WO2015041056A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2015041056A1
WO2015041056A1 PCT/JP2014/073202 JP2014073202W WO2015041056A1 WO 2015041056 A1 WO2015041056 A1 WO 2015041056A1 JP 2014073202 W JP2014073202 W JP 2014073202W WO 2015041056 A1 WO2015041056 A1 WO 2015041056A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid chamber
vibration
orifice
chamber
sub
Prior art date
Application number
PCT/JP2014/073202
Other languages
English (en)
French (fr)
Inventor
小島 宏
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US15/022,023 priority Critical patent/US9719575B2/en
Priority to CN201480050721.1A priority patent/CN105531499B/zh
Priority to EP14846387.0A priority patent/EP3048332B1/en
Publication of WO2015041056A1 publication Critical patent/WO2015041056A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/18Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper characterised by the location or the shape of the equilibration chamber, e.g. the equilibration chamber, surrounding the plastics spring or being annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/268Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for acting dynamically on the walls bounding an equilibration chamber

Definitions

  • the present invention relates to a vibration isolator that is applied to, for example, automobiles and industrial machines and absorbs and attenuates vibrations of a vibration generating unit such as an engine.
  • the vibration isolator includes a cylindrical first mounting member connected to one of the vibration generating unit and the vibration receiving unit, a second mounting member connected to the other, and an elastic connecting the both mounting members.
  • the partition member is provided with a restriction passage that communicates the main liquid chamber and the sub liquid chamber. When vibration having a frequency equivalent to the resonance frequency of the restriction passage is input to the vibration isolator, the vibration is reduced. Absorbs and attenuates.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a vibration isolator capable of exhibiting damping characteristics against vibrations of a wide range of frequencies.
  • the vibration isolator according to the present invention includes a cylindrical first attachment member connected to one of the vibration generating portion and the vibration receiving portion, a second attachment member connected to the other, and both of these attachment members.
  • a partition member that forms a liquid chamber, a first diaphragm that forms part of the wall surface of the first sub-liquid chamber, and a part of the wall surface of the second sub-liquid chamber, the deformation resistance of which deforms the first diaphragm A second diaphragm smaller than the resistance, and the partition member communicates with the main liquid chamber and the first sub-liquid chamber, and causes an idle orifice that causes resonance with respect to an input of idle vibration, and a main liquid chamber And the second sub-liquid chamber communicate with each other, causing resonance with respect to the shake vibration input.
  • the second sub-liquid chamber has an adjustment chamber that is open to be able to be depressurized or pressurized with respect to the standard pressure, or that can be closed to the outside. Two diaphragms are adjacent to each
  • the idle orifice causes resonance with respect to the input of the idle vibration, while the shake orifice causes resonance with respect to the shake vibration. Therefore, the flow resistance of the shake orifice is larger than the flow resistance of the idle orifice. Become.
  • the liquid becomes the main liquid chamber and the first auxiliary liquid. Trying to flow through the idle orifice while deforming the first diaphragm, or trying to flow through the shake orifice while deforming the second diaphragm between the main liquid chamber and the second sub liquid chamber. .
  • the deformation resistance of the second diaphragm is smaller than the deformation resistance of the first diaphragm, it is difficult for the liquid to flow between the main liquid chamber and the first sub liquid chamber and It is possible to facilitate the circulation between the two sub liquid chambers. Therefore, as described above, even if the flow resistance of the shake orifice is larger than the flow resistance of the idle orifice, the liquid can be preferentially distributed to the shake orifice instead of the idle orifice. As a result, when shake vibration is input to the standard vibration isolator, the liquid in the main liquid chamber can be preferentially circulated through the shake orifice between the main liquid chamber and the second sub liquid chamber.
  • the vibration isolation device when the vibration isolator is in an adjustment state in which the adjustment chamber is depressurized or pressurized with respect to the standard pressure, or in an adjustment state in which the adjustment chamber is closed to the outside, the vibration isolation device is in the standard state.
  • the second diaphragm can be restrained to increase the deformation resistance of the second diaphragm. This makes it difficult for the liquid to flow between the main liquid chamber and the second sub liquid chamber and facilitates the flow between the main liquid chamber and the first sub liquid chamber. And can be preferentially distributed to the idle orifice.
  • the liquid in the main liquid chamber can be preferentially circulated through the idle orifice between the main liquid chamber and the first sub liquid chamber.
  • resonance can be generated at the idle orifice to absorb and dampen idle vibration.
  • this vibration isolator by switching between the standard state and the adjustment state, it is possible to absorb and attenuate each of the shake vibration and the idle vibration, and to exhibit a damping characteristic with respect to vibrations of a wide range of frequencies. it can.
  • the partition member communicates with the lock-up orifice extending from the main liquid chamber toward the second sub-liquid chamber and causing resonance with respect to the input of the lock-up vibration, and the lock-up orifice and the second sub-liquid chamber.
  • a movable body accommodated in the accommodating chamber so as to be displaceable in the axial direction of the first mounting member.
  • the movable body is connected to the lock-up orifice and the first through the accommodation chamber when lock-up vibration is input. It may be accommodated in the accommodating chamber so as to be displaceable in the axial direction so as to communicate with the two sub liquid chambers and to block the communication when the shake vibration is input.
  • the movable body when shake vibration is input to the vibration isolator in the standard state, the movable body is displaced in the axial direction, and the communication between the lock-up orifice that has passed through the storage chamber and the second sub liquid chamber is blocked. Accordingly, the liquid in the main liquid chamber can be passed through the shake orifice between the main liquid chamber and the second sub-liquid chamber, and resonance can be generated in the shake orifice to absorb and attenuate the shake vibration. it can.
  • the lock-up orifice causes resonance with respect to the lock-up vibration, the flow resistance of the lock-up orifice is smaller than the flow resistance of each of the idle orifice and the shake orifice.
  • the liquid can be preferentially circulated through the lock-up orifice as compared with the idle orifice and the shake orifice.
  • Resonance can be generated at the lock-up orifice to absorb and dampen lock-up vibration.
  • this vibration isolator it is possible to absorb and attenuate shake vibration and lock-up vibration in a standard state, and to exhibit a damping characteristic with respect to vibration of a wider frequency range.
  • the vibration isolator according to the present invention it is possible to exhibit a damping characteristic against a wide range of vibrations.
  • the vibration isolator 10 includes a cylindrical first mounting member 11 connected to one of a vibration generating unit and a vibration receiving unit, and a second mounting member 12 connected to the other.
  • An elastic body 13 that elastically connects the first mounting member 11 and the second mounting member 12, and a main liquid chamber 14 that is fitted into the first mounting member 11 and has the elastic body 13 as a part of the wall surface,
  • a partition member 17 that forms the first sub-liquid chamber 15 and the second sub-liquid chamber 16 provided independently of the main liquid chamber 14, and a first diaphragm that forms part of the wall surface of the first sub-liquid chamber 15. 18 and a second diaphragm 19 constituting a part of the wall surface of the second auxiliary liquid chamber 16.
  • this liquid-filled vibration isolator 10 When this liquid-filled vibration isolator 10 is mounted on, for example, an automobile, the second mounting member 12 is connected to an engine as a vibration generating unit, while the first mounting member 11 is connected to a vehicle body as a vibration receiving unit. As a result, the vibration of the engine is prevented from being transmitted to the vehicle body. In this vibration isolator 10, positive pressure is applied to the main liquid chamber 14 based on the support load at the time of mounting.
  • the first mounting member 11 is formed in a cylindrical shape, in the illustrated example, in a multistage cylindrical shape.
  • a direction along the axis O of the first mounting member 11 is referred to as an axial direction
