WO2015186360A1 - 防曇膜つき透明物品 - Google Patents

防曇膜つき透明物品 Download PDF

Info

Publication number
WO2015186360A1
WO2015186360A1 PCT/JP2015/002818 JP2015002818W WO2015186360A1 WO 2015186360 A1 WO2015186360 A1 WO 2015186360A1 JP 2015002818 W JP2015002818 W JP 2015002818W WO 2015186360 A1 WO2015186360 A1 WO 2015186360A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifogging film
mass
transparent article
water
group
Prior art date
Application number
PCT/JP2015/002818
Other languages
English (en)
French (fr)
Inventor
大家 和晃
神谷 和孝
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to US15/316,045 priority Critical patent/US10011733B2/en
Priority to BR122020004549-3A priority patent/BR122020004549B1/pt
Priority to JP2016525706A priority patent/JP6633519B2/ja
Priority to BR112016028207-8A priority patent/BR112016028207B1/pt
Priority to BR122018010566-6A priority patent/BR122018010566B1/pt
Priority to EP15803607.9A priority patent/EP3156227B1/en
Publication of WO2015186360A1 publication Critical patent/WO2015186360A1/ja
Priority to US15/993,151 priority patent/US10400130B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/054Forming anti-misting or drip-proofing coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D159/00Coating compositions based on polyacetals; Coating compositions based on derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols

Definitions

  • the present invention relates to a transparent article with an antifogging film comprising a transparent article and an antifogging film formed on the transparent article, and more particularly to a transparent article with an antifogging film, wherein the antifogging film contains a water-absorbing resin.
  • Transparent articles with antifogging film are used as antifogging mirrors in bathrooms and toilets, and as antifogging windows in vehicle openings.
  • an antifogging film a film containing a water absorbent resin such as polyvinyl acetal is known.
  • Patent Document 1 discloses a two-layer antifogging film including a water absorbing layer containing a water absorbing resin and a water-permeable protective layer formed on the layer.
  • the water absorption layer contains polyvinyl acetal and a hydrolyzate or partial hydrolyzate of alkylsilyl isocyanate.
  • the protective layer is composed of a hydrolyzate or partial hydrolyzate of alkylsilyl isocyanate.
  • the number of carbon atoms of the alkyl group of the alkylsilyl isocyanate is specified as 1 or 2 (claims 1 and 3).
  • Patent Document 2 discloses an antifogging film having a two-layer structure including a water absorbing layer containing a water absorbing resin and a water repellent layer formed on this layer.
  • the water repellent layer is formed using a compound having a methyl group and an isocyanate group (paragraph 0031).
  • Patent Document 3 discloses a single-layer antifogging film.
  • This anti-fogging film contains a water-absorbing resin, colloidal silica (silica fine particles), and silica derived from a hydrolyzate or partial hydrolyzate of silicon alkoxide in a predetermined ratio. Tetraalkoxysilane is disclosed as a silicon alkoxide.
  • this antifogging film is a single layer film, it has improved strength by adding inorganic components such as silica fine particles.
  • the antifogging film is required to satisfy both the strength of the film, particularly the scratch resistance and abrasion resistance, and the antifogging property. Then, an object of this invention is to provide the transparent article provided with the anti-fogging film
  • the antifogging film is a single layer film containing a water absorbent resin, a water repellent group and a metal oxide component,
  • the water repellent group is a linear or cyclic alkyl group having 1 to 30 carbon atoms in which at least a part of hydrogen atoms may be substituted with fluorine atoms;
  • a transparent article with an antifogging film wherein the water repellent group is directly bonded to a metal atom constituting the metal oxide component.
  • a transparent article, and an antifogging film formed on the transparent article contains polyvinyl acetal, a silica component, and metal atoms other than silicon,
  • the silica component is derived from a hydrolyzable silicon compound or a hydrolyzate of a hydrolyzable silicon compound added to a coating solution for forming the antifogging film,
  • a transparent article with an antifogging film in which metal atoms other than silicon are derived from an organometallic compound added to the coating solution.
  • the strength and antifogging property of the film It has been found that it is easy to achieve both.
  • an anti-fogging film containing polyvinyl acetal, a silica component derived from a hydrolyzable silicon compound or a hydrolyzate thereof, and a metal atom other than silicon derived from an organometallic compound the strength and prevention of the film are improved. It has also been found that compatibility with cloudiness is facilitated.
  • water-repellent group means a linear or cyclic alkyl group having 1 to 30 carbon atoms in which at least a part of hydrogen atoms may be substituted with fluorine atoms.
  • metal oxide component is intended to include a component consisting of only metal atoms and oxygen atoms bonded to each other, as well as a portion where metal atoms and oxygen atoms are directly bonded. Therefore, for example, the portion represented by MO in the component represented by the formula RMO (R: water repellent group, M: metal atom) constitutes a metal oxide component.
  • RMO water repellent group
  • M metal atom
  • metal oxide component constitutes a metal oxide component.
  • metal oxide component in the terms “metal oxide component”, “metal atom”, “metal compound” and the like is used in a sense including boron (B) and silicon (Si) according to common usage.
  • the transparent article with an antifogging film according to the present embodiment includes a transparent article and a single-layer antifogging film formed on the surface thereof.
  • the antifogging film contains a water repellent group.
  • the shape of the transparent article is not limited, but a transparent substrate typified by a resin plate or a glass plate is suitable.
  • a transparent substrate typified by a resin plate or a glass plate is suitable.
  • a glass plate having a high surface hardness is suitable.
  • the glass plate may be, for example, a float plate glass that is most commonly used in the fields of vehicles, buildings, and industries.
  • the glass plate need not be colored, but may be colored green, bronze or the like. Moreover, you may process or process into tempered glass, a laminated glass, a multilayer glass, etc.
  • the shape of the main surface may be either a flat surface or a curved surface.
  • the plate thickness is, for example, 1 to 12 mm, preferably 3 to 10 mm for construction and 1 to 5 mm for vehicles.
  • a ceramic shielding layer may be formed on the periphery of the vehicle window glass in order to improve the design of the vehicle.
  • the ceramic shielding layer also plays a role of preventing deterioration of the resin material such as an adhesive and a foam material for joining the window glass to the vehicle body due to ultraviolet rays.
  • the ceramic shielding layer is formed by applying a ceramic paste and baking it.
  • the article of the present invention may be such a glass plate with a ceramic shielding layer.
  • an acrylic resin plate represented by a polycarbonate plate or a polymethyl methacrylate plate is suitable.
  • the thickness of the resin plate is suitably 2 to 8 mm, and preferably 3 to 6 mm.
  • the surface of the resin plate may be subjected to a surface treatment for improving the adhesion with the antifogging film.
  • Surface treatment of the resin plate includes corona discharge treatment, plasma treatment, chromic acid treatment (wet), flame treatment, hot air treatment, oxidation treatment such as ozone / ultraviolet irradiation treatment, and roughening treatment such as sandblasting and solvent treatment. Can be mentioned. Among these treatments, corona discharge treatment is preferable from the viewpoints of effects and operability.
  • the transparent article may be a mirror provided with a reflective film on one main surface thereof.
  • the glass plate and resin plate described above can also be used as the transparent substrate constituting the mirror.
  • the antifogging film is preferably formed on the main surface opposite to the main surface of the transparent substrate provided with the reflective film.
  • the mirror with an antifogging film can be used as a so-called antifogging mirror.
  • the antifogging film is a single layer film formed on the surface of the transparent article.
  • the antifogging film which is a single layer film contains at least a water absorbent resin, a water repellent group and a metal oxide component.
  • the antifogging film may further contain other functional components as necessary.
  • the type of water-absorbing resin is not limited as long as it can absorb and retain water.
  • the water repellent group can be supplied to the antifogging film from a metal compound having a water repellent group (water repellent group-containing metal compound).
  • the metal oxide component can be supplied to the antifogging film from a water repellent group-containing metal compound, other metal compounds, metal oxide fine particles and the like.
  • each component will be described.
  • Water absorbent resin examples include hydroxypropyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetal, and polyvinyl acetate.
  • the water absorbent resin preferably contains polyvinyl acetal.
  • Polyvinyl acetal can be obtained by subjecting polyvinyl alcohol to an acetal reaction by condensation reaction of aldehyde with polyvinyl alcohol.
  • the acetalization of polyvinyl alcohol may be carried out using a known method such as a precipitation method using an aqueous medium in the presence of an acid catalyst, or a dissolution method using a solvent such as alcohol.
  • Acetalization can also be carried out in parallel with saponification of polyvinyl acetate.
  • the degree of acetalization is preferably 2 to 40 mol%, more preferably 3 to 30 mol%, particularly 5 to 20 mol%, and in some cases 5 to 15 mol%.
  • the degree of acetalization can be measured based on, for example, 13 C nuclear magnetic resonance spectroscopy.
  • Polyvinyl acetal having an acetalization degree in the above range is suitable for forming an antifogging film having good water absorption and water resistance.
  • the average degree of polymerization of polyvinyl alcohol is preferably 200 to 4500, more preferably 500 to 4500.
  • a high average degree of polymerization is advantageous for the formation of an antifogging film having good water absorption and water resistance, but if the average degree of polymerization is too high, the viscosity of the solution becomes too high, which may hinder the formation of the film. is there.
  • the saponification degree of polyvinyl alcohol is preferably 75 to 99.8 mol%.
  • aldehyde to be subjected to a condensation reaction with polyvinyl alcohol examples include aliphatic aldehydes such as formaldehyde, acetaldehyde, butyraldehyde, hexyl carbaldehyde, octyl carbaldehyde, decyl carbaldehyde.
  • benzaldehyde 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, other alkyl group-substituted benzaldehydes; chlorobenzaldehyde, other halogen atom-substituted benzaldehydes; alkyl such as hydroxy group, alkoxy group, amino group, cyano group
  • aromatic aldehydes such as condensed aromatic aldehydes such as naphthaldehyde and anthraldehyde.
  • Aromatic aldehydes with strong hydrophobicity are advantageous in forming an antifogging film having a low degree of acetalization and excellent water resistance.
  • the use of an aromatic aldehyde is also advantageous in forming a film having high water absorption while leaving many hydroxyl groups remaining.
  • the polyvinyl acetal preferably contains an acetal structure derived from an aromatic aldehyde, particularly benzaldehyde.
  • the content of the water-absorbing resin in the anti-fogging film is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 65% by mass or more, from the viewpoints of film hardness, water absorption and anti-fogging property. It is 95 mass% or less, More preferably, it is 90 mass% or less, Most preferably, it is 85 mass% or less.
  • water repellent group In order to sufficiently obtain the above-described effects due to the water repellent group, it is preferable to use a water repellent group having high water repellency.
  • Preferred water repellent groups are (1) a chain or cyclic alkyl group having 3 to 30 carbon atoms, and (2) a chain or cyclic group having 1 to 30 carbon atoms in which at least a part of hydrogen atoms are substituted with fluorine atoms. It is at least one selected from alkyl groups (hereinafter sometimes referred to as “fluorine-substituted alkyl groups”).
  • the chain or cyclic alkyl group is preferably a chain alkyl group.
  • the chain alkyl group may be a branched alkyl group, but is preferably a linear alkyl group.
  • An alkyl group having more than 30 carbon atoms may cause the antifogging film to become cloudy.
  • the carbon number of the alkyl group is preferably 20 or less, more preferably 6 to 14.
  • Particularly preferred alkyl groups are linear alkyl groups having 6 to 14 carbon atoms, particularly 8 to 12 carbon atoms, such as n-decyl group (10 carbon atoms) and n-dodecyl group (12 carbon atoms).
  • the fluorine-substituted alkyl group may be a group in which only part of the hydrogen atoms of the chain or cyclic alkyl group is substituted with fluorine atoms, and all of the hydrogen atoms of the chain or cyclic alkyl group. May be a group substituted with a fluorine atom, for example, a linear perfluoroalkyl group. Since the fluorine-substituted alkyl group has high water repellency, a sufficient effect can be obtained by adding a small amount. However, if the content of the fluorine-substituted alkyl group is too large, it may be separated from other components in the coating solution for forming a film.
  • a metal compound having a water repellent group (water repellent group-containing metal compound), particularly a metal compound having a water repellent group and a hydrolyzable functional group or a halogen atom ( A water repellent group-containing hydrolyzable metal compound) or a hydrolyzate thereof may be added to a coating solution for forming a film.
  • the water repellent group may be derived from a water repellent group-containing hydrolyzable metal compound.
  • the water repellent group-containing hydrolyzable metal compound is preferably a water repellent group-containing hydrolyzable silicon compound represented by the following formula (I).
  • R is a water repellent group, that is, a linear or cyclic alkyl group having 1 to 30 carbon atoms in which at least part of hydrogen atoms may be substituted with fluorine atoms
  • Y is a hydrolyzable functional group.
  • a group or a halogen atom, and m is an integer of 1 to 3.
  • the hydrolyzable functional group is, for example, at least one selected from an alkoxyl group, an acetoxy group, an alkenyloxy group, and an amino group, preferably an alkoxy group, particularly an alkoxy group having 1 to 4 carbon atoms.
  • An alkenyloxy group is, for example, an isopropenoxy group.
  • the halogen atom is preferably chlorine.
  • the functional groups exemplified here can also be used as “hydrolyzable functional groups” described below.
  • m is preferably 1 to 2.
  • the compound represented by formula (I) supplies the component represented by the following formula (II) when hydrolysis and polycondensation have completely proceeded.
  • R and m are as described above.
  • the compound represented by formula (II) actually forms a network structure in which silicon atoms are bonded to each other through oxygen atoms in the antifogging film.
  • the compound represented by the formula (I) is hydrolyzed or partially hydrolyzed, and further, at least partly polycondensed to alternately connect silicon atoms and oxygen atoms, and three-dimensionally.
  • a network structure of spreading siloxane bonds Si—O—Si
  • a water repellent group R is connected to silicon atoms included in the network structure.
  • the water repellent group R is fixed to the network structure of the siloxane bond through the bond R—Si. This structure is advantageous in uniformly dispersing the water repellent group R in the film.
  • the network structure may contain a silica component supplied from a silicon compound (for example, tetraalkoxysilane, silane coupling agent) other than the water repellent group-containing hydrolyzable silicon compound represented by the formula (I).
  • a silica component supplied from a silicon compound for example, tetraalkoxysilane, silane coupling agent
  • a hydrolyzable silicon compound having no water repellent group and a hydrolyzable functional group or halogen atom water repellent group-free hydrolyzable silicon compound
  • a network structure of siloxane bonds including silicon atoms bonded to water repellent groups and silicon atoms not bonded to water repellent groups can be formed. With such a structure, it becomes easy to adjust the water repellent group content and the metal oxide component content in the antifogging film independently of each other.
  • the water repellent group has an effect of improving the antifogging performance by improving the water vapor permeability on the surface of the antifogging film containing the water-absorbing resin. Since the two functions of water absorption and water repellency are contradictory to each other, the water-absorbing material and the water-repellent material have been conventionally assigned to different layers, but the water-repellent group is located near the surface of the antifogging layer. Eliminates the uneven distribution of water, prolongs the time until condensation, and improves the antifogging property of the antifogging film having a single layer structure. The effect will be described below.
  • Water vapor that has entered the anti-fogging film containing the water-absorbing resin is hydrogen-bonded with a hydroxyl group of the water-absorbing resin or the like, and is retained in the form of bound water. As the amount increases, the water vapor is retained from the bound water form to the semi-bound water form and finally to the free water form retained in the voids in the antifogging membrane.
  • the water repellent group prevents the formation of hydrogen bonds and facilitates the dissociation of the formed hydrogen bonds. If the content of the water-absorbing resin is the same, there is no difference in the number of hydroxyl groups capable of hydrogen bonding in the film, but the water-repellent group reduces the rate of hydrogen bond formation.
  • the anti-fogging film containing a water repellent group moisture is finally retained in the film in any of the above forms, but by the time it is retained, it remains as water vapor up to the bottom of the film. Can diffuse. Also, the water once retained is easily dissociated and easily moves to the bottom of the membrane in the state of water vapor. As a result, the distribution of moisture retention in the film thickness direction is relatively uniform from the vicinity of the surface to the bottom of the film. That is, since all of the thickness direction of the anti-fogging film can be effectively utilized and water supplied to the film surface can be absorbed, water droplets hardly condense on the surface and the anti-fogging property is improved.
  • a water-repellent group is introduced into an antifogging film using a water-repellent group-containing hydrolyzable silicon compound (see formula (I))
  • a strong siloxane bond (Si—O—Si) network structure is formed.
  • the formation of this network structure is advantageous not only from the viewpoint of wear resistance but also from the viewpoint of improving hardness, water resistance and the like.
  • the water repellent group may be added to such an extent that the contact angle of water on the surface of the antifogging film is 70 degrees or more, preferably 80 degrees or more, more preferably 90 degrees or more.
  • the contact angle of water a value measured by dropping a 4 mg water droplet on the surface of the membrane is adopted.
  • a methyl group or an ethyl group having a slightly weak water repellency is used as the water repellent group, it is preferable to add an amount of the water repellent group having a water contact angle in the above range to the antifogging film.
  • the upper limit of the contact angle of the water droplet is not particularly limited, but is, for example, 150 degrees or less, for example, 120 degrees or less, and further 100 degrees or less. It is preferable that the water repellent group be uniformly contained in the antifogging film so that the contact angle of the water droplets is in the above range in all regions of the surface of the antifogging film.
  • the anti-fogging film is 0.05 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more with respect to 100 parts by mass of the water absorbent resin. It is preferable that a water repellent group is contained so that it may become in the range of 5 parts by mass or less, preferably 5 parts by mass or less.
  • the antifogging film contains a metal oxide component.
  • the metal oxide component is, for example, an oxide component of at least one element selected from Si, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn, and preferably an Si oxide component (silica component) ).
  • the antifogging film is 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, further preferably 1 part by mass or more, particularly preferably 100 parts by mass of the water absorbent resin.
  • the metal oxide component is included so that the amount is 35 parts by mass or less, particularly preferably 33 parts by mass or less, and in some cases, 30 parts by mass or less.
  • the metal oxide component is a component necessary for ensuring the strength of the film, particularly the scratch resistance. However, if its content is excessive, the antifogging property of the film is lowered.
  • the metal oxide component may be a hydrolyzable metal compound or a metal oxide component derived from the hydrolyzate added to a coating solution for forming an antifogging film.
  • the hydrolyzable metal compound has a) a metal compound having a water repellent group and a hydrolyzable functional group or a halogen atom (water repellent group-containing hydrolyzable metal compound), and b) a water repellent group. It is at least one selected from a metal compound having a hydrolyzable functional group or a halogen atom (a water-repellent group-free hydrolyzable metal compound).
  • the metal oxide component derived from a) and / or b) is an oxide of metal atoms constituting the hydrolyzable metal compound.
  • the metal oxide component includes the metal oxide component derived from the metal oxide fine particles added to the coating solution for forming the antifogging film, the hydrolyzable metal compound added to the coating solution, or the And a metal oxide component derived from the hydrolyzate.
  • the hydrolyzable metal compound is at least one selected from a) and b) above.
  • the b), that is, the hydrolyzable metal compound having no water repellent group may contain at least one selected from tetraalkoxysilane and a silane coupling agent.
  • the metal oxide fine particles and the above b) will be described except for the above-described a).
  • the antifogging film may further contain metal oxide fine particles as at least a part of the metal oxide component.
  • the metal oxide constituting the metal oxide fine particles is, for example, an oxide of at least one element selected from Si, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn, preferably silica fine particles. is there.
  • Silica fine particles can be introduced into the film, for example, by adding colloidal silica.
  • the metal oxide fine particles are excellent in the action of transmitting the stress applied to the antifogging film to the transparent article supporting the film, and have a high hardness. Therefore, the addition of metal oxide fine particles is advantageous from the viewpoint of improving the wear resistance and scratch resistance of the antifogging film.
  • metal oxide fine particles when metal oxide fine particles are added to the antifogging film, fine voids are formed at sites where the fine particles are in contact with or close to, and water vapor is easily taken into the film from the voids. For this reason, the addition of metal oxide fine particles may advantageously work to improve antifogging properties.
  • the metal oxide fine particles can be supplied to the antifogging film by adding metal oxide fine particles formed in advance to a coating solution for forming the antifogging film.
  • the preferable average particle diameter of the metal oxide fine particles is 1 to 20 nm, particularly 5 to 20 nm.
  • the average particle diameter of the metal oxide fine particles is described in the state of primary particles.
  • the average particle diameter of the metal oxide fine particles is determined by measuring the particle diameters of 50 fine particles arbitrarily selected by observation using a scanning electron microscope and adopting the average value. If the content of the metal oxide fine particles is excessive, the water absorption amount of the entire film is lowered and the film may become cloudy.
  • the metal oxide fine particles are 0 to 50 parts by weight, preferably 1 to 30 parts by weight, more preferably 2 to 30 parts by weight, particularly preferably 5 to 25 parts by weight, based on 100 parts by weight of the water absorbent resin. It may be added so as to be 10 to 20 parts by mass.
  • the anti-fogging film may contain a metal oxide component derived from a hydrolyzable metal compound having no water-repellent group (water-repellent group-free hydrolyzable compound).
  • a preferred hydrolyzable metal compound containing no water repellent group is a hydrolyzable silicon compound having no water repellent group.
  • the hydrolyzable silicon compound having no water repellent group is, for example, at least one silicon compound selected from silicon alkoxide, chlorosilane, acetoxysilane, alkenyloxysilane and aminosilane (however, having no water repellent group), Silicon alkoxide having no water repellent group is preferred.
  • An example of alkenyloxysilane is isopropenoxysilane.
  • the hydrolyzable silicon compound having no water repellent group may be a compound represented by the following formula (III).
  • SiY 4 (III) As described above, Y is a hydrolyzable functional group, and is preferably at least one selected from an alkoxyl group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom.
  • the water repellent group-free hydrolyzable metal compound is hydrolyzed or partially hydrolyzed, and further, at least a part thereof is polycondensed to supply a metal oxide component in which a metal atom and an oxygen atom are bonded.
  • This component can strongly bond the metal oxide fine particles and the water-absorbent resin, and can contribute to improvement of the wear resistance, hardness, water resistance, etc. of the antifogging film.
  • the metal oxide component derived from the hydrolyzable metal compound having no water repellent group is 0 to 40 parts by mass, preferably 0.1 to 30 parts by mass, more preferably 1 to 1 part by mass with respect to 100 parts by mass of the water absorbent resin. It may be 20 parts by mass, particularly preferably 3 to 10 parts by mass, and in some cases 4 to 12 parts by mass.
  • a preferred example of the hydrolyzable silicon compound having no water repellent group is tetraalkoxysilane, more specifically, tetraalkoxysilane having an alkoxy group having 1 to 4 carbon atoms.
  • Tetraalkoxysilanes include, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-sec-butoxysilane, and tetra-tert- It is at least one selected from butoxysilane.
  • the metal oxide component derived from tetraalkoxysilane may be added in the range of 0 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the water absorbent resin.
  • silane coupling agents are silicon compounds having different reactive functional groups. A part of the reactive functional group is preferably a hydrolyzable functional group.
  • the silane coupling agent is, for example, a silicon compound having an epoxy group and / or an amino group and a hydrolyzable functional group.
  • preferable silane coupling agents include glycidyloxyalkyltrialkoxysilane and aminoalkyltrialkoxysilane. In these silane coupling agents, the number of carbon atoms of the alkylene group directly bonded to the silicon atom is preferably 1 to 3.
  • the glycidyloxyalkyl group and the aminoalkyl group include a functional group (epoxy group or amino group) that exhibits hydrophilicity, the glycidyloxyalkyl group and the aminoalkyl group are not water-repellent as a whole although they include an alkylene group.
  • the silane coupling agent strongly binds the water-absorbing resin that is an organic component and the metal oxide fine particles that are an inorganic component, and can contribute to the improvement of wear resistance, hardness, water resistance, and the like of the antifogging film.
  • the metal oxide component derived from the silane coupling agent is in the range of 0 to 10 parts by weight, preferably 0.05 to 5 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the water absorbent resin. Should be added.
  • the antifogging film may include a crosslinked structure derived from a crosslinking agent, preferably at least one crosslinking agent selected from an organic boron compound, an organic titanium compound, and an organic zirconium compound.
  • a crosslinked structure improves the wear resistance, scratch resistance and water resistance of the antifogging film. From another viewpoint, the introduction of a crosslinked structure facilitates improving the durability of the antifogging film without deteriorating the antifogging performance.
  • the antifogging film When a crosslinked structure derived from a crosslinking agent is introduced into the antifogging film in which the metal oxide component is a silica component, the antifogging film has a metal atom other than silicon as a metal atom, preferably boron, titanium or zirconium, May be contained.
  • the type of the crosslinking agent is not particularly limited as long as it can crosslink the water-absorbing resin to be used.
  • the organic titanium compound is, for example, at least one selected from titanium alkoxide, titanium chelate compound, and titanium acylate.
  • the titanium alkoxide is, for example, titanium tetraisopropoxide, titanium tetra-n-butoxide, or titanium tetraoctoxide.
  • the titanium chelate compound include titanium acetylacetonate, titanium ethylacetoacetate, titanium octylene glycol, titanium triethanolamine, and titanium lactate.
  • the titanium lactate may be an ammonium salt (titanium lactate ammonium).
  • the titanium acylate is, for example, titanium stearate.
  • Preferred organic titanium compounds are titanium chelate compounds, particularly titanium lactate.
  • a preferable cross-linking agent is an organic titanium compound, particularly titanium lactate.
  • Additives may be surfactants, leveling agents, ultraviolet absorbers, colorants, antifoaming agents, preservatives, and the like.
  • the preferred film thickness of the antifogging film is 1 to 20 ⁇ m, preferably 2 to 15 ⁇ m, particularly 3 to 10 ⁇ m.
  • a coating liquid for forming the antifogging film is applied onto a transparent article such as a transparent substrate, the applied coating liquid is dried, and a high-temperature and high-humidity treatment is performed as necessary.
  • a film can be formed.
  • Conventionally known materials and methods may be used as the solvent used for preparing the coating liquid and the coating method.
  • the relative humidity of the atmosphere it is preferable to maintain the relative humidity of the atmosphere at less than 40%, more preferably 30% or less. Keeping the relative humidity low can prevent the film from absorbing excessive moisture from the atmosphere. If a large amount of moisture is absorbed from the atmosphere, the water remaining in the membrane matrix may reduce the strength of the membrane.
  • the drying process of the coating liquid includes an air drying process and a heating drying process with heating.
  • the air drying step is preferably performed by exposing the coating liquid to an atmosphere in which the relative humidity is kept below 40%, and further 30% or less.
  • the air drying process can be performed as a non-heating process, in other words, at room temperature.
  • the temperature applied in the heat drying process should not be excessively high.
  • An appropriate heating temperature in this case is 300 ° C. or less, for example, 100 to 200 ° C., and the heating time is 1 minute to 1 hour.
  • a high-temperature and high-humidity treatment step may be appropriately performed. By carrying out the high-temperature and high-humidity treatment step, it is possible to more easily balance the antifogging property and the strength of the film.
  • the high-temperature and high-humidity treatment step can be carried out, for example, by holding in an atmosphere of 50 to 100 ° C. and a relative humidity of 60 to 95% for 5 minutes to 1 hour.
  • the high temperature and high humidity treatment step may be performed after the coating step and the drying step, or may be performed after the coating step and the air drying step and before the heat drying step. Particularly in the former case, a heat treatment step may be further performed after the high temperature and high humidity treatment step. This additional heat treatment step can be performed, for example, by holding in an atmosphere of 80 to 180 ° C. for 5 minutes to 1 hour.
  • the antifogging film formed from the coating solution may be washed and / or wiped with a poultice as necessary. Specifically, it can be carried out by exposing the surface of the antifogging film to a water flow or wiping with a cloth soaked with water.
  • the water used in these is suitably pure water. It is better to avoid using solutions containing detergents for cleaning. By this step, dust, dirt, etc. adhering to the surface of the anti-fogging film can be removed to obtain a clean coating surface.
  • the transparent article with an antifogging film according to the present embodiment includes a transparent article and an antifogging film formed on the surface thereof.
  • the antifogging film contains metal atoms other than silicon, and is preferably a single layer film.
  • the antifogging film includes at least polyvinyl acetal, a silica component derived from a hydrolyzable silicon compound or a hydrolyzate thereof, and a metal atom other than silicon derived from an organometallic compound.
  • the antifogging film may further contain metal oxide fine particles and other functional components as required.
  • Polyvinyl acetal is a water absorbent resin that absorbs and retains water.
  • the antifogging film may contain a crosslinked structure containing a metal atom other than silicon. In this case, the crosslinked structure further improves the scratch resistance of the antifogging film.
  • each component will be described.
  • Polyvinyl acetal The polyvinyl acetal is as described in the first embodiment.
  • the content of polyvinyl acetal in the antifogging film of the present embodiment is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, particularly preferably from the viewpoint of film hardness, water absorption and antifogging property. Is 75% by mass or more, and is 99.5% by mass or less, preferably 95% by mass or less, more preferably 90% by mass or less.
  • the antifogging film contains a silica component derived from a hydrolyzable silicon compound or a hydrolyzate thereof added to a coating solution for forming a film.
  • the hydrolyzable silicon compound is hydrolyzed or partially hydrolyzed, and at least a part thereof is polycondensed to supply a silica component in which silicon atoms and oxygen atoms are bonded.
  • This silica component can contribute to improvement of wear resistance, hardness, water resistance, etc. of the antifogging film.
  • the hydrolyzable silicon compound is a silicon compound having a hydrolyzable functional group or a halogen atom.
  • the hydrolyzable functional group is, for example, at least one selected from an alkoxyl group, an acetoxy group, an alkenyloxy group, and an amino group, preferably an alkoxy group, particularly an alkoxy group having 1 to 4 carbon atoms.
  • An alkenyloxy group is, for example, an isopropenoxy group.
  • the halogen atom is preferably chlorine.
  • the silica component is 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and further preferably 0.5 parts by mass or more, depending on the case with respect to 100 parts by mass of the polyvinyl acetal.
  • the hydrolyzable silicon compound preferably contains a compound (SiY 4 ) represented by the above formula (III).
  • the compound represented by formula (III) supplies the silica component represented by SiO 2 by hydrolysis and subsequent polycondensation.
  • This silica component actually forms a network structure in which silicon atoms are bonded to each other through oxygen atoms in the antifogging film.
  • the compound represented by the formula (III) is preferably tetraalkoxysilane.
  • the tetraalkoxysilane is as described in the first embodiment.
  • the hydrolyzable silicon compound preferably contains a compound represented by the formula (IV) together with a compound represented by the formula (III).
  • L is a chain or cyclic hydrocarbon group in which at least a part of hydrogen atoms may be substituted.
  • Y and m are as described above.
  • L is a hydrocarbon group having 1 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, for example, a chain hydrocarbon group, particularly a straight chain hydrocarbon group, in which at least a part of hydrogen atoms may be substituted. May be.
  • the chain hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • a preferred chain hydrocarbon group is a linear alkyl group.
  • L may be a cyclic hydrocarbon group having 3 to 20 carbon atoms, for example, a cycloalkyl group or a phenyl group, in which at least a part of hydrogen atoms may be substituted.
  • Examples of the functional group that substitutes a hydrogen atom include an epoxy group, an amino group, a (meth) acryloxy group, a ureido group, a mercapto group, and an isocyanate group.
  • the hydrogen atom may be substituted with a halogen atom such as chlorine or fluorine.
  • L may be the water repellent group R described in the first embodiment.
  • the compound represented by the formula (IV) supplies a silica component represented by SiO 2 (4-m) / 2 by hydrolysis and subsequent polycondensation.
  • This silica component together with SiO 2 supplied from the compound represented by formula (III), forms a network structure in which silicon atoms are bonded to each other through oxygen atoms in the antifogging film.
  • the compound represented by the formula (IV) may typically be a compound known as a silane coupling agent.
  • a silane coupling agent is a silicon compound having different reactive functional groups, and has, for example, an epoxy group and / or an amino group and a hydrolyzable functional group.
  • preferable silane coupling agents include glycidyloxyalkyltrialkoxysilane and aminoalkyltrialkoxysilane.
  • the alkyl group directly bonded to the silicon atom preferably has 1 to 3 carbon atoms.
  • the silane coupling agent improves the affinity between the polyvinyl acetal and the silica component.
  • the silicon compound represented by formula (III) Since the silicon compound represented by formula (III) has four hydrolyzable functional groups, it can form a stronger network structure than the silicon compound represented by formula (IV) having three hydrolyzable functional groups. Is suitable. In consideration of this, even when the silicon compound represented by the formula (IV) is used, it is desirable that a relatively larger amount of the silicon compound represented by the formula (III) is blended when compared by the number of silicon atoms.
  • formula (ratio N Si of the number of silicon atoms contained in the compounds shown in IV) N Si (IV) ( IV) / N Si (T) is from 0.01 to 0.4, more 0. It is preferably in the range of 1 to 0.35.
  • the antifogging film contains metal atoms other than silicon. It is preferable that the antifogging film has a crosslinked structure containing the metal atom.
  • the crosslinked structure can contribute to the improvement of the abrasion resistance, scratch resistance and water resistance of the antifogging film.
  • the metal atom other than silicon is, for example, at least one selected from boron, titanium and zirconium, particularly at least one selected from titanium and zirconium.
  • the crosslinked structure can be introduced into the antifogging film by adding a crosslinking agent to the coating solution for forming the antifogging film.
  • a preferred crosslinking agent is at least one selected from an organic boron compound, an organic titanium compound, and an organic zirconium compound, particularly an organic titanium compound.
  • the organic titanium compound is, for example, at least one selected from titanium alkoxide, titanium chelate compound, and titanium acylate.
  • the titanium alkoxide is, for example, titanium tetraisopropoxide, titanium tetra-n-butoxide, or titanium tetraoctoxide.
  • titanium chelate compound examples include titanium acetylacetonate, titanium ethylacetoacetate, titanium octylene glycol, titanium triethanolamine, and titanium lactate.
  • the titanium lactate may be an ammonium salt (titanium lactate ammonium).
  • the titanium acylate is, for example, titanium stearate.
  • Preferred organic titanium compounds are titanium chelate compounds, particularly titanium lactate.
  • the strength of the antifogging film has been implemented by blending a silica component into the film.
  • a silica component derived from a hydrolyzable silicon compound forms a firm network structure.
  • the introduction of this silica component improves the scratch resistance of the antifogging film, but on the other hand hardens the film, and as a result, the movement of the polymer chain accompanying water absorption is limited. For this reason, if the strength of the film is improved by blending only the silica component, the antifogging property is greatly reduced.
  • the introduction of a crosslinked structure containing a metal atom other than silicon is suitable for improving the strength of the film while avoiding the hardening of the film, which causes the movement of the polymer chain.
  • the metal atom other than silicon contained in the crosslinked structure is 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and still more preferably 1 with respect to 100 parts by mass of the polyvinyl acetal. It is good if it is contained in the antifogging film in the range of not less than 50 parts by mass, preferably not more than 50 parts by mass, preferably not more than 40 parts by mass, more preferably not more than 20 parts by mass, still more preferably not more than 10 parts by mass, and in some cases 5 It is good if it is contained in the anti-fogging film in a range of less than or equal to the part.
  • the antifogging film may further contain metal oxide fine particles.
  • the kind of metal oxide constituting the metal oxide fine particles, the action thereof, the supply method to the film, the preferable average particle diameter and the appropriate content are as described in the first embodiment.
  • the anti-fogging article was left for 1 hour in an environment of room temperature 20 ° C. and relative humidity 30%.
  • warm water whose water temperature is kept at 40 ° C. is accommodated in a constant temperature water tank, and an antifogging article is disposed above the warm water so that the antifogging film is exposed to water vapor until the antifogging film is clouded.
  • fogging was confirmed in 10 seconds or less.
  • a nell cloth (No. 300) is attached to a reciprocating abrasion tester (“HEIDON-18” manufactured by Shinto Kagaku Co., Ltd.), and the surface of the antifogging film of the antifogging article is 0.25 kg / cm.
  • the flannel cloth was reciprocated 1000 times while applying a load of 2 , and the appearance of the film surface was visually observed and evaluated according to the following criteria.
  • No change in appearance
  • Slightly unclear and very shallow scratches can be confirmed.
  • A clear flaw can be visually confirmed.
  • X Peeling of the antifogging film is observed.
  • Example A1 Polyvinyl acetal resin-containing solution (“SREC KX-5” manufactured by Sekisui Chemical Co., Ltd., solid content 8% by mass, acetalization degree 9 mol%, including acetal structure derived from benzaldehyde) 62.5% by mass, tetraethoxysilane ( TEOS, 1.04% by mass of “KBE-04” manufactured by Shin-Etsu Chemical Co., Ltd., titanium lactate (“Orgatechs TC-310” manufactured by Matsumoto Fine Chemical Co., Ltd.); 44 Ti (OH) 2 [OCH (CH 3 ) COOH] 2 (Solution containing 2-propanol and water as a mixed solvent) 1.21% by mass, alcohol solvent (“Solmix AP-7” manufactured by Nippon Alcohol Industry) 17.79% by mass, purified water 17.44% by mass %, Nitric acid 0.01% by weight as acid catalyst, leveling agent (“SREC KX-5” manufactured by Sekisui Chemical Co., Ltd
  • the coating solution was applied by a flow coating method on a washed float plate glass (soda lime silicate glass, thickness 3.1 mm, size 100 ⁇ 100 mm) in an environment of room temperature 20 ° C. and relative humidity 30%. After drying for 10 minutes in the same environment, a (preliminary) heat treatment at 120 ° C. was performed. Thereafter, high temperature and high humidity treatment was performed by applying the atmosphere and time described above, and additional heat treatment was performed by applying the atmosphere and time as described above to produce an antifogging article.
  • Example A2 Silica fine particle dispersion (“Snowtex OS” manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass, average particle size (primary particle size) 10 nm) 3.75% by mass is further added, and the amount of alcohol solvent added is 17.
  • a coating solution was prepared in the same manner as in Example A1 except that 04 mass% and the amount of purified water added was 14.44 mass%, to produce an antifogging article.
  • Example A3 Niobium oxide fine particle dispersion (manufactured by Taki Chemical Co., Ltd. “Vilar Nb-X10”, solid content 10% by mass) is further added at 5.00% by mass, the amount of alcohol solvent is 16.94% by mass, and purified water is added A coating solution was prepared in the same manner as in Example A1 except that the amount was 13.29% by mass, and an antifogging article was produced.
  • Example A4 Further, 2.50% by mass of zirconium oxide fine particle dispersion (“Biral Zr-C20” manufactured by Taki Chemical Co., Ltd., solid content 20% by mass), 17.29% by mass of alcohol solvent, and addition of purified water A coating solution was prepared in the same manner as in Example A1 except that the amount was 15.44% by mass, and an antifogging article was produced.
  • zirconium oxide fine particle dispersion (“Biral Zr-C20” manufactured by Taki Chemical Co., Ltd., solid content 20% by mass), 17.29% by mass of alcohol solvent, and addition of purified water A coating solution was prepared in the same manner as in Example A1 except that the amount was 15.44% by mass, and an antifogging article was produced.
  • Example A5 Tin oxide fine particle dispersion (“Selnax CX-S301H” manufactured by Nissan Chemical Industries, Ltd., 30% by mass) 0.17% by mass was further added, the addition amount of alcohol solvent was 17.73% by mass, purified water A coating solution was prepared in the same manner as in Example A1 except that the addition amount was 17.33% by mass, and an antifogging article was produced.
  • Example A6 Further, 0.14% by mass of 3-glycidoxypropyltrimethoxysilane (GPTMS, “KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.) was added, the amount of alcohol solvent added was 16.90% by mass, the amount of purified water added A coating solution was prepared in the same manner as in Example A2 except that the amount was 14.44% by mass, and an antifogging article was produced.
  • GTMS 3-glycidoxypropyltrimethoxysilane
  • Example A7 The addition amount of the polyvinyl acetal resin-containing solution was 50.0% by mass, 0.35% by mass of 3-glycidoxypropyltrimethoxysilane (GPTMS, “KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.) and silica fine particle dispersion 7 .50% by mass, tetraethoxysilane added to 2.60% by mass, titanium lactate added to 1.20% by mass, alcohol solvent added to 20.01% by mass, A coating solution was prepared in the same manner as in Example A1, except that the amount of purified water added was 18.32% by mass, and 0.01% by mass acetic acid was used instead of 0.01% by mass nitric acid. Thus, an antifogging article was produced.
  • GTMS 3-glycidoxypropyltrimethoxysilane
  • Example A8 The addition amount of the polyvinyl acetal resin-containing solution was 50.0% by mass, 3-glycidoxypropyltrimethoxysilane (GPTMS, “KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.) 0.35% by mass and 3-trimethoxysilyl 1.00% by mass of propyl succinic anhydride (“X-12-967C” manufactured by Shin-Etsu Chemical Co., Ltd.) and 7.50% by mass of silica fine particle dispersion are added, and the amount of tetraethoxysilane added is 2.60.
  • GTMS 3-glycidoxypropyltrimethoxysilane
  • X-12-967C manufactured by Shin-Etsu Chemical Co., Ltd.
  • the addition amount of titanium lactate is 1.20% by mass
  • the addition amount of alcohol solvent is 19.01% by mass
  • the addition amount of purified water is 18.32% by mass
  • the nitric acid is 0.01% by mass.
  • an antifogging article was prepared in the same manner as in Example A1, except that 0.01% by mass of acetic acid was used.
  • Example A2 A coating solution was prepared in the same manner as in Example A1, except that titanium lactate was not added, the amount of alcohol solvent added was 18.81% by mass, and the amount of purified water added was 17.63% by mass. An antifogging article was prepared.
  • Example A3 Except that titanium lactate was not added, the amount of tetraethoxysilane added was 3.47% by mass, the amount of alcohol solvent added was 16.38% by mass, and the amount of purified water added was 17.63% by mass. In the same manner as in Example A1, a coating solution was prepared to produce an antifogging article.
  • Example A4 Except that tetraethoxysilane was not added, the amount of titanium lactate added was 2.41% by mass, the amount of alcohol solvent added was 17.05% by mass, and the amount of purified water added was 14.27% by mass. In the same manner as in Example A2, a coating solution was prepared to produce an antifogging article.
  • Example A5 A coating solution was prepared in the same manner as in Example A2, except that titanium lactate was not added, the amount of alcohol solvent added was 18.06% by mass, and the amount of purified water added was 14.63% by mass. An antifogging article was prepared.
  • an antifogging film was formed in the same manner as in Example A1. Thereafter, an aqueous solution containing a surfactant diluted to 10% by mass (“Rapisol A-30”, sodium 1,4-bis (2-ethylhexyl) sulfosuccinate manufactured by NOF Corporation) was applied to the surface of the antifogging film, A heat drying treatment at 120 ° C. for 10 minutes was performed to obtain an antifogging article.
  • a surfactant diluted to 10% by mass (“Rapisol A-30”, sodium 1,4-bis (2-ethylhexyl) sulfosuccinate manufactured by NOF Corporation
  • Example B1 Polyvinyl acetal resin-containing solution (Sekisui Chemical Co., Ltd. “ESREC KX-5”, solid content 8 mass%, acetalization degree 9 mol%, including acetal structure derived from benzaldehyde) 62.5 mass%, methyltrimethoxysilane (MTMS, “KBM-13” manufactured by Shin-Etsu Chemical Co., Ltd.) 1.02% by mass, silica fine particle dispersion (“Snowtex OS” manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass with water as dispersion medium, average particle size (Primary particle size: 10 nm) 3.75% by mass, tetraethoxysilane (TEOS, Shin-Etsu Chemical Co., Ltd.
  • KBE-04 1.04% by mass
  • titanium lactate Matsumoto Fine Chemical Co., Ltd. “Orga Tix TC-310”)
  • Ti (OH) 2 [OCH (CH 3) COOH] 2 hints 44 wt%
  • solvent to a mixed solvent of 2-propanol and water ) 1.21% by mass
  • alcohol solvent (“SOLMIX AP-7” manufactured by Nippon Alcohol Industry) 16.02% by mass
  • nitric acid 0.01% by mass as an acid catalyst leveling agent (Shin-Etsu)
  • a coating solution for forming an antifogging film was prepared by placing 0.01% by mass of “KP-341” manufactured by Chemical Industry Co., Ltd. into a glass container and stirring at room temperature (25 ° C.) for 3 hours.
  • the coating solution was applied by a flow coating method on a washed float plate glass (soda lime silicate glass, thickness 3.1 mm, size 100 ⁇ 100 mm) in an environment of room temperature 20 ° C. and relative humidity 30%. After drying for 10 minutes in the same environment, a (preliminary) heat treatment at 120 ° C. was performed. Thereafter, high temperature and high humidity treatment was performed by applying the atmosphere and time described above, and additional heat treatment was also performed by applying the atmosphere and time described above.
  • Example B2 Instead of 1.02% by mass of methyltrimethoxysilane, 0.2% by mass of dimethyldiethoxysilane (DMDES, “KBE-22” manufactured by Shin-Etsu Chemical Co., Ltd.) was used, and the addition amount of the alcohol solvent was 16.84% by mass. Except for the above, a coating solution was prepared in the same manner as in Example B1, and an antifogging article was produced.
  • DMDES dimethyldiethoxysilane
  • Example B3 Instead of 1.02% by mass of methyltrimethoxysilane, 0.15% by mass of n-hexyltrimethoxysilane (HTMS, “KBM-3063” manufactured by Shin-Etsu Chemical Co., Ltd.) was used, and the addition amount of the alcohol solvent was 16.89%.
  • a coating solution was prepared in the same manner as in Example B1 except that the content was%, and an antifogging article was produced.
  • Example B4 Instead of 1.02% by mass of methyltrimethoxysilane, 0.07% by mass of n-decyltrimethoxysilane (DTMS, “KBM-3103” manufactured by Shin-Etsu Chemical Co., Ltd.) was used, and the amount of alcohol solvent added was 16.97% by mass.
  • a coating solution was prepared in the same manner as in Example B1 except that the content was%, and an antifogging article was produced.
  • Example B5 Instead of 1.02% by mass of methyltrimethoxysilane, 0.07% by mass of n-dodecyltrimethoxysilane (DDTMS, “KBM-3103” manufactured by Tokyo Chemical Industry Co., Ltd.) was used, and the addition amount of the alcohol solvent was 16.97%.
  • a coating solution was prepared in the same manner as in Example B1 except that the content was%, and an antifogging article was produced.
  • Example B6 Instead of 1.02% by mass of methyltrimethoxysilane, 0.5% by mass of fluoroalkylsilane (F8263, “Dynasylan F8263” manufactured by Evonik Degussa Japan; containing a fluoroalkyl group having 30 or less carbon atoms) is used, and alcohol A coating solution was prepared in the same manner as in Example B1 except that the amount of the solvent added was 16.54% by mass, and an antifogging article was produced.
  • fluoroalkylsilane F8263, “Dynasylan F8263” manufactured by Evonik Degussa Japan; containing a fluoroalkyl group having 30 or less carbon atoms
  • Example B7 Except that silica fine particles and tetraethoxysilane were not added, the addition amount of alcohol solvent was 18.76% by mass, and the addition amount of purified water was 17.44% by mass, as in Example B4, A coating solution was prepared to produce an antifogging article.
  • Example B8 Except that the coating liquid was applied by a bar coater, a coating liquid was prepared in the same manner as in Example B4 to produce an antifogging article.
  • Example B9 Instead of 1.02% by mass of methyltrimethoxysilane, 0.27% by mass of methyltriethoxysilane (MTES, “KBE-13” manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
  • the addition amount of water is 0.69% by mass, titanium lactate is not added, the addition amount of alcohol solvent is 18.85% by mass, the addition amount of purified water is 17.63% by mass, and 0.05% by mass of nitric acid.
  • a coating solution was prepared in the same manner as in Example B1 except that the antifogging article was produced.
  • Example B10 Instead of 1.02% by mass of methyltrimethoxysilane, 0.27% by mass of methyltriethoxysilane (MTES, “KBE-13” manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
  • the amount of water added is 0.69% by mass, titanium lactate is not added, the amount of alcohol solvent is 20.88% by mass, the amount of purified water is 15.63% by mass, and the surface conditioner “BYK- 307 "[manufactured by Big Chemie Japan Co., Ltd.] Except that 0.01% by mass was added, a coating solution was prepared in the same manner as in Example B1 to produce an antifogging article.
  • Example B11 Instead of 1.02% by mass of methyltrimethoxysilane, 0.37% by mass of n-hexyltrimethoxysilane (HTMS, “KBM-3063” manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the coating was performed in the same manner as in Example B1, except that 0.01% by mass was used, the addition amount of the alcohol solvent was 20.44% by mass, and the addition amount of purified water was 15.63% by mass.
  • a liquid was prepared to produce an antifogging article.
  • Example B1 The float glass plate used in Example B1 was evaluated as it was without applying the coating solution.
  • the mass part of the silica component derived from tetraethoxysilane is the mass part obtained by converting tetraethoxysilane into SiO 2
  • the mass part of the silica component derived from GPTMS is the mass part obtained by converting GPTMS into SiO 1.5
  • the mass part of the silica component derived from the water-repellent group-containing compound means the mass part of the water-repellent group-containing hydrolyzable silicon compound converted to SiO 1.5 or SiO depending on the number of hydrolyzable functional groups. It is.
  • Table 3 shows the amount of each component of the coating liquid with respect to 100 parts by mass of polyvinyl acetal
  • Table 4 shows the evaluation results of the antifogging articles for the above Examples, Comparative Examples and Reference Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 提供される防曇膜つき透明物品において、防曇膜は、吸水性樹脂、撥水基、及び金属酸化物成分を含む単層膜である。撥水基は、水素原子の少なくとも一部がフッ素原子により置換されていてもよい炭素数1~30の鎖状又は環状のアルキル基、好ましくは炭素数6~14の直鎖アルキル基である。撥水基は、金属酸化物成分を構成する金属原子に直接結合している。防曇膜は、吸水性樹脂100質量部に対し、例えば、金属酸化物成分0.01~60質量部、撥水基0.05~10質量部を含む。吸水性樹脂は、例えばポリビニルアセタールである。

Description

防曇膜つき透明物品
 本発明は、透明物品とその透明物品上に形成された防曇膜とを備えた防曇膜つき透明物品に関し、より詳しくは防曇膜が吸水性樹脂を含む防曇膜つき透明物品に関する。
 防曇膜つき透明物品は、浴室、洗面所では防曇鏡として、車両の開口部では防曇窓として使用されている。防曇膜としては、ポリビニルアセタール等の吸水性樹脂を含む膜が知られている。
 吸水性樹脂を含む防曇膜は、特に吸水状態において膜の強度が低く、膜の表面が傷つきやすい。このため、従来から、表面を保護する層を付加して膜の強度を改善することが提案されてきた。例えば、特許文献1には、吸水性樹脂を含む吸水層と、この層の上に形成された透水性の保護層とを備えた2層構成の防曇膜が開示されている。吸水層は、ポリビニルアセタールとアルキルシリルイソシアネートの加水分解物又は部分加水分解物とを含んでいる。保護層は、アルキルシリルイソシアネートの加水分解物又は部分加水分解物により構成されている。吸水層及び保護層において、アルキルシリルイソシアネートのアルキル基の炭素数は1又は2と特定されている(請求項1、3)。
 また例えば、特許文献2には、吸水性樹脂を含む吸水性層と、この層の上に形成された撥水性層とを備えた2層構成の防曇膜が開示されている。撥水性層は、メチル基とイソシアナート基とを有する化合物を用いて形成される(段落0031)。
 特許文献3には、単層の防曇膜が開示されている。この防曇膜は、吸水性樹脂と、コロイダルシリカ(シリカ微粒子)と、シリコンアルコキシドの加水分解物又は部分加水分解物由来のシリカと、を所定比率で含んでいる。シリコンアルコキシドとしては、テトラアルコキシシランが開示されている。この防曇膜は、単層膜ではあるが、シリカ微粒子等の無機成分の添加によって改善された強度を有する。
特開2001-146585号公報 特開2001-152137号公報 特開2012-117025号公報
 防曇膜には、膜の強度、特に耐擦傷性及び耐摩耗性と、防曇性とを両立させることが要求されている。そこで、本発明は、強度と防曇性との両立に適した防曇膜を備えた透明物品を提供することを目的とする。
 本発明は、その第一の側面から、
 透明物品と、前記透明物品上に形成された防曇膜と、を備え、
 前記防曇膜が、吸水性樹脂、撥水基及び金属酸化物成分を含む単層膜であり、
 前記撥水基が、水素原子の少なくとも一部がフッ素原子により置換されていてもよい炭素数1~30の鎖状又は環状のアルキル基であり、
 前記撥水基が前記金属酸化物成分を構成する金属原子に直接結合している、防曇膜つき透明物品、を提供する。
 本発明は、その第二の側面から、
 透明物品と、前記透明物品上に形成された防曇膜と、を備え、
 前記防曇膜が、ポリビニルアセタール、シリカ成分、及びシリコン以外の金属原子を含み、
 前記シリカ成分が、前記防曇膜を形成するための塗工液に添加された、加水分解性シリコン化合物又は加水分解性シリコン化合物の加水分解物に由来し、
 前記シリコン以外の金属原子が、前記塗工液に添加された、有機金属化合物に由来する、防曇膜つき透明物品、を提供する。
 吸水性樹脂と共に、撥水基と金属酸化物成分とを、撥水基が金属酸化物成分を構成する金属原子に直接結合する形態で防曇膜に配合すると、膜の強度と防曇性との両立が容易になることが見出された。また、ポリビニルアセタールと、加水分解性シリコン化合物又はその加水分解物に由来するシリカ成分と、有機金属化合物に由来するシリコン以外の金属原子とを含む防曇膜とすることにより、膜の強度と防曇性との両立が容易になることも見出された。本発明によれば、耐擦傷性及び耐摩耗性に代表される膜強度と防曇性との両側面において優れた特性を有する防曇膜つき透明物品を提供することが可能となる。
 以下、本発明の実施形態を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。
 以降の説明において、用語「撥水基」は、水素原子の少なくとも一部がフッ素原子により置換されていてもよい炭素数1~30の鎖状又は環状のアルキル基を意味する。用語「金属酸化物成分」は、互いに結合した金属原子及び酸素原子のみからなる成分と共に、金属原子と酸素原子とが直接結合した部分を包含する趣旨である。したがって、例えば、式R-M-O(R:撥水基、M:金属原子)により示される成分におけるMOで示される部分は、金属酸化物成分を構成する。また、用語「金属酸化物成分」、「金属原子」、「金属化合物」等における「金属」は、慣用に従い、ホウ素(B)及びシリコン(Si)を含む意味で使用する。
<第一の実施形態-撥水基->
 本実施形態による防曇膜つき透明物品は、透明物品と、その表面上に形成された単層の防曇膜とを備えている。防曇膜は撥水基を含有する。
[透明物品]
 透明物品は、その形状を問わないが、樹脂板、ガラス板に代表される透明基板が適している。透明基板としては、高い表面硬度を有するガラス板が好適である。
(ガラス板)
 ガラス板は、例えば、車両用、建築用及び産業用の各分野で最も一般に用いられているフロート板ガラスであってよい。ガラス板は、着色されている必要はないが、グリーン、ブロンズ等に着色されていてもよい。また、強化ガラス、合わせガラス、複層ガラス等へと処理又は加工されていてもよい。主面の形状も、平面、曲面のいずれであってもよい。板厚は、例えば1~12mmであり、建築用としては3~10mmが、車両用としては1~5mmがそれぞれ好適である。
 ガラス板が車両用窓ガラスに用いられる場合、車両の意匠性の向上のために、車両用窓ガラスの周縁部にはセラミック遮蔽層が形成されることがある。セラミック遮蔽層は、窓ガラスを車両本体に接合する接着剤、発泡材等の樹脂材料の紫外線による劣化を防止する役割も担っている。セラミック遮蔽層は、セラミックペーストを塗布し、焼成することにより形成される。本発明の物品は、このようなセラミック遮蔽層つきガラス板であってもよい。
(樹脂板)
 樹脂板としては、ポリカーボネート板、ポリメチルメタクリレート板に代表されるアクリル樹脂板が適している。樹脂板の板厚は、2~8mmが適切であり、3~6mmが好適である。樹脂板の表面には、防曇膜との密着性を向上させるための表面処理を施してもよい。樹脂板の表面処理としては、コロナ放電処理、プラズマ処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理等の酸化処理、及びサンドブラスト法、溶剤処理法等の凹凸化処理を挙げることができる。これらの処理の中では、効果及び操作性の観点からコロナ放電処理が好ましい。
(鏡)
 透明物品は、その一方の主面上に反射膜を設けた鏡であってもよい。鏡を構成する透明基板としても、上述したガラス板及び樹脂板を使用できる。この場合、防曇膜は、反射膜を設けた透明基板の主面と反対側の主面に形成されることが好ましい。防曇膜つき鏡は、いわゆる防曇鏡として使用できる。
[防曇膜]
 第一の実施形態において、防曇膜は、透明物品の表面に形成された単層膜である。単層膜である防曇膜は、少なくとも吸水性樹脂と撥水基と金属酸化物成分とを含んでいる。防曇膜は、必要に応じ、その他の機能成分をさらに含んでいてもよい。吸水性樹脂は、水を吸収して保持できる樹脂であればその種類を問わない。撥水基は、撥水基を有する金属化合物(撥水基含有金属化合物)から防曇膜に供給することができる。金属酸化物成分は、撥水基含有金属化合物その他の金属化合物、金属酸化物微粒子等から防曇膜に供給することができる。以下、各成分について説明する。
(吸水性樹脂)
 吸水性樹脂は、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルアセタール、ポリ酢酸ビニルを例示できる。吸水性樹脂は、ポリビニルアセタールを含むことが好ましい。
 ポリビニルアセタールは、ポリビニルアルコールにアルデヒドを縮合反応させてアセタール化することにより得ることができる。ポリビニルアルコールのアセタール化は、酸触媒の存在下で水媒体を用いる沈澱法、アルコール等の溶媒を用いる溶解法等公知の方法を用いて実施すればよい。アセタール化は、ポリ酢酸ビニルのケン化と並行して実施することもできる。アセタール化度は、2~40モル%、さらには3~30モル%、特に5~20モル%、場合によっては5~15モル%が好ましい。アセタール化度は、例えば13C核磁気共鳴スペクトル法に基づいて測定することができる。アセタール化度が上記範囲にあるポリビニルアセタールは、吸水性及び耐水性が良好である防曇膜の形成に適している。
 ポリビニルアルコールの平均重合度は、200~4500、さらに500~4500が好ましい。高い平均重合度は、吸水性及び耐水性が良好である防曇膜の形成に有利であるが、平均重合度が高すぎると溶液の粘度が高くなり過ぎて膜の形成に支障をきたすことがある。ポリビニルアルコールのケン化度は、75~99.8モル%が好適である。
 ポリビニルアルコールに縮合反応させるアルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、ヘキシルカルバルデヒド、オクチルカルバルデヒド、デシルカルバルデヒド等の脂肪族アルデヒドを挙げることができる。また、ベンズアルデヒド;2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、その他のアルキル基置換ベンズアルデヒド;クロロベンズアルデヒド、その他のハロゲン原子置換ベンズアルデヒド;ヒドロキシ基、アルコキシ基、アミノ基、シアノ基等のアルキル基を除く官能基により水素原子が置換された置換ベンズアルデヒド;ナフトアルデヒド、アントラアルデヒド等の縮合芳香環アルデヒド等の芳香族アルデヒドを挙げることができる。疎水性が強い芳香族アルデヒドは、低アセタール化度で耐水性に優れた防曇膜を形成する上で有利である。芳香族アルデヒドの使用は、水酸基を多く残存させながら吸水性が高い膜を形成する上でも有利である。ポリビニルアセタールは、芳香族アルデヒド、特にベンズアルデヒドに由来するアセタール構造を含むことが好ましい。
 防曇膜における吸水性樹脂の含有量は、膜硬度、吸水性及び防曇性の観点から、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは65質量%以上であり、95質量%以下、より好ましくは90質量%以下、特に好ましくは85質量%以下である。
(撥水基)
 撥水基による上述の効果を十分に得るためには、撥水性が高い撥水基を用いることが好ましい。好ましい撥水基は、(1)炭素数3~30の鎖状又は環状のアルキル基、及び(2)水素原子の少なくとも一部をフッ素原子により置換した炭素数1~30の鎖状又は環状のアルキル基(以下、「フッ素置換アルキル基」ということがある)から選ばれる少なくとも1種である。
 (1)及び(2)に関し、鎖状又は環状のアルキル基は、鎖状アルキル基であることが好ましい。鎖状アルキル基は、分岐を有するアルキル基であってもよいが、直鎖アルキル基が好ましい。炭素数が30を超えるアルキル基は、防曇膜を白濁させることがある。膜の防曇性、強度及び外観のバランスの観点から、アルキル基の炭素数は、20以下が好ましく、6~14がより好ましい。特に好ましいアルキル基は、炭素数6~14、特に炭素数8~12の直鎖アルキル基、例えばn-デシル基(炭素数10)、n-ドデシル基(炭素数12)である。(2)に関し、フッ素置換アルキル基は、鎖状又は環状のアルキル基の水素原子の一部のみをフッ素原子により置換した基であってもよく、鎖状又は環状のアルキル基の水素原子のすべてをフッ素原子により置換した基、例えば直鎖状のパーフルオロアルキル基、であってもよい。フッ素置換アルキル基は撥水性が高いため、少ない量の添加によって十分な効果を得ることができる。ただし、フッ素置換アルキル基は、その含有量が多くなり過ぎると、膜を形成するための塗工液中でその他の成分から分離することがある。
(撥水基を有する加水分解性金属化合物)
 撥水基を防曇膜に配合するためには、撥水基を有する金属化合物(撥水基含有金属化合物)、特に撥水基と加水分解可能な官能基又はハロゲン原子とを有する金属化合物(撥水基含有加水分解性金属化合物)又はその加水分解物を、膜を形成するための塗工液に添加するとよい。言い換えると、撥水基は、撥水基含有加水分解性金属化合物に由来するものであってもよい。撥水基含有加水分解性金属化合物としては、以下の式(I)に示す撥水基含有加水分解性シリコン化合物が好適である。
 RmSiY4-m  (I)
 ここで、Rは、撥水基、すなわち水素原子の少なくとも一部がフッ素原子により置換されていてもよい炭素数1~30の鎖状又は環状のアルキル基であり、Yは加水分解可能な官能基又はハロゲン原子であり、mは1~3の整数である。加水分解可能な官能基は、例えば、アルコキシル基、アセトキシ基、アルケニルオキシ基及びアミノ基から選ばれる少なくとも1種であり、好ましくはアルコキシ基、特に炭素数1~4のアルコキシ基である。アルケニルオキシ基は、例えばイソプロペノキシ基である。ハロゲン原子は、好ましくは塩素である。なお、ここに例示した官能基は、以降に述べる「加水分解可能な官能基」としても使用することができる。mは好ましくは1~2である。
 式(I)により示される化合物は、加水分解及び重縮合が完全に進行すると、以下の式(II)により表示される成分を供給する。
 RmSiO(4-m)/2  (II)
 ここで、R及びmは、上述したとおりである。加水分解及び重縮合の後、式(II)により示される化合物は、実際には、防曇膜中において、シリコン原子が酸素原子を介して互いに結合したネットワーク構造を形成する。
 このように、式(I)により示される化合物は、加水分解又は部分加水分解し、さらには少なくとも一部が重縮合して、シリコン原子と酸素原子とが交互に接続し、かつ三次元的に広がるシロキサン結合(Si-O-Si)のネットワーク構造を形成する。このネットワーク構造に含まれるシリコン原子には撥水基Rが接続している。言い換えると、撥水基Rは、結合R-Siを介してシロキサン結合のネットワーク構造に固定される。この構造は、撥水基Rを膜に均一に分散させる上で有利である。ネットワーク構造は、式(I)により示される撥水基含有加水分解性シリコン化合物以外のシリコン化合物(例えば、テトラアルコキシシラン、シランカップリング剤)から供給されるシリカ成分を含んでいてもよい。撥水基を有さず加水分解可能な官能基又はハロゲン原子を有するシリコン化合物(撥水基非含有加水分解性シリコン化合物)を撥水基含有加水分解性シリコン化合物と共に防曇膜を形成するための塗工液に配合すると、撥水基と結合したシリコン原子と撥水基と結合していないシリコン原子とを含むシロキサン結合のネットワーク構造を形成できる。このような構造とすれば、防曇膜中における撥水基の含有率と金属酸化物成分の含有率とを互いに独立して調整することが容易になる。
 撥水基は、吸水性樹脂を含む防曇膜表面における水蒸気の透過性を向上させることにより防曇性能を向上させる効果がある。吸水と撥水という2つの機能は互いに相反するため、吸水性材料と撥水性材料とは、従来、別の層に振り分けて付与されてきたが、撥水基は、防曇層の表面近傍における水の偏在を解消して結露までの時間を引き延ばし、単層構造を有する防曇膜の防曇性を向上させる。以下ではその効果を説明する。
 吸水性樹脂を含む防曇膜へと侵入した水蒸気は、吸水性樹脂等の水酸基と水素結合し、結合水の形態で保持される。量が増加するにつれ、水蒸気は、結合水の形態から半結合水の形態を経て、ついには防曇膜中の空隙に保持される自由水の形態で保持されるようになる。防曇膜において、撥水基は、水素結合の形成を妨げ、かつ形成した水素結合の解離を容易にする。吸水性樹脂の含有率が同じであれば、膜中における水素結合可能な水酸基の数には差がないが、撥水基は水素結合の形成速度を低下させる。したがって、撥水基を含有する防曇膜において、水分は、最終的には上記のいずれかの形態で膜に保持されることになるが、保持されるまでには膜の底部まで水蒸気のまま拡散することができる。また、一旦保持された水も、比較的容易に解離し、水蒸気の状態で膜の底部まで移動しやすい。結果的に、膜の厚さ方向についての水分の保持量の分布は、表面近傍から膜の底部まで比較的均一になる。つまり、防曇膜の厚さ方向の全てを有効に活用し、膜表面に供給された水を吸収することができるため、表面に水滴が凝結しにくく、防曇性が高くなる。
 一方、撥水基を含まない従来の防曇膜においては、膜中に侵入した水蒸気は極めて容易に結合水、半結合水又は自由水の形態で保持される。したがって、侵入した水蒸気は、膜の表面近傍で保持される傾向にある。結果的に、膜中の水分は、表面近傍が極端に多く、膜の底部へ進むにつれて急速に減少する。つまり、膜の底部では未だ水を吸収できるにも拘わらず、膜の表面近傍では水分により飽和して水滴として凝結するため、防曇性が限られたものとなる。
 撥水基含有加水分解性シリコン化合物(式(I)参照)を用いて撥水基を防曇膜に導入すると、強固なシロキサン結合(Si-O-Si)のネットワーク構造が形成される。このネットワーク構造の形成は、耐摩耗性のみならず、硬度、耐水性等を向上させる観点からも有利である。
 撥水基は、防曇膜の表面における水の接触角が70度以上、好ましくは80度以上、より好ましくは90度以上になる程度に添加するとよい。水の接触角は、4mgの水滴を膜の表面に滴下して測定した値を採用することとする。特に撥水性がやや弱いメチル基又はエチル基を撥水基として用いる場合は、水の接触角が上記の範囲となる量の撥水基を防曇膜に配合することが好ましい。この水滴の接触角は、その上限が特に制限されるわけではないが、例えば150度以下、また例えば120度以下、さらには100度以下である。撥水基は、防曇膜の表面のすべての領域において上記水滴の接触角が上記の範囲となるように、防曇膜に均一に含有させることが好ましい。
 防曇膜は、吸水性樹脂100質量部に対し、0.05質量部以上、好ましくは0.1質量部以上、より好ましくは0.3質量部以上の範囲内となるように、また、10質量部以下、好ましくは5質量部以下、の範囲内となるように、撥水基を含むことが好ましい。
(金属酸化物成分)
 防曇膜は、金属酸化物成分を含んでいる。金属酸化物成分は、例えば、Si、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnから選ばれる少なくとも1種の元素の酸化物成分であり、好ましくはSiの酸化物成分(シリカ成分)である。防曇膜は、吸水性樹脂100質量部に対し、0.01質量部以上、好ましくは0.1質量部以上、より好ましくは0.2質量部以上、さらに好ましくは1質量部以上、特に好ましくは5質量部以上、場合によっては10質量部以上、必要であれば20質量部以上、また、60質量部以下、特に50質量部以下、好ましくは45質量部以下、より好ましくは40質量部以下、さらに好ましくは35質量部以下、特に好ましくは33質量部以下、場合によっては30質量部以下となるように、金属酸化物成分を含むことが好ましい。金属酸化物成分は、膜の強度、特に耐擦傷性を確保するために必要な成分であるが、その含有量が過多となると膜の防曇性が低下する。
 金属酸化物成分の少なくとも一部は、防曇膜を形成するための塗工液に添加された、加水分解性金属化合物又その加水分解物に由来する金属酸化物成分であってもよい。ここで、加水分解性金属化合物は、a)撥水基と加水分解可能な官能基又はハロゲン原子とを有する金属化合物(撥水基含有加水分解性金属化合物)及びb)撥水基を有さず加水分解可能な官能基又はハロゲン原子を有する金属化合物(撥水基非含有加水分解性金属化合物)から選ばれる少なくとも1つである。a)及び/又はb)に由来する金属酸化物成分は、加水分解性金属化合物を構成する金属原子の酸化物である。金属酸化物成分は、防曇膜を形成するための塗工液に添加された金属酸化物微粒子に由来する金属酸化物成分と、その塗工液に添加された、加水分解性金属化合物又その加水分解物に由来する金属酸化物成分とを含んでいてもよい。ここでも、加水分解性金属化合物は、上記a)及びb)から選ばれる少なくとも1つである。上記b)、すなわち撥水基を有しない加水分解性金属化合物は、テトラアルコキシシラン及びシランカップリング剤から選ばれる少なくとも1つを含んでいてもよい。以下、既に説明した上記a)を除き、金属酸化物微粒子と上記b)とについて説明する。
(金属酸化物微粒子)
 防曇膜は、金属酸化物成分の少なくとも一部として金属酸化物微粒子をさらに含んでいてもよい。金属酸化物微粒子を構成する金属酸化物は、例えば、Si、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnから選ばれる少なくとも1種の元素の酸化物であり、好ましくはシリカ微粒子である。シリカ微粒子は、例えば、コロイダルシリカを添加することにより膜に導入できる。金属酸化物微粒子は、防曇膜に加えられた応力を膜を支持する透明物品に伝達する作用に優れ、硬度も高い。したがって、金属酸化物微粒子の添加は、防曇膜の耐摩耗性及び耐擦傷性を向上させる観点から有利である。また、防曇膜に金属酸化物微粒子を添加すると、微粒子が接触又は近接している部位に微細な空隙が形成され、この空隙から膜中に水蒸気が取り込まれやすくなる。このため、金属酸化物微粒子の添加は、防曇性の向上に有利に作用することもある。金属酸化物微粒子は、防曇膜を形成するための塗工液に予め形成した金属酸化物微粒子を添加することにより、防曇膜に供給することができる。
 金属酸化物微粒子の平均粒径は、大きすぎると膜が白濁することがあり、小さすぎると凝集して均一に分散させることが困難となる。この観点から、金属酸化物微粒子の好ましい平均粒径は、1~20nm、特に5~20nmである。なお、ここでは、金属酸化物微粒子の平均粒径を、一次粒子の状態で記述している。また、金属酸化物微粒子の平均粒径は、走査型電子顕微鏡を用いた観察により任意に選択した50個の微粒子の粒径を測定し、その平均値を採用して定めることとする。金属酸化物微粒子は、その含有量が過大となると、膜全体の吸水量が低下し、膜が白濁するおそれがある。金属酸化物微粒子は、吸水性樹脂100質量部に対し、0~50質量部、好ましくは1~30質量部、より好ましくは2~30質量部、特に好ましくは5~25質量部、場合によっては10~20質量部となるように添加するとよい。
(撥水基を有しない加水分解性金属化合物)
 防曇膜は、撥水基を有しない加水分解性金属化合物(撥水基非含有加水分解性化合物)に由来する金属酸化物成分を含んでいてもよい。好ましい撥水基非含有加水分解性金属化合物は、撥水基を有しない加水分解性シリコン化合物である。撥水基を有しない加水分解性シリコン化合物は、例えば、シリコンアルコキシド、クロロシラン、アセトキシシラン、アルケニルオキシシラン及びアミノシランから選ばれる少なくとも1種のシリコン化合物(ただし、撥水基を有しない)であり、撥水基を有しないシリコンアルコキシドが好ましい。なお、アルケニルオキシシランとしては、イソプロペノキシシランを例示できる。
 撥水基を有しない加水分解性シリコン化合物は、以下の式(III)に示す化合物であってもよい。
 SiY4  (III)
 上述したとおり、Yは、加水分解可能な官能基であって、好ましくはアルコキシル基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである。
 撥水基非含有加水分解性金属化合物は、加水分解又は部分加水分解し、さらに、少なくともその一部が重縮合して、金属原子と酸素原子とが結合した金属酸化物成分を供給する。この成分は、金属酸化物微粒子と吸水性樹脂とを強固に接合し、防曇膜の耐摩耗性、硬度、耐水性等の向上に寄与しうる。撥水基を有しない加水分解性金属化合物に由来する金属酸化物成分は、吸水性樹脂100質量部に対し、0~40質量部、好ましくは0.1~30質量部、より好ましくは1~20質量部、特に好ましくは3~10質量部、場合によっては4~12質量部の範囲とするとよい。
 撥水基を有しない加水分解性シリコン化合物の好ましい一例は、テトラアルコキシシラン、より具体的には炭素数が1~4のアルコキシ基を有するテトラアルコキシシランである。テトラアルコキシシランは、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトライソブトキシシラン、テトラ-sec-ブトキシシラン及びテトラ-tert-ブトキシシランから選ばれる少なくとも1種である。
 テトラアルコキシシランに由来する金属酸化物(シリカ)成分の含有量が過大となると、防曇膜の防曇性が低下することがある。防曇膜の柔軟性が低下し、水分の吸収及び放出に伴う膜の膨潤及び収縮が制限されることが一因である。テトラアルコキシシランに由来する金属酸化物成分は、吸水性樹脂100質量部に対し、0~30質量部、好ましくは1~20質量部、より好ましくは3~10質量部の範囲で添加するとよい。
 撥水基を有しない加水分解性シリコン化合物の好ましい別の一例は、シランカップリング剤である。シランカップリング剤は、互いに異なる反応性官能基を有するシリコン化合物である。反応性官能基は、その一部が加水分解可能な官能基であることが好ましい。シランカップリング剤は、例えば、エポキシ基及び/又はアミノ基と加水分解可能な官能基とを有するシリコン化合物である。好ましいシランカップリング剤としては、グリシジルオキシアルキルトリアルコキシシラン及びアミノアルキルトリアルコキシシランを例示できる。これらのシランカップリング剤において、シリコン原子に直接結合しているアルキレン基の炭素数は1~3であることが好ましい。グリシジルオキシアルキル基及びアミノアルキル基は、親水性を示す官能基(エポキシ基、アミノ基)を含むため、アルキレン基を含むものの、全体として撥水性ではない。
 シランカップリング剤は、有機成分である吸水性樹脂と無機成分である金属酸化物微粒子等とを強固に結合し、防曇膜の耐摩耗性、硬度、耐水性等の向上に寄与しうる。しかし、シランカップリング剤に由来する金属酸化物(シリカ)成分の含有量が過大となると、防曇膜の防曇性が低下し、場合によっては防曇膜が白濁する。シランカップリング剤に由来する金属酸化物成分は、吸水性樹脂100質量部に対し、0~10質量部、好ましくは0.05~5質量部、より好ましくは0.1~2質量部の範囲で添加するとよい。
(架橋構造)
 防曇膜は、架橋剤、好ましくは有機ホウ素化合物、有機チタン化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種の架橋剤、に由来する架橋構造を含んでいてもよい。架橋構造の導入は、防曇膜の耐摩耗性、耐擦傷性、耐水性を向上させる。別の観点から述べると、架橋構造の導入は、防曇膜の防曇性能を低下させることなくその耐久性を改善することを容易にする。
 金属酸化物成分がシリカ成分である防曇膜に架橋剤に由来する架橋構造を導入した場合、その防曇膜は、金属原子としてシリコンと共にシリコン以外の金属原子、好ましくはホウ素、チタン又はジルコニウム、を含有することがある。
 架橋剤は、用いる吸水性樹脂を架橋できるものであれば、その種類は特に限定されない。ここでは、有機チタン化合物についてのみ例を挙げる。有機チタン化合物は、例えば、チタンアルコキシド、チタンキレート系化合物及びチタンアシレートから選ばれる少なくとも1つである。チタンアルコキシドは、例えば、チタンテトライソプロポキシド、チタンテトラ-n-ブトキシド、チタンテトラオクトキシドである。チタンキレ-ト系化合物は、例えば、チタンアセチルアセトナート、チタンアセト酢酸エチル、チタンオクチレングリコール、チタントリエタノールアミン、チタンラクテートである。チタンラクテートは、アンモニウム塩(チタンラクテートアンモニウム)であってもよい。チタンアシレートは、例えばチタンステアレートである。好ましい有機チタン化合物は、チタンキレート系化合物、特にチタンラクテートである。
 吸水性樹脂がポリビニルアセタールである場合の好ましい架橋剤は、有機チタン化合物、特にチタンラクテートである。
(その他の任意成分)
 防曇膜にはその他の添加剤を配合してもよい。添加剤としては、防曇性を改善する機能を有するグリセリン、エチレングリコール等のグリコール類が挙げられる。添加剤は、界面活性剤、レベリング剤、紫外線吸収剤、着色剤、消泡剤、防腐剤等であってもよい。
[膜厚]
 防曇膜の膜厚は、要求される防曇特性その他に応じて適宜調整すればよい。防曇膜の好ましい膜厚は、1~20μm、好ましくは2~15μm、特に3~10μmである。
[防曇膜の成膜]
 防曇膜は、防曇膜を形成するための塗工液を透明基板等の透明物品上に塗布し、塗布した塗工液を乾燥させ、必要に応じてさらに高温高湿処理等を実施することにより、成膜することができる。塗工液の調製に用いる溶媒、塗工液の塗布方法は、従来から公知の材料及び方法を用いればよい。
 塗工液の塗布工程では、雰囲気の相対湿度を40%未満、さらには30%以下に保持することが好ましい。相対湿度を低く保持すると、膜が雰囲気から水分を過剰に吸収することを防止できる。雰囲気から水分が多量に吸収されると、膜のマトリックス内に入り込んで残存した水が膜の強度を低下させるおそれがある。
 塗工液の乾燥工程は、風乾工程と、加熱を伴う加熱乾燥工程とを含むことが好ましい。風乾工程は、相対湿度を40%未満、さらには30%以下に保持した雰囲気に塗工液を曝すことにより、実施するとよい。風乾工程は、非加熱工程として、言い換えると室温で実施できる。塗工液に加水分解性シリコン化合物が含まれている場合、加熱乾燥工程では、シリコン化合物の加水分解物等に含まれるシラノール基及び透明物品上に存在する水酸基が関与する脱水反応が進行し、シリコン原子と酸素原子とからなるマトリックス構造(Si-O結合のネットワーク)が発達する。
 吸水性樹脂等の有機物の分解を避けるべく、加熱乾燥工程において適用する温度は過度に高くしないほうがよい。この場合の適切な加熱温度は、300℃以下、例えば100~200℃であり、加熱時間は、1分~1時間である。
 防曇膜の成膜に際しては、適宜、高温高湿処理工程を実施してもよい。高温高湿処理工程の実施により、防曇性と膜の強度との両立がより容易になりうる。高温高湿処理工程は、例えば50~100℃、相対湿度60~95%の雰囲気に5分~1時間保持することにより、実施することができる。高温高湿処理工程は、塗布工程及び乾燥工程の後に実施してもよく、塗布工程及び風乾工程の後であって加熱乾燥工程の前に実施してもよい。特に前者の場合には、高温高湿処理工程の後に、さらに熱処理工程を実施してもよい。この追加の熱処理工程は、例えば、80~180℃の雰囲気に5分~1時間保持することにより、実施することができる。
 また、塗工液から形成した防曇膜は、必要に応じ、洗浄及び/又は湿布拭きを行ってもよい。具体的には、防曇膜の表面を、水流に曝したり、水を含ませた布で拭いたりすることにより実施できる。これらで用いる水は純水が適している。洗浄のために洗剤を含む溶液を用いることは避けたほうがよい。この工程により、防曇膜の表面に付着した埃、汚れ等を除去して、清浄な塗膜面を得ることができる。
<第二の実施形態-シリコン以外の金属原子->
 本実施形態による防曇膜つき透明物品は、透明物品と、その表面上に形成された防曇膜とを備えている。防曇膜は、シリコン以外の金属原子を含み、好ましくは単層膜である。
[透明物品]
 透明物品については、第一の実施形態で述べたとおりである。
[防曇膜]
 第二の実施形態において、防曇膜は、少なくとも、ポリビニルアセタールと、加水分解性シリコン化合物又はその加水分解物に由来するシリカ成分と、有機金属化合物に由来するシリコン以外の金属原子とを含んでいる。防曇膜は、必要に応じ、金属酸化物微粒子その他の機能成分をさらに含んでいてもよい。ポリビニルアセタールは、水を吸収して保持する吸水性樹脂である。防曇膜は、シリコン以外の金属原子を含む架橋構造を含んでいてもよく、この場合は、架橋構造が防曇膜の耐擦傷性をさらに向上させる。以下、各成分について説明する。
(ポリビニルアセタール)
 ポリビニルアセタールについては、第一の実施形態で述べたとおりである。
 本実施形態の防曇膜におけるポリビニルアセタールの含有量は、膜硬度、吸水性及び防曇性の観点から、50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、特に好ましくは75質量%以上、であり、また、99.5質量%以下、好ましくは95質量%以下、より好ましくは90質量%以下である。
(シリカ成分)
 防曇膜は、膜を形成するための塗工液に添加された、加水分解性シリコン化合物又はその加水分解物に由来するシリカ成分を含んでいる。加水分解性シリコン化合物は、加水分解又は部分加水分解し、さらに少なくともその一部が重縮合して、シリコン原子と酸素原子とが結合したシリカ成分を供給する。このシリカ成分は、防曇膜の耐摩耗性、硬度、耐水性等の向上に寄与しうる。加水分解性シリコン化合物は、加水分解可能な官能基又はハロゲン原子を有するシリコン化合物である。加水分解可能な官能基は、例えば、アルコキシル基、アセトキシ基、アルケニルオキシ基及びアミノ基から選ばれる少なくとも1つであり、好ましくはアルコキシ基、特に炭素数1~4のアルコキシ基である。アルケニルオキシ基は、例えばイソプロペノキシ基である。ハロゲン原子は、好ましくは塩素である。
 シリカ成分は、ポリビニルアセタール100質量部に対し、0.01質量部以上、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、さらに好ましくは0.5質量部以上、場合によっては1質量部以上、必要に応じて3質量部以上、の範囲で防曇膜に含まれているとよく、60質量部以下、特に50質量部以下、好ましくは40質量部以下、より好ましくは30質量部以下、さらに好ましくは20質量部以下、場合によっては15質量部以下、必要に応じて10質量部以下、の範囲で防曇膜に含まれているとよい。
 加水分解性シリコン化合物は、上述の式(III)により示される化合物(SiY4)を含むことが好ましい。
 式(III)により示される化合物は、加水分解及びその後の重縮合により、SiO2により示されるシリカ成分を供給する。このシリカ成分は、実際には、防曇膜中において、シリコン原子が酸素原子を介して互いに結合したネットワーク構造を形成する。
 式(III)により示される化合物は、好ましくはテトラアルコキシシランである。テトラアルコキシシランについては第一の実施形態で述べたとおりである。
 加水分解性シリコン化合物は、式(III)により示される化合物と共に式(IV)により示される化合物を含むことが好ましい。
 LmSiY4-m (IV)
 ここで、Lは、水素原子の少なくとも一部が置換されていてもよい鎖状又は環状の炭化水素基である。Y及びmは、上述のとおりである。
 Lは、水素原子の少なくとも一部が置換されていてもよい、炭素数が1~30、より好ましくは3~20の炭化水素基、例えば鎖状炭化水素基、特に直鎖炭化水素基であってもよい。鎖状炭化水素基としては、アルキル基、アルケニル基、アルキニル基を例示できる。好ましい鎖状炭化水素基は、直鎖アルキル基である。Lは、水素原子の少なくとも一部が置換されていてもよい、炭素数が3~20の環状炭化水素基、例えばシクロアルキル基又はフェニル基であってもよい。水素原子を置換する官能基としては、エポキシ基、アミノ基、(メタ)アクリロキシ基、ウレイド基、メルカプト基、イソシアネート基を例示できる。水素原子は、塩素、フッ素等のハロゲン原子により置換されていてもよい。Lは、第一の実施形態で説明した撥水基Rであっても構わない。
 式(IV)により示される化合物は、加水分解及びその後の重縮合により、SiO(4-m)/2により示されるシリカ成分を供給する。このシリカ成分は、式(III)により示される化合物から供給されるSiO2と共に、防曇膜中において、シリコン原子が酸素原子を介して互いに結合したネットワーク構造を形成する。
 式(IV)により示される化合物は、典型的には、シランカップリング剤として知られている化合物であってもよい。シランカップリング剤は、互いに異なる反応性官能基を有するシリコン化合物であり、例えば、エポキシ基及び/又はアミノ基と加水分解可能な官能基とを有する。好ましいシランカップリング剤としては、グリシジルオキシアルキルトリアルコキシシラン及びアミノアルキルトリアルコキシシランを例示できる。これらのアルキルシランにおいて、シリコン原子に直接結合しているアルキル基の炭素数は1~3であることが好ましい。シランカップリング剤は、ポリビニルアセタールとシリカ成分との親和性を向上させる。
 式(III)に示すシリコン化合物は、4つの加水分解可能な官能基を有するため、3つの加水分解可能な官能基を有する式(IV)に示すシリコン化合物よりも、強固なネットワーク構造の形成に適している。これを考慮し、式(IV)に示すシリコン化合物を用いる場合であっても、シリコン原子の数により比較した場合に、式(III)に示すシリコン化合物を相対的により多く配合することが望ましい。具体的には、式(III)に示す化合物に含まれるシリコン原子の数NSi(III)と式(IV)に示す化合物に含まれるシリコン原子の数NSi(IV)との合計NSi(T)に対する、式(IV)に示す化合物に含まれるシリコン原子の数NSi(IV)の比NSi(IV)/NSi(T)は、0.01~0.4、さらには0.1~0.35の範囲内にあることが好ましい。
(シリコン以外の金属原子)
 防曇膜は、シリコン以外の金属原子を含む。防曇膜には、この金属原子を含む架橋構造が導入されていることが好ましい。架橋構造は、防曇膜の耐摩耗性、耐擦傷性、耐水性の向上に寄与しうる。シリコン以外の金属原子は、例えば、ホウ素、チタン及びジルコニウムから選ばれる少なくとも1つ、特にチタン及びジルコニウムから選ばれる少なくとも1つである。
 架橋構造は、防曇膜を形成するための塗工液に架橋剤を添加することにより、防曇膜に導入できる。好ましい架橋剤は、有機ホウ素化合物、有機チタン化合物及び有機ジルコニウム化合物から選ばれる少なくとも1つ、特に有機チタン化合物である。有機チタン化合物は、例えば、チタンアルコキシド、チタンキレート系化合物及びチタンアシレートから選ばれる少なくとも1つである。チタンアルコキシドは、例えば、チタンテトライソプロポキシド、チタンテトラ-n-ブトキシド、チタンテトラオクトキシドである。チタンキレ-ト系化合物は、例えば、チタンアセチルアセトナート、チタンアセト酢酸エチル、チタンオクチレングリコール、チタントリエタノールアミン、チタンラクテートである。チタンラクテートは、アンモニウム塩(チタンラクテートアンモニウム)であってもよい。チタンアシレートは、例えばチタンステアレートである。好ましい有機チタン化合物は、チタンキレート系化合物、特にチタンラクテートである。
 従来の防曇膜では、防曇膜の強度、特に耐擦傷性の向上は、シリカ成分を膜に配合することにより実施されていた。加水分解性シリコン化合物に由来するシリカ成分は、堅固なネットワーク構造を形成することが知られている。このシリカ成分の導入は、防曇膜の耐擦傷性を向上させるが、一方では膜を硬化させ、その結果、吸水に伴うポリマー鎖の移動が制限される。このため、シリカ成分のみの配合によって膜の強度を向上させると、防曇性が大幅に低下する。シリカ成分と共に金属酸化物微粒子を添加しても、膜の防曇性と強度とを共に良好に保つことは難しい。これに対し、シリコン以外の金属原子を含む架橋構造の導入は、ポリマー鎖の移動の制限をもたらす膜の硬化を避けながら膜の強度を向上させることに適している。シリカ成分と架橋構造とを共に導入することにより、膜の強度と防曇性との両側面において優れた防曇膜を得ることが可能となる。
 架橋構造に含まれるシリコン以外の金属原子は、ポリビニルアセタール100質量部に対し、0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.1質量部以上、さらに好ましくは1質量部以上の範囲で防曇膜に含まれているとよく、50質量部以下、好ましくは40質量部以下、より好ましくは20質量部以下、さらに好ましくは10質量部以下、場合によっては5質量部以下の範囲で防曇膜に含まれているとよい。
(金属酸化物微粒子)
 防曇膜は、金属酸化物微粒子をさらに含んでいてもよい。金属酸化物微粒子を構成する金属酸化物の種類、その作用、膜への供給方法、好ましい平均粒径及び適切な含有量については、第一の実施形態で述べたとおりである。
(その他の任意成分、膜厚、及び成膜)
 防曇膜が含みうるその他の任意成分、防曇膜の膜厚、防曇膜の成膜方法についても、第一の実施形態で述べたとおりである。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明は以下の実施例により制限を受けるものではない。まず、特性を評価した方法を説明する。
(1)外観
 防曇膜つき物品(防曇性物品)の透明性及びクラックの有無を目視で観察し、下記の基準で評価した。
 ○:良好
 △:僅かに白濁が認められる。
 ×:膜中にムラ、白濁、クラック等が認められ、実用上問題がある。
(2)膜厚
 防曇性物品を、室温20℃、相対湿度50%の環境下に1時間放置した後、KLA Tencor社製の表面形状測定器α-Step500を用いて防曇膜の膜厚を測定した。
(3)接触角
 防曇性物品を、室温20℃、相対湿度50%の環境下に1時間放置した後、協和界面科学社製の接触角計(CA-A)を用いて約4μL(=4mg)の水滴を防曇膜の表面に滴下し、防曇膜の表面におけるその水滴の接触角を測定した。
(4)防曇性
 防曇性物品を、室温20℃、相対湿度30%の環境下に1時間放置した。一方で、恒温水槽に水温を40℃に保持した温水を収容し、その温水の上方に防曇性物品を防曇膜が水蒸気に晒されるように配置し、防曇膜に曇りが認められるまでの時間を測定した。なお、防曇膜を設けていないガラス板(ソーダライムガラス板)では、10秒以下で曇りが確認された。曇りが形成されるまでの時間を下記の基準で評価した。
 ◎:85秒超で曇りが確認された。
 ○:60秒超85秒以下で曇りが確認された。
 △:30秒超60秒以下で曇りが確認された。
 ×:30秒以下で曇りが確認された。
(5)繰り返し防曇性
 防曇性物品を、0℃の低温恒温層内に20分間放置した後、室温20℃、相対湿度50%の環境下に取り出し、防曇膜の表面に現れた結露が消失するまで同環境下で放置した。このサイクルを10回繰り返した後、(4)と同様にして防曇性を評価した。
(6)耐乾布拭き性
 往復摩耗試験機(新東科学社製「HEIDON-18」)にネル布(300番)を取り付け、防曇性物品の防曇膜の表面上を0.25kg/cm2の荷重を加えながらネル布を1000回往復させた後、膜表面の外観を目視で観察し、下記の基準で評価した。
 ◎:外観に変化なし
 ○:不明瞭な極浅い傷がわずかに確認できる。
 △:明瞭な傷が目視で確認できる。
 ×:防曇膜の剥離が観察される。
(7)耐湿布拭き性
 往復摩耗試験機(新東科学社製「HEIDON-18」)にネル布(300番)を取り付け、このネル布に2cm3の蒸留水を染み込ませた。防曇性物品の防曇膜の表面上を0.25kg/cm2の荷重を加えながらネル布を1000回往復させた後、膜表面の外観を目視で観察し、下記の基準で評価した。
 ○:外観に大きな変化が見られない。
 △:白濁、又は試験部分の1/3未満において防曇膜が剥離している。
 ×:試験部分の1/3以上で防曇膜が剥離している。
(8)耐摩耗性
 TABER INDUSTRIES社製テーバー摩耗試験機「5130」を用いて、250g荷重、500回転の条件で摩耗試験を実施し、試験前後における曇価の変化量ΔHz(%)を測定した。曇価はヘーズメーター(スガ試験機社製「HZ-1S」)を用いて測定した。耐摩耗性を下記の基準で評価した。
(実施例及び比較例のシリーズAにおける基準)
 ○:ΔHzが7%以下であった。
 ×:ΔHzが7%超及び膜の剥離の少なくとも一方が生じた。
(実施例、比較例及び参照例のシリーズBにおける基準)
 ◎:ΔHzが6%以下であった。
 ○:ΔHzが6%超10%以下であった。
 ×:ΔHzが10%超及び膜の剥離の少なくとも一方が生じた。
<シリーズA:シリコン以外の金属原子の導入>
(実施例A1)
 ポリビニルアセタール樹脂含有溶液(積水化学工業社製「エスレックKX-5」、固形分8質量%、アセタール化度9モル%、ベンズアルデヒドに由来するアセタール構造を含む)62.5質量%、テトラエトキシシラン(TEOS、信越化学工業社製「KBE-04」)1.04質量%、チタンラクテート(マツモトファインケミカル社製「オルガチックスTC-310」;Ti(OH)2[OCH(CH3)COOH]2を44質量%含み、2-プロパノールと水とを混合溶媒とする溶液)1.21質量%、アルコール溶媒(日本アルコール工業製「ソルミックスAP-7」)17.79質量%、精製水17.44質量%、酸触媒として硝酸0.01質量%、レベリング剤(信越化学工業社製「KP-341」)0.01質量%をガラス製容器に入れ、室温(25℃)で3時間撹拌することにより、防曇膜形成用塗工液を調製した。
 次いで、洗浄したフロート板ガラス(ソーダライムシリケートガラス、厚さ3.1mm、サイズ100×100mm)上に、室温20℃、相対湿度30%の環境下で、塗工液をフローコート法により塗布した。同環境下で10分間乾燥させた後、120℃の(予備)加熱処理を実施した。その後、上述の雰囲気及び時間を適用して高温高湿処理を実施し、さらに、同じく上述の雰囲気及び時間を適用して追加の熱処理を実施して、防曇性物品を作製した。
(実施例A2)
 シリカ微粒子分散液(日産化学工業社製「スノーテックスOS」、固形分20質量%、平均粒径(一次粒径)10nm)3.75質量%をさらに添加し、アルコール溶媒の添加量を17.04質量%、精製水の添加量を14.44質量%としたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例A3)
 酸化ニオブ微粒子分散液(多木化学社製「バイラールNb-X10」、固形分10質量%)5.00質量%をさらに添加し、アルコール溶媒の添加量を16.94質量%、精製水の添加量を13.29質量%としたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例A4)
 酸化ジルコニウム微粒子分散液(多木化学社製「バイラールZr-C20」、固形分20質量%)2.50質量%をさらに添加し、アルコール溶媒の添加量を17.29質量%、精製水の添加量を15.44質量%としたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例A5)
 酸化スズ微粒子分散液(日産化学工業社製「セルナックスCX-S301H」、固形分30質量%)0.17質量%をさらに添加し、アルコール溶媒の添加量を17.73質量%、精製水の添加量を17.33質量%としたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例A6)
 3-グリシドキシプロピルトリメトキシシラン(GPTMS、信越化学工業社製「KBM-403」)0.14質量%をさらに添加し、アルコール溶媒の添加量を16.90質量%、精製水の添加量を14.44質量%としたことを除いては、実施例A2と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例A7) 
 ポリビニルアセタール樹脂含有溶液の添加量を50.0質量%とし、3-グリシドキシプロピルトリメトキシシラン(GPTMS、信越化学工業社製「KBM-403」)0.35質量%とシリカ微粒子分散液7.50質量%とをさらに添加し、テトラエトキシシランの添加量を2.60質量%とし、チタンラクテートの添加量を1.20質量%とし、アルコール溶媒の添加量を20.01質量%とし、精製水の添加量を18.32質量%とし、硝酸0.01質量%に代えて酢酸0.01質量%を用いたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例A8) 
 ポリビニルアセタール樹脂含有溶液の添加量を50.0質量%とし、3-グリシドキシプロピルトリメトキシシラン(GPTMS、信越化学工業社製「KBM-403」)0.35質量%と3-トリメトキシシリルプロピルコハク酸無水物(信越化学工業社製「X-12-967C」)1.00質量%とシリカ微粒子分散液7.50質量%とをさらに添加し、テトラエトキシシランの添加量を2.60質量%とし、チタンラクテートの添加量を1.20質量%とし、アルコール溶媒の添加量を19.01質量%とし、精製水の添加量を18.32質量%とし、硝酸0.01質量%に代えて酢酸0.01質量%を用いたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(比較例A1)
 テトラエトキシシランを未添加とし、チタンラクテートの添加量を3.62質量%、アルコール溶媒の添加量を16.78質量%、精製水の添加量を17.08質量%としたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(比較例A2)
 チタンラクテートを未添加とし、アルコール溶媒の添加量を18.81質量%、精製水の添加量を17.63質量%としたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(比較例A3)
 チタンラクテートを未添加とし、テトラエトキシシランの添加量を3.47質量%、アルコール溶媒の添加量を16.38質量%、精製水の添加量を17.63質量%としたことを除いては、実施例A1と同様にして、塗工液を調製し、防曇性物品を作製した。
(比較例A4)
 テトラエトキシシランを未添加とし、チタンラクテートの添加量を2.41質量%、アルコール溶媒の添加量を17.05質量%、精製水の添加量を14.27質量%としたことを除いては、実施例A2と同様にして、塗工液を調製し、防曇性物品を作製した。
(比較例A5)
 チタンラクテートを未添加とし、アルコール溶媒の添加量を18.06質量%、精製水の添加量を14.63質量%としたことを除いては、実施例A2と同様にして、塗工液を調製し、防曇性物品を作製した。
(比較例A6)
 ポリビニルアセタール樹脂含有溶液(積水化学工業社製「エスレックKX-5」、固形分8質量%、アセタール化度9モル%、ベンズアルデヒドに由来するアセタール構造を含む)43.75質量%、テトラエトキシシラン(TEOS、信越化学工業社製「KBE-04」)3.47質量%、シリカ微粒子分散液(日産化学工業社製「スノーテックスOS」、固形分20質量%、平均粒径(一次粒径)10μm)11.65質量%、アルコール溶媒(日本アルコール工業製「ソルミックスAP-7」)26.25質量%、精製水14.86質量%、酸触媒として硝酸0.01質量%、レベリング剤(信越化学工業社製「KP-341」)0.01質量%をガラス製容器に入れ、室温(25℃)で3時間撹拌することにより、防曇膜形成用塗工液を調製した。この塗工液を用い、実施例A1と同様にして防曇性物品を作製した。
(比較例A7)
 ポリビニルアセタール樹脂含有溶液(積水化学工業社製「エスレックKX-5」、固形分8質量%、アセタール化度9モル%、ベンズアルデヒドに由来するアセタール構造を含む)43.75質量%、テトラエトキシシラン(TEOS、信越化学工業社製「KBE-04」)5.65質量%、シリカ微粒子分散液(日産化学工業社製「スノーテックスOS」、固形分20質量%、平均粒径(一次粒径)10μm)11.65質量%、アルコール溶媒(日本アルコール工業製「ソルミックスAP-7」)24.07質量%、精製水14.86質量%、酸触媒として硝酸0.01質量%、レベリング剤(信越化学工業社製「KP-341」)0.01質量%をガラス製容器に入れ、室温(25℃)で3時間撹拌することにより、防曇膜形成用塗工液を調製した。この塗工液を用い、実施例A1と同様にして防曇膜を形成した。その後、防曇膜の表面に、10質量%に希釈した界面活性剤(日本油脂社製「ラピゾールA-30」、1,4-ビス(2-エチルヘキシル)スルホコハク酸ナトリウム)含有水溶液を塗布し、120℃、10分間の加熱乾燥処理を実施し、防曇性物品を得た。
 以上の実施例及び比較例について、ポリビニルアセタール100質量部に対する塗工液の各成分の割合を表1に、防曇性物品の評価結果を表2にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<シリーズB:撥水基の導入>
(実施例B1)
 ポリビニルアセタール樹脂含有溶液(積水化学工業社製「エスレックKX-5」、固形分8質量%、アセタール化度9モル%、ベンズアルデヒドに由来するアセタール構造を含む)62.5質量%、メチルトリメトキシシラン(MTMS、信越化学工業社製「KBM-13」)1.02質量%、シリカ微粒子分散液(日産化学工業社製「スノーテックスOS」、分散媒を水として固形分20質量%、平均粒径(一次粒径)10nm)3.75質量%、テトラエトキシシラン(TEOS、信越化学工業社製「KBE-04」)1.04質量%、チタンラクテート(マツモトファインケミカル社製「オルガチックスTC-310」、Ti(OH)2[OCH(CH3)COOH]2を44質量%含み、2-プロパノールと水とを混合溶媒とする溶液)1.21質量%、アルコール溶媒(日本アルコール工業製「ソルミックスAP-7」)16.02質量%、精製水14.44質量%、酸触媒として硝酸0.01質量%、レベリング剤(信越化学工業社製「KP-341」)0.01質量%をガラス製容器に入れ、室温(25℃)で3時間撹拌することにより、防曇膜形成用塗工液を調製した。
 次いで、洗浄したフロート板ガラス(ソーダライムシリケートガラス、厚さ3.1mm、サイズ100×100mm)上に、室温20℃、相対湿度30%の環境下で、塗工液をフローコート法により塗布した。同環境下で10分間乾燥させた後、120℃の(予備)加熱処理を実施した。その後、上述の雰囲気及び時間を適用して高温高湿処理を実施し、さらに、同じく上述の雰囲気及び時間を適用して追加の熱処理を実施した。
(実施例B2)
 メチルトリメトキシシラン1.02質量%に代えてジメチルジエトキシシラン(DMDES、信越化学工業社製「KBE-22」)0.2質量%を用い、アルコール溶媒の添加量を16.84質量%としたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B3)
 メチルトリメトキシシラン1.02質量%に代えてn-ヘキシルトリメトキシシラン(HTMS、信越化学工業社製「KBM-3063」)0.15質量%を用い、アルコール溶媒の添加量を16.89質量%としたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B4)
 メチルトリメトキシシラン1.02質量%に代えてn-デシルトリメトキシシラン(DTMS、信越化学工業社製「KBM-3103」)0.07質量%を用い、アルコール溶媒の添加量を16.97質量%としたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B5)
 メチルトリメトキシシラン1.02質量%に代えてn-ドデシルトリメトキシシラン(DDTMS、東京化成工業社製「KBM-3103」)0.07質量%を用い、アルコール溶媒の添加量を16.97質量%としたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B6)
 メチルトリメトキシシラン1.02質量%に代えてフルオロアルキルシラン(F8263、エボニック・デグサ・ジャパン社製「Dynasylan F8263」;炭素数30以下のフルオロアルキル基を含有)0.5質量%を用い、アルコール溶媒の添加量を16.54質量%としたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B7)
 シリカ微粒子及びテトラエトキシシランを添加せず、アルコール溶媒の添加量を18.76質量%、精製水の添加量を17.44質量%としたことを除いては、実施例B4と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B8)
 塗工液をバーコーターにより塗工したことを除いては、実施例B4と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B9)
 メチルトリメトキシシラン1.02質量%に代えてメチルトリエトキシシラン(MTES、信越化学工業社製「KBE-13」)0.27質量%を用い、シリカ微粒子分散液を添加せず、テトラエトキシシランの添加量を0.69質量%とし、チタンラクテートを添加せず、アルコール溶媒の添加量を18.85質量%とし、精製水の添加量を17.63質量%とし、硝酸0.05質量%を用いたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B10)
 メチルトリメトキシシラン1.02質量%に代えてメチルトリエトキシシラン(MTES、信越化学工業社製「KBE-13」)0.27質量%を用い、シリカ微粒子分散液を添加せず、テトラエトキシシランの添加量を0.69質量%とし、チタンラクテートを添加せず、アルコール溶媒の添加量を20.88質量%とし、精製水の添加量を15.63質量%とし、表面調整剤「BYK-307」[ビックケミー・ジャパン(株)製]0.01質量%を添加したことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(実施例B11)
 メチルトリメトキシシラン1.02質量%に代えてn-ヘキシルトリメトキシシラン(HTMS、信越化学工業社製「KBM-3063」)0.37質量%を、硝酸0.01質量%に代えて塩酸0.01質量%をそれぞれ用い、アルコール溶媒の添加量を20.44質量%とし、精製水の添加量を15.63質量%としたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(比較例B1)
 塗工液を塗布することなく、実施例B1で用いたフロート板ガラスをそのまま評価した。
(参照例B1)
 メチルトリメトキシシラン1.02質量%に代えてテトラエトキシシラン(TEOS、信越化学工業社製「KBE-04」)0.18質量%を用い、アルコール溶媒の添加量を16.86質量%としたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
(参照例B2)
 メチルトリメトキシシラン1.02質量%に代えて3-グリシドキシプロピルトリメトキシシラン(GPTMS、信越化学工業社製「KBM-403」)0.07質量%を用い、アルコール溶媒の添加量を16.97質量%としたことを除いては、実施例B1と同様にして、塗工液を調製し、防曇性物品を作製した。
 ここで、テトラエトキシシラン由来のシリカ成分の質量部とは、テトラエトキシシランをSiO2に換算した質量部であり、GPTMS由来のシリカ成分の質量部とは、GPTMSをSiO1.5に換算した質量部であり、撥水基含有化合物由来のシリカ成分の質量部とは、その撥水基含有加水分解性シリコン化合物を、加水分解性官能基の数に応じて、SiO1.5又はSiOに換算した質量部である。
 以上の実施例、比較例及び参照例について、ポリビニルアセタール100質量部に対する塗工液の各成分の量等を表3に、防曇性物品の評価結果を表4にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、参照例B1、B2についての耐湿布拭き性の評価結果は、共に「○」であった。
 

Claims (34)

  1.  透明物品と、前記透明物品上に形成された防曇膜と、を備え、
     前記防曇膜が、吸水性樹脂、撥水基及び金属酸化物成分を含む単層膜であり、
     前記撥水基が、水素原子の少なくとも一部がフッ素原子により置換されていてもよい炭素数1~30の鎖状又は環状のアルキル基であり、
     前記撥水基が前記金属酸化物成分を構成する金属原子に直接結合している、防曇膜つき透明物品。
  2.  前記撥水基が、(1)炭素数3~30の鎖状又は環状のアルキル基、及び(2)水素原子の少なくとも一部をフッ素原子により置換した炭素数1~30の鎖状又は環状のアルキル基から選ばれる少なくとも1種である、請求項1に記載の防曇膜つき透明物品。
  3.  前記鎖状又は環状のアルキル基が、鎖状アルキル基である、請求項2に記載の防曇膜つき透明物品。
  4.  前記鎖状アルキル基が、炭素数6~14の直鎖アルキル基である、請求項3に記載の防曇膜つき透明物品。
  5.  前記防曇膜は、前記吸水性樹脂100質量部に対し、前記金属酸化物成分を0.1~60質量部の範囲で含む、請求項1に記載の防曇膜つき透明物品。
  6.  前記防曇膜の表面に4mgの水滴を滴下して測定した水の接触角が70度以上である、請求項1に記載の防曇膜つき透明物品。
  7.  前記撥水基がメチル基又はエチル基であり、前記防曇膜の表面に4mgの水滴を滴下して測定した水の接触角が70度以上である、請求項1に記載の防曇膜つき透明物品。
  8.  前記防曇膜は、前記吸水性樹脂100質量部に対し、前記撥水基を0.05~10質量部の範囲で含む、請求項1に記載の防曇膜つき透明物品。
  9.  前記吸水性樹脂がポリビニルアセタールである、請求項1に記載の防曇膜つき透明物品。
  10.  前記ポリビニルアセタールが、芳香族アルデヒドに由来するアセタール構造を含む、請求項9に記載の防曇膜つき透明物品。
  11.  前記防曇膜が、有機ホウ素化合物、有機チタン化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種の架橋剤に由来する架橋構造を含む、請求項1に記載の防曇膜つき透明物品。
  12.  前記防曇膜が、前記防曇膜を形成するための塗工液に添加されたチタンラクテートに由来する架橋構造を含む、請求項11に記載の防曇膜つき透明物品。
  13.  前記金属酸化物成分の少なくとも一部が金属酸化物微粒子である、請求項1に記載の防曇膜つき透明物品。
  14.  前記金属酸化物成分の少なくとも一部が、前記防曇膜を形成するための塗工液に添加された、加水分解性金属化合物又は加水分解性金属化合物の加水分解物に由来する金属酸化物成分である、請求項1に記載の防曇膜つき透明物品。
     ただし、前記加水分解性金属化合物は、a)前記撥水基を有する加水分解性金属化合物及びb)前記撥水基を有しない加水分解性金属化合物から選ばれる少なくとも1つである。
  15.  前記金属酸化物成分が、前記防曇膜を形成するための塗工液に添加された金属酸化物微粒子に由来する金属酸化物成分と、前記塗工液に添加された、加水分解性金属化合物又は加水分解性金属化合物の加水分解物に由来する金属酸化物成分とを含む、請求項1に記載の防曇膜つき透明物品。
     ただし、前記加水分解性金属化合物は、a)前記撥水基を有する加水分解性金属化合物及びb)前記撥水基を有しない加水分解性金属化合物から選ばれる少なくとも1つである。
  16.  b)前記撥水基を有しない加水分解性金属化合物が、テトラアルコキシシラン及びシランカップリング剤から選ばれる少なくとも1つを含む、請求項14に記載の防曇膜つき透明物品。
  17.  前記金属酸化物成分がシリカ成分であり、前記防曇膜がシリコン以外の金属原子をさらに含む、請求項1に記載の防曇膜つき透明物品。
  18.  透明物品と、前記透明物品上に形成された防曇膜と、を備え、
     前記防曇膜が、ポリビニルアセタール、シリカ成分、及びシリコン以外の金属原子を含み、
     前記シリカ成分が、前記防曇膜を形成するための塗工液に添加された、加水分解性シリコン化合物又は加水分解性シリコン化合物の加水分解物に由来し、
     前記シリコン以外の金属原子が、前記塗工液に添加された、有機金属化合物に由来する、防曇膜つき透明物品。
  19.  前記防曇膜が、前記シリコン以外の金属原子を含む架橋構造を含む、請求項18に記載の防曇膜つき透明物品。
  20.  前記ポリビニルアセタールが、芳香族アルデヒドに由来するアセタール構造を含む、請求項18に記載の防曇膜つき透明物品。
  21.  前記シリコン以外の金属原子が、ホウ素、チタン及びジルコニウムから選ばれる少なくとも1つである、請求項18に記載の防曇膜つき透明物品。
  22.  前記シリコン以外の金属原子が、前記塗工液に添加されたチタンラクテートに由来する、請求項21に記載の防曇膜つき透明物品。
  23.  前記加水分解性シリコン化合物が、下記式(III)に示す化合物を含む、請求項18に記載の防曇膜つき透明物品。
     SiY4  (III)
     ここで、Yは、アルコキシル基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである。
  24.  前記加水分解性シリコン化合物が、下記式(IV)に示す化合物をさらに含む、請求項23に記載の防曇膜つき透明物品。
     LmSiY4-m (IV)
     ここで、Yは、アルコキシル基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つであり、Lは、水素原子の少なくとも一部が置換されていてもよい鎖状又は環状の炭化水素基であり、mは1~3の整数である。
  25.  前記Lが、水素原子の少なくとも一部がフッ素原子により置換されていてもよい炭素数1~30の鎖状又は環状のアルキル基である、請求項24に記載の防曇膜つき透明物品。
  26.  前記式(III)に示す化合物に含まれるシリコン原子の数NSi(III)と前記式(IV)に示す化合物に含まれるシリコン原子の数NSi(IV)との合計NSi(T)に対する、前記式(IV)に示す化合物に含まれるシリコン原子の数NSi(IV)の比NSi(IV)/NSi(T)が、0.01~0.4の範囲内にある、請求項24に記載の防曇膜つき透明物品。
  27.  前記防曇膜が金属酸化物微粒子をさらに含む、請求項18に記載の防曇膜つき透明物品。
  28.  前記金属酸化物微粒子がシリカ微粒子である、請求項27に記載の防曇膜つき透明物品。
  29.  前記金属酸化物微粒子の平均粒径が1~20nmである、請求項27に記載の防曇膜つき透明物品。
  30.  前記防曇膜が、前記ポリビニルアセタール100質量部に対し、
     前記シリカ成分0.01~60質量部、
     前記シリコン以外の金属原子0.01~50質量部、
    を含む、請求項18に記載の防曇膜つき透明物品。
  31.  前記防曇膜が、前記ポリビニルアセタール100質量部に対し、前記シリカ成分1~15質量部を含む、請求項30に記載の防曇膜つき透明物品。
  32.  前記防曇膜が、前記ポリビニルアセタール100質量部に対し、前記シリコン以外の金属原子0.1~10質量部を含む、請求項30に記載の防曇膜つき透明物品。
  33.  前記防曇膜が、前記ポリビニルアセタール100質量部に対し、金属酸化物微粒子0~50質量部を含む、請求項30に記載の防曇膜つき透明物品。
  34.  前記防曇膜が、前記ポリビニルアセタール100質量部に対し、前記金属酸化物微粒子1~30質量部を含む、請求項33に記載の防曇膜つき透明物品。
PCT/JP2015/002818 2014-06-05 2015-06-03 防曇膜つき透明物品 WO2015186360A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/316,045 US10011733B2 (en) 2014-06-05 2015-06-03 Anti-fogging coated transparent article
BR122020004549-3A BR122020004549B1 (pt) 2014-06-05 2015-06-03 Artigo transparente revestido de antiembaçante
JP2016525706A JP6633519B2 (ja) 2014-06-05 2015-06-03 防曇膜つき透明物品
BR112016028207-8A BR112016028207B1 (pt) 2014-06-05 2015-06-03 artigo transparente revestido de antiembaçante
BR122018010566-6A BR122018010566B1 (pt) 2014-06-05 2015-06-03 artigo transparente revestido de antiembaçante
EP15803607.9A EP3156227B1 (en) 2014-06-05 2015-06-03 Anti-fogging coated transparent article
US15/993,151 US10400130B2 (en) 2014-06-05 2018-05-30 Anti-fogging coated transparent article

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-116703 2014-06-05
JP2014116702 2014-06-05
JP2014-116702 2014-06-05
JP2014116703 2014-06-05
JP2015006931 2015-01-16
JP2015-006931 2015-01-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/316,045 A-371-Of-International US10011733B2 (en) 2014-06-05 2015-06-03 Anti-fogging coated transparent article
US15/993,151 Division US10400130B2 (en) 2014-06-05 2018-05-30 Anti-fogging coated transparent article

Publications (1)

Publication Number Publication Date
WO2015186360A1 true WO2015186360A1 (ja) 2015-12-10

Family

ID=54766443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002818 WO2015186360A1 (ja) 2014-06-05 2015-06-03 防曇膜つき透明物品

Country Status (6)

Country Link
US (2) US10011733B2 (ja)
EP (1) EP3156227B1 (ja)
JP (2) JP6633519B2 (ja)
BR (3) BR122018010566B1 (ja)
CL (1) CL2016003085A1 (ja)
WO (1) WO2015186360A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140146A1 (ja) * 2015-03-03 2016-09-09 株式会社スリーボンド 防曇剤組成物
WO2017183701A1 (ja) * 2016-04-22 2017-10-26 日本板硝子株式会社 車両用窓ガラス
WO2017183700A1 (ja) * 2016-04-22 2017-10-26 日本板硝子株式会社 ウインドシールド
WO2018110465A1 (ja) * 2016-12-12 2018-06-21 日本板硝子株式会社 ウインドシールド、ウインドシールド用ガラス製品及び防曇部材
WO2019150780A1 (ja) * 2018-01-31 2019-08-08 富士フイルム株式会社 コート剤、積層体、及び積層体の製造方法
JP2019210181A (ja) * 2018-06-04 2019-12-12 日本板硝子株式会社 ウインドシールド
JP2020050808A (ja) * 2018-09-28 2020-04-02 旭化成株式会社 コーティング組成物
JPWO2019082695A1 (ja) * 2017-10-23 2020-12-03 Agc株式会社 防曇性ガラス物品
WO2021075359A1 (ja) * 2019-10-17 2021-04-22 日本板硝子株式会社 ガラス体
WO2022260144A1 (ja) * 2021-06-11 2022-12-15 日本板硝子株式会社 セキュリティカメラ用防曇膜付き透明物品及びセキュリティカメラ
JPWO2022260145A1 (ja) * 2021-06-11 2022-12-15
WO2023166761A1 (ja) * 2022-03-02 2023-09-07 株式会社レゾナック 防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体
JP7467409B2 (ja) 2018-07-23 2024-04-15 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 耐クラック性コーティング組成物およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604011B2 (en) 2015-10-13 2020-03-31 Consumer Safety Technology, Llc Networked intoxication vehicle immobilization
US20200223188A1 (en) * 2016-07-20 2020-07-16 Nippon Sheet Glass Company, Limited Antifog film
CN111978804A (zh) * 2020-08-28 2020-11-24 苏州瑞康真空科技有限公司 一种超亲水防雾化涂料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148535A (ja) * 1985-12-23 1987-07-02 Toray Ind Inc 防曇性物品の製造方法
JP2001146585A (ja) * 1999-11-19 2001-05-29 Central Glass Co Ltd 防曇性基材およびその形成方法
JP2005314495A (ja) * 2004-04-27 2005-11-10 Dainichiseika Color & Chem Mfg Co Ltd 防曇塗料、防曇性フィルムおよびその製造方法
JP2012017394A (ja) * 2010-07-07 2012-01-26 Central Glass Co Ltd 防曇性物品
JP2012117025A (ja) * 2010-12-03 2012-06-21 Nippon Sheet Glass Co Ltd 防曇性膜被覆物品
JP2013193043A (ja) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd 吸水材料組成物および吸水性シート

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478909A (en) 1980-10-24 1984-10-23 Toray Industries, Inc. Anti-fogging coating film
EP1101748B1 (en) * 1999-11-19 2005-01-26 Central Glass Company, Limited Article with antifogging film and process for producing same
JP2001152137A (ja) 1999-11-26 2001-06-05 Central Glass Co Ltd 防曇性被膜形成基材およびその製造方法
US7348062B2 (en) * 2006-06-10 2008-03-25 Solutia Incorporated Interlayers comprising modified fumed silica

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148535A (ja) * 1985-12-23 1987-07-02 Toray Ind Inc 防曇性物品の製造方法
JP2001146585A (ja) * 1999-11-19 2001-05-29 Central Glass Co Ltd 防曇性基材およびその形成方法
JP2005314495A (ja) * 2004-04-27 2005-11-10 Dainichiseika Color & Chem Mfg Co Ltd 防曇塗料、防曇性フィルムおよびその製造方法
JP2012017394A (ja) * 2010-07-07 2012-01-26 Central Glass Co Ltd 防曇性物品
JP2012117025A (ja) * 2010-12-03 2012-06-21 Nippon Sheet Glass Co Ltd 防曇性膜被覆物品
JP2013193043A (ja) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd 吸水材料組成物および吸水性シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156227A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140146A1 (ja) * 2015-03-03 2016-09-09 株式会社スリーボンド 防曇剤組成物
JPWO2016140146A1 (ja) * 2015-03-03 2017-12-07 株式会社スリーボンド 防曇剤組成物
WO2017183701A1 (ja) * 2016-04-22 2017-10-26 日本板硝子株式会社 車両用窓ガラス
WO2017183700A1 (ja) * 2016-04-22 2017-10-26 日本板硝子株式会社 ウインドシールド
JPWO2017183701A1 (ja) * 2016-04-22 2019-02-28 日本板硝子株式会社 車両用窓ガラス
WO2018110465A1 (ja) * 2016-12-12 2018-06-21 日本板硝子株式会社 ウインドシールド、ウインドシールド用ガラス製品及び防曇部材
JPWO2018110465A1 (ja) * 2016-12-12 2019-06-24 日本板硝子株式会社 ウインドシールド、ウインドシールド用ガラス製品及び防曇部材
CN110049957A (zh) * 2016-12-12 2019-07-23 日本板硝子株式会社 风窗玻璃、风窗玻璃用玻璃制品和防雾部件
JPWO2019082695A1 (ja) * 2017-10-23 2020-12-03 Agc株式会社 防曇性ガラス物品
JP7234933B2 (ja) 2017-10-23 2023-03-08 Agc株式会社 防曇性ガラス物品
WO2019150780A1 (ja) * 2018-01-31 2019-08-08 富士フイルム株式会社 コート剤、積層体、及び積層体の製造方法
WO2019235479A1 (ja) * 2018-06-04 2019-12-12 日本板硝子株式会社 ウインドシールド
JP2019210181A (ja) * 2018-06-04 2019-12-12 日本板硝子株式会社 ウインドシールド
JP7467409B2 (ja) 2018-07-23 2024-04-15 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 耐クラック性コーティング組成物およびその製造方法
JP2020050808A (ja) * 2018-09-28 2020-04-02 旭化成株式会社 コーティング組成物
JP7051233B2 (ja) 2018-09-28 2022-04-11 旭化成株式会社 コーティング組成物
WO2021075359A1 (ja) * 2019-10-17 2021-04-22 日本板硝子株式会社 ガラス体
EP4046972A4 (en) * 2019-10-17 2023-11-01 Nippon Sheet Glass Company, Limited GLASS BODY
WO2022260145A1 (ja) * 2021-06-11 2022-12-15 日本板硝子株式会社 防曇膜付きガラス物品及び防曇膜形成用塗布液
JPWO2022260144A1 (ja) * 2021-06-11 2022-12-15
JP7281607B2 (ja) 2021-06-11 2023-05-25 日本板硝子株式会社 セキュリティカメラ用防曇膜付き透明物品及びセキュリティカメラ
JP7281608B2 (ja) 2021-06-11 2023-05-25 日本板硝子株式会社 防曇膜付きガラス物品及び防曇膜形成用塗布液
JPWO2022260145A1 (ja) * 2021-06-11 2022-12-15
WO2022260144A1 (ja) * 2021-06-11 2022-12-15 日本板硝子株式会社 セキュリティカメラ用防曇膜付き透明物品及びセキュリティカメラ
WO2023166761A1 (ja) * 2022-03-02 2023-09-07 株式会社レゾナック 防曇剤、車両用ランプ構造体の防曇方法、及び車両用ランプ構造体

Also Published As

Publication number Publication date
EP3156227A1 (en) 2017-04-19
US20170096574A1 (en) 2017-04-06
BR122020004549B1 (pt) 2021-06-22
EP3156227A4 (en) 2018-01-10
US10400130B2 (en) 2019-09-03
BR112016028207B1 (pt) 2021-07-06
EP3156227B1 (en) 2024-03-13
JPWO2015186360A1 (ja) 2017-06-08
US20180273791A1 (en) 2018-09-27
JP2020044841A (ja) 2020-03-26
BR112016028207A2 (pt) 2017-08-22
JP6633519B2 (ja) 2020-01-22
JP6823141B2 (ja) 2021-01-27
US10011733B2 (en) 2018-07-03
BR122018010566B1 (pt) 2021-02-02
CL2016003085A1 (es) 2017-09-08

Similar Documents

Publication Publication Date Title
JP6823141B2 (ja) 防曇膜つき透明物品
JP4872549B2 (ja) 熱線遮蔽膜形成基材の製法
JP2019064913A (ja) ガラス物品
WO2004070436A1 (ja) 低反射処理物品の製造方法、低反射層形成用溶液および低反射処理物品
WO1999029635A1 (fr) Plaque de verre antireflet, son procede de production et composition de revetement antireflet
JP4048912B2 (ja) 表面防汚性複合樹脂フィルム、表面防汚性物品、化粧板
WO2012073685A1 (ja) 防曇性膜被覆物品
JPWO2015166858A6 (ja) 液状組成物および抗菌性物品
JP2017025120A (ja) 液状組成物および抗菌性物品
JP5446266B2 (ja) 車両用熱線遮蔽ガラス及びその製造方法
JP2012017394A (ja) 防曇性物品
JPWO2006011605A1 (ja) 防曇性物品およびその製造方法
JP5448301B2 (ja) コーティング組成物及び樹脂積層体
JP3427755B2 (ja) シリカ系膜被覆物品を製造する方法
JP6617699B2 (ja) ガラス物品
WO2011090156A1 (ja) 防曇性物品
KR20140134867A (ko) 저반사특성을 갖는 내오염성 코팅용액 조성물 및 그 제조방법
WO2015166863A1 (ja) 液状組成物およびガラス物品
JPH08231807A (ja) プライマー組成物及びプラスチックレンズ
JP2009084476A (ja) コーティング用組成物及びその製造方法、並びに該コーティング用組成物からなる塗膜
WO2017183700A1 (ja) ウインドシールド
JP2003292342A (ja) シリカ系膜被覆物品
JP4725073B2 (ja) コーティング材組成物及び塗装品
JP2017136696A (ja) 被膜つき透明基体
JP2020091960A (ja) 照明用カバー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525706

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 122020004549

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15316045

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016028207

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015803607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803607

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016028207

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161130