複合酸化物試料を得たことが記載されている(段落[0067]~[0073]、[0084]表3)。
 特許文献5には、「プレス密度が3.3~4.5g/cmであり、体積基準の粒度分布において、10μm以下の粒子の割合が10~70体積%であるリチウム-ニッケル-マンガン-コバルト複合酸化物。」(請求項1)、「下記化学式で示される組成であり、Li1+aNiMnCo2(但し、MはNi,Mn,Co及びLi以外の金属)
 a+b+c+d+e=1
 0<a≦0.2
 0.2≦b/(b+c+d)≦0.4
 0.2≦c/(b+c+d)≦0.4
 0<d/(b+c+d)≦0.4
 0≦e≦0.1
なおかつBET比表面積が0.05~1.0m/gである請求項1及び請求項2に記載のリチウム-ニッケル-マンガン-コバルト複合酸化物。」(請求項3)が記載されている。
 そして、実施例には、組成がLi1.04[Ni0.32Mn0.32Co0.32]Oであり、2t/cmの圧力で加圧した場合のプレス密度が3.56g/cm、3.43g/cm、3.52g/cm、3.47g/cm、3.31g/cmである複合酸化物が記載されている(段落[0075]、[0082]、[0086]、[0090]、[0094])。
特開2014-029828号公報 国際公開2016/190419 特許第4877660号公報 特開2011-113792号公報 特開2008-013405号公報
 非水電解質二次電池には、誤って過充電がされた場合においても安全性が確保されることが規格(例えば自動車用電池に対して「GB/T(中国勧奨国家標準)」)によって定められている。安全性が向上したことを評価する方法としては、充電制御回路が壊れた場合を想定し、満充電状態(SOC100%)を超えてさらに電流を強制的に印加したときに、電池電圧の急上昇が観察されたSOCを記録する方法がある。より高いSOCに至るまで、電池電圧の急上昇が観察されない場合、安全性が向上したと評価される。ここで、SOCとはState Of Chargeの略で、電池の充電状態をそのときの残存容量と満充電時の容量との比率で表したものであり、満充電状態を「SOC100%」と表記する。
 リチウム過剰型活物質を含む正極は、図1に示すように、電位が5.0V(vs.Li/Li)に至る初期充電を行うと、4.5~5.0V(vs.Li/Li)の正極電位範囲内に、充電電気量に対する電位変化が比較的平坦な領域が観察される。この電位変化が平坦な領域(容量帯)は、この電位変化が平坦な領域が終了するまでの充電過程を一度でも行った正極では、その後5.0V(vs.Li/Li)に至る充電を行っても、再び電位変化が平坦な領域が観察されることはない。従来のリチウム過剰型活物質を含む正極を備えた非水電解質電池(例えば特許文献1~3参照)は、初期充電時に上記電位変化が平坦な領域が終了するまでの充電を行って製造されることを前提とし、かかる初期充電を行って製造されることにより、4.3V(vs.Li/Li)以下の電位領域において高い放電容量が得られるものである。
 これに対して、本発明では、上記電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造され、且つ、上記電位変化が平坦な領域が終了するまでの充電を行わずに使用されることを前提としている。リチウム過剰型活物質を含む正極を備える非水電解質電池をこのように製造し、且つ、使用することによって、誤って過充電がされた場合に初めて、上記容量帯が現れるので、満充電状態(SOC100%)を超えてさらに電流を強制的に印加したときに、より高いSOCに至るまで、電池電圧の急上昇が観察されない電池を提供できる。
 しかし、リチウム過剰型活物質を含む正極を上記電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造し、且つ、上記電位変化が平坦な領域が終了するまでの充電を行わずに使用すると、従来のリチウム過剰型活物質では、図3の比較例5に示すように、放電容量が小さいという問題があった。
 特許文献1~3においては、リチウム過剰型活物質を含む正極に、初期充放電時の充電を上記電位変化が平坦な領域が終了するまで行っている。
 特許文献4,5には、1<Li/Me(遷移金属)のリチウム遷移金属複合酸化物を含有する活物質が記載されているが、具体的に記載されているリチウム遷移金属複合酸化物は、Ni:Co:Mnの比が1:1:1であり、Mnの含有量が少ないから、電位変化が平坦な領域が観察される正極活物質ではない。
 本発明は、比較的低い電圧で充電しても放電容量が大きく、より安全性が向上した非水電解質二次電池とすることができる正極活物質を提供することを課題とする。
 上記の課題を解決するための本発明の一側面は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO構造を有し、Liと遷移金属(Me)のモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、MnとMeのモル比Mn/Meが0.4≦Mn/Me<0.6であり、前記リチウム遷移金属複合酸化物を40MPaの圧力でプレスした際の密度が2.7g/cm以上であり、前記リチウム遷移金属複合酸化物が、R3-mに帰属可能なエックス線回折パターンを有し、CuKα線を用いたエックス線回折測定によるミラー指数hklにおける(104)面の回折ピークの半値幅が0.2°以上0.6°以下であるか、又は、P312に帰属可能なエックス線回折パターンを有し、CuKα線を用いたエックス線回折測定によるミラー指数hklにおける(114)面の回折ピークの半値幅が0.2°以上0.6°以下である、非水電解質二次電池用正極活物質である。また、その正極活物質を含有するリチウム二次電池用正極である。また、その正極を備えたリチウム二次電池である。
 本発明の他の一側面は、α-NaFeO構造を有し、Liと遷移金属(Me)のモル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体であって、前記遷移金属水酸化物前駆体は、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、MnとMeのモル比Mn/Meが0.4≦Mn/Me<0.6であり、αMe(OH)及びβMe(OH)を含有する、遷移金属水酸化物前駆体、及び、Ni及びMn、又はNi、Co及びMnを含む化合物を、pH10.2以下の水溶液中で反応させる、前記遷移金属水酸化物前駆体の製造方法である。
 本発明により、比較的低い電圧で充電しても放電容量が大きく、より高いSOCに至るまで電池電圧の急上昇が観察されない非水電解質二次電池とすることができる正極活物質を提供することができる。
リチウム過剰型活物質を用いた正極の典型的な充電カーブ、並びに、本発明が前提とする製造時及び使用時の充電深度(SOC%)、及び電位変化が平坦な領域を示す概念図 水酸化物前駆体のエックス線回折図 リチウム過剰型活物質を用いた正極の充放電カーブ リチウム過剰型活物質を用いた正極の充放電カーブ プレス密度測定装置の概念図 本発明に係る非水電解質二次電池の一実施形態を示す外観斜視図 本発明に係る非水電解質二次電池を複数個備えた蓄電装置を示す概略図
 本発明者は、リチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体の結晶構造、リチウム遷移金属複合酸化物の組成及び結晶性について種々検討した結果、電位変化が平坦な領域における充電電気量が大きく、かつ、電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造し、且つ、電位変化が平坦な領域が終了するまでの充電を行わずに使用した場合でも、放電容量が大きな活物質が得られる条件があることを知見した。以下、詳述する。
 <リチウム遷移金属複合酸化物>
 上記の知見に基づく本発明の第一の実施形態は、リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、α-NaFeO構造を有し、Liと遷移金属(Me)のモル比Li/Meが1<Li/Meであり、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、MnとMeのモル比Mn/Meが0.4≦Mn/Me<0.6であり、前記リチウム遷移金属複合酸化物を40MPaの圧力でプレスした際の密度が2.7g/cm以上であり、前記リチウム遷移金属複合酸化物が、R3-mに帰属可能なエックス線回折パターンを有し、CuKα線を用いたエックス線回折測定によるミラー指数hklにおける(104)面の回折ピークの半値幅が0.2°以上0.6°以下であるか、又は、P312に帰属可能なエックス線回折パターンを有し、CuKα線を用いたエックス線回折測定によるミラー指数hklにおける(114)面の回折ピークの半値幅が0.2°以上0.6°以下である、非水電解質二次電池用正極活物質である。
 前記リチウム遷移金属複合酸化物の組成は、Li1+αMe1-α(α>0)と表記することができる、いわゆる「リチウム過剰型」である。
 ≪リチウム遷移金属複合酸化物の組成≫
 第一の実施形態においては、組成式Li1+αMe1-α(α>0)で表されるリチウム遷移金属複合酸化物において、(1+α)/(1-α)で表される遷移金属元素Meに対するLiのモル比Li/Meは、1より大きい。前記Li/Meは、1.05以上が好ましく、1.10以上がより好ましい。また、1.40未満が好ましく、1.30以下がより好ましい。この範囲であると、正極活物質の放電容量が向上する。また、上記モル比Li/Meは、電位変化が平坦な領域における充電電気量をより大きくできる点で、1.15以上がより好ましく、1.20以上がさらに好ましい。
 遷移金属元素Meに対するMnのモル比Mn/Meは0.4以上0.6未満である。0.4以上であることにより、電位変化が平坦な領域における充電電気量を大きくすることができ、0.6未満であることにより、電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造し、且つ、電位変化が平坦な領域が終了するまでの充電を行わずに使用した場合の放電容量が大きい正極活物質とすることができる。上記Mnのモル比Mn/Meは、0.55以下がより好ましく、0.53以下がさらに好ましく、0.50以下が最も好ましい。
 リチウム遷移金属複合酸化物に含有されるCoは、初期効率を向上させる効果があるが、希少資源であることからコスト高である。したがって、遷移金属元素Meに対するCoのモル比Co/Meは0.35以下とすることが好ましく、0.20以下がより好ましく、0.13以下がさらに好ましく、0でもよい。
 遷移金属元素Meに対するNiのモル比Ni/Meは0.20以上0.60以下が好ましく、0.25以上0.55以下がより好ましい。この範囲であると、充放電における分極が小さくなることによって、電位変化が平坦な領域が終了するまでの充電を行わずに使用した場合の放電容量が大きくなる。