  • a direction orthogonal to the axis O is referred to as a radial direction
  • a direction around the axis O is referred to as a circumferential direction.
  • the second mounting member 12 is disposed at one end of the first mounting member 11 located on one side (hereinafter referred to as “one side”) along the axial direction.
  • the second attachment member 12 is formed in a columnar shape arranged coaxially with the axis O.
  • the elastic body 13 is bonded to the inner peripheral surface of one end of the first mounting member 11 and the outer peripheral surface of the second mounting member 12, and closes one end of the first mounting member 11.
  • the partition member 17 includes a main body member 20 and a flow path member 21.
  • the main body member 20 is disposed coaxially with the axis O, and is liquid-tight in a portion of the first mounting member 11 that is located on the other side (hereinafter referred to as “the other side”) along the axial direction from the one end. It is mated.
  • An end of the main body member 20 located on the other side is provided with an annular flange portion 20a that protrudes outward in the radial direction.
  • the flow path member 21 is disposed coaxially with the axis O, and is assembled to the main body member 20 from one side.
  • the main liquid chamber 14 is formed in a portion located between the elastic body 13 and the partition member 17 in the first attachment member 11.
  • the hydraulic pressure in the main liquid chamber 14 varies when the elastic body 13 is deformed and the internal volume of the main liquid chamber 14 changes when vibration is input.
  • the first sub liquid chamber 15 is separated from the main liquid chamber 14 on the other side, and is formed in an annular shape coaxial with the axis O.
  • the first sub-liquid chamber 15 is expanded and contracted by the liquid chamber recess 20b formed in the main body member 20 opening toward the other side being closed by the first diaphragm 18 and the first diaphragm 18 being deformed. To do.
  • the first diaphragm 18 is formed in an elastically deformable film shape.
  • the first diaphragm 18 is formed in an annular shape coaxial with the axis O, and closes the liquid chamber recess 20b from the other side.
  • the inner peripheral edge and the outer peripheral edge of the first diaphragm 18 are fixed to the main body member 20.
  • the inner peripheral edge of the first diaphragm 18 is vulcanized and bonded to a portion of the main body member 20 that is located on the inner side in the radial direction than the liquid chamber recess 20b.
  • the outer peripheral edge portion of the first diaphragm 18 is fixed to the flange portion 20a of the main body member 20, and in the illustrated example, the flange portion 20a and the fixing ring 22 superimposed on the flange portion 20a from the other side are provided. Sandwiched between them.
  • the second sub liquid chamber 16 is separated from the main liquid chamber 14 on the other side, and is arranged coaxially with the axis O.
  • the second auxiliary liquid chamber 16 is formed in the partition member 17, and the inner space 23 formed in the main body member 20 is partitioned by the second diaphragm 19.
  • the second sub liquid chamber 16 expands and contracts as the second diaphragm 19 is deformed.
  • the inner space 23 is formed in a portion of the main body member 20 located on the inner side in the radial direction from the liquid chamber recess 20b.
  • the second diaphragm 19 is disposed in the central portion of the inner space 23 in the axial direction, and partitions the inner space 23 in the axial direction.
  • the outer peripheral edge of the second diaphragm 19 is liquid-tightly fixed to the inner peripheral surface of the inner space 23 over the entire circumference in the circumferential direction.
  • a portion located on one side of the second diaphragm 19 is a second sub liquid chamber 16, and a portion located on the other side is an adjustment chamber 24 in which air (fluid) is accommodated. It is said that.
  • the adjustment chamber 24 is adjacent to the second sub liquid chamber 16 with the second diaphragm 19 interposed therebetween.
  • the adjustment chamber 24 is separated from the main liquid chamber 14 on the other side, is formed in the partition member 17, and is arranged coaxially with the axis O.
  • the adjusting chamber 24 is formed in an inverted truncated cone shape that gradually decreases in diameter from one side to the other side.
  • a portion connecting the peripheral wall surface and the bottom wall surface of the adjustment chamber 24 is formed in a concave curved surface shape that is concave toward the other side.
  • the volume of the adjustment chamber 24 is preferably smaller than the volumes of the main liquid chamber 14 and the first sub liquid chamber 15 and not more than 1/5 of the volume of the main liquid chamber 14.
  • the volume of the adjustment chamber 24 is about 1/10 of the volume of the main liquid chamber 14.
  • the inside of the adjustment chamber 24 can be reduced with respect to the standard pressure.
  • a connection hole 24 a to which an adjustment mechanism 25 provided outside the vibration isolator 10 is connected is opened on the bottom wall surface of the adjustment chamber 24.
  • the adjustment mechanism 25 includes a switching valve 27 connected to the connection hole 24a via a connection pipe 26, and a control unit (not shown) that controls the switching valve 27.
  • the switching valve 27 is formed by, for example, an electromagnetic valve.
  • a negative pressure pipe 29 connected to a negative pressure source 28 such as an intake manifold of an engine and an atmospheric pressure pipe 30 opened to the atmosphere are connected to the switching valve 27.
  • the switching valve 27 switches the pipe connected to the connection pipe 26 between the negative pressure pipe 29 and the atmospheric pressure pipe 30.
  • the said control part controls the switching valve 27 based on the operating condition etc. of a vibration generation part, for example.
  • the partition member 17 is provided with an idle orifice 31, a shake orifice 32, a lock-up orifice 33, a storage chamber 34, and a movable body 35.
  • the idle orifice 31 communicates the main liquid chamber 14 and the first sub liquid chamber 15.
  • the idle orifice 31 is formed in the main body member 20 of the partition member 17, is arranged avoiding the axis O, and extends in the axial direction.
  • the resonance frequency of the idle orifice 31 is equivalent to the frequency of idle vibration (for example, the frequency is 15 Hz to 40 Hz and the amplitude is ⁇ 0.5 mm or less).
  • the idle orifice 31 resonates with the input of the idle vibration ( Liquid column resonance).
  • the shake orifice 32 communicates the main liquid chamber 14 and the second sub liquid chamber 16.
  • the shake orifice 32 is formed in the main body member 20 of the partition member 17, is arranged avoiding the axis O, and extends in the axial direction.
  • the resonance frequency of the shake orifice 32 is equivalent to the frequency of shake vibration (for example, the frequency is 14 Hz or less and the amplitude is greater than ⁇ 0.5 mm). Liquid column resonance).
  • the lock-up orifice 33 extends from the main liquid chamber 14 toward the second sub liquid chamber 16.
  • the lock-up orifice 33 is formed in the flow path member 21 of the partition member 17 and penetrates the flow path member 21 in the axial direction.
  • the lock-up orifice 33 is disposed in the flow path member 21 so as to avoid the axis O, and a plurality of lock-up orifices 33 are provided at intervals in the circumferential direction.
  • the resonance frequency of the lockup orifice 33 is equivalent to the frequency of the lockup vibration (for example, the frequency is about 80 Hz), and the lockup orifice 33 resonates (liquid column resonance) with respect to the input of the lockup vibration. Arise.
  • the flow resistance of the lock-up orifice 33 is smaller than the flow resistance of the idle orifice 31, and the flow resistance of the shake orifice 32 is larger than the flow resistance of the idle orifice 31.
  • the flow resistance of each orifice is determined based on, for example, the flow path length and the cross-sectional area of each orifice.
  • the storage chamber 34 communicates the lockup orifice 33 and the second auxiliary liquid chamber 16.
  • the storage chamber 34 is disposed in a portion of the partition member 17 that is sandwiched in the axial direction between the lock-up orifice 33 and the second auxiliary liquid chamber 16.
  • the storage chamber 34 is disposed coaxially with the axis O.
  • the storage chamber 34 is formed by a recess that opens toward one side of the main body member 20 of the partition member 17.
  • a communication hole 36 that opens toward the second auxiliary liquid chamber 16 is formed in the bottom wall surface of the storage chamber 34.
  • a plurality of communication holes 36 are formed at each position facing the lock-up orifice 33 in the axial direction on the bottom wall surface of the storage chamber 34.
  • the movable body 35 is disposed between the lock-up orifice 33 and the second auxiliary liquid chamber 16.
  • the movable body 35 is formed to be elastically deformable by, for example, a rubber material, and is formed in a plate shape whose front and back surfaces face the axial direction.
  • the movable body 35 is a so-called loose membrane that is accommodated in the accommodation chamber 34 so as to be displaceable in the axial direction.
  • the mode of displacement of the movable body 35 in the axial direction differs depending on the frequency of the input vibration.
  • the movable body 35 allows the main liquid chamber 14 and the second auxiliary liquid chamber 16 to communicate with each other through the storage chamber 34 when the lock-up vibration is input, and the main liquid chamber 14 and the second liquid passage through the storage chamber 34 when the shake vibration is input. It is displaced in the axial direction relative to the partition member 17 so as to block communication with the auxiliary liquid chamber 16.
  • the movable body 35 When the main body chamber 14 and the second sub liquid chamber 16 are communicated with each other through the storage chamber 34, the movable body 35 may be displaced alternately on both sides in the axial direction, for example, while being separated from the inner surface of the storage chamber 34. Good. Further, when the movable body 35 blocks the communication between the main liquid chamber 14 and the second sub liquid chamber 16 through the storage chamber 34, for example, the lockup orifice 33 and the communication hole 36 may be alternately closed. One of the up orifice 33 and the communication hole 36 may be continuously closed.
  • the deformation resistance of the second diaphragm 19 is smaller than the deformation resistance of the first diaphragm 18.
  • the deformation resistance of the first diaphragm 18 and the second diaphragm 19 is based on, for example, the Young's modulus of the material forming each member, the thickness of each member, etc. It can be adjusted by appropriately changing the volume change amount of the.
  • the vibration isolator 10 is a liquid encapsulated type in which a liquid such as ethylene glycol, water, or silicone oil is encapsulated.
  • the main liquid chamber 14, the first sub liquid chamber 15, the second sub liquid chamber 16, the idle orifice 31, the shake orifice 32, the lockup orifice 33, the storage chamber 34, and the communication hole 36 include the above-described components. Filled with liquid.
  • the vibration isolator 10 When the vibration isolator 10 is disposed between the vibration generating unit and the vibration receiving unit, the second mounting member 12 is displaced toward the other side with respect to the first mounting member 11 in the vibration isolating device 10. An initial load is applied, the main liquid chamber 14 is reduced, and the liquid pressure in the main liquid chamber 14 is changed and increased.
  • the deformation resistance of the second diaphragm 19 is smaller than the deformation resistance of the first diaphragm 18, the liquid pushed out from the main liquid chamber 14 at this time causes the second diaphragm 19 to be Flows into the second auxiliary liquid chamber 16.
  • the vibration isolator 10 includes a standard state in which the internal pressure of the adjustment chamber 24 is set to the standard pressure as shown in FIG. Thus, it can be switched to an adjustment state in which the internal pressure of the adjustment chamber 24 is reduced with respect to the standard pressure.
  • the inside of the adjustment chamber 24 is depressurized, whereby the second diaphragm 19 comes into close contact with the peripheral wall surface and the bottom wall surface of the adjustment chamber 24, and the adjustment chamber 24 shrinks and disappears.
  • the secondary liquid chamber 16 is enlarged.
  • the control unit can control the switching valve 27 based on the rotational speed of the engine as the vibration generating unit and the vehicle speed. Further, in this case, when the automobile is in a running state, the control unit connects the connection pipe 26 and the atmospheric pressure pipe 30 by the switching valve 27 and sets the internal pressure of the adjustment chamber 24 to the atmospheric pressure as the standard pressure. Further, when the automobile is in an idle state, the control unit connects the connection pipe 26 and the negative pressure pipe 29 by the switching valve 27 to reduce the internal pressure of the adjustment chamber 24. When an intake manifold is applied as the negative pressure source 28, the inside of the adjustment chamber 24 can be decompressed using the suction negative pressure generated in the intake manifold.
  • both the attachment members 11 and 12 are relatively displaced in the axial direction while elastically deforming the elastic body 13.
  • the fluid pressure in the fluid chamber 14 varies.
  • the liquid tries to flow through the idle orifice 31 while deforming the first diaphragm 18 between the main liquid chamber 14 and the first sub liquid chamber 15, or between the main liquid chamber 14 and the second sub liquid chamber 16.
  • the second diaphragm 19 is deformed while trying to flow through the shake orifice 32 or the lock-up orifice 33.
  • the liquid is supplied to the main liquid chamber 14 and the first sub liquid chamber. It is possible to make it easy to circulate between the main liquid chamber 14 and the second sub liquid chamber 16 by making it difficult to circulate between the main liquid chamber 14 and the second sub liquid chamber 16. Therefore, even if the flow resistance of the shake orifice 32 is larger than the flow resistance of the idle orifice 31 as in the present embodiment, the liquid can be preferentially flowed to the shake orifice 32 instead of the idle orifice 31.
  • the liquid in the main liquid chamber 14 is moved between the main liquid chamber 14 and the second sub liquid chamber 16 and the shake orifice 32 or the lock-up orifice. Try to preferentially distribute through 33.
  • the movable body 35 is displaced in the axial direction, and the communication between the lock-up orifice 33 and the second auxiliary liquid chamber 16 through the storage chamber 34 is blocked. Therefore, the liquid in the main liquid chamber 14 can be circulated between the main liquid chamber 14 and the second sub liquid chamber 16 through the shake orifice 32 instead of the lock-up orifice 33, and resonance occurs at the shake orifice 32. Can be generated to absorb and attenuate the shake vibration.
  • the flow resistance of the lock-up orifice 33 is smaller than the flow resistance of the shake orifice 32. Therefore, when lock-up vibration is input to the vibration isolator 10 in the standard state, the liquid can be preferentially circulated through the lock-up orifice 33 between the main liquid chamber 14 and the second sub liquid chamber 16. become. As a result, resonance is generated at the lock-up orifice 33, and lock-up vibration can be absorbed and damped, for example, by suppressing an increase in the dynamic spring constant of the vibration isolator 10.
  • the second is compared with the case where the vibration isolation device 10 is in the standard state.
  • the deformation resistance of the second diaphragm 19 can be increased by restraining the diaphragm 19. This makes it difficult for the liquid to flow between the main liquid chamber 14 and the second sub liquid chamber 16 and facilitates the flow between the main liquid chamber 14 and the first sub liquid chamber 15. , It can be preferentially distributed to the idle orifice 31 instead of the shake orifice 32 and the lockup orifice 33.
  • the liquid in the main liquid chamber 14 is preferentially passed through the idle orifice 31 between the main liquid chamber 14 and the first sub liquid chamber 15. It becomes possible to distribute to. As a result, resonance can be generated in the idle orifice 31, and idle vibration can be absorbed and damped, for example, by suppressing an increase in the dynamic spring constant of the vibration isolator 10.
  • the vibration isolator 10 As described above, according to the vibration isolator 10 according to the present embodiment, it is possible to absorb and attenuate each of the shake vibration and the idle vibration by switching between the standard state and the adjustment state, and a wide range of frequencies. Damping characteristics can be exhibited against vibration. Further, in a standard state, it is possible to absorb and attenuate shake vibration and lockup vibration, and to exhibit a damping characteristic with respect to vibration of a wider frequency range.
  • the inside of the adjustment chamber 24 can be reduced with respect to the standard pressure, but the present invention is not limited to this.
  • the inside of the adjustment chamber can be pressurized with respect to the standard pressure, and the adjustment state of the vibration isolator is pressed against the standard pressure in the adjustment chamber to restrain the second diaphragm. You may be in the state.
  • a pressure source can be employed instead of the negative pressure source.
  • the adjustment chamber is opened so that the inside of the adjustment chamber can be closed with respect to the outside, and the standard state of the vibration isolation device is opened to the outside.
  • the state may be a state in which the adjustment chamber is closed with respect to the outside.
  • the second diaphragm in the vibration isolator in the adjusted state, the second diaphragm can be restrained by using the pressure in the adjustment chamber as the back pressure.
  • an opening / closing valve that opens and closes the adjustment chamber with respect to the outside of the vibration isolator may be employed instead of the switching valve.
  • an opening / closing mechanism that directly opens and closes the connection hole may be employed instead of the switching valve and the connection pipe.
  • lock-up orifice 33, the storage chamber 34, the movable body 35, and the communication hole 36 may not be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

主液室(14)、第1副液室(15)および第2副液室(16)を形成する仕切り部材(17)と、第1副液室(15)の壁面の一部を構成する第1ダイヤフラム(18)と、第2副液室(16)の壁面の一部を構成し、変形抵抗が、第1ダイヤフラム(18)の変形抵抗よりも小さい第2ダイヤフラム(19)と、を備え、仕切り部材(17)に、主液室(14)と第1副液室(15)とを連通し、アイドル振動の入力に対して共振を生じさせるアイドルオリフィス(31)と、主液室(14)と第2副液室(16)とを連通し、シェイク振動の入力に対して共振を生じさせるシェイクオリフィス(32)と、が設けられ、第2副液室(16)に、内部が標準圧に対して減圧・加圧、または閉塞可能に開放された調整室(24)が、第2ダイヤフラム(19)を間に挟んで隣接している防振装置(10)。上記構成により、幅広い周波数の振動に対して減衰特性を発揮させる。

Description

防振装置
 本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。
本願は、2013年9月20日に、日本に出願された特願2013-195974号に基づき優先権を主張し、その内容をここに援用する。
 従来から、例えば下記特許文献1記載の防振装置が知られている。この防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、これらの両取付け部材を連結する弾性体と、第1取付け部材内に嵌合され、弾性体を壁面の一部とする主液室、および主液室から独立して設けられた副液室を形成する仕切り部材と、を備えている。仕切り部材には、主液室と副液室とを連通する制限通路が設けられていて、この防振装置に、制限通路の共振周波数と同等の周波数の振動が入力されたときに、その振動を吸収および減衰する。
日本国特開2012-172832号公報
 しかしながら、従来の防振装置では、幅広い周波数の振動に対して減衰特性を発揮させることについて改善の余地がある。
 本発明は、前述した事情に鑑みてなされ、幅広い周波数の振動に対して減衰特性を発揮させることができる防振装置を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を提案している。
 本発明に係る防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、これらの両取付け部材を連結する弾性体と、第1取付け部材内に嵌合され、上記弾性体を壁面の一部とする主液室、並びに主液室から独立して設けられた第1副液室および第2副液室を形成する仕切り部材と、第1副液室の壁面の一部を構成する第1ダイヤフラムと、第2副液室の壁面の一部を構成し、変形抵抗が、第1ダイヤフラムの変形抵抗よりも小さい第2ダイヤフラムと、を備え、上記仕切り部材には、主液室と第1副液室とを連通し、アイドル振動の入力に対して共振を生じさせるアイドルオリフィスと、主液室と第2副液室とを連通し、シェイク振動の入力に対して共振を生じさせるシェイクオリフィスと、が設けられ、第2副液室には、内部が標準圧に対して減圧もしくは加圧可能である、または内部が外部に対して閉塞可能に開放された調整室が、第2ダイヤフラムを間に挟んで隣接している。
 この発明では、アイドルオリフィスが、アイドル振動の入力に対して共振を生じる一方、シェイクオリフィスが、シェイク振動に対して共振を生じることから、シェイクオリフィスの流通抵抗は、アイドルオリフィスの流通抵抗よりも大きくなる。
 ところで、調整室内を標準圧とした標準状態の防振装置に、または調整室内を外部に開放した標準状態の防振装置に振動が入力されると、液体が、主液室と第1副液室との間を、第1ダイヤフラムを変形させながらアイドルオリフィスを通して流通しようとしたり、主液室と第2副液室との間を、第2ダイヤフラムを変形させながらシェイクオリフィスを通して流通しようとしたりする。ここで第2ダイヤフラムの変形抵抗が、第1ダイヤフラムの変形抵抗よりも小さくなっているので、液体を、主液室と第1副液室との間で流通させ難くして主液室と第2副液室との間で流通させ易くすることができる。したがって、前述のように、シェイクオリフィスの流通抵抗が、アイドルオリフィスの流通抵抗より大きくても、液体を、アイドルオリフィスではなくシェイクオリフィスに優先的に流通させることができる。
 その結果、標準状態の防振装置にシェイク振動が入力されたときに、主液室内の液体を、主液室と第2副液室との間でシェイクオリフィスを通して優先的に流通させることが可能になり、シェイクオリフィスで共振を生じさせてシェイク振動を吸収および減衰することができる。
 一方、防振装置を、調整室内を標準圧に対して減圧もしくは加圧した調整状態とし、または調整室内を外部に対して閉塞した調整状態とすると、この防振装置が標準状態である場合に比べて、第2ダイヤフラムを拘束して第2ダイヤフラムの変形抵抗を大きくすることができる。これにより、液体を、主液室と第2副液室との間で流通させ難くして主液室と第1副液室との間で流通させ易くすることが可能になり、シェイクオリフィスではなくアイドルオリフィスに優先的に流通させることができる。
 その結果、調整状態の防振装置にアイドル振動が入力されたときに、主液室内の液体を、主液室と第1副液室との間でアイドルオリフィスを通して優先的に流通させることが可能になり、アイドルオリフィスで共振を生じさせてアイドル振動を吸収および減衰することができる。
 この防振装置によれば、標準状態と調整状態とを切り替えることで、シェイク振動およびアイドル振動それぞれを吸収および減衰することが可能になり、幅広い周波数の振動に対して減衰特性を発揮させることができる。
 また、上記仕切り部材には、主液室から第2副液室に向けて延び、ロックアップ振動の入力に対して共振を生じるロックアップオリフィスと、ロックアップオリフィスと第2副液室とを連通する収容室と、収容室内に、第1取付け部材の軸方向に変位自在に収容された可動体と、が設けられ、上記可動体は、ロックアップ振動の入力時に収容室を通してロックアップオリフィスと第2副液室とを連通させ、かつシェイク振動の入力時にその連通を遮断するように、収容室内に、軸方向に変位自在に収容されていてもよい。
 この場合、標準状態の防振装置にシェイク振動が入力されたときには、可動体が軸方向に変位して、収容室を通したロックアップオリフィスと第2副液室との連通を遮断する。したがって、主液室内の液体を、主液室と第2副液室との間でシェイクオリフィスを通して流通させることが可能になり、シェイクオリフィスで共振を生じさせてシェイク振動を吸収および減衰することができる。
 ところで、ロックアップオリフィスは、ロックアップ振動に対して共振を生じることから、ロックアップオリフィスの流通抵抗は、アイドルオリフィスやシェイクオリフィスの各流通抵抗よりも小さくなる。したがって、液体を、アイドルオリフィスやシェイクオリフィスに比べて、ロックアップオリフィスに優先的に流通させることができる。
 その結果、標準状態の防振装置にロックアップ振動が入力されたときには、液体を、主液室と第2副液室との間でロックアップオリフィスを通して優先的に流通させることが可能になり、ロックアップオリフィスで共振を生じさせてロックアップ振動を吸収および減衰することができる。
 この防振装置によれば、標準状態で、シェイク振動およびロックアップ振動を吸収および減衰することが可能になり、一層幅広い周波数の振動に対して減衰特性を発揮させることができる。
 本発明に係る防振装置によれば、幅広い周波数の振動に対して減衰特性を発揮させることができる。
本発明の一実施形態に係る防振装置の標準状態を示す縦断面図である。 図1に示す防振装置の調整状態を示す縦断面図である。
 以下、図面を参照し、本発明の一実施形態に係る防振装置を説明する。
 図1に示すように、防振装置10は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付け部材11、および他方に連結される第2取付け部材12と、第1取付け部材11および第2取付け部材12を弾性的に連結する弾性体13と、第1取付け部材11内に嵌合され、弾性体13を壁面の一部とする主液室14、並びに主液室14から独立して設けられた第1副液室15および第2副液室16を形成する仕切り部材17と、第1副液室15の壁面の一部を構成する第1ダイヤフラム18と、第2副液室16の壁面の一部を構成する第2ダイヤフラム19と、を備えている。
 この液体封入型の防振装置10が例えば自動車に装着された場合、第2取付け部材12が振動発生部としてのエンジンに連結される一方、第1取付け部材11が振動受部としての車体に連結されることにより、エンジンの振動が車体に伝達することが抑えられる。この防振装置10では、装着時の支持荷重に基づいて主液室14に正圧がかかる。
 第1取付け部材11は円筒状、図示の例では多段円筒状に形成されている。以下では、第1取付け部材11の軸線Oに沿う方向を軸方向といい、軸線Oに直交する方向を径方向といい、軸線O回りに周回する方向を周方向という。
 第2取付け部材12は、第1取付け部材11において軸方向に沿った一方側(以下、「一方側」という)に位置する一端部に配設されている。第2取付け部材12は、軸線Oと同軸に配置された柱状に形成されている。
 弾性体13は、第1取付け部材11の一端部の内周面および第2取付け部材12の外周面それぞれに接着されていて、第1取付け部材11の一端部を閉塞している。
 仕切り部材17は、本体部材20と、流路部材21と、を備えている。本体部材20は、前記軸線Oと同軸に配置され、第1取付け部材11において、一端部よりも軸方向に沿った他方側(以下、「他方側」という)に位置する部分内に液密に嵌合されている。本体部材20において他方側に位置する端部には、径方向の外側に向けて突出する環状のフランジ部20aが設けられている。流路部材21は、軸線Oと同軸に配置され、本体部材20に一方側から組み付けられている。
 主液室14は、第1取付け部材11内において、弾性体13と仕切り部材17との間に位置する部分に形成されている。主液室14の液圧は、振動の入力時に、弾性体13が変形してこの主液室14の内容積が変化することで変動する。
 第1副液室15は、主液室14から他方側に離間していて、軸線Oと同軸の環状に形成されている。本実施形態では、第1副液室15は、本体部材20に形成され他方側に向けて開口する液室凹部20bが、第1ダイヤフラム18により閉塞され、第1ダイヤフラム18が変形することにより拡縮する。
 第1ダイヤフラム18は、弾性変形可能な膜状に形成されている。第1ダイヤフラム18は、軸線Oと同軸の環状に形成されていて、液室凹部20bを他方側から閉塞している。第1ダイヤフラム18の内周縁部および外周縁部は、本体部材20に固定されている。第1ダイヤフラム18の内周縁部は、本体部材20において液室凹部20bよりも径方向の内側に位置する部分に加硫接着されている。第1ダイヤフラム18の外周縁部は、本体部材20のフランジ部20aに固定されていて、図示の例では、フランジ部20aと、このフランジ部20aに他方側から重ね合わされた固定リング22と、の間に挟持されている。
 第2副液室16は、主液室14から他方側に離間していて、軸線Oと同軸に配置されている。本実施形態では、第2副液室16は、仕切り部材17内に形成されていて、本体部材20内に形成された内空間23が、第2ダイヤフラム19により仕切られてなる。第2副液室16は、第2ダイヤフラム19が変形することにより拡縮する。
 内空間23は、本体部材20において液室凹部20bよりも径方向の内側に位置する部分に形成されている。第2ダイヤフラム19は、内空間23の軸方向の中央部に配置されていて、内空間23を軸方向に仕切っている。第2ダイヤフラム19の外周縁部は、内空間23の内周面に、周方向の全周にわたって液密に固定されている。そして内空間23のうち、第2ダイヤフラム19よりも一方側に位置する部分が第2副液室16とされ、他方側に位置する部分は、内部に空気(流体)が収容された調整室24とされている。
 調整室24は、第2副液室16に、第2ダイヤフラム19を間に挟んで隣接している。
調整室24は、主液室14から他方側に離間していて、仕切り部材17内に形成されるとともに軸線Oと同軸に配置されている。調整室24は、一方側から他方側に向かうに従い漸次、縮径する逆円錐台状に形成されている。調整室24の周壁面と底壁面とを接続する部分は、他方側に向けて凹となる凹曲面状に形成されている。なお調整室24の容積は、主液室14および第1副液室15の容積よりも小さく、主液室14の容積の1/5以下であることが好ましい。例えば、本実施形態では、調整室24の容積は主液室14の容積の1/10程度となっている。
 調整室24は、内部が標準圧に対して減圧可能である。調整室24の底壁面には、この防振装置10の外部に設けられた調整機構25が接続される接続孔24aが開口している。調整機構25は、接続孔24aに接続パイプ26を介して接続される切り替え弁27と、この切り替え弁27を制御する図示しない制御部と、を備えている。
 切り替え弁27は、例えば電磁弁などにより形成される。切り替え弁27には、例えばエンジンのインテークマニホールド等の負圧源28に接続される負圧パイプ29と、大気開放される大気圧パイプ30と、が接続されている。切り替え弁27は、接続パイプ26に接続されるパイプを、負圧パイプ29と大気圧パイプ30とで切り替える。上記制御部は、例えば振動発生部の作動状況などに基づいて切り替え弁27を制御する。
 ここで仕切り部材17には、アイドルオリフィス31と、シェイクオリフィス32と、ロックアップオリフィス33と、収容室34と、可動体35と、が設けられている。
 アイドルオリフィス31は、主液室14と第1副液室15とを連通する。アイドルオリフィス31は、仕切り部材17の本体部材20に形成されていて、軸線Oを回避して配置され軸方向に延びている。アイドルオリフィス31の共振周波数は、アイドル振動(例えば、周波数が15Hz~40Hz、振幅が±0.5mm以下)の周波数と同等となっていて、アイドルオリフィス31は、アイドル振動の入力に対して共振(液柱共振)を生じる。
 シェイクオリフィス32は、主液室14と第2副液室16とを連通する。シェイクオリフィス32は、仕切り部材17の本体部材20に形成されていて、軸線Oを回避して配置され軸方向に延びている。シェイクオリフィス32の共振周波数は、シェイク振動(例えば、周波数が14Hz以下、振幅が±0.5mmより大きい)の周波数と同等となっていて、シェイクオリフィス32は、シェイク振動の入力に対して共振(液柱共振)を生じる。
 ロックアップオリフィス33は、主液室14から第2副液室16に向けて延びている。
ロックアップオリフィス33は、仕切り部材17の流路部材21に形成されていて、流路部材21を軸方向に貫通している。ロックアップオリフィス33は、流路部材21に軸線Oを回避して配置され、周方向に間隔をあけて複数設けられている。ロックアップオリフィス33の共振周波数は、ロックアップ振動(例えば、周波数が80Hz程度)の周波数と同等となっていて、ロックアップオリフィス33は、ロックアップ振動の入力に対して共振(液柱共振)を生じる。
 ここで、ロックアップオリフィス33の流通抵抗は、アイドルオリフィス31の流通抵抗よりも小さく、シェイクオリフィス32の流通抵抗は、アイドルオリフィス31の流通抵抗よりも大きくなっている。なお各オリフィスの流通抵抗は、例えば各オリフィスの流路長や流路断面積などに基づいて決定される。
 収容室34は、ロックアップオリフィス33と第2副液室16とを連通する。収容室34は、仕切り部材17において、ロックアップオリフィス33と第2副液室16との間に軸方向に挟み込まれた部分に配置されている。収容室34は、軸線Oと同軸に配置されている。収容室34は、仕切り部材17の本体部材20の一方側に向けて開口する凹部により形成されている。収容室34の底壁面には、第2副液室16に向けて開口する連通孔36が形成されている。連通孔36は、収容室34の底壁面においてロックアップオリフィス33と軸方向に対向する各位置に形成されていて、複数設けられている。
 可動体35は、ロックアップオリフィス33と第2副液室16との間に配置されている。可動体35は、例えばゴム材料などにより弾性変形可能に形成され、表裏面が軸方向を向く板状に形成されている。可動体35は、収容室34に、軸方向に変位自在に収容されたいわゆるガタメンブランである。可動体35の軸方向への変位の態様は、入力される振動の周波数に応じて異なる。可動体35は、ロックアップ振動の入力時に収容室34を通して主液室14と第2副液室16とを連通させ、かつシェイク振動の入力時に収容室34を通した主液室14と第2副液室16との連通を遮断するように、仕切り部材17に対して相対的に軸方向に変位する。
 可動体35は、収容室34を通して主液室14と第2副液室16とを連通させるときには、例えば収容室34の内面から離間した状態で、軸方向の両側に交互に変位していてもよい。また可動体35は、収容室34を通した主液室14と第2副液室16との連通を遮断するときには、例えばロックアップオリフィス33および連通孔36を交互に閉塞してもよく、ロックアップオリフィス33および連通孔36のうちの一方を閉塞し続けてもよい。
 この防振装置10では、第2ダイヤフラム19の変形抵抗は、第1ダイヤフラム18の変形抵抗よりも小さくなっている。なお、第1ダイヤフラム18や第2ダイヤフラム19の変形抵抗は、例えば、各部材を形成する材料のヤング率や各部材の厚さ等に基づいて、各部材の曲げ剛性や各部材における単位荷重あたりの体積変化量などを適宜変更すること等により調整することができる。
 この防振装置10は、例えばエチレングリコール、水、シリコーンオイル等の液体が封入された液体封入型である。防振装置10のうち、主液室14、第1副液室15、第2副液室16、アイドルオリフィス31、シェイクオリフィス32、ロックアップオリフィス33、収容室34、連通孔36には、上記液体が充填されている。
 次に、この防振装置10の作用について説明する。
 この防振装置10が振動発生部と振動受部との間に配置されたときには、この防振装置10に、第2取付け部材12を第1取付け部材11に対して他方側に向けて変位させる初期荷重が加えられて主液室14が縮小し、主液室14の液圧が変動して高められる。ここでこの防振装置10では、第2ダイヤフラム19の変形抵抗が、第1ダイヤフラム18の変形抵抗よりも小さいので、このとき主液室14から押し出される液体は、第2ダイヤフラム19を壁面の一部とする第2副液室16に流入する。
 またこの防振装置10は、調整機構25の上記制御部が切り替え弁27を制御することで、図1に示すような、調整室24の内圧を標準圧とした標準状態と、図2に示すような、調整室24の内圧を標準圧に対して減圧した調整状態と、に切り替えられる。調整状態の防振装置10では、調整室24内が減圧されることで、第2ダイヤフラム19が調整室24の周壁面および底壁面に密接し、調整室24が縮小して消滅し、第2副液室16が拡大する。調整室24内に対する減圧を解除すると、第2ダイヤフラム19が復元変形して調整室24が標準圧に復元する。
 例えば、この防振装置10が自動車に適用された場合、上記制御部は、振動発生部としてのエンジンの回転数や、車速に基づいて切り替え弁27を制御すること等ができる。またこの場合、制御部は、自動車が走行状態のときは、切り替え弁27により接続パイプ26と大気圧パイプ30とを接続し、調整室24の内圧を、標準圧としての大気圧にする。また制御部は、自動車がアイドル状態のときは、切り替え弁27により接続パイプ26と負圧パイプ29とを接続し、調整室24の内圧を減圧する。なお、負圧源28としてインテークマニホールドを適用した場合には、インテークマニホールドに発生する吸入負圧を利用して、調整室24内を減圧することができる。
 図1に示すような標準状態の防振装置10に軸方向に振動が入力されると、両取付け部材11、12が、弾性体13を弾性変形させながら軸方向に相対的に変位し、主液室14の液圧が変動する。すると液体が、主液室14と第1副液室15との間を、第1ダイヤフラム18を変形させながらアイドルオリフィス31を通して流通しようとしたり、主液室14と第2副液室16との間を、第2ダイヤフラム19を変形させながらシェイクオリフィス32やロックアップオリフィス33を通して流通しようとしたりする。
 ここでこの防振装置10では、前述のように第2ダイヤフラム19の変形抵抗が、第1ダイヤフラム18の変形抵抗よりも小さくなっているので、液体を、主液室14と第1副液室15との間で流通させ難くして主液室14と第2副液室16との間で流通させ易くすることができる。したがって、本実施形態のように、シェイクオリフィス32の流通抵抗が、アイドルオリフィス31の流通抵抗より大きくても、液体を、アイドルオリフィス31ではなくシェイクオリフィス32に優先的に流通させることができる。
 その結果、この防振装置10にシェイク振動が入力されたときに、主液室14内の液体が、主液室14と第2副液室16との間で、シェイクオリフィス32やロックアップオリフィス33を通して優先的に流通しようとする。このとき、可動体35が軸方向に変位して、収容室34を通したロックアップオリフィス33と第2副液室16との連通を遮断する。したがって、主液室14内の液体を、主液室14と第2副液室16との間で、ロックアップオリフィス33ではなくシェイクオリフィス32を通して流通させることが可能になり、シェイクオリフィス32で共振を生じさせてシェイク振動を吸収および減衰することができる。
 またこの防振装置10では、ロックアップオリフィス33の流通抵抗が、シェイクオリフィス32の流通抵抗よりも小さくなっている。したがって、標準状態の防振装置10にロックアップ振動が入力されたときには、液体を、主液室14と第2副液室16との間でロックアップオリフィス33を通して優先的に流通させることが可能になる。その結果、ロックアップオリフィス33で共振を生じさせ、例えばこの防振装置10の動ばね定数の上昇を抑制する等してロックアップ振動を吸収および減衰することができる。
 一方、図2に示すように、防振装置10を、調整室24内が標準圧に対して減圧された調整状態とすると、この防振装置10が標準状態である場合に比べて、第2ダイヤフラム19を拘束して第2ダイヤフラム19の変形抵抗を大きくすることができる。これにより、液体を、主液室14と第2副液室16との間で流通させ難くして主液室14と第1副液室15との間で流通させ易くすることが可能になり、シェイクオリフィス32やロックアップオリフィス33ではなくアイドルオリフィス31に優先的に流通させることができる。
 その結果、調整状態の防振装置10にアイドル振動が入力されたときに、主液室14内の液体を、主液室14と第1副液室15との間でアイドルオリフィス31を通して優先的に流通させることが可能になる。その結果、アイドルオリフィス31で共振を生じさせ、例えばこの防振装置10の動ばね定数の上昇を抑制する等してアイドル振動を吸収および減衰することができる。
 以上説明したように、本実施形態に係る防振装置10によれば、標準状態と調整状態とを切り替えることで、シェイク振動およびアイドル振動それぞれを吸収および減衰することが可能になり、幅広い周波数の振動に対して減衰特性を発揮させることができる。
 また標準状態で、シェイク振動およびロックアップ振動を吸収および減衰することが可能になり、一層幅広い周波数の振動に対して減衰特性を発揮させることができる。
 本発明の技術的範囲は上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 上記実施形態では、調整室24の内部が標準圧に対して減圧可能としたが、本発明はこれに限られない。
 例えば、本発明の第1変形例では、調整室の内部を標準圧に対して加圧可能とし、防振装置の調整状態を、調整室内を標準圧に対して加圧して第2ダイヤフラムを拘束した状態としてもよい。この場合、例えば上記負圧源に代えて圧力源を採用すること等ができる。
 さらに例えば、本発明の第2変形例では、調整室の内部を外部に対して閉塞可能に開放し、防振装置の標準状態を、調整室内を外部に開放した状態とし、防振装置の調整状態を、調整室内を外部に対して閉塞した状態としてもよい。この場合、調整状態の防振装置において、調整室内の圧力を背圧として利用することで第2ダイヤフラムを拘束することができる。なおこの構成において、上記切り替え弁に代えて、調整室内をこの防振装置の外部に対して開閉する開閉弁を採用してもよい。さらに、切り替え弁および接続パイプに代えて、接続孔を直接開閉する開閉機構を採用してもよい。
 またロックアップオリフィス33、収容室34、可動体35および連通孔36がなくてもよい。
 その他、本発明の趣旨に逸脱しない範囲で、上記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記の変形例を適宜組み合わせてもよい。
幅広い周波数の振動に対して減衰特性を発揮させることができる防振装置を提供することができる。
10 防振装置
11 第1取付け部材
12 第2取付け部材
13 弾性体
14 主液室
15 第1副液室
16 第2副液室
17 仕切り部材
18 第1ダイヤフラム
19 第2ダイヤフラム
24 調整室
31 アイドルオリフィス
32 シェイクオリフィス
33 ロックアップオリフィス
34 収容室
35 可動体

