WO2015045907A1 - 遠心送風機及びこれを備えた空気調和機 - Google Patents

遠心送風機及びこれを備えた空気調和機 Download PDF

Info

Publication number
WO2015045907A1
WO2015045907A1 PCT/JP2014/074229 JP2014074229W WO2015045907A1 WO 2015045907 A1 WO2015045907 A1 WO 2015045907A1 JP 2014074229 W JP2014074229 W JP 2014074229W WO 2015045907 A1 WO2015045907 A1 WO 2015045907A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
shroud
section
front edge
region
Prior art date
Application number
PCT/JP2014/074229
Other languages
English (en)
French (fr)
Inventor
竜佑 太田黒
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2014325384A priority Critical patent/AU2014325384B2/en
Priority to EP14847547.8A priority patent/EP3034885B1/en
Priority to ES14847547T priority patent/ES2784221T3/es
Priority to CN201480052053.6A priority patent/CN105579712B/zh
Priority to US15/025,711 priority patent/US10024332B2/en
Publication of WO2015045907A1 publication Critical patent/WO2015045907A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/088Ceiling fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/182Two-dimensional patterned crenellated, notched
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings

Definitions

  • the present invention relates to a centrifugal blower and an air conditioner including the same.
  • centrifugal blowers have been used as blowers for indoor units of air conditioners.
  • this centrifugal blower when the impeller is rotated by the fan motor, air is sucked into the case of the indoor unit from the suction port of the indoor unit.
  • the sucked air is guided to the air suction port of the shroud of the impeller by the inner peripheral surface of the bell mouth.
  • main flow the flow of air guided to the air suction port by the inner peripheral surface of the bell mouth.
  • This mainstream air is discharged from the impeller to the outside (in the direction away from the rotating shaft of the impeller) by a plurality of blades arranged along the circumferential direction between the hub and the shroud.
  • Most of the air discharged from the impeller is blown into the room through the blowout port of the indoor unit.
  • a part of the air discharged from the impeller circulates toward the bell mouth through the space between the outer peripheral surface of the shroud and the case in the case of the indoor unit.
  • the recirculated air passes through the gap between the outer peripheral surface of the bell mouth and the inner peripheral surface of the shroud and joins the main flow.
  • a circulation flow leakage flow
  • the above circulation flow has a high wind speed. For this reason, when the circulating flow that has passed through the gap collides with the leading edge of the blade, noise increases. In addition, since the circulation flow has a large variation in wind speed (the wind speed is highly turbulent), the pressure generated on the surface of the blade near the circulation flow tends to become unstable. The pressure fluctuation on the blade surface becomes a sound source and causes an increase in noise.
  • the flow path of the mainstream becomes narrow, while the airflow of the mainstream requires the same amount of air as the indoor unit that is not thinned.
  • the amount of the circulation flow tends to increase, so that the ratio of the circulation flow to the main flow increases.
  • the influence of the circulation flow on the mainstream is increased. Therefore, it is important to suppress the influence of the circulation flow.
  • Patent Document 1 proposes a technique for reducing the circulating flow (leakage flow) to reduce noise.
  • the centrifugal blower of Patent Document 1 includes a plurality of main blades provided between the hub and the shroud and a plurality of small blades provided on the outer peripheral surface of the shroud, and the camber line of the shroud side blade element of the main blade is provided. It is characterized in that it is concave on the pressure surface side, or the camber line leading edge side of the shroud blade element of the main blade is inclined in the rotational direction.
  • Patent Document 1 since the pressure difference between the shroud back area and the bell mouth channel area is reduced by the pressure increase effect by the small blades, the flow rate of the circulating flow can be reduced, and the main blade leading edge shroud side The flow rate is also reduced.
  • Patent Document 1 describes that the flow can be made to follow the main blade by making the shape of the main blade as described above. Patent Document 1 describes that the noise can be reduced by these actions.
  • An object of the present invention is to provide a centrifugal blower that can reduce noise caused by a circulating flow while suppressing an increase in weight and cost.
  • the centrifugal blower of the present invention includes an impeller that rotates around a rotation shaft, and a bell mouth that guides air to the impeller.
  • the impeller is a shroud provided with a gap in the radial direction between the end portion of the bell mouth, a plurality of blades arranged along the circumferential direction of the shroud and attached to the shroud, It has.
  • the angle formed by the tangent of the camber line at the intersection of the camber line and the arc centered on the rotation axis and the tangent of the arc at the intersection in the blade cross section passing through the leading edge and the trailing edge of the blade is the blade angle.
  • the blade has at least one of a reduced shape and a fixed shape.
  • the decreasing shape is a shape in which the blade angle decreases as the intersection point shifts to the trailing edge side on the camber line in the front edge side portion of the blade section on the shroud side.
  • the fixed shape is a shape in which the blade angle is constant even when the intersection point is shifted to the trailing edge side on the camber line in the front edge side portion of the blade cross section on the shroud side.
  • (A) is sectional drawing which shows the blade
  • (B) is sectional drawing which shows the blade
  • (C) is this embodiment. It is sectional drawing which shows the blade
  • (A) to (E) are graphs showing the relationship between the radial position of the blade and the blade angle in Modifications 1 to 5 of the present embodiment. It is a graph which shows the relationship between the radial position and blade
  • (A) is sectional drawing which shows the blade
  • (B) is sectional drawing which shows the blade
  • (C) is conventional. It is sectional drawing which shows the blade
  • centrifugal blower 51 according to an embodiment of the present invention and an indoor unit 31 of an air conditioner including the same will be described with reference to the drawings.
  • the indoor unit 31 of the air conditioner of this embodiment shown in FIGS. 1 and 2 is a ceiling-embedded cassette indoor unit.
  • the indoor unit 31 includes a substantially rectangular parallelepiped case 33 embedded in an opening provided in the ceiling 35, and a decorative panel 47 attached to the lower portion of the case 33.
  • the decorative panel 47 is slightly larger in plan view than the case 33 and is exposed to the room in a state of covering the opening of the ceiling.
  • the decorative panel 47 has a rectangular suction port 39 provided at the center thereof, and four elongated rectangular outlets 37 provided along each side of the suction port 39.
  • the indoor unit 31 includes a centrifugal blower (turbo fan) 51, a fan motor 11, a heat exchanger 43, a drain pan 45, an air filter 41, and the like in a case 33.
  • Centrifugal blower 51 includes an impeller 23 and a bell mouth 25.
  • the fan motor 11 is fixed to the approximate center of the top plate of the case 33.
  • the shaft 13 of the fan motor 11 extends in the vertical direction.
  • the heat exchanger 43 has a flat shape with a small thickness.
  • the heat exchanger 43 is disposed so as to surround the periphery of the impeller 23 in a state where it rises upward from a dish-shaped drain pan 45 extending along the lower end portion thereof.
  • the drain pan 45 stores water droplets generated in the heat exchanger 43. The stored water is discharged through a drainage path (not shown).
  • the air filter 41 has a size that covers the inlet of the bell mouth 25 and is provided between the bell mouth 25 and the inlet 39 along the inlet 39.
  • the air filter 41 captures dust in the air when the air sucked into the case 33 from the suction port 39 passes through the air filter 41.
  • the indoor unit 31 of the present embodiment is thinned, and the impeller 23 of the centrifugal blower 51 is also thinned in the direction of the rotation axis A along with it, so that noise due to the circulating flow C is likely to occur. is there. That is, the flow rate of the circulating flow C is considered to be proportional to the size of the gap G and the pressure difference (pressure loss of the indoor unit).
  • the size of the gap G does not change, and the pressure difference tends to increase. This is because, even in the thinned indoor unit 31, in order to obtain the same air volume as the non-thinned indoor unit 31, the wind speed increases and the pressure loss increases. Therefore, in the thinned indoor unit 31, the circulation flow C increases.
  • the impeller 23 includes a hub 15, a shroud 19, and a plurality of blades 21.
  • the impeller 23 rotates about the rotation axis A.
  • the hub 15 is fixed to the lower end portion of the shaft 13 of the fan motor 11.
  • the hub 15 has a circular shape centered on the rotation axis A in plan view.
  • the shroud 19 is arranged to face the front side F of the shaft 13 in the direction of the rotation axis A with respect to the hub 15.
  • the shroud 19 has an air suction port 19a that opens in a circle around the rotation axis A.
  • the outer diameter of the shroud 19 becomes larger toward the back side R in the direction of the rotation axis A.
  • the bell mouth 25 is disposed so as to face the front side F in the direction of the rotation axis A with respect to the shroud 19.
  • the bell mouth 25 has an opening 25a (suction port 25a) penetrating in the direction of the rotation axis A.
  • a part of the rear side R of the bell mouth 25 is inserted into the shroud 19 from the air suction port 19a in a state where a predetermined gap is provided between the shroud 19 and the peripheral edge portion 19e of the air suction port 19a.
  • the bell mouth 25 can guide the air sucked toward the back side R through the opening 25 a to the air suction port 19 a of the shroud 19.
  • each blade 21 is a backward blade that is inclined in the direction opposite to the rotation direction DR (backward) with respect to the radial direction of the hub 15.
  • Each blade 21 in the present embodiment has a three-dimensional shape extending in the direction of the rotation axis A while being twisted between the hub 15 and the shroud 19.
  • wing 21 may not have the above twist.
  • a plurality of irregularities 72 are provided on the trailing edge 62 of each blade 21, but these irregularities 72 can be omitted.
  • each blade 21 includes a negative pressure surface 21 ⁇ / b> A (blade inner surface 21 ⁇ / b> A) facing radially inward in the impeller 23 and a positive facing radially outward. It has a pressure surface 21B (blade outer surface 21B), a front edge 61 that is a front edge when the impeller 23 rotates, and a rear edge 62 that is a rear edge. Further, the edge 21 ⁇ / b> F on the front side F of each blade 21 is joined to the inner surface of the shroud 19. An edge 21 ⁇ / b> R on the rear side R of each blade 21 is joined to the inner surface of the hub 15.
  • the front edge 61 of the blade 21 includes a front side region 61F and a back side region 61R. Further, the front edge 61 has one end portion 61a on the front side F, the other end portion 61c on the back side R, and a bent portion 61b provided therebetween.
  • the front side region 61F is a region from one end 61a to the bent portion 61b
  • the back side region 61R is a region from the other end 61c to the bent portion 61b.
  • One end 61a of the front edge 61 is connected to the end of the end edge 21F.
  • the other end 61c of the front edge 61 is connected to the end of the end edge 21R.
  • the front edge 61 has a bent shape at the bent portion 61b.
  • the inclination angle of the front side region 61F with respect to the rotation axis A is larger than the inclination angle of the rear side region 61R with respect to the rotation axis A.
  • the front side region 61F is inclined with respect to the rotation axis A in a direction away from the rotation axis A as it goes from the bent portion 61b to the one end portion 61a.
  • all the blades 21 have the same shape. That is, each blade 21 has a feature of a blade angle ⁇ described later in order to reduce noise caused by the circulation flow C.
  • all the blades 21 do not necessarily have the feature of the blade angle ⁇ , and at least one of the blades 21 may have only the feature of the blade angle ⁇ . .
  • FIG. 4 is a cross-sectional view for explaining the main flow and the circulation flow.
  • the impeller 23 When the impeller 23 is rotated by the fan motor 11, air is sucked into the case 33 of the indoor unit 31 from the suction port 39 of the indoor unit 31.
  • the sucked air is guided to the air suction port 19 a of the shroud 19 of the impeller 23 by the inner peripheral surface of the bell mouth 25.
  • the air of the mainstream M guided to the air suction port 19a by the inner peripheral surface of the bell mouth 25 is outside the impeller 23 by a plurality of blades 21 arranged along the circumferential direction between the hub 15 and the shroud 19. It is discharged in the direction away from the rotation axis A.
  • Most of the air discharged from the impeller 23 is blown into the room through the air outlet 37 of the indoor unit 31.
  • FIG. 6 is a graph showing the relationship between the radial position r of the blade 21 and the blade angle ⁇ in the present embodiment.
  • FIG. 7A is a cross-sectional view showing a blade cross section S1 on the shroud 19 side in the present embodiment
  • FIG. 7C is a cross-sectional view showing the blade cross-section S3 on the hub side in the present embodiment.
  • the horizontal axis of the graph in FIG. 6 indicates the radial position r of the arc centered on the rotation axis A, and the origin O side of the horizontal axis is the front edge 61 side of the blade 21, and the origin O of the horizontal axis
  • the leaving side is the trailing edge 62 side of the blade 21.
  • An arc centered on the rotation axis A is indicated by a two-dot chain line in FIGS. 7A to 7C, for example.
  • An angle formed with the tangent line L2 is defined as a blade angle ⁇ .
  • the camber line CL is indicated by a broken line in each of FIGS.
  • the broken line indicating the blade angle ⁇ on the shroud 19 side in FIG. 6 is when the intersection P is shifted from the front edge 61 to the rear edge 62 on the camber line CL in the blade cross section S1 on the shroud 19 side shown in FIG.
  • the change in the blade angle ⁇ is shown.
  • five intersection points P1 to P5 are shown as the intersection points P, but the broken lines shown in FIG. 6 are not only at the intersection points P1 to P5 but also at a larger number of intersection points P.
  • the blade angle ⁇ is plotted.
  • the blade cross section S1 on the shroud 19 side shown in FIG. 7A is a blade cross section in the boundary portion B1 (joint portion B1 between the shroud 19 and the blade 21) between the shroud 19 and the blade 21 shown in FIG. Specifically, it is a blade cross section at a boundary portion B1 between the inner peripheral surface of the shroud 19 and the edge 21F on the front side F of the blade 21.
  • the blade cross section S1 shown in FIG. 7A is a projection of the blade cross section at the boundary portion B1 curved along the inner peripheral surface of the shroud 19 on the plane orthogonal to the rotation axis A in the direction of the rotation axis A.
  • the blade cross section S3 on the hub 15 side shown in FIG. 7C is a blade cross section at the boundary B2 between the hub 15 and the blade 21 (joint portion B2 between the hub 15 and the blade 21) shown in FIG. Specifically, it is a blade cross section at the boundary B2 between the inner surface of the hub 15 and the edge 21R on the rear side R of the blade 21.
  • the edge 21 ⁇ / b> R on the rear side R of the blade 21 and the inner surface of the hub 15 to which the blade 21 is joined are planes orthogonal to the rotation axis A.
  • the blade cross section at the boundary portion B2 curved along the edge 21R is rotated on a plane orthogonal to the rotation axis A.
  • the blade cross section S3 shown in FIG. 7C can be obtained.
  • a blade section S2 at the center of the span shown in FIG. 7B is a blade section at the center of the blade height in the direction of the rotation axis A, and specifically, for example, the blade height of the trailing edge 62 of the blade 21. It is a blade
  • region of the front edge 61 side is located in the blade
  • a portion PL on the leading edge 61 side is referred to as a portion PL, and a region closer to the trailing edge 62 than a middle point (center) of the length of the camber line CL in the blade section S1 is referred to as a portion PT on the trailing edge 62 side in the blade section S1.
  • the blade 21 has a blade angle ⁇ that decreases as the intersection point P shifts to the rear edge 62 side on the camber line CL in the portion PL on the front edge 61 side in the blade cross section S1 on the shroud 19 side. Has a reduced shape.
  • the blade 21 Since the blade 21 has the above-described reduced shape in the portion PL on the front edge 61 side in the blade cross section S1 on the shroud 19 side, a region having a strong negative pressure on the shroud 19 side on the suction surface 21A of the blade 21 is provided. It can be moved from the leading edge to the trailing edge.
  • FIG. 8 is a cross-sectional view for explaining that the negative pressure region N is moved away from the front edge to the rear edge side.
  • a solid circle drawn on the suction surface 21A is a region N where the negative pressure is strong in the present embodiment, and a broken circle drawn on the suction surface 21A is a blade of a conventional centrifugal blower described later.
  • the region N has a strong negative pressure.
  • the blade 21 has the reduced shape as described above in the portion PL on the front edge 61 side in the blade cross section S ⁇ b> 1 on the shroud 19 side.
  • the region N having a strong negative pressure at 21A can be moved away from the front edge 61 toward the rear edge 62 as compared with the conventional case.
  • sucks the circulation flow C can be weakened.
  • the flow rate of the circulation flow C is reduced, so that noise (interference sound between the main flow and the circulation flow) caused by the circulation flow C can be reduced.
  • wing 21 has illustrated the case where it corresponds with the area
  • the blade 21 has a shape in which the blade angle ⁇ continues to decrease from the front edge 61 to the rear edge 62 in the blade cross section S1 on the shroud 19 side.
  • the blade angle ⁇ in the blade 21 continues to decrease, for example, the airflow at the suction surface reaches the trailing edge 62 as compared with the case where the blade angle ⁇ increases in the portion on the trailing edge 62 side. It becomes easy to follow. Thereby, it is possible to suppress the separation of the airflow in the vicinity of the trailing edge 62.
  • the blade angle as the intersection point P shifts from the front edge 61 to the rear edge 62 side on the camber line CL.
  • a region where the degree of decrease in ⁇ is small is provided.
  • the broken line indicating the blade angle ⁇ includes a curved portion that protrudes to the lower left.
  • the downward slope in the first half region (region closer to the origin O) of the portion PL on the front edge 61 side is the latter half region (region far from the origin O) of the portion PL on the front edge 61 side. ) Is greater than the downward slope of As described above, in the blade 21 according to the present embodiment, among the portion PL on the front edge 61 side, the gradient of the decrease in the blade angle ⁇ in the region closer to the front edge 61 is relatively large, while the portion on the front edge 61 side. In PL, an area is provided in which the gradient of decrease in the blade angle ⁇ decreases toward the trailing edge 62 side.
  • the effect of moving the region having a strong negative pressure from the front edge 61 toward the rear edge 62 can be enhanced.
  • the blade load on the shroud 19 side is suppressed from becoming extremely small on the suction surface by providing a region in which the blade angle ⁇ decreases gradually toward the trailing edge 62 side. As a result, the blade load on the shroud 19 side is maintained at a certain level on the suction surface.
  • the region where the degree of decrease in the blade angle ⁇ is small in the portion PL on the front edge 61 side is provided in the entire region of the portion PL on the front edge 61 side. Instead, it is provided in the first half region of the portion PL on the front edge 61 side, and is not provided in the second half region of the portion PL on the front edge 61 side. In the latter half region of the portion PL on the front edge 61 side, the blade angle ⁇ is not small even when the intersection point P is shifted to the rear edge 62 side on the camber line CL, and is constant.
  • the blade angle ⁇ decreases as the intersection point P shifts to the trailing edge 62 side on the camber line CL.
  • a region where the degree is increased is provided.
  • the broken line indicating the blade angle ⁇ is a convex curve on the upper right. That is, the downward slope in the latter half region (region far from the origin O) of the portion PT on the trailing edge 62 side is the first half region (region on the side close to the origin O) of the portion PT on the trailing edge 62 side.
  • the blade angle ⁇ increases as the intersection point P shifts to the trailing edge 62 side on the camber line CL.
  • the degree of reduction increases.
  • the region where the blade angle ⁇ decreases is not necessarily provided in the entire region of the portion PT on the trailing edge 62 side, and is provided only in a partial region of the portion PT on the trailing edge 62 side. It may be.
  • the region where the blade angle ⁇ decreases is provided in the entire region of the portion PT on the trailing edge 62 side. Instead, it is provided in the latter half region of the portion PT on the rear edge 62 side, and is not provided in the first half region of the portion PT on the rear edge 62 side. In the first half region of the portion PT on the trailing edge 62 side, the blade angle ⁇ is not small even when the intersection point P is shifted to the trailing edge 62 side on the camber line CL, and is constant.
  • the blade cross section S1 on the shroud 19 side shown in FIG. 7A does not necessarily have to be a blade cross section at the boundary B1 between the shroud 19 and the blade 21.
  • the blade cross section S ⁇ b> 1 may be a blade cross section on the shroud 19 side of the blade 21.
  • wing 21 can be made into the following ranges, for example. That is, the shroud 19 side of the blade 21 is a region B3 having a predetermined width W in a direction away from the shroud 19 from the boundary B1 between the shroud 19 and the blade 21 as shown in FIG. Good.
  • the predetermined width W is the same as the distance D between the end 25e of the bell mouth 25 and the shroud 19. Then, a blade cross section along the boundary B1 between the shroud 19 and the blade 21 through the front edge 61 and the rear edge 62 is selected within the range of the region B3, and the selected blade cross section is a plane orthogonal to the rotation axis A.
  • the blade cross section S ⁇ b> 1 may be the one projected above in the direction of the rotation axis A.
  • the force for sucking the circulating flow C can be effectively reduced. Specifically, it is as follows.
  • the width of the circulating flow C immediately after passing through the gap G between the outer peripheral surface of the bell mouth 25 and the inner peripheral surface of the shroud 19 is the distance D between the end 25e of the bell mouth 25 and the inner peripheral surface of the shroud 19. It is about the same.
  • This circulating flow C reaches the blades 21 shortly after passing through the gap G. Therefore, the region where the circulating flow C affects the blades 21 is related to the width of the circulating flow C.
  • the blade is a projection of the selected blade cross section on the plane orthogonal to the rotation axis A in the direction of the rotation axis A.
  • the cross section S1 preferably has the characteristics of the blade angle ⁇ as described above.
  • the solid line indicating the blade angle ⁇ on the hub 15 side in FIG. 6 indicates that the intersection P is on the camber line CL from the front edge 61 in the blade cross section S3 on the hub 15 side shown in FIG.
  • wing angle (beta) when shifting to the trailing edge 62 is shown.
  • the blade angle ⁇ on the hub 15 side is a line that rises to the right (curved line) and increases from the front edge 61 toward the rear edge 62, but is not limited thereto.
  • the alternate long and short dash line indicating the blade angle ⁇ at the center of the span in FIG. 6 indicates that the intersection P is on the camber line CL from the front edge 61 in the blade cross section S2 at the center of the span shown in FIG.
  • wing angle (beta) when shifting to the edge 62 is shown.
  • the blade angle ⁇ at the center of the span is a line (curved line) that rises to the right and increases from the front edge 61 toward the rear edge 62, but is not limited thereto.
  • FIG. 11 is a graph showing the relationship between the radial position r of the blade 121 and the blade angle ⁇ in a conventional centrifugal blower.
  • 12A is a cross-sectional view showing a blade cross section S11 on the shroud side in a conventional centrifugal blower
  • FIG. 12B is a cross-sectional view showing a blade cross section S12 at the center of the span in the conventional centrifugal blower
  • FIG. 12C is a cross-sectional view showing a blade cross section S13 on the hub side in a conventional centrifugal blower.
  • the broken line indicating the shroud side blade angle ⁇ in FIG. 11 indicates the blade when the intersection P is shifted from the front edge 161 to the rear edge 162 on the camber line CL in the shroud side blade cross section S11 shown in FIG.
  • the change of the angle ⁇ is shown.
  • the one-dot chain line indicating the blade angle ⁇ at the center of the span in FIG. 11 is obtained when the intersection P is shifted on the camber line CL from the front edge 161 to the rear edge 162 in the blade center blade cross section S12 shown in FIG.
  • a change in the blade angle ⁇ is shown.
  • the blade cross sections S11 to S13 are blade cross sections at the same positions as the blade cross sections S1 to S3 in the present embodiment described above.
  • the blade angle ⁇ is increased to the right (curved line) in any of the blade cross section S11 on the shroud side, the blade cross section S12 at the center of the span, and the blade cross section on the hub side.
  • the region N where the negative pressure is strong is located near the front edge 161 on the negative pressure surface 21A of the blade 121, so that the circulating flow is sucked with a larger force than in the present embodiment.
  • the flow rate of the circulating flow is increased as compared with the present embodiment, and the noise caused by the circulating flow is increased.
  • the blade 21 has a shape in which the blade angle ⁇ continues to decrease from the front edge 61 to the rear edge 62 in the blade cross-section S1 on the shroud 19 side.
  • 21 may have a shape as shown in Modifications 1 to 5 shown in FIGS. 10 (A) to 10 (E).
  • 10 (A) to 10 (E) only the blade angle ⁇ in the blade cross section S1 on the shroud 19 side is shown, and the blade angle ⁇ in the blade cross section S2 in the center of the span and the blade on the hub 15 side are shown.
  • the blade angle ⁇ in the cross section S3 is not shown.
  • the blade 21 of Modification 1 shown in FIG. 10A has a blade angle ⁇ as the intersection point P shifts to the rear edge 62 side on the camber line CL in the portion PL on the front edge 61 side in the blade cross section S1 on the shroud 19 side.
  • the blade 21 of the modified example 2 shown in FIG. 10B has a shape obtained by combining the reduced shape and a fixed shape in the portion PL on the front edge 61 side in the blade cross section S1 on the shroud 19 side.
  • the blade angle ⁇ is constant even when the intersection point P is shifted toward the trailing edge 62 on the camber line CL in the portion PL on the front edge 61 side in the blade cross section S1 on the shroud 19 side.
  • the fixed shape and the decreasing shape are arranged in this order toward the trailing edge 62 side.
  • the intersection point P on the camber line CL is on the rear edge 62 side in the portion PL on the front edge 61 side in the blade cross section S1 on the shroud 19 side. Even if it is shifted, the blade angle ⁇ remains constant.
  • the blade 21 of Modification 3 shown in FIG. 10C has a blade angle as the intersection point P shifts toward the trailing edge 62 on the camber line CL in the portion PT on the trailing edge 62 side in the blade cross section S1 on the shroud 19 side. It has a region where ⁇ decreases.
  • the blade 21 of Modification 4 shown in FIG. 10D has a blade angle as the intersection point P shifts toward the trailing edge 62 on the camber line CL in the portion PT on the trailing edge 62 side in the blade cross section S1 on the shroud 19 side. It has a region where ⁇ increases.
  • the blade 21 of Modification 5 shown in FIG. 10 (E) has a blade angle as the intersection point P shifts toward the trailing edge 62 on the camber line CL in the portion PT on the trailing edge 62 side in the blade cross section S1 on the shroud 19 side. It has a region where ⁇ decreases and a region where the blade angle ⁇ increases.
  • the centrifugal blower 51 is applied to a ceiling-embedded indoor unit, but the present invention is not limited to this.
  • the centrifugal blower of the present invention can also be applied to other types of indoor units such as a ceiling-mounted indoor unit, an air handling unit, a rooftop indoor unit such as a rooftop, and a floor-standing indoor unit.
  • the centrifugal blower of the embodiment includes an impeller that rotates around a rotation shaft, and a bell mouth that guides air to the impeller.
  • the impeller is a shroud provided with a gap in the radial direction between the end portion of the bell mouth, a plurality of blades arranged along the circumferential direction of the shroud and attached to the shroud, It has.
  • the angle formed by the tangent of the camber line at the intersection of the camber line and the arc centered on the rotation axis and the tangent of the arc at the intersection in the blade cross section passing through the leading edge and the trailing edge of the blade is the blade angle.
  • the blade has a reduced shape in which the blade angle decreases as the intersection point shifts to the trailing edge side on the camber line in the front edge side portion of the blade cross section on the shroud side, and the shroud side
  • the blade section has at least one of the fixed shapes in which the blade angle is constant even when the intersection point is shifted to the trailing edge side on the camber line in the front edge side portion of the blade cross section.
  • the blade has at least one of the reduced shape and the fixed shape in the front edge side portion of the blade section on the shroud side.
  • the camber line which is an element that defines the blade angle, is a line connecting positions at equal distances from the pressure surface and the suction surface in the blade cross section.
  • the blade has at least one of the reduced shape and the constant shape as described above in the front edge side portion in the blade cross section on the shroud side, so that the shroud side and the front edge side portion of the blade suction surface The wing load can be reduced.
  • noise due to the circulation flow can be reduced without adding small blades as in the prior art, so that an increase in weight and an increase in cost can be suppressed.
  • the front edge side portion in the blade cross section is the front edge side from the intermediate point of the camber line
  • the rear edge side portion in the blade cross section is the rear edge side from the intermediate point of the camber line
  • the blade may have a shape obtained by combining the reduced shape and the fixed shape in a portion on the front edge side in the blade cross section on the shroud side.
  • the blade has a shape in which the blade angle continuously decreases from the front edge to the rear edge in the blade cross section on the shroud side.
  • a region in which the degree of decrease in the blade angle becomes smaller as the intersection point on the camber line shifts from the front edge to the rear edge side is preferably provided.
  • the gradient of the blade angle decrease in the region closer to the leading edge is relatively large, while in the portion on the leading edge side, the gradient of the blade angle decrease becomes smaller toward the trailing edge side.
  • the part which becomes becomes that is, by locally increasing the degree of decrease in the blade angle in the region closer to the front edge, the effect of moving the region having a strong negative pressure from the front edge to the rear edge side can be enhanced.
  • the blade load on the shroud side is suppressed from becoming extremely small on the suction surface. Thereby, the blade load on the shroud side is maintained at a certain level on the suction surface.
  • a region on the rear edge side in the blade cross section on the shroud side is provided with a region in which the degree of decrease in the blade angle increases as the intersection on the camber line shifts to the rear edge side. It is preferable.
  • the shroud side of the blades may be in the following range. That is, the shroud side of the blade is a region having a predetermined width in a direction away from the shroud from the boundary between the shroud and the blade, and the predetermined width is an end of the bell mouth. It may be the same size as the distance between the portion and the shroud.
  • the force for sucking the circulating flow can be effectively weakened. Specifically, it is as follows.
  • the width of the circulation flow immediately after passing through the gap between the outer peripheral surface of the bell mouth and the inner peripheral surface of the shroud is approximately the same as the distance between the end of the bell mouth and the inner peripheral surface of the shroud.
  • This circulating flow reaches the blades shortly after passing through the gap.
  • the region where the circulating flow affects the vanes is related to the width of the circulating flow. Therefore, the force of attracting the circulation flow is effectively obtained by adding the above-described blade angle characteristics to a region having a predetermined width which is the same as the distance between the end portion of the bell mouth and the shroud. Can be weakened.
  • the plurality of blades preferably have the same shape.
  • the air conditioner of the embodiment includes the centrifugal blower, noise can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

 遠心送風機(51)では、羽根(21)の前縁(61)と後縁(62)を通る羽根断面においてキャンバライン(CL)と回転軸(A)を中心とする円弧との交点(P)におけるキャンバライン(CL)の接線(L1)と、交点(P)における円弧の接線(L2)とのなす角度を羽根角度(β)とする場合において、羽根(21)は、シュラウド(19)側の羽根断面(S1)における前縁(61)側の部分(PL)においてキャンバライン(CL)上を交点(P)が後縁(62)側にシフトするにつれて羽根角度(β)が減少する減少形状、及びシュラウド(19)側の羽根断面(S1)における前縁(61)側の部分(PL)においてキャンバライン(CL)上を交点(P)が後縁(62)側にシフトしても羽根角度(β)が一定である一定形状の少なくとも一方の形状を有する。

Description

遠心送風機及びこれを備えた空気調和機
 本発明は、遠心送風機及びこれを備えた空気調和機に関する。
 従来、空気調和機の室内機の送風機として遠心送風機が用いられている。この遠心送風機では、ファンモータによって羽根車が回転すると、室内機の吸込口から室内機のケース内に空気が吸い込まれる。吸い込まれた空気は、ベルマウスの内周面によって羽根車のシュラウドの空気吸込口に案内される。以下、ベルマウスの内周面によって空気吸込口に案内された空気の流れを主流という。
 この主流の空気は、ハブとシュラウドとの間に周方向に沿って配列された複数の羽根によって羽根車からその外側(羽根車の回転軸から離れる方向)に吐出される。羽根車から吐出された空気の大半は、室内機の吹出口を通じて室内に吹き出される。しかし、羽根車から吐出された空気の一部は、室内機のケース内において、シュラウドの外周面とケースと間の空間を通ってベルマウスに向かって環流する。環流した空気は、ベルマウスの外周面とシュラウドの内周面との間の隙間を通過して主流と合流する。以下、上記のように環流し、ベルマウスの外周面とシュラウドの内周面との間の隙間を通過して主流と合流する空気の流れを循環流れ(漏れ流れ)という。
 上記のような循環流れは、風速が大きい。このため、前記隙間を通過した循環流れが羽根の前縁と衝突すると、騒音が大きくなる。また、循環流れは、風速の変動が大きい(風速の乱れが大きい)ので、循環流れ付近の羽根の表面において生じる圧力が不安定になりやすい。羽根の表面での圧力変動は、それが音源となって騒音増大の原因となる。
 特に、室内機の薄型化に伴って薄型化された遠心送風機では、主流の流路が狭くなる一方で、主流の風量は、薄型化されていない室内機と同等の風量が必要とされる。このような薄型化された遠心送風機では、循環流れの量が増加する傾向にあるので、主流に対する循環流れの割合が大きくなる。その結果、主流に対する循環流れの影響が大きくなる。したがって、循環流れの影響を抑制することが重要である。
 特許文献1には、循環流れ(漏れ流れ)を低減して低騒音化を図るための技術が提案されている。特許文献1の遠心送風機は、ハブとシュラウドとの間に設けられた複数の主羽根と、シュラウドの外周面に設けられた複数の小羽根とを備え、主羽根のシュラウド側翼素のキャンバラインが圧力面側に凹状となること、又は主羽根のシュラウド側翼素のキャンバライン前縁側が回転方向に傾斜することを特徴としている。この特許文献1には、小羽根による昇圧効果でシュラウド背面の領域とベルマウス流路の領域の圧力差が低減するので、循環流れの流量を低減することができ、主羽根前縁シュラウド側での流速も低減すると記載されている。また、特許文献1には、主羽根の形状を上記のようにすることにより、流れを主羽根に沿わせることができると記載されている。そして、特許文献1には、これらの作用により、低騒音化を図ることができると記載されている。
 しかしながら、特許文献1の遠心送風機の構成では、必ずしも十分な量の循環流れを低減することができず、よって十分な騒音低減効果が得られない場合がある。また、特許文献1の遠心送風機の構成では、小羽根を付加することで、送風機の重量が増加し、また、コストの増加にもつながる。
特開2007-198268号公報
 本発明の目的は、重量の増加及びコストの増加を抑制しつつ、循環流れに起因する騒音を低減することができる遠心送風機を提供することである。
 本発明の遠心送風機は、回転軸を中心に回転する羽根車と、前記羽根車に空気を案内するベルマウスと、を備えている。前記羽根車は、前記ベルマウスの端部との間に径方向に隙間をあけて設けられたシュラウドと、前記シュラウドの周方向に沿って配列され、前記シュラウドに取り付けられた複数の羽根と、を備えている。
 前記羽根の前縁と後縁を通る羽根断面においてキャンバラインと前記回転軸を中心とする円弧との交点における前記キャンバラインの接線と、前記交点における前記円弧の接線とのなす角度を羽根角度とする場合において、前記羽根は、減少形状及び一定形状の少なくとも一方の形状を有する。前記減少形状は、前記シュラウド側の羽根断面における前記前縁側の部分において前記キャンバライン上を前記交点が前記後縁側にシフトするにつれて前記羽根角度が減少する形状である。前記一定形状は、前記シュラウド側の前記羽根断面における前記前縁側の部分において前記キャンバライン上を前記交点が前記後縁側にシフトしても前記羽根角度が一定である形状である。
本発明の一実施形態に係る遠心送風機を備えた室内機を示す断面図である。 前記室内機における羽根車、熱交換器及び吹出口の位置関係を示す底面図である。 前記遠心送風機の羽根車を示す斜視図である。 主流と循環流れについて説明するための断面図である。 (A)は、前記羽根車における羽根の側面図であり、(B)は、(A)のVB-VB線断面図である。 本実施形態における羽根の半径位置と羽根角度との関係を示すグラフである。 (A)は、本実施形態におけるシュラウド側の羽根断面を示す断面図であり、(B)は、本実施形態におけるスパン中央の羽根断面を示す断面図であり、(C)は、本実施形態におけるハブ側の羽根断面を示す断面図である。 負圧の強い領域を前縁から後縁側に遠ざけていることを説明するための断面図である。 ベルマウスの端部とシュラウドとの距離、及びシュラウドと羽根との境界部からシュラウドに対して遠ざかる方向に所定の幅をもった領域について説明するための断面図である。 (A)~(E)は、本実施形態の変形例1~5における羽根の半径位置と羽根角度との関係を示すグラフである。 従来の遠心送風機における羽根の半径位置と羽根角度との関係を示すグラフである。 (A)は、従来の遠心送風機におけるシュラウド側の羽根断面を示す断面図であり、(B)は、従来の遠心送風機におけるスパン中央の羽根断面を示す断面図であり、(C)は、従来の遠心送風機におけるハブ側の羽根断面を示す断面図である。
 以下、本発明の一実施形態に係る遠心送風機51及びこれを備えた空気調和機の室内機31について図面を参照して説明する。
 [空気調和機の室内機の構成]
 図1及び図2に示す本実施形態の空気調和機の室内機31は、天井埋込型のカセット室内機である。この室内機31は、天井35に設けられた開口に埋め込まれる略直方体のケース33と、ケース33の下部に取り付けられた化粧パネル47とを備えている。化粧パネル47は、平面視の形状がケース33よりも一回り大きく、天井の開口を覆った状態で室内に露出している。化粧パネル47は、その中央部に設けられた矩形状の吸込口39と、この吸込口39の各辺に沿って設けられた細長い矩形状の4つの吹出口37とを有している。
 室内機31は、ケース33内に、遠心送風機(ターボファン)51、ファンモータ11、熱交換器43、ドレンパン45、エアフィルタ41などを備えている。遠心送風機51は、羽根車23とベルマウス25とを含む。ファンモータ11は、ケース33の天板の略中央に固定されている。ファンモータ11のシャフト13は上下方向に延びている。
 熱交換器43は、厚みの小さな扁平な形状を有している。熱交換器43は、その下端部に沿って延設された皿状のドレンパン45から上方に起立した状態で羽根車23の周囲を囲むように配置されている。ドレンパン45は、熱交換器43において生じる水滴を収容する。収容された水は図略の排水経路を通じて排出される。
 エアフィルタ41は、ベルマウス25の入口を覆う大きさを有し、ベルマウス25と吸込口39との間に吸込口39に沿って設けられている。エアフィルタ41は、吸込口39からケース33内に吸い込まれた空気がエアフィルタ41を通過する際に空気中の塵埃を捕捉する。
 本実施形態の室内機31は、薄型化されており、それに伴って遠心送風機51の羽根車23も回転軸A方向に薄型化されているので、循環流れCに起因する騒音が生じやすい構造である。すなわち、循環流れCの流量は、隙間Gの大きさと、圧力差(室内機の圧力損失)に比例すると考えられる。薄型化された室内機31では、隙間Gの大きさは変わらず、前記圧力差が大きくなる傾向にある。薄型化された室内機31においても薄型化されていない室内機31と同じ風量を得るためには、風速が増加して圧力損失が増加するからである。よって、薄型化された室内機31においては、循環流れCが増加する。
 [遠心送風機の構成]
 図1~図3に示すように、羽根車23は、ハブ15と、シュラウド19と、複数の羽根21とを含む。羽根車23は、回転軸Aを中心に回転する。ハブ15は、ファンモータ11のシャフト13の下端部に固定されている。ハブ15は、平面視で回転軸Aを中心とする円形状を有している。
 シュラウド19は、ハブ15に対してシャフト13の回転軸A方向の正面側Fに対向するように配置されている。シュラウド19は、回転軸Aを中心として円形に開口する空気吸込口19aを有している。シュラウド19の外径は、回転軸A方向の背面側Rに向かうにつれて大きくなっている。
 図1に示すように、ベルマウス25は、シュラウド19に対して回転軸A方向の正面側Fに対向するように配置されている。ベルマウス25は、回転軸A方向に貫通する開口25a(吸込口25a)を有している。ベルマウス25の背面側Rの一部は、シュラウド19における空気吸込口19aの周縁部19eとの間に所定の隙間を設けた状態で空気吸込口19aからシュラウド19内に挿入されている。これにより、ベルマウス25は、開口25aを通じて背面側Rに向かって吸い込まれる空気をシュラウド19の空気吸込口19aに案内することができる。
 図3に示すように、複数の羽根21は、ハブ15とシュラウド19との間において、回転軸Aの周りに配列されている。各羽根21は、ハブ15の径方向に対して回転方向DRの反対向き(後ろ向き)に傾斜した後ろ向き羽根である。本実施形態における各羽根21は、ハブ15とシュラウド19の間において捩れながら回転軸A方向に延びる三次元形状を有している。なお、各羽根21は、上記のような捩れを有していないものであってもよい。図3及び図4に示すように、各羽根21の後縁62には、複数の凹凸72が設けられているが、これらの凹凸72は、省略することができる。
 図3、図4及び図5(A),(B)に示すように、各羽根21は、羽根車23において径方向内側に向く負圧面21A(羽根内面21A)と、径方向外側に向く正圧面21B(羽根外面21B)と、羽根車23の回転時における前側の縁である前縁61と、後側の縁である後縁62とを有している。また、各羽根21における正面側Fの端縁21Fは、シュラウド19の内面に接合されている。各羽根21における背面側Rの端縁21Rは、ハブ15の内面に接合されている。
 図4及び図5(A)に示すように、羽根21の前縁61は、正面側領域61Fと、背面側領域61Rとを有する。また、前縁61は、正面側Fの一端部61aと、背面側Rの他端部61cと、これらの間に設けられた屈曲部61bとを有する。正面側領域61Fは、一端部61aから屈曲部61bまでの領域であり、背面側領域61Rは、他端部61cから屈曲部61bまでの領域である。前縁61の一端部61aは、端縁21Fの端部と接続されている。前縁61の他端部61cは、端縁21Rの端部と接続されている。前縁61は、屈曲部61bにおいて屈曲した形状を有している。正面側領域61Fの回転軸Aに対する傾斜角度は、背面側領域61Rの回転軸Aに対する傾斜角度よりも大きい。正面側領域61Fは、屈曲部61bから一端部61aに向かうにつれて回転軸Aから離れる方向に回転軸Aに対して傾斜している。
 本実施形態では、すべての羽根21は同じ形状を有している。すなわち、各羽根21は、循環流れCに起因する騒音を低減するために、後述の羽根角度βの特徴を備えている。なお、遠心送風機51では、必ずしもすべての羽根21が羽根角度βの特徴を備えていなくてもよく、すべての羽根21のうちの少なくとも1つの羽根が羽根角度βの特徴を備えているだけでもよい。ただし、騒音低減効果をより高めるという観点では、すべての羽根21がシュラウド19側において後述の羽根角度βの特徴を有しているのが好ましい。
 [空気の流れ]
 図4は、主流と循環流れについて説明するための断面図である。ファンモータ11によって羽根車23が回転すると、室内機31の吸込口39から室内機31のケース33内に空気が吸い込まれる。吸い込まれた空気は、ベルマウス25の内周面によって羽根車23のシュラウド19の空気吸込口19aに案内される。ベルマウス25の内周面によって空気吸込口19aに案内された主流Mの空気は、ハブ15とシュラウド19との間に周方向に沿って配列された複数の羽根21によって羽根車23からその外側(回転軸Aから離れる方向)に吐出される。羽根車23から吐出された空気の大半は、室内機31の吹出口37を通じて室内に吹き出される。
 羽根車23から吐出された空気の一部は、室内機31のケース33内において、シュラウド19の外周面とケース33と間の空間を通ってベルマウス25に向かって環流し、ベルマウス25の外周面とシュラウド19の内周面との間の隙間Gを通過する循環流れC(漏れ流れC)となる。この循環流れCは、隙間Gを通過した後、主流Mと合流する。
 [羽根形状]
 図6は、本実施形態における羽根21の半径位置rと羽根角度βとの関係を示すグラフである。図7(A)は、本実施形態におけるシュラウド19側の羽根断面S1を示す断面図であり、図7(B)は、本実施形態におけるスパン中央(回転軸A方向の羽根高さの中央)の羽根断面S2を示す断面図であり、図7(C)は、本実施形態におけるハブ側の羽根断面S3を示す断面図である。図6におけるグラフの横軸は、回転軸Aを中心とする円弧の半径位置rを示しており、横軸の原点O側は、羽根21における前縁61側であり、横軸の原点Oから離れる側は、羽根21における後縁62側である。回転軸Aを中心とする円弧は、例えば図7(A)~(C)において二点鎖線で示されている。
 本実施形態において、羽根21の前縁61と後縁62を通る羽根断面においてキャンバラインCLと回転軸Aを中心とする円弧との交点PにおけるキャンバラインCLの接線L1と、交点Pにおける円弧の接線L2とのなす角度を羽根角度βとする。キャンバラインCLは、図7(A)~(C)のそれぞれにおいて破線で示されている。
 図6におけるシュラウド19側の羽根角度βを示す破線は、図7(A)に示すシュラウド19側の羽根断面S1において、交点PがキャンバラインCL上を前縁61から後縁62までシフトしたときの羽根角度βの変化を示している。なお、図7(A)に示す断面図では、交点Pとして5つの交点P1~P5を図示しているが、図6に示す破線は、交点P1~P5だけでなく、さらに多数の交点Pにおける羽根角度βをプロットしたものである。
 また、図7(A)に示すシュラウド19側の羽根断面S1は、図9に示すシュラウド19と羽根21との境界部B1(シュラウド19と羽根21との接合部B1)における羽根断面であり、具体的には、シュラウド19の内周面と羽根21の正面側Fの端縁21Fとの境界部B1における羽根断面である。図7(A)に示す羽根断面S1は、シュラウド19の内周面に沿って湾曲している境界部B1における羽根断面を、回転軸Aに直交する平面上に、回転軸Aの方向に投影した図である。
 また、図7(C)に示すハブ15側の羽根断面S3は、図9に示すハブ15と羽根21との境界部B2(ハブ15と羽根21との接合部B2)における羽根断面であり、具体的には、ハブ15の内面と羽根21の背面側Rの端縁21Rとの境界部B2における羽根断面である。本実施形態では、羽根21の背面側Rの端縁21Rとこれが接合されるハブ15の内面は、回転軸Aに直交する平面である。なお、羽根21の背面側Rの端縁21Rが湾曲している場合には、端縁21Rに沿って湾曲している境界部B2における羽根断面を、回転軸Aに直交する平面上に、回転軸Aの方向に投影することによって図7(C)に示す羽根断面S3を得ることができる。
 また、図7(B)に示すスパン中央の羽根断面S2は、回転軸A方向の羽根高さの中央における羽根断面であり、具体的には、例えば羽根21の後縁62の羽根高さの中央を通って回転軸Aに直交する平面で羽根21を切断したときの羽根断面である。
 また、本実施形態において、図6及び図7(A)に示すように、羽根断面S1においてキャンバラインCLの長さの中間点(中央)よりも前縁61側の領域を、羽根断面S1における前縁61側の部分PLといい、羽根断面S1においてキャンバラインCLの長さの中間点(中央)よりも後縁62側の領域を、羽根断面S1における後縁62側の部分PTという。
 図6において破線で示すように、羽根21は、シュラウド19側の羽根断面S1における前縁61側の部分PLにおいてキャンバラインCL上を交点Pが後縁62側にシフトするにつれて羽根角度βが減少する減少形状を有する。
 羽根21が、シュラウド19側の羽根断面S1における前縁61側の部分PLにおいて、上記のような前記減少形状を有することにより、羽根21の負圧面21Aにおいてシュラウド19側の負圧の強い領域を前縁から後縁側に移動させることができる。
 図8は、負圧の強い領域Nを前縁から後縁側に遠ざけていることを説明するための断面図である。図8において、負圧面21Aに描かれた実線の丸は、本実施形態における負圧の強い領域Nであり、負圧面21Aに描かれた破線の丸は、後述する従来の遠心送風機の羽根における負圧の強い領域Nである。図8に示すように、本実施形態では、羽根21が、シュラウド19側の羽根断面S1における前縁61側の部分PLにおいて、上記のような前記減少形状を有することにより、羽根21の負圧面21Aにおいて負圧の強い領域Nを、従来に比べて前縁61から後縁62側に遠ざけることができる。これにより、本実施形態では、循環流れCを吸引する力を弱めることができる。その結果、循環流れCの流量が減少するので、循環流れCに起因する騒音(主流と循環流れとの干渉音)を低減できる。
 なお、羽根21の負圧面21Aにおいて負圧の強い領域Nは、負圧が最も強い領域と一致する場合を例示しているが、これに限られない。本実施形態では、負圧面21Aにおいて負圧の強い領域Nを後縁62側に移動させることができればよいので、負圧の強い領域Nよりも負圧がさらに強い別の領域が例えば後縁62側の部分PTに存在していてもよい。
 また、図6に示す本実施形態では、羽根21は、シュラウド19側の羽根断面S1において前縁61から後縁62まで羽根角度βが減少し続ける形状を有する。このように本実施形態では羽根21における羽根角度βが減少し続ける形状を有するので、例えば後縁62側の部分において羽根角度βが増加する場合に比べて、負圧面において気流が後縁62まで追随しやすくなる。これにより、後縁62近傍において気流の剥離が生じるのを抑制できる。
 また、図6に示す本実施形態では、シュラウド19側の羽根断面S1における前縁61側の部分PLにおいて、キャンバラインCL上を交点Pが前縁61から後縁62側にシフトするにつれて羽根角度βの減少の度合いが小さくなる領域が設けられている。具体的には、図6に示すように羽根断面S1における前縁61側の部分PLにおいて、羽根角度βを示す破線は、左下に凸の曲線の部分を含む。すなわち、前縁61側の部分PLのうちの前半領域(原点Oに近い側の領域)における右下がりの勾配は、前縁61側の部分PLのうちの後半領域(原点Oから遠い側の領域)における右下がりの勾配よりも大きい。このように本実施形態における羽根21では、前縁61側の部分PLのうちでも、前縁61により近い領域における羽根角度βの減少の勾配を比較的大きくする一方で、前縁61側の部分PLにおいて後縁62側に向かうにつれて羽根角度βの減少の勾配が小さくなる領域を設けている。すなわち、前縁61により近い領域において羽根角度βの減少度合いを局所的に大きくすることによって、負圧の強い領域を前縁61から後縁62側に移動させる効果を高めることができる。その一方で、後縁62側に向かうにつれて羽根角度βの減少度合いを緩やかにする領域を設けることによって、負圧面においてシュラウド19側の翼負荷が極端に小さくなるのを抑制している。これにより、負圧面においてシュラウド19側の翼負荷がある程度の大きさに維持される。
 図6に示す本実施形態では、シュラウド19側の羽根断面S1における前縁61側の部分PLのほぼ全領域において、キャンバラインCL上を交点Pが前縁61から後縁62側にシフトするにつれて羽根角度βの減少の度合いが小さくなる。ただし、羽根角度βの減少の度合いが小さくなる領域は、前縁61側の部分PLの全領域に設けられていなくてもよく、前縁61側の部分PLの一部の領域にのみ設けられていてもよい。
 例えば、後述する図10(B)に示す変形例2では、前縁61側の部分PLにおいて羽根角度βの減少の度合いが小さくなる領域は、前縁61側の部分PLの全領域に設けられているのではなく、前縁61側の部分PLのうちの前半領域に設けられていて、前縁61側の部分PLのうちの後半領域には設けられていない。前縁61側の部分PLのうちの後半領域では、羽根角度βは、キャンバラインCL上を交点Pが後縁62側にシフトしても小さくなっておらず、一定である。
 また、図6に示す本実施形態では、シュラウド19側の羽根断面S1における後縁62側の部分PTにおいて、キャンバラインCL上を交点Pが後縁62側にシフトするにつれて羽根角度βの減少の度合いが大きくなる領域が設けられている。具体的には、図6に示すように羽根断面S1における後縁62側の部分PTにおいて、羽根角度βを示す破線は、右上に凸の曲線である。すなわち、後縁62側の部分PTのうちの後半領域(原点Oから遠い側の領域)における右下がりの勾配は、後縁62側の部分PTのうちの前半領域(原点Oに近い側の領域)における右下がりの勾配よりも大きい。このように後縁62側の部分PTにおいて羽根角度βの減少の度合いが大きくなる領域を設けることにより、後縁62側の部分PTにおいて気流が負圧面により追随しやすくなるので、後縁62側の部分PTにおいて気流の剥離がさらに生じにくくなる。
 図6に示す本実施形態では、シュラウド19側の羽根断面S1における後縁62側の部分PTのほぼ全領域において、キャンバラインCL上を交点Pが後縁62側にシフトするにつれて羽根角度βの減少の度合いが大きくなる。ただし、羽根角度βの減少の度合いが大きくなる領域は、後縁62側の部分PTの全領域に設けられていなくてもよく、後縁62側の部分PTの一部の領域にのみ設けられていてもよい。
 例えば、後述する図10(B)に示す変形例2では、後縁62側の部分PTにおいて、羽根角度βの減少の度合いが大きくなる領域は、後縁62側の部分PTの全領域に設けられているのではなく、後縁62側の部分PTのうちの後半領域に設けられていて、後縁62側の部分PTのうちの前半領域には設けられていない。後縁62側の部分PTのうちの前半領域では、羽根角度βは、キャンバラインCL上を交点Pが後縁62側にシフトしても小さくなっておらず、一定である。
 なお、本実施形態において、図7(A)に示すシュラウド19側の羽根断面S1は、必ずしもシュラウド19と羽根21との境界部B1における羽根断面でなくてもよい。羽根断面S1は、羽根21におけるシュラウド19側の羽根断面であればよい。ここで、羽根21におけるシュラウド19側とは、例えば次のような範囲とすることができる。すなわち、羽根21におけるシュラウド19側とは、図9に示すように、シュラウド19と羽根21との境界部B1からシュラウド19に対して遠ざかる方向に所定の幅Wをもった領域B3であってもよい。所定の幅Wは、ベルマウス25の端部25eとシュラウド19との距離Dと同じ大きさである。そして、前縁61と後縁62を通ってシュラウド19と羽根21との境界部B1に沿った羽根断面を領域B3の範囲内において選び、選ばれた羽根断面を、回転軸Aに直交する平面上に、回転軸Aの方向に投影したものを羽根断面S1としてもよい。
 このような羽根21におけるシュラウド19側において上述したような羽根角度βの特徴を付与することによって、循環流れCを吸引する力を効果的に弱めることができる。具体的には次の通りである。ベルマウス25の外周面とシュラウド19の内周面との間の隙間Gを通過した直後の循環流れCの幅は、ベルマウス25の端部25eとシュラウド19の内周面との距離Dと同程度である。この循環流れCは、隙間Gを通過した後まもなく羽根21に到達する。したがって、循環流れCが羽根21に影響を与える領域は、循環流れCの前記幅と関連している。よって、ベルマウス25の端部25eとシュラウド19との距離Dと同じ大きさである所定の幅Wをもった領域B3に、上述したような羽根角度βの特徴を付与することによって、循環流れCを吸引する力を効果的に弱めることができる。
 また、領域B3内において境界部B1に沿った何れの羽根断面が選ばれた場合であっても、選ばれた羽根断面を回転軸Aに直交する平面上に回転軸Aの方向に投影した羽根断面S1が、上述のような羽根角度βの特徴を有しているのが好ましい。
 また、本実施形態では、図6におけるハブ15側の羽根角度βを示す実線は、図7(C)に示すハブ15側の羽根断面S3において、交点PがキャンバラインCL上を前縁61から後縁62までシフトしたときの羽根角度βの変化を示している。図6に示すように、ハブ15側の羽根角度βは、右上がりの線(曲線)であり、前縁61から後縁62に向かうにつれて大きくなっているが、これに限定されない。
 また、本実施形態では、図6におけるスパン中央の羽根角度βを示す一点鎖線は、図7(B)に示すスパン中央の羽根断面S2において、交点PがキャンバラインCL上を前縁61から後縁62までシフトしたときの羽根角度βの変化を示している。図6に示すように、スパン中央の羽根角度βは、右上がりの線(曲線)であり、前縁61から後縁62に向かうにつれて大きくなっているが、これに限定されない。
 次に、従来の遠心送風機における羽根121の特徴について簡単に説明する。図11は、従来の遠心送風機における羽根121の半径位置rと羽根角度βとの関係を示すグラフである。図12(A)は、従来の遠心送風機におけるシュラウド側の羽根断面S11を示す断面図であり、図12(B)は、従来の遠心送風機におけるスパン中央の羽根断面S12を示す断面図であり、図12(C)は、従来の遠心送風機におけるハブ側の羽根断面S13を示す断面図である。
 図11におけるシュラウド側の羽根角度βを示す破線は、図12(A)に示すシュラウド側の羽根断面S11において、交点PがキャンバラインCL上を前縁161から後縁162までシフトしたときの羽根角度βの変化を示している。図11におけるスパン中央の羽根角度βを示す一点鎖線は、図12(B)に示すスパン中央の羽根断面S12において、交点PがキャンバラインCL上を前縁161から後縁162までシフトしたときの羽根角度βの変化を示している。図11におけるハブ側の羽根角度βを示す実線は、図12(C)に示すハブ側の羽根断面S13において、交点PがキャンバラインCL上を前縁161から後縁162までシフトしたときの羽根角度βの変化を示している。羽根断面S11~S13は、上述した本実施形態における羽根断面S1~S3と同様の位置における羽根断面である。
 図11に示すように従来の遠心送風機では、羽根121におけるシュラウド側の羽根断面S11、スパン中央の羽根断面S12及びハブ側の羽根断面の何れにおいても、羽根角度βは、右上がりの線(曲線)であり、前縁161から後縁162に向かうにつれて大きくなっている。したがって、従来の遠心送風機では、羽根121の負圧面21Aにおいて、負圧の強い領域Nが前縁161に近いところに位置することになるので、循環流れが本実施形態に比べて大きな力で吸引され、その結果、循環流れの流量が本実施形態に比べて多くなって循環流れに起因する騒音が大きくなる。
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。
 図6に示す実施形態では、羽根21が、シュラウド19側の羽根断面S1において前縁61から後縁62まで羽根角度βが減少し続ける形状を有する場合を例示したが、これに限られず、羽根21は、例えば図10(A)~図10(E)に示す変形例1~5のような形状を有していてもよい。なお、図10(A)~図10(E)においては、シュラウド19側の羽根断面S1における羽根角度βについてのみ図示しており、スパン中央の羽根断面S2における羽根角度β及びハブ15側の羽根断面S3における羽根角度βについては図示を省略している。
 図10(A)に示す変形例1の羽根21は、シュラウド19側の羽根断面S1における前縁61側の部分PLにおいてキャンバラインCL上を交点Pが後縁62側にシフトするにつれて羽根角度βが減少する減少形状を有し、シュラウド19側の羽根断面S1における後縁62側の部分PTにおいて、羽根角度βが増加する増加形状を有している。
 図10(B)に示す変形例2の羽根21は、シュラウド19側の羽根断面S1における前縁61側の部分PLにおいて、前記減少形状と一定形状を組み合わせた形状を有する。前記一定形状の領域では、シュラウド19側の羽根断面S1における前縁61側の部分PLにおいてキャンバラインCL上を交点Pが後縁62側にシフトしても羽根角度βが一定である。そして、シュラウド19側の羽根断面S1における後縁62側の部分PTにおいては、一定形状と減少形状がこの順に後縁62側に向かって並んでいる。
 図10(C)~(D)に示す変形例3~5の羽根21は、シュラウド19側の羽根断面S1における前縁61側の部分PLにおいてキャンバラインCL上を交点Pが後縁62側にシフトしても羽根角度βが一定である一定形状を有している。
 図10(C)に示す変形例3の羽根21は、シュラウド19側の羽根断面S1における後縁62側の部分PTにおいて、キャンバラインCL上を交点Pが後縁62側にシフトするにつれて羽根角度βが減少する領域を有している。
 図10(D)に示す変形例4の羽根21は、シュラウド19側の羽根断面S1における後縁62側の部分PTにおいて、キャンバラインCL上を交点Pが後縁62側にシフトするにつれて羽根角度βが増加する領域を有している。
 図10(E)に示す変形例5の羽根21は、シュラウド19側の羽根断面S1における後縁62側の部分PTにおいて、キャンバラインCL上を交点Pが後縁62側にシフトするにつれて羽根角度βが減少する領域と羽根角度βが増加する領域とを有している。
 また、前記実施形態では、全ての羽根21が同じ形状を有する場合を例示したが、これに限られず、複数の羽根21のうちの少なくとも1つの羽根21が、前記減少形状、前記一定形状、又はこれらを組み合わせた形状を有していればよい。
 また、前記実施形態では、遠心送風機51を天井埋込型の室内機に適用する場合を例示したが、これに限定されない。本発明の遠心送風機は、天吊り型の室内機、エアハンドリングユニット、ルーフトップなどの高所設置型の室内機、床置き型の室内機などの他のタイプの室内機にも適用できる。
 なお、上述した実施形態を概説すると次の通りである。
 前記実施形態の遠心送風機は、回転軸を中心に回転する羽根車と、前記羽根車に空気を案内するベルマウスと、を備えている。前記羽根車は、前記ベルマウスの端部との間に径方向に隙間をあけて設けられたシュラウドと、前記シュラウドの周方向に沿って配列され、前記シュラウドに取り付けられた複数の羽根と、を備えている。
 前記羽根の前縁と後縁を通る羽根断面においてキャンバラインと前記回転軸を中心とする円弧との交点における前記キャンバラインの接線と、前記交点における前記円弧の接線とのなす角度を羽根角度とする場合において、前記羽根は、前記シュラウド側の羽根断面における前記前縁側の部分において前記キャンバライン上を前記交点が前記後縁側にシフトするにつれて前記羽根角度が減少する減少形状、及び前記シュラウド側の前記羽根断面における前記前縁側の部分において前記キャンバライン上を前記交点が前記後縁側にシフトしても前記羽根角度が一定である一定形状の少なくとも一方の形状を有する。
 この構成では、羽根は、シュラウド側の羽根断面における前縁側の部分において前記減少形状及び前記一定形状の少なくとも一方の形状を有する。羽根角度を規定する要素であるキャンバラインは、羽根断面において正圧面と負圧面から等しい距離にある位置を結んだ線である。羽根が、シュラウド側の羽根断面における前縁側の部分において、上記のような前記減少形状及び前記一定形状の少なくとも一方の形状を有することにより、羽根の負圧面においてシュラウド側で且つ前縁側の部分の翼負荷を弱めることができる。これにより、羽根の負圧面において負圧の強い領域を前縁から後縁側に遠ざけることができるので、循環流れ(漏れ流れ)を吸引する力を弱めることができる。その結果、循環流れの流量が減少するので、循環流れに起因する騒音(主流と循環流れとの干渉音)を低減できる。
 また、前記実施形態では、従来のように小羽根を付加しなくても循環流れに起因する騒音を低減できるので、重量の増加及びコストの増加を抑制することができる。
 なお、前記実施形態において、羽根断面における前縁側の部分は、キャンバラインの中間点よりも前縁側であり、羽根断面における後縁側の部分は、キャンバラインの中間点よりも後縁側である。
 前記遠心送風機において、前記羽根は、前記シュラウド側の前記羽根断面における前記前縁側の部分において、前記減少形状と前記一定形状を組み合わせた形状を有していてもよい。
 前記遠心送風機において、前記羽根は、前記シュラウド側の前記羽根断面において前記前縁から前記後縁まで前記羽根角度が減少し続ける形状を有するのが好ましい。
 この構成では、羽根における前記羽根角度が減少し続ける形状を有するので、例えば後縁側の部分において羽根角度が増加する場合に比べて、負圧面において気流が後縁まで追随しやすくなる。これにより、後縁近傍において気流の剥離が生じるのを抑制できる。
 前記遠心送風機では、前記シュラウド側の前記羽根断面における前記前縁側の部分において、前記キャンバライン上を前記交点が前記前縁から前記後縁側にシフトするにつれて前記羽根角度の減少の度合いが小さくなる領域が設けられているのが好ましい。
 この構成では、前縁側の部分のうちでも、前縁により近い領域における羽根角度の減少の勾配を比較的大きくする一方で、前縁側の部分において後縁側に向かうにつれて羽根角度の減少の勾配が小さくなる部分を設けている。すなわち、前縁により近い領域において羽根角度の減少度合いを局所的に大きくすることによって、負圧の強い領域を前縁から後縁側に移動させる効果を高めることができる。その一方で、後縁側に向かうにつれて羽根角度の減少度合いを緩やかにする部分を設けることによって、負圧面においてシュラウド側の翼負荷が極端に小さくなるのを抑制している。これにより、負圧面においてシュラウド側の翼負荷がある程度の大きさに維持される。
 前記遠心送風機では、前記シュラウド側の前記羽根断面における前記後縁側の部分において、前記キャンバライン上を前記交点が前記後縁側にシフトするにつれて前記羽根角度の減少の度合いが大きくなる領域が設けられているのが好ましい。
 この構成では、後縁側の部分において羽根角度の減少の度合いが大きくなることにより、後縁側の部分において気流が負圧面により追随しやすくなるので、後縁側の部分において気流の剥離がさらに生じにくくなる。
 前記遠心送風機において、前記羽根における前記シュラウド側とは、例えば次のような範囲とすることができる。すなわち、前記羽根における前記シュラウド側とは、前記シュラウドと前記羽根との境界部から前記シュラウドに対して遠ざかる方向に所定の幅をもった領域であり、前記所定の幅は、前記ベルマウスの端部と前記シュラウドとの距離と同じ大きさであってもよい。
 このようなシュラウド側において上述したような羽根角度の特徴を付与することによって、循環流れを吸引する力を効果的に弱めることができる。具体的には次の通りである。ベルマウスの外周面とシュラウドの内周面との隙間を通過した直後の循環流れの幅は、ベルマウスの端部とシュラウドの内周面との距離と同程度である。この循環流れは、前記隙間を通過した後まもなく羽根に到達する。したがって、循環流れが羽根に影響を与える領域は、循環流れの前記幅と関連している。よって、ベルマウスの端部と前記シュラウドとの距離と同じ大きさである所定の幅をもった領域に、上述したような羽根角度の特徴を付与することによって、循環流れを吸引する力を効果的に弱めることができる。
 前記遠心送風機において、前記複数の羽根は同じ形状を有するのが好ましい。
 この構成では、すべての羽根が、シュラウド側において上述したような羽根角度の特徴を有しているので、各羽根において循環流れを吸引する力を効果的に弱めることができる。
 前記実施形態の空気調和機は、前記遠心送風機を備えているので、騒音を低減することができる。
 

Claims (8)

  1.  回転軸を中心に回転する羽根車と、
     前記羽根車に空気を案内するベルマウスと、を備え、
     前記羽根車は、前記ベルマウスの端部との間に径方向に隙間をあけて設けられたシュラウドと、前記シュラウドの周方向に沿って配列され、前記シュラウドに取り付けられた複数の羽根と、を備え、
     前記羽根の前縁と後縁を通る羽根断面においてキャンバラインと前記回転軸を中心とする円弧との交点における前記キャンバラインの接線と、前記交点における前記円弧の接線とのなす角度を羽根角度とする場合において、
     前記羽根は、
     前記シュラウド側の羽根断面における前記前縁側の部分において前記キャンバライン上を前記交点が前記後縁側にシフトするにつれて前記羽根角度が減少する減少形状、及び
     前記シュラウド側の前記羽根断面における前記前縁側の部分において前記キャンバライン上を前記交点が前記後縁側にシフトしても前記羽根角度が一定である一定形状の少なくとも一方の形状を有する遠心送風機。
  2.  前記羽根は、前記シュラウド側の前記羽根断面における前記前縁側の部分において、前記減少形状と前記一定形状を組み合わせた形状を有する、請求項1に記載の遠心送風機。
  3.  前記羽根は、前記シュラウド側の前記羽根断面において前記前縁から前記後縁まで前記羽根角度が減少し続ける形状を有する、請求項1に記載の遠心送風機。
  4.  前記シュラウド側の前記羽根断面における前記前縁側の部分において、前記キャンバライン上を前記交点が前記前縁から前記後縁側にシフトするにつれて前記羽根角度の減少の度合いが小さくなる領域が設けられている、請求項1~3の何れか1項に記載の遠心送風機。
  5.  前記シュラウド側の前記羽根断面における前記後縁側の部分において、前記キャンバライン上を前記交点が前記後縁側にシフトするにつれて前記羽根角度の減少の度合いが大きくなる領域が設けられている、請求項1~4の何れか1項に記載の遠心送風機。
  6.  前記羽根における前記シュラウド側とは、前記シュラウドと前記羽根との境界部から前記シュラウドに対して遠ざかる方向に所定の幅をもった領域であり、
     前記所定の幅は、前記ベルマウスの端部と前記シュラウドとの距離と同じ大きさである、請求項1~5の何れか1項に記載の遠心送風機。
  7.  前記複数の羽根は同じ形状を有する、請求項1~6の何れか1項に記載の遠心送風機。
  8.  請求項1~7の何れか1項に記載の遠心送風機を備えた空気調和機。
PCT/JP2014/074229 2013-09-30 2014-09-12 遠心送風機及びこれを備えた空気調和機 WO2015045907A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2014325384A AU2014325384B2 (en) 2013-09-30 2014-09-12 Centrifugal fan and air conditioner provided with the same
EP14847547.8A EP3034885B1 (en) 2013-09-30 2014-09-12 Centrifugal fan and air conditioner provided with the same
ES14847547T ES2784221T3 (es) 2013-09-30 2014-09-12 Ventilador centrífugo y aire acondicionado provisto del mismo
CN201480052053.6A CN105579712B (zh) 2013-09-30 2014-09-12 离心送风机以及具备该离心送风机的空调机
US15/025,711 US10024332B2 (en) 2013-09-30 2014-09-12 Centrifugal fan and air conditioner provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-205128 2013-09-30
JP2013205128A JP5783214B2 (ja) 2013-09-30 2013-09-30 遠心送風機及びこれを備えた空気調和機

Publications (1)

Publication Number Publication Date
WO2015045907A1 true WO2015045907A1 (ja) 2015-04-02

Family

ID=52743049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074229 WO2015045907A1 (ja) 2013-09-30 2014-09-12 遠心送風機及びこれを備えた空気調和機

Country Status (7)

Country Link
US (1) US10024332B2 (ja)
EP (1) EP3034885B1 (ja)
JP (1) JP5783214B2 (ja)
CN (1) CN105579712B (ja)
AU (1) AU2014325384B2 (ja)
ES (1) ES2784221T3 (ja)
WO (1) WO2015045907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085889A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 遠心ファン、空気調和装置および冷凍サイクル装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI127306B (en) * 2014-06-26 2018-03-15 Flaekt Woods Ab IMPELLER
EP3324052A1 (en) * 2016-11-18 2018-05-23 Sogefi Air & Cooling (SAS) Impeller for a fluid pump
CN109237714B (zh) * 2018-09-21 2020-12-11 美的集团武汉制冷设备有限公司 空调器及其控制方法和存储介质
EP3647603A1 (en) 2018-10-31 2020-05-06 Carrier Corporation Arrangement of centrifugal impeller of a fan for reducing noise
ES2942991T3 (es) 2018-12-13 2023-06-08 Mitsubishi Electric Corp Ventilador centrífugo y aire acondicionado
JP7348500B2 (ja) * 2019-09-30 2023-09-21 ダイキン工業株式会社 ターボファン
US20220205650A1 (en) * 2020-12-25 2022-06-30 Samsung Electronics Co., Ltd. Air conditioner including a centrifugal fan
CN112628199B (zh) * 2021-01-07 2022-05-24 泛仕达机电股份有限公司 一种减阻降噪的离心风轮
JP2023055364A (ja) * 2021-10-06 2023-04-18 三星電子株式会社 遠心ファン及び空気調和機用室内機
SE2250816A1 (en) * 2022-06-30 2023-12-31 Swegon Operations Ab A centrifugal fan arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198268A (ja) 2006-01-27 2007-08-09 Hitachi Ltd 遠心ファンとそれを備えた空気調和装置
JP2007321643A (ja) * 2006-05-31 2007-12-13 Daikin Ind Ltd 遠心ファン及びこれを用いた空気調和機
JP2011252424A (ja) * 2010-06-01 2011-12-15 Hitachi Plant Technologies Ltd ターボ形流体機械

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153497A (ja) * 1984-08-22 1986-03-17 Hitachi Ltd フアン
JP2730396B2 (ja) * 1992-05-13 1998-03-25 ダイキン工業株式会社 遠心ファンの羽根車
JP2730395B2 (ja) * 1992-05-13 1998-03-25 ダイキン工業株式会社 空気調和装置
US5996685A (en) * 1995-08-03 1999-12-07 Valeo Thermique Moteur Axial flow fan
JP2003172297A (ja) 2001-12-07 2003-06-20 Calsonic Kansei Corp シロッコファン
US7241114B2 (en) * 2002-10-30 2007-07-10 Siemens Ag Rotor for a centrifugal pump
JP2005155579A (ja) * 2003-11-28 2005-06-16 Sanden Corp 多翼送風ファン
ES2689721T3 (es) 2007-03-27 2018-11-15 Mitsubishi Electric Corporation Ventilador siroco y acondicionador de aire
US20110023526A1 (en) * 2008-05-14 2011-02-03 Shingo Ohyama Centrifugal fan
JP5164932B2 (ja) * 2009-06-11 2013-03-21 三菱電機株式会社 ターボファンおよび空気調和機
JP5422477B2 (ja) * 2010-04-21 2014-02-19 日立アプライアンス株式会社 電動送風機及びそれを搭載した電気掃除機
US9039362B2 (en) * 2011-03-14 2015-05-26 Minebea Co., Ltd. Impeller and centrifugal fan using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198268A (ja) 2006-01-27 2007-08-09 Hitachi Ltd 遠心ファンとそれを備えた空気調和装置
JP2007321643A (ja) * 2006-05-31 2007-12-13 Daikin Ind Ltd 遠心ファン及びこれを用いた空気調和機
JP2011252424A (ja) * 2010-06-01 2011-12-15 Hitachi Plant Technologies Ltd ターボ形流体機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3034885A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085889A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 遠心ファン、空気調和装置および冷凍サイクル装置
JPWO2017085889A1 (ja) * 2015-11-20 2018-05-24 三菱電機株式会社 遠心ファン、空気調和装置および冷凍サイクル装置

Also Published As

Publication number Publication date
CN105579712B (zh) 2018-05-25
EP3034885A4 (en) 2016-09-21
US10024332B2 (en) 2018-07-17
CN105579712A (zh) 2016-05-11
EP3034885B1 (en) 2020-01-15
EP3034885A1 (en) 2016-06-22
JP2015068310A (ja) 2015-04-13
ES2784221T3 (es) 2020-09-23
JP5783214B2 (ja) 2015-09-24
US20160245298A1 (en) 2016-08-25
AU2014325384A1 (en) 2016-04-07
AU2014325384B2 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
WO2015045907A1 (ja) 遠心送風機及びこれを備えた空気調和機
JP4844678B2 (ja) 遠心送風機
US9528374B2 (en) Turbofan, and air-conditioning apparatus
WO2009139422A1 (ja) 遠心送風機
US20140363306A1 (en) Axial-flow fan
JP6029738B2 (ja) 車両用空気調和装置の室外冷却ユニット
JP5522306B1 (ja) 遠心ファン
JP6078945B2 (ja) 遠心送風機
JP2016121580A (ja) 遠心型送風機
JP5533969B2 (ja) 空気調和機
JP2007205268A (ja) 遠心ファン
JP4818310B2 (ja) 軸流送風機
JP2013137008A (ja) 空気調和機
JP5195983B2 (ja) 遠心送風機
AU2017410135B2 (en) Propeller fan and outdoor unit for air-conditioning apparatus
JP6217347B2 (ja) 送風機
JP2016014368A (ja) 空気調和機
JP2016003641A (ja) 遠心ファン
JP2013036444A (ja) 遠心送風機
JP2015214912A (ja) 軸流ファン及びこれを備える空気調和機
JP6281374B2 (ja) 遠心送風機
JP7337308B1 (ja) 羽根車、送風機及び空気調和機
JP2015230114A (ja) 空気調和機
JP2013096379A (ja) 遠心送風機
JP2016003829A (ja) 空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052053.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014847547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15025711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014325384

Country of ref document: AU

Date of ref document: 20140912

Kind code of ref document: A