 上記のような組成のリチウム遷移金属複合酸化物を正極活物質に用いることによって、電位変化が平坦な領域の充電電気量が大きく、電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造し、且つ、電位変化が平坦な領域が終了するまでの充電を行わずに使用した場合の放電容量が大きい非水電解質二次電池を得ることができる。
 ≪リチウム遷移金属複合酸化物の結晶性≫
 第一の実施形態に係るリチウム遷移金属複合酸化物は、α-NaFeO構造を有している。合成後(充放電を行う前)の上記リチウム遷移金属複合酸化物は、空間群P312あるいはR3-mに帰属される。このうち、空間群P312に帰属されるものには、CuKα管球を用いたエックス線回折図上、2θ=20~22°の範囲に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が観察される。ここで、観察されるとは、回折角17~19°の範囲内の強度の最大値と最小値との差分(I18)に対する回折角20~22°の範囲内の強度の最大値と最小値との差分(I21)の比、すなわち「I21/I18」の値が0.001~0.1の範囲であることをさす。ところが、一度でも4.5V(vs.Li/Li)以上に至る電位まで充電及び放電を行うと、結晶中のLiの脱離にともなって結晶の対称性が変化することにより、上記超格子ピークが消滅して、上記リチウム遷移金属複合酸化物は空間群R3-mに帰属されるようになる。換言すると、対極をリチウム金属とし、0.1Cの低電流で、例えば充電上限電圧を4.35V、放電下限電圧を2.5Vとして充放電を行った後の正極には、超格子ピークが観察される。一方で、対極をリチウム金属とし、0.1Cの低電流で、例えば充電上限電圧を4.6V、放電下限電圧を2.0Vとして充放電を行った後の正極には、超格子ピークが観察されない。
 ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記する。
 第一の実施形態に係るリチウム遷移金属複合酸化物は、エックス線回折パターンを元に空間群R3-mを結晶構造モデルに用いたときに、(104)面に帰属される回折ピークの半値幅、即ち、FWHM(104)の値が0.2°以上0.6°以下である。前記FWHM(104)は、全方位からの結晶化度の指標である。小さすぎると、結晶化が進みすぎて結晶子が大きくなり、Liイオンの拡散が十分に行われないため、放電容量が減少する。大きすぎると、結晶化度が低いから、Liイオンの輸送効率が低下し、やはり放電容量が減少する。したがって、本実施形態に係る結晶構造により、放電容量を大きくすることが可能となる。
 なお、2θ=44.1°±1°の回折ピークは、空間群P312では(114)面、空間群R3-mでは(104)面に指数付けされる。従って、空間群P312に帰属されるものについては、本明細書において(104)と記載された部分は(114)と読み替えるものとする。
 本明細書において、リチウム遷移金属複合酸化物の半値幅の測定は、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて行う。具体的には、次の条件及び手順に沿って行う。
 エックス線源はCuKα、加速電圧及び電流はそれぞれ30kV及び15mAとする。サンプリング幅は0.01deg、走査時間は15分(スキャンスピードは5.0)、発散スリット幅は0.625deg、受光スリットは開放、散乱スリット幅は8.0mmとする。得られたエックス線回折データについて、CuKα2に由来するピークを除去せず、前記エックス線回折装置の付属ソフトである「PDXL」を用いて、空間群R3-mでは(104)面に指数付けされる、エックス線回折図上2θ=44±1°に存在する回折ピークについての半値幅FWHM(104)を計算する。
 ≪リチウム遷移金属複合酸化物のプレス密度≫
 第一の実施形態に係るリチウム遷移金属複合酸化物は、さらに、40MPaの圧力でプレスした際の密度(以下、「プレス密度」という。)が2.7g/cm以上である。
 プレス密度が2.7g/cm以上であり、上記の組成とFWHM(104)で表される結晶性をともに満たすことにより、電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造し、且つ、電位変化が平坦な領域が終了するまでの充電を行わずに使用した場合の放電容量を大きくすることができる。
 2.7g/cm未満のプレス密度では、電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造し、且つ、電位変化が平坦な領域が終了するまでの充電を行わずに使用した場合に、大きな放電容量を得ることができない。
 なお、2.7g/cm以上のプレス密度を有するリチウム過剰型活物質であっても、上記の組成とFWHM(104)で表される結晶性を満たさない場合は、電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造し、且つ、電位変化が平坦な領域が終了するまでの充電を行わずに使用した場合の放電容量が小さい。
 また、後述の比較例16に示すように、Li/Meが1.1でも、Mn/Meが0.4より小さい場合、及び比較例15に示すように、Li/Meが1.0である場合は、比較的低い電位範囲の放電容量は大きいものの、電位変化が平坦な領域が観察されない。
 本明細書において、プレス密度の測定条件は次のとおりである。測定は室温20℃以上25℃以下の空気中にて行う。プレス密度の測定に用いた装置の概念図を図5に示す。一対の測定プローブ1A、1Bを準備する。測定プローブ1A、1Bは、直径8.0mm(±0.05mm)のステンレス鋼(SUS304)製の円柱の一端を平面加工した測定面2A、2Bを有し、他端をステンレス鋼製の台座3A、3B(面積が10cm以上)に前記円柱を垂直に固定したものである。アクリル製の円柱の中心部に、前記ステンレス鋼製円柱が重力によって空気中で自然にゆっくりと下降しうるように内径を調整し研磨加工された貫通孔7を設けた側体6を準備する。側体6の上面及び下面は平滑に研磨加工されている。
 一方の前記測定プローブ1Aを測定面2Aが上方を向くように水平な机上に設置し、上方から前記側体6を被せるようにして側体6の貫通孔7に前記測定プローブ1Aの円柱部を挿入する。もう一方の測定プローブ1Bを測定面2Bを下にして前記貫通孔7の上方から挿入し、前記測定面2A、2B間の距離をゼロの状態とする。このとき、ノギスを用いて測定プローブ1Bの台座3Bと測定プローブ1Aの台座3Aとの距離を測定しておく。
 次に、測定プローブ1Bを引き抜き、貫通孔7の上部から薬さじで0.3gの被測定試料の粉体を投入し、再度、測定プローブ1Bを測定面2Bを下にして前記貫通孔7の上方から挿入する。冶具への接触部の面積が(本図では、3A面への接触面積)10cmで、圧力計の付いた手動式の油圧プレス機を用いて前記測定プローブ1Bの上方から、プレス機の圧力目盛りが2MPaに達するまで加圧する。なお、前記目盛りが2MPaに達した後、前記目盛りが示す値が減じても追加の加圧は行わない。その後、この状態で、再び、ノギスを用いて測定プローブ1Bの台座3Bと測定プローブ1Aの台座3Aとの距離を測定する。被測定試料投入前の距離との差(cm)と、貫通孔の面積(0.50cm)と被測定試料の投入量(0.3g)から、加圧された状態の被測定試料の密度を算出し、これをプレス密度(g/cm)とする。なお、冶具への接触部の面積と、測定面の面積(粉体への接触面積)の関係から、活物質へかかる圧力は、40MPaと計算される。
 なお、第一の実施形態に係るリチウム遷移金属複合酸化物のタップ密度は、本発明の効果との相関が必ずしも認められないが、大きなプレス密度を得るためには、タップ密度がある程度大きいことが好ましい。この観点から、上記タップ密度は、1.5g/cm以上が好ましく、1.6g/cm以上がより好ましく、1.7g/cm以上がさらに好ましい。
 本明細書におけるタップ密度の測定は、以下の手順で行う。
 10-2dmのメスシリンダーに被測定試料の紛体を2g±0.2g投入し、REI ELECTRIC CO.LTD.社製のタッピング装置を用いて、300回カウント後の被測定試料の体積を投入した質量で除した値を採用する。
 以上の各種測定に供する試料の調製は、以下のとおりの手順で行う。正極作製前のリチウム遷移金属複合酸化物粉末(充放電前粉末)であれば、そのまま測定に供する。電池を解体して取り出した電極から試料を採取する場合には、電池を解体する前に、当該電池の公称容量(Ah)の10分の1となる電流値(A)で、指定される電圧の下限となる電池電圧に至るまで定電流放電を行い、完全放電状態とする。解体した結果、金属リチウム電極を負極に用いた電池であれば、以下に述べる追加作業は行わず、正極板から採取した正極合剤を測定対象とする。金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立て、正極合剤1gあたり10mAの電流値で、電圧が2.0V(正極の電位が2.0V(vs.Li/Li))となるまで定電流放電を行い、完全放電状態に調整した後、再解体する。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した非水電解質を十分に洗浄し室温にて一昼夜の乾燥後、集電体上の合剤を採取する。上記の電池の解体から再解体までの作業、及び正極板の洗浄、乾燥作業は、露点-60℃以下のアルゴン雰囲気中で行う。
 エックス線回折測定に供する試料は、採取した合剤を瑪瑙製乳鉢で軽く壊砕し、エックス線回折測定用試料ホルダーに配置して測定に供する。
 プレス密度、タップ密度測定に供する試料は、この合剤を小型電気炉を用いて600℃で4時間焼成することで導電剤及び結着剤を除去し、リチウム遷移金属複合酸化物粒子を取り出し、活物質粉末(充放電後粉末)として上記の測定に供する。
 <遷移金属水酸化物前駆体、及びその製造方法>
 前記リチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体は、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、αNi(OH)型結晶構造の化合物(以下、αMe(OH)と記載する)及びβNi(OH)型結晶構造の化合物(以下、βMe(OH)と記載する)の混合物であることが好ましい。
 本発明の第二の実施形態は、α-NaFeO構造を有し、Liと遷移金属(Me)のモル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体であって、前記遷移金属水酸化物前駆体は、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、MnとMeのモル比Mn/Meが0.4≦Mn/Me<0.6であり、αMe(OH)及びβMe(OH)を含有する、遷移金属水酸化物前駆体、及びその製造方法である。
 第二の実施形態において、前記の遷移金属水酸化物前駆体(以下、単に「前駆体」ともいう。)のモル比Mn/Meの限定理由、及びこれを用いて作製されるリチウム遷移金属複合酸化物のモル比Li/Meの限定理由は、第一の実施形態の場合と同様である。
 前記前駆体は、αMe(OH)及びβMe(OH)を含有する結晶構造を有する点に特徴を有し、αMe(OH)単相又はβMe(OH)単相の結晶構造を有する前駆体と比べてタップ密度を大きくすることができる。そして、第二の実施形態に係る前駆体を用いて、プレス密度が高いリチウム遷移金属複合酸化物を製造することができる。遷移金属水酸化物前駆体の結晶構造が遷移金属水酸化物前駆体のタップ密度及びリチウム遷移金属複合酸化物のプレス密度と関連する理由については、必ずしも明らかではないが、本発明者は次のように推察している。αMe(OH)単相の遷移金属水酸化物は、板状の形態を有するαMe(OH)の一次粒子径が大きいため、二次粒子を構成する一次粒子間の空隙の体積が大きくなり、従って、遷移金属水酸化物前駆体の密度は低くなると考えられる。また、βMe(OH)単相が生成する遷移金属水酸化物の製造条件は、pHが高いため、遷移金属水酸化物の粒子成長よりも核生成が優先される結果、微細な粒子が多く生成され、従って、やはり遷移金属水酸化物前駆体の密度は低くなると考えられる。従って、αMe(OH)とβMe(OH)の混相が生成する遷移金属水酸化物の製造条件を採用することで、タップ密度の高い遷移金属水酸化物前駆体が得られると考えられ、タップ密度の高い前駆体を用いてリチウム遷移金属複合酸化物を合成するために、プレス密度が高いリチウム遷移金属複合酸化物が得られる。
 前記前駆体は、Ni及びMn、又はNi、Co及びMnを含む化合物を、pH10.2以下の水溶液中で反応させることによって製造することができる。
 遷移金属水酸化物前駆体を共沈法で製造する際のpHは、特許文献1,2等に記載されるように、通常、10.5~14である。そして、特許文献3に記載されるように、pH11.5で製造される水酸化物前駆体は、βMe(OH)の単相である。これに対して、第二の実施形態に係る前駆体は、pH10.2以下の水溶液中で遷移金属の化合物を反応させることにより、αMe(OH)及びβMe(OH)を含有する前駆体を製造することができる。このような前駆体から作製されたリチウム遷移金属複合酸化物を正極活物質に用いると、電極の抵抗が小さくなるため、電位変化が平坦な領域に至らない電位、例えば4.35V(vs.Li/Li)を上限とする充電によって引き抜くことのできるLiの量が大きくなり、可逆容量を大きくすることができる(図3参照)。
 前記前駆体を製造する場合、アルカリ性を保った反応槽に、遷移金属(Me)を含有する溶液と共に、アルカリ金属水酸化物、錯化剤、及び、還元剤を含有するアルカリ溶液を加えて、遷移金属水酸化物を共沈させることが好ましい。
 錯化剤としては、アンモニア、硫酸アンモニウム、硝酸アンモニウム等を用いることができ、アンモニアが好ましい。錯化剤を用いた晶析反応によって、よりタップ密度の大きな前駆体を作製することができる。
 錯化剤と共に還元剤を用いることが好ましい。還元剤としては、ヒドラジン、水素化ホウ素ナトリウム等を用いることができ、活物質のプレス密度が高いリチウム遷移金属複合酸化物を得るためには、ヒドラジンが好ましい。
 アルカリ金属水酸化物(中和剤)には、水酸化ナトリウム、水酸化リチウム又は水酸化カリウムを使用することができる。
 水酸化物前駆体を作製するにあたって、Ni,Co,MnのうちMnは酸化されやすく、Ni,Mn、又はNi,Co,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni,Mn、又はNi,Co,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。本発明の第二の実施形態の組成範囲においては、MnとMeのモル比Mn/Meが0.4以上であるので、水溶液中の溶存酸素を除去することが重要である。溶存酸素を除去する方法としては、酸素(O)を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス等を用いることができる。
 上記のように、溶液中でNi,Mn、又はNi,Co,Mnを含有する化合物を共沈させて水酸化物前駆体を製造する工程におけるpH(反応槽における反応pH)は、αMe(OH)及びβMe(OH)を含有するタップ密度の高い前駆体を得るために、10.2以下とすることが好ましい。また、上記のpHとすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。なお、pHが低すぎると、αMe(OH)単相の前駆体となるので(後述の比較例8参照)、反応pHは9を超えることが好ましい。
 前記前駆体は、αMe(OH)及びβMe(OH)の混合相である。混合相であることは、上記、エックス線回折測定により判定する。後述の図2に示すように、αNi(OH)型結晶構造(αMe(OH))は、2θ=10~12°でピークが最も大きく、βNi(OH)型結晶構造(βMe(OH))は、2θ=18~20°でピークが最も大きい。そのため、付属のソフトウェアでバックグラウンドを処理した後、2θ=10~12°のピーク強度の最大値を分子に、2θ=18~20°のピーク強度の最大値を分母とした、I11/I19を計算することで、αMe(OH)及びβMe(OH)がどの程度混合されているか判定可能である。
 I11/I19の下限は、0.04が好ましく、0.05がより好ましく、0.08が最も好ましい。I11/I19の上限は、3.0が好ましく、2.0がより好ましく、1.0が最も好ましい。
 なお、非水電解質二次電池用正極活物質の前駆体として、遷移金属炭酸塩前駆体を用いる方法も知られている。しかしながら、一般的に遷移金属炭酸塩前駆体を用いると、焼成の過程で前駆体からガス(主に二酸化炭素)が発生する。このガス発生により、正極活物質には空孔が多く発生するため、正極活物質のプレス密度は小さくなる。
 前記水酸化物前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。
 前記水酸化物前駆体の原料水溶液(遷移金属を含有する水溶液)を滴下供給する間、水酸化ナトリウム等のアルカリ金属水酸化物(中和剤)、アンモニア等の錯化剤、及び、ヒドラジン等の還元剤を含有する混合アルカリ溶液を適宜滴下する方法が好ましい。滴下するアルカリ金属水酸化物の濃度は、1.0~8.0Mであることが好ましい。錯化剤の濃度は、0.4M以上であることが好ましく、0.6M以上であることがより好ましい。また、2.0M以下であることが好ましく、1.6M以下であることがより好ましく、1.5M以下とすることがさらに好ましい。還元剤の濃度は、0.05~1.0Mであることが好ましく、0.1~0.5Mとすることがより好ましい。反応槽のpHを低くすると共に、アンモニア(錯化剤)の濃度を0.6M以上とすることにより、水酸化物前駆体のタップ密度を高くすることができる。
 前記原料水溶液の滴下速度は、生成する水酸化物前駆体の1粒子内における元素分布の均一性に大きく影響を与える。特にMnは、NiやCoと均一な元素分布を形成しにくいので注意が必要である。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30mL/min以下が好ましい。放電容量を向上させるためには、滴下速度は10mL/min以下がより好ましく、5mL/min以下が最も好ましい。
 また、反応槽内にアンモニア等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転及び攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、水酸化物前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。従って、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた水酸化物前駆体を得ることができる。
 原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、15h以下が好ましく、10h以下がより好ましく、5h以下が最も好ましい。
 また、水酸化物前駆体及びリチウム遷移金属複合酸化物の2次粒子の粒度分布における累積体積は、50%となる粒子径であるD50を13μm以下とすることが好ましい。そのためには、例えば、pHを9.1~10.2に制御した場合には、撹拌継続時間は1~3hが好ましい。
 水酸化物前駆体の粒子を、中和剤として水酸化ナトリウム等のナトリウム化合物を使用して作製した場合、その後の洗浄工程において粒子に付着しているナトリウムイオンを洗浄除去することが好ましい。例えば、作製した水酸化物前駆体を吸引ろ過して取り出す際に、イオン交換水500mLによる洗浄回数を6回以上とするような条件を採用することができる。
 <リチウム遷移金属複合酸化物の製造方法>
 本発明の第三の実施形態は、第二の実施形態に係る遷移金属水酸化物前駆体に、リチウム化合物を混合し、750~1000℃で焼成することにより、リチウム遷移金属複合酸化物を製造する、非水電解質二次電池用正極活物質の製造方法である。
 焼成温度を上記の範囲とすることにより、FWHM(104)で示されるリチウム遷移金属複合酸化物の結晶性を、本発明の目的に合う範囲とすることができる。
 リチウム化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることができる。但し、リチウム化合物の量については、焼成中にリチウム化合物の一部が消失することを見込んで、1~5mol%程度過剰に仕込むことが好ましい。
 焼成温度は、活物質の可逆容量に影響を与える。
 焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を導くので好ましくない。このような材料では、エックス線回折図上35°付近及び45°付近に不純物ピークが観察される。したがって、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、活物質の組成によって若干の差があり、第二の実施形態に係る前駆体を用いてリチウム過剰型活物質を製造する場合、概ね1000℃以上であるが、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど水酸化物前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、水酸化物前駆体とリチウム化合物を混合したものを熱質量分析(TG-DTA測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を傷めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱質量分析に供するのが良い。
 一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。
 発明者らは、リチウム過剰型活物質の回折ピークの半値幅を詳細に解析した結果、750℃未満の温度で合成した試料においては格子内にひずみが残存しており、750℃以上の温度で合成することでほとんどひずみを除去することができることがわかった。また、結晶子のサイズは合成温度が上昇するに比例して大きくなることがわかった。よって、第二の実施形態に係る前駆体を用いた場合も同様に、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子とすることができる焼成温度、具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが50nm以上に成長する焼成温度を採用して活物質を製造することが好ましい。この活物質を用いた電極について充放電を行うと、膨張収縮により変化するものの、充放電過程においても結晶子サイズは30nm以上を保っていることがわかった。即ち、焼成温度を上記した活物質の酸素放出温度にできるだけ近付けるように選択することにより、はじめて可逆容量が顕著に大きい活物質を得ることができる。
 上記のように、好ましい焼成温度は、活物質の組成による酸素放出温度により異なるが、本発明が前提とする使用条件下での放電容量が十分な活物質を得るためには、焼成温度を750~1000℃とすることが好ましく、750~950℃とすることがより好ましい。
 <非水電解質二次電池用正極、及び非水電解質二次電池>
 本発明の第四の実施形態は、第一の実施態様の正極活物質を含有する非水電解質二次電池用正極、及びその正極を備えた非水電解質二次電池である。この正極を備えることにより、安全性が高く、電位変化が平坦な領域より低い電位範囲の使用において、放電容量が大きな非水電解質二次電池を提供することができる。
 ≪正極≫
 第四の実施形態に係る正極は、第一の実施形態に係る正極活物質を主成分とする粉体を含む。その他の成分として、導電剤、結着剤、増粘剤、フィラー等を含有していてもよい。
 正極活物質の粉体は、平均粒子サイズ100μm以下であることが好ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で15μm以下であることが好ましい。粉体を所定の形状で得るためには、所定の大きさの前駆体を作製する方法や、粉砕機、分級機などを用いる方法がある。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩などが用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
 導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種又はそれらの混合物として含ませることができる。
 これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極又は負極の総質量に対して0.1質量%~50質量%が好ましく、特に0.5質量%~30質量%が好ましい。特にアセチレンブラックを0.1~0.5μmの超微粒子に粉砕して用いると、必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を用いて、乾式、あるいは湿式で混合することが可能である。
 前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種又は2種以上の混合物として用いることができる。結着剤の添加量は、正極又は負極の総質量に対して1~50質量%が好ましく、特に2~30質量%が好ましい。
 フィラーとしては、電池性能に悪影響を及ぼさない材料であれば限定されない。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極又は負極の総質量に対して添加量は30質量%以下が好ましい。
 ≪負極≫
 非水電解質二次電池の負極に用いる負極活物質としては、限定されない。リチウムイオンを吸蔵及び放出することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム-シリコン、リチウム-アルミニウム,リチウム-鉛,リチウム-スズ,リチウム-アルミニウム-スズ,リチウム-ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム-チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
 負極活物質は、正極活物質と同様、粉体として用いられ、負極は正極と同様、その他の成分を含んでいてよい。
 ≪正極及び負極の作製≫
 正極及び負極は、前記主成分(各活物質)及びその他の材料を混練し合剤とし、N-メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、又は圧着して50℃~250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが好ましいが、これらに限定されるものではない。
 集電体としては、アルミニウム箔、銅箔等の集電箔を用いることができる。正極の集電箔としてはアルミニウム箔が好ましく、負極の集電箔としては銅箔が好ましい。集電箔の厚みは10~30μmが好ましい。また、合剤層の厚みはプレス後において、40~150μm(集電箔厚みを除く)が好ましい。
 ≪非水電解質≫
 非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム二次電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフラン又はその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソラン又はその誘導体;エチレンスルフィド、スルホラン、スルトン又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
 非水電解質に用いる電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)又はカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n-CNClO、(n-CNI、(CN-maleate、(CN-benzoate、(CN-phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
 さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。
 また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
 非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/L~5mol/Lが好ましく、さらに好ましくは、0.5mol/L~2.5mol/Lである。
 ≪セパレータ≫
 非水電解質二次電池のセパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。
 セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。
 また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。
 さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。
 前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、電子線(EB)照射、又は、ラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行うこと等により、架橋反応を行わせることが可能である。
 ≪非水電解質二次電池の構成≫
 第四の実施形態に係る非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
 図6に、本発明の一実施形態に係る矩形状の非水電解質二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図6に示す非水電解質二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
 ≪蓄電装置の構成≫
 上記の非水電解質二次電池を複数個集合した蓄電装置も、本発明の実施形態に含まれる。図7に示す蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
 第四の実施形態に係る非水電解質二次電池は、上記電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造され、且つ、上記電位変化が平坦な領域が終了するまでの充電を行わずに使用されることを前提としている。製造時の上記充電過程及び使用時に採用する充電電圧は、当該充電によって正極が到達する電位、即ち充電上限電位が、上記電位変化が平坦な領域が開始する電位以下となるように設定することが好ましい。上記充電上限電位は、例えば、4.40V(vs.Li/Li)とすることができる。上記充電上限電位は、4.38V(vs.Li/Li)であってもよく、4.36V(vs.Li/Li)であってもよく、4.34V(vs.Li/Li)であってもよく、4.32V(vs.Li/Li)であってもよい。
 まず、組成が同じリチウム遷移金属複合酸化物の製造条件を変化させた実施例及び比較例を示す。
 <正極活物質(リチウム遷移金属複合酸化物)の作製>
 (実施例1)
 実施例活物質の作製にあたって、反応晶析法を用いて遷移金属水酸化物前駆体を作製した。まず、硫酸ニッケル6水和物315.4g、硫酸コバルト7水和物168.6g、硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が30:15:55となる1.0Mの硫酸塩水溶液を作製した。次に、5Lの反応槽に2Lのイオン交換水を注ぎ、Nガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応槽内に対流が十分おこるように設定した。前記硫酸塩原液を1.3mL/minの速度で反応槽に50h滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、1.25Mのアンモニア、及び0.1Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に9.8(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに1h継続した。攪拌の停止後、室温で12h以上静置した。
 次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、遷移金属水酸化物前駆体を作製した。
 前記遷移金属水酸化物前駆体2.262gに、水酸化リチウム1水和物1.294gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn)のモル比が120:100である混合粉体を調製した。ペレット成型機を用いて、13.5MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2.5gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から800℃まで10時間かけて昇温し、800℃で4h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして実施例1に係るリチウム遷移金属複合酸化物Li1.09Ni0.27Co0.14Mn0.50を作製した。
 (実施例2~5)
 遷移金属水酸化物前駆体と水酸化リチウム1水和物の混合粉体を、それぞれ850℃、900℃、1000℃及び750℃で焼成したこと以外は実施例1と同様にして、実施例2~5に係るリチウム遷移金属複合酸化物を作製した。
 (実施例6,7)
 遷移金属水酸化物前駆体の作製において、反応槽のpHを10.0及び10.2としたこと以外は実施例1と同様にして、実施例6,7に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1~4)
 遷移金属水酸化物前駆体と水酸化リチウム1水和物の混合粉体を、それぞれ700℃、650℃、1050℃、1200℃で焼成したこと以外は実施例1と同様にして比較例1~4に係るリチウム遷移金属複合酸化物を作製した。
 (比較例5~9)
 遷移金属水酸化物前駆体の作製において、反応槽のpHを10.5、10.7、11.0、及び9.0としたこと以外は実施例1と同様にして、比較例5~8に係るリチウム遷移金属複合酸化物を作製した。
 さらに、遷移金属水酸化物前駆体と水酸化リチウム1水和物との焼成温度を650℃に変えたこと以外は比較例7と同様にして、比較例9に係るリチウム遷移金属複合酸化物を作製した。
 <前駆体の結晶相の確認>
 上記の実施例、比較例、及び後述する実施例、比較例において作製した遷移金属水酸化物前駆体の結晶相を、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて、上記エックス線回折測定の手法に従って測定した。
 参考として、前駆体のエックス線回折測定の結果を図2に示す。反応槽のpHを11.0として合成した比較例7では、βNi(OH)型結晶構造に由来する回折線が見られた。反応槽のpHを9.0として合成した比較例8では、αNi(OH)型結晶構造に由来する回折線が見られた。一方で、反応槽のpHを9.8として合成した実施例1では、αNi(OH)型結晶構造とβNi(OH)型結晶構造の混合相が観察された。αNi(OH)型結晶構造は、2θ=10~12°でピークが最も大きく、βNi(OH)型結晶構造は、2θ=18~20°でピークが最も大きい。
 <ピーク強度比の算出>
 2θ=10~12°のピーク強度の最大値を分子に、2θ=18~20°のピーク強度の最大値を分母とした、I11/I19を計算した。すなわち、I11/I19はどの程度、α型とβ型が存在しているかをさす指標といえる。ここで、いずれも付属のソフトウェアでバックグラウンド処理を行っている。
 <リチウム遷移金属複合酸化物の結晶構造および半値幅の確認>
 上記の実施例、比較例、及び後述する実施例、比較例に係るリチウム遷移金属複合酸化物の半値幅は、上述した条件及び手順にしたがって測定を行った。いずれも、α-NaFeO型結晶構造を有することを、エックス線回折測定における構造モデルと回折パターンが一致したことにより確認した。また、前記エックス線回折装置の付属ソフトである「PDXL」を用いて、空間群R3-mでは(104)面に指数付けされる、エックス線回折図上2θ=44±1°に存在する回折ピークについての半値幅FWHM(104)を決定した。
 実施例1~23、比較例1~13では、2θ=20~22°の範囲にリチウム過剰型正極活物質特有の超格子ピークが見られた。
 <タップ密度及びプレス密度の測定>
 上記の実施例、比較例、及び後述する実施例、比較例に係るリチウム遷移金属複合酸化物のタップ密度、及びプレス密度を、上述した条件及び手順に従って、測定した。
 <非水電解質二次電池用正極の作製>
 上記の実施例、比較例、及び後述する実施例、比較例に係るリチウム遷移金属複合酸化物を正極活物質に用いて、以下の手順で実施例及び比較例に係る非水電解質二次電池用正極を作製した。
 N-メチルピロリドンを分散媒とし、正極活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布用ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布、乾燥後、プレスして、正極板を作製した。なお、全ての実施例及び比較例で一定面積当たりに塗布されている活物質の質量、及びプレス後の多孔度が同等となるよう調整した。
 <非水電解質二次電池の作製>
 上記のようにして作製した非水電解質二次電池用正極は、一部を切り出し、以下の手順で非水電解質二次電池である試験電池を作製した。
 正極の単独挙動を正確に観察する目的のため、対極、即ち負極には金属リチウムをニッケル箔集電体に密着させて用いた。ここで、非水電解質二次電池の容量が負極によって制限されないよう、負極には十分な量の金属リチウムを配置した。
 非水電解質として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/LとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。正極端子及び負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記非水電解質を注液後、注液孔を封止した。
 対極を金属リチウムとしているため、電池電圧(V)はそのまま正極電位(V.vs Li/Li)と読み替えて良い。
 <初期充放電工程>
 上記手順にて組立てられた非水電解質二次電池は、初期充放電工程を経て完成される。ここで、初期充放電工程において、初期充放電条件1を適用する第1の群と、初期充放電条件2を適用する第2の群に分割した。
 (初期充放電条件1)
 第1の群の電池を用いて、次の条件を適用して、初期充放電工程に供した。25℃の環境下、充電は、電流0.1C、電圧4.35Vの定電流定電圧充電とし、充電終止条件は電流値が0.02Cに減衰した時点とした。放電は、電流0.1C、終止電圧2.5Vの定電流放電とした。この充放電を1サイクル行った。なお、充電後に10分の休止過程を設けた。
 このときの充電電気量及び放電容量をそれぞれ「4.35V充電時充電電気量」及び「4.35V充電時放電容量」として記録した。即ち、「4.35V充電時放電容量」は、電位変化が平坦な領域が終了するまでの充電過程を一度も経ないで製造し、且つ、電位変化が平坦な領域が終了するまでの充電を行わずにより低い電位範囲で使用した場合の放電容量を表す指標である。
 (初期充放電条件2)
 第2の群の電池を用いて、次の条件を適用して、初期充放電工程に供した。25℃の環境下、充電は、電流0.1C、電圧4.6Vの定電流定電圧充電とし、充電終止条件は電流値が0.02Cに減衰した時点とした。放電は、電流0.1C、終止電圧2.0Vの定電流放電とした。この充放電を1サイクル行った。なお、充電後に10分の休止過程を設けた。
 このときの充電電気量と、上記「4.35V充電時充電電気量」との差を「4.35―4.6V間の充電電気量」として算出した。即ち、「4.35―4.6V間の充電電気量」は、電位変化が平坦な領域における充電電気量を表す指標である。
 以上の結果を表1に示す。
 また、実施例1、及び比較例5に係る正極の、上記初期充放電工程に係る充放電カーブを例示する。図3は、上記「初期充放電条件1」を採用した場合の充放電カーブであり、図4は、上記「初期充放電条件2」を採用した場合の充放電カーブである。充電電圧を4.6Vとした場合、実施例1及び比較例5は同等の放電容量を示しているが、充電電圧を4.35Vとした場合、比較例5では放電容量が10%以上小さくなっている。
Figure JPOXMLDOC01-appb-T000001
 表1に示す正極活物質は、全て組成が同一である。実施例1~5と比較例1~4とは、遷移金属水酸化物前駆体を作製する際の反応pHも同一の9.8であって、前駆体は、α型及びβ型の結晶相を含有する。
 しかし、前駆体とリチウム化合物の焼成を、750~1000℃で行った実施例1~5では、リチウム遷移金属複合酸化物のFWHM(104)が0.2~0.6°の範囲内であるのに対して、焼成温度が750~1000℃を外れる比較例1~4では、焼成温度が750℃未満の場合には、FWHM(104)が0.6°を超えるリチウム遷移金属複合酸化物が得られ、焼成温度が1000℃を超える場合には、FWHM(104)が0.2°未満のリチウム遷移金属複合酸化物が得られる。そして、本発明の製造条件を満たす実施例1~5では、「4.35V充電時放電容量」が比較例1~4に比べて大きいことがわかる。
 実施例6,7と比較例5~8は、遷移金属水酸化物前駆体の作製において、反応槽のpHを実施例1の9.8に対して、それぞれ10.0、10.2、10.5、10.7、11.0及び9.0とした例であり、比較例9は、反応槽のpHを11.0とするとともに焼成温度も650℃とした例である。反応槽のpHを10.2以下とした実施例6,7では、前駆体はα型及びβ型の結晶相を含有し、この前駆体を用いて作製したリチウム遷移金属複合酸化物はプレス密度が2.7g/cmを超えている。
 これに対して、反応槽のpHが10.2を超える比較例5~7,9に係る前駆体は、β型の単相であり、反応槽のpHが9.0である比較例8では、α型の単相である。比較例5~9に係る単相の前駆体を用いて作製したリチウム遷移金属複合酸化物は、焼成温度を800℃とした場合であっても、プレス密度が2.7g/cmを超えることがない。
 加えて、比較例9は焼成温度が低く、FWHM(104)が0.6°を超えて大きいから、結晶化が不十分である。
 そして、比較例5~9では、「4.35V充電時放電容量」が実施例1~7を上回ることはないことがわかる。
 なお、図3及び図4における実施例1と比較例5の対比(反応槽のpHのみが異なる)をみると、非水電解質二次電池が、電位変化が平坦な領域が終了するまでの充電過程を経る4.6V(vs.Li/Li)までの初期充電条件(初期充放電条件2)を採用して製造される場合には、反応槽のpHの条件による放電容量への影響はほとんどみられないが、電位変化が平坦な領域が終了するまでの充電過程を経ない4.35V(vs.Li/Li)までの初期充電条件(初期充放電条件1)を採用して製造される場合には、反応槽のpHの条件による「4.35V充電時放電容量」への影響が顕著であることがわかる。
 次に、リチウム遷移金属複合酸化物の組成及び/又は製造条件を変化させた実施例及び比較例を以下に示す。
 (実施例8)
 遷移金属水酸化物前駆体の組成がNi:Co:Mnのモル比で40:5:55となるように調製し、前記遷移金属水酸化物前駆体とリチウム化合物の混合粉体のLi:(Ni,Co,Mn)のモル比が110:100となるように調製したこと以外は実施例1と同様にして、実施例8に係るリチウム遷移金属複合酸化物を作製した。
 (実施例9)
 遷移金属水酸化物前駆体の組成をNi:Co:Mnのモル比で45:5:50となるように調製し、遷移金属水酸化物前駆体の作製において、反応槽のpHを10.0としたこと、及び前記遷移金属水酸化物前駆体とリチウム化合物の混合粉体のLi:(Ni,Co,Mn)のモル比を110:100となるように調製し、850℃で焼成したこと以外は実施例1と同様にして、実施例9に係るリチウム遷移金属複合酸化物を作製した。
 (実施例10~23)
 遷移金属水酸化物前駆体のNi:Co:Mnのモル比、前記前駆体の遷移金属とリチウム化合物のモル比Li/Me、反応槽のpH、及び前駆体とリチウム化合物の焼成温度を後掲の表2に示す条件としたこと以外は実施例1と同様にして、実施例10~23に係るリチウム遷移金属複合酸化物を作製した。
 (比較例10~13)
 遷移金属水酸化物前駆体の組成がNi:Co:Mnのモル比で30:10:60となるように調製し、反応槽に滴下するアンモニア濃度を0.6M、ヒドラジン濃度を0.3M(比較例10,11)、又は0.2M(比較例12,13)とし、反応槽のpHを後掲の表2に示す条件として前駆体を作製し、前記前駆体の遷移金属とリチウム化合物のモル比Li/Meを1.3に調製し、後掲の表2に示す焼成温度で焼成したこと以外は、実施例1と同様にして、比較例10~13に係るリチウム遷移金属複合酸化物を作製した。
 (比較例14)
 遷移金属水酸化物前駆体とリチウム化合物の混合粉体のLi:Meのモル比Li/Meが1.0となるように調製したこと以外は実施例1と同様にして、比較例14に係るリチウム遷移金属複合酸化物を作製した。
 (比較例15,16)
 遷移金属水酸化物前駆体の組成がNi:Co:Mnのモル比で33:33:33(1:1:1)となるように調製し、反応槽のpHを10.0としたこと、及び前記遷移金属水酸化物前駆体とリチウム化合物のモル比Li/Meを1.0又は1.1とし、900℃で焼成したこと以外は実施例1と同様にして、比較例15,16に係るリチウム遷移金属複合酸化物を作製した。
 以上の実施例及び比較例に係るリチウム遷移金属複合酸化物を正極活物質に用いた非水電解質二次電池の充放電試験の結果を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例8~23によると、遷移金属水酸化物前駆体の組成をモル比Mn/Meが0.4≦Mn/Me<0.6となるように調製し、遷移金属水酸化物前駆体の作製において、反応槽のpHを10.2以下としてαMn(OH)及びβMn(OH)を含有する水酸化物前駆体を作製し、この前駆体とリチウム化合物とを、Meに対するLiのモル比Li/Meが1を超えるように混合し、1000℃以下の温度で焼成して得られたリチウム遷移金属複合酸化物は、プレス密度が2.7g/cm以上であり、FWHM(104)が0.2~0.6°の範囲内である。このリチウム遷移金属複合酸化物を正極活物質に用いた電池は、大きな「4.35V充電時放電容量」と、大きな「4.35―4.6V間の充電電気量」を有していることがわかる。
 比較例10~13に係るリチウム遷移金属複合酸化物は、遷移金属水酸化物前駆体のモル比Mn/Meが0.6以上である。このリチウム遷移金属複合酸化物を正極活物質に用いた電池は、「4.35―4.6V間の充電電気量」は大きいものの、大きな「4.35V充電時放電容量」を得ることができないことがわかる。
 さらに、比較例11、12に係るリチウム遷移金属複合酸化物は、遷移金属水酸化物前駆体とリチウム化合物の焼成温度が650℃と低く、いずれもFWHM(104)が0.6°を超えていることから、結晶化が十分でないことがわかる。加えて比較例12は、反応槽のpHが11.0と高く、βMe(OH)単相の前駆体が作製されており、活物質のプレス密度が低い。
 比較例13に係るリチウム遷移金属複合酸化物は、遷移金属水酸化物前駆体とリチウム化合物の焼成温度が800℃である点のみで比較例12と異なり、FWHM(104)は0.2~0.6°を満たしている。しかし、反応槽のpHが11.0と高く、β型単相の前駆体が作製されている点で、比較例12と同様であり、活物質のプレス密度が低い。
 そして、比較例10~13に係るリチウム遷移金属複合酸化物を正極活物質を用いた電池は、いずれも大きな「4.35V充電時放電容量」を得ることができないことがわかる。
 比較例14に係るリチウム遷移金属複合酸化物は、モル比Mn/Meは、本発明の組成範囲を満たしているが、モル比Li/Meが1.0である(リチウム過剰型でない)点で本発明の組成範囲を満たしていない。実施例1と同じ製造条件であるにもかかわらず、「4.35V充電時放電容量」が極端に小さいことがわかる。
 比較例15に係るリチウム遷移金属複合酸化物は、Ni:Co:Mnが1:1:1であり、Li/Meが1.0のLiMeO型活物質の例である。LiMeO型活物質は、リチウム過剰型活物質と異なり、電位が5.0V(vs.Li/Li)に至る初期充電を行っても、4.5~5.0V(vs.Li/Li)の電位範囲内に、充電電気量に対する電位変化が比較的平坦な領域が観察されず、「4.35―4.6V間の充電電気量」が小さい。
 比較例16に係るリチウム遷移金属複合酸化物は、Li/Meが1.1であるが、Mn/Meが0.4より小さい、0.33である型活物質の例である。比較例16に係る活物質についても、電位が5.0V(vs.Li/Li)に至る初期充電を行っても、4.5~5.0V(vs.Li/Li)の電位範囲内に、充電電気量に対する電位変化が比較的平坦な領域が観察されず、「4.35―4.6V間の充電電気量」が小さい。
 したがって、比較例15、16に係る電池は、満充電状態(SOC100%)を超えてさらに電流を強制的に印加したときに、電池電圧の急上昇が観察されるまでのSOCを十分に拡大することができないことがわかる。
 次に、モル比Mn/Meが「4.35V充電時放電容量」に与える影響について考察する。
 モル比Mn/Meが0.6である比較例10~13は、上記したように、いずれも「4.35V充電時放電容量」が130mAh/g未満と小さい。これに対して、モル比Mn/Meが0.6未満である実施例1~23は、いずれも、「4.35V充電時放電容量」が130mAh/g以上と優れている。なかでも、モル比Mn/Meが0.50以下である実施例9~11、13~22は、いずれも、「4.35V充電時放電容量」が140mAh/g以上とさらに優れている。
 なお、本発明者の知見によれば、モル比Li/Meが1.1であると、組成によっては大きな「4.35V充電時放電容量」が得られることがあるが、大きな「4.35―4.6V間の充電電気量」を兼ね備えるためには、モル比Li/Meを1.15以上とすることが好ましい。例えば、モル比Li/Meが異なることを除いては、Ni:Co:Mnの組成比率、反応pH、及び焼成温度の条件が全て同一である実施例8と実施例23を比べると、モル比Li/Meが1.1である実施例8に比べ、モル比Li/Meが1.2である実施例23は「4.35―4.6V間の充電電気量」が大きく向上していることがわかる。
 <充放電試験後の電極の結晶構造の確認>
 上記充放電試験後の非水電解質二次電池の中で、実施例1,6,8,16について、上記の手順で電池の解体及び正極合剤のエックス線回折測定をおこなった。
 初期充放電条件1を適応した二次電池については、超格子ピークが観察された。一方で、初期充放電条件2を適応した二次電池については、超格子ピークが観察されなかった。
 本発明に係るリチウム遷移金属複合酸化物を含む正極活物質を用いると、比較的低い電圧で充電しても放電容量が大きく、より安全性が向上した非水電解質二次電池を提供することができる。したがって、この非水電解質二次電池は、ハイブリッド自動車用、電気自動車用、プラグインハイブリッド自動車用等の非水電解質二次電池として有用である。
 1A,1B 測定プローブ
 2A,2B 測定面
 3A,3B 台座
 6  側体
 7  貫通孔
 1  非水電解質二次電池
 2  電極群
 3  電池容器
 4  正極端子
 4’ 正極リード
 5  負極端子
 5’ 負極リード
20  蓄電ユニット
30  蓄電装置 

Claims (6)

  1.  リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、
     前記リチウム遷移金属複合酸化物は、
     α-NaFeO構造を有し、
     Liと遷移金属(Me)のモル比Li/Meが1<Li/Meであり、
     遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、MnとMeのモル比Mn/Meが0.4≦Mn/Me<0.6であり、
     前記リチウム遷移金属複合酸化物を40MPaの圧力でプレスした際の密度が2.7g/cm以上であり、
     前記リチウム遷移金属複合酸化物が、R3-mに帰属可能なエックス線回折パターンを有し、CuKα線を用いたエックス線回折測定によるミラー指数hklにおける(104)面の回折ピークの半値幅が0.2°以上0.6°以下であるか、又は、P312に帰属可能なエックス線回折パターンを有し、CuKα線を用いたエックス線回折測定によるミラー指数hklにおける(114)面の回折ピークの半値幅が0.2°以上0.6°以下である、非水電解質二次電池用正極活物質。
  2.  α-NaFeO構造を有し、Liと遷移金属(Me)のモル比Li/Meが1<Li/Meであるリチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体であって、
     前記遷移金属水酸化物前駆体は、遷移金属(Me)としてNi及びMn、又はNi、Co及びMnを含み、MnとMeのモル比Mn/Meが0.4≦Mn/Me<0.6であり、
     αMe(OH)及びβMe(OH)を含有する、遷移金属水酸化物前駆体。
  3.  請求項2に記載の遷移金属水酸化物前駆体の製造方法であって、
     Ni及びMn、又はNi、Co及びMnを含む化合物を、pH10.2以下の水溶液中で反応させる、遷移金属水酸化物前駆体の製造方法。
  4.  リチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質の製造方法であって、
     請求項2に記載の遷移金属水酸化物前駆体に、リチウム化合物を混合し、750~1000℃で焼成することにより、リチウム遷移金属複合酸化物を製造する、非水電解質二次電池用正極活物質の製造方法。
  5.  請求項1に記載の正極活物質を含有する、非水電解質二次電池用正極。
  6.  請求項5に記載の非水電解質二次電池用正極を備えた非水電解質二次電池。
PCT/JP2018/046042 2017-12-15 2018-12-14 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池 WO2019117281A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US16/771,499 US11251427B2 (en) 2017-12-15 2018-12-14 Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2019559222A JP7137769B2 (ja) 2017-12-15 2018-12-14 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
PCT/JP2019/024376 WO2019244956A1 (ja) 2018-06-21 2019-06-19 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
JP2020525783A JP7373132B2 (ja) 2018-06-21 2019-06-19 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
US16/973,472 US20210249645A1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
CN201980041699.7A CN112771694B (zh) 2018-06-21 2019-06-19 正极活性物质、正极、非水电解质二次电池及其制造方法和使用方法
EP19822786.0A EP3793010B1 (en) 2018-06-21 2019-06-19 Positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing nonaqueous electrolyte secondary battery, and method of using nonaqueous electrolyte secondary battery
JP2023109667A JP2023123790A (ja) 2018-06-21 2023-07-03 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017240407 2017-12-15
JP2017-240407 2017-12-15
JP2017-240406 2017-12-15
JP2017240406 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019117281A1 true WO2019117281A1 (ja) 2019-06-20

Family

ID=66820379

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/046043 WO2019117282A1 (ja) 2017-12-15 2018-12-14 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
PCT/JP2018/046042 WO2019117281A1 (ja) 2017-12-15 2018-12-14 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046043 WO2019117282A1 (ja) 2017-12-15 2018-12-14 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池

Country Status (3)

Country Link
US (3) US11545662B2 (ja)
JP (2) JP7137769B2 (ja)
WO (2) WO2019117282A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304738B1 (ko) * 2018-11-30 2021-09-24 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체의 제조 방법
JP7371571B2 (ja) 2020-05-07 2023-10-31 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
WO2022019273A1 (ja) * 2020-07-21 2022-01-27 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池
CN112883596B (zh) * 2021-04-28 2021-09-28 东南大学 低温下电池储能***高效率工作方法
WO2024054439A1 (en) * 2022-09-08 2024-03-14 Redwood Materials Method of making monodispersed single crystal cathode material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (fr) * 2001-11-22 2003-05-30 Yuasa Corporation Materiau actif d'electrode positive pour cellule secondaire au lithium et cellule secondaire associee
JP2014529868A (ja) * 2011-08-31 2014-11-13 スリーエム イノベイティブプロパティズカンパニー リチウムイオン電気化学セルに使用される大容量正極及び該正極の製造方法
WO2016151983A1 (ja) * 2015-03-26 2016-09-29 三洋電機株式会社 非水電解質二次電池
WO2016190419A1 (ja) * 2015-05-28 2016-12-01 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池
WO2018012385A1 (ja) * 2016-07-14 2018-01-18 株式会社Gsユアサ 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085006A (ja) 1999-09-14 2001-03-30 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP2003229124A (ja) 2002-01-31 2003-08-15 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質とその製造方法及びそれを用いた非水系リチウム二次電池
JP4867153B2 (ja) 2004-10-22 2012-02-01 日本電気株式会社 非水電解液二次電池用の正極活物質、二次電池用正極および非水電解液二次電池
WO2007116971A1 (ja) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池
JP5228292B2 (ja) 2006-07-06 2013-07-03 東ソー株式会社 リチウム−ニッケル−マンガン−コバルト複合酸化物の製造方法。
JP2010278015A (ja) 2006-09-22 2010-12-09 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
WO2009063838A1 (ja) 2007-11-12 2009-05-22 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP4877660B2 (ja) 2008-09-30 2012-02-15 株式会社Gsユアサ リチウム二次電池用活物質、その製造方法及びリチウム二次電池
JP5050834B2 (ja) 2007-12-21 2012-10-17 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2011057518A (ja) 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
JP2011113792A (ja) 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
KR101309150B1 (ko) 2010-06-13 2013-09-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US9023526B2 (en) 2010-06-13 2015-05-05 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2012049124A (ja) * 2010-07-30 2012-03-08 Sanyo Electric Co Ltd 非水電解質二次電池
JP2013065467A (ja) * 2011-09-16 2013-04-11 Panasonic Corp リチウムイオン二次電池
JP6003157B2 (ja) 2012-03-30 2016-10-05 戸田工業株式会社 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6090662B2 (ja) 2012-06-29 2017-03-08 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP6094797B2 (ja) 2012-08-03 2017-03-15 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP6131760B2 (ja) 2012-08-03 2017-05-24 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP2014049410A (ja) 2012-09-04 2014-03-17 Ngk Insulators Ltd リチウムイオン電池用正極活物質の製造方法
JP2014067546A (ja) 2012-09-25 2014-04-17 Ngk Insulators Ltd リチウム二次電池の正極活物質及びリチウム二次電池
WO2014192759A1 (ja) 2013-05-28 2014-12-04 旭硝子株式会社 正極活物質
JP6201146B2 (ja) 2013-10-03 2017-09-27 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP6167822B2 (ja) 2013-10-03 2017-07-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
JP6467352B2 (ja) 2014-01-20 2019-02-13 住友化学株式会社 正極活物質およびその製造方法
JP6358077B2 (ja) 2014-01-31 2018-07-18 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および、非水電解質二次電池
JP6486653B2 (ja) 2014-01-31 2019-03-20 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6414214B2 (ja) 2014-06-26 2018-10-31 株式会社村田製作所 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6377983B2 (ja) 2014-07-23 2018-08-22 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2016054101A (ja) 2014-09-04 2016-04-14 株式会社日立製作所 リチウムイオン二次電池
US10388944B2 (en) 2014-10-06 2019-08-20 Hitachi Metals, Ltd. Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP6589339B2 (ja) 2014-10-06 2019-10-16 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6474033B2 (ja) 2015-01-29 2019-02-27 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
JP6407754B2 (ja) 2015-02-12 2018-10-17 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法
KR101913897B1 (ko) 2015-09-30 2018-12-28 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP6651789B2 (ja) 2015-10-28 2020-02-19 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
US10727532B2 (en) 2015-12-15 2020-07-28 Gs Yuasa International Ltd. Positive active material for lithium secondary battery, method for producing precursor of positive active material, method for producing positive active material, positive electrode for lithium secondary battery, and lithium secondary battery
JP2017139168A (ja) 2016-02-04 2017-08-10 日立マクセル株式会社 非水電解質二次電池用正極
JP7135269B2 (ja) 2016-03-24 2022-09-13 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP7147478B2 (ja) * 2018-06-21 2022-10-05 株式会社Gsユアサ 非水電解質二次電池、及び非水電解質二次電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044881A1 (fr) * 2001-11-22 2003-05-30 Yuasa Corporation Materiau actif d'electrode positive pour cellule secondaire au lithium et cellule secondaire associee
JP2014529868A (ja) * 2011-08-31 2014-11-13 スリーエム イノベイティブプロパティズカンパニー リチウムイオン電気化学セルに使用される大容量正極及び該正極の製造方法
WO2016151983A1 (ja) * 2015-03-26 2016-09-29 三洋電機株式会社 非水電解質二次電池
WO2016190419A1 (ja) * 2015-05-28 2016-12-01 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池
WO2018012385A1 (ja) * 2016-07-14 2018-01-18 株式会社Gsユアサ 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置

Also Published As

Publication number Publication date
US20200381720A1 (en) 2020-12-03
US20230078256A1 (en) 2023-03-16
US11545662B2 (en) 2023-01-03
US20210075012A1 (en) 2021-03-11
US11251427B2 (en) 2022-02-15
JP7137769B2 (ja) 2022-09-15
WO2019117282A1 (ja) 2019-06-20
JP7296044B2 (ja) 2023-06-22
JPWO2019117281A1 (ja) 2021-01-07
JPWO2019117282A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6825559B2 (ja) 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池
WO2012091015A1 (ja) 非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及びその二次電池の製造方法
WO2015049862A1 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
WO2019117281A1 (ja) 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP5757138B2 (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP7373132B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池の使用方法
WO2018012385A1 (ja) 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置
JP2015213080A (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP2018129221A (ja) 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP5757139B2 (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP6583662B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN109618555B (zh) 锂过渡金属复合氧化物、过渡金属氢氧化物前体及它们的制造方法
WO2021039120A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、及び蓄電装置
JP6834363B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP6052643B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP2018073752A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP7330436B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP7211137B2 (ja) 非水電解質二次電池用正極活物質、正極活物質の製造に用いる前駆体の製造方法、正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP5866967B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP7241162B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP2013069583A (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559222

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889188

Country of ref document: EP

Kind code of ref document: A1