WO2015122049A1 - 絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子 - Google Patents

絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子 Download PDF

Info

Publication number
WO2015122049A1
WO2015122049A1 PCT/JP2014/076721 JP2014076721W WO2015122049A1 WO 2015122049 A1 WO2015122049 A1 WO 2015122049A1 JP 2014076721 W JP2014076721 W JP 2014076721W WO 2015122049 A1 WO2015122049 A1 WO 2015122049A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
concentration
type impurity
conductivity type
impurity concentration
Prior art date
Application number
PCT/JP2014/076721
Other languages
English (en)
French (fr)
Inventor
明高 添野
竹内 有一
成雅 副島
Original Assignee
トヨタ自動車株式会社
株式会社デンソー
明高 添野
竹内 有一
成雅 副島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社デンソー, 明高 添野, 竹内 有一, 成雅 副島 filed Critical トヨタ自動車株式会社
Priority to US15/114,461 priority Critical patent/US9773883B2/en
Publication of WO2015122049A1 publication Critical patent/WO2015122049A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • the technology disclosed in this specification relates to an insulated gate switching element.
  • Patent Document 1 discloses an IGBT having an n base layer, a p base layer, an n emitter layer, and a gate electrode.
  • the p base layer has a high concentration p base layer having a high p type impurity concentration and a low concentration p base layer having a low p type impurity concentration.
  • the high concentration p base layer is in contact with the n base layer, and the low concentration p base layer is in contact with the n emitter layer.
  • an on potential is applied to the gate electrode, a channel is formed in the p base layer, and electrons flow from the n base layer toward the n emitter layer.
  • Patent Document 1 describes a technique in which a high-concentration p base layer is provided in an IGBT. However, even if a high-concentration p base layer is provided in another insulated gate switching element such as a MOSFET, a short-circuit withstand capability is described. Can be improved.
  • the high-concentration p base layer described above is usually formed by implanting p-type impurities to a predetermined depth with respect to the semiconductor substrate.
  • the p-type impurity is implanted, many defects are formed in the semiconductor layer through which the implanted p-type impurity has passed. That is, a large number of defects are formed in the low concentration p base layer existing at a position shallower than the high concentration p base layer.
  • the low concentration p base layer is a region where a channel is formed. If there are a large number of defects in the channel, the channel mobility decreases and the on-resistance of the element increases.
  • the present specification provides a technique for realizing high short-circuit tolerance and high channel mobility in an insulated gate switching element.
  • the method for manufacturing an insulated gate switching element disclosed in this specification includes injecting a second conductivity type impurity into a surface of a semiconductor substrate having a first region of a first conductivity type, thereby forming the surface of the semiconductor substrate. Forming a second region of a second conductivity type in a region exposed to the second region, and a second conductivity type having a second conductivity type impurity concentration lower than that of the second region on the surface after forming the second region.
  • the insulated gate switching element manufactured by this method channels are formed in the second region and the third region.
  • a second region having a high second conductivity type impurity concentration is formed by second conductivity type impurity implantation.
  • a third region having a low second conductivity type impurity concentration is formed on the second region by epitaxial growth. Since the third region is formed after the second region, no defect is formed in the third region when the second region is formed. Therefore, the insulated gate switching element manufactured by this method has high channel mobility.
  • a part of the channel is formed in the second region having a high second conductivity type impurity concentration. For this reason, this insulated gate type switching element has high short circuit tolerance.
  • the second region is formed by implanting the second conductivity type impurity, the second conductivity type impurity concentration in the second region can be accurately controlled. Therefore, the gate-voltage threshold variation of the insulated gate switching element manufactured by this method is small.
  • the first conductivity type impurity concentration in the third region may be lower than the first conductivity type impurity concentration in the first region.
  • the channel mobility in the third region can be further improved.
  • the present specification provides a new insulated gate type switching element.
  • the insulated gate switching element is formed on a first conductivity type first region, a second conductivity type second region formed on the first region, and the second region, A third region of a second conductivity type having a second conductivity type impurity concentration lower than that of the second region, and is in contact with the third region, and is separated from the first region by the second region and the third region.
  • the first conductivity type impurity concentration in the first region and the second region is substantially constant
  • the second conductivity type impurity concentration distribution in the thickness direction of the second region has a maximum value
  • the third region The second conductivity type impurity concentration is substantially constant.
  • This insulated gate type switching element can be manufactured by the method described above. Therefore, this insulated gate semiconductor element has a high short-circuit resistance and a high channel mobility. In addition, when the insulated gate switching element is mass-produced, the threshold value of the gate voltage is unlikely to vary.
  • the first conductivity type impurity concentration in the third region may be lower than the first conductivity type impurity concentration in the first region.
  • substantially constant means that the difference between the maximum value and the minimum value of the impurity concentration in each region is less than a general manufacturing error level.
  • FIG. 1 is a longitudinal sectional view of a semiconductor device 10.
  • FIG. 2 is a graph showing an impurity concentration distribution along the line II-II in FIG.
  • FIG. 6 is an explanatory diagram of a method for manufacturing the semiconductor device 10.
  • FIG. 6 is an explanatory diagram of a method for manufacturing the semiconductor device 10.
  • FIG. 6 is an explanatory diagram of a method for manufacturing the semiconductor device 10.
  • FIG. 6 is an explanatory diagram of a method for manufacturing the semiconductor device 10.
  • the semiconductor device 10 shown in FIG. 1 has a semiconductor substrate 12 made of SiC.
  • a surface electrode 14 is formed on the surface of the semiconductor substrate 12.
  • a back electrode 18 is formed on the back surface of the semiconductor substrate 12.
  • a source region 22, a body contact region 24, a low concentration body region 26, a high concentration body region 27, a drift region 28, a drain region 30 and a gate trench 34 are formed.
  • the source region 22 is an n-type region containing an n-type impurity (nitrogen in this embodiment) at a high concentration.
  • the source region 22 is formed in a range exposed on the upper surface of the semiconductor substrate 12.
  • the source region 22 is ohmically connected to the surface electrode 14.
  • the body contact region 24 is a p-type region containing a p-type impurity (aluminum in this embodiment) at a high concentration.
  • the body contact region 24 is formed so as to be exposed on the upper surface of the semiconductor substrate 12 at a position where the source region 22 is not formed.
  • the body contact region 24 is ohmically connected to the surface electrode 14.
  • the low concentration body region 26 is a p-type region containing a p-type impurity at a low concentration.
  • the p-type impurity concentration of the low-concentration body region 26 is lower than the p-type impurity concentration of the body contact region 24.
  • the low-concentration body region 26 is formed below the source region 22 and the body contact region 24 and is in contact with these regions.
  • the high concentration body region 27 is a p-type region containing p-type impurities at a relatively high concentration.
  • the p-type impurity concentration of the high-concentration body region 27 is lower than the p-type impurity concentration of the body contact region 24. Further, the p-type impurity concentration in the high-concentration body region 27 is higher than the p-type impurity concentration in the low-concentration body region 26 (more specifically, the average value of the p-type impurity concentration in the high-concentration body region 27 is low Higher than the average p-type impurity concentration of the body region 26).
  • the high concentration body region 27 is formed below the low concentration body region 26 and is in contact with the low concentration body region 26. The high concentration body region 27 is separated from the source region 22 by the low concentration body region 26.
  • the drift region 28 is an n-type region containing n-type impurities at a low concentration.
  • the n-type impurity concentration of the drift region 28 is lower than the n-type impurity concentration of the source region 22.
  • the drift region 28 is formed below the high concentration body region 27.
  • the drift region 28 is in contact with the high concentration body region 27 and is separated from the low concentration body region 26 by the high concentration body region 27.
  • the drain region 30 is an n-type region containing an n-type impurity at a high concentration.
  • the n-type impurity concentration of the drain region 30 is higher than the n-type impurity concentration of the drift region 28.
  • the drain region 30 is formed below the drift region 28.
  • the drain region 30 is in contact with the drift region 28 and is separated from the high-concentration body region 27 by the drift region 28.
  • the drain region 30 is formed in a range exposed on the lower surface of the semiconductor substrate 12.
  • the drain region 30 is ohmically connected to the back electrode 18.
  • a plurality of gate trenches 34 are formed on the upper surface of the semiconductor substrate 12. Each gate trench 34 is formed so as to penetrate the source region 22, the low-concentration body region 26, and the high-concentration body region 27 and reach the drift region 28. In each gate trench 34, a gate insulating film 34a and a gate electrode 34b are formed. The inner surface of the gate trench 34 is covered with a gate insulating film 34a. The gate trench 34 is filled with a gate electrode 34b. The gate electrode 34 b extends from the surface of the semiconductor substrate 12 to a position deeper than the high concentration body region 27. The gate electrode 34b faces the source region 22, the low-concentration body region 26, the high-concentration body region 27, and the drift region 28 through the gate insulating film 34a.
  • the gate electrode 34b is insulated from the semiconductor substrate 12 by the gate insulating film 34a.
  • the upper surface of the gate electrode 34b is covered with an insulating layer 34c.
  • the gate electrode 34b is insulated from the surface electrode 14 by the insulating layer 34c.
  • FIG. 2 shows the impurity concentration distribution along the line II-II in FIG. That is, the impurity concentration distribution in the low concentration body region 26, the high concentration body region 27, and the drift region 28 in the thickness direction of the semiconductor substrate 12 is shown.
  • the n-type impurity concentration is distributed at a substantially constant concentration N1.
  • n-type impurities are distributed at a substantially constant concentration N2.
  • the concentration N2 is higher than the concentration N1. That is, the average value of the n-type impurity concentration of the low-concentration body region 26 is lower than the average value of the n-type impurity concentration of the high-concentration body region 27 and the drift region 28.
  • the p-type impurity concentration is distributed at a substantially constant concentration N3.
  • the p-type impurity concentration is distributed so as to have a peak concentration N4.
  • the p-type impurity concentration is the concentration N3.
  • the p-type impurity concentration gradually increases from the upper end of the high-concentration body region 27 toward the drift region 28 side.
  • the p-type impurity concentration has a peak concentration N4 at a substantially central depth of the high-concentration body region 27.
  • the p-type impurity concentration gradually decreases toward the drift region 28 side.
  • the p-type impurity concentration is substantially zero.
  • the concentrations N1, N2, and N3 are preferably constant within each region, but in reality, variations in error ranges occur in the concentrations N1, N2, and N3.
  • the variation of each impurity concentration can be defined by (maximum value ⁇ minimum value) / ⁇ (minimum value + maximum value) / 2 ⁇ .
  • the variation of the n-type impurity concentration N1 in the low-concentration body region 26 is preferably within ⁇ 10%.
  • the variation in the p-type impurity concentration N3 in the low-concentration body region 26 is preferably within ⁇ 10%.
  • the variation in the n-type impurity concentration in the high-concentration body region 27 and the drift region 28 is preferably within ⁇ 7%.
  • a MOSFET is formed in the semiconductor substrate 12 with the above-described configuration.
  • the gate electrode 34b By applying a voltage higher than the threshold to the gate electrode 34b, the low-concentration body region 26 and the high-concentration body region 27 in the vicinity of the gate insulating film 34a (that is, the low-concentration body in the range sandwiched between the source region 22 and the drift region 28).
  • a channel 32 is formed in the region 26 and the high-concentration body region 27). Formation of the channel 32 allows electrons to flow from the source region 22 to the drift region 28.
  • the gate voltage is lowered below the threshold value, the channel 32 disappears and electrons do not flow from the source region 22 to the drift region 28. That is, the MOSFET is turned off.
  • the saturation channel current of the MOSFET is kept low. That is, when a very high voltage is applied between the source and drain while the MOSFET is on, the potential of the high-concentration body region 27 rises. Then, since the potential difference between the high concentration body region 27 and the gate electrode 34b becomes less than the threshold value, the channel 32 cannot be maintained in the high concentration body region 27, and the channel 32 is pinched off in the high concentration body region 27. . As a result, the current flowing through the channel 32 is saturated. Thus, this MOSFET has a low saturation channel current and therefore a high short-circuit tolerance.
  • n-type semiconductor substrate 50 made of SiC shown in FIG. 3 is prepared.
  • n-type impurities are uniformly distributed at substantially the same concentration as the drift region 28 described above.
  • p-type impurities are ion-implanted into the surface 52 of the semiconductor substrate 50.
  • the semiconductor substrate 50 is heat-treated to diffuse and activate the implanted p-type impurity.
  • the p-type high-concentration body region 27 is formed in the range exposed on the surface 52 in the semiconductor substrate 50.
  • the n-type region below the high concentration body region 27 corresponds to the drift region 28.
  • the high-concentration body region 27 is formed by ion implantation of p-type impurities, a Gaussian distribution is used so that the p-type impurities have a peak value N4 in the high-concentration body region 27 as shown in FIG. Distributed. Further, since the high-concentration body region 27 is a region formed by implanting p-type impurities into the n-type semiconductor substrate 50, the n-type impurity concentration in the high-concentration body region 27 drifts as shown in FIG. Similar to region 28, it is uniform.
  • a p-type layer 26a made of SiC is formed on the surface of the semiconductor substrate 12 (that is, on the high-concentration body region 27) by epitaxial growth. As will be described in detail later, a part of the p-type layer 26 a becomes a low-concentration body region 26.
  • the p-type impurity concentration of the p-type layer 26a ie, the low-concentration body region 26
  • the p-type layer 26a ie, the low-concentration body region 26
  • the epitaxial growth process conditions are adjusted so that the n-type impurity concentration is substantially constant at the concentration N1.
  • the p-type layer 26a can be formed such that each impurity concentration is distributed at a substantially constant value as in the distribution in the low-concentration body region 26 of FIG.
  • the source region 22 and the body contact region 24 are formed in a range exposed on the surface of the p-type layer 26a by ion implantation and thermal diffusion.
  • the lower region that does not become the source region 22 and the body contact region 24 becomes the low-concentration body region 26.
  • a gate trench 34, a gate insulating film 34a, and a gate electrode 34b are formed. Thereafter, necessary processing on the front surface side (formation of the front surface electrode 14 and the like) is performed, and necessary processing on the back surface side (rear surface polishing, formation of the back surface electrode 18 and the like) is performed, thereby completing the semiconductor device 10 in FIG. To do.
  • the low concentration body region 26 is epitaxially grown on the high concentration body region 27. For this reason, the low-concentration body region 26 is not damaged by ion implantation for forming the high-concentration body region 27 (that is, the low-concentration body region 26 is formed by ion implantation for forming the high-concentration body region 27). No crystal defects are formed). Also, as shown in FIG. 6, even in the step of forming the source region 22 and the body contact region 24 by ion implantation, ions are not implanted into the low-concentration body region 26. Crystal defects are not formed. For this reason, there are very few crystal defects in the low concentration body region 26.
  • the channel 32 is formed in the low concentration body region 26. Since the crystal defects present in the low concentration body region 26 are extremely few, the mobility of the channel 32 formed in the low concentration body region 26 is very high. Therefore, the semiconductor device 10 has a low on-voltage.
  • the low-concentration body region 26 is formed so that the n-type impurity concentration of the low-concentration body region 26 is lower than the n-type impurity concentration of the semiconductor substrate 50. Since the n-type impurity existing in the channel 32 scatters electrons, the mobility of the channel 32 is reduced. In the semiconductor device 10, the mobility of the channel 32 formed in the low-concentration body region 26 is improved even when the n-type impurity concentration of the low-concentration body region 26 is lower than the n-type impurity concentration of the semiconductor substrate 50. Has been. Thereby, the on-voltage of the semiconductor device 10 is further reduced.
  • the threshold value of the gate voltage is determined by the p-type impurity concentration in the region of the channel 32 where the p-type impurity concentration is highest.
  • the threshold value of the gate voltage is determined by the peak concentration N4 of the p-type impurity concentration in the high-concentration body region 27.
  • the high-concentration body region 27 is formed by ion implantation. According to the ion implantation, the p-type impurity concentration (that is, the peak concentration N4) of the high-concentration body region 27 can be accurately controlled.
  • the impurity concentration in the epitaxial layer varies greatly depending on the temperature in the growth process, so that the concentration of the high-concentration body region 27 is accurately controlled. Is difficult.
  • the high-concentration body region 27 is formed by ion implantation as in the above-described embodiment, the variation factor is small compared to the case where the high-concentration body region 27 is formed by epitaxial growth. Can be controlled accurately. Therefore, according to the above-described embodiment, when the semiconductor device 10 is mass-produced, variations in the gate voltage threshold can be suppressed.
  • the channel mobility of the MOSFET can be improved, the short-circuit withstand capability of the MOSFET can be improved, and variations in the threshold value of the gate voltage can be suppressed.
  • the MOSFET has been described.
  • the technology disclosed in this specification may be applied to other insulated gate switching elements such as IGBTs.
  • the semiconductor substrate 50 is made of SiC.
  • the technique disclosed in this specification may be applied to a semiconductor substrate made of another semiconductor material.
  • the technique disclosed in this specification is particularly useful for a semiconductor substrate made of SiC for the following reason. That is, in the semiconductor substrate made of SiC, the activation rate of impurities implanted into the semiconductor substrate by ion implantation is extremely low.
  • the channel mobility of the insulated gate switching element made of SiC is greatly improved by applying the technique disclosed in this specification to the SiC semiconductor substrate to avoid ion implantation into the low-concentration body region 26. can do.
  • the temperature required for epitaxial growth of the SiC layer is about 1600 ° C., which is considerably higher than the temperature for growing the Si layer (about 1100 ° C.). For this reason, it is particularly difficult to control the temperature in the step of epitaxially growing the SiC layer.
  • the impurity concentration of the epitaxial layer tends to vary. Therefore, assuming that the SiC high-concentration body region 27 is formed by epitaxial growth, the impurity concentration of the high-concentration body region 27 tends to vary, and as a result, the gate voltage threshold value tends to vary. On the other hand, if the high-concentration body region 27 is formed by ion implantation by applying the technique disclosed in this specification, the p-type impurity concentration of the high-concentration body region 27 made of SiC can be accurately controlled. Thus, variation in gate threshold voltage can be greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【解決手段】 絶縁ゲート型スイッチング素子を製造する方法であって、半導体基板の表面に第2導電型不純物を注入することによってその表面に第2導電型の第2領域27を形成する工程と、その表面上に第2領域27よりも第2導電型不純物濃度が低い第2導電型の第3領域26をエピタキシャル成長により形成する工程と、レンチゲート電極34bを形成する工程を有する。

Description

絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子
 本出願は、2014年2月17日に出願された日本特許出願特願2014-027750の関連出願であり、この日本特許出願に基づく優先権を主張するものであり、この日本特許出願に記載された全ての内容を、本明細書を構成するものとして援用する。
 本明細書が開示する技術は、絶縁ゲート型スイッチング素子に関する。
 特開2001-250947号公報(以下、特許文献1という)には、nベース層と、pベース層と、nエミッタ層と、ゲート電極を有するIGBTが開示されている。pベース層は、p型不純物濃度が高い高濃度pベース層と、p型不純物濃度が低い低濃度pベース層を有している。高濃度pベース層はnベース層に接しており、低濃度pベース層はnエミッタ層に接している。ゲート電極にオン電位を印加すると、pベース層にチャネルが形成されて、nベース層からnエミッタ層に向かって電子が流れる。このIGBTでは、コレクタ‐エミッタ間電圧が高くなると、高濃度pベース層の電位が上昇し、高濃度pベース層に形成されているチャネルがピンチオフし、IGBTに流れる電流が飽和する。このため、このIGBTは、短絡耐量が高い。なお、特許文献1では、IGBTに高濃度pベース層を設けた技術について説明しているが、MOSFET等のような他の絶縁ゲート型スイッチング素子に高濃度pベース層を設けても、短絡耐量を向上させることができる。
 上述した高濃度pベース層は、通常、半導体基板に対して所定の深さにp型不純物を注入することで形成される。p型不純物を注入する際には、注入されたp型不純物が通過した半導体層内に多数の欠陥が形成される。すなわち、高濃度pベース層よりも浅い位置に存在する低濃度pベース層内に多数の欠陥が形成される。低濃度pベース層は、チャネルが形成される領域である。チャネルに多数の欠陥が存在していれば、チャネル移動度が低下し、素子のオン抵抗が上昇してしまう。
 したがって、本明細書では、絶縁ゲート型スイッチング素子において、高い短絡耐量と高いチャネル移動度を実現する技術を提供する。
 上述した問題に対し、高濃度pベース層と低濃度pベース層をエピタキシャル成長によって形成することが考えられる。この方法によれば、低濃度pベース層に欠陥が形成されることを抑制することができる。しかしながら、エピタキシャル成長によって高濃度pベース層を形成すると、高濃度pベース層の不純物濃度を正確に制御することが困難となる。その結果、絶縁ゲート型スイッチング素子を量産する際に、高濃度pベース層の不純物濃度のばらつきが大きくなり、これによってゲート電圧の閾値のばらつきが大きくなるという問題が生じる。したがって、本明細書では、以下の絶縁ゲート型スイッチング素子の製造方法を提案する。
 本明細書が開示する絶縁ゲート型スイッチング素子の製造方法は、第1導電型の第1領域を有する半導体基板の表面に第2導電型不純物を注入することによって、前記半導体基板のうちの前記表面に露出する範囲に第2導電型の第2領域を形成する工程と、前記第2領域を形成した後に、前記表面上に前記第2領域よりも第2導電型不純物濃度が低い第2導電型の第3領域をエピタキシャル成長により形成する工程と、前記第3領域に接しており、前記第2領域及び前記第3領域によって前記第1領域から分離されている第1導電型の第4領域を形成する工程と、前記第2領域及び前記第3領域に対して絶縁膜を介して対向するトレンチゲート電極を形成する工程を有する。
 この方法により製造される絶縁ゲート型スイッチング素子では、第2領域と第3領域にチャネルが形成される。この製造方法では、まず、第2導電型不純物注入によって、第2導電型不純物濃度が高い第2領域を形成する。そして、その後に、第2領域上に、エピタキシャル成長によって第2導電型不純物濃度が低い第3領域を形成する。第3領域が第2領域よりも後に形成されるため、第2領域を形成する際に第3領域に欠陥が形成されない。したがって、この方法により製造された絶縁ゲート型スイッチング素子は、チャネル移動度が高い。また、この方法により製造される絶縁ゲート型スイッチング素子では、チャネルの一部が第2導電型不純物濃度が高い第2領域に形成される。このため、この絶縁ゲート型スイッチング素子は短絡耐量が高い。また、この方法では、第2導電型不純物を注入することによって第2領域を形成するので、第2領域の第2導電型不純物濃度を正確に制御することができる。したがって、この方法によって製造される絶縁ゲート型スイッチング素子は、ゲート電圧の閾値のばらつきが小さい。
 上述した方法においては、前記第3領域の第1導電型不純物濃度が、前記第1領域の第1導電型不純物濃度より低くてもよい。
 この構成によれば、第3領域のチャネル移動度をさらに向上させることができる。
 また、本明細書は、新たな絶縁ゲート型スイッチング素子を提供する。この絶縁ゲート型スイッチング素子は、第1導電型の第1領域と、前記第1領域上に形成されている第2導電型の第2領域と、前記第2領域上に形成されており、前記第2領域よりも第2導電型不純物濃度が低い第2導電型の第3領域と、前記第3領域に接しており、前記第2領域及び前記第3領域によって前記第1領域から分離されている第1導電型の第4領域と、前記第2領域及び前記第3領域に対して絶縁膜を介して対向するトレンチゲート電極を有する。前記第1領域及び前記第2領域の第1導電型不純物濃度が略一定であり、前記第2領域の厚み方向における第2導電型不純物濃度分布が、極大値を有しており、第3領域の第2導電型不純物濃度が略一定である。
 この絶縁ゲート型スイッチング素子は、上述した方法によって製造することができる。したがって、この絶縁ゲート型半導体素子は、短絡耐量が高く、チャネル移動度が高い。また、この絶縁ゲート型スイッチング素子を量産したときに、ゲート電圧の閾値にばらつきが生じ難い。なお、この絶縁ゲート型スイッチング素子においても、前記第3領域の第1導電型不純物濃度が、前記第1領域の第1導電型不純物濃度より低くてもよい。なお、上記の「略一定」とは、各領域内の不純物濃度の最大値と最小値の差が、一般的な製造誤差レベル未満であることを意味する。
半導体装置10の縦断面図。 図1のII-II線における不純物濃度分布を示すグラフ。 半導体装置10の製造方法の説明図。 半導体装置10の製造方法の説明図。 半導体装置10の製造方法の説明図。 半導体装置10の製造方法の説明図。 半導体装置10の製造方法の説明図。
 図1に示す半導体装置10は、SiCからなる半導体基板12を有している。半導体基板12の表面には、表面電極14が形成されている。半導体基板12の裏面には、裏面電極18が形成されている。
 半導体基板12には、ソース領域22、ボディコンタクト領域24、低濃度ボディ領域26、高濃度ボディ領域27、ドリフト領域28、ドレイン領域30及びゲートトレンチ34が形成されている。
 ソース領域22は、高濃度にn型不純物(本実施形態では窒素)を含むn型領域である。ソース領域22は、半導体基板12の上面に露出する範囲に形成されている。ソース領域22は、表面電極14に対してオーミック接続されている。
 ボディコンタクト領域24は、高濃度にp型不純物(本実施形態ではアルミニウム)を含むp型領域である。ボディコンタクト領域24は、ソース領域22が形成されていない位置において半導体基板12の上面に露出するように形成されている。ボディコンタクト領域24は、表面電極14に対してオーミック接続されている。
 低濃度ボディ領域26は、低濃度にp型不純物を含むp型領域である。低濃度ボディ領域26のp型不純物濃度は、ボディコンタクト領域24のp型不純物濃度よりも低い。低濃度ボディ領域26は、ソース領域22及びボディコンタクト領域24の下側に形成されており、これらの領域に接している。
 高濃度ボディ領域27は、比較的高濃度にp型不純物を含むp型領域である。高濃度ボディ領域27のp型不純物濃度は、ボディコンタクト領域24のp型不純物濃度よりも低い。また、高濃度ボディ領域27のp型不純物濃度は、低濃度ボディ領域26のp型不純物濃度よりも高い(より詳細には、高濃度ボディ領域27のp型不純物濃度の平均値が、低濃度ボディ領域26のp型不純物濃度の平均値よりも高い)。高濃度ボディ領域27は、低濃度ボディ領域26の下側に形成されており、低濃度ボディ領域26に接している。高濃度ボディ領域27は、低濃度ボディ領域26によって、ソース領域22から分離されている。
 ドリフト領域28は、低濃度にn型不純物を含むn型領域である。ドリフト領域28のn型不純物濃度は、ソース領域22のn型不純物濃度よりも低い。ドリフト領域28は、高濃度ボディ領域27の下側に形成されている。ドリフト領域28は、高濃度ボディ領域27に接しており、高濃度ボディ領域27によって低濃度ボディ領域26から分離されている。
 ドレイン領域30は、高濃度にn型不純物を含むn型領域である。ドレイン領域30のn型不純物濃度は、ドリフト領域28のn型不純物濃度よりも高い。ドレイン領域30は、ドリフト領域28の下側に形成されている。ドレイン領域30は、ドリフト領域28に接しており、ドリフト領域28によって高濃度ボディ領域27から分離されている。ドレイン領域30は、半導体基板12の下面に露出する範囲に形成されている。ドレイン領域30は、裏面電極18に対してオーミック接続されている。
 半導体基板12の上面には、複数のゲートトレンチ34が形成されている。各ゲートトレンチ34は、ソース領域22と低濃度ボディ領域26と高濃度ボディ領域27を貫通し、ドリフト領域28に達するように形成されている。各ゲートトレンチ34内には、ゲート絶縁膜34aと、ゲート電極34bが形成されている。ゲートトレンチ34の内面は、ゲート絶縁膜34aによって覆われている。ゲートトレンチ34内には、ゲート電極34bが充填されている。ゲート電極34bは、半導体基板12の表面から高濃度ボディ領域27よりも深い位置まで伸びている。ゲート電極34bは、ゲート絶縁膜34aを介して、ソース領域22、低濃度ボディ領域26、高濃度ボディ領域27及びドリフト領域28と対向している。ゲート電極34bは、ゲート絶縁膜34aによって、半導体基板12から絶縁されている。ゲート電極34bの上面は、絶縁層34cによって覆われている。絶縁層34cによって、ゲート電極34bは表面電極14から絶縁されている。
 図2は、図1のII-II線に沿った不純物濃度分布を示している。すなわち、半導体基板12の厚み方向における低濃度ボディ領域26、高濃度ボディ領域27及びドリフト領域28内の不純物濃度分布を示している。
 低濃度ボディ領域26内では、n型不純物濃度が略一定の濃度N1で分布している。高濃度ボディ領域27及びドリフト領域28内では、n型不純物が略一定の濃度N2で分布している。濃度N2は濃度N1より高い。すなわち、低濃度ボディ領域26のn型不純物濃度の平均値は、高濃度ボディ領域27及びドリフト領域28のn型不純物濃度の平均値よりも低い。低濃度ボディ領域26内では、p型不純物濃度が略一定の濃度N3で分布している。高濃度ボディ領域27内では、p型不純物濃度が、ピーク濃度N4を有するように分布している。すなわち、高濃度ボディ領域27の上端の深さでは、p型不純物濃度は濃度N3である。高濃度ボディ領域27の上端からドリフト領域28側に向かうに従って、p型不純物濃度が徐々に上昇する。p型不純物濃度は、高濃度ボディ領域27の略中央の深さにおいてピーク濃度N4となる。ピーク濃度N4の深さから下側では、p型不純物濃度はドリフト領域28側に向かうに従って徐々に低下する。ドリフト領域28内では、p型不純物濃度は略ゼロとなっている。なお、濃度N1、N2、N3は各領域内で一定であることが好ましいが、現実的には濃度N1、N2、N3に誤差範囲のばらつきが生じる。各不純物濃度のばらつきは、(最大値-最小値)/{(最小値+最大値)/2}により定義することができる。低濃度ボディ領域26のn型不純物濃度N1のばらつきは、±10%以内であることが好ましい。低濃度ボディ領域26のp型不純物濃度N3のばらつきは、±10%以内であることが好ましい。高濃度ボディ領域27及びドリフト領域28内のn型不純物濃度のばらつきは、±7%以内であることが好ましい。
 半導体基板12内には、上述した構成によって、MOSFETが形成されている。ゲート電極34bに閾値以上の電圧を印加することで、ゲート絶縁膜34a近傍の低濃度ボディ領域26及び高濃度ボディ領域27(すなわち、ソース領域22とドリフト領域28に挟まれた範囲の低濃度ボディ領域26及び高濃度ボディ領域27)にチャネル32が形成される。チャネル32が形成されることで、電子が、ソース領域22からドリフト領域28に流れることが可能となる。ゲート電圧を閾値以下に低下させると、チャネル32が消失し、ソース領域22からドリフト領域28に電子が流れなくなる。すなわち、MOSFETがオフする。本実施形態の半導体装置10では、以下に説明するように、MOSFETの飽和チャネル電流が低く抑えられている。すなわち、MOSFETがオンしている際にソース‐ドレイン間に非常に高い電圧が印加されると、高濃度ボディ領域27の電位が上昇する。すると、高濃度ボディ領域27とゲート電極34bの間の電位差が閾値未満となるため、高濃度ボディ領域27にチャネル32を維持することができなくなり、高濃度ボディ領域27内においてチャネル32がピンチオフする。これによって、チャネル32に流れる電流が飽和する。このように、このMOSFETは、飽和チャネル電流が低く、したがって、短絡耐量が高い。
 次に、半導体装置10の製造方法について説明する。まず、図3に示すSiCからなるn型の半導体基板50を用意する。半導体基板50内では、n型不純物が、上述したドリフト領域28と略同じ濃度で均一に分布している。
 まず、半導体基板50の表面52に、p型不純物をイオン注入する。次に、半導体基板50を熱処理することで、注入されたp型不純物を拡散させ、活性化させる。これによって、図4に示すように、半導体基板50内の表面52に露出する範囲に、p型の高濃度ボディ領域27が形成される。高濃度ボディ領域27より下側のn型領域は、ドリフト領域28に相当する。
 上記のように、高濃度ボディ領域27はp型不純物のイオン注入によって形成されるので、高濃度ボディ領域27内では図2に示すようにp型不純物がピーク値N4を有するように、ガウス分布状に分布する。また、高濃度ボディ領域27は、n型の半導体基板50にp型不純物を注入して形成された領域であるので、図2に示すように高濃度ボディ領域27内のn型不純物濃度はドリフト領域28と同様に均一となる。
 次に、図5に示すように、半導体基板12の表面(すなわち、高濃度ボディ領域27上)に、SiCからなるp型層26aをエピタキシャル成長により形成する。後に詳述するが、p型層26aの一部は、低濃度ボディ領域26となる。ここでは、図2に示すように、p型層26a(すなわち、低濃度ボディ領域26)のp型不純物濃度が濃度N3で略一定となり、p型層26a(すなわち、低濃度ボディ領域26)のn型不純物濃度が濃度N1で略一定となるように、エピタキシャル成長の工程条件を調整する。エピタキシャル成長によれば、図2の低濃度ボディ領域26内の分布のように各不純物濃度が略一定の値で分布するようにp型層26aを形成することができる。
 次に、イオン注入及び熱拡散によって、図6に示すように、p型層26aの表面に露出する範囲に、ソース領域22及びボディコンタクト領域24を形成する。p型層26aのうち、ソース領域22及びボディコンタクト領域24とならなかった下側の領域が、低濃度ボディ領域26となる。
 次に、図7に示すように、ゲートトレンチ34、ゲート絶縁膜34a及びゲート電極34bを形成する。その後、表面側の必要な加工(表面電極14の形成等)を形成し、裏面側の必要な加工(裏面研磨、裏面電極18の形成等)を行うことで、図1の半導体装置10が完成する。
 上述した製造方法では、イオン注入によって図4に示すように高濃度ボディ領域27を形成した後に、高濃度ボディ領域27上に低濃度ボディ領域26をエピタキシャル成長させる。このため、低濃度ボディ領域26は、高濃度ボディ領域27を形成するためのイオン注入によってダメージを受けていない(すなわち、高濃度ボディ領域27を形成するためのイオン注入によって低濃度ボディ領域26に結晶欠陥が形成されていない)。また、図6に示すようにイオン注入によってソース領域22及びボディコンタクト領域24を形成する工程でも、低濃度ボディ領域26にはイオンが注入されておらず、この工程でも低濃度ボディ領域26にほとんど結晶欠陥が形成されていない。このため、低濃度ボディ領域26内に存在する結晶欠陥は極めて少ない。上述したように、低濃度ボディ領域26にはチャネル32が形成される。低濃度ボディ領域26内に存在する結晶欠陥が極めて少ないので、低濃度ボディ領域26に形成されるチャネル32の移動度は非常に高い。したがって、この半導体装置10は、オン電圧が低い。
 また、上述した製造方法では、低濃度ボディ領域26のn型不純物濃度が、半導体基板50のn型不純物濃度よりも低くなるように低濃度ボディ領域26を形成する。チャネル32に存在するn型不純物は、電子を散乱するため、チャネル32の移動度を低下させる。半導体装置10では、低濃度ボディ領域26のn型不純物濃度が半導体基板50のn型不純物濃度よりも低くなっていることによっても、低濃度ボディ領域26に形成されるチャネル32の移動度が向上されている。これによって、半導体装置10のオン電圧がより低減されている。
 また、ゲート電圧の閾値は、チャネル32のうちの最もp型不純物濃度が高い領域のp型不純物濃度によって定まる。上述した実施形態では、高濃度ボディ領域27内のp型不純物濃度のピーク濃度N4によってゲート電圧の閾値が決まる。上述した製造方法では、高濃度ボディ領域27をイオン注入によって形成する。イオン注入によれば、高濃度ボディ領域27のp型不純物濃度(すなわち、ピーク濃度N4)を正確に制御することができる。すなわち、仮に、高濃度ボディ領域27をエピタキシャル成長により形成することを考えた場合、エピタキシャル層の不純物濃度は成長工程における温度の影響によって大きく変動するため、高濃度ボディ領域27の濃度を正確に制御することが困難である。これに対し、上述した実施形態のようにイオン注入によって高濃度ボディ領域27を形成する場合には、エピタキシャル成長によって形成する場合に比べてばらつき要因が小さいため、高濃度ボディ領域27のp型不純物濃度を正確に制御することができる。したがって、上述した実施形態によれば、半導体装置10を量産した場合に、ゲート電圧の閾値のばらつきを抑制することができる。
 以上に説明したように、実施形態の製造方法及び半導体装置10によれば、MOSFETのチャネル移動度を向上させ、MOSFETの短絡耐量を向上させ、ゲート電圧の閾値のばらつきを抑制することができる。
 なお、上述した実施例では、MOSFETについて説明したが、IGBT等の他の絶縁ゲート型スイッチング素子に本明細書に開示の技術を適用してもよい。また、上述した実施形態では、半導体基板50がSiCにより構成されていたが、他の半導体材料からなる半導体基板に本明細書に開示の技術を適用してもよい。但し、本明細書に開示の技術は、以下の理由により、SiC製の半導体基板で特に有用である。すなわち、SiC製の半導体基板では、イオン注入により半導体基板に注入された不純物の活性化率が極めて低い。したがって、仮に、低濃度ボディ領域26に不純物がイオン注入された場合を考えると、注入された不純物の多くが活性化せず、低濃度ボディ領域26に結晶欠陥が多く残る。このため、SiC製の半導体基板に本明細書に開示の技術を適用して低濃度ボディ領域26へのイオン注入を回避することで、SiC製の絶縁ゲート型スイッチング素子のチャネル移動度を大きく改善することができる。また、SiC層をエピタキシャル成長させる場合に必要な温度は、約1600℃であり、Si層を成長させる場合の温度(約1100℃)よりもかなり高い。このため、SiC層をエピタキシャル成長させる工程では特に温度の制御が困難であり、このために、エピタキシャル層の不純物濃度にばらつきが生じやすい。したがって、仮に、SiC製の高濃度ボディ領域27をエピタキシャル成長により形成した場合を考えると、高濃度ボディ領域27の不純物濃度にばらつきが生じやすく、その結果、ゲート電圧の閾値にばらつきが生じ易い。これに対し、本明細書に開示の技術を適用して高濃度ボディ領域27をイオン注入により形成すれば、SiC製の高濃度ボディ領域27のp型不純物濃度を正確に制御することが可能となり、ゲート閾値電圧のばらつきを大きく改善することができる。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (4)

  1.  絶縁ゲート型スイッチング素子を製造する方法であって、
     第1導電型の第1領域を有する半導体基板の表面に第2導電型不純物を注入することによって、前記半導体基板のうちの前記表面に露出する範囲に第2導電型の第2領域を形成する工程と、
     前記第2領域を形成した後に、前記表面上に前記第2領域よりも第2導電型不純物濃度が低い第2導電型の第3領域をエピタキシャル成長により形成する工程と、
     前記第3領域に接しており、前記第2領域及び前記第3領域によって前記第1領域から分離されている第1導電型の第4領域を形成する工程と、
     前記第2領域及び前記第3領域に対して絶縁膜を介して対向するトレンチゲート電極を形成する工程、
     を有する方法。
  2.  前記第3領域の第1導電型不純物濃度が、前記第1領域の第1導電型不純物濃度より低い請求項1の方法。
  3.  絶縁ゲート型スイッチング素子であって、
     第1導電型の第1領域と、
     前記第1領域上に形成されている第2導電型の第2領域と、
     前記第2領域上に形成されており、前記第2領域よりも第2導電型不純物濃度が低い第2導電型の第3領域と、
     前記第3領域に接しており、前記第2領域及び前記第3領域によって前記第1領域から分離されている第1導電型の第4領域と、
     前記第2領域及び前記第3領域に対して絶縁膜を介して対向するトレンチゲート電極、
     を有しており、
     前記第1領域及び前記第2領域の第1導電型不純物濃度が略一定であり、
     前記第2領域の厚み方向における第2導電型不純物濃度分布が、極大値を有しており、
     第3領域の第2導電型不純物濃度が略一定である、
     絶縁ゲート型スイッチング素子。
  4.  前記第3領域の第1導電型不純物濃度が、前記第1領域の第1導電型不純物濃度より低い請求項3の絶縁ゲート型スイッチング素子。
PCT/JP2014/076721 2014-02-17 2014-10-06 絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子 WO2015122049A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/114,461 US9773883B2 (en) 2014-02-17 2014-10-06 Method for manufacturing insulated gate type switching device having low-density body region and high-density body region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014027750A JP6279927B2 (ja) 2014-02-17 2014-02-17 絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子
JP2014-027750 2014-02-17

Publications (1)

Publication Number Publication Date
WO2015122049A1 true WO2015122049A1 (ja) 2015-08-20

Family

ID=53799805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076721 WO2015122049A1 (ja) 2014-02-17 2014-10-06 絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子

Country Status (3)

Country Link
US (1) US9773883B2 (ja)
JP (1) JP6279927B2 (ja)
WO (1) WO2015122049A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831832A (zh) * 2018-05-07 2018-11-16 株洲中车时代电气股份有限公司 沟槽台阶栅igbt芯片的制作方法
CN109786462A (zh) * 2017-11-14 2019-05-21 丰田自动车株式会社 开关元件及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669628B2 (ja) * 2016-10-20 2020-03-18 トヨタ自動車株式会社 スイッチング素子
JP6731571B2 (ja) * 2016-12-27 2020-07-29 株式会社デンソー SiC−MOSFETの製造方法
US10431465B2 (en) * 2017-09-18 2019-10-01 Vanguard International Semiconductor Corporation Semiconductor structures and methods of forming the same
DE102018123164B3 (de) * 2018-09-20 2020-01-23 Infineon Technologies Ag Halbleitervorrichtung, die eine graben-gatestruktur enthält, und herstellungsverfahren
DE102018123210B3 (de) * 2018-09-20 2020-02-27 Infineon Technologies Ag Siliziumkarbid-Bauelemente und Verfahren zum Bilden von Siliziumkarbid-Bauelementen
JP2020123607A (ja) * 2019-01-29 2020-08-13 トヨタ自動車株式会社 半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250947A (ja) * 2000-03-06 2001-09-14 Toshiba Corp 電力用半導体素子およびその製造方法
JP2008235546A (ja) * 2007-03-20 2008-10-02 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2009194065A (ja) * 2008-02-13 2009-08-27 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2010147228A (ja) * 2008-12-18 2010-07-01 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2012099601A (ja) * 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830982B1 (ko) * 2004-05-12 2008-05-20 도요다 지도샤 가부시끼가이샤 Igbt
EP2091083A3 (en) 2008-02-13 2009-10-14 Denso Corporation Silicon carbide semiconductor device including a deep layer
JP4544360B2 (ja) * 2008-10-24 2010-09-15 トヨタ自動車株式会社 Igbtの製造方法
JP5809877B2 (ja) * 2010-08-26 2015-11-11 新電元工業株式会社 トレンチゲート型パワー半導体装置の製造方法
JP5510309B2 (ja) * 2010-12-22 2014-06-04 株式会社デンソー 炭化珪素半導体装置およびその製造方法
CN102110716B (zh) * 2010-12-29 2014-03-05 电子科技大学 槽型半导体功率器件
JP5745997B2 (ja) * 2011-10-31 2015-07-08 トヨタ自動車株式会社 スイッチング素子とその製造方法
JP6048317B2 (ja) * 2013-06-05 2016-12-21 株式会社デンソー 炭化珪素半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250947A (ja) * 2000-03-06 2001-09-14 Toshiba Corp 電力用半導体素子およびその製造方法
JP2008235546A (ja) * 2007-03-20 2008-10-02 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2009194065A (ja) * 2008-02-13 2009-08-27 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2010147228A (ja) * 2008-12-18 2010-07-01 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2012099601A (ja) * 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786462A (zh) * 2017-11-14 2019-05-21 丰田自动车株式会社 开关元件及其制造方法
CN108831832A (zh) * 2018-05-07 2018-11-16 株洲中车时代电气股份有限公司 沟槽台阶栅igbt芯片的制作方法
CN108831832B (zh) * 2018-05-07 2020-08-14 株洲中车时代电气股份有限公司 沟槽台阶栅igbt芯片的制作方法

Also Published As

Publication number Publication date
US20160351680A1 (en) 2016-12-01
JP2015153948A (ja) 2015-08-24
US9773883B2 (en) 2017-09-26
JP6279927B2 (ja) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6279927B2 (ja) 絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子
JP6367760B2 (ja) 絶縁ゲート型スイッチング装置とその製造方法
JP6181597B2 (ja) 半導体装置及び半導体装置の製造方法
JP6266975B2 (ja) 絶縁ゲート型半導体装置の製造方法及び絶縁ゲート型半導体装置
JP6715567B2 (ja) 半導体装置
JP6606007B2 (ja) スイッチング素子
JP5473397B2 (ja) 半導体装置およびその製造方法
WO2013161116A1 (ja) 半導体装置及びその製造方法
KR20170034899A (ko) 스위칭 소자
WO2017094339A1 (ja) 炭化珪素半導体装置
JP2017224719A (ja) 半導体装置
KR20160033202A (ko) 반도체 장치
JP2016039263A (ja) 半導体装置の製造方法
JP6211933B2 (ja) 半導体装置
WO2015186428A1 (ja) 半導体装置、及び、半導体装置の製造方法
KR20190124894A (ko) 반도체 소자 및 그 제조 방법
JP2020126932A (ja) トレンチゲート型半導体装置
JP6265928B2 (ja) 電力用半導体装置
WO2023095363A1 (ja) 半導体装置とその製造方法
KR102417362B1 (ko) 반도체 소자 및 그 제조 방법
US9048210B2 (en) Transistors and methods of manufacturing the same
JP2021082713A (ja) 半導体装置
JP2020047823A (ja) 窒化物半導体装置とその製造方法
JP2020077828A (ja) スイッチング素子の製造方法
JP2020043309A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114461

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882474

Country of ref document: EP

Kind code of ref document: A1