WO2016086886A1 - 聚合物,包含其的混合物、组合物、有机电子器件,及其单体 - Google Patents

聚合物,包含其的混合物、组合物、有机电子器件,及其单体 Download PDF

Info

Publication number
WO2016086886A1
WO2016086886A1 PCT/CN2015/096328 CN2015096328W WO2016086886A1 WO 2016086886 A1 WO2016086886 A1 WO 2016086886A1 CN 2015096328 W CN2015096328 W CN 2015096328W WO 2016086886 A1 WO2016086886 A1 WO 2016086886A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
group
electron
polymer
structural unit
Prior art date
Application number
PCT/CN2015/096328
Other languages
English (en)
French (fr)
Inventor
潘君友
黄宏
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to US15/532,883 priority Critical patent/US10840450B2/en
Priority to CN201580065947.3A priority patent/CN107004777B/zh
Priority to EP15865073.9A priority patent/EP3229288B1/en
Publication of WO2016086886A1 publication Critical patent/WO2016086886A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/72Spiro hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/794Ketones containing a keto group bound to a six-membered aromatic ring having unsaturation outside an aromatic ring
    • C07C49/798Ketones containing a keto group bound to a six-membered aromatic ring having unsaturation outside an aromatic ring containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/50Spiro compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to the field of electroluminescent materials, and more particularly to a polymer comprising a mixture, composition, organic electronic device, and monomer capable of forming the polymer.
  • Organic semiconductor materials are versatile in synthesis, low in manufacturing cost, and have high optical and electrical properties, making it possible to manufacture large-area flexible devices. Therefore, organic light-emitting diodes (OLEDs) made of organic semiconductor materials In novel optoelectronic device applications, for example, in flat panel displays and lighting applications, there is great potential.
  • OLEDs organic light-emitting diodes
  • novel optoelectronic device applications for example, in flat panel displays and lighting applications, there is great potential.
  • fluorescent and phosphorescent based luminescent material systems have been developed.
  • Organic light-emitting diodes using phosphorescent materials have achieved relatively high performance, such as nearly 100% internal luminescence quantum efficiency.
  • phosphorescent materials having practical use value are rhodium and platinum complexes, raw materials are rare and expensive, and the synthesis of complexes is complicated, and thus has a relatively high cost.
  • Adachi proposes the concept of reverse intersystem crossing, which allows the use of organic compounds, ie without the use of metal complexes, to achieve high efficiency of phosphorescent OLEDs. This can be achieved by thermally exciting the delayed fluorescent material TADF, see Adachi et al., Nature Vol 492, 234, (2012).
  • TADF materials have relatively low molecular weight, solvent properties, and parameters important to the printing process such as viscosity, surface tension, etc., which are not easy to adjust, and thus are inconvenient for the printing process.
  • a polymer comprising a repeating unit as shown in Chemical Formula 1, characterized in that the energy difference ⁇ (S1(E)- between the singlet level and the triplet level of the structural unit E T1 (E)) ⁇ 0.35 eV.
  • E is an organic compound comprising at least one electron-donating group D and at least one electron-withdrawing group A, and ⁇ (S1(E)-T1 (E)) ⁇ 0.35 eV.
  • E is an organic compound having the formula (I):
  • Ar is an aromatic or heteroaromatic structural unit
  • D is an electron-donating group
  • A is an electron-withdrawing group
  • n and m are each an integer between 1 and 6, wherein, when m>1, each D is independent of each other. Selected from the same or different electron donating groups, when n>1, each A is independently selected from the same or different electron withdrawing groups;
  • composition comprising a polymer as described above, and at least one organic solvent.
  • a mixture comprising a polymer as described above, and at least one other organic functional material, said at least another organic functional material being selected from the group consisting of hole injection or Transmission materials, hole blocking materials, electron injecting or transporting materials, electron blocking materials, organic matrix materials, singlet emitters, and triplet emitters.
  • an organic electronic device comprising at least a polymer as described above.
  • the difference ⁇ (S1(E)-T1(E)) of the singlet state level and the triplet level of the structural unit E is ⁇ 0.35 eV.
  • the invention has the beneficial effects that the polymer of the invention has high molecular weight, good solubility in an organic solvent, and good film forming property, thereby providing a better material solution for printing OLED.
  • the present invention provides a polymer and its use in an organic electroluminescent device, and an organic electronic device comprising the same and a preparation method thereof, in order to make the object, technical solution and effect of the present invention clearer and clearer,
  • the invention is further described in detail. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the polymer provided by the present invention comprises a repeating unit as shown in Chemical Formula 1, characterized in that the energy difference ⁇ (S1(E)-T1(E)) between the singlet level and the triplet level of the structural unit E ⁇ 0.35eV.
  • the triplet level (T1) and the singlet level (S1), HOMO, and LUMO play a key role for the energy level structure of the organic material.
  • the following is an introduction to the determination of these energy levels.
  • the HOMO and LUMO levels can be measured by photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effect such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • quantum chemical methods such as density functional theory (hereinafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • the triplet level T1 of organic materials can be measured by low temperature time-resolved luminescence spectroscopy or by quantum simulation calculations (eg by Time-dependent DFT), as by the commercial software Gaussian 03W (Gaussian) Inc.), the specific simulation method can be found in WO2011141110.
  • the singlet energy level S1 of organic materials can be determined by absorption spectrum, or emission spectrum, or by quantum simulation calculations (such as Time-dependent DFT).
  • the absolute values of HOMO, LUMO, T1 and S1 depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as starting point and peak point on the CV curve, can give different HOMOs. /LUMO value. Therefore, reasonable and meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, T1, and S1 are simulations based on Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • the polymer according to the invention has the advantage that the repeating units E are linked by a non-conjugated polymer backbone to achieve a higher molecular weight while maintaining a single repeating unit energy structure, ie a single repeating unit of HOMO, LUMO, S1 and T1 remain basically unchanged.
  • ⁇ (S1(E)-T1(E)) ⁇ 0.30 eV, preferably ⁇ 0.25 eV, more preferably ⁇ 0.20 eV, still more preferably ⁇ 0.15 eV, most preferably ⁇ 0.10eV.
  • E is an illuminant.
  • the specific gravity of the illuminant in the luminescent layer has a certain range.
  • the amount of repeating unit E in the polymer is from 0.1 mol% to 90 mol%.
  • the content of repeating unit E in the polymer is from 1 mol% to 80 mol%, preferably from 2 mol% to 70 mol%, more preferably from 3 mol% to 50 mol%, still more preferably from 3 mol% to 30 mol% %, most preferably from 4 mol% to 20 mol%.
  • the host material, the matrix material, the Host material, and the Matrix material have the same meaning and are interchangeable.
  • the singlet states and the singlet states have the same meaning and are interchangeable.
  • the triplet state and the triplet state have the same meaning and are interchangeable.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, preferably ⁇ 1500 g/mol.
  • Polymer ie Polymer, including homopolymer, copolymer, inlaid copolymerization Block copolymer.
  • the polymer also includes a dendrimer.
  • a dendrimer For the synthesis and application of the tree, see [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome , Charles N. Moorefield, Fritz Vogtle.].
  • a conjugated polymer is a polymer whose backbone backbone is mainly composed of sp2 hybrid orbitals of C atoms. Famous examples are: polyacetylene polyacetylene and poly(phenylene vinylene), which are on the main chain.
  • the C atom can also be substituted by other non-C atoms, and is still considered to be a conjugated polymer when the sp2 hybrid on the backbone is interrupted by some natural defects.
  • the conjugated polymer also includes an aryl amine, an aryl phosphine and other heteroarmotics, and an organometallic complexes in the main chain. Wait.
  • the polymer according to the invention is a non-conjugated polymer.
  • the repeating structural unit E of the polymer according to the invention is a structural unit comprising at least one electron-donating group D and at least one electron-withdrawing group A.
  • repeating structural unit E of the polymer according to the invention is a structural unit comprising the following structural formula (I):
  • Ar is an aromatic or heteroaromatic structural unit
  • D is an electron-donating group
  • A is an electron-withdrawing group
  • n and m are each an integer between 1 and 6, wherein, when m>1, each D is independent of each other. Selected from the same or different electron donating groups, when n>1, each A is independently selected from the same or different electron withdrawing groups;
  • a suitable electron-donating group D may be selected from the group having any of the following formulas 1-3:
  • Z 1 H, O, S or Si
  • a 1 and A 2 may independently form an aromatic ring, a heteroaromatic ring, an aliphatic ring or a non-aromatic heterocyclic ring
  • R 20 represents H, an aryl group.
  • a group of atoms necessary for forming a ring represented by A 4 , and A 3 and A 4 may each independently form a heteroaromatic ring or a non-heteroaromatic ring
  • Z 2 , Z 3 , Z 4 , Z 5 Each represents O or S independently.
  • the electron donating group described above is selected from the group consisting of any of the following formulas D1-D10:
  • Suitable electron-withdrawing groups A may be selected from the group consisting of F, cyano or a group having one of the following formulas:
  • n is an integer from 1 to 3; X 1 -X 8 is selected from CR 1 or N, and at least one is N, where R 1 is the same as defined in ETM R 1.
  • a suitable electron withdrawing group A is selected from the group consisting of cyano groups.
  • Ar is selected from the group consisting of:
  • the repeating structural unit E when present in plurality, may be independently selected from the same or different structural groups.
  • the polymer according to the invention further comprises an organic functional group.
  • the polymer according to the invention has the following general formula
  • the organic functional group G when present in plurality, may be independently or differently selected from one another (also called a hole) injection or transport group, a hole blocking group, an electron injecting or transporting group. , an electron blocking group, an organic matrix group, a singlet luminescent group (fluorescent luminescent group), a triplet luminescent group (phosphorescent luminescent group).
  • organic functional groups correspond to the corresponding small molecule organic functional materials: hole (also known as hole) injection or transport material (HIM/HTM), hole blocking material (HBM), electron injection or transport material (EIM/ ETM), electron blocking material (EBM), organic matrix material (Host), singlet illuminant (fluorescent illuminant), triplet illuminant (phosphorescent illuminant).
  • HIM/HTM hole injection or transport material
  • HBM hole blocking material
  • EIM/ ETM electron injection or transport material
  • EBM electron blocking material
  • organic matrix material Host
  • singlet illuminant fluorescent illuminant
  • triplet illuminant phosphorescent illuminant
  • Suitable organic HIM/HTM materials may optionally comprise compounds having the following structural units: phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, and thiophene such as dithienothiophene and thiophene, pyrrole, aniline , carbazole, azide and azepine, and their derivatives.
  • cyclic aromatic amine-derived compounds that can be used as HIM or HTM include, but are not limited to, the following general structures:
  • Each of Ar 1 to Ar 9 may be independently selected from the group consisting of a cyclic aromatic hydrocarbon compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalene, phenanthrene, anthracene, anthracene, fluorene, anthracene, anthracene; aromatic heterocyclic ring Compounds such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, oxatriazole, Oxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, hydr
  • Ar 1 to Ar 9 may be independently selected from the group consisting of:
  • n is an integer from 1 to 20; X1 to X8 are CH or N; Ar1 is as defined above.
  • metal complexes that can be used as HTM or HIM include, but are not limited to, the following general structures:
  • M is a metal with an atomic weight greater than 40
  • (Y 1 -Y 2 ) is a bidentate ligand, Y 1 and Y 2 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer ranging from 1 to this metal The maximum coordination number; m+n is the maximum coordination number of this metal.
  • (Y 1 -Y 2 ) is a 2-phenylpyridine derivative.
  • (Y 1 -Y 2 ) is a carbene ligand.
  • M is selected from the group consisting of Ir, Pt, Os, and Zn.
  • the HOMO of the metal complex is greater than -5.5 eV (relative to the vacuum level).
  • EIM/ETM material examples are not particularly limited, and any metal complex or organic compound may be used as the EIM/ETM as long as they can transport electrons.
  • the preferred organic EIM/ETM material may be selected from the group consisting of tris(8-hydroxyquinoline)aluminum (AlQ3), phenazine, phenanthroline, anthracene, phenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, triazine, Triazole, imidazole, hydrazine, hydrazine, ruthenium and fluorene, cis hydrazine, dibenzo-indole fluorene, anthracene naphthalene, benzopyrene and their derivatives.
  • a hole blocking layer is typically used to block holes from adjacent functional layers, particularly the luminescent layer.
  • the presence of HBL typically results in an increase in luminous efficiency.
  • the hole blocking material (HBM) of the hole blocking layer (HBL) needs to have a lower HOMO than an adjacent functional layer such as a light emitting layer.
  • the HBM has a larger excited state level than the adjacent luminescent layer, such as a singlet or triplet state, depending on the illuminant.
  • HBM has an electronic transmission function. EIM/ETM materials that typically have deep HOMO levels can be used as HBM.
  • a compound which can be used as an EIM/ETM/HBM is a molecule containing at least one of the following groups:
  • R 1 may be selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl when they are aryl or heteroaryl They have the same meaning as Ar 1 and Ar 2 in the above HTM;
  • Ar 1 -Ar 5 has the same meaning as Ar 1 described in HTM;
  • n is an integer from 0 to 20;
  • X 1 -X 8 is selected from CR 1 or N.
  • examples of metal complexes that can be used as EIM/ETM include, but are not limited to, the following general structures:
  • (O-N) or (N-N) is a bidentate ligand in which the metal is coordinated to O, N or N, N; L is an ancillary ligand; m is an integer from 1 to the maximum coordination number of the metal.
  • an organoalkali metal compound can be used as the EIM.
  • an organic alkali metal compound is understood to be a compound which is at least one alkali metal, i.e., lithium, sodium, potassium, rubidium, cesium, and further contains at least one organic ligand.
  • Suitable organic alkali metal compounds include the compounds described in US Pat. No. 7,776,317 B2, EP 1 194 562 B1 and EP 1 144 543 B1.
  • Preferred organic alkali metal compounds are compounds of the following chemical formula:
  • R 1 has the meaning as defined above, the arc represents two or three atoms and a bond, so as to form a 5- or 6-membered ring with the metal M if necessary, wherein the atom may also be substituted by one or more R 1 , M is an alkali metal selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium.
  • the organic alkali metal compound may be in the form of a monomer, as described above, or in the form of an aggregate, for example, a two alkali metal ion and two ligands, 4 alkali metal ions and 4 ligands, 6 alkali metal ions and 6 ligands or in other forms.
  • Preferred organic alkali metal compounds are compounds of the following chemical formula:
  • o each time it appears can be the same or different, is 0, 1, 2, 3 or 4;
  • p each occurrence may be the same or different, is 0, 1, 2 or 3;
  • the alkali metal M is selected from the group consisting of lithium, sodium, potassium, more preferably lithium or sodium, and most preferably lithium.
  • the organic alkali metal compound is electron-injected into the layer. More preferably, the electron injecting layer is composed of an organic alkali metal compound.
  • the organoalkali metal compound is doped into other ETM to form an electron transport layer or an electron injecting layer. More preferably, it is an electron transport layer.
  • the example of the triplet matrix material is not particularly limited, and any metal complex or organic compound may be used as the matrix as long as its triplet energy is higher than that of the illuminant, particularly the triplet illuminant or the phosphorescent illuminant.
  • metal complexes that can be used as the triplet host include, but are not limited to, the following general structure:
  • M is a metal
  • (Y 3 -Y 4 ) is a bidentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P, and S
  • L is an ancillary ligand
  • m is an integer, and its value The maximum coordination number from 1 to this metal; m+n is the maximum coordination number of this metal.
  • the metal complex that can be used as the triplet matrix has the following form:
  • (O-N) is a two-dentate ligand in which the metal coordinates with the O and N atoms.
  • M can be selected from the group consisting of Ir and Pt.
  • Examples of the organic compound which can be used as the triplet substrate are selected from compounds containing a cyclic aromatic hydrocarbon group, such as benzene, biphenyl, triphenyl, benzo, oxime; testing; compounds containing an aromatic heterocyclic group such as diphenyl And thiophene, dibenzofuranophene, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole ,oxaazole,dioxazole,thiadiazole,pyridine,pyridazine,pyrimidine,pyrazine,triazine,oxazines,oxathiazines,oxadiazines,ind
  • the triplet matrix material can be selected from compounds comprising at least one of the following groups:
  • R 1 -R 7 may be independently of one another selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl, when they are aryl Or a heteroaryl group, they have the same meaning as Ar 1 and Ar 2 described above;
  • n is an integer from 0 to 20; X 1 -X 8 is selected from CH or N; and X 9 is selected from CR 1 R 2 or NR 1 .
  • the example of the singlet matrix material is not particularly limited, and any organic compound may be used as a matrix as long as its singlet energy is higher than that of an illuminant, particularly a singlet illuminant or a fluorescent illuminant.
  • Examples of the organic compound used as the singlet matrix material may be selected from compounds containing a cyclic aromatic hydrocarbon such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalene, phenanthrene, anthracene, anthracene, quinone, fluorene, An aromatic heterocyclic compound such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, Pyrrolodipyridine, pyrazole, imidazole, trinitrogen Oxazole, isoxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrim
  • the singlet matrix material can be selected from compounds comprising at least one of the following groups:
  • R 1 may be independently of one another selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl;
  • Ar 1 is aryl or hetero An aryl group having the same meaning as Ar 1 defined in the above HTM;
  • n is an integer from 0 to 20; X 1 -X 8 is selected from CH or N; and X 9 and X 10 are selected from CR 1 R 2 or NR 1 .
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1
  • indenofluorene and its derivatives as disclosed in WO 2008/006449 and WO 2007/140847.
  • the singlet emitters may be selected from monostyrylamines, distyrylamines, tristyrylamines, tetrastyrylamines. , styryl phosphines, styryl ethers and arylamines.
  • a monostyrylamine refers to a compound which comprises an unsubstituted or substituted styryl group and at least one amine, It is preferably an aromatic amine.
  • the distyrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • Ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • the quaternary styrylamine refers to a compound comprising four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • the preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems directly bonded to a nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the group consisting of fused ring systems and preferably at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine.
  • Aromatic guanamine refers to a compound in which one of the diarylamino groups is directly attached to the oxime, preferably at the position of 9.
  • Aromatic quinone diamine refers to a compound in which two diarylamino groups are directly attached to the oxime, preferably at the 9,10 position.
  • the definitions of aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine are similar, wherein the diaryl aryl group is preferably bonded to the 1 or 1,6 position of hydrazine.
  • Examples of singlet emitters based on vinylamines and arylamines are also preferred examples and can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007 /115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1, the entire contents of which are hereby incorporated by reference. This article is incorporated herein by reference.
  • Further preferred singlet emitters may be selected from the group consisting of an indeno-amine and an indeno-diamine, as disclosed in WO 2006/122630, benzoindenofluorene-amine and benzindene Benzoindenofluorene-diamine, as disclosed in WO 2008/006449, dibenzoindenofluorene-amine and dibenzoindenofluorene-diamine, such as Published in WO2007/140847.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-di(2-naphthoquinone) (9,10-di(2-naphthylanthracene) ), naphthalene, tetraphenyl, xanthene, phenanthrene, perylene such as 2,5,8,11-tetra-t-butylperylene, indenoperylene, phenylenes such as (4) , 4'-(bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl), periflanthene, decacyclene, coronene, sputum, spirofluorene, Arylpyrene (such as US20060222886), arylenevinylene (such as US5121029, US5130603), cyclopentadiene such as tetraphenylcyclopen
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from the group consisting of transition metal elements or lanthanides or actinides, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy , Re, Cu or Ag, particularly preferred Os, Ir, Ru, Rh, Re, Pd, Pt.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, and a 2(2-thienyl)pyridine (2(2-thienyl)).
  • the ancillary ligand may be preferably selected from acetic acid Acetone (acetylacetonate) or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from the group consisting of transition metal elements or lanthanides or actinides;
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal;
  • Ar 2 may be the same or different at each occurrence, and is a cyclic group containing at least one C atom through which a cyclic group is bonded to a metal;
  • Ar 1 and Ar 2 are linked by a covalent bond,
  • Each carrying one or more substituent groups, which may also be linked together by a substituent group; each occurrence of L may be the same or different, is an ancillary ligand, preferably selected from a bidentate chelate ligand, preferably Is a monoanionic bidentate chelate ligand;
  • m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3;
  • n is 0, 1, or 2, preferably 0 or 1, particularly preferably 0;
  • the polymer according to the invention comprises the aforementioned E, and an organic functional group G, wherein G is selected from the group consisting of triplet matrix groups.
  • the polymer according to the invention comprises the aforementioned E, and an organic functional group G, wherein G is selected from the group consisting of triplet luminescent groups.
  • the polymer according to the invention comprises the aforementioned E, and two other organic functional groups G1 and G2, wherein G1 is selected from the group consisting of triplet matrix groups and G2 is selected from the group consisting of triplet luminescence Group.
  • the polymer according to the invention comprises the aforementioned E, and two other organic functional groups G1 and G2, wherein G1 is selected from a hole transporting group and G2 is selected from an electron transporting group. group.
  • the present invention also provides a polymerizable monomer having the following formula:
  • the polymerizable monomer is characterized in that ⁇ (S1(E) - T1(E)) ⁇ 0.25 eV, preferably ⁇ 0.20 eV, most preferably ⁇ 0.10 eV.
  • the polymerizable monomer according to the invention has a structural unit E which is a structural unit comprising at least one electron-donating group D and at least one electron-withdrawing group A.
  • the polymerizable monomer according to the invention is a structural unit comprising the following structural formula (II):
  • Ar is an aromatic or heteroaromatic structural unit
  • D is an electron-donating group
  • A is an electron-withdrawing group
  • n and m are respectively An integer between 1 and 6, wherein, when m>1, each D is independently selected from the same or different electron-donating groups, and when n>1, each A is independently selected from the same or different electron withdrawing electrons. base;
  • a suitable electron-donating group D may be selected from the group having any of the following formulas 1-3:
  • Z 1 H, O, S or Si
  • a 1 and A 2 may independently form an aromatic ring, a heteroaromatic ring, an aliphatic ring or a non-aromatic heterocyclic ring
  • R 20 represents H, an aryl group.
  • a group of atoms necessary for forming a ring represented by A 4 , and A 3 and A 4 may each independently form a heteroaromatic ring or a non-heteroaromatic ring
  • Z 2 , Z 3 , Z 4 , Z 5 Each represents O or S independently.
  • the electron donating group described above is selected from the group consisting of any of the following formulas D1-D10:
  • Suitable electron-withdrawing groups A may be selected from the group consisting of F, cyano or a group having one of the following formulas:
  • n is an integer from 1 to 3; X 1 -X 8 is selected from CR 1 or N, and at least one is N, where R 1 is the same as defined in ETM R 1.
  • a suitable electron withdrawing group A is selected from the group consisting of cyano groups.
  • Ar is selected from the group consisting of:
  • the present invention also provides a mixture comprising at least one polymer as described above and an organic functional material, which may be selected from a hole (also called a hole) injection or transport material (HIM) /HTM), hole blocking material (HBM), electron injecting or transporting material (EIM/ETM), electron blocking material (EBM), organic matrix material (Host), singlet illuminant (fluorescent illuminant), triplet Luminous body (phosphorescent emitter).
  • HIM hole injection or transport material
  • HBM hole blocking material
  • EIM/ETM electron injecting or transporting material
  • EBM electron blocking material
  • organic matrix material Host
  • singlet illuminant fluorescent illuminant
  • triplet Luminous body phosphorescent emitter
  • the invention further relates to a composition comprising a polymer as described above and at least one organic solvent.
  • organic solvents include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, O-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1 -trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene, naphthalene Alkanes, hydrazines and/or
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • composition in the examples of the invention may comprise from 0.01 to 20% by weight of polymer, preferably from 0.1 to 15% by weight, more preferably from 0.2 to 10% by weight, most preferably from 0.25 to 5% by weight of polymer.
  • the invention further relates to the use of the composition as a coating or printing ink in the preparation of an organic electronic device, particularly preferably by a printing or coating process.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, typography, screen printing, dip Coating, spin coating, blade coating, roller printing, torsion roll printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit type extrusion coating, and the like.
  • Preferred are gravure, screen printing and inkjet printing.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the present invention also provides the use of a polymer as described above, that is, the polymer is applied to an organic electronic device, which may be selected from, but not limited to, an organic light emitting diode (OLED). ), organic photovoltaic cells (OPV), organic light-emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting field effect transistors, organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes ( Organic Plasmon Emitting Diode), etc., especially OLED.
  • OLED organic light emitting diode
  • OLED organic photovoltaic cells
  • OLED organic light-emitting cells
  • OFETs organic field effect transistors
  • organic light-emitting field effect transistors organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes ( Organic Plasmon Emitting Diode), etc., especially OLED.
  • the organic compound is preferably used in the luminescent layer of an O
  • the polymer is used in a luminescent layer of an OLED device.
  • the invention further relates to an organic electronic device comprising at least one polymer as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein said functional layer comprises at least one polymer as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode).
  • the organic electronic device is an OLED comprising a substrate, an anode, at least one luminescent layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible and may be selected from polymeric films or plastics having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, and most preferably more than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer thereof is printed by the present invention.
  • the composition is prepared.
  • the light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an organic electronic device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • the invention further relates to an electronic device comprising an organic electronic device according to the invention, including, but not limited to, a display device, a lighting device, a light source, a sensor and the like.
  • the synthesis step of monomer E4 is similar to the synthesis step of monomer E1, except that compound 6 is used in the first step, and the aldehyde-containing intermediate formed in the next step is 7.
  • the energy structure of the organic repeating structural unit can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 03W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1” (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 and the base group "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S1 and T1 are used directly
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 03W, and the unit is Hartree.
  • the results are shown in Table 1:
  • the main synthetic steps are as follows: taking the synthesis of the P1 polymer as an example, 0.15 mmol of E1, 0.50 mmol of G1 and 0.35 mmol of G5 monomer are dissolved in a benzene solvent under nitrogen protection, and 0.01 is added by a syringe. Ment 2,2-azobisisobutyronitrile (AIBN initiator), sealed, reacted at 60 ° C for 4 hours, when the reaction was completed, cooled to room temperature, and the polymer was precipitated with methanol. The precipitate was dissolved in tetrahydrofuran (THF) and precipitated with methanol. This was repeated 3 to 5 times, and dried under vacuum to obtain a solid of the polymer P1.
  • AIBN initiator Ment 2,2-azobisisobutyronitrile
  • the preparation process of the OLED device using the above polymer is described in detail below by way of a specific embodiment.
  • the structure of the OLED device is: ITO/HIL/HTL/EML/ETL/cathode, and the preparation steps are as follows:
  • ITO indium tin oxide
  • a conductive glass substrate cleaning using a variety of solvents (such as one or several of chloroform, acetone or isopropanol) cleaning, and then UV ozone treatment;
  • HIL hole injection layer, 60nm
  • 60nm is of PEDOT (polyethylene dioxythiophene, Clevios TM AI4083) in a clean room as HIL spin coated from, and heat-treated at 180 [deg.] C for 10 minutes plate ;
  • HTL hole transport layer, 20 nm
  • 20 nm TFB or PVK Sigma Aldrich, average Mn 25,000-50,000
  • TFB hole transport layer
  • PVK Sigma Aldrich, average Mn 25,000-50,000
  • TFB H.W.SandsCorp.
  • EML organic light-emitting layer
  • EML is formed by spin coating in a nitrogen glove box.
  • the solution used is a polymer (P1-P8) added to a toluene solvent, and the solution solubility is 10 mg/ml, followed by 180. Treated on a hot plate at °C for 10 minutes;
  • Table 2 lists the composition and thickness of the EML of the device;
  • OLED1 PVK P1 (65nm) OLED2 PVK P2 (65nm) OLED3 TFB P3 (80nm) OLED4 TFB P4 (80nm) OLED5 TFB P5 (80nm) OLED6 PVK P6 (65nm) OLED7 PVK P7 (65nm) OLED8 TFB P8 (65nm)
  • cathode Ba / Al (2nm / 100nm) in a high vacuum (1 ⁇ 10 -6 mbar) in the thermal evaporation;
  • the device was encapsulated in a UV glove box with a UV curable resin.
  • the current and voltage (IVL) characteristics of each OLED device are characterized by characterization equipment while recording important parameters such as efficiency, lifetime and drive voltage.
  • the performance of OLED devices is summarized in Table 3.

Abstract

本发明公开一种聚合物、包含其的组合物、有机电子器件及应用,其中,所述聚合物在侧链上包括一重复结构单元E,此重复结构单元具有热激发延迟荧光(TADF)特性,即其中Δ(S1(E)-T1(E))≤0.35eV。从而提供了一种适合于印刷工艺的TADF聚合物,进而降低OLED制造成本。

Description

聚合物,包含其的混合物、组合物、有机电子器件,及其单体 技术领域
本发明涉及电致发光材料领域,尤其涉及一种聚合物,包含其的混合物、组合物、有机电子器件,及能够形成该聚合物的单体。
背景技术
由于有机半导体材料在合成上具有多样性,制造成本低,且具有很高的光学和电学性能,可使制造大面积柔性器件成为可能,因此,由有机半导体材料制成的有机发光二极管(OLED)在新颖的光电器件应用中,例如,在平板显示器和照明应用中,有很大的潜力。为了提高有机发光二极管的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来。使用磷光材料的有机发光二极管已经取得相当高的性能,如已取得了几乎100%的内部发光量子效率。但迄今为止,有实际使用价值的磷光材料是铱和铂配合物,原材料稀有而昂贵,配合物的合成很复杂,因此有相当高的成本。Adachi提出反向内部转换(reverse intersystem crossing)的概念,这样可以利用有机化合物,即不利用金属配合物,实现磷光OLED的高效率。这可通过热激发延迟荧光材料TADF,参见Adachi et al.,Nature Vol 492,234,(2012),得以实现。
为了充分利用有机材料的优点,人们希望通过打印的方法,低成本,大面积地制备OLED。现有报道的TADF材料,分子量比较低,溶剂性,及对印刷工艺重要的参数如,粘度,表面张力等不容易调节,因此不便于印刷制程。
因此,新的适合于印刷的新材料体系有待于开发。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种聚合物、包含其的混合物、组合物、有机电子器件,及其单体,旨在提供一种新的聚合物材料,解决现有TADF材料不适合于印刷工艺的问题。
根据本发明的一个方面,提供一种聚合物,包括如化学式1所示的重复单元,其特征在于,结构单元E的单线态能级和三线态能级之能量差Δ(S1(E)-T1(E))≤0.35eV。
Figure PCTCN2015096328-appb-000001
化学式1
根据本发明的其中一种实施方式,提供一种如上所述的聚合物,其中E是包含至少一个供电子基D和至少一个吸电子基A的有机化合物,而且Δ(S1(E)-T1(E))≤0.35eV。在某些优先的实施方案中,E是具有如下结构式(I)的有机化合物:
Figure PCTCN2015096328-appb-000002
其中Ar为芳香族或杂芳族结构单元,D为供电子基,A为吸电子基,n、m分别为1到6之间的整数,其中,当m>1时,各个D相互独立地选自相同或不同的供电子基,当n>1时,各个A相互独立地选自相同或不同的吸电子基;
根据本发明的另一个方面,提供一种组合物,包括如上所述的聚合物,及至少一种有机溶剂。
根据本发明的另一个方面,提供一种混合物,包含有一种如上所述的聚合物,及至少另一种的有机功能材料,所述的至少另一种的有机功能材料选自空穴注入或传输材料,空穴阻挡材料,电子注入或传输材料,电子阻挡材料,有机基质材料,单重态发光体,以及三重态发光体。
根据本发明的又一个方面,提供如上所述的聚合物在有机电子器件中的应用。
根据本发明的再一个方面,提供一种有机电子器件,该器件至少包括如上所述的聚合物。
根据本发明的另一个方面,提供一种可聚合的单体,具有如下通式,
Figure PCTCN2015096328-appb-000003
其中,结构单元E的单线态能级和三线态能级之差Δ(S1(E)-T1(E))≤0.35eV。
本发明的有益效果在于:本发明的聚合物分子量高,在有机溶剂中具有较好的溶解性,成膜性能好,从而为印刷OLED提供了较好的材料解决方案。
具体实施方式
本发明提供一种聚合物及其在有机电致发光器件中的应用,及包含此聚合物的有机电子器件及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明所提供的聚合物,包括有如化学式1所示的重复单元,其特征在于,结构单元E的单线态能级和三线态能级之能量差Δ(S1(E)-T1(E))≤0.35eV。
Figure PCTCN2015096328-appb-000004
化学式1
在本发明实施例中,对于有机材料的能级结构,三线态能级(T1)及单线态能级(S1)、HOMO、LUMO、起着关键的作用。以下对这些能级的确定作一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级T1可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian  Inc.),具体的模拟方法可参见WO2011141110。
有机材料的单线态能级S1,可通过吸收光谱,或发射光谱来确定,也可通过量子模拟计算(如Time-dependent DFT)得到。
应该注意,HOMO、LUMO、T1及S1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、T1及S1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
按照本发明的聚合物,其的好处是,重复单元E通过非共轭的聚合物主链连接起来,达到较高的分子量,同时保持单个重复单元能量结构,即单个重复单元的HOMO,LUMO,S1和T1基本保持不变。
在某些优先的实施例中,Δ(S1(E)-T1(E))≤0.30eV,较好是≤0.25eV,更优选是≤0.20eV,更更优选是≤0.15eV,最优选是≤0.10eV。
按照本发明的聚合物,E是发光体。一般来说发光体在发光层中的比重有一定的范围。在某些的实施例中,重复单元E在聚合物中的含量是从0.1mol%≤90mol%。
在一个优先的实施例中,重复单元E在聚合物中的含量是从1mol%到80mol%,优选从2mol%到70mol%,更优选从3mol%到50mol%,更更优选从3mol%到30mol%,最优选从4mol%到20mol%。
在本发明实施例中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明实施例中,单线态,单重态具有相同的含义,可以互换。
在本发明实施例中,三线态,三重态具有相同的含义,可以互换。
本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000克/摩尔,较好是≤2000克/摩尔,最好是≤1500克/摩尔。
聚合物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚 物(block copolymer)。另外在本发明中,聚合物也包括树状物(dendrimer),有关树状物的合成及应用请参见【Dendrimers and Dendrons,Wiley-VCH Verlag GmbH & Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.】。
共轭聚合物(conjugated polymer)是一聚合物,它的主链backbone主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭聚合物。另外在本发明中共轭聚合物也包括主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
按照本发明的聚合物是一种非共轭聚合物。
在一个优选的实施例中,按照本发明的聚合物,其重复结构单元E是包含至少一个供电子基D和至少一个吸电子基A的结构单元。
在一个更加优选的实施例中,按照本发明的聚合物,其重复结构单元E是包含有如下结构式(I)的结构单元:
Figure PCTCN2015096328-appb-000005
其中Ar为芳香族或杂芳族结构单元,D为供电子基,A为吸电子基,n、m分别为1到6之间的整数,其中,当m>1时,各个D相互独立地选自相同或不同的供电子基,当n>1时,各个A相互独立地选自相同或不同的吸电子基;
合适的供电子基D可选自具有以下通式1-3中任一骨架的基团:
Figure PCTCN2015096328-appb-000006
其中:Z1=H、O、S或Si,A1及A2可分别独立形成芳香环、杂芳香环、脂肪环或 非芳香族杂环;通式2中,R20表示H、芳基、或形成A4所示之环所必需的原子群,A3及A4也可分别独立形成杂芳香环或非杂芳香环;通式3中,Z2、Z3、Z4、Z5分别独立表示O或S。
在一个优选的实施方案中,以上所述的供电子基选自具有以下通式D1-D10中任一骨架的基团:
Figure PCTCN2015096328-appb-000007
合适的吸电子基A可选自F、氰基或具有以下通式中任一骨架的基团:
Figure PCTCN2015096328-appb-000008
其中n是从1到3的整数;X1-X8选自CR1或N,并且至少一个是N,其中R1 与ETM中定义的R1相同。
在一个优选的实施方案中,合适的吸电子基A选自氰基。
在一个优先的实施例中,按照本发明的聚合物,其重复结构单元E中,Ar选自如下基团:
Figure PCTCN2015096328-appb-000009
其中,Z为O或S。
以下列出合适的可作为重复结构单元E的一些例子:
Figure PCTCN2015096328-appb-000010
Figure PCTCN2015096328-appb-000011
在本发明中,重复结构单元E,在多个出现时,可以各自独立的选自相同或不同的结构基团。
在一个优选的实施例中,按照本发明的聚合物还包含一种有机功能基团。
在某些实施例中,按照本发明的聚合物具有如下通式
Figure PCTCN2015096328-appb-000012
其中G为所述的有机功能基团,x+y=1。
所述有机功能基团G,在多个出现时,可相互独立地相同或不同地选自空穴(也称电洞)注入或传输基团,空穴阻挡基团,电子注入或传输基团,电子阻挡基团,有机基质基团,单重态发光基团(荧光发光基团),三重态发光基团(磷光发光基团)。这些有机功能基团都对应与相应的小分子有机功能材料:空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),三重态发光体(磷光发光体)。例如在WO2010135519A1、US20090134784A1和WO 2011110277A1中对这些有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
下面对这些功能材料作一些较详细的描述(但不限于此)。
1.HIM/HTM
合适的有机HIM/HTM材料可选包含有如下结构单元的化合物:酞菁,卟啉,胺,芳香胺,联苯类三芳胺,噻吩,并噻吩如二噻吩并噻吩和并噻吩,吡咯,苯胺,咔唑,氮茚并氮芴,及它们的衍生物。
可用作HIM或HTM的环芳香胺衍生化合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015096328-appb-000013
每个Ar1到Ar9可独立选自环芳香烃化合物,如苯,联苯,三苯基,苯并,萘,蒽,phenalene,菲,芴,芘,屈,苝,薁;芳香杂环化合物,如二苯并噻吩,二苯并呋喃,呋喃,噻吩,苯并呋喃,苯并噻吩,咔唑,吡唑,咪唑,三氮唑,异恶唑,噻唑,恶二 唑,oxatriazole,二恶唑,噻二唑,吡啶,哒嗪,嘧啶,吡嗪,三嗪,恶嗪,oxathiazine,oxadiazine,吲哚,苯并咪唑,吲唑,indoxazine,苯并恶唑,benzisoxazole,苯并噻唑,喹啉,异喹啉,邻二氮(杂)萘,喹唑啉,喹喔啉,萘,酞,蝶啶,氧杂蒽,吖啶,吩嗪,吩噻嗪,吩恶嗪,dibenzoselenophene,benzoselenophene,benzofuropyridine,indolocarbazole,pyridylindole,pyrrolodipyridine,furodipyridine,benzothienopyridine,thienodipyridine,benzoselenophenopyridine和selenophenodipyridine;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子,氮原子,硫原子,硅原子,磷原子,硼原子,链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基。
在一个方面,Ar1到Ar9可独立选自包含如下组的基团:
Figure PCTCN2015096328-appb-000014
n是1到20的整数;X1到X8是CH或N;Ar1如以上所定义.
环芳香胺衍生化合物的另外的例子可参见US3567450,US4720432,US5061569,US3615404,和US5061569.
可用作HTM或HIM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015096328-appb-000015
M是金属,原子量大于40;
(Y1-Y2)是两齿配体,Y1和Y2独立地选自C,N,O,P,和S;L是辅助配体;m是整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个实施例中,(Y1-Y2)是2-苯基吡啶衍生物.
在另一个实施例中,(Y1-Y2)是卡宾配体.
在另一个实施例中,M选自Ir,Pt,Os,和Zn.
在另一个方面,金属络合物的HOMO大于-5.5eV(相对于真空能级).
在下面的表中列出合适的可作为HIM/HTM化合物的例子:
Figure PCTCN2015096328-appb-000016
2.EIM/ETM/HBM
EIM/ETM材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为EIM/ETM,只要它们可以传输电子。优先的有机EIM/ETM材料可选自三(8-羟基喹啉)铝(AlQ3),吩嗪,菲罗啉,蒽,菲,芴,二芴,螺二芴,对苯乙炔,三嗪,***,咪唑,芘,苝,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘,苯并蒽及它们的衍生物.
空穴阻挡层(HBL)通常用来阻挡来自相邻功能层,特别是发光层的空穴。对比一个没有阻挡层的发光器件,HBL的存在通常会导致发光效率的提高。空穴阻挡层(HBL)的空穴阻挡材料(HBM)需要有比相邻功能层,如发光层更低的HOMO。在一个优先的实施方案中,HBM有比相邻发光层更大的激发态能级,如单重态或三重态,取决于发光体.在另 一个优先的实施方案中,HBM有电子传输功能.。通常具有深的HOMO能级的EIM/ETM材料可以做为HBM。
另一方面,可作EIM/ETM/HBM的化合物是至少包含一个以下基团的分子:
Figure PCTCN2015096328-appb-000017
R1可选自如下的基团:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基,当它们是芳基或杂芳基时,它们与上述HTM中的Ar1和Ar2意义相同;
Ar1-Ar5与在HTM中所描述的Ar1意义相同;
n是从0到20的整数;
X1-X8选自CR1或N.
另一方面,可用作EIM/ETM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015096328-appb-000018
(O-N)或(N-N)是两齿配体,其中金属与O,N或N,N配位;L是辅助配体;m是整数,其值从1到此金属的最大配位数。
在下面的表中列出合适的可作ETM化合物的例子:
Figure PCTCN2015096328-appb-000019
在另一个优先的实施方案中,有机碱金属化合物可用作EIM。在本发明中,有机碱金属化合物可以理解挖为如下的化合物,其中至少有一个碱金属,即锂,钠,钾,铷,铯,并进一步包含至少一个有机配体。
合适的有机碱金属化合物,包括US7767317B2,EP1941562B1和EP 1144543B1中所描述的化合物。
优先选择的有机碱金属化合物是下列化学式的化合物:
Figure PCTCN2015096328-appb-000020
其中R1的含义如上所述,弧线代表两个或三个原子及键接,以便必要时的与金属M形成5元或六元环,其中原子也可以由一个或多个R1取代,M为碱金属,选自锂,钠,钾,铷,铯。
有机碱金属化合物可以有单体的形式,如以上所述的,或有聚集体的形式,例如,两碱金属离子与两个配体,4碱金属离子和4配体,6碱金属离子和6配体或在其他的形式。优先选择的有机碱金属化合物是下列化学式的化合物:
Figure PCTCN2015096328-appb-000021
其中使用的符号有上述定义相同,另外:
o,每次出现时可以是相同或不同,是0,1,2,3或4;
p,每次出现时可以是相同或不同,是0,1,2或3;
在一个优先的实施方案中,碱金属M选自锂,钠,钾,更好是锂或钠,最好是锂。
在一个优先的实施方案中,有机碱金属化合物电子注入层中.更好地,电子注入层由有机碱金属化合物组成。
在另一个优先的实施方案中,有机碱金属化合物掺杂到其他ETM中形成电子传输层或电子注入层中.更好地,是电子传输层。
在下面的表中列出合适的有机碱金属化合物的例子:
Figure PCTCN2015096328-appb-000022
3.三重态基质材料(TripletHost):
三重态基质材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为基质,只要其三重态能量比发光体,特别是三重态发光体或磷光发光体更高。
可用作三重态基质(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015096328-appb-000023
M是金属;(Y3-Y4)是两齿配体,Y3和Y4独立地选自C,N,O,P,和S;L是一个辅助配体;m是整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个优先的实施方案中,可用作三重态基质的金属络合物有如下形式:
Figure PCTCN2015096328-appb-000024
(O-N)是两齿配体,其中金属与O和N原子配位.
在某一个实施方案中,M可选自Ir和Pt.
可作为三重态基质的有机化合物的例子选自包含有环芳香烃基的化合物,碍如苯,联苯,三苯基,苯并,芴;测试;包含有芳香杂环基的化合物,如二苯并噻吩,二苯并呋喃,dibenzoselenophene,呋喃,噻吩,苯并呋喃,苯并噻吩,benzoselenophene,咔唑,indolocarbazole,pyridylindole,pyrrolodipyridine,吡唑,咪唑,***类,恶唑,噻唑,恶二唑,oxatriazole,二恶唑,噻二唑,吡啶,哒嗪,嘧啶,吡嗪,三嗪类,oxazines,oxathiazines,oxadiazines,吲哚,苯并咪唑,吲唑,indoxazine,bisbenzoxazoles,benzisoxazole,苯并噻唑,喹啉,异喹啉,cinnoline,喹唑啉,喹喔啉,萘,酞,蝶啶,氧杂蒽,吖啶,吩嗪,吩噻嗪,phenoxazines,benzofuropyridine,furodipyridine,benzothienopyridine,thienodipyridine,benzoselenophenopyridine和selenophenodipyridine;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子,氮原子,硫原子,硅原子,磷原子,硼原子,链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢,烷基,烷氧基,氨基,烯,炔,芳烷基, 杂烷基,芳基和杂芳基。
在一个优先的实施方案中,三重态基质材料可选自包含至少一个以下基团的化合物:
Figure PCTCN2015096328-appb-000025
R1-R7可相互独立地选自如下的基团:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基,当它们是芳基或杂芳基时,它们与上述的Ar1和Ar2意义相同;
n是从0到20的整数;X1-X8选自CH或N;X9选自CR1R2或NR1.
在下面的表中列出合适的三重态基质材料的例子:
Figure PCTCN2015096328-appb-000026
4.单重态基质材料(Singlet Host):
单重态基质材料的例子并不受特别的限制,任何有机化合物都可能被用作为基质,只要其单重态能量比发光体,特别是单重态发光体或荧光发光体更高。
作为单重态基质材料使用的有机化合物的例子可选自含有环芳香烃化合物,如苯,联苯,三苯基,苯并,萘,蒽,phenalene,菲,芴,芘,屈,苝,薁;芳香杂环化合物,如二苯并噻吩,二苯并呋喃,dibenzoselenophene,呋喃,噻吩,苯并呋喃,苯并噻吩,benzoselenophene,咔唑,indolocarbazole,pyridylindole,Pyrrolodipyridine,吡唑,咪唑,三氮唑,异恶唑,噻唑,恶二唑,oxatriazole,二恶唑,噻二唑,吡啶,哒嗪,嘧啶,吡嗪,三嗪,恶嗪,oxathiazine,oxadiazine,吲哚,苯并咪唑,吲唑,indoxazine,苯并恶唑,benzisoxazole,苯并噻唑,喹啉,异喹啉,cinnoline,喹唑啉,喹喔啉,萘, 酞,蝶啶,氧杂蒽,吖啶,吩嗪,吩噻嗪,吩恶嗪,benzofuropyridine,furodipyridine,benzothienopyridine,thienodipyridine,benzoselenophenopyridine和selenophenodipyridine;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子,氮原子,硫原子,硅原子,磷原子,硼原子,链结构单元和脂肪环基团。。
在一个优先的实施方案中,单重态基质材料可选自包含至少一个以下基团的化合物:
Figure PCTCN2015096328-appb-000027
R1可相互独立地选自如下的基团:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基;Ar1是芳基或杂芳基,它与上述的HTM中定义的Ar1意义相同;
n是从0到20的整数;X1-X8选自CH或N;X9和X10选自CR1R2或NR1
在下面的表中列出合适的单重态基质材料的例子:
Figure PCTCN2015096328-appb-000028
5.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子***。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺(styrylamine)及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴(indenofluorene)及其衍生物.
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺(monostyrylamines),二元苯乙烯胺(distyrylamines),三元苯乙烯胺(tristyrylamines),四元苯乙烯胺(tetrastyrylamines),苯乙烯膦(styrylphosphines),苯乙烯醚(styryl ethers)和芳胺(arylamines)。
一元苯乙烯胺是指这样的化合物:它包含一个无取代或取代的苯乙烯基组和至少一个胺, 最好是芳香胺。二元苯乙烯胺是指这样的化合物:它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。三元苯乙烯胺是指这样的化合物:它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。四元苯乙烯胺是指这样的化合物:它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环***。这些芳香族或杂环的环***中至少有一个优先选自稠环***,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。芳香蒽胺是指这样的化合物:其中一个二元芳基胺基团(diarylamino)直接联到蒽上,最好是在9的位置上。芳香蒽二胺是指这样的化合物:其中二个二元芳基胺基团(diarylamino)直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯(distyrylbenzene)极其衍生物的单重态发光体的例子有US 5121029.
进一步的优选的单重态发光体可选自茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺(benzoindenofluorene-amine)和苯并茚并芴-二胺(benzoindenofluorene-diamine),如WO 2008/006449所公开的,二苯并茚并芴-胺(dibenzoindenofluorene-amine)和二苯并茚并芴-二胺(dibenzoindenofluorene-diamine),如WO2007/140847所公开的。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽)(9,10-di(2-naphthylanthracene)),萘,四苯,氧杂蒽,菲(phenanthrene),芘(perylene)如2,5,8,11-tetra-t-butylperylene,茚并芘(indenoperylene),苯撑(phenylenes)如(4,4’-(bis(9-ethyl-3-carbazovinylene)-1,1’-biphenyl),periflanthene,十环烯(decacyclene),六苯并苯(coronene),芴,螺二芴(spirofluorene),芳基芘(arylpyrene)(如US20060222886),亚芳香基乙烯(arylenevinylene)(如US5121029,US5130603),环戊二烯如四苯基环戊二烯(tetraphenylcyclopentadiene),红荧烯(rubrene),香豆素(coumarine),若丹明(rhodamine),喹吖啶酮(quinacridone),吡喃(pyrane)如4(dicyanoethylene)-6-(4-dimethylaminostyryl-2-methyl)-4H-pyrane(DCM),噻喃(thiapyran),bis(azinyl)imine-boron化合物(US 2007/0092753A1),bis(azinyl)methene化合物,carbostyryl化合物,噁嗪酮(oxazone),苯并恶唑(benzoxazole),苯并噻唑(benzothiazole),苯并咪唑(benzimidazole)及diketopyrrolopyrrole。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的单重态发光体的例子:
Figure PCTCN2015096328-appb-000029
Figure PCTCN2015096328-appb-000030
6.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选自过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶(phenylpyridine)衍生物,7,8-苯并喹啉(7,8-benzoquinoline)衍生物,2(2-噻吩基)吡啶(2(2-thienyl)pyridine)衍生物,2(1-萘基)吡啶(2(1-naphthyl)pyridine)衍生物,或2苯基喹啉(2phenylquinoline)衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸 丙酮(acetylacetonate)或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2015096328-appb-000031
其中M是金属,选自过渡金属元素或镧系元素或锕系元素;
Ar1每次出现时可以是相同或不同,是环状基团,其中至少包含一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar2每次出现时可以是相同或不同,是环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar1和Ar2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同,是辅助配体,优选选自双齿螯合配体,最好是单阴离子双齿螯合配体;m是1,2或3,优选是2或3,特别优选是3;n是0,1,或2,优选是0或1,特别优选地是0;
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO  2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在一个优先的实施例中,按照本发明的聚合物包含有前述的E,和一种有机功能基团G,其中G选自三重态基质基团。
在另一个优先的实施例中,按照本发明的聚合物包含有前述的E,和一种有机功能基团G,其中G选自三重态发光基团。
在另一个优先的实施例中,按照本发明的聚合物包含有前述的E,和另外二种的有机功能基团G1和G2,其中G1选自三重态基质基团,G2选自三重态发光基团。
在另一个优先的实施例中,按照本发明的聚合物包含有前述的E,和另外二种的有机功能基团G1和G2,其中G1选自空穴传输基团,G2选自电子传输基团。
本发明还提供一种可聚合的单体,具有如下通式,
Figure PCTCN2015096328-appb-000032
其特征在于,结构单元E的单线态能级和三线态能级之能量差Δ(S1(E)-T1(E))≤0.35eV。
在一个优先的实施例中,所述的可聚合的单体,其特征在于,Δ(S1(E)-T1(E))≤0.25eV,优选是≤0.20eV,最优选是≤0.10eV。
在一个优选的实施例中,按照本发明的可聚合的单体,其结构单元E是包含至少一个供电子基D和至少一个吸电子基A的结构单元。
在一个更加优选的实施例中,按照本发明的可聚合的单体,其结构单元E是包含有如下结构式(II)的结构单元:
Figure PCTCN2015096328-appb-000033
其中Ar为芳香族或杂芳族结构单元,D为供电子基,A为吸电子基,n、m分别为 1到6之间的整数,其中,当m>1时,各个D相互独立地选自相同或不同的供电子基,当n>1时,各个A相互独立地选自相同或不同的吸电子基;
合适的供电子基D可选自具有以下通式1-3中任一骨架的基团:
Figure PCTCN2015096328-appb-000034
其中:Z1=H、O、S或Si,A1及A2可分别独立形成芳香环、杂芳香环、脂肪环或非芳香族杂环;通式2中,R20表示H、芳基、或形成A4所示之环所必需的原子群,A3及A4也可分别独立形成杂芳香环或非杂芳香环;通式3中,Z2、Z3、Z4、Z5分别独立表示O或S。
在一个优选的实施方案中,以上所述的供电子基选自具有以下通式D1-D10中任一骨架的基团:
Figure PCTCN2015096328-appb-000035
合适的吸电子基A可选自F、氰基或具有以下通式中任一骨架的基团:
Figure PCTCN2015096328-appb-000036
其中n是从1到3的整数;X1-X8选自CR1或N,并且至少一个是N,其中R1与ETM中定义的R1相同。
在一个优选的实施方案中,合适的吸电子基A选自氰基。
在一个优先的实施例中,按照本发明的聚合物,其重复结构单元E中,Ar选自如下基团:
Figure PCTCN2015096328-appb-000037
其中,Z为O或S。
以下列出合适的可作为可聚合的单体E的一些例子:
Figure PCTCN2015096328-appb-000038
Figure PCTCN2015096328-appb-000039
Figure PCTCN2015096328-appb-000040
本发明还提供一种混合物,其中,包含有至少一种如上所述的聚合物和一种有机功能材料,所述有机功能材料可选自空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),三重态发光体(磷光发光体)。这些功能材料前面已有所述。
本发明还涉及一种组合物,包含有一种如上所述的聚合物及至少一种有机溶剂。有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01至20wt%的聚合物,较好的是0.1至15wt%,更好的是0.2至10wt%,最好的是0.25至5wt%的聚合物。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,活版印刷,丝网印刷,浸 涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,丝网印刷及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
基于上述聚合物,本发明还提供一种如上所述的聚合物的应用,即将所述聚合物应用于有机电子器件,所述的有机电子器件可选自,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别是OLED。本发明实施例中,优选地将所述有机化合物用于OLED器件的发光层中。
在一个优先的实施例中,所述聚合物用于OLED器件的发光层。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的聚合物。一般的,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的聚合物。所述的有机电子器件可选自,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
在一个特别优选的实施例中,所述的有机电子器件是OLED,其中包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施 例中,基片是柔性的,可选自聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,按照本发明的发光器件中,其发光层是通过打印本发明的 组合物制备而成。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包括,但不限于,显示设备,照明设备,光源,传感器等等。
本发明还涉及包含有按照本发明的有机电子器件的电子设备,包括,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1.单体的合成
Figure PCTCN2015096328-appb-000041
Figure PCTCN2015096328-appb-000042
⑴单体E1的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000043
合成步骤如下:
a.氮气环境保护下,将10mmol的化合物1溶解于250ml的干燥DMF溶液中,所得反应溶液置入冰浴中搅拌,逐滴加入11.0mmol的三氯氧磷(POCl3)溶液,滴加完毕后,继续反应30分钟,逐渐升至室温并反应2小时,加水淬灭反应,二氯甲烷萃取,水洗涤,合并有机相,用无水硫酸钠干燥,过滤,蒸干有机溶剂,得化合物2的粗产物,粗产物用二氯甲烷与正已烷重结晶得产品8mmol。真空干燥待用。MS(APCI)=464.4。
b.将上述所得5.0mmol化合物2溶解于200ml干燥的四氢呋喃(THF)溶液中, 氮气环境保护下,反应液置于-78℃的温度下搅拌,逐滴加入8.0mmol亚甲基三苯基磷(Wittig试剂),待加入完毕后,逐渐升至室温,继续在室温下搅拌过夜,加水淬灭反应,所有反应液用二氯甲烷萃取,有机相用水洗涤,最后合并有机相,用无水硫酸钠干燥,过滤,蒸干有机溶剂,所得产物用硅胶柱纯化,流动相为二氯甲烷:石油醚=1:2,最后得到4.1mmol单体E1。真空环境下干燥待用。MS(APCI)=462.4
⑵单体E2的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000044
合成步骤如下:
a.氮气环境中,在250ml的两口烧瓶中依次加入1.0mmol的化合物3,1.2mmol的4-碘苯甲醛,0.08mmol碘化亚铜,10mmol碳酸钾,0.10mmol18-冠-6醚,加入150ml DMF使其完全溶解,加热至140℃反应24小时,待反应液温度冷却至室温,加入二氯甲烷溶解,用水洗涤,最后合并有机相,用无水硫酸钠干燥,过滤,减压蒸干其中有的机溶剂,得粗产物4,粗产物用二氯甲烷与正已烷重结晶,得0.6mmol的固体粉末4,真空环境下烘干待用。MS(APCI)=592.1。
b.将上述所得5.0mmol化合物4溶解于200ml干燥的四氢呋喃(THF)溶液中,氮气环境保护下,反应液置于-78℃的温度下搅拌,逐滴加入8.0mmol亚甲基三苯基磷(Wittig试剂),待加入完毕后,逐渐升至室温,继续在室温下搅拌过夜,加水淬灭反应,所有 反应液用二氯甲烷萃取,有机相用水洗涤,最后合并有机相,用无水硫酸钠干燥,过滤,蒸干有机溶剂,所得产物用硅胶柱纯化,流动相为二氯甲烷:石油醚=2:1,最后得到4.5mmol单体E3。真空环境下干燥待用。MS(APCI)=590.7。
⑶单体E3的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000045
合成步骤如下:
将5.0mmol化合物5溶解于200ml干燥的四氢呋喃(THF)溶液中,氮气环境保护下,反应液置于-78℃的温度下搅拌,逐滴加入8.0mmol亚甲基三苯基磷(Wittig试剂),待加入完毕后,逐渐升至室温,继续在室温下搅拌过夜,加水淬灭反应,所有反应液用二氯甲烷萃取,有机相用水洗涤,最后合并有机相,用无水硫酸钠干燥,过滤,蒸干有机溶剂,所得产物用硅胶柱纯化,流动相为二氯甲烷:石油醚=3:1,最后得到4.5mmol单体E3。真空环境下干燥待用。MS(APCI)=517.7。
⑷单体E4的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000046
单体E4的合成步骤与单体E1的合成步骤类似,所不同的是其第一步用到的是化合物6,接下来生成的含醛基中间体为7。最后得到的中间体E4为白色固体粉末。MS(APCI)=434.4。
⑸单体G1的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000047
合成步骤如下:
a.氮气环境中,在250ml的两口烧瓶中依次加入1.0mmol的化合物8溶解于四氢呋喃溶液中,将反应液置于-78℃的温度环境中并搅拌,逐滴加入1.2mmol的正丁基锂溶液,滴加完毕后,继续反应30分钟,用注射器缓慢加入干燥1.2mmol DMF溶液,加入完毕后,逐渐升温至室温下反应过夜,用水淬灭反应,加入二氯甲烷萃取,有机相用水洗涤,合并有机相,有机相用无水硫酸钠干燥,减压蒸干有机溶剂得粗产物,用二氯甲烷与正已烷重结晶得0.88mmol白色固体粉末9,真空环境下烘干待用。MS(APCI)=345.1。
b.将上述所得1.0mmol化合物9溶解于200ml干燥的四氢呋喃(THF)溶液中, 氮气环境保护下,反应液置于-78℃的温度下搅拌,逐滴加入1.0mmol亚甲基三苯基磷(Wittig试剂),待加入完毕后,逐渐升至室温,继续在室温下搅拌过夜,加水淬灭反应,所有反应液用二氯甲烷萃取,有机相用水洗涤,最后合并有机相,用无水硫酸钠干燥,过滤,蒸干有机溶剂,所得产物用硅胶柱纯化,流动相为二氯甲烷:石油醚=1:1,最后得到0.95mmol单体G1。真空环境下干燥待用。MS(APCI)=343.4。
⑹单体G2的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000048
合成步骤如下:
a.合成方法与步骤与单G1的合成步骤a相似,最后得到中间体化合物12;
b.合成方法与步骤与单G1的合成步骤b相似,最后得到中间体化合物13;
c.氮气环境中,将上述步骤得到的1.0mmol的中间体化合物13溶于100ml二氯甲烷溶液中,加入1.2mmol二氯二氰基苯醌(DDQ),室温下搅拌反应4小时,加水淬灭反应,有机相用水洗涤,合并有机相,用无水硫酸钠干燥,过滤,减压蒸除有机溶剂后得0.92mmol粗产物G2,粗产物用二氯甲烷与甲醇重结晶得白色固体。真空环境下干燥待用。MS(APCI)=685.8。
⑺单体G3的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000049
单体G3的合成步骤与单体G2的合成步骤完全相同,所不同的是其第一步用到的是化合物14,接下来生成的含醛基中间体为15。最后脱去保护基得到最终的中间体G3为白色固体粉末。MS(APCI)=209.4。
⑻单体G4的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000050
单体G4的合成步骤与单体E1的合成步骤完全相同,所不同的是其第一步用到的是化合物17,接下来生成的含醛基中间体为18。最后得到最终的中间体G4为白色固体粉末。MS(APCI)=272.3。
⑼单体G5的合成
合成实验路线如下图所示:
Figure PCTCN2015096328-appb-000051
具体合成步骤如下:
a.在装有搅拌器和回流冷凝管的三口烧瓶中,加入30mmol咔唑,一定重量的三正丁基溴化铵(TBAB),30ml的50%的KOH水溶液及50ml有1,2-二氯乙烷,在80摄氏度的温度下,剧烈搅拌2小时,减压蒸除未反应的1,2-二氯乙烷,将剩余物倒入水中,得到红褐色固体。过滤,用乙醇重结晶,得到浅红色晶体化合物19。MS(APCI)=230.4。
b.将10mmol的化合物19及吡啶溶于无水乙醇中,回流反应30分钟,静置,冷却有白色针状晶体析出,抽滤将白色晶体和反应液分离,将剩余物倒入水中,收集沉淀物并用甲醇重结晶,得8.2mmol单体G4白色固体。真空环境下干燥待用。MS(APCI)=194.2。
2.单体的能量结构
有机重复结构单元的能量结构可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 03W的直接计算结果,单位为Hartree。结果如表一所示:
表一
Figure PCTCN2015096328-appb-000052
3.聚合物的合成
对于聚合物的合成,其主要合成步骤如下:以P1聚合物的合成为例,在氮气保护条件下,将0.15mmolE1、0.50mmolG1以及0.35mmolG5的单体溶解于苯溶剂中,同时用注射器加入0.01mmol 2,2-偶氮二异丁腈(AIBN引发剂),密封,在60℃下反应4小时,当反应完成后,冷却至室温,用甲醇来沉淀出聚合物。沉淀用四氢呋喃(THF)溶解,再用甲醇沉淀。如此重复3~5次,真空干燥,得到聚合物P1的固体。
对于P2~P8合成步骤与P1类似,不同的是含不同比例的乙烯基单体,对于P2~P8所包含的单体及比例如下表所示:
聚合物 E1 E2 E3 E4 G1 G2 G3 G4 G5
P1 15       50       35
P2   15     50       35
P3     15   50       35
P4       15 50       35
P5       15 50 35      
P6 15       50     35  
P7 15       50   35    
P8     15   50 35      
3.OLED器件的制备及测量
下面通过具体实施例来详细说明采用上述聚合物的OLED器件的制备过程,该OLED器件的结构为:ITO/HIL/HTL/EML/ETL/阴极,制备步骤如下:
a、ITO(铟锡氧化物)导电玻璃基片的清洗:使用各种溶剂(例如氯仿、丙酮或异丙醇中的一种或几种)清洗,然后进行紫外臭氧处理;
b、HIL(空穴注入层,60nm):60nm的PEDOT(聚乙撑二氧噻吩,CleviosTMAI4083)作为HIL在超净室旋转涂布而成,并在180℃的热板上处理10分钟;
c、HTL(空穴传输层,20nm):20nm的TFB或PVK(Sigma Aldrich,平均Mn 25,000-50,000)是在氮气手套箱中通过旋转涂布而成,所用的溶液是加入至甲苯溶剂的TFB或PVK,溶液溶度5mg/ml,随后在180℃的热板上处理60分钟;
其中,TFB(H.W.SandsCorp.)是一种空穴传输材料,用于HTL,其结构式如下:
Figure PCTCN2015096328-appb-000053
d、EML(有机发光层):EML是在氮气手套箱中通过旋转涂布而成,所用的溶液是加入至甲苯溶剂的聚合物(P1-P8),溶液溶度10mg/ml,随后在180℃的热板上处理10分钟;表二列出器件的EML的组分和厚度;
表二
OLED器件 HTL EML组成及厚度
OLED1 PVK P1(65nm)
OLED2 PVK P2(65nm)
OLED3 TFB P3(80nm)
OLED4 TFB P4(80nm)
OLED5 TFB P5(80nm)
OLED6 PVK P6(65nm)
OLED7 PVK P7(65nm)
OLED8 TFB P8(65nm)
e、阴极:Ba/Al(2nm/100nm)在高真空(1×10-6毫巴)中热蒸镀而成;
f、封装:器件在氮气手套箱中用紫外线固化树脂封装。
各OLED器件的电流电压及发光(IVL)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及驱动电压。OLED器件的性能总结在表三中。
表三
Figure PCTCN2015096328-appb-000054

Claims (16)

  1. 一种聚合物,包括如化学式1所示的重复单元,其特征在于,结构单元E的单线态能级和三线态能级之能量差Δ(S1(E)-T1(E))≤0.35eV。
    Figure PCTCN2015096328-appb-100001
  2. 根据权利要求1所述的聚合物,其特征在于,Δ(S1(E)-T1(E))≤0.25eV。
  3. 根据权利要求1或2所述的聚合物,其特征在于,所述结构单元E包含至少一个供电子基D和至少一个吸电子基A。
  4. 根据权利要求1-3中任一项所述的聚合物,其特征在于,所述结构单元E包含如下结构式(I)所示的结构单元:
    Figure PCTCN2015096328-appb-100002
    其中Ar为芳香族或杂芳族结构单元,D为供电子基,A为吸电子基,n、m分别为1到6之间的整数,其中,当m>1时,各个D相互独立地选自相同或不同的供电子基,当n>1时,各个A相互独立地选自相同或不同的吸电子基。
  5. 根据权利要求1-4中任一项所述的聚合物,其特征在于,供电子基D选自包含如下任一基团的结构单元:
    Figure PCTCN2015096328-appb-100003
    Figure PCTCN2015096328-appb-100004
  6. 根据权利要求1-5中任一项所述的聚合物,其特征在于,吸电子基A选自F、氰基或包含如下任一基团的结构单元:
    Figure PCTCN2015096328-appb-100005
    其中n是从1到3的整数;X1-X8选自CR1或N,并且X1-X8中至少有一个是N,其中R1选自如下基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
  7. 根据权利要求4-6任一项所述的聚合物,其特征在于,Ar选自包含如下任一基团的结构单元:
    Figure PCTCN2015096328-appb-100006
    其中,Z为O或S。
  8. 根据权利要求1-7中任一项所述的聚合物,其特征在于,所述结构单元E选自包含如下任一结构式的结构单元:
    Figure PCTCN2015096328-appb-100007
    Figure PCTCN2015096328-appb-100008
  9. 一种混合物,包含有一种如权利要求1至8任一项所述的聚合物,及至少另一种的有机功能材料,所述的至少另一种的有机功能材料选自空穴注入或传输材料,空穴阻挡材料,电子注入或传输材料,电子阻挡材料,有机基质材料,单重态发光体,以及三重态发光体。
  10. 一种组合物,其特征在于,包含有一种如权利要求1至8任一项所述的聚合物,及至少一种有机溶剂。
  11. 一种有机电子器件,其特征在于,包括一种如权利要求1至8任一项所述的聚合物。
  12. 根据权利要求11所述的有机电子器件,其特征在于,所述有机电子器件选自有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管。
  13. 一种可聚合的单体,具有如下通式,
    Figure PCTCN2015096328-appb-100009
    其特征在于,结构单元E的单线态能级和三线态能级之差Δ(S1(E)-T1(E))≤0.35eV。
  14. 根据权利要求13所述的可聚合的单体,其特征在于,Δ(S1(E)-T1(E))≤0.25eV。
  15. 根据利要求13所述的可聚合的单体,其特征在于,Δ(S1(E)-T1(E))≤0.20eV。
  16. 根据利要求13所述的可聚合的单体,其特征在于,Δ(S1(E)-T1(E))≤0.10eV。
PCT/CN2015/096328 2014-12-04 2015-12-03 聚合物,包含其的混合物、组合物、有机电子器件,及其单体 WO2016086886A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/532,883 US10840450B2 (en) 2014-12-04 2015-12-03 Polymer, and mixture or formulation, and organic electronic device containing same, and monomer thereof
CN201580065947.3A CN107004777B (zh) 2014-12-04 2015-12-03 聚合物,包含其的混合物、组合物、有机电子器件,及其单体
EP15865073.9A EP3229288B1 (en) 2014-12-04 2015-12-03 Polymer, and mixture, formulation and organic electronic device containing the same, and monomer thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410734855 2014-12-04
CN201410734855.7 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016086886A1 true WO2016086886A1 (zh) 2016-06-09

Family

ID=56091042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096328 WO2016086886A1 (zh) 2014-12-04 2015-12-03 聚合物,包含其的混合物、组合物、有机电子器件,及其单体

Country Status (4)

Country Link
US (1) US10840450B2 (zh)
EP (1) EP3229288B1 (zh)
CN (1) CN107004777B (zh)
WO (1) WO2016086886A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062278A1 (ja) * 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
CN107978692A (zh) * 2017-11-28 2018-05-01 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
CN109180853A (zh) * 2018-07-19 2019-01-11 京东方科技集团股份有限公司 Tadf聚合物配体、量子点材料和其制备方法及应用
CN109791992A (zh) * 2016-11-23 2019-05-21 广州华睿光电材料有限公司 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体
CN109923191A (zh) * 2017-05-04 2019-06-21 西诺拉股份有限公司 特别用于光电器件的有机分子
CN112920158A (zh) * 2021-02-01 2021-06-08 北京八亿时空液晶科技股份有限公司 螺二芴类化合物,含有该化合物的材料及包含该材料的有机电致发光装置和电子设备
CN112939872A (zh) * 2021-02-01 2021-06-11 北京八亿时空液晶科技股份有限公司 螺芴类化合物,包含该螺芴类化合物的材料和有机电致发光器件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381576B2 (en) 2014-12-09 2019-08-13 Merck Patent Gmbh Electronic device having an amine containing layer processed from solution
JP6786858B2 (ja) * 2015-06-19 2020-11-18 株式会社リコー エレクトロクロミック化合物及びエレクトロクロミック組成物
CN109957058B (zh) * 2017-12-26 2022-02-22 中国科学院长春应用化学研究所 一种具有空间电荷转移效应的非共轭荧光高分子化合物及其制备方法、有机电致发光器件
US11706970B2 (en) 2018-08-17 2023-07-18 Lg Chem, Ltd. Polymer, coating composition comprising same, and organic light emitting device using same
CN111269344B (zh) * 2020-02-25 2023-07-04 中国科学院长春应用化学研究所 一种基于空间电荷转移效应的白光荧光高分子化合物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008006449A1 (de) * 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
CN103985822A (zh) * 2014-05-30 2014-08-13 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP2913116B2 (ja) 1990-11-20 1999-06-28 株式会社リコー 電界発光素子
EP1146034A1 (en) 1995-09-25 2001-10-17 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
GB9826406D0 (en) 1998-12-02 1999-01-27 South Bank Univ Entpr Ltd Quinolates
GB9805476D0 (en) 1998-03-13 1998-05-13 Cambridge Display Tech Ltd Electroluminescent devices
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
CN101312235B (zh) 1999-05-13 2010-06-09 普林斯顿大学理事会 基于电致磷光的极高效有机发光器件
JP5073899B2 (ja) 1999-09-21 2012-11-14 出光興産株式会社 有機エレクトロルミネッセンス素子及び有機発光媒体
EP2911211B1 (en) 1999-12-01 2018-05-02 The Trustees of Princeton University Complexes of form l2mx
JP4048521B2 (ja) 2000-05-02 2008-02-20 富士フイルム株式会社 発光素子
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
CN100505375C (zh) 2000-08-11 2009-06-24 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
CN1896048A (zh) 2001-03-16 2007-01-17 出光兴产株式会社 芳香氨基化合物的生产方法
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7029766B2 (en) 2003-12-05 2006-04-18 Eastman Kodak Company Organic element for electroluminescent devices
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
US7217774B2 (en) * 2004-04-01 2007-05-15 General Electric Company Electroactive polymer, device made therefrom and method
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
CN100368363C (zh) 2004-06-04 2008-02-13 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
DE102004031000A1 (de) 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organische Elektrolumineszenzvorrichtungen
TW200613515A (en) 2004-06-26 2006-05-01 Merck Patent Gmbh Compounds for organic electronic devices
DE102004034517A1 (de) 2004-07-16 2006-02-16 Covion Organic Semiconductors Gmbh Metallkomplexe
TW200639140A (en) 2004-12-01 2006-11-16 Merck Patent Gmbh Compounds for organic electronic devices
JP4263700B2 (ja) 2005-03-15 2009-05-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
CN101142170B (zh) * 2005-03-18 2011-04-13 出光兴产株式会社 芳香族胺衍生物以及应用该衍生物的有机电致发光元件
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
US7588839B2 (en) 2005-10-19 2009-09-15 Eastman Kodak Company Electroluminescent device
US20070092759A1 (en) 2005-10-26 2007-04-26 Begley William J Organic element for low voltage electroluminescent devices
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US7767317B2 (en) 2005-10-26 2010-08-03 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102005058543A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
CN101415718B (zh) 2006-02-10 2013-05-29 通用显示公司 环金属化的咪唑并[1,2-f]菲啶和二咪唑并[1,2-a:1',2'-c]喹唑啉配位体和其等电子和苯并环化类似物的金属络合物
DE102006015183A1 (de) 2006-04-01 2007-10-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
DE102006025846A1 (de) 2006-06-02 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP2008053397A (ja) 2006-08-24 2008-03-06 Ricoh Co Ltd 半導体装置及びその製造方法
JP2008124156A (ja) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
DE102008015526B4 (de) 2008-03-25 2021-11-11 Merck Patent Gmbh Metallkomplexe
DE102008027005A1 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
DE102008036247A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend Metallkomplexe
DE102008048336A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen
DE102008057051B4 (de) 2008-11-13 2021-06-17 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057050B4 (de) 2008-11-13 2021-06-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
DE102009011223A1 (de) 2009-03-02 2010-09-23 Merck Patent Gmbh Metallkomplexe
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
KR20130020883A (ko) 2010-03-11 2013-03-04 메르크 파텐트 게엠베하 요법 및 미용에서의 섬유
EP2569055A2 (de) 2010-05-12 2013-03-20 Merck Patent GmbH Photostabilisatoren
CN102939296B (zh) 2010-06-15 2016-02-10 默克专利有限公司 金属络合物
EP2404627A1 (en) 2010-07-09 2012-01-11 Universite De Nantes I Bone regeneration membrane and method for forming a bone regeneration membrane
DE102010027316A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010027319A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010027317A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
KR102361072B1 (ko) 2013-04-08 2022-02-09 메르크 파텐트 게엠베하 열 활성화 지연 형광 재료를 갖는 유기 전계발광 디바이스
EP2984151B1 (de) * 2013-04-08 2018-04-25 Merck Patent GmbH Organische elektrolumineszenzvorrichtung
CN103531062A (zh) 2013-10-16 2014-01-22 北京博如德工程技术研究有限公司 可动手组装的高分子有机电致发光教具
CN104716268B (zh) * 2013-12-17 2017-09-29 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008006449A1 (de) * 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
CN103985822A (zh) * 2014-05-30 2014-08-13 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229288A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062278A1 (ja) * 2016-09-29 2019-07-11 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
US11271166B2 (en) 2016-09-29 2022-03-08 Sumitomo Chemical Company, Limited Light emitting device and composition useful for production of same light emitting device
WO2018062278A1 (ja) * 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
CN109791990A (zh) * 2016-09-29 2019-05-21 住友化学株式会社 发光元件及对于制造该发光元件而言有用的组合物
CN109791990B (zh) * 2016-09-29 2021-04-20 住友化学株式会社 发光元件及对于制造该发光元件而言有用的组合物
CN109791992B (zh) * 2016-11-23 2021-07-23 广州华睿光电材料有限公司 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体
EP3547384A4 (en) * 2016-11-23 2019-11-27 Guangzhou Chinaray Optoelectronic Materials Ltd. HIGH POLYMER, MIXTURE THEREOF, COMPOSITION, ORGANIC ELECTRONIC COMPONENT AND MONOMER FOR POLYMERIZATION
CN109791992A (zh) * 2016-11-23 2019-05-21 广州华睿光电材料有限公司 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体
US11453745B2 (en) 2016-11-23 2022-09-27 Guangzhou Chinaray Optoelectronic Materials Ltd. High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization
CN109923191A (zh) * 2017-05-04 2019-06-21 西诺拉股份有限公司 特别用于光电器件的有机分子
CN107978692A (zh) * 2017-11-28 2018-05-01 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
CN109180853B (zh) * 2018-07-19 2021-01-15 京东方科技集团股份有限公司 Tadf聚合物配体、量子点材料和其制备方法及应用
CN109180853A (zh) * 2018-07-19 2019-01-11 京东方科技集团股份有限公司 Tadf聚合物配体、量子点材料和其制备方法及应用
US11450807B2 (en) 2018-07-19 2022-09-20 Beijing Boe Technology Development Co., Ltd. TADF polymer and quantum dot material, methods of preparing the same, and applications thereof
CN112920158A (zh) * 2021-02-01 2021-06-08 北京八亿时空液晶科技股份有限公司 螺二芴类化合物,含有该化合物的材料及包含该材料的有机电致发光装置和电子设备
CN112939872A (zh) * 2021-02-01 2021-06-11 北京八亿时空液晶科技股份有限公司 螺芴类化合物,包含该螺芴类化合物的材料和有机电致发光器件
CN112920158B (zh) * 2021-02-01 2022-09-30 北京八亿时空液晶科技股份有限公司 螺二芴类化合物,含有该化合物的材料及包含该材料的有机电致发光装置和电子设备

Also Published As

Publication number Publication date
EP3229288A1 (en) 2017-10-11
CN107004777B (zh) 2019-03-26
CN107004777A (zh) 2017-08-01
US20170358751A1 (en) 2017-12-14
EP3229288A4 (en) 2018-08-15
US10840450B2 (en) 2020-11-17
EP3229288B1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
EP3229288B1 (en) Polymer, and mixture, formulation and organic electronic device containing the same, and monomer thereof
US10323180B2 (en) Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
WO2015180524A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
CN109803957B (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
CN107001380B (zh) 化合物、包含其的混合物、组合物和有机电子器件
US10573827B2 (en) Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof
CN107004778B (zh) 有机混合物、包含其的组合物、有机电子器件及应用
CN111278795A (zh) 有机混合物及其在有机电子器件中的应用
CN109791993B (zh) 有机混合物、组合物以及有机电子器件
US10510967B2 (en) Organic compound, and mixture, formulation and organic device comprising the same
US10364316B2 (en) Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
EP3547384B1 (en) High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
CN111344289A (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
WO2018099431A1 (zh) 芘类有机化合物及其制备方法和应用
CN105226193B (zh) 一种包含有稠环化合物和金属有机配合物的电致发光器件
CN110746422B (zh) 有机化合物、高聚物、混合物、组合物及其有机电子器件
WO2022148466A1 (zh) 一种稠环化合物及其在有机电子器件的应用
CN111247133A (zh) 咔唑三苯有机化合物、高聚物、混合物、组合物及其应用
CN111278819A (zh) 双极性化合物、高聚物、混合物、组合物、有机电子器件及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015865073

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15532883

Country of ref document: US