Claims (2)

  1.  振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、
     これらの両取付け部材を連結する弾性体と、
     前記第1取付け部材内に嵌合され、前記弾性体を壁面の一部とする主液室、並びに前記主液室から独立して設けられた第1副液室および第2副液室を形成する仕切り部材と、
     前記第1副液室の壁面の一部を構成する第1ダイヤフラムと、
     前記第2副液室の壁面の一部を構成し、変形抵抗が、前記第1ダイヤフラムの変形抵抗よりも小さい第2ダイヤフラムと、を備え、
     前記仕切り部材には、前記主液室と前記第1副液室とを連通し、アイドル振動の入力に対して共振を生じさせるアイドルオリフィスと、前記主液室と前記第2副液室とを連通し、シェイク振動の入力に対して共振を生じさせるシェイクオリフィスと、が設けられ、
     前記第2副液室には、内部が標準圧に対して減圧もしくは加圧可能である、または内部が外部に対して閉塞可能に開放された調整室が、前記第2ダイヤフラムを間に挟んで隣接している防振装置。
  2.  前記仕切り部材には、前記主液室から前記第2副液室に向けて延び、ロックアップ振動の入力に対して共振を生じさせるロックアップオリフィスと、前記ロックアップオリフィスと前記第2副液室とを連通する収容室と、前記収容室内に、前記第1取付け部材の軸方向に変位自在に収容された可動体と、が設けられ、
     前記可動体は、前記ロックアップ振動の入力時に前記収容室を通して前記ロックアップオリフィスと前記第2副液室とを連通させ、かつ前記シェイク振動の入力時にその連通を遮断するように、前記収容室内に、前記軸方向に変位自在に収容されている請求項1記載の防振装置。
PCT/JP2014/073202 2013-09-20 2014-09-03 防振装置 WO2015041056A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/022,023 US9719575B2 (en) 2013-09-20 2014-09-03 Vibration-damping device
CN201480050721.1A CN105531499B (zh) 2013-09-20 2014-09-03 隔振装置
EP14846387.0A EP3048332B1 (en) 2013-09-20 2014-09-03 Vibration-damping device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013195974A JP5642241B1 (ja) 2013-09-20 2013-09-20 防振装置
JP2013-195974 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015041056A1 true WO2015041056A1 (ja) 2015-03-26

Family

ID=52139133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073202 WO2015041056A1 (ja) 2013-09-20 2014-09-03 防振装置

Country Status (5)

Country Link
US (1) US9719575B2 (ja)
EP (1) EP3048332B1 (ja)
JP (1) JP5642241B1 (ja)
CN (1) CN105531499B (ja)
WO (1) WO2015041056A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452074B1 (ko) * 2016-12-06 2022-10-06 현대자동차주식회사 차량의 엔진 마운트
US10544851B2 (en) * 2017-02-23 2020-01-28 Ford Global Technologies, Llc Vehicular vibration isolation system and apparatus
CN112074672B (zh) * 2018-05-10 2022-05-17 株式会社普利司通 隔振装置
US10919384B2 (en) * 2018-07-20 2021-02-16 GM Global Technology Operations LLC Mount assembly with electro-hydro-pneumatic switchable displacement elements
US10994606B2 (en) * 2018-07-20 2021-05-04 GM Global Technology Operations LLC Mount assembly with switchable displacement elements
KR20200136704A (ko) * 2019-05-28 2020-12-08 현대자동차주식회사 유체 봉입형 엔진 마운트
JP7326120B2 (ja) * 2019-11-07 2023-08-15 株式会社プロスパイラ 防振装置
US20220397177A1 (en) * 2019-11-07 2022-12-15 Prospira Corporation Vibration-damping device
JP7326121B2 (ja) * 2019-11-07 2023-08-15 株式会社プロスパイラ 防振装置
JP7326122B2 (ja) * 2019-11-07 2023-08-15 株式会社プロスパイラ 防振装置
US20220403912A1 (en) * 2019-11-07 2022-12-22 Bridgestone Corporation Vibration-damping device
JP7438000B2 (ja) * 2020-04-08 2024-02-26 Toyo Tire株式会社 液封入式防振装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544767A (ja) * 1991-08-05 1993-02-23 Toyo Tire & Rubber Co Ltd 液体封入式防振装置
JPH0678644U (ja) * 1993-04-09 1994-11-04 エヌ・オー・ケー・メグラスティック株式会社 液体封入式マウント
JP2005076797A (ja) * 2003-09-02 2005-03-24 Bridgestone Corp 防振装置
JP2012172832A (ja) 2011-02-24 2012-09-10 Toyo Tire & Rubber Co Ltd 液封入式防振装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223139A (ja) * 1991-12-20 1993-08-31 Bridgestone Corp 防振装置
JP3461913B2 (ja) * 1994-06-20 2003-10-27 株式会社ブリヂストン 防振装置
US6176477B1 (en) * 1997-05-20 2001-01-23 Toyoda Gosei Co. Ltd. Liquid-sealing type variation isolating apparatus
JP4137201B2 (ja) * 1997-10-08 2008-08-20 株式会社ブリヂストン 防振装置
US6257562B1 (en) * 1998-12-11 2001-07-10 Toyo Tire & Rubber Co., Ltd. Liquid filled vibration isolating device
JP4220107B2 (ja) * 2000-06-16 2009-02-04 東洋ゴム工業株式会社 制御型の液封入式防振装置
JP2002031184A (ja) * 2000-07-14 2002-01-31 Tokai Rubber Ind Ltd 流体封入式防振装置
JP4261038B2 (ja) * 2000-08-24 2009-04-30 東洋ゴム工業株式会社 制御型液封入式防振装置
JP3629485B2 (ja) * 2001-03-30 2005-03-16 東洋ゴム工業株式会社 液封入式防振装置
WO2003091597A1 (en) * 2002-04-25 2003-11-06 Bridgestone Corporation Vibration control equipment
JP4491413B2 (ja) * 2003-03-11 2010-06-30 株式会社ブリヂストン 防振装置
JP4330437B2 (ja) * 2003-12-12 2009-09-16 東海ゴム工業株式会社 流体封入式防振装置
JP2006161962A (ja) * 2004-12-07 2006-06-22 Tokai Rubber Ind Ltd 能動型流体封入式エンジンマウント
CN101305205B (zh) * 2005-09-07 2010-09-08 株式会社普利司通 防振装置
US8157250B2 (en) * 2008-10-23 2012-04-17 GM Global Technology Operations LLC Hydraulic mount having double idle rate dip frequencies of dynamic stiffness
JP5095763B2 (ja) * 2010-01-21 2012-12-12 東洋ゴム工業株式会社 液封入式防振装置
WO2011099357A1 (ja) * 2010-02-09 2011-08-18 株式会社ブリヂストン 防振装置
JP5595369B2 (ja) * 2011-12-14 2014-09-24 東海ゴム工業株式会社 流体封入式防振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544767A (ja) * 1991-08-05 1993-02-23 Toyo Tire & Rubber Co Ltd 液体封入式防振装置
JPH0678644U (ja) * 1993-04-09 1994-11-04 エヌ・オー・ケー・メグラスティック株式会社 液体封入式マウント
JP2005076797A (ja) * 2003-09-02 2005-03-24 Bridgestone Corp 防振装置
JP2012172832A (ja) 2011-02-24 2012-09-10 Toyo Tire & Rubber Co Ltd 液封入式防振装置

Also Published As

Publication number Publication date
CN105531499A (zh) 2016-04-27
JP5642241B1 (ja) 2014-12-17
EP3048332A1 (en) 2016-07-27
US20160223048A1 (en) 2016-08-04
US9719575B2 (en) 2017-08-01
JP2015059655A (ja) 2015-03-30
CN105531499B (zh) 2017-08-08
EP3048332B1 (en) 2018-04-25
EP3048332A4 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5642241B1 (ja) 防振装置
US8807545B2 (en) Liquid-sealed antivibration device
US8864114B2 (en) Liquid-sealed antivibration device
JP4820792B2 (ja) 流体封入式防振装置
JP5865780B2 (ja) 防振装置
WO2011099357A1 (ja) 防振装置
JP2010031989A (ja) 流体封入式防振装置
JP2009103141A (ja) 液体封入式防振装置
JP5977141B2 (ja) 流体封入式防振装置
WO2015122034A1 (ja) 防振装置
JP5431982B2 (ja) 液封入式防振装置
WO2018168567A1 (ja) 流体封入式防振装置
WO2018135312A1 (ja) 防振装置
JP2004069005A (ja) 流体封入式防振装置
JP2010255831A (ja) 防振装置
JP5723944B2 (ja) 防振装置
JP4158108B2 (ja) 空気圧切換型の流体封入式エンジンマウント
JP2010139023A (ja) 液封入式防振装置
JP4623428B2 (ja) 流体封入式防振装置
JP2005233243A (ja) 流体封入式エンジンマウント
JP2006234111A (ja) 流体封入式防振装置
JPH02240430A (ja) 流体封入式筒型マウント装置
JP2008196508A (ja) 流体封入式防振装置
JP5926108B2 (ja) 流体封入式防振装置
JP4378249B2 (ja) 液体封入式防振マウント装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050721.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15022023

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014846387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014846387

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE