WO2009139422A1 - 遠心送風機 - Google Patents

遠心送風機 Download PDF

Info

Publication number
WO2009139422A1
WO2009139422A1 PCT/JP2009/058938 JP2009058938W WO2009139422A1 WO 2009139422 A1 WO2009139422 A1 WO 2009139422A1 JP 2009058938 W JP2009058938 W JP 2009058938W WO 2009139422 A1 WO2009139422 A1 WO 2009139422A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
main plate
centrifugal blower
air
impeller
Prior art date
Application number
PCT/JP2009/058938
Other languages
English (en)
French (fr)
Inventor
真吾 大山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US12/921,828 priority Critical patent/US20110023526A1/en
Priority to JP2010512006A priority patent/JPWO2009139422A1/ja
Priority to EP09746628A priority patent/EP2275689A1/en
Priority to AU2009247219A priority patent/AU2009247219A1/en
Priority to CN2009801123504A priority patent/CN101990604A/zh
Publication of WO2009139422A1 publication Critical patent/WO2009139422A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Definitions

  • the present invention relates to a centrifugal blower, and more particularly, to a structure of an impeller blade of a centrifugal blower.
  • centrifugal fans such as turbofans have a problem of large noise, so it is a problem to reduce noise. Therefore, various technologies have been developed so far in the centrifugal blower in order to reduce the blowing sound. As a general design method for reducing the blowing noise, an increase in the outer diameter of the fan impeller can be mentioned.
  • the rotation speed of the fan impeller can be reduced by increasing the outer diameter of the fan impeller. Thereby, the flow velocity of the airflow blown from the fan impeller is reduced.
  • the blowing sound is proportional to the sixth power of the flow velocity.
  • a thick blade that is, an airfoil blade
  • an airfoil blade is used to reduce the separation of the airflow around the blade and to reduce noise at the lowest possible cost (for example, Patent Documents). 1).
  • the above technique is effective in a centrifugal fan whose blade width is sufficiently small with respect to the outer shape, as described in Patent Document 3. That is, by cutting out the blade, it is possible to prevent the suction airflow from separating near the side plate side of the blade, and to flow the airflow along the vicinity of the side plate side of the blade.
  • the blade width is sufficiently wide as in an ordinary centrifugal blower, that is, when the influence of peeling on the side plate side is not dominant, the above technique is not necessarily effective.
  • the ratio of the outer diameter on the main plate side of the impeller / the outer diameter on the side plate side of the impeller is set to 1.2 to 1.6 at the outlet of the impeller. Therefore, when the extension amount due to the expansion of the blades is small, the noise reduction effect cannot be obtained, and conversely, when the extension amount is too large, the flow rate characteristic is deteriorated.
  • the outer diameter on the main plate side of the impeller is expanded by 20% relative to the outer diameter on the side plate side. This does not provide an advantage over a technology that simply enlarges the fan diameter and simply enlarges the fan. In the first place, the increase in size by more than 20% cannot solve the problem of the reduction in size and noise that is the conventional problem at all.
  • an impeller employing a three-dimensional blade extending in the direction of the rotation axis of the fan while twisting from the main plate to the side plate has also been proposed (see, for example, Patent Document 2).
  • the impeller that employs such a three-dimensional blade the load distribution on the surface of the blade and the pressure of the airflow passing between the blades are compared to those employing the two-dimensional blade as described above. Variability is improved.
  • FIG. 25 shows an air conditioner 1 that employs a centrifugal blower having an impeller.
  • the air conditioner 1 is a ceiling-embedded air conditioner, and includes a casing 2 that houses various components therein, and a decorative panel 3 that is disposed below the casing 2. More specifically, the casing 2 of the air conditioner 1 is inserted into an opening formed in the ceiling U of the air conditioning room, and the decorative panel 3 is disposed along the ceiling U.
  • the casing 2 is a box-like body having an opening below, and has a substantially octagonal shape in which long sides and short sides are alternately arranged in a plan view.
  • the casing 2 has a substantially octagonal top plate 21 in which long sides and short sides are alternately formed, and a side wall plate 22 extending downward from the periphery of the top plate 21.
  • the decorative panel 3 is a substantially quadrangular plate in plan view.
  • the decorative panel 3 is positioned substantially in the center and is formed to correspond to each of the four sides of the air inlet 31 for sucking air in the air-conditioned room, and a plurality of air outlets for blowing air from the casing 2 into the air-conditioned room. 32.
  • Each side of the decorative panel 3 is disposed so as to correspond to each long side of the top plate 21 of the casing 2.
  • Each air inlet 31 is a substantially square opening.
  • each air outlet 32 is a rectangular opening extending along the direction along each side of the decorative panel 3.
  • the air inlet 31 is provided with an air inlet grill 33 and a filter 34 for removing dust in the air sucked from the air inlet 31.
  • each air outlet 32 is provided with a horizontal flap 35 that can swing around an axis extending along the longitudinal direction of the air outlet 32.
  • the horizontal flap 35 is a rectangular blade member extending in the longitudinal direction of each air outlet 32.
  • each horizontal flap 35 rotates the shaft support pins provided at both ends in the longitudinal direction thereof by a motor (not shown), so that the air blown out from the air outlet 32 toward the air-conditioned room. Change the wind direction.
  • a blower 4 that mainly sucks air in the air-conditioned room into the casing 2 through the air inlet 31 of the decorative panel 3 and blows it out in the outer peripheral direction, and is arranged so as to surround the outer periphery of the blower 4.
  • a heat exchanger 6 is arranged inside the casing 2.
  • the blower 4 is a turbo fan as an example of a centrifugal blower targeted by the present invention.
  • the blower 4 is connected to a fan motor (impeller driving means) 41 provided downward in the center of the top plate 21 of the casing 2 and a shaft (rotary shaft) 41 a of the fan motor 41 and is rotated.
  • An impeller 42 is provided below in the center of the top plate 21 of the casing 2 and a shaft (rotary shaft) 41 a of the fan motor 41 and is rotated.
  • An impeller 42 is a turbo fan as an example of a centrifugal blower targeted by the present invention.
  • the blower 4 is connected to a fan motor (impeller driving means) 41 provided downward in the center of the top plate 21 of the casing 2 and a shaft (rotary shaft) 41 a of the fan motor 41 and is rotated.
  • An impeller 42 is provided downward in the center of the top plate 21 of the casing 2 and a shaft (rotary shaft) 41 a of the fan motor 41 and is rotate
  • the heat exchanger 6 is a cross fin tube type heat exchanger that is formed by being bent in a substantially square shape so as to surround the outer periphery of the blower 4.
  • a refrigerant pipe is connected to an outdoor unit (not shown) installed outdoors. Connected through.
  • the heat exchanger 6 functions as an evaporator during cooling operation and as a condenser during heating operation. As a result, the heat exchanger 6 exchanges heat with the air sucked into the casing 2 through the air suction port 31 by the blower 4, and cools the air during the cooling operation, while cooling the air during the heating operation. Heat.
  • a drain pan 7 for receiving drain water generated by condensation of moisture in the air on the surface of the heat exchanger 6 is disposed below the heat exchanger 6.
  • the drain pan 7 is attached to the lower part of the casing 2.
  • the drain pan 7 further includes an air suction hole portion 71 formed so as to communicate with the air suction port 31 of the decorative panel 3, and an air outlet hole portion formed so as to correspond to the air outlet 32 of the decorative panel 3. 72 and a drain water receiving groove 73 for receiving drain water formed so as to cover the lower portion of the heat exchanger 6.
  • a bell mouth 5 for guiding the air sucked from the air suction port 31 of the decorative panel 3 to the impeller 42 of the blower 4 is disposed in the air suction hole portion 71 of the drain pan 7.
  • FIG. 26 is an external perspective view of the impeller 42.
  • FIG. 27 is a side view of the impeller 42 of FIG.
  • the impeller 42 mainly includes a disk-shaped main plate 43, an annular side plate 45 disposed at a distance from the main plate 43, and a plurality of blades 44 disposed between the main plate 43 and the side plate 45. .
  • the main plate 43 is connected to the shaft 41a of the fan motor 41 described above.
  • the plurality of blades 44 are disposed along the main plate 43 at a predetermined angle with the shaft 41a of the fan motor 41 as the central axis.
  • the main plate 43 is a resin member.
  • a substantially frustoconical convex portion 43 a is formed at the central portion of the main plate 43 so as to protrude toward the air suction port 31.
  • a main plate cover 46 is fixed to the lower surface of the main plate 43 so as to be disposed at a predetermined interval from the main plate 43 and cover the cooling air holes.
  • a plurality of guide blades 46 a extending radially are provided on the surface of the main plate cover 46 that faces the main plate 43.
  • the side plate 45 has a diameter that gradually decreases from the outer periphery toward the central opening.
  • the side plate 45 is a bell-shaped resin member that protrudes toward the air inlet 31.
  • FIG. 28 is a perspective view of the blade 44 as viewed from the left rear.
  • FIG. 29 is a projection view of the blade 44 of FIG. 28 as viewed from above.
  • 30 is a side view in which a plurality of cutting lines 31A-31A to 31E-31E are inserted into the blade 44 of FIG. 31 (a) to 31 (e) are cross-sectional views taken along lines 31A-31A to 31E-31E in FIG. 30, respectively.
  • FIG. 32 is an explanatory view showing the operation of the blade 44.
  • Each of the blades 44 is a resin member formed separately from the main plate 43 and the side plate 45 described above. One end surface of each blade 44 is fixed to the main plate 43, and the other end surface of each blade 44 is fixed to the side plate 45. In the side view of the impeller 42, each blade 44 is inclined with the end on the side plate 45 side inclined behind the end on the main plate 43 side as shown in FIG. 28. Further, as shown in FIG. 29, each blade 44 is formed so that these end portions intersect with each other in a substantially X shape. That is, the blade 44 has a three-dimensional shape extending in parallel with the rotation axis while being twisted between the main plate 43 and the side plate 45.
  • the front end in the rotational direction of the blade 44 which is the three-dimensional blade, that is, the front edge 44a extends from the end on the main plate 43 side to a predetermined position on the side plate 45 side so as to have substantially the same radius.
  • the blade 44 has an inclined edge that recedes outward so that the radius gradually decreases from a predetermined position on the side plate 45 side to the side plate 45.
  • the end of the blade 44 in the direction opposite to the rotation direction R that is, the rear edge 44b has a shape in which the position on the main plate 43 side and the position on the side plate 45 side are connected by a straight line extending parallel to the rotation.
  • the load distribution on the surface of the blade 44 and the distance between the blades 44 are compared with the blade shape made on the basis of the blade element drawn in a plane like Patent Documents 1, 3, and 4 described above.
  • the pressure fluctuation of the airflow passing through the air is greatly improved. Therefore, at least noise caused by air pressure fluctuation is effectively reduced.
  • the rear edge 44b of the blade 44 has a shape in which both ends are linearly connected between the main plate 43 and the side plate 45, there is still a problem that noise due to the influence of the wake vortex is generated.
  • the air flow F 2 flowing along the rounded surface of the side plate 45 out of the air flow sucked from the vicinity of the side plate 45 of the blade 44 is small.
  • the original main flow F 1 having a large flow rate sucked from the center of the side plate 45 flows in the vicinity of the main plate 43 due to the relationship between the flow velocity vectors. Therefore, the wind speed distribution of the blown airflow at the exit portion of the blade 44 is not uniform in the span direction of the blade 44.
  • An object of the present invention is to provide a centrifugal fan that can further reduce noise with respect to a three-dimensional blade used in the centrifugal fan.
  • a plurality of three-dimensional blades and a span end direction of each blade are fixed at predetermined intervals in the circumferential direction.
  • a centrifugal blower comprising a main plate, a ring-shaped side plate provided on the other end surface of each blade in the span direction, and blade driving means for rotating the blade via the main plate,
  • a centrifugal blower is provided in which the radial length of the outer peripheral end portion on the main plate side is set longer than the radial length of the outer peripheral end portion on the side plate side of each blade.
  • the velocity distribution of the mainstream portion of the airflow that flows biased toward the main plate side portion of the blade is greatly improved. Therefore, the static pressure-flow rate characteristic of the blower is improved in the entire flow rate range, and the blown amount is increased. Moreover, the specific noise characteristic of the blower is also greatly improved, and the influence of the wake vortex generated at the blade trailing edge on the three-dimensional blade main plate side can be relatively reduced. As a result, noise caused by the wake vortex is effectively reduced.
  • the airflow passing through each blade is It is preferable that work on the main plate side of the blade is effectively received from the blade, and the velocity of the airflow in the span direction of each blade is effectively developed in the main plate side portion of each blade.
  • the velocity distribution of the mainstream portion of the airflow that flows biased toward the main plate side portion of the blade is greatly improved. Therefore, the static pressure-flow rate characteristic of the blower is improved in the entire flow rate range, and the blown amount is increased. Moreover, the specific noise characteristic of the blower is also greatly improved, and the influence of the wake vortex generated at the blade trailing edge on the three-dimensional blade main plate side can be relatively reduced. As a result, noise caused by the wake vortex is effectively reduced.
  • the radial length of the outer peripheral end of the blade on the main plate side is extended in the radial direction of the outer peripheral end of the blade on the side plate side by extending the trailing edge of the blade toward the rear of the air flow. It is preferably formed longer than the length.
  • the velocity distribution of the main flow portion of the airflow that is biased toward the main plate side of the blade is greatly improved. Therefore, the static pressure-flow rate characteristic of the blower is improved in the entire flow rate range, and the blown amount is increased. Moreover, the specific noise characteristic of the blower is also greatly improved, and the influence of the wake vortex generated at the blade trailing edge on the three-dimensional blade main plate side can be relatively reduced. As a result, noise caused by the wake vortex is effectively reduced.
  • the trailing edge is preferably extended so as to gradually become longer from the side plate toward the main plate.
  • the shape of the trailing edge of the blade becomes a substantially tapered shape that is enlarged from the side plate to the main plate. Therefore, the shape of the trailing edge of the blade can be made appropriate according to the change in the velocity distribution of the main flow that is biased toward the portion of the blade on the main plate side.
  • the substantially tapered shape that gradually expands from the side plate to the main plate may be either a linear change or a curved change.
  • the trailing edge may be extended in a curved shape, and a bulging portion may be formed at a portion on the main plate side of the trailing edge so that one or more inflection points exist in the curved portion.
  • the centrifugal blower forms a laminar shear layer under the influence of the airflow in the vicinity of the main plate due to the viscosity of the wall surface of the main plate. As a result, the main flow path is narrowed, and the fan performance may be reduced.
  • development of the said shear layer can be suppressed and fan performance can be improved.
  • the trailing edge is extended long backward corresponding to the velocity distribution of the main stream of the airflow at the trailing edge. According to such a configuration, the shape of the extended trailing edge can be made more appropriate according to the change in the mainstream speed distribution, and the fan performance can be further improved.
  • a step portion extended by a predetermined length in front of the blade is provided in a portion of the front edge of each blade on the main plate side.
  • the diameter of the main plate is enlarged in accordance with the extension of the blades.
  • the structural strength of the centrifugal fan can be improved at the same time by extending the diameter of the main plate.
  • the centrifugal blower is configured as a blower of an indoor unit for an air conditioner.
  • An air blower of an indoor unit for an air conditioner is essentially required to have a large air volume and quietness due to its characteristics. Therefore, the centrifugal blower of the present invention that is small in size, high in blowing performance, and low in noise is optimal as a blower for an indoor unit for an air conditioner.
  • centrifugal blower suitable for a blower of an indoor unit for an air conditioner that has a large air volume and is excellent in quietness and can be downsized.
  • FIG. 10 is a side view showing the blade of FIG. 6 together with a plurality of cutting lines 10A-10A to 10E-10E.
  • FIG. 35 is a graph showing changes in the static pressure coefficient as parameters for the flow rate coefficient for four examples, (a) is the conventional fan of FIGS.
  • FIG. 19 is an explanatory diagram showing the action of the blade.
  • FIG. 19 is a graph showing the change in specific noise with the flow coefficient as a parameter for the four examples in order to confirm the effect of the blade.
  • FIG. 19 (a) is a conventional blade of FIGS. (B) is a conventional blade of FIG. 25 to FIG. 32 provided with a step, (c) is the present embodiment of FIG. 1 to FIG. 12, and (d) is shown in FIG. 18 to FIG. This corresponds to the third modification of the present embodiment.
  • FIG. 19 is a graph showing changes in the static pressure coefficient with the flow coefficient as a parameter for the four examples of FIG. 22 in order to confirm the effect of the blade. Explanatory drawing which shows the effect
  • FIG. 29 is a projection view showing the blade of FIG. 28.
  • FIGS. 30A to 31E are cross-sectional views taken along lines 31A-31A to 31E-31E in FIG. Explanatory drawing which shows the effect
  • FIG. 1 shows the external appearance perspective view (ceiling part is abbreviate
  • the air conditioner 1 is a ceiling-embedded air conditioner, and includes a casing 2 that houses various components therein, and a decorative panel 3 that is disposed below the casing 2. More specifically, the casing 2 of the air conditioner 1 is inserted into an opening formed in the ceiling U of the air conditioning room, for example, as shown in FIG. 2 (vertical sectional view of the air conditioner 1). The decorative panel 3 is arranged along the ceiling U.
  • the casing 2 is a box-like body having an opening below, and has a substantially octagonal shape in which long sides and short sides are alternately arranged in a plan view.
  • the casing 2 has a substantially octagonal top plate 21 in which long sides and short sides are alternately formed, and a side wall plate 22 extending downward from the periphery of the top plate 21.
  • the decorative panel 3 is a substantially quadrangular plate in plan view.
  • the decorative panel 3 is positioned substantially in the center and is formed to correspond to each of the four sides of the air inlet 31 for sucking air in the air-conditioned room, and a plurality of air outlets for blowing air from the casing 2 into the air-conditioned room. 32.
  • Each side of the decorative panel 3 is disposed so as to correspond to each long side of the top plate 21 of the casing 2.
  • Each air inlet 31 is a substantially square opening.
  • each air outlet 32 is a rectangular opening extending along the direction along each side of the decorative panel 3.
  • the air inlet 31 is provided with an air inlet grill 33 and a filter 34 for removing dust in the air sucked from the air inlet 31.
  • each air outlet 32 is provided with a horizontal flap 35 that can swing around an axis extending along the longitudinal direction of the air outlet 32.
  • the horizontal flap 35 is a rectangular blade member extending in the longitudinal direction of each air outlet 32.
  • each horizontal flap 35 rotates the shaft support pins provided at both ends in the longitudinal direction thereof by a motor (not shown), so that the air blown out from the air outlet 32 toward the air-conditioned room. Change the wind direction.
  • a blower 4 that mainly sucks air in the air-conditioned room into the casing 2 through the air inlet 31 of the decorative panel 3 and blows it out in the outer peripheral direction, and is arranged so as to surround the outer periphery of the blower 4.
  • a heat exchanger 6 is arranged inside the casing 2.
  • the blower 4 is a turbo fan as an example of a centrifugal blower targeted by the present invention.
  • the blower 4 is connected to a fan motor (impeller driving means) 41 provided downward in the center of the top plate 21 of the casing 2 and a shaft (rotary shaft) 41 a of the fan motor 41 and is rotated.
  • An impeller 42 The detailed structure of the impeller 42 will be described later.
  • the heat exchanger 6 is a cross fin tube type heat exchanger that is formed by being bent in a substantially square shape so as to surround the outer periphery of the blower 4.
  • a refrigerant pipe is connected to an outdoor unit (not shown) installed outdoors. Connected through.
  • the heat exchanger 6 functions as an evaporator during cooling operation and as a condenser during heating operation. As a result, the heat exchanger 6 exchanges heat with the air sucked into the casing 2 through the air suction port 31 by the blower 4, and cools the air during the cooling operation, while cooling the air during the heating operation. Heat.
  • a drain pan 7 for receiving drain water generated by condensation of moisture in the air on the surface of the heat exchanger 6 is disposed below the heat exchanger 6.
  • the drain pan 7 is attached to the lower part of the casing 2.
  • the drain pan 7 further includes an air suction hole portion 71 formed so as to communicate with the air suction port 31 of the decorative panel 3, and an air outlet hole portion formed so as to correspond to the air outlet 32 of the decorative panel 3. 72 and a drain water receiving groove 73 for receiving drain water formed so as to cover the lower portion of the heat exchanger 6.
  • a bell mouth 5 for guiding the air sucked from the air suction port 31 of the decorative panel 3 to the impeller 42 of the blower 4 is disposed in the air suction hole portion 71 of the drain pan 7.
  • the air-conditioning apparatus 1 has the above-described configuration through the filter 34, the bell mouth 5, the drain pan 7, the blower 4, and the heat exchanger 6 from the air suction port 31 of the decorative panel 3.
  • the air flow paths leading to the four air outlets 32 are formed.
  • the air conditioner 1 can inhale the air in the air-conditioned room and exchange heat with the refrigerant in the heat exchanger 6 and then blow out the temperature-controlled air in all directions of the air-conditioned room through the air flow path. .
  • FIG. 3 is a perspective view showing an appearance of the impeller 42.
  • FIG. 4 is a side view showing the impeller 42 of FIG.
  • FIG. 5 is a view of the impeller 42 installed as shown in FIG. 4 as viewed from above.
  • the impeller 42 mainly includes a disk-shaped main plate 43, an annular side plate 45 disposed at a distance from the main plate 43, and a plurality of blades 44 disposed between the main plate 43 and the side plate 45. .
  • the main plate 43 is connected to the shaft 41a of the fan motor 41 described above.
  • the plurality of blades 44 are disposed along the main plate 43 at a predetermined angle with the shaft 41a of the fan motor 41 as the central axis.
  • the rotation direction of the impeller 42 is indicated by an arrow R in FIG.
  • the main plate 43 has an outer diameter Db ′.
  • the main plate 43 is a resin member.
  • a substantially frustoconical convex portion 43 a is formed at the central portion of the main plate 43 so as to protrude toward the air suction port 31.
  • a main plate cover 46 is fixed to the lower surface of the main plate 43 so as to be disposed at a predetermined interval from the main plate 43 and cover the cooling air holes.
  • a plurality of guide blades 46 a extending radially are provided on the surface of the main plate cover 46 that faces the main plate 43.
  • the side plate 45 has an outer diameter Da.
  • the side plate 45 has a shape that gradually decreases from the outer periphery toward the central opening.
  • the side plate 45 is a bell-shaped resin member that protrudes toward the air inlet 31.
  • FIG. 6 is a side view of the blade 44 as seen from the direction of the suction surface, for example.
  • FIG. 7 is a projection view of the blade 44 of FIG. 6 as viewed from above.
  • FIG. 8 is a perspective view of the blade 44 of FIG.
  • FIG. 9 is a side view in which a plurality of cutting lines 10A-10A to 10E-10E are entered from the lower part to the upper part (the end part on the main plate 43 side to the end part on the side plate 45 side) of the blade 44 in FIG. 10A to 10E are cross-sectional views taken along lines 10A-10A to 10E-10 in FIG. 9, respectively.
  • FIG. 11 is a cross-sectional view of the main part showing the characteristics of the blade 44 (difference from the conventional shape of FIGS. 25 to 32) (contrast with the cross-sectional view taken along the line 31B-31B in FIGS. 10 and 31). .
  • Each of the blades 44 is a resin member formed separately from the main plate 43 and the side plate 45 described above. One end surface of each blade 44 is fixed to the main plate 43, and the other end surface of each blade 44 is fixed to the side plate 45. In the side view of the impeller 42, each blade 44 is inclined with the end on the side plate 45 side inclined behind the end on the main plate 43 side as shown in FIG. 28. Further, as shown in FIG. 29, each blade 44 is formed so that these end portions intersect with each other in a substantially X shape. That is, the blade 44 has a three-dimensional shape extending in parallel with the rotation axis while being twisted between the main plate 43 and the side plate 45.
  • An end on the front side in the rotational direction of the blade 44 which is the three-dimensional blade, that is, the front edge 44a extends from the end on the main plate 43 side to a predetermined position on the side plate 45 side so as to have substantially the same radius.
  • the blade 44 has an inclined edge that recedes outward so that the radius gradually decreases from a predetermined position on the side plate 45 side to the side plate 45.
  • an end portion (hereinafter referred to as a trailing edge) 44b in the direction opposite to the rotation direction R side of the blade 44 has a shape different from that of the conventional blade. Unlike the conventional example shown in FIGS.
  • the trailing edge 44b is a straight line (perpendicular to the main plate 43) that extends in parallel with the rotation axis between the end on the main plate 43 side and the end on the side plate 45 side of the blade 44. Does not have a tied shape.
  • the rear edge 44b extends from the end on the side plate 45 side to the end on the main plate 43 side so that the degree of extension increases as the side plate 45 approaches the main plate 43. It is extended to the rear of the air flow.
  • the diameter of the centrifugal fan of the main flow F 1 is the radial length of the edge 44b after the main plate 43 side of the blade 44 to pass (Rb 'in FIG.
  • the edge 44b after the side plate 45 side of the blade 44 It is set longer than the length in the direction (Ra in FIG. 5). Thereby, the velocity distribution of the air flow in the span direction of the blade 44 is effectively developed in the portion on the main plate 43 side where the flow rate is large.
  • the extension of the trailing edge 44b is performed without changing the basic blade surface shape of the three-dimensional blade, and is performed along the same shape.
  • the extension amount of the rear edge 44b is based on the outer diameter Db ′ (FIG. 12) of the enlarged main plate 43 based on the outer diameter Db of the original main plate 43 (the outer diameter Da of the side plate 45).
  • the outer diameter Db is preferably 10% or less of the outer diameter Db.
  • the extension amount of the trailing edge 44b is preferably 10% or less of the outer diameter Da of the side plate 45.
  • the outer diameter Db ′ of the main plate 43 is enlarged by, for example, about 5% with respect to the outer diameter Db of the conventional main plate 43 shown in FIGS.
  • the blade 44 of the present embodiment has a shape in which the mounting position on the rear edge 44b side swells in the rotational direction, as shown in the perspective view of FIG.
  • the outer diameter of the main plate 43 is also increased in accordance with the increase in the radius of the end of the blade 44 on the main plate 43 side. In this way, in correspondence with the extension of the length of the rear edge 44b of the blade 44, the outer diameter of the main plate 43 is also extended, so that the structural strength of the impeller 42 of the centrifugal fan can be improved at the same time. it can.
  • the velocity distribution of the main flow F 1 flowing in the vicinity of the main plate 43 is greatly improved as compared to the flow F 2 in the vicinity of the side plate 45. Therefore, the static pressure-flow rate characteristic (PQ characteristic) of the blade 44 is improved in the entire flow rate range, and the air flow rate is increased.
  • the specific noise characteristics are greatly improved, and the influence of the wake vortex generated at the trailing edge 44b of the three-dimensional blade 44 on the main plate 43 side can be relatively reduced. As a result, noise caused by the wake vortex is effectively reduced.
  • the rear edge 44b extended rearward as it approaches the main plate 43 is extended so as to gradually become longer from the side plate 45 to the main plate 43 as shown in FIG. That is, the shape of the rear edge 44 b of the blade 44 has a taper shape that is expanded in a straight line from the side plate 45 to the main plate 43. Thereby, the velocity distribution at the outlet of the blade 44 is effectively developed in the main flow F 1 . Therefore, the influence of the wake generated at the trailing edge 44b of the blade 44 on the main plate 43 side is relatively weakened.
  • the trailing edge 44b is enlarged with a tapered shape, to changes in the velocity distribution of the main flow F 1 flow rate increases toward the main plate 43, the trailing edge 44b becomes a more suitable shape ing. That is, the shape of the blade 44 can be optimized with respect to the velocity distribution of the airflow, and the fan performance can be further improved.
  • the centrifugal blower of the present embodiment it is possible to realize a small-sized air conditioner with a large air volume and high silence at low cost.
  • the blade 44 is a three-dimensionally shaped blade as described above (see FIGS. 7 and 8). Therefore, the load distribution on the surface of the blade 44 and the pressure fluctuation of the airflow passing between the blades 44 are greatly improved as compared with the blade shape made on the basis of the conventional planarly drawn blade element.
  • Patent Document 3 discloses a blade that is shortened by cutting out a portion on the side plate side. Thereby, the separation of the airflow in the portion on the side plate side of the blade is suppressed, and the velocity distribution at the outlet of the blade is made uniform.
  • the notch is formed in the side plate side portion of the blade, the length of the blade is relatively shorter than the blade without the notch. Therefore, the amount of work that the blades give to the airflow is reduced. In the present embodiment, the blades 44 themselves are not shortened. On the contrary, since the area of the blade 44 is increased, there is no such drawback, and the work amount of the blade 44 is effectively increased.
  • the above technique is effective in a centrifugal fan whose blade width is sufficiently small with respect to the outer shape, as described in Patent Document 3. That is, by cutting out the blade, it is possible to prevent the suction airflow from separating at the side plate side portion of the blade, and to flow the airflow along the side plate side portion of the blade.
  • the above technique is not necessarily effective.
  • the blades are arranged so as to be orthogonal to the main plate and the side plate, there is a technique for changing the thickness of the blade from the end surface on the main plate side of the blade to the end surface on the side plate side of the blade.
  • wing is suppressed.
  • the outer diameter of the blade on the main plate side and the outer diameter of the blade on the side plate side are not the same, and the blade shape is enlarged as it approaches the main plate (for example, see Patent Document 4). reference).
  • flow speed fluctuations in the blade wake are suppressed.
  • the ratio of the diameter at the end face on the main plate side of the impeller / the diameter at the end face on the side plate side of the impeller is set to 1.2 to 1.6. Therefore, when the extension amount due to the expansion of the blades is small, the noise reduction effect cannot be obtained, and conversely, when the extension amount is too large, the flow rate characteristic is deteriorated.
  • the rear edge 44b extended backward as it approaches the main plate 43 is extended from the side plate 45 to the main plate 43 little by little as shown in FIG.
  • the shape of the rear edge 44 b of the blade 44 becomes a substantially tapered shape that is enlarged from the side plate 45 to the main plate 43.
  • the trailing edge 44 b has a more suitable shape with respect to the change in the velocity distribution of the main flow F 1 that flows in the vicinity of the main plate 43.
  • the outer diameter of the main plate 43 is also increased in accordance with the increase in the radial length of the rear edge 44b of the blade 44 on the main plate 43 side.
  • Example c in the blade 44 according to the present embodiment, the expansion ratio of the outer diameter Db ′ of the main plate 43 (the extension ratio of the width of the rear edge portion 44b to the rear of the air flow) is 5%.
  • Example d is an impeller provided with a three-dimensional blade in which the enlargement ratio of the outer diameter Db ′ of the main plate 43 is 10% in the blade 44 of the present embodiment.
  • Conventional Example a is an impeller using the conventional blades shown in FIGS.
  • Conventional example b is obtained by enlarging the entire diameter of the fan of conventional example a by 5%.
  • Examples c and d for example, as shown in FIG.
  • the characteristics of these Examples c and d are clearly improved as compared with the conventional example b in which the fan diameter is uniformly expanded as a whole.
  • the shape of the rear edge 44b of the blade 44 that expands (extends) the main plate 43 is not limited to the linearly expanded shape (linear taper shape) as described above.
  • it may be a quadratic curve shape that draws a parabola as shown in FIG.
  • the curved shape of the trailing edge 44b takes into account the deviation of the wind speed distribution of the airflow blown from the impeller, and the trailing edge 44b of the blade 44 is extended more in the radial direction as it approaches the main plate 43 than the side plate 45. Become.
  • the shape of the trailing edge 44 b of the blade 44 becomes a quadratic function taper shape that expands in an arc shape from the side plate 45 to the main plate 43.
  • the trailing edge 44b of the blade 44 can be made more suitable for the velocity distribution of the main flow F 1 that flows in the vicinity of the main plate 43 as shown in FIG.
  • the rear edge 44b is formed so that one or more inflection points exist in the curved portion. Thereby, the rear edge 44b has a bulging portion in the vicinity of the main plate 43.
  • the enlargement of the rear edge 44b of the end surface of the main plate 43 is set slightly shorter than the maximum extension portion (however, at least the radius of the end portion of the rear edge 44b on the side plate 45 side).
  • the front edge 44 a of the blade 44 further includes first and second protrusions that project in a stepped manner toward the inside of the impeller 42 (in this embodiment, two stepped portions). Steps 44c and 44d may be provided. In the first and second sets of step portions 44c and 44d, the airflow sucked into the impeller 42 through the air inlet 31 and the bell mouth 5 of FIG. In this case, the blade 44 has a function of suppressing separation from the suction surface side. Thereby, the 1st and 2nd step parts 44c and 44d are contributing to making the blowing noise of the air blower 4 still smaller.
  • the negative pressure surface refers to the surface of the blade 44 facing the inner peripheral side of the impeller 42, and the surface opposite to the negative pressure surface, that is, the surface of the blade 44 facing the outer peripheral side of the impeller 42 is positive. It is a pressure side.
  • the lengths La ⁇ Lb, Lc ⁇ Ld of the first and second step portions 44c, 44d are 0.09 to 0. 0 of the original chord lengths L 1 , L 2 , L 3 in the span direction of the blade 44. It is set to 18 times. That is, the length of the lower first step portion 44c varies in the span direction in a range of 0.15 (La) to 0.2 (Lb) times, and the length of the upper second step portion 44d is It varies in the range of 0.08 (Lc) to 0.1 (Ld) times.
  • the blade 44 of the third modification is represented as a trapezoid stepped embodiment d. Further, the embodiment shown in FIGS. 1 to 12 where the first and second step portions 44c and 44d are not attached to the front edge 44a described above (this is shown as trapezoidal stepless) c.
  • the comparative example b is provided with first and second step portions 44c and 44d with respect to a conventional blade.
  • Example c is compared with Example d, for example, as shown in FIG. 22, the specific noise characteristic is reduced in the entire flow region. In Example c, a reduction effect of at least 1.1 [dBA] can be obtained particularly at the lowest specific noise point.
  • the centrifugal blower of the present embodiment shown in FIGS. 1 to 12 described above is designed such that the airflow passing through the impeller flows below the blade 44 as compared with the conventional example a. Therefore, the peeling suppression effect by the vertical vortex generated by the first and second step portions 44c and 44d of the front edge 44a is more effectively affected.
  • Example c is inferior in the low air volume region as compared with Comparative Example b.
  • Example d the first and second step portions 44c and 44d were added to improve the characteristics in the low air volume region as compared with Comparative Example b.
  • the aerodynamic characteristic of Example d is also improved in the entire air volume region.
  • the centrifugal blower using the embodiment d according to the invention of the third modification can generate a larger amount of air at the same static pressure.
  • the centrifugal blower of the present modification 3 has a lower specific noise than conventional centrifugal blowers and can increase the air volume even at the same static pressure. This makes it possible to develop a fan that is small and quiet.
  • ⁇ Application object of centrifugal blower of the present invention In general, the deviation of the velocity distribution of the blown airflow in the main plate side portion of the blade as described above is a problem that always occurs in various centrifugal fans. Therefore, the present invention is applicable to the impellers of such various types of centrifugal blowers (for example, turbo type, sirocco type, radial type, etc.). In that case, the fan characteristics can be improved sufficiently effectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 遠心送風機1は、三次元形状の複数のブレード44と、複数のブレード44を周方向に所定の間隔をおいて各ブレード44のスパン方向の一端面を固定する主板43と、各ブレード44のスパン方向の他端面に設けられたリング状の側板45と、主板43を介してブレード44を回転させるモータ41とを備える。各ブレード44の主板43側の後縁44bの径方向の長さは、各ブレード44の側板45側の後縁44bの径方向の長さよりも長く設定される。

Description

遠心送風機
 本願発明は、遠心送風機に関し、詳しくは遠心送風機の羽根車の羽根の構造に関する。
 一般に、ターボファン等の遠心送風機では騒音の問題が大きいとう問題があるため、騒音を低減することが課題である。したがって、これまでにも上記遠心送風機において、その送風音を低減するため、さまざまな技術の開発が行われてきている。送風音を低減させるための一般的な設計手法としては、ファン羽根車の外径の大型化が挙げられる。
 一定の風量を得ると仮定した場合、ファン羽根車の外径を大型化することによってファン羽根車の回転数が下げられる。それにより、ファン羽根車から吹出される気流の流速が低減される。送風音は流速の6乗に比例する。
 しかしながら、単純にファン羽根車の外径を大型化すると、機内通路を含めた送風機全体が大型化する。また、それに伴う送風機の製造コストの増加、さらには翼形状の他のパラメータ(入口角・出口角)や機内レイアウトの見直しなどが必要になる。
 そこで、例えば厚い羽根(ブレード)、すなわちエアフォイル翼を採用することにより、羽根周りの気流の剥離を低減し、可能な限り低コストで低騒音化を図るようにしたものがある(例えば特許文献1を参照)。
 しかしながら、羽根として単にエアフォイル翼を採用しただけでは、羽根の表面全体の気流の剥離を解消することができるわけではない。羽根の後縁で生じる後流渦によって引き起こされる騒音は有効に低減されない。また、羽根のスパン方向において、吹出気流の流速が異なる。つまり、主板と側板との間に、気流の不均一な速度分布が現れる。
 そこで、さらに羽根全体の表面にディンプルやセレーションを設ける静音化技術も提案されている(例えば特許文献2を参照)。このような構成によると、さらに気流の剥離を抑制することができるとともに、剥離による乱れの細分化を図ることができ、さらに後流渦の発達を抑制することができる。その結果、後流渦に起因する騒音が低減される。
 しかしながら、このような構成によっても、やはり羽根のスパン方向における上記羽根の主板側の部分および羽根の側板側の部分で吹出気流の不均一な速度分布が生じること、及び後流渦の発生を抑制することができない。従って、同後流渦の影響に起因する騒音を有効に防止することはできない。また、同構成の場合、翼表面への加工・型抜きなどの製造工程が複雑化するデメリットが生じる。
 一方、上記のような羽根車の吹出口における気流の速度分布を改善するための種々の技術が存在する。羽根の側板側の部分を切り欠いて短翼化させることで、羽根の側板側の部分における気流の剥離を抑え、それにより羽根車の吹出口における速度分布を均一化するようにしたものがある(特許文献3を参照)。
 しかしながら、この技術では羽根の側板側の部分に切り欠きを形成しているために、この羽根の長さが切り欠きのない羽根と比較して相対的に短くなってしまう。そのため、羽根が気流に与える仕事量が少なくなってしまう。
 また、同特許文献3中に記載されているような、羽根幅が外形に対して十分に小さい遠心送風機では、上記技術は有効である。即ち、羽根を切り欠くことにより、吸込み気流が羽根の側板側の近傍で剥離するのを防ぎ、その気流を羽根の側板側の近傍に沿って流れるようにすることができる。しかしながら、通常の遠心送風機のように羽根幅が十分に広い場合、つまり側板側の剥離が及ぼす影響が支配的でない場合には、上記技術は必ずしも有効ではない。
 また、羽根の側板側の近傍が切り取られていると、羽根の側板側の部分を通過する気流が羽根の主板側の角部と干渉する。その結果、離散的に突出した周波数を有する騒音が新たに発生する可能性もある。
 また、羽根が主板及び側板に対して直交するように配置される場合において、羽根の主板側の端面から羽根の側板側の端面にかけて羽根の肉厚を変化させる技術もある。それにより、羽根の吹出口における風速分布の変動が抑えられる。さらに、その場合、羽根車の吹出口(羽根の外周側端面)において、羽根車の主板側の外径と羽根車の側板側の外径とを同一とせず、羽根の形状を主板に近づくに従って相似的に拡大するものもある(例えば特許文献4を参照)。それによって、翼後流における流れの速度変動が抑えられる。
 しかしながら、同構成では、羽根車の吹出口において、羽根車の主板側の外径/羽根車の側板側の外径の比が1.2から1.6に設定される。そのため、羽根の拡大による延長量が少ない場合、騒音低減効果が得られず、逆にその延長量が大きすぎる場合、流量特性が悪くなる。
 その結果、少なくとも羽根車の主板側の外径が側板側の外径に対して2割も拡大されることなる。これではファン径を単に拡大させて、単純にファンを大型化させる技術に対する優位性が得られない。そもそも2割以上も大型化することは、従来の問題点である小型・低騒音化の課題を全く解決することができない。
 他方、主板から側板に亘って捩れながらファンの回転軸方向に延びる三次元形状の羽根を採用した羽根車も提案されている(例えば特許文献2を参照)。
 このような三次元形状の羽根を採用した羽根車によると、上述のような二次元形状の羽根を採用したものと比較して、羽根の表面における負荷分布および羽根の間を通過する気流の圧力変動が改善される。
 今、三次元形状の羽根を採用した遠心送風機および同遠心送風機を採用する空気調和装置の構成について図25~図32を参照して説明する。
 先ず図25は、羽根車を有する遠心送風機を採用した空気調和装置1を示す。この空気調和装置1は、天井埋込型の空気調和装置であり、内部に各種部品を収納するケーシング2と、そのケーシング2の下側に配置された化粧パネル3とを備えている。より具体的には、空気調和装置1のケーシング2は、空調室の天井Uに形成された開口内に挿入され、化粧パネル3が天井Uに沿うように配置されている。
 ケーシング2は下方に開口を有する箱状体であり、その平面視において、長辺と短辺とが交互に配置された略8角形状を有する。ケーシング2は、長辺と短辺とが交互に形成された略8角形状の天板21と、該天板21の周縁から下方に延びる側壁板22とを有している。
 化粧パネル3は、平面視において略4角形状の板体である。化粧パネル3は、その略中央に位置し空調室内の空気を吸入する空気吸入口31と、各四辺に対応するように形成され、ケーシング2内から空調室内に空気を吹き出す複数個の空気吹出口32とを有している。そして、この化粧パネル3の各辺は、上記ケーシング2の天板21の各長辺にそれぞれ対応するように配置されている。
 各空気吸入口31は、略正方形状の開口である。他方、上記各空気吹出口32は、それぞれ化粧パネル3の各辺に沿う方向に沿って延びる長方形状の開口である。また、空気吸入口31には、空気吸入グリル33と、空気吸入口31から吸入された空気中の塵埃を除去するためのフィルタ34とが設けられている。
 さらに、各空気吹出口32には、同空気吹出口32の長手方向に沿って延びる軸の周りに揺動可能な水平フラップ35が設けられている。水平フラップ35は、各空気吹出口32の長手方向に延びる長方形状の羽根部材である。また、各水平フラップ35は、その長手方向の両端部に設けられた軸支ピンをモータ(図示せず)によって回転駆動させることにより、空気吹出口32から空調室内に向かって吹き出される空気の風向を変更する。
 ケーシング2の内部には、主に化粧パネル3の空気吸入口31を通じて空調室内の空気をケーシング2内に吸入して外周方向に吹き出す送風機4と、該送風機4の外周を囲むように配置された熱交換器6とが配置されている。
 送風機4は、本願発明が対象とする遠心送風機の一例としてのターボファンである。送風機4は、上記ケーシング2の天板21の中央に下方に向けて設けられたファンモータ(羽根車駆動手段)41と、このファンモータ41のシャフト(回転軸)41aに連結されて回転される羽根車42とを含む。
 熱交換器6は、上記送風機4の外周を囲むように略方形に曲げて形成されたクロスフィンチューブ型の熱交換器であり、屋外に設置された室外ユニット(図示せず)に冷媒配管を介して接続されている。この熱交換器6は、冷房運転時には蒸発器として、また暖房運転時には凝縮器として機能する。これにより、同熱交換器6は、上記送風機4によって上記空気吸入口31を通じて上記ケーシング2内に吸入された空気と熱交換を行って、冷房運転時には空気を冷却する一方、暖房運転時には空気を加熱する。
 熱交換器6の下部には、同熱交換器6の表面において空気中の水分が凝縮されて生じるドレン水を受けるためのドレンパン7が配置されている。このドレンパン7は、上記ケーシング2の下部に装着されている。このドレンパン7は、さらに上記化粧パネル3の空気吸入口31に連通するように形成された空気吸入孔部71と、化粧パネル3の空気吹出口32に対応するように形成された空気吹出孔部72と、上記熱交換器6の下部を覆うように形成されたドレン水を受けるドレン水受け溝73とを有する。
 また、上記ドレンパン7の空気吸入孔部71には、上記化粧パネル3の空気吸入口31から吸入される空気を上記送風機4の羽根車42へ案内するためのベルマウス5が配置されている。
 次に、上記遠心送風機4の羽根車42の構造について、図26及び図27を用いて具体的に説明する。ここで、図26は、同羽根車42の外観斜視図である。また図27は、同図3の羽根車42の側面図である。
 この羽根車42は、主として、円板状の主板43、その主板43から間隔を置いて配置された環状の側板45、及び主板43と側板45との間に配置された複数のブレード44からなる。主板43は、上述したファンモータ41のシャフト41aに連結されている。複数のブレード44は、ファンモータ41のシャフト41aを中心軸として、所定の角度で主板43に沿って配置されている。
 主板43は、樹脂製の部材である。主板43の中央部には、略円錐台形状の凸部43aが上記空気吸入口31側に向かって突出するように形成されている。また、この主板43の下面には、上記主板43との間に所定の間隔をおいて配置され、かつ冷却用空気孔を覆う主板カバー46が固定されている。この主板カバー46の主板43と対向する面には、放射状に延びる複数の案内羽根46aが設けられている。これにより、羽根車42の外方に吹き出された空気の一部は、上記主板43とケーシング2との間の空間の静圧と、上記主板43と側板45との間の空間の静圧との間の圧力差によって、主板43の周りを流れる。詳しくは、吹き出された空気の一部は、ファンモータ41の近傍を通過してファンモータ41を冷却する。その後、その空気は、主板43の冷却用空気孔及び主板カバー46の案内羽根46aを介して、再び上記羽根車42の内部の空間に吹き出される。
 側板45は、その外周から中央の開口に向かうにつれて次第に小さくなる径を有する。また、側板45は、上記空気吸入口31に向かって突出するベル形状の樹脂製部材である。
 次に、上記羽根車42の各ブレード44の構造について、図28~図32を参照して詳しく説明する。ここで、図28は、同ブレード44を左後方から見た斜視図である。また、図29は、同図28のブレード44を上から見た投影図である。図30は、同図28のブレード44に複数の切断線31A-31A~31E-31Eを入れた側面図である。図31(a)~図31(e)は、それぞれ同図30の31A-31A線~31E-31E線に沿った断面図である。図32は、同ブレード44の作用を示す説明図である。
 上記各ブレード44は、上述した主板43及び側板45とは別々に成形された樹脂製の部材である。各ブレード44の一端面が主板43に対して固定され、各ブレード44の他端面が側板45に対して固定されている。そして、各ブレード44は、上記羽根車42の側面視において、図28に示すように上記側板45側の端部が主板43側の端部よりも後ろに傾いている。また、各ブレード44は、図29に示すように、これらの端部同士が相互に略X字状に交差するように形成されている。つまり、このブレード44は、上記主板43と側板45との間で捩れながら回転軸と平行に延びる三次元形状を有している。
 この三次元翼であるブレード44の回転方向前側の端部、すなわち前縁44aは、主板43側の端部から側板45側の所定位置まで、略同じ半径を有するように延びている。一方、ブレード44は、側板45側の所定位置から側板45までは、次第に半径が小さくなるように外方に後退した傾斜縁を有する。他方、同ブレード44の回転方向Rと反対方向の端部、すなわち後縁44bは、その主板43側の位置と側板45側の位置とを回転と平行に延びる直線で結んだ形状を有する。
 上記構成によれば、上述した特許文献1,3,4のような平面的に描かれた翼素を基礎に作られたブレード形状と比較して、ブレード44の表面における負荷分布及びブレード44間を通過する気流の圧力変動が大きく改善される。したがって、少なくとも気流の圧力変動に起因する騒音は有効に低減される。
 しかしながら、ブレード44の後縁44bが、その主板43と側板45との間において両端を直線で結んだ形状を有するため、依然として後流渦の影響に起因する騒音が生じるという問題がある。図32に示されるように、ブレード44の側板45の近傍から吸込まれた空気流の内、側板45のアール面に沿って流れる気流F2は少ない。これに対して、側板45の中央から吸込まれた流量の多い本来の主流F1は、その流速ベクトルの関係から主板43付近に偏って流れる。従って、ブレード44の出口部分における吹出気流の風速分布は、ブレード44のスパン方向において均一ではない。また、ブレード44の後縁44b下流に発生する後流渦を抑制することはできない。その結果、依然として後流渦の影響に起因する騒音が生じる問題がある。
特開2002-339897号公報 特開2005-155510号公報 特開平5-60096号公報 特開2001-132687号公報
 本発明の目的は、遠心送風機に用いられる三次元形状の羽根に関し、一層の低騒音化を可能とした遠心送風機を提供することにある。
 上記の課題を解決するため、本発明の一態様によれば、三次元形状の複数の羽根と、該複数の羽根を周方向に所定の間隔をおいて各羽根のスパン方向の一端面を固定する主板と、前記各羽根のスパン方向の他端面に設けられたリング状の側板と、前記主板を介して前記羽根を回転させる羽根駆動手段とを備える遠心送風機であって、前記各羽根の前記主板側の外周端部の径方向の長さは、各羽根の側板側の外周端部の径方向の長さよりも長く設定される遠心送風機が提供される。
 このような構成によれば、羽根の主板側の部分に偏って流れる気流の主流部分の速度分布が大きく改善される。そのため、送風機の静圧-流量特性が全流量域で向上し、送風量がアップする。また、送風機の比騒音特性も大幅に改善され、三次元形状の羽根主板側の翼後縁に発生する後流渦の影響を相対的に低減することができる。その結果、同後流渦に起因する騒音が有効に低減される。
 前記各羽根の前記主板側の外周端部の径方向の長さを、各羽根の側板側の外周端部の径方向の長さよりも長く設定することにより、前記各羽根を通過する気流が、前記羽根の主板側の部分で有効にその羽根から仕事を受けられ、かつ前記各羽根のスパン方向における気流の速度が前記各羽根の前記主板側の部分で有効に発達させることが好ましい。
 このような構成によれば、羽根の主板側の部分に偏って流れる気流の主流部分の速度分布が大きく改善される。そのため、送風機の静圧-流量特性が全流量域で向上し、送風量がアップする。また、送風機の比騒音特性も大幅に改善され、三次元形状の羽根主板側の翼後縁に発生する後流渦の影響を相対的に低減することができる。その結果、同後流渦に起因する騒音が有効に低減される。
 上記各羽根の前記主板側の外周端部の径方向の長さは、同羽根の後縁を気流後方に向かって延長することにより、前記各羽根の前記側板側の外周端部の径方向の長さよりも長く形成されていることが好ましい。
 このように、羽根の後縁を空気流後方に延長することによって、羽根の主板側の部分に偏って流れる気流の主流部分の速度分布が大きく改善される。そのため、送風機の静圧-流量特性が全流量域で向上し、送風量がアップする。また、送風機の比騒音特性も大幅に改善され、三次元形状の羽根主板側の翼後縁に発生する後流渦の影響を相対的に低減することができる。その結果、同後流渦に起因する騒音が有効に低減される。
 前記後縁は、前記側板から前記主板に近づくに従って徐々に長くなるように延長されていることが好ましい。
 このような構成によると、羽根の後縁の形状が側板から主板にかけて拡大される略テーパ形状となる。そのため、羽根の後縁の形状は、羽根の主板側の部分に偏って流れる主流の速度分布の変化に応じた適切なものにすることができる。そして、この側板から主板にかけて徐々に拡大される略テーパ形状は、直線的に変化するものでも、また曲線状に変化するものの何れでもかまわない。
 前記後縁は、曲線状に延長されるとともに、同曲線部に一つ以上の変曲点が存在するように、前記後縁には前記主板側の部分に膨出部が形成されることが好ましい。
 遠心送風機は主板近傍の気流が、主板の壁面による粘性の影響で層流せん断層を形成する。これにより、主流の流路が狭まり、ファン性能が低下する恐れがある。ところが、上記の構成によれば、上記せん断層の発達を抑制し、ファン性能を向上させることができる。
 前記後縁は、同後縁における前記気流の主流の速度分布に対応して後方に長く延長されていることが好ましい。
 このような構成によれば、延長された後縁の形状を、より主流の速度分布の変化に応じた適切なものにすることができ、さらなるファン性能の向上を図ることができる。
 前記各羽根の前縁の前記主板側の部分に、その羽根の前方へ所定の長さ延長された段部が設けられることが好ましい。
 このような構成にすれば、空気吸入口を通して羽根車内に吸入された気流が羽根の後縁から外方へ吹き出される際に、羽根の負圧面側から剥離する気流を効果的に抑制することができる。それによって、上記送風機の騒音をさらに有効に低減することができる。
 前記主板の径が前記羽根の延長に合わせて拡大されることが好ましい。
 羽根の後縁の長さの延長に対応して、さらに、主板の径も合わせて延長することにより、遠心送風機の羽根車の構造上の強度をも同時に向上させることができる。
 前記遠心送風機が、空気調和機用室内機の送風機として構成されることが好ましい。
 空気調和機用室内機の送風機では、その特性上、本質的に大風量および静音性が要求される。したがって、小型で送風性能が高く、騒音が低い本発明の遠心送風機は、空気調和機用室内機の送風機として最適である。
 以上のように、本願発明によると、大風量で、かつ静音性に優れた小型化の可能な、空気調和機用室内機の送風機に適した遠心送風機を提供することが可能となる。
本発明の一実施形態にかかる遠心送風機を採用した空気調和装置の外観を示す斜視図。 図1の空気調和装置を示す縦断面図。 図2の遠心送風機の羽根車を示す斜視図。 図3の羽根車を示す側面図。 図3の羽根車を示す底面図。 図3の羽根車のブレード(羽根)を示す側面図。 図6のブレードを側板側の方向から見た投影図。 図6のブレードを左後方上部から見た斜視図。 図6のブレードを複数の切断線10A-10A~10E-10Eとともに示す側面図。 (a)~(e)は図9の各切断位置に対応するブレードの断面図。 図6の本実施の形態のブレードの後縁の形状と従来のブレードの後縁の形状とを対比して示す断面図。 図6のブレードの作用(特徴)を示す説明図。 本実施の形態のブレードの効果を確認するために、4つの例について静圧係数の変化を流量係数をパラメータとして示したグラフであり、(a)は図25~図32の従来のファン、(b)は従来のファンの外径を全体的に5%拡大したもの、(c)は本実施例の羽根の下部側(主板側)の部分のみを5%拡大したもの、そして(d)は本実施例の羽根の下部側(主板側)の部分のみを10%拡大したものに対応する。 本実施の形態のブレードの効果を確認するために、図13の4つの例についての送風音の変化を送風量をパラメータとして示したグラフ。 本実施の形態のブレードの効果を確認するために、図13の4つの例について比騒音の変化を送風量をパラメータとして示したグラフ。 本実施の形態に係るブレードの後縁の形状を曲線形状に変更した変形例1のブレードの作用を示す説明図。 本実施の形態に係るブレードの後縁の形状をせん断力を抑制できるようなものに変更した変形例2のブレードの作用を示す説明図。 同本実施形態のブレードの主板側の前縁に段部を設けた変形例3の遠心送風機を採用した空気調和装置の縦断面図。 同空気調和装置の羽根車のブレードを示す側面図。 図19のブレードを左後方上部から見た斜視図。 図19ブレードの作用を示す説明図。 図19ブレードの効果を確認するために、4つの実施例について比騒音の変化を流量係数をパラメータとして示したグラフであり、(a)は図25~図32の従来の羽根で段部のないもの、(b)は図25~図32の従来の羽根に段部を設けたもの、(c)は図1~図12の本実施形態のもの、(d)は図18~図21に示す本実施の形態の変形例3のものに対応する。 図19ブレードの効果を確認するために、図22の4つの実施例について静圧係数の変化を流量係数をパラメータとして示したグラフである。 本実施の形態の変形例4のブレードの作用を示す説明図。 従来の遠心送風機を採用する空気調和装置を示す縦断面図。 図25の遠心送風機の羽根車を示す斜視図。 図26の羽根車のブレード(羽根)を示す側面図。 図26の羽根車を斜め後方から見た斜視図。 図28のブレードを示す投影図。 図28のブレードを切断線とともに示す側面図。 (a)~(e)は図30の31A-31A線~31E-31E線に沿った断面図。 図28のブレードの作用を示す説明図。
 以下、本願発明の一実施形態にかかる遠心送風機及びその遠心送風機を採用する空気調和装置の構成について、添付の図面に基づいて詳細に説明する。
 (1)空気調和装置の全体構成
 図1は、本発明の一実施の形態にかかる遠心送風機を採用する空気調和装置1を示す外観斜視図(天井部は省略)を示す。この空気調和装置1は、天井埋込型の空気調和装置であり、内部に各種部品を収納するケーシング2と、そのケーシング2の下側に配置された化粧パネル3とを備えている。より具体的には、上記空気調和装置1のケーシング2は、例えば図2(当該空気調和装置1の縦断面図)に示されるように、空調室の天井Uに形成された開口内に挿入され、上記化粧パネル3が天井Uに沿うように配置されている。
 ケーシング2は下方に開口を有する箱状体であり、その平面視において、長辺と短辺とが交互に配置された略8角形状を有する。ケーシング2は、長辺と短辺とが交互に形成された略8角形状の天板21と、該天板21の周縁から下方に延びる側壁板22とを有している。
 化粧パネル3は、平面視において略4角形状の板体である。化粧パネル3は、その略中央に位置し空調室内の空気を吸入する空気吸入口31と、各四辺に対応するように形成され、ケーシング2内から空調室内に空気を吹き出す複数個の空気吹出口32とを有している。そして、この化粧パネル3の各辺は、上記ケーシング2の天板21の各長辺にそれぞれ対応するように配置されている。
 各空気吸入口31は、略正方形状の開口である。他方、上記各空気吹出口32は、それぞれ化粧パネル3の各辺に沿う方向に沿って延びる長方形状の開口である。また、空気吸入口31には、空気吸入グリル33と、空気吸入口31から吸入された空気中の塵埃を除去するためのフィルタ34とが設けられている。
 さらに、各空気吹出口32には、同空気吹出口32の長手方向に沿って延びる軸の周りに揺動可能な水平フラップ35が設けられている。水平フラップ35は、各空気吹出口32の長手方向に延びる長方形状の羽根部材である。また、各水平フラップ35は、その長手方向の両端部に設けられた軸支ピンをモータ(図示せず)によって回転駆動させることにより、空気吹出口32から空調室内に向かって吹き出される空気の風向を変更する。
 ケーシング2の内部には、主に化粧パネル3の空気吸入口31を通じて空調室内の空気をケーシング2内に吸入して外周方向に吹き出す送風機4と、該送風機4の外周を囲むように配置された熱交換器6とが配置されている。
 送風機4は、本願発明が対象とする遠心送風機の一例としてのターボファンである。送風機4は、上記ケーシング2の天板21の中央に下方に向けて設けられたファンモータ(羽根車駆動手段)41と、このファンモータ41のシャフト(回転軸)41aに連結されて回転される羽根車42とを含む。尚、羽根車42の詳細な構造については、後述する。
 熱交換器6は、上記送風機4の外周を囲むように略方形に曲げて形成されたクロスフィンチューブ型の熱交換器であり、屋外に設置された室外ユニット(図示せず)に冷媒配管を介して接続されている。この熱交換器6は、冷房運転時には蒸発器として、また暖房運転時には凝縮器として機能する。これにより、同熱交換器6は、上記送風機4によって上記空気吸入口31を通じて上記ケーシング2内に吸入された空気と熱交換を行って、冷房運転時には空気を冷却する一方、暖房運転時には空気を加熱する。
 熱交換器6の下部には、同熱交換器6の表面において空気中の水分が凝縮されて生じるドレン水を受けるためのドレンパン7が配置されている。このドレンパン7は、上記ケーシング2の下部に装着されている。このドレンパン7は、さらに上記化粧パネル3の空気吸入口31に連通するように形成された空気吸入孔部71と、化粧パネル3の空気吹出口32に対応するように形成された空気吹出孔部72と、上記熱交換器6の下部を覆うように形成されたドレン水を受けるドレン水受け溝73とを有する。
 また、上記ドレンパン7の空気吸入孔部71には、上記化粧パネル3の空気吸入口31から吸入される空気を上記送風機4の羽根車42へ案内するためのベルマウス5が配置されている。
 以上説明したように、本実施の形態の空気調和装置1には、化粧パネル3の空気吸入口31からフィルタ34、ベルマウス5、ドレンパン7、送風機4及び熱交換器6を経由して、上述した4つの空気吹出口32へ至る空気流路が形成されている。空気調和装置1は、空調室内の空気を吸入して、上記熱交換器6において冷媒と熱交換させた後、同空気流路を介して空調室内四方に温調された空気を吹き出すことができる。
 (2)遠心送風機の羽根車の構造
 次に、上記遠心送風機4の羽根車42の構造について、図2~図5を参照して詳しく説明する。ここで、図3は、同羽根車42の外観を示す斜視図である。また、図4は、同図3の羽根車42を示す側面図である。さらに、図5は、同図4のように設置された羽根車42を上方から見た図である。
 この羽根車42は、主として、円板状の主板43、その主板43から間隔を置いて配置された環状の側板45、及び主板43と側板45との間に配置された複数のブレード44からなる。主板43は、上述したファンモータ41のシャフト41aに連結されている。複数のブレード44は、ファンモータ41のシャフト41aを中心軸として、所定の角度で主板43に沿って配置されている。なお、上記羽根車42の回転方向を図5中に矢印Rとして示している。
 主板43は外径Db′を有する。また、主板43は、樹脂製の部材である。主板43の中央部には、略円錐台形状の凸部43aが上記空気吸入口31側に向かって突出するように形成されている。また、この主板43の下面には、上記主板43との間に所定の間隔をおいて配置され、かつ冷却用空気孔を覆う主板カバー46が固定されている。この主板カバー46の主板43と対向する面には、放射状に延びる複数の案内羽根46aが設けられている。これにより、羽根車42の外方に吹き出された空気の一部は、上記主板43とケーシング2との間の空間の静圧と、上記主板43と側板45との間の空間の静圧との間の圧力差によって、主板43の周りを流れる。詳しくは、吹き出された空気の一部は、ファンモータ41の近傍を通過してファンモータ41を冷却する。その後、その空気は、主板43の冷却用空気孔及び主板カバー46の案内羽根46aを介して、再び上記羽根車42の内部の空間に吹き出される。
 側板45は外径Daを有する。また、側板45は、その外周から中央の開口に向かうにつれて次第に小さくなる形状を有する。また、側板45は、上記空気吸入口31に向かって突出するベル形状の樹脂製部材である。
 (3)羽根車のブレード(羽根)の構造
 次に、上記羽根車42の各ブレード44の構造について、図6~図11を参照して詳しく説明する。ここで、図6は、同ブレード44を例えば負圧面の方向から見た側面図である。また、図7は、同図6のブレード44を上方から見た投影図である。図8は、図6のブレード44を左斜め後方上部から見た斜視図である。図9は、同図6のブレード44の下部から上部(主板43側端部から側板45側の端部)にかけて複数の切断線10A-10A~10E-10Eを入れた側面図である。図10(a)~図10(e)は、それぞれ図9の10A-10A線~10E-10線に沿った断面図である。図11は、同ブレード44の特徴(図25~図32の従来形状との相違)を示す要部の断面図(図10、図31の31B-31B線に沿った断面図を対比)である。
 上記各ブレード44は、上述した主板43及び側板45とは別々に成形された樹脂製の部材である。各ブレード44の一端面が主板43に対して固定され、各ブレード44の他端面が側板45に対して固定されている。そして、各ブレード44は、上記羽根車42の側面視において、図28に示すように上記側板45側の端部が主板43側の端部よりも後ろに傾いている。また、各ブレード44は、図29に示すように、これらの端部同士が相互に略X字状に交差するように形成されている。つまり、このブレード44は、上記主板43と側板45との間で捩れながら回転軸と平行に延びる三次元形状を有している。
 この三次元翼であるブレード44の回転方向前側の端部、すなわち前縁44aは、主板43側の端部から側板45側の所定位置まで、略同じ半径を有するように延びている。一方、ブレード44は、側板45側の所定位置から側板45までは、次第に半径が小さくなるように外方に後退した傾斜縁を有する。他方、同ブレード44の回転方向R側と反対方向の端部(以下、これを後縁と称する)44bは、従来のブレードとは異なる形状を有する。後縁44bは、図25~図32の従来例とは異なり、ブレード44の主板43側の端部と側板45側の端部とを回転軸と平行に延びる(主板43に垂直な)直線で結んだ形状を有していない。後縁44bは、例えば図6~図11に示すように、同後縁44bを側板45側の端部から主板43側の端部にかけて側板45から主板43に近付くほど延長度が大きくなるように空気流後方に延長されている。これにより、当該遠心送風機の主流F1が通過するブレード44の主板43側の後縁44bの径方向の長さ(図5のRb′)は、ブレード44の側板45側の後縁44bの径方向の長さ(図5のRa)よりも長く設定される。それによって、ブレード44のスパン方向における空気流の速度分布が、流量の多い主板43側の部分で有効に発達する。
 この後縁44bの延長は、当該三次元翼の基本的な翼面形状を変えることなく行われ、同形状に沿う形で行われる。この場合、上記後縁44bの延長量は、元の主板43の外径Db(側板45の外径Da)を基準に考えると、拡大後の主板43の外径Db′(図12)が元の外径Dbの10%以下の大きさのものであることが好ましい。換言すれば、後縁44bの延長量は、側板45の外径Daの10%以下であることが好ましい。
 上述した図6~図12に示す構成の場合、主板43の外径Db′は、図28~図32に示した従来の主板43の外径Dbに対して例えば5%程度拡大されている。
 また、後縁44bを延長する際、ブレード44の主板43側の翼素の入口角・出口角・取付角・スキュー角は、図28~図32の元のブレード44の値を保たれる。したがって、本実施の形態のブレード44は、例えば図8の斜視図で示すように後縁44b側の取付位置が回転方向に膨らむ形状となる。
 また、もちろんブレード44の主板43側の端部の半径の拡大に合わせて主板43の外径も拡大されている。
 このようにブレード44の後縁44bの長さの延長に対応して、さらに主板43の外径も合わせて延長するため、遠心送風機の羽根車42の構造上の強度をも同時に向上させることができる。
 以上のような構成にすると、例えば図12に示すように、主板43近傍に偏って流れる主流F1の速度分布が側板45近傍の流れF2に比べて大きく改善される。そのため、ブレード44の静圧-流量特性(P-Q特性)が全流量域で向上し、送風量がアップする。また、比騒音特性も大幅に改善され、三次元構造のブレード44の主板43側の後縁44bで発生する後流渦の影響を相対的に低減することができる。その結果、同後流渦に起因する騒音が有効に低減される。
 また、本実施の形態において、上記主板43に近づくほど後方に延長された後縁44bは、図12の如く上記側板45から主板43にかけて徐々に長くなるように延長されている。即ち、ブレード44の後縁44bの形状が側板45から主板43にかけて直線的なラインで拡大されるテーパ形状を有する。それにより、ブレード44の吹出口における速度分布が主流F1において有効に発達する。そのため、ブレード44の主板43側の後縁44bで発生する後流の影響を相対的に弱られる。
 したがって、後縁44bがテーパ形状を有して拡大されていることにより、主板43に近づくに従って流量が多くなる主流F1の速度分布の変化に対して、後縁44bがより適した形状となっている。つまり、気流の速度分布に対してブレード44の形状を最適化させることができ、さらなるファン性能の向上が実現される。
 したがって、本実施形態の遠心送風機を用いることにより、小型かつ大風量・静音性が高い空気調和機を低コストに実現することができる。
 特に、本実施形態の遠心送風機の羽根車では、そのブレード44が、上述のような三次元形状の翼(図7、図8参照)である。そのため、従来の平面的に描かれた翼素を基礎に作られたブレード形状と比較して、ブレード44の表面における負荷分布及びブレード44間を通過する気流の圧力変動が大きく改善される。
 したがって、そのような三次元翼に対して、さらに上述のような作用を有する本実施の形態のブレード44を組み合わせる場合、より効果的に後流渦の影響を解消することができる。
 もちろん、上記のようなブレード44の出口における吹出風の速度分布を改善しようとした技術には、すでに従来例として述べたように種々のものがある。例えば特許文献3は、側板側の部分を切り欠いて短翼化された羽根を開示する。それにより、羽根の側板側の部分における気流の剥離を抑え、羽根の出口における速度分布が均一化される。
 しかしながら、この技術では羽根の側板側の部分に切り欠きを形成しているために、この羽根の長さが切り欠きのない羽根と比較して相対的に短くなってしまう。そのため、羽根が気流に与える仕事量が少なくなってしまう。本実施の形態では、ブレード44自体を短翼化させるものではない。逆に、ブレード44の面積を増大させているので、そのような欠点はなく、有効にブレード44の仕事量が増える。
 また、同特許文献3中に記載されているような、羽根幅が外形に対して十分に小さい遠心送風機では、上記技術は有効である。即ち、羽根を切り欠くことにより、吸込み気流が羽根の側板側の部分で剥離するのを防ぎ、その気流を羽根の側板側の部分に沿って流れるようにすることができる。しかしながら、通常の遠心送風機のように羽根幅が十分に広い場合、つまり側板側の剥離が及ぼす影響が支配的でない場合には、上記技術は必ずしも有効ではない。
 また、羽根の側板側の部分が切り取られていると、羽根の側板側の部分を通過する気流が羽根の主板側の角部と干渉する。その結果、離散的に突出した周波数を有する騒音が新たに発生する可能性もある。本実施の形態では、ブレード44自体の基本形状には何ら変化はないので、それらの問題も生じない。
 また、羽根が主板及び側板に対して直交するように配置される場合において、羽根の主板側の端面から羽根の側板側の端面にかけて羽根の肉厚を変化させる技術もある。それにより、羽根の吹出口における風速分布の変動が抑えられる。さらに、その場合において、羽根の主板側の部分の外径と羽根の側板側の部分の外径とを同一とせず、羽根の形状を主板に近づくに従って拡大するものもある(例えば特許文献4を参照)。それによって、翼後流における流れの速度変動が抑えられる。
 しかしながら、同構成では、羽根車の主板側の端面における直径/羽根車の側板側の端面における直径の比が1.2から1.6に設定される。そのため、羽根の拡大による延長量が少ない場合、騒音低減効果が得られず、逆にその延長量が大きすぎる場合、流量特性が悪くなる。
 その結果、少なくとも羽根車の主板側の端部の直径が側板側の直径に対して2割も拡大されることなる。これではファン径を単に拡大させて、単純にファンを大型化させる技術に対する優位性が得られない。そもそも2割以上も大型化することは、従来の問題点である小型・低騒音化の課題を全く解決することができない。
 しかしながら、本実施の形態では、このような問題も有効に解決される。
 特に、本実施の形態では、上記主板43に近づくほど後方に延長された後縁44bは、図12の如く側板45から主板43にかけて少しずつ長くなるように延長されている。
 このような構成によると、ブレード44の後縁44bの形状が側板45から主板43にかけて拡大される略テーパ形状となる。図12に示すように、主板43付近に偏って流れる主流F1の速度分布の変化に対して、後縁44bはより適した形状となる。この場合、もちろんブレード44の主板43側の後縁44bの径方向の長さの拡大に合わせて主板43の外径も拡大させている。
 このようにブレード44の後縁44bの長さの延長に対応して、さらに、主板43の外径も合わせて延長されるため、遠心送風機の羽根車42の構造上の強度をも同時に向上させることができる。
 <実施例>
 今、2つの従来例a,b及び本発明に係る2つの実施例c,dを用いて、そられ例の送風特性を確認した。実施例cは、上記本実施の形態のブレード44において、その主板43の外径Db′の拡大率(後縁部44bの幅の空気流後方への延長率)を、5%とした三次元翼を備える羽根車である。実施例dは、上記本実施の形態のブレード44において、その主板43の外径Db′の拡大率を10%とした三次元翼を備える羽根車である。比較例として、従来例aは、図27~図32に示す従来のブレードを用いた羽根車である。従来例bは、従来例aのファンの直径全体を5%拡大したものである。
 本実施例c,dにおいて、ファン特性に支配的である主流F1が通過するブレード44の主板43側(図6~図9の状態で下部側)の部分は、空気流後方にそれぞれ5%、10%延長されている。そのため、ブレード44が気流に与える仕事量を増加させることにより、羽根車から吹出される空気流量を有効に増加させることができる。これにより、従来例aや単にファンの直径を全体に5%拡大した従来例bと比べて、実施例c,dでは、例えば図13に示すように静圧流量特性(P-Q特性)が全流量域で向上している。また、実施例c,dでは、図14に示すように送風音も低風量領域を除いて小さくなる。
 さらに、これら2つの特性の向上により、実施例c,dでは、例えば図15に示すように比騒音特性が大幅に改善される。これら実施例c,dの特性は、ファンの直径を全体に一律に拡大させた従来例bと比較しても明らかに改善されている。
 また、上述の特許文献4で示された相似的に拡大された羽根と比較して見ても、10%以下の拡大率(5%)において上記と同様の結果が得られた。そのため、本実施の形態の羽根車大風量の増加・静音性に優れており、より小型化が可能となるものであることが分かる。
 <変形例1>
 なお、上記ブレード44の後縁44bの主板43への拡大(延長)する形状は、上述のような直線的に拡大した形状(一次関数的なテーパ形状)に限らない。例えば、図16のような放物線を描くような2次関数的な曲線形状であっても良い。
 この後縁44bの曲線形状では羽根車から吹き出される気流の風速分布の偏りを考慮し、側板45より主板43に近づくほど、ブレード44の後縁44bをより大きく径方向に延長されるものとなる。
 このような構成によると、ブレード44の後縁44bの形状が側板45から主板43にかけて円弧状に拡大される二次関数的なテーパ形状となる。ブレード44の後縁44bは、図16に示されるように主板43付近に偏って流れる主流F1の速度分布に対して、より適したものにすることができる。
 つまり主流F1の速度分布に対して、ブレード44の後縁44bの形状を一層有効に最適化させることができ、さらなるファン性能の向上が見込める。
 <変形例2>
 上述のような遠心送風機は、主板43近傍の気流が、主板43の壁面による粘性の影響で層流せん断層を形成する。これによって主流F1の流路が狭まり、ファン性能が低下するおそれがある。
 そこで、このような問題に対処するために、例えば図17に示すように、後縁44bは、その曲線部に一つ以上の変曲点が存在するように形成されている。それにより、後縁44bは、主板43付近に膨出部を有している。吹き出し気流の速度分布を考慮して、主板43の端面の後縁44bの拡大は最大延長部よりやや短く(但し、最低でも後縁44bの側板45側の端部の半径以上とする)設定される。
 このような構成により、せん断層の発達を抑制し、さらにファン性能を向上させることができる。
 <変形例3>
 ブレード44の前縁44aには、さらに図18~図21に示すように羽根車42の内方に向かって階段状(本実施形態では、段部が2段)に突出する第1及び第2の段部44c,44dが設けられてもよい。こられ第1及び第2の2組の段部44c,44dは、上記図1の空気吸入口31及びベルマウス5を通じて羽根車42内に吸入された気流がブレード44によって外方に吹き出される際に、ブレード44の負圧面側から剥離するのを抑える機能を有している。それにより、第1及び第2の段部44c,44dは、送風機4の吹出騒音を、さらに小さくするのに寄与している。
 ここで、負圧面とは、ブレード44の羽根車42の内周側に向く面を指しており、同負圧面と反対側の面、すなわちブレード44の羽根車42の外周側に向く面が正圧面である。
 上記第1及び第2の段部44c,44dの長さLa・Lb,Lc・Ldは、ブレード44のスパン方向における元の翼弦長L1,L2,L3の0.09~0.18倍に設定される。つまり、下段の第1の段部44cの長さは、スパン方向に0.15(La)~0.2(Lb)倍の範囲で変化し、上段の第2の段部44dの長さは0.08(Lc)~0.1(Ld)倍の範囲で変化する。
 今、この変形例3のブレード44を台形段付の実施例dとして表わす。また、上述した前縁44aに全く第1及び第2の段部44c,44dが付いていない図1~図12の実施例(これを台形段なしと表示する)cと表す。また、比較例bは、従来のブレードに対して、第1及び第2の段部44c,44dを設けたものである。実施例cを実施例dと比較すると、例えば図22に示すように、比騒音特性が全流領域で低減する。実施例cでは、特に最低比騒音点では少なくとも1.1[dBA]の低減効果が得られる。これは羽根車が回転している際、前縁44aの第1及び第2の段部44c,44dの突き出し形状により、基準となるブレード44に流入する前の気流に対して、縦渦が生成され、その縦渦による作用により、前縁44aからの剥離を抑制することができるからである。
 また、特に上述した図1~図12の本実施の形態の遠心送風機は、羽根車を通過する気流が従来例aと比較して、ブレード44の下側を流れるように設計されている。そのため、この前縁44aの第1及び第2の段部44c,44dによって生成される縦渦による、剥離抑制効果がより効果的に影響している。
 図23に示すように空力特性においては、比較例bと比べて、実施例cは、低風量域で劣っている。実施例dでは、第1及び第2の段部44c,44dを付けることにより、比較例bよりも低風量域における特性が向上した。これにより、比較例bに対して、実施例dの空力特性が全風量域においても向上している。結果的に本変形例3の発明による実施例dを用いた遠心送風機は同一静圧において、より多くの風量を生成することが可能となった。
 以上の結果より、本変形例3の発明の遠心送風機は、これまでの遠心送風機よりも比騒音が低く、同一静圧でも風量を増大させることができる。そのため、小型かつ静粛性に優れたファンの開発が可能となる。
 この結果、同遠心送風機を用いると、大風量を保ちつつ、より静粛性に優れ、より小型空気調和機を実現することができる。
 <変形例4>
 なお、変形例3の第1及び第2の段部44c,44dは、例えば図24に示すように、上述の変形例2と組み合わせることもできる。
 <本発明の遠心送風機の適用対象>
 一般に、上述のようなブレードの主板側の部分における吹出気流の速度分布の偏りは、各種の遠心送風機に必ず発生している問題である。そのため、本発明は、そのような各種のタイプの遠心送風機(例えばターボ型、シロッコ型、ラジアル型など)の羽根車に対して適用可能である。その場合、十分に有効にファン特性を改善することができる。

Claims (10)

  1. 三次元形状の複数の羽根と、該複数の羽根を周方向に所定の間隔をおいて各羽根のスパン方向の一端面を固定する主板と、前記各羽根のスパン方向の他端面に設けられたリング状の側板と、前記主板を介して前記羽根を回転させる羽根駆動手段とを備える遠心送風機であって、前記各羽根の前記主板側の外周端部の径方向の長さは、同羽根の側板側の外周端部の径方向の長さよりも長く設定される遠心送風機。
  2. 前記各羽根の前記主板側の外周端部の径方向の長さを、同羽根の側板側の外周端部の径方向の長さよりも長く設定することにより、前記各羽根を通過する気流が、前記羽根の主板側の部分で有効にその羽根から仕事を受けられ、かつ前記各羽根のスパン方向における気流の速度が前記各羽根の前記主板側の部分で有効に発達させる請求項1記載の遠心送風機。
  3. 上記各羽根の前記主板側の外周端部の径方向の長さは、同羽根の後縁を気流後方に向かって延長することにより、前記各羽根の前記側板側の外周端部の径方向の長さよりも長く形成されている請求項1又は2記載の遠心送風機。
  4. 前記後縁は、前記側板から前記主板に近づくに従って徐々に長くなるように延長されている請求項3記載の遠心送風機。
  5. 前記後縁は、曲線状に延長されるとともに、同曲線部に一つ以上の変曲点が存在するように、前記後縁には前記主板側の部分に膨出部が形成される請求項4記載の多翼遠心送風機。
  6. 前記後縁は、同後縁における前記気流の主流の速度分布に対応して後方に長く延長されている請求項3記載の遠心送風機。
  7. 前記後縁の延長量は、前記側板の外径の10%以下である請求項6に記載の遠心送風機。
  8. 前記各羽根の前縁の前記主板側の部分に、その羽根の前方へ所定の長さ延長された段部が設けられる請求項1~7の何れか1項に記載の遠心送風機。
  9. 前記主板の外径が前記羽根の延長に合わせて拡大される請求項1~8の何れか1項に記載の遠心送風機。
  10. 前記遠心送風機が、空気調和機用室内機の送風機として構成される請求項1~9の何れか1項に記載の遠心送風機。
PCT/JP2009/058938 2008-05-14 2009-05-13 遠心送風機 WO2009139422A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/921,828 US20110023526A1 (en) 2008-05-14 2009-05-13 Centrifugal fan
JP2010512006A JPWO2009139422A1 (ja) 2008-05-14 2009-05-13 遠心送風機
EP09746628A EP2275689A1 (en) 2008-05-14 2009-05-13 Centrifugal fan
AU2009247219A AU2009247219A1 (en) 2008-05-14 2009-05-13 Centrifugal fan
CN2009801123504A CN101990604A (zh) 2008-05-14 2009-05-13 离心鼓风机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-126940 2008-05-14
JP2008126940 2008-05-14

Publications (1)

Publication Number Publication Date
WO2009139422A1 true WO2009139422A1 (ja) 2009-11-19

Family

ID=41318788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058938 WO2009139422A1 (ja) 2008-05-14 2009-05-13 遠心送風機

Country Status (7)

Country Link
US (1) US20110023526A1 (ja)
EP (1) EP2275689A1 (ja)
JP (1) JPWO2009139422A1 (ja)
KR (1) KR20100134011A (ja)
CN (1) CN101990604A (ja)
AU (1) AU2009247219A1 (ja)
WO (1) WO2009139422A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110286848A1 (en) * 2010-05-19 2011-11-24 The New York Blower Company Industrial fan impeller having a tapered blade and method
WO2014061094A1 (ja) * 2012-10-16 2014-04-24 三菱電機株式会社 ターボファンおよび空気調和機
CN104279188A (zh) * 2014-10-29 2015-01-14 珠海格力电器股份有限公司 离心式风机及具有其的空调器
WO2015170401A1 (ja) * 2014-05-09 2015-11-12 三菱電機株式会社 遠心送風機及び電気掃除機
WO2020080260A1 (ja) * 2018-10-15 2020-04-23 日立建機株式会社 建設機械
JPWO2019106761A1 (ja) * 2017-11-29 2020-07-02 三菱電機株式会社 遠心ファンおよび回転電機
WO2020161850A1 (ja) * 2019-02-07 2020-08-13 三菱電機株式会社 遠心送風機及びそれを用いた空気調和機
WO2023007713A1 (ja) * 2021-07-30 2023-02-02 三菱電機株式会社 羽根車及び遠心送風機
WO2023032762A1 (ja) * 2021-09-02 2023-03-09 株式会社デンソー 遠心ファン

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103477084B (zh) * 2011-04-12 2017-11-17 三菱电机株式会社 涡轮风扇以及空调机
US8998588B2 (en) 2011-08-18 2015-04-07 General Electric Company Segmented fan assembly
JP5988776B2 (ja) * 2012-08-29 2016-09-07 三菱電機株式会社 遠心送風機及びこの遠心送風機を備えた空気調和機
JP5811134B2 (ja) * 2013-04-30 2015-11-11 ダイキン工業株式会社 空気調和機の室内ユニット
KR101677030B1 (ko) * 2013-05-10 2016-11-17 엘지전자 주식회사 원심팬
US9995311B2 (en) * 2013-05-10 2018-06-12 Lg Electronics Inc. Centrifugal fan
JP5783214B2 (ja) * 2013-09-30 2015-09-24 ダイキン工業株式会社 遠心送風機及びこれを備えた空気調和機
KR20160063743A (ko) * 2014-11-27 2016-06-07 삼성전자주식회사 원심송풍기용 팬조립체 및 이를 구비한 공기조화장치
DE102014226298A1 (de) * 2014-12-17 2016-06-23 Mahle International Gmbh Gebläse
JP6621194B2 (ja) * 2015-06-03 2019-12-18 三星電子株式会社Samsung Electronics Co.,Ltd. ターボファン及びこのターボファンを用いた送風装置
ITUB20152807A1 (it) * 2015-08-03 2017-02-03 Ma Ti Ka S R L Ventola per forni per la cottura di alimenti
EP3324052A1 (en) * 2016-11-18 2018-05-23 Sogefi Air & Cooling (SAS) Impeller for a fluid pump
WO2018151013A1 (ja) * 2017-02-20 2018-08-23 株式会社デンソー 遠心送風機
JP6747402B2 (ja) * 2017-08-11 2020-08-26 株式会社デンソー 送風機
EP3647603A1 (en) 2018-10-31 2020-05-06 Carrier Corporation Arrangement of centrifugal impeller of a fan for reducing noise
JP7040493B2 (ja) * 2019-04-25 2022-03-23 株式会社デンソー 遠心ファンおよびその遠心ファンを備えた送風機
JP7258136B2 (ja) * 2019-06-13 2023-04-14 三菱電機株式会社 軸流ファン、送風装置、及び、冷凍サイクル装置
KR20220016992A (ko) * 2019-09-24 2022-02-10 도시바 캐리어 가부시키가이샤 냉동 사이클 장치의 실내기 및 임펠러
DE102020114387A1 (de) * 2020-05-28 2021-12-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Gebläserad mit dreidimensional gekrümmten Laufradschaufeln
CN113803290B (zh) * 2021-09-17 2024-01-19 苏州西热节能环保技术有限公司 一种火电机组风机进风区降阻方法
CN114370427A (zh) * 2021-12-17 2022-04-19 广东美的白色家电技术创新中心有限公司 叶轮、离心风机及吸油烟机
CN114321005B (zh) * 2022-03-01 2022-05-13 佛山市南海九洲普惠风机有限公司 一种低噪前弯离心风机叶轮

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156997A (ja) * 1984-01-26 1985-08-17 Nippon Denso Co Ltd 遠心式送風機用フアン
JPH0270997A (ja) * 1988-09-06 1990-03-09 Matsushita Refrig Co Ltd 遠心送風機
JPH0560096A (ja) 1991-09-03 1993-03-09 Matsushita Electric Ind Co Ltd 電動送風機
JPH0979184A (ja) * 1995-09-14 1997-03-25 Matsushita Electric Ind Co Ltd 電動送風機
JP2001132687A (ja) 1999-11-10 2001-05-18 Mitsubishi Electric Corp 遠心形送風機の羽根車および空気調和機
JP2002202095A (ja) * 2000-11-02 2002-07-19 Kioritz Corp 中空品成形法によって組立てるためのブロワファン分割体
JP2002339897A (ja) 2001-05-17 2002-11-27 Daikin Ind Ltd 送風機用羽根車
JP2005155510A (ja) 2003-11-27 2005-06-16 Daikin Ind Ltd 遠心送風機の羽根車及びそれを備えた遠心送風機
JP2007239567A (ja) * 2006-03-08 2007-09-20 Daikin Ind Ltd 遠心送風機用羽根車のブレード、ブレード支持回転体、遠心送風機用羽根車、及び遠心送風機用羽根車の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156997A (ja) * 1984-01-26 1985-08-17 Nippon Denso Co Ltd 遠心式送風機用フアン
JPH0270997A (ja) * 1988-09-06 1990-03-09 Matsushita Refrig Co Ltd 遠心送風機
JPH0560096A (ja) 1991-09-03 1993-03-09 Matsushita Electric Ind Co Ltd 電動送風機
JP3055238B2 (ja) * 1991-09-03 2000-06-26 松下電器産業株式会社 電動送風機
JPH0979184A (ja) * 1995-09-14 1997-03-25 Matsushita Electric Ind Co Ltd 電動送風機
JP2001132687A (ja) 1999-11-10 2001-05-18 Mitsubishi Electric Corp 遠心形送風機の羽根車および空気調和機
JP3544325B2 (ja) * 1999-11-10 2004-07-21 三菱電機株式会社 遠心形送風機の羽根車および空気調和機
JP2002202095A (ja) * 2000-11-02 2002-07-19 Kioritz Corp 中空品成形法によって組立てるためのブロワファン分割体
JP2002339897A (ja) 2001-05-17 2002-11-27 Daikin Ind Ltd 送風機用羽根車
JP2005155510A (ja) 2003-11-27 2005-06-16 Daikin Ind Ltd 遠心送風機の羽根車及びそれを備えた遠心送風機
JP2007239567A (ja) * 2006-03-08 2007-09-20 Daikin Ind Ltd 遠心送風機用羽根車のブレード、ブレード支持回転体、遠心送風機用羽根車、及び遠心送風機用羽根車の製造方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110286848A1 (en) * 2010-05-19 2011-11-24 The New York Blower Company Industrial fan impeller having a tapered blade and method
US9004868B2 (en) * 2010-05-19 2015-04-14 The New York Blower Company Industrial fan impeller having a tapered blade and method
WO2014061094A1 (ja) * 2012-10-16 2014-04-24 三菱電機株式会社 ターボファンおよび空気調和機
WO2014061642A1 (ja) * 2012-10-16 2014-04-24 三菱電機株式会社 ターボファンおよび空気調和機
CN104736854A (zh) * 2012-10-16 2015-06-24 三菱电机株式会社 涡轮风扇及空调机
JP5955402B2 (ja) * 2012-10-16 2016-07-20 三菱電機株式会社 ターボファンおよび空気調和機
JPWO2014061642A1 (ja) * 2012-10-16 2016-09-05 三菱電機株式会社 ターボファンおよび空気調和機
US9829004B2 (en) 2012-10-16 2017-11-28 Mitsubishi Electric Corporation Turbo fan and air conditioner
WO2015170401A1 (ja) * 2014-05-09 2015-11-12 三菱電機株式会社 遠心送風機及び電気掃除機
TWI573551B (zh) * 2014-05-09 2017-03-11 Mitsubishi Electric Corp Centrifugal blowers and electric vacuum cleaners
JPWO2015170401A1 (ja) * 2014-05-09 2017-04-20 三菱電機株式会社 遠心送風機及び電気掃除機
CN104279188A (zh) * 2014-10-29 2015-01-14 珠海格力电器股份有限公司 离心式风机及具有其的空调器
JP7062684B2 (ja) 2017-11-29 2022-05-06 三菱電機株式会社 遠心ファンおよび回転電機
JPWO2019106761A1 (ja) * 2017-11-29 2020-07-02 三菱電機株式会社 遠心ファンおよび回転電機
JP2020063683A (ja) * 2018-10-15 2020-04-23 日立建機株式会社 建設機械
WO2020080260A1 (ja) * 2018-10-15 2020-04-23 日立建機株式会社 建設機械
JP7207933B2 (ja) 2018-10-15 2023-01-18 日立建機株式会社 建設機械
US11680583B2 (en) 2018-10-15 2023-06-20 Hitachi Construction Machinery Co., Ltd. Construction machine
WO2020161850A1 (ja) * 2019-02-07 2020-08-13 三菱電機株式会社 遠心送風機及びそれを用いた空気調和機
JPWO2020161850A1 (ja) * 2019-02-07 2021-09-30 三菱電機株式会社 遠心送風機及びそれを用いた空気調和機
JP7003301B2 (ja) 2019-02-07 2022-01-20 三菱電機株式会社 遠心送風機及びそれを用いた空気調和機
WO2023007713A1 (ja) * 2021-07-30 2023-02-02 三菱電機株式会社 羽根車及び遠心送風機
JPWO2023007713A1 (ja) * 2021-07-30 2023-02-02
JP7482332B2 (ja) 2021-07-30 2024-05-13 三菱電機株式会社 羽根車及び遠心送風機
WO2023032762A1 (ja) * 2021-09-02 2023-03-09 株式会社デンソー 遠心ファン

Also Published As

Publication number Publication date
JPWO2009139422A1 (ja) 2011-09-22
KR20100134011A (ko) 2010-12-22
EP2275689A1 (en) 2011-01-19
CN101990604A (zh) 2011-03-23
US20110023526A1 (en) 2011-02-03
AU2009247219A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
WO2009139422A1 (ja) 遠心送風機
JP6434152B2 (ja) 遠心送風機、空気調和装置および冷凍サイクル装置
JP5143317B1 (ja) 空気調和装置の室内機
US9267511B2 (en) Turbofan and indoor unit of air-conditioning apparatus including the same
JP6129431B1 (ja) 送風機およびこの送風機を搭載した空気調和装置
JP5955402B2 (ja) ターボファンおよび空気調和機
JP5971667B2 (ja) プロペラファン、送風装置及び室外機
JP6029738B2 (ja) 車両用空気調和装置の室外冷却ユニット
JP2012007586A (ja) ファン、成型用金型および流体送り装置
WO2017026143A1 (ja) 送風機および空気調和装置
WO2016071948A1 (ja) プロペラファン、プロペラファン装置および空気調和装置用室外機
JP6611676B2 (ja) 送風機および冷凍サイクル装置の室外機
JP2007205268A (ja) 遠心ファン
JP6739656B2 (ja) 羽根車、送風機、及び空気調和装置
CN110506164B (zh) 螺旋桨式风扇及空调装置用室外机
JP2016160905A (ja) 遠心ファン
JP2016003641A (ja) 遠心ファン
JP4994433B2 (ja) シロッコファン及びこのシロッコファンを用いた空気調和機の室内機
JP6695403B2 (ja) 遠心送風機および空気調和装置
JP2002357194A (ja) 貫流ファン
JPWO2013150673A1 (ja) 空気調和装置の室内機
JP5179638B2 (ja) ファン、成型用金型および流体送り装置
JP6625213B2 (ja) 多翼ファン及び空気調和機
JP6692456B2 (ja) プロペラファン及び空気調和装置の室外機
JP2001107892A (ja) 空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112350.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010512006

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009247219

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12921828

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009746628

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009247219

Country of ref document: AU

Date of ref document: 20090513

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107022393

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE