WO2015151415A1 - 有機発光装置および有機発光装置の製造方法 - Google Patents

有機発光装置および有機発光装置の製造方法 Download PDF

Info

Publication number
WO2015151415A1
WO2015151415A1 PCT/JP2015/001358 JP2015001358W WO2015151415A1 WO 2015151415 A1 WO2015151415 A1 WO 2015151415A1 JP 2015001358 W JP2015001358 W JP 2015001358W WO 2015151415 A1 WO2015151415 A1 WO 2015151415A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
organic
light emitting
emitting device
Prior art date
Application number
PCT/JP2015/001358
Other languages
English (en)
French (fr)
Inventor
宏明 山根
西村 征起
潤 橋本
哲征 松末
米田 和弘
ミンヒェップ ホアン
Original Assignee
株式会社Joled
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled filed Critical 株式会社Joled
Priority to US15/300,481 priority Critical patent/US10559642B2/en
Priority to JP2016511355A priority patent/JP6358447B2/ja
Publication of WO2015151415A1 publication Critical patent/WO2015151415A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers

Definitions

  • the present invention relates to an organic light emitting device including a light emitting layer including an organic light emitting material sandwiched between an anode and a cathode, and a method for manufacturing the same.
  • the organic light emitting device includes, for example, a TFT (Thin Film Transistor) substrate, an anode, a light emitting layer, and a cathode.
  • the organic EL element includes a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a sealing layer, and the like as necessary.
  • the organic EL display panel has a configuration in which a plurality of subpixels are two-dimensionally arranged along the main surface of the substrate. Each subpixel has a configuration in which an anode, a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and a cathode are stacked in this order above the substrate.
  • an anode may be formed as an independent electrode for each pixel, and a cathode may be formed as a common electrode common to a plurality of pixels.
  • a voltage is applied from the outer peripheral portion of the cathode, so that a voltage drop occurs in the central portion of the cathode due to the electrical resistance of the cathode itself. Since the distance from the outer peripheral portion of the common electrode to each pixel varies from pixel to pixel, the voltage applied between the anode and the cathode varies from pixel to pixel, causing uneven luminance in the organic EL display panel. It becomes. In particular, when the organic EL display panel is increased in size, the voltage variation becomes significant.
  • Patent Document 1 discloses a technique for suppressing variation in voltage applied between an upper electrode and a lower electrode by providing a wiring on a substrate and electrically connecting the wiring and the upper electrode. It is disclosed. The electrical connection is often made by bringing the wiring and the cathode into direct contact.
  • an electron transport layer the research and development of adopting a layer in which an organic material is doped with an alkali metal or alkaline earth metal having a low work function is being conducted. It is known that if such an electron transport layer is employed, good electron injection characteristics can be obtained.
  • Alkali metals and alkaline earth metals with low work functions are likely to react with impurities such as moisture and oxygen. Therefore, the functional layer containing an alkali metal or an alkaline earth metal is accelerated in the presence of impurities, and adverse effects such as a reduction in the light emission efficiency and a reduction in the light emission lifetime of the organic EL element occur, resulting in a decrease in storage stability. Further, when impurities come into contact with the cathode made of metal, corrosion or deterioration may occur, and the same adverse effects as described above may be caused.
  • a light emitting layer, a hole injection layer, a hole transport layer, a partition wall, and the like are formed by a wet process, impurities (moisture, oxygen) remain in these layers or on the surface, and these impurities are used as a cathode metal or functional layer. There is a risk of deteriorating the alkali metal and alkaline earth metal inside.
  • Patent Document 2 discloses a technique of providing an intermediate layer made of an alkali metal or alkaline earth metal fluoride between a light emitting layer and an organic functional layer.
  • the layer disposed above the light-emitting layer does not need to be divided for each pixel, so that it may be formed as a common layer across the pixels from the viewpoint of simplification of manufacturing. is there.
  • the fluoride of alkali metal or alkaline earth metal has a property of high electrical resistivity.
  • the intermediate layer is interposed between the wiring and the portion of the cathode facing the wiring.
  • the electrical resistance hereinafter referred to as “contact resistance”
  • the present invention has been made in view of the above-described problems, and has a configuration in which an intermediate layer made of an alkali metal or alkaline earth metal fluoride is interposed between a wiring and a cathode, thereby suppressing contact resistance.
  • An object of the present invention is to provide an organic light emitting device and a manufacturing method thereof.
  • an organic light emitting device includes a substrate, an anode disposed above the substrate, and the anode spaced apart from the anode in a direction parallel to a main surface of the substrate.
  • a wiring disposed above the substrate, a light emitting layer disposed above the anode, including an organic light emitting material, a common disposed on the light emitting layer and the wiring, and an alkali metal or an alkaline earth metal.
  • the thickness x [nm] of the intermediate layer and the doping concentration y [wt%] of the second metal in the organic functional layer are 1 ⁇ x ⁇ 2, 20 ⁇
  • the electrical resistance between the wiring and the cathode falls within an appropriate range.
  • FIG. 3 On the graph based on the film thickness of an intermediate
  • FIG. 7 is a fragmentary sectional view which shows the state in which the anode and wiring were formed on the interlayer insulation layer.
  • (D) is a partial sectional view showing a state in which a hole injection layer is formed on the anode and the wiring.
  • FIG. 8 is a partial cross-sectional view schematically showing a part of the manufacturing process of the organic EL display panel continued from FIG. 7.
  • (A) is a fragmentary sectional view which shows the state by which the partition material layer was formed on the positive hole injection layer and the interlayer insulation layer.
  • (B) is a fragmentary sectional view showing a state in which a partition layer is formed on the hole injection layer and the interlayer insulating layer.
  • FIG. 9 is a partial cross-sectional view schematically showing part of the manufacturing process of the organic EL display panel continued from FIG. 8.
  • (A) is a fragmentary sectional view which shows the state in which the intermediate
  • (B) is a fragmentary sectional view which shows the state in which the organic functional layer was formed on the intermediate
  • (C) is a fragmentary sectional view which shows the state in which the cathode and the sealing layer were formed on the organic functional layer.
  • FIG. 2 is a schematic process diagram showing a manufacturing process of the organic EL display panel shown in FIG. 1.
  • An organic light emitting device is disposed above a substrate, an anode disposed above the substrate, and spaced apart from the anode in a direction parallel to a main surface of the substrate.
  • the thickness of the intermediate layer is x [nm] and the doping concentration of the second metal in the organic functional layer is y [wt%], 1 ⁇ x ⁇ 2, 20 ⁇ y ⁇ 40, y It satisfies the relationship of ⁇ 20x.
  • the electrical resistance between the wiring and the cathode falls within an appropriate range, and variations in the voltage applied across the display surface or the entire light emitting surface can be suppressed. Can be suppressed.
  • the first metal is sodium
  • the second metal is barium soot.
  • the organic functional layer can be formed using a highly versatile material such as barium, which can contribute to cost reduction.
  • the anode and the wiring are made of the same material.
  • the anode and the wiring can be formed in a single process using the same material, it is possible to contribute to improvement of work efficiency by reducing the number of processes and cost reduction by material commonality.
  • the anode is made of ITO or IZO.
  • the cathode is made of a transparent conductive material.
  • the transparent conductive material is ITO.
  • ITO organic EL
  • an organic light emitting device wherein an anode and a wiring separated from the anode are formed in a direction parallel to a main surface of the substrate above the substrate, and the organic light emitting is formed above the anode.
  • a light emitting layer containing a material is formed, and an intermediate layer containing a fluoride of a first metal that is an alkali metal or an alkaline earth metal is formed in common on the light emitting layer and the wiring.
  • An organic functional layer formed by doping an organic material having at least one of injection properties with a second metal having a property of breaking the bond between the first metal and fluorine in the fluoride of the first metal;
  • a common cathode is formed above the light emitting layer and the wiring through an intermediate layer, and a common cathode is formed above the light emitting layer and the wiring through the organic functional layer.
  • the first metal is sodium.
  • the second metal is barium soot.
  • the organic functional layer can be formed using a highly versatile material such as barium, which can contribute to cost reduction.
  • Barium and sodium are both substances having a low work function and a high electron injection property.
  • the electron injection property better than that of barium can be obtained from sodium because of the energy level relationship with the light emitting layer.
  • sodium is very reactive, and even when trying to form a layer of sodium alone, it reacts with the surrounding oxygen and moisture immediately during the formation and is oxidized, so a layer of sodium alone is formed. It is very difficult to do.
  • an intermediate layer having a structure in which a first intermediate layer made of relatively stable sodium fluoride (NaF) and a second intermediate layer made of barium are laminated in this order.
  • NaF sodium fluoride
  • barium in the second intermediate layer breaks the bond between sodium and fluorine in NaF in the first intermediate layer, so that sodium is liberated and the liberated sodium promotes electron injection into the light emitting layer. it can.
  • NaF has electrical insulation
  • the electrical resistance increases.
  • the film thickness of the second intermediate layer is too thick with respect to the first intermediate layer
  • NaF in the first intermediate layer is decomposed more than necessary, and the electron injection property becomes higher than necessary.
  • the balance between the supply amount of holes and the supply amount of electrons is lost, and the light emission efficiency is lowered.
  • the balance between the amount of NaF in the first intermediate layer and the amount of Ba in the second intermediate layer is important.
  • the formation of the second intermediate layer is performed by vapor deposition, but since the film thickness of the second intermediate layer is as thin as 1 [nm], vapor deposition must be performed slowly at a low rate. It took a long time and was difficult to control. In addition, since the film thickness is thin, it is difficult to form uniformly, and there is a problem that a portion where the Ba layer is formed and a portion where the Ba layer is not formed are easily formed.
  • the inventors have invented a configuration capable of reducing contact resistance with a configuration not including a Ba layer (second intermediate layer).
  • FIG. 1 is a partially enlarged cross-sectional view of an organic EL display panel 100 according to an embodiment.
  • the organic EL display panel 100 has a plurality of pixels arranged in a matrix on the substrate 11, and each pixel has three sub-pixels corresponding to R (red), G (green), and B (blue), respectively. Consists of.
  • the organic EL display panel 100 is a so-called top emission type in which the upper side of FIG.
  • the organic EL display panel 100 includes a substrate 11, an interlayer insulating layer 12, an anode 13, a wiring 14, a hole injection layer 15, a partition wall layer 16, a hole transport layer 17, light emitting layers 18R, 18G, and 18B, an intermediate layer 19, and an organic layer.
  • a functional layer 20, a cathode 21, and a sealing layer 22 are provided.
  • the substrate 11, the interlayer insulating layer 12, the intermediate layer 19, the organic functional layer 20, the cathode 21, and the sealing layer 22 are formed in common for a plurality of pixels.
  • the substrate 11 includes a base material 111 that is an insulating material and a TFT (Thin Film Transistor) layer 112.
  • a drive circuit (not shown) is formed for each subpixel.
  • a material for forming the base material 111 for example, glass is used. Specific examples of the glass material include alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz glass, and the like.
  • the interlayer insulating layer 12 is formed on the substrate 11.
  • the interlayer insulating layer 12 is made of a resin material, and is for flattening a step on the upper surface of the TFT layer 112.
  • a positive photosensitive material is used as the resin material on which the interlayer insulating layer 12 is formed. Examples of such photosensitive materials include acrylic resins, polyimide resins, siloxane resins, and phenol resins.
  • the anode 13 is made of a conductive material and is formed on the interlayer insulating layer 12 for each subpixel. Since the organic EL display panel 100 according to the present embodiment is a top emission type, the anode 13 may be formed of a conductive material having light reflectivity. Examples of the conductive material having light reflectivity include metals.
  • the anode 13 may have a laminated structure of the conductive material having the light reflectivity and the transparent conductive material.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • ZnO zinc oxide
  • a contact hole is formed in the interlayer insulating layer 12 for each subpixel.
  • a TFT connection wiring is embedded in the contact hole, and the anode 13 is electrically connected to a drive circuit formed in the TFT layer 112 via the TFT connection wiring.
  • the wiring 14 is provided on the interlayer insulating layer 12 so as to be separated from the anode 13 in a direction parallel to the main surface of the substrate 11.
  • the wiring 14 is made of a conductive material such as metal.
  • the wiring 14 may be configured by stacking a plurality of layers made of a conductive material.
  • the wiring 14 may be made of the same material as the anode 13. In that case, since the anode 13 and the wiring 14 can be formed at a time in a common process, manufacturing is easy.
  • FIG. 2 is a plan view showing a layout of the anode 13 and the wiring 14 in plan view.
  • the anode 13 has a rectangular shape in plan view
  • the wiring 14 has a line shape in plan view.
  • the anodes 13 are arranged in a matrix (matrix) along the X-axis direction and the Y-axis direction. Three rows of anodes 13 in the Y-axis direction are arranged between the adjacent wirings 14. That is, the wirings 14 are arranged every three rows along the rows of anodes 13 (rows in the Y-axis direction).
  • the hole injection layer 15 has a function of promoting injection of holes from the anode 13 to the light emitting layer 18. Therefore, although the hole injection layer 15 is provided on the anode 13, it is not provided on the wiring 14.
  • the hole injection layer 15 is made of, for example, a metal oxide.
  • the hole injection layer 15 is formed by, for example, a sputtering method.
  • the metal oxide which is a material for forming the hole injection layer 15 include tungsten oxide (WO x ), molybdenum oxide (MoO x ), silver (Ag), chromium (Cr), vanadium (V), nickel ( An oxide such as Ni) or iridium (Ir) can be used.
  • the hole injection layer 15 may be formed using a conductive polymer material such as PEDOT (a mixture of polythiophene and polystyrene sulfonic acid) or polyaniline. In this case, the hole injection layer 15 is formed by a wet process. When the hole injection layer 15 is formed by a wet process, a partition layer is required in the formation process. Therefore, after the formation of the partition layer 16 and before the formation of the hole transport layer 17, the hole injection layer 15 is formed. Formation takes place.
  • the hole injection layer 15 may be formed by combining a layer formed by a dry process such as sputtering and a layer formed by a wet process.
  • Partition wall layer The partition layer 16 is formed on the hole injection layer 15 so as to expose a partial region of the upper surface of the hole injection layer 15 disposed on the anode 13 and the wiring 14 and cover the peripheral region. Yes. A region of the upper surface of the hole injection layer 15 that is not covered with the partition wall layer 16 (hereinafter referred to as “opening”) corresponds to a subpixel. That is, the partition wall layer 16 has an opening 16a provided for each subpixel.
  • the partition layer 16 is made of, for example, an insulating organic material (for example, an acrylic resin, a polyimide resin, a novolac resin, a phenol resin, or the like).
  • the partition wall layer 16 functions as a structure for preventing the applied ink from overflowing when the light emitting layer 18 is formed by a coating method, and when the light emitting layer 18 is formed by a vapor deposition method, It functions as a structure for mounting a vapor deposition mask.
  • the partition wall layer 16 is made of a resin material, and for example, a positive photosensitive material can be used. Specific examples of such photosensitive materials include acrylic resins, polyimide resins, siloxane resins, and phenol resins. In this embodiment, a phenolic resin is used.
  • the hole transport layer 17 has a function of transporting holes injected from the hole injection layer 15 to the light emitting layer 18. Therefore, although the hole transport layer 17 is provided on the hole injection layer 15, it is not provided on the wiring 14.
  • the hole transport layer 17 is formed by applying an organic material solution and drying.
  • an organic material for forming the hole transport layer 17 polymer compounds such as polyfluorene and derivatives thereof, or polyarylamine and derivatives thereof can be used.
  • the hole transport layer 17 includes a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative and a pyrazolone derivative, a phenylenediamine derivative, an arylamine derivative, an amino-substituted chalcone derivative, an oxazole derivative, a styrylanthracene derivative, It may be formed using fluorenone derivatives, hydrazone derivatives, stilbene derivatives, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, butadiene compounds, polystyrene derivatives, hydrazone derivatives, triphenylmethane derivatives, tetraphenylbenzine derivatives. . Particularly preferably, a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound may be used. In this case, the hole transport layer 17 is formed
  • the light emitting layer 18 contains an organic light emitting material and is formed in the opening 16 a located above the anode 13.
  • the light emitting layer 18 has a function of emitting light of each color of R, G, and B by recombination of holes and electrons.
  • R, G, and B are added after the reference numerals of the respective light emitting layers 18 to indicate the corresponding light emission colors.
  • they are simply referred to as “light emitting layer 18”.
  • Examples of the organic light emitting material included in the light emitting layer 18 include oxinoid compounds, perylene compounds, coumarin compounds, azacoumarin compounds, oxazole compounds, oxadiazole compounds, perinone compounds, pyrrolopyrrole compounds, naphthalene compounds, anthracene compounds, fluorene compounds, and fluoranthene.
  • the light emitting layer 18 is formed using polyfluorene or a derivative thereof, polyphenylene or a derivative thereof, a polymer compound such as polyarylamine or a derivative thereof, or the like, or a mixture of the low molecular compound and the polymer compound. Also good.
  • the intermediate layer 19 is provided on the wiring 14 through the light emitting layer 18, the partition wall layer 16, and the hole injection layer 15 in common with a plurality of pixels, and the light emitting layer 18, hole transport layer 17, hole
  • This is a layer for preventing impurities existing in and on the injection layer 15 and the partition wall layer 16 from entering the organic functional layer 20 and the cathode 21. Therefore, the intermediate layer 19 includes a material having an impurity blocking property.
  • the material having impurity blocking properties for forming the intermediate layer 19 is, for example, an alkali metal fluoride or an alkaline earth metal fluoride, such as sodium fluoride (NaF), lithium fluoride (LiF), or cesium fluoride.
  • the alkaline earth metal in the alkaline metal fluoride or the alkaline earth metal fluoride contained in the intermediate layer 19 is defined as the first metal. Therefore, in the present embodiment, the first metal is Na (sodium).
  • the organic functional layer 20 is provided on the intermediate layer 19 in common for a plurality of pixels. That is, the organic functional layer 20 is also provided above the wiring 14.
  • the organic functional layer 20 has a function as an electron transport layer for transporting electrons injected from the cathode 21 to the light emitting layer 18 and / or a function for promoting injection of electrons from the cathode 21 to the light emitting layer 18.
  • the organic functional layer 20 is formed, for example, by doping a metal with an organic material having at least one of an electron transport property and an electron injection property.
  • organic material used for the organic functional layer 20 include ⁇ -electron low molecular organics such as oxadiazole derivatives (OXD), triazole derivatives (TAZ), and phenanthrolin derivatives (BCP, Bphen).
  • OXD oxadiazole derivatives
  • TEZ triazole derivatives
  • BCP phenanthrolin derivatives
  • the metal doped in the organic material has a function of decomposing the bond between the first metal and fluorine in the fluoride of the first metal contained in the intermediate layer 19.
  • an alkali metal or an alkaline earth metal is used as the second metal that decomposes the bond between the first metal and fluorine.
  • low work function metals such as barium, lithium (Li), calcium (Ca), potassium (K), cesium (Cs), sodium, rubidium (Rb), and low work such as lithium fluoride.
  • Functional metal salts, low work function metal oxides such as barium oxide, and low work function metal organic complexes such as lithium quinolinol are used.
  • the second metal is specifically Ba (barium).
  • the cathode 21 is provided on the organic functional layer 20 in common for a plurality of pixels.
  • the cathode 21 is made of, for example, a transparent conductive material. By forming the cathode 21 with the transparent conductive material, light generated in the light emitting layer 18 can be extracted from the cathode 21 side.
  • the transparent conductive material used for the cathode 21 for example, ITO, IZO, or the like can be used.
  • MgAg magnesium silver
  • light can be transmitted by setting the thickness of the cathode 21 to about several tens of nm.
  • a sealing layer 22 is provided on the cathode 21.
  • the sealing layer 22 has a function of preventing impurities (water, oxygen) from entering the cathode 21, the organic functional layer 20, the light emitting layer 18, and the like from the opposite side of the substrate 11.
  • a light transmissive material such as SiN (silicon nitride) or SiON (silicon oxynitride) is used.
  • a color filter or an upper substrate may be placed on the sealing layer 22 and bonded. By placing and bonding the upper substrate, further protection from impurities to the cathode 21, the organic functional layer 20, the intermediate layer 19, the light emitting layer 18, and the like can be achieved.
  • the samples 1 to 3 are 40 wt% and the samples 4 to 6 are 20 wt%. 7 to 9 is 5 wt%.
  • samples 1, 4, and 7 are 1 [nm]
  • samples 2, 5, and 8 are 2 [nm]
  • samples 3, 6, and 9 are 4 [nm].
  • the Ba concentration is 40 [wt%] and the thickness of the intermediate layer 19 is 2 [nm].
  • Samples 5 to 9 were not measurable because the contact resistance value exceeded the measurement limit of the measuring device.
  • FIG. 4 is a graph plotting the contact resistance measurement results for the comparative example, sample 1 and sample 2.
  • the number in the parenthesis in a figure shows a sample number
  • (R) shows a comparative example.
  • the comparative example and the sample 2 both have a thickness of the intermediate layer 19 of 2 [nm], and the comparative example has a Ba layer, whereas the sample 1 does not have a Ba layer. It is different.
  • the contact resistance of the comparative example was 1.86E + 05 [ ⁇ ], whereas the contact resistance of Sample 2 was 4.77E + 05. As described above, when the Ba layer was simply eliminated, the contact resistance increased.
  • sample 1 and sample 2 are compared.
  • the thickness of the intermediate layer 19 is 1 [nm]
  • the thickness of the intermediate layer 19 is 2 [nm].
  • Sample 1 was 8.84E + 04 [ ⁇ ]
  • Sample 2 was 4.77E + 05 [ ⁇ ]. From this result, it has been clarified that even if the Ba layer is eliminated, the contact resistance can be reduced by reducing the thickness of the intermediate layer 19.
  • (rectangle only square) indicates a sample (sample 4) with a Ba concentration of 20 [wt%]
  • diamond filled with black indicates a sample with a Ba concentration of 40 [wt%].
  • both the sample with a Ba concentration of 20 wt% and the sample with 40 wt% showed a lower contact resistance value as the intermediate layer 19 was thinner. Since the intermediate layer 19 is made of NaF having electrical insulating properties, it is considered that the electrical resistance of the intermediate layer 19 itself decreases as the film thickness of the intermediate layer 19 decreases, thereby reducing the contact resistance.
  • the contact resistance value was obtained only for the sample 4 with the intermediate layer 19 having a film thickness of 1 [nm].
  • the contact resistance values of Samples 5 and 6 exceed the measurement limit, and are higher than the contact resistance value of Sample 4. Is certain. Therefore, similarly to the sample with a Ba concentration of 40 [wt%], the sample with the Ba concentration of 20 [wt%] is considered to exhibit a lower contact resistance value as the intermediate layer 19 is thinner.
  • sample 1 and sample 4 in which the film thickness of the intermediate layer 19 is 1 [nm] sample 1 having a Ba concentration of 40 [wt%] is better than sample 4 having a Ba concentration of 20 [wt%]. Showed a low contact resistance value.
  • Samples 5 and 6 with a Ba concentration of 20 [wt%] exceed the measurement limit, and Sample 2 with a Ba concentration of 40 [wt%] , 3 has a higher contact resistance. Therefore, it can be said that the sample with the Ba concentration of 40 wt% shows a lower contact resistance value than the sample with the Ba concentration of 20 wt%.
  • FIG. 6 shows the result of the determination, with the vertical axis (y-axis) representing the Ba concentration [wt%] in the organic functional layer 20 and the horizontal axis (x-axis) representing the film thickness [nm] of the intermediate layer 19. It is the figure plotted on the graph.
  • (circle with only outline) indicates a sample whose contact resistance value is determined to be suitable for practical use (Satisfactory), and ⁇ (diamond filled in black) indicates that the contact resistance value is suitable for practical use. Samples determined to be not (Unsatisfactory) are shown. The numbers in parentheses in the figure indicate sample numbers.
  • the samples for which the contact resistance is determined to be practical are 1, 2, and 4. Therefore, it is considered that the contact resistance value is suitable for practical use in the case of a sample located in a region surrounded by a line segment connecting these three (region shown by hatching in FIG. 6).
  • FIGS. 7 to 9 are partial cross-sectional views schematically showing the manufacturing process of the organic EL display panel 100
  • FIG. 10 is a schematic process diagram showing the manufacturing process of the organic EL display panel 100.
  • a TFT layer 112 is formed on a base material 111 to form a substrate 11 (step S1 in FIG. 10).
  • an interlayer insulating layer 12 is formed on the substrate 11 (step S2 in FIG. 10).
  • an acrylic resin that is a positive photosensitive material is used as the interlayer insulating layer resin that is a material of the interlayer insulating layer 12.
  • the interlayer insulating layer 12 is formed by applying an interlayer insulating layer solution in which an acrylic resin, which is an interlayer insulating layer resin, is dissolved in an interlayer insulating layer solvent (for example, PGMEA) on the substrate 11, and then baking. This is performed (step S3 in FIG. 10). Firing is performed at a temperature of 150 ° C. or higher and 210 ° C. or lower for 180 minutes, for example.
  • the anode 13 and the wiring 14 are formed on the interlayer insulating layer 12.
  • the anode 13 and the wiring 14 are formed to a thickness of about 150 [nm] based on a vacuum deposition method or a sputtering method (step S4 in FIG. 10).
  • the anode 13 is formed for each subpixel.
  • the hole injection layer 15 is formed on the anode 13 and the wiring 14 (step S5 in FIG. 10).
  • the hole injection layer 15 is not necessarily formed on the wiring 14.
  • the hole injection layer 15 is formed by a coating process, it is formed after the partition layer 16 is formed and before the hole transport layer 17 is formed.
  • a partition wall layer resin that is a material of the partition wall layer 16 is applied on the hole injection layer 15 and the interlayer insulating layer 12 to form a partition wall material layer 160.
  • a partition layer resin for example, a phenol resin, which is a positive photosensitive material, is used.
  • a solution obtained by dissolving a phenol resin, which is a partition wall resin, in a solvent for example, a mixed solvent of ethyl lactate and GBL
  • the partition wall layer 16 is formed by performing pattern exposure and development on the partition wall material layer 160 (FIG. 8B, step S6 in FIG. 10), and the partition layer 16 is baked (step S7 in FIG. 10).
  • an opening 16 a that is a formation region of the light emitting layer 18 and an opening 16 b that is a contact region where power is received between the wiring 14 and the cathode 21 are defined.
  • the partition layer 16 is baked, for example, at a temperature of 150 ° C. or higher and 210 ° C. or lower for 60 minutes.
  • the surface of the partition wall layer 16 may be further subjected to a surface treatment with a predetermined alkaline solution, water, an organic solvent or the like, or a plasma treatment may be performed. This is performed for the purpose of adjusting the contact angle of the partition wall layer 16 with respect to the ink (solution) applied to the opening 16a, or for the purpose of imparting water repellency to the surface.
  • an ink containing a constituent material of the hole transport layer 17 is applied to the opening 16a defined by the partition wall layer 16, and baked (dried) to form the hole transport layer 17 (FIG. 10).
  • the light emitting layer 18 is formed by application
  • the hole transport layer 17 and the light emitting layer 18 are not limited to a wet process, and may be formed by, for example, a vacuum deposition method.
  • an intermediate layer 19 is formed in common on the hole injection layer 15 formed on the light emitting layer 18, the partition layer 16, and the wiring 14 (FIG. 9A).
  • 10 step S10) sodium fluoride is deposited using a vacuum evaporation method or a sputtering method, and the intermediate layer 19 is formed.
  • the organic functional layer 20 is formed on the intermediate layer 19 (step S11 in FIG. 10). Specifically, an organic functional layer 20 made of an organic material doped with barium is formed by depositing an organic material and barium by co-evaporation.
  • a cathode 21 and a sealing layer 22 are formed on the organic functional layer 20.
  • a material such as ITO or IZO is used to form a cathode 21 by vacuum deposition, sputtering, or the like to form the cathode 21 (step S12 in FIG. 10).
  • the sealing layer 22 is formed on the cathode 21 by using SiN as a material by a sputtering method, a CVD (Chemical Vapor Deposition) method, or the like (step S13 in FIG. 10).
  • the organic EL display panel 100 is completed through the above steps.
  • the Ba concentration in the organic functional layer 20 and the film thickness of the intermediate layer 19 are adjusted so as to be within the practical suitability region.
  • the thickness of the cathode may be reduced in order to increase the light extraction efficiency.
  • the electrical resistivity of the cathode itself is high, and voltage variation within the cathode panel surface is likely to occur. Therefore, it is particularly useful to suppress contact resistance.
  • a color filter or an upper substrate may be placed on the sealing layer 22 and bonded.
  • the Ba concentration in the organic functional layer 20 and the film thickness of the intermediate layer 19 are obtained.
  • the value of the contact resistance falls within the range suitable for practical use, variation in the voltage applied to each pixel is suppressed, and uneven brightness can be suppressed.
  • the practical aptitude region is 1 ⁇ x ⁇ 2, when the Ba concentration [wt%] in the organic functional layer 20 is taken on the y axis and the film thickness [nm] of the intermediate layer 19 is taken on the x axis.
  • the region satisfies the relationship of 20 ⁇ y ⁇ 40 and y ⁇ 20x.
  • the present invention is not limited to the above-mentioned embodiment, and the following modifications can be carried out.
  • the wireing In the above embodiment, the shape of the wiring is a line shape. However, the shape of the wiring is not limited to this, and other shapes such as a mesh shape may be used.
  • Electron Injection Layer In the organic EL display panel according to the above embodiment, an electron injection layer may be further provided in addition to the organic functional layer 20. The electron injection layer has a function of promoting the injection of electrons from the cathode to the light emitting layer.
  • the electron injection layer is, for example, a low work function metal such as lithium, barium, calcium, potassium, cesium, sodium, or rubidium, a low work function metal salt such as lithium fluoride, or a low work function metal such as barium oxide (BaO). It can be formed using an oxide or the like. 4).
  • Hole injection layer and hole transport layer The organic EL display panel 100 according to the above embodiment includes the hole injection layer 15 and the hole transport layer 17 between the anode 13 and the light emitting layer 18. Not limited to. Only one of the hole injection layer 15 and the hole transport layer 17 may be provided, or both the hole injection layer 15 and the hole transport layer 17 may not be provided. 5.
  • the organic EL display panel 100 is a top emission type in which light is extracted from the side opposite to the substrate, but is not limited thereto, and may be a bottom emission type. In the case of the bottom emission type, the anode 13 may have a single layer structure of a transparent conductive material. 6). Others In the above embodiment, an organic EL display panel has been described as an example of the organic light emitting device according to one aspect of the present invention. However, the organic light-emitting device according to one embodiment of the present invention is not limited to the organic EL display panel, and can be realized as a lighting device or the like.
  • the present invention can be used for, for example, an organic EL display panel, a lighting device, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 基板と、基板の上方に配された陽極と、基板の主面に平行な方向に陽極から離間して基板の上方に配された配線と、陽極の上方に配され、有機発光材料を含む発光層と、発光層上および配線上に共通して配され、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層と、発光層および配線の上方に中間層を介して共通して配され、電子輸送性および電子注入性のうち少なくとも一方の性質を有する有機材料に、第1金属のフッ化物における第1金属とフッ素との結合を切る性質を有する第2金属がドープされて成る有機機能層と、発光層および配線の上方に有機機能層を介して共通して配された陰極とを有する有機発光装置である。

Description

有機発光装置および有機発光装置の製造方法
 本発明は、陽極および陰極に挟まれた有機発光材料を含む発光層を備えた有機発光装置、およびその製造方法に関する。
 近年、有機EL(Electro-Luminescence)表示パネルや有機EL照明等の有機発光装置の開発が盛んに行われている。有機発光装置は、例えば、TFT(Thin Film Transistor:薄膜トランジスタ)基板と、陽極と、発光層と、陰極とから構成されている。さらに、有機EL素子は、必要に応じて、ホール注入層、ホール輸送層、電子注入層、電子輸送層、封止層等を備える。有機EL表示パネルでは、基板の主面に沿って複数のサブピクセルが二次元配置された構成を有する。各サブピクセルにおいては、基板の上方に、陽極、ホール注入層、ホール輸送層、有機発光層、電子輸送層、陰極の順に積層された構成を有する。
 アクティブマトリクス方式で駆動する有機EL表示パネルでは、陽極が画素毎に独立した電極として形成され、陰極が複数の画素に共通した共通電極として形成される場合がある。このように陰極が複数の画素に共通して設けられた場合、陰極の外周部分から電圧が印加されるため、陰極自身の電気抵抗により陰極の中央部分では電圧降下が生じる。そして、共通電極の外周部分から各画素までの距離は画素毎に異なるため、画素毎に陽極と陰極との間に印加される電圧にばらつきが生じることとなり、有機EL表示パネルの輝度むらの原因となる。特に、有機EL表示パネルが大型化すると、電圧のばらつきは顕著になる。
 これに対し、基板上に配線を設け、当該配線と上部電極とを電気的に接続することで、上部電極と下部電極との間に印加される電圧のばらつきを抑制する技術が特許文献1に開示されている。当該電気的接続は、配線と陰極とを直接接触させることでなされる場合が多い。
 また、電子輸送層として、有機材料に仕事関数の低いアルカリ金属やアルカリ土類金属がドープされた層を採用することが研究・開発されている。このような電子輸送層を採用すれば、良好な電子注入特性を得ることができることが知られている。
 仕事関数が低いアルカリ金属やアルカリ土類金属は、水分や酸素といった不純物と反応しやすい。そのため、アルカリ金属やアルカリ土類金属を含む機能層は、不純物が存在すると劣化が促進され、有機EL素子の発光効率の低下や発光寿命の短縮といった悪影響が発生して保管安定性が低下する。さらに、金属から成る陰極に不純物が接触すると、腐食や劣化を引き起こし、上記と同様の悪影響が引き起こされる虞がある。特に、発光層,ホール注入層,ホール輸送層,隔壁等がウェットプロセスで形成される場合、これらの層中や表面に不純物(水分,酸素)が残存し、この不純物が陰極の金属や機能層中のアルカリ金属,アルカリ土類金属を劣化させる虞がある。
 これに対し、発光層と有機機能層との間に、アルカリ金属またはアルカリ土類金属のフッ化物で構成された中間層を設ける技術が特許文献2に開示されている。
特開2004-111369号公報 特開2007-317378号公報
 有機EL表示パネルでは、発光層よりも上に配置される層は、画素ごとに分ける必要が無いため、製造の簡便化の観点からも、各画素に亘って共通した層として形成される場合がある。
 ここで、アルカリ金属またはアルカリ土類金属のフッ化物は、電気抵抗率が大きいという性質を有する。アルカリ金属またはアルカリ土類金属のフッ化物からなる中間層が複数の画素に亘って共通に形成された場合、配線と陰極における配線と対向する部分との間に中間層が介在することとなり、配線と陰極における配線と対向する部分との間の電気抵抗(以下、「コンタクト抵抗」という。)が大きくなる虞がある。その結果、印加される電圧の画素ごとのばらつきを抑制することが難しくなる。
 本発明は、上記の問題点に鑑みてなされたものであり、アルカリ金属またはアルカリ土類金属のフッ化物からなる中間層が配線と陰極との間に介在する構成を有し、コンタクト抵抗が抑制された有機発光装置およびその製造方法を提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る有機発光装置は、基板と、前記基板の上方に配された陽極と、前記基板の主面に平行な方向に前記陽極から離間して前記基板の上方に配された配線と、前記陽極の上方に配され、有機発光材料を含む発光層と、前記発光層上および前記配線上に共通して配され、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層と、前記発光層および前記配線の上方に前記中間層を介して共通して配され、電子輸送性および電子注入性のうち少なくとも一方の性質を有する有機材料に、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属がドープされて成る有機機能層と、前記発光層および前記配線の上方に前記有機機能層を介して共通して配された陰極とを有する。そして、前記中間層の膜厚をx〔nm〕、前記有機機能層における前記第2金属のドープ濃度をy〔wt%〕とした場合に、1≦x≦2、20≦y≦40、y≧20xの関係を満たすことを特徴とする。
 上記本発明の一態様に係る有機発光装置においては、中間層の膜厚x〔nm〕および、有機機能層における第2金属のドープ濃度y〔wt%〕が、1≦x≦2、20≦y≦40、y≧20xの関係を満たすため、配線と陰極との間の電気抵抗が適切な範囲内に収まる。これにより、表示面または発光面全体に亘って印加される電圧のばらつきを抑制することができ、有機発光装置の輝度むらを抑制することができる。
本発明の実施形態に係る有機EL装置の一例である有機EL表示パネルの構成を模式的に示す部分断面図である。 図1に示す有機EL表示パネルにおける、陽極と配線とのレイアウトを示す上面図である。 有機機能層中のBa濃度および中間層の膜厚を変えて行った有機EL表示パネルにおける配線と陰極との間のコンタクト抵抗の測定結果および測定に用いたサンプルの組成を示す図である。 図3に示すサンプル1、サンプル2、および比較例のコンタクト抵抗の測定結果をグラフにプロットした図である。 中間層の膜厚および有機機能層中のBa濃度に基づいて、図3に示すコンタクト抵抗の測定結果をグラフにプロットした図である。 中間層の膜厚および有機機能層中のBa濃度に基づいて、コンタクト抵抗の実用適性判定結果をグラフにプロットした図である。 図1に示す有機EL表示パネルの製造過程の一部を模式的に示す部分断面図である。(a)は、基材上にTFT層が形成された状態を示す部分断面図である。(b)は、TFT層上に層間絶縁層が形成された状態を示す部分断面図である。(c)は、層間絶縁層上に陽極および配線が形成された状態を示す部分断面図である。(d)は、陽極および配線上に正孔注入層が形成された状態を示す部分断面図である。 図7の続きの有機EL表示パネルの製造過程の一部を模式的に示す部分断面図である。(a)は、正孔注入層および層間絶縁層上に隔壁材料層が形成された状態を示す部分断面図である。(b)は、正孔注入層および層間絶縁層上に隔壁層が形成された状態を示す部分断面図である。(c)は、隔壁層の開口部内に正孔輸送層および発光層が形成された状態を示す部分断面図である。 図8の続きの有機EL表示パネルの製造過程の一部を模式的に示す部分断面図である。(a)は、隔壁層上、発光層上、および配線の上方に中間層が形成された状態を示す部分断面図である。(b)は、中間層上に有機機能層が形成された状態を示す部分断面図である。(c)は、有機機能層上に陰極および封止層が形成された状態を示す部分断面図である。 図1に示す有機EL表示パネルの製造過程を示す模式工程図である。
 ≪本発明の一態様の概要≫
 本発明の一態様に係る有機発光装置は、基板と、前記基板の上方に配された陽極と、前記基板の主面に平行な方向に前記陽極から離間して前記基板の上方に配された配線と、前記陽極の上方に配され、有機発光材料を含む発光層と、前記発光層上および前記配線上に共通して配され、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層と、前記発光層および前記配線の上方に前記中間層を介して共通して配され、電子輸送性および電子注入性のうち少なくとも一方の性質を有する有機材料に、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属がドープされて成る有機機能層と、前記発光層および前記配線の上方に前記有機機能層を介して共通して配された陰極とを有する。そして、前記中間層の膜厚をx〔nm〕、前記有機機能層における前記第2金属のドープ濃度をy〔wt%〕とした場合に、1≦x≦2、20≦y≦40、y≧20xの関係を満たすことを特徴とする。
 これにより、配線と陰極との間の電気抵抗が適切な範囲内に収まって、表示面または発光面全体に亘って印加される電圧のばらつきを抑制することができ、有機発光装置の輝度むらを抑制することができる。
 また、本発明の一態様に係る有機発光装置の特定の局面では、前記第1金属は、ナトリウムであることを特徴とする。
 これにより、発光層への良好な電子注入性を実現することができる。
 また、本発明の一態様に係る有機発光装置の特定の局面では、前記第2金属は、バリウム であることを特徴とする。
 これにより、バリウムという汎用性の高い材料を用いて有機機能層を形成することができるため、コスト抑制に資することができる。
 また、本発明の一態様に係る有機発光装置の特定の局面では、前記陽極および前記配線は、同じ材料で構成されていることを特徴とする。
 これにより、陽極と配線とを同じ材料を用いて一度の工程で形成することができるため、工程数の低減による作業効率の向上および材料共通化によるコスト抑制に資することができる。
 また、本発明の一態様に係る有機発光装置の特定の局面では、前記陽極は、ITOまたはIZOから成ることを特徴とする。
 これにより、ボトムエミッション型の表示装置または照明装置に適用された場合に、発光層からの光を効率よく外部に取り出すことができる。
 また、本発明の一態様に係る有機発光装置の特定の局面では、前記陰極は、透明導電材料から成ることを特徴とする。
 これにより、トップエミッション型の表示装置または照明装置に適用された場合に、発光層からの光を効率よく外部に取り出すことができる。
 また、本発明の一態様に係る有機発光装置の特定の局面では、前記透明導電材料は、ITOであることを特徴とする。
 これにより、ITOという有機ELの分野では一般的に用いられる材料を用いることができるため、コスト抑制に資することができる。
 本発明の別の一態様に係る有機発光装置の製造方法は、基板の上方に陽極および前記基板の主面と平行な方向に前記陽極から離間した配線を形成し、前記陽極の上方に有機発光材料を含む発光層を形成し、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層を、前記発光層上および前記配線上に共通して形成し、電子輸送性および電子注入性のうち少なくとも一方の性質を有する有機材料に、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属がドープされて成る有機機能層を、前記中間層を介して前記発光層および前記配線の上方に共通して形成し、前記有機機能層を介して前記発光層および前記配線の上方に共通して陰極を形成する。そして、前記中間層の膜厚をx〔nm〕、前記有機機能層における前記第2金属のドープ濃度をy〔wt%〕とした場合に、1≦x≦2、20≦y≦40、y≧20xの関係を満たすことを特徴とする。
 これにより、配線と陰極との間の電気抵抗が適切な範囲内に収まって、画素毎に印加される電圧のばらつきが抑制され、輝度むらが抑制された有機発光装置を製造することができる。
 また、本発明の別の一態様に係る有機発光装置の製造方法の特定の局面では、前記第1金属は、ナトリウムであることを特徴とする。
 これにより、発光層への良好な電子注入性を実現することができる。
 また、本発明の別の一態様に係る有機発光装置の製造方法の特定の局面では、前記第2金属は、バリウム であることを特徴とする。
 これにより、バリウムという汎用性の高い材料を用いて有機機能層を形成することができるため、コスト抑制に資することができる。
 以下、本発明の実施形態および変形例について具体例を示し、構成および作用・効果を説明する。
 なお、以下の説明で用いる実施形態および変形例は、本発明の一態様に係る構成および作用・効果を分かりやすく説明するために用いる例示であって、本発明は、その本質的部分以外に何ら以下の実施形態および変形例に限定を受けるものではない。また、数値範囲を示す際に用いる符号「~」は、その両端の数値を含む。
 ≪実施形態≫
 [1.本発明を実施するための形態に至った経緯]
 バリウムとナトリウムは、共に仕事関数が低く電子注入性が高い物質である。これらを発光層への電子注入性を高める目的で有機ELに用いる場合、発光層とのエネルギー準位の関係から、バリウムよりもナトリウムの方が良好な電子注入性を得ることができる。
 しかし、ナトリウムは非常に反応性が高く、ナトリウム単体の層を形成しようとしても、形成の最中にすぐに周囲の酸素や水分等と反応して酸化されてしまうため、ナトリウム単体の層を形成するのは非常に困難である。
 そこで、発明者らは、比較的安定なフッ化ナトリウム(NaF)から成る第1中間層と、バリウムから成る第2中間層とがこの順に積層された構成を有する中間層を考案した。この場合、第2中間層中のバリウムが第1中間層中のNaFにおけるナトリウムとフッ素との結合を切ることにより、ナトリウムが遊離し、遊離したナトリウムが発光層への電子注入を促進させることができる。
 ここで、NaFは電気絶縁性を有するため、第1中間層の膜厚が厚すぎると電気抵抗が上昇する。また、第1中間層に対して第2中間層の膜厚が厚すぎると、第1中間層中のNaFが必要以上に分解され、電子注入性が必要以上に高くなる結果、発光層中における正孔の供給量と電子の供給量とのバランスが崩れ、発光効率が低下する。このように、上記の構成の場合、第1中間層中のNaFの量と、第2中間層中のBaの量とのバランスが重要となる。
 発明者らが検討を行った結果、第1中間層(NaF)の膜厚が2〔nm〕で、第2中間層(Ba)の膜厚が1〔nm〕の場合に、良好な発光特性が得られることが分かった。
 ところが、第2中間層の形成は、蒸着により行われるのであるが、第2中間層の膜厚が1〔nm〕と非常に薄いため、低いレートでゆっくりと蒸着を行わなくてはならず、長い時間を要するうえに制御が難しいという問題があった。それに加えて、膜厚が薄いため均一に形成することが難しく、Baの層が形成されている部分と形成されていない部分とがまだらに生じやすいという問題があった。
 以上の理由から、発明者らは、Baの層(第2中間層)を備えない構成で、コンタクト抵抗を低減することができる構成について発明するに至った。
 [2.有機EL表示パネルの構成]
 以下、本発明の一態様に係る有機発光装置の一例としての実施形態に係る有機ELパネルの構成について、図1および図2を用いて説明する。
 図1は、実施形態に係る有機EL表示パネル100の一部拡大断面図である。有機EL表示パネル100は、基板11上にマトリクス状に配置された複数の画素を有し、各画素は、R(赤色)、G(緑色)、B(青色)にそれぞれ対応する3つのサブ画素で構成される。有機EL表示パネル100は、同図上側を表示面とする、いわゆるトップエミッション型である。
 有機EL表示パネル100は、基板11、層間絶縁層12、陽極13、配線14、正孔注入層15、隔壁層16、正孔輸送層17、発光層18R,18G,18B、中間層19、有機機能層20、陰極21、および封止層22を備える。基板11、層間絶縁層12、中間層19、有機機能層20、陰極21、および封止層22は、複数の画素に共通して形成されている。
 続いて、有機EL表示パネル100の各部構成について説明する。
 <基板>
 基板11は、絶縁材料である基材111と、TFT(Thin Film Transistor)層112とを含む。TFT層112には、サブ画素毎に駆動回路(不図示)が形成されている。基材111が形成される材料としては、例えば、ガラスが用いられる。ガラス材料としては、具体的には例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英等のガラスなどが挙げられる。
 <層間絶縁層>
 層間絶縁層12は、基板11上に形成されている。層間絶縁層12は、樹脂材料からなり、TFT層112の上面の段差を平坦化するためのものである。層間絶縁層12が形成される樹脂材料としては、例えば、ポジ型の感光性材料が用いられる。また、このような感光性材料としては、アクリル系樹脂、ポリイミド系樹脂、シロキサン系樹脂、フェノール系樹脂等が挙げられる。
 <陽極>
 陽極13は、導電材料からなり、層間絶縁層12上にサブ画素毎に形成される。本実施形態に係る有機EL表示パネル100は、トップエミッション型であるので、陽極13は、光反射性を具備した導電材料により形成されるとよい。光反射性を具備する導電材料としては、金属が挙げられる。具体的には、Ag(銀)、Al(アルミニウム)、アルミニウム合金、Mo(モリブデン)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、MoW(モリブデンとタングステンの合金)、NiCr(ニッケルとクロムの合金)等を用いることができる。また、陽極13は、上記光反射性を具備する導電材料と透明導電材料との積層構造であってもよい。この場合、透明導電材料としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、ZnO(酸化亜鉛)等を用いることができる。
 なお、この断面図では現れないが、層間絶縁層12には、コンタクトホールがサブ画素毎に形成されている。当該コンタクトホールにはTFT接続配線が埋め込まれており、陽極13は、TFT接続配線を介して、TFT層112に形成された駆動回路と電気的に接続されている。
 <配線>
 配線14は、基板11の主面に平行な方向において陽極13と離間して、層間絶縁層12上に設けられている。配線14は、金属等の導電性の材料から成る。なお、配線14は、導電性の材料から成る層が複数積層されて構成されてもよい。また、配線14は、陽極13と同じ材料で構成されていてもよい。その場合、陽極13と配線14とを共通の工程で一度に形成することができるため、製造が容易である。
 ここで、陽極13および配線14の形状および相対的な位置関係について説明する。図2は、陽極13および配線14の平面視におけるレイアウトを示す平面図である。図2に示すように、陽極13は平面視矩形状であり、配線14は平面視ライン状である。陽極13は、X軸方向およびY軸方向に沿ってマトリクス状(行列状)に並べられて配置されている。隣り合う配線14間には、陽極13のY軸方向の列が3列配されている。即ち、配線14は、陽極13の列(Y軸方向の列)に沿って3列おきに配置されている。このように配線14が配置されていることにより、陰極の外周部分からの距離に係らず、各画素に対して安定した電圧が印加される。
 <正孔注入層>
 正孔注入層15は、陽極13から発光層18への正孔の注入を促進させる機能を有する。そのため、正孔注入層15は、陽極13上には設けられているが、配線14上には設けられていない。正孔注入層15は、例えば、金属酸化物から成る。正孔注入層15の形成は、例えば、スパッタリング法により行われる。正孔注入層15の形成材料である金属酸化物としては、例えば、酸化タングステン(WOx)、酸化モリブデン(MoOx)や、銀(Ag)、クロム(Cr)、バナジウム(V)、ニッケル(Ni)、イリジウム(Ir)等の酸化物を用いることができる。また、正孔注入層15は、PEDOT(ポリチオフェンとポリスチレンスルホン酸との混合物)やポリアニリン等の導電性ポリマー材料を用いて形成されてもよい。この場合、正孔注入層15は、ウェットプロセスにより形成される。ウェットプロセスにより正孔注入層15が形成される場合は、その形成工程において隔壁層が必要となるため、隔壁層16の形成後、正孔輸送層17の形成前に、正孔注入層15の形成が行われる。また、正孔注入層15は、スパッタリング等のドライプロセスにより形成される層とウェットプロセスにより形成される層とが組み合わされて形成されてもよい。
 <隔壁層>
 隔壁層16は、陽極13および配線14上に配置された正孔注入層15の上面の一部の領域を露出させ、その周辺の領域を被覆した状態で正孔注入層15上に形成されている。正孔注入層15上面において隔壁層16で被覆されていない領域(以下、「開口部」という。)は、サブピクセルに対応している。即ち、隔壁層16は、サブピクセル毎に設けられた開口部16aを有する。
 隔壁層16は、例えば、絶縁性の有機材料(例えばアクリル系樹脂、ポリイミド系樹脂、ノボラック樹脂、フェノール樹脂等)からなる。隔壁層16は、発光層18を塗布法で形成する場合には、塗布されたインクがあふれ出ないようにするための構造物として機能し、発光層18を蒸着法で形成する場合には、蒸着マスクを載置するための構造物として機能する。本実施形態では、隔壁層16は、樹脂材料からなり、例えば、ポジ型の感光性材料を用いることができる。このような感光性材料として、具体的には、アクリル系樹脂、ポリイミド系樹脂、シロキサン系樹脂、フェノール系樹脂等が挙げられる。本実施形態においては、フェノール系樹脂が用いられている。
 <正孔輸送層>
 正孔輸送層17は、正孔注入層15から注入された正孔を発光層18へ輸送する機能を有する。そのため、正孔輸送層17は、正孔注入層15上には設けられているが、配線14上には設けられていない。正孔輸送層17の形成は、有機材料溶液の塗布および乾燥により行われる。正孔輸送層17を形成する有機材料としては、ポリフルオレンやその誘導体、あるいはポリアリールアミンやその誘導体等の高分子化合物を用いることができる。また、正孔輸送層17はトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、ブタジエン化合物、ポリスチレン誘導体、ヒドラゾン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体を用いて形成されてもよい。特に好ましくは、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物等を用いてもよい。この場合、正孔輸送層17は、真空蒸着法により形成される。
 <発光層>
 発光層18は、有機発光材料を含み、陽極13の上方に位置する開口部16a内に形成されている。発光層18は、正孔と電子の再結合によりR、G、Bの各色の光を出射する機能を有する。図1においては、各発光層18の符号の後にR,G,Bを付して、それぞれに対応する発光色を示している。しかし、特に区別の必要が無いときには、単に「発光層18」と総称する。
 発光層18が含む有機発光材料としては、例えば、オキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属鎖体、2-ビピリジン化合物の金属鎖体、シッフ塩とIII族金属との鎖体、オキシン金属鎖体、希土類鎖体等の蛍光物質を用いることができる。また、トリス(2-フェニルピリジン)イリジウムなどの燐光を発光する金属錯体等の公知の燐光物質を用いることができる。また、発光層18は、ポリフルオレンやその誘導体、ポリフェニレンやその誘導体、あるいはポリアリールアミンやその誘導体等の高分子化合物等、もしくは前記低分子化合物と前記高分子化合物の混合物を用いて形成されてもよい。
 <中間層>
 中間層19は、複数の画素に共通して発光層18、隔壁層16、および正孔注入層15を介して配線14上に設けられており、発光層18、正孔輸送層17、正孔注入層15、隔壁層16の内部や表面に存在する不純物が、有機機能層20や陰極21へと侵入するのを防止するための層である。従って、中間層19は、不純物ブロック性を有する材料を含む。中間層19が形成される不純物ブロック性を有する材料は、例えば、アルカリ金属のフッ化物またはアルカリ土類金属のフッ化物であり、フッ化ナトリウム(NaF)、フッ化リチウム(LiF)、フッ化セシウム(CsF)等を用いることができる。本実施形態においてはNaFが用いられている。中間層19に含まれるアルカリ金属のフッ化物中のアルカリ金属またはアルカリ土類金属のフッ化物中のアルカリ土類金属を、第1金属とする。従って、本実施形態においては、第1金属はNa(ナトリウム)である。
 <有機機能層>
 有機機能層20は、中間層19上に複数の画素に共通して設けられている。即ち、有機機能層20は、配線14の上方にも設けられている。有機機能層20は、陰極21から注入された電子を発光層18へと輸送する電子輸送層としての機能または/および陰極21から発光層18への電子の注入を促進させる機能を有する。有機機能層20は、例えば、電子輸送性または電子注入性のうち少なくとも一方の性質を有する有機材料に金属をドープさせて成る。有機機能層20に用いられる有機材料としては、具体的には、例えば、オキサジアゾール誘導体(OXD)、トリアゾール誘導体(TAZ)、フェナンスロリン誘導体(BCP、Bphen)などのπ電子系低分子有機材料が挙げられる。有機材料にドープされる金属(以下、「第2金属」という。)は、中間層19に含まれる第1金属のフッ化物における第1金属とフッ素との結合を分解する機能を有する。第1金属とフッ素との結合を分解する第2金属として、例えば、アルカリ金属またはアルカリ土類金属が用いられる。より具体的には、例えば、バリウム、リチウム(Li)、カルシウム(Ca)、カリウム(K)、セシウム(Cs)、ナトリウム、ルビジウム(Rb)等の低仕事関数金属、フッ化リチウム等の低仕事関数金属塩、酸化バリウム等の低仕事関数金属酸化物、リチウムキノリノール等の低仕事関数金属有機錯体などが用いられる。本実施形態においては、第2金属は、具体的には、Ba(バリウム)である。
 <陰極>
 陰極21は、有機機能層20上に複数の画素に共通して設けられている。陰極21は、例えば、透明導電材料からなる。透明導電材料で陰極21が構成されることにより、発光層18で発生した光を、陰極21側から取り出すことができる。陰極21に用いられる透明導電材料としては、例えば、ITO、IZO等を用いることができる。陰極21には、これ以外にも、例えば、MgAg(マグネシウム銀)を用いることができる。この場合、陰極21の厚みを数10nm程度とすることで、光を透過させることができる。
 <封止層>
 陰極21の上には、封止層22が設けられている。封止層22は、基板11の反対側から不純物(水,酸素)が陰極21,有機機能層20,発光層18等へと侵入するのを抑制する機能を有する。封止層22の材料としては、例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の光透過性材料が用いられる。
 <その他>
 なお、図1には図示しないが、封止層22の上にカラーフィルタや上部基板を載置し、接合してもよい。上部基板を載置および接合することにより、陰極21,有機機能層20,中間層19,発光層18等に対する不純物からのさらなる保護が図られる。
 [3.コンタクト抵抗]
 Ba層を備えない構成でコンタクト抵抗を低減させるためには、主に2つの方法が考えられる。1つは、電気絶縁性を有するNaFの量を少なくする、即ち、中間層19の膜厚を薄くする方法である。もう1つは、有機機能層20中にドープさせるBaの量を多くして、Ba層の代わりに中間層19のNaFにおけるNaとフッ素との結合を切る役割をより多く担わせる方法である。
 中間層19の膜厚(即ち、NaFの量)と有機機能層20中のBa濃度とを変えた9種類のサンプルを作成し、それぞれについて配線14と陰極21におけるコンタクト抵抗の値を測定した。また、厚さ1〔nm〕のBaの層(第1中間層に相当)を備えたサンプルを比較例として作成し、コンタクト抵抗の値を測定した。
 これらのサンプルの構成およびコンタクト抵抗の測定結果を、図3のテーブルに示す。比較例およびサンプル2,4のコンタクト抵抗の値については、3点の測定値の平均値を、サンプル1および3のコンタクト抵抗の値については、2点の測定値の平均値を、それぞれ図3に示している。
 図3に示すように、比較例(Ref)のみがBa層を有しており、その他のサンプル1~9は、Ba層を有していない。有機機能層20中のBa濃度(以下、単に「Ba濃度」と言う。)については、サンプル1~3が40〔wt%〕であり、サンプル4~6が20〔wt%〕であり、サンプル7~9が5〔wt%〕である。中間層19の膜厚については、サンプル1,4,7が1〔nm〕であり、サンプル2,5,8が2〔nm〕であり、サンプル3,6,9が4〔nm〕である。なお、比較例は、Ba濃度が40〔wt%〕、中間層19の膜厚が2〔nm〕である。
 なお、サンプル5~9については、コンタクト抵抗の値が測定機器の測定限界を超えたため、測定不能であった。
 (3-1.Ba層の有無および中間層の膜厚とコンタクト抵抗との関係)
 先ず、単純にBa層を無くした場合、コンタクト抵抗はどのように変化するのか、また、中間層19の膜厚により、コンタクト抵抗はどのように変化するのかについて検証する。
 図4は、比較例,サンプル1,およびサンプル2についてコンタクト抵抗の測定結果をグラフにプロットした図である。比較例,サンプル1,サンプル2は、何れもBa濃度は40〔wt%〕である。なお、図中の括弧内の数字は、サンプル番号を示し、(R)は、比較例を示す。
 比較例とサンプル2とは、共に中間層19の膜厚が2〔nm〕であって、比較例がBa層を有しているのに対して、サンプル1はBa層を有していない点で異なる。比較例のコンタクト抵抗が、1.86E+05〔Ω〕であるのに対し、サンプル2のコンタクト抵抗は、4.77E+05であった。このように、単純にBa層を無くした場合、コンタクト抵抗が上昇する結果となった。
 次に、サンプル1とサンプル2とを比較する。サンプル1は、中間層19の膜厚が1〔nm〕であるのに対し、サンプル2は、中間層19の膜厚が2〔nm〕である。コンタクト抵抗の値については、サンプル1が、8.84E+04〔Ω〕であるのに対して、サンプル2が、4.77E+05〔Ω〕であった。この結果から、Ba層を無くしても、中間層19の膜厚を薄くすることにより、コンタクト抵抗を低減させることができることが明らかになった。
 (3-2.中間層の膜厚および有機機能層のBa濃度とコンタクト抵抗との関係)
 コンタクト抵抗が測定不能であったサンプル5~9および比較例を除くサンプル1~4について、縦軸にコンタクト抵抗の値を、横軸に中間層19の値を取ってグラフ上にプロットした図を、図5に示す。
 なお、□(輪郭線のみの四角形)は、Ba濃度が20〔wt%〕のサンプル(サンプル4)を示し、◆(黒く塗りつぶされたダイヤ形)は、Ba濃度が40〔wt%〕のサンプル(サンプル1~3)を示す。また、図中の括弧内の数字は、サンプル番号を示す。
 図5に示すように、Ba濃度が20〔wt%〕のサンプルも40〔wt%〕のサンプルも、中間層19の膜厚が薄いほど低いコンタクト抵抗の値を示した。中間層19は、電気絶縁性を有するNaFから構成されているため、中間層19の膜厚が薄いほど中間層19自身の電気抵抗が低下し、それにより、コンタクト抵抗が低下すると考えられる。
 なお、Ba濃度が20〔wt%〕のサンプルについては、コンタクト抵抗の値が得られたのは、中間層19の膜厚が1〔nm〕のサンプル4のみであった。しかし、サンプル5,6(中間層19の膜厚は、それぞれ2,4〔nm〕)のコンタクト抵抗の値が測定限界を超えており、サンプル4のコンタクト抵抗の値よりも高い値であることは確かである。従って、Ba濃度が40〔wt%〕のサンプルについてと同様に、Ba濃度が20〔wt%〕のサンプルについても、中間層19の膜厚が薄いほど低いコンタクト抵抗の値を示すと考えられる。
 次に、Ba濃度の違いによるコンタクト抵抗の違いについて検証する。共に中間層19の膜厚が1〔nm〕のサンプル1とサンプル4とを比較すると、Ba濃度が20〔wt%〕のサンプル4よりも、Ba濃度が40〔wt%〕のサンプル1の方が低いコンタクト抵抗の値を示した。中間層19中の膜厚が2,4〔nm〕の場合、Ba濃度が20〔wt%〕のサンプル5,6は、測定限界を超えており、Ba濃度が40〔wt%〕のサンプル2,3よりもコンタクト抵抗が高いということができる。従って、Ba濃度20〔wt%〕のサンプルよりもBa濃度40〔wt%〕のサンプルの方が低いコンタクト抵抗の値を示すということができる。
 以上の結果より、Ba層を無くしても、中間層19の膜厚を薄くし、有機機能層20中にドープされたBaの濃度を高くすることにより、コンタクト抵抗を低減させることができることが明らかになった。
 (3-3.中間層の膜厚および有機機能層のBa濃度とコンタクト抵抗との関係)
 ここで、コンタクト抵抗の値が5.0E+05以下であれば、有機発光装置の実用に適すると考えられる。図5において、コンタクト抵抗の値が5.0E+05以下であるのは、サンプル1,2,4の3つである。従って、これら3つのサンプルを実用に適する(Satisfactory)と判定し、それ以外のサンプルを実用に適さない(Unsatisfactory)と判定した。
 図6は、上記判定の結果を、縦軸(y軸)に有機機能層20中のBa濃度〔wt%〕を、横軸(x軸)に中間層19の膜厚〔nm〕を取ってグラフ上にプロットした図である。
 なお、○(輪郭線のみの円)は、コンタクト抵抗の値が実用に適する(Satisfactory)と判定されたサンプルを示し、◆(黒く塗りつぶされたダイヤ形)は、コンタクト抵抗の値が実用に適さない(Unsatisfactory)と判定されたサンプルを示す。また、図中の括弧内の数字は、サンプル番号を示す。
 図6に示すように、コンタクト抵抗が実用に適すると判定されたサンプルは、1,2,4である。従って、この3つを結ぶ線分により囲まれる領域(図6において、斜線で示す領域)内に位置するサンプルであれば、コンタクト抵抗の値が実用に適すると考えられる。
 ここで、サンプル2とサンプル4とを結ぶ直線は、数式y=20xで表される。従って、上記の領域は、y軸に有機機能層20中のBa濃度〔wt%〕を、x軸に中間層19の膜厚〔nm〕を取った場合に、1≦x≦2、20≦y≦40、y≧20xの関係を満たす領域である。以下、上記の領域を、「実用適性領域」という。
 [4.有機EL表示パネルの製造方法]
 次に、有機EL表示パネル100の製造方法の一例を、図7~図10を用いて説明する。なお、図7~9は、有機EL表示パネル100の製造過程を模式的に示す部分断面図であり、図10は、有機EL表示パネル100の製造過程を示す模式工程図である。
 先ず、図7(a)に示すように、基材111上にTFT層112を形成して、基板11を形成する(図10のステップS1)。
 次に、図7(b)に示すように、基板11上に層間絶縁層12を成膜する(図10のステップS2)。層間絶縁層12の材料である層間絶縁層用樹脂には、本実施形態においては、ポジ型の感光性材料であるアクリル樹脂を用いる。層間絶縁層12は、層間絶縁層用樹脂であるアクリル樹脂を層間絶縁層用溶媒(例えば、PGMEA)に溶解させた層間絶縁層用溶液を基板11上に塗布して成膜した後、焼成を行う(図10のステップS3)。焼成は、例えば、150℃以上210℃以下の温度で180分間行う。
 続いて、図7(c)に示すように、層間絶縁層12上に陽極13および配線14を形成する。陽極13および配線14は、真空蒸着法またはスパッタ法に基づき、厚み150〔nm〕程度に形成する(図10のステップS4)。陽極13は、サブ画素ごとに形成される。
 次に、図7(d)に示すように、陽極13および配線14上に正孔注入層15を形成する(図10のステップS5)。ただし、正孔注入層15は、必ずしも配線14上に形成されなくてもよい。また、正孔注入層15を塗布プロセスで形成する場合には、隔壁層16を形成後、正孔輸送層17形成前に形成する。
 続いて、図8(a)に示すように、正孔注入層15および層間絶縁層12上に、隔壁層16の材料である隔壁層用樹脂を塗布し、隔壁材料層160を形成する。隔壁層用樹脂には、例えば、ポジ型の感光性材料であるフェノール樹脂が用いられる。隔壁材料層160は、隔壁層用樹脂であるフェノール樹脂を溶媒(例えば、乳酸エチルとGBLの混合溶媒)に溶解させた溶液を正孔注入層15上および層間絶縁層12上にスピンコート法などを用いて一様に塗布することにより形成される。そして、隔壁材料層160にパターン露光と現像を行うことで隔壁層16を形成し(図8(b),図10のステップS6)、隔壁層16を焼成する(図10のステップS7)。これにより、発光層18の形成領域となる開口部16aおよび、配線14と陰極21との間で電力の受給が行われるコンタクト領域となる開口部16bが規定される。隔壁層16の焼成は、例えば、150℃以上210℃以下の温度で60分間行う。
 また、隔壁層16の形成工程においては、さらに、隔壁層16の表面を所定のアルカリ性溶液や水、有機溶媒等によって表面処理するか、プラズマ処理を施すこととしてもよい。これは、開口部16aに塗布するインク(溶液)に対する隔壁層16の接触角を調節する目的で、もしくは、表面に撥水性を付与する目的で行われる。
 次に、隔壁層16が規定する開口部16aに対し、正孔輸送層17の構成材料を含むインクを塗布し、焼成(乾燥)を行って、正孔輸送層17を形成する(図10のステップS8)。そして、発光層18の構成材料を含むインクの塗布および焼成(乾燥)により発光層18を形成する(図8(c),図10のステップS9)。
 なお、正孔輸送層17および発光層18は、ウェットプロセスに限らず、例えば、真空蒸着法により形成してもよい。
 続いて、図9(a)に示すように、発光層18上,隔壁層16上,および配線14上に形成された正孔注入層15上に共通して、中間層19を形成する(図10のステップS10)。具体的には、真空蒸着法またはスパッタリング法を用いてフッ化ナトリウムを堆積させ、中間層19を形成する。
 次に、図9(b)に示すように、中間層19上に、有機機能層20を形成する(図10のステップS11)。具体的には、有機材料およびバリウムを共蒸着により堆積させることにより、バリウムがドープされた有機材料から成る有機機能層20を形成する。
 そして、図9(c)に示すように、有機機能層20上に、陰極21および封止層22を形成する。具体的には、先ず、ITO,IZO等の材料を用い、真空蒸着法,スパッタリング法等により成膜して、陰極21を形成する(図10のステップS12)。続いて、陰極21上に、SiNを材料にスパッタリング法,CVD(Chemical Vapor Deposition)法等により成膜し、封止層22を形成する(図10のステップS13)。
 以上の工程を経ることにより有機EL表示パネル100が完成する。そして、上記の工程により有機EL表示パネル100を形成する際には、有機機能層20中のBa濃度および中間層19の膜厚が、実用適性領域内に収まるように調整される。
 有機EL表示パネル100のようなトップエミッション型の有機発光装置では、光取り出し効率を大きくするために、陰極の厚みを薄くする場合がある。陰極の厚みを薄くした有機発光装置では、陰極自身の電気抵抗率が高くなり、陰極のパネル面内での電圧のばらつきが生じやすいため、コンタクト抵抗を抑制することは、特に有用である。
 なお、封止層22の上にカラーフィルタや上部基板を載置し、接合してもよい。
 [実施形態のまとめ]
 以上説明したように、本発明の一態様である有機発光装置の一例である実施形態に係る有機EL表示パネル100の構成によれば、有機機能層20中のBa濃度および中間層19の膜厚が、実用適性領域内に収まるように調整されているため、コンタクト抵抗の値が実用に適する範囲内となり、各画素に印加される電圧のばらつきが抑制され、輝度むらを抑制することができる。
 なお、上記実用適性領域とは、y軸に有機機能層20中のBa濃度〔wt%〕を、x軸に中間層19の膜厚〔nm〕を取った場合に、1≦x≦2、20≦y≦40、y≧20xの関係を満たす領域である。
 ≪変形例≫
 以上、本発明の一態様を実施形態に基づいて説明したが、本発明が上述の実施形態に限定されないのは勿論であり、以下のような変形例を実施することが出来る。
1.配線
 上記実施形態では、配線の形状は、ライン状であった。しかしながら、これに限らず、配線の形状はメッシュ状など他の形状であってもよい。
2.電子注入層
 上記実施形態に係る有機EL表示パネルにおいて、有機機能層20に加えて電子注入層をさらに設けてもよい。電子注入層は、陰極から発光層への電子の注入を促進させる機能を有する。電子注入層は、例えば、リチウム、バリウム、カルシウム、カリウム、セシウム、ナトリウム、ルビジウム等の低仕事関数金属、およびフッ化リチウム等の低仕事関数金属塩、酸化バリウム(BaO)等の低仕事関数金属酸化物等を用いて形成することができる。
4.正孔注入層および正孔輸送層
 上記実施形態に係る有機EL表示パネル100は、陽極13と発光層18との間に、正孔注入層15および正孔輸送層17を備えていたが、これに限られない。正孔注入層15および正孔輸送層17の一方のみを備えてもよいし、正孔注入層15および正孔輸送層17の両方を備えなくてもよい。
5.構成
 上記実施形態に係る有機EL表示パネル100は、基板とは反対側から光が取り出されるトップエミッション型であったが、これに限らず、ボトムエミッション型であってもよい。ボトムエミッション型である場合には、陽極13を透明導電材料の単層構造とすればよい。
6.その他
 上記実施形態においては、本発明の一態様に係る有機発光装置として、有機EL表示パネルを例に説明した。しかしながら、本発明の一態様に係る有機発光装置は、有機EL表示パネルに限られず、照明装置等としても実現することができる。
 本発明は、例えば、有機EL表示パネル、照明装置等に利用可能であって、例えば、家庭用もしくは公共施設、あるいは業務用の各種表示装置、テレビジョン装置、各種電子機器のディスプレイ、照明装置等として用いられる有機発光装置およびその製造方法に好適に利用可能である。
11       基板
13       陽極
14       配線
18       発光層
19       中間層
20       有機機能層
21       陰極
100  有機EL表示パネル

Claims (14)

  1.  基板と、
     前記基板の上方に配された陽極と、
     前記基板の主面に平行な方向に前記陽極から離間して前記基板の上方に配された配線と、
     前記陽極の上方に配され、有機発光材料を含む発光層と、
     前記発光層上および前記配線上に共通して配され、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層と、
     前記発光層および前記配線の上方に前記中間層を介して共通して配され、電子輸送性および電子注入性のうち少なくとも一方の性質を有する有機材料に、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属がドープされて成る有機機能層と、
     前記発光層および前記配線の上方に前記有機機能層を介して共通して配された陰極と、を有する
     有機発光装置。
  2.  前記中間層の膜厚をx〔nm〕、前記有機機能層における前記第2金属のドープ濃度をy〔wt%〕とした場合に、0.1≦x≦4、3≦y≦50、y≧20xの関係を満たす
     請求項1に記載の有機発光装置。
  3.  前記中間層の膜厚をx〔nm〕、前記有機機能層における前記第2金属のドープ濃度をy〔wt%〕とした場合に、1≦x≦2、20≦y≦40、y≧20xの関係を満たす
     請求項1又は2に記載の有機発光装置。
  4.  前記第1金属は、ナトリウムである
     請求項1から3の何れか1項に記載の有機発光装置。
  5.  前記第2金属は、バリウムである
     請求項1から4の何れか1項に記載の有機発光装置。
  6.  前記陽極および前記配線は、同じ材料で構成されている
     請求項1から5の何れか1項に記載の有機発光装置。
  7.  前記陽極は、ITOまたはIZOから成る
     請求項1から6の何れか1項に記載の有機発光装置。
  8.  前記陰極は、透明導電材料から成る
     請求項1から7の何れか1項に記載の有機発光装置。
  9.  前記透明導電材料は、ITOである
     請求項8に記載の有機発光装置。
  10.  基板の上方に陽極および前記基板の主面と平行な方向に前記陽極から離間した配線を形成し、
     前記陽極の上方に有機発光材料を含む発光層を形成し、
     アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層を、前記発光層上および前記配線上に共通して形成し、
     電子輸送性および電子注入性のうち少なくとも一方の性質を有する有機材料に、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属がドープされて成る有機機能層を、前記中間層を介して前記発光層および前記配線の上方に共通して形成し、
     前記有機機能層を介して前記発光層および前記配線の上方に共通して陰極を形成する
     有機発光装置の製造方法。
  11.  前記中間層の膜厚をx〔nm〕、前記有機機能層における前記第2金属のドープ濃度をy〔wt%〕とした場合に、0.1≦x≦4、3≦y≦50、y≧20xの関係を満たす
     請求項10に記載の有機発光装置の製造方法。
  12.  前記中間層の膜厚をx〔nm〕、前記有機機能層における前記第2金属のドープ濃度をy〔wt%〕とした場合に、1≦x≦2、20≦y≦40、y≧20xの関係を満たす
     請求項10又は11に記載の有機発光装置の製造方法。
  13.  前記第1金属は、ナトリウムである
     請求項10から12の何れか1項に記載の有機発光装置の製造方法。
  14.  前記第2金属は、バリウム である
     請求項10から13の何れか1項に記載の有機発光装置の製造方法。
PCT/JP2015/001358 2014-03-31 2015-03-12 有機発光装置および有機発光装置の製造方法 WO2015151415A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/300,481 US10559642B2 (en) 2014-03-31 2015-03-12 Organic light-emitting device having a fluoride and metal based intermediate layer and production method
JP2016511355A JP6358447B2 (ja) 2014-03-31 2015-03-12 有機発光装置および有機発光装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014071661 2014-03-31
JP2014-071661 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151415A1 true WO2015151415A1 (ja) 2015-10-08

Family

ID=54239768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001358 WO2015151415A1 (ja) 2014-03-31 2015-03-12 有機発光装置および有機発光装置の製造方法

Country Status (3)

Country Link
US (1) US10559642B2 (ja)
JP (1) JP6358447B2 (ja)
WO (1) WO2015151415A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10319935B2 (en) 2017-04-05 2019-06-11 Joled Inc. Organic EL display panel and method of manufacturing organic EL display panel
JP2021082388A (ja) * 2019-11-14 2021-05-27 株式会社Joled 表示パネルおよび表示パネルの製造方法
JP2021108318A (ja) * 2019-12-27 2021-07-29 株式会社Joled 有機el素子、有機el表示パネルおよび有機el素子の製造方法
US11508928B2 (en) 2019-11-29 2022-11-22 Joled Inc. Self-luminous element and self-luminous display panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335468A (ja) * 2003-05-05 2004-11-25 Eastman Kodak Co Oledデバイスの製造方法
JP2006287078A (ja) * 2005-04-04 2006-10-19 Sony Corp 有機電界発光素子
WO2009110186A1 (ja) * 2008-03-04 2009-09-11 パナソニック株式会社 発光素子及びディスプレイデバイス
WO2013031076A1 (ja) * 2011-09-02 2013-03-07 パナソニック株式会社 有機el表示パネルおよびその製造方法
WO2013118462A1 (ja) * 2012-02-06 2013-08-15 パナソニック株式会社 El表示装置およびその製造方法
WO2015037237A1 (ja) * 2013-09-13 2015-03-19 パナソニック株式会社 有機発光装置、およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776623A (en) * 1996-07-29 1998-07-07 Eastman Kodak Company Transparent electron-injecting electrode for use in an electroluminescent device
US6909477B1 (en) * 1998-11-26 2005-06-21 Lg. Philips Lcd Co., Ltd Liquid crystal display device with an ink-jet color filter and process for fabricating the same
KR20040025383A (ko) 2002-09-19 2004-03-24 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그 제조방법
JP2004200141A (ja) * 2002-10-24 2004-07-15 Toyota Industries Corp 有機el素子
US8906517B2 (en) 2005-04-04 2014-12-09 Sony Corporation Organic electroluminescence device
US20070210705A1 (en) 2006-03-09 2007-09-13 Hajime Yokoi Organic electroluminescent element and manufacturing method of an organic electroluminescent element and a display
JP4882508B2 (ja) 2006-05-23 2012-02-22 凸版印刷株式会社 有機エレクトロルミネッセンス素子の製造方法
JP5447356B2 (ja) * 2010-12-09 2014-03-19 セイコーエプソン株式会社 表示装置及び電子機器
CN103682125A (zh) * 2012-08-31 2014-03-26 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
WO2015004882A1 (ja) 2013-07-11 2015-01-15 パナソニック株式会社 有機el素子および有機el素子の製造方法
JP6519910B2 (ja) 2014-12-11 2019-05-29 株式会社Joled 有機el素子および有機el素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335468A (ja) * 2003-05-05 2004-11-25 Eastman Kodak Co Oledデバイスの製造方法
JP2006287078A (ja) * 2005-04-04 2006-10-19 Sony Corp 有機電界発光素子
WO2009110186A1 (ja) * 2008-03-04 2009-09-11 パナソニック株式会社 発光素子及びディスプレイデバイス
WO2013031076A1 (ja) * 2011-09-02 2013-03-07 パナソニック株式会社 有機el表示パネルおよびその製造方法
WO2013118462A1 (ja) * 2012-02-06 2013-08-15 パナソニック株式会社 El表示装置およびその製造方法
WO2015037237A1 (ja) * 2013-09-13 2015-03-19 パナソニック株式会社 有機発光装置、およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10319935B2 (en) 2017-04-05 2019-06-11 Joled Inc. Organic EL display panel and method of manufacturing organic EL display panel
US10516133B2 (en) 2017-04-05 2019-12-24 Joled Inc. Organic EL display panel and method of manufacturing organic EL display panel
US10937988B2 (en) 2017-04-05 2021-03-02 Joled Inc. Organic EL display panel and method of manufacturing organic EL display panel
JP2021082388A (ja) * 2019-11-14 2021-05-27 株式会社Joled 表示パネルおよび表示パネルの製造方法
JP7412969B2 (ja) 2019-11-14 2024-01-15 JDI Design and Development 合同会社 表示パネルおよび表示パネルの製造方法
US11508928B2 (en) 2019-11-29 2022-11-22 Joled Inc. Self-luminous element and self-luminous display panel
JP2021108318A (ja) * 2019-12-27 2021-07-29 株式会社Joled 有機el素子、有機el表示パネルおよび有機el素子の製造方法
JP7424830B2 (ja) 2019-12-27 2024-01-30 JDI Design and Development 合同会社 有機el素子、有機el表示パネルおよび有機el素子の製造方法

Also Published As

Publication number Publication date
JP6358447B2 (ja) 2018-07-18
US10559642B2 (en) 2020-02-11
US20170117347A1 (en) 2017-04-27
JPWO2015151415A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6519910B2 (ja) 有機el素子および有機el素子の製造方法
JP6142213B2 (ja) 有機el素子および有機el素子の製造方法
JP6082918B2 (ja) 有機発光装置、およびその製造方法
JP6336042B2 (ja) 有機el素子および有機el素子の製造方法
WO2015141143A1 (ja) 有機el表示パネル、それを備えた表示装置および有機el表示パネルの製造方法
JP6232655B2 (ja) 有機el表示パネルおよびその製造方法
JP6233888B2 (ja) 有機発光デバイスとその製造方法
JP6510223B2 (ja) 有機el素子および有機el素子の製造方法
JP6340616B2 (ja) 有機el素子、および有機el表示パネル
JP6358447B2 (ja) 有機発光装置および有機発光装置の製造方法
JP2019192594A (ja) 表示パネル、表示装置、および、表示パネルの製造方法
JP6561281B2 (ja) 有機el素子および有機el素子の製造方法
WO2015178003A1 (ja) 発光デバイスの製造方法および発光デバイス
US10581019B2 (en) Organic EL element having reduced electric power consumption by optimizing film thicknesses thereof and method of manufacturing same
JP6538339B2 (ja) 有機el素子および有機el素子の製造方法
JP2017188345A (ja) 発光パネルの製造方法、および、発光パネル
JP2013235777A (ja) 有機el素子の製造方法
JP2016095938A (ja) 有機el表示パネルの製造条件決定方法および有機el表示パネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511355

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15300481

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15774096

Country of ref document: EP

Kind code of ref document: A1