WO2015033988A1 - 営業車両を用いて軌道の状態を測定する方法、及び、軌道の状態を測定する営業車両 - Google Patents

営業車両を用いて軌道の状態を測定する方法、及び、軌道の状態を測定する営業車両 Download PDF

Info

Publication number
WO2015033988A1
WO2015033988A1 PCT/JP2014/073283 JP2014073283W WO2015033988A1 WO 2015033988 A1 WO2015033988 A1 WO 2015033988A1 JP 2014073283 W JP2014073283 W JP 2014073283W WO 2015033988 A1 WO2015033988 A1 WO 2015033988A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
displacement
calculated
travel distance
wheel
Prior art date
Application number
PCT/JP2014/073283
Other languages
English (en)
French (fr)
Inventor
洋平 道辻
諒 松井
安弘 佐藤
裕貴 森
忠 清水
栗原 純
智博 世木
弘史 大林
将明 水野
益久 谷本
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to ES14842889T priority Critical patent/ES2717977T3/es
Priority to US14/916,228 priority patent/US9963157B2/en
Priority to EP14842889.9A priority patent/EP3042822B1/en
Priority to CN201480049095.4A priority patent/CN105517874B/zh
Publication of WO2015033988A1 publication Critical patent/WO2015033988A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/047Track or rail movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/048Road bed changes, e.g. road bed erosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/53Trackside diagnosis or maintenance, e.g. software upgrades for trackside elements or systems, e.g. trackside supervision of trackside control system conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a method for measuring the state of a track using a business vehicle, and a business vehicle for measuring the state of a track, and more specifically, a method for measuring a planar displacement of a track using a business vehicle, and a track.
  • the present invention relates to a business vehicle that measures the flatness displacement of the vehicle.
  • the track displacement is known as an index for managing the state of the track on which the railway vehicle travels.
  • intergauge displacement level displacement
  • height displacement height displacement
  • street displacement street displacement
  • planar displacement planar displacement
  • planar displacement represents a twisted state with respect to the plane of the track, and means a difference in level displacement between two points spaced apart in the longitudinal direction of the track.
  • the level displacement means a difference in height between the left and right rails constituting the track.
  • the track displacement is measured by a dedicated track inspection vehicle (see, for example, JP-A-2001-130408).
  • the track inspection car is a non-business vehicle and the number is small. For this reason, orbital displacement cannot be measured frequently, and it is necessary to measure between operation schedules such as midnight. Therefore, it is desired that the track displacement can be measured on a daily basis by a business vehicle instead of using the track inspection and measurement vehicle.
  • a derailment coefficient which is an index indicating the running safety of a railway vehicle
  • a cart PQ monitoring cart
  • a derailment coefficient can be measured on a daily basis by using a cart (PQ monitoring cart) capable of measuring wheel load and lateral pressure as a business vehicle.
  • the wheel load is a vertical force acting between the wheel of the railway vehicle and the rail constituting the track.
  • the lateral pressure is a horizontal force (direction along the axle) that acts between the wheel and the rail.
  • the derailment coefficient is an index represented by Q / P where P is the wheel load and Q is the lateral pressure.
  • the derailment coefficient can be measured on a regular basis with commercial vehicles.
  • An object of the present invention is to provide a method for measuring the planar displacement of a track using a business vehicle and a business vehicle for measuring the planar displacement of the track.
  • the method according to the embodiment of the present invention is a method for measuring the state of a track using a business vehicle.
  • the business vehicle includes a carriage.
  • the carriage has four wheels and corresponding primary wheels, each of which has a primary spring that supports the corresponding wheel, and measures the wheel weight of each of the four wheels.
  • the method includes the following steps (1) to (3). Step (1): The wheel weight of each wheel is measured. Step (2): Calculate the displacement of each primary spring based on the measured wheel load. Step (3): Based on the calculated displacement of the primary spring, the flat displacement of the track is calculated.
  • the business vehicle measures the state of the track.
  • the business vehicle includes a carriage and a calculation unit.
  • the carriage has four wheels and corresponding primary wheels, each of which has a primary spring that supports the corresponding wheel, and measures the wheel weight of each of the four wheels.
  • the computing unit measures the state of the track based on the wheel weight of each of the four wheels.
  • the computing unit includes a wheel load measuring unit, a spring displacement calculating unit, and a flatness displacement calculating unit.
  • the wheel weight measuring unit measures the wheel weight of each wheel.
  • the spring displacement calculator calculates the displacement of each primary spring based on the measured wheel load.
  • the flatness displacement calculation unit calculates the flatness displacement of the track based on the calculated displacement of the primary spring.
  • the planar displacement of the track can be measured.
  • FIG. 1A is a diagram for explaining a schematic configuration of a carriage included in a business vehicle according to an embodiment of the present invention and a method for measuring the state of a track.
  • FIG. 1B is a diagram illustrating a method for calculating the displacement of the primary spring.
  • FIG. 2A is a graph showing an example of a result of measuring the planar displacement in the same curved section by a business vehicle.
  • FIG. 2B is a graph showing an example of the result of measuring the wheel load (the wheel load of the wheel located on the outer gauge side in front of the carriage) in the same curved section with a business vehicle.
  • FIG. 3A is a graph showing the result of averaging the measured values of the planar displacement shown in FIG. 2A every predetermined period.
  • FIG. 3B is a graph showing the result of drift removal (offset correction) from the result shown in FIG. 3A.
  • FIG. 4A is a diagram schematically illustrating a state in which a part of the track is replaced with a new rail.
  • FIG. 4B is a graph showing the result of subtracting the flatness displacement before replacement (planarity displacement after offset correction) from the flatness displacement after replacement with a new rail (planarity displacement after offset correction).
  • FIG. 4C shows the flatness displacement after replacement with a new rail (planarity displacement after offset correction) to the flatness displacement after replacement with a new rail (planarity displacement after offset correction), although the measurement time is old. It is a graph which shows the result of subtracting.
  • FIG. 4A is a diagram schematically illustrating a state in which a part of the track is replaced with a new rail.
  • FIG. 4B is a graph showing the result of subtracting the flatness displacement before replacement (planarity displacement after offset correction) from the flatness displacement after replacement with
  • FIG. 5A is a flowchart illustrating processing executed by the calculation unit.
  • FIG. 5B is a flowchart illustrating the measurement and calculation processing indicated by the calculation unit.
  • FIG. 5C is a flowchart illustrating a distribution calculation process executed by the calculation unit.
  • FIG. 6A is a graph showing an example of correction for translating the target distribution about the first axis.
  • FIG. 6B is a graph illustrating an example of correction for expanding and contracting the target distribution with respect to the first axis.
  • FIG. 6C is a graph showing a state in which the target distribution is matched with the reference distribution.
  • FIG. 6D is a graph showing the reference distribution and the target distribution before correction.
  • FIG. 6E is a graph showing the reference distribution and the corrected target distribution.
  • the method according to the embodiment of the present invention is a method for measuring the state of a track using a business vehicle.
  • the business vehicle includes a carriage.
  • the carriage has four wheels and corresponding primary wheels, each of which has a primary spring that supports the corresponding wheel, and measures the wheel weight of each of the four wheels.
  • the method includes the following steps (1) to (3). Step (1): The wheel weight of each wheel is measured. Step (2): Calculate the displacement of each primary spring based on the measured wheel load. Step (3): Based on the calculated displacement of the primary spring, the flat displacement of the track is calculated.
  • the wheel load of the wheel is measured. Based on the measured value of the wheel load, the displacement of the primary spring is calculated.
  • Hooke's law may be used. That is, the correlation between the load applied to the primary spring and the displacement may be acquired in advance.
  • the planar displacement is calculated based on the displacements of the four primary springs. Specifically, for example, first, the coordinates of the displacement of the four primary springs are calculated. Of the four primary spring displacement coordinates, a plane passing through any three primary spring displacement coordinates is calculated. The distance between this plane and the coordinates of the displacement of the remaining primary spring is calculated. Based on this distance, the planar displacement is calculated.
  • the coordinates of the displacement of the primary spring are represented by a plane coordinate (xy coordinate) of a position (corresponding to a wheel position) where the primary spring is attached and a vertical coordinate (z coordinate) of the displacement.
  • the coordinates of the displacement of the primary spring change according to the height of the track at the position where the primary spring is attached. This is because the vertical position of the wheel changes according to the height of the track, and the displacement of the primary spring changes according to the vertical position of the wheel.
  • the four primary The coordinates of the spring displacement are on the same plane.
  • the distance between the plane passing through the three primary spring displacement coordinates and the remaining primary spring displacement coordinates is approximately equal to the planar displacement (the absolute value of the planar displacement). Therefore, the planar displacement can be calculated with high accuracy by the above method.
  • the travel distance of a business vehicle from a predetermined starting point is calculated based on the rotational speed of the wheel. Specifically, the travel distance is calculated by integrating the outer peripheral length of the wheel obtained from the outer diameter of the wheel at the start of use and the measured rotational speed of the wheel.
  • the outer diameter of the wheel becomes smaller due to wear as the running is repeated. Therefore, an error occurs in the travel distance calculated from the outer diameter of the wheel at the start of use.
  • wheel slipping and sliding also cause errors.
  • the derailment coefficient exhibits an abnormal value. Even if the travel distance of the commercial vehicle is specified, if a certain period of time has passed since the use of the wheels, an error will occur with the actual travel distance. Therefore, it is difficult to accurately identify the position of the trajectory where the derailment coefficient shows an abnormal value.
  • the flatness displacement can be calculated with high accuracy as described above. Specifically, the variation in flatness displacement calculated for the same trajectory is relatively small.
  • the present inventors considered that the measurement error of the travel distance of the above-mentioned business vehicle could be corrected by utilizing the small variation in the flatness displacement measured by the above method, and as a result of earnest examination, the following preferable aspect was obtained. I came to recall.
  • the method preferably further includes the following steps (4) to (8).
  • Step (4) Based on the number of rotations of any of the four wheels, the travel distance of the business vehicle from a predetermined starting point is calculated.
  • Step (7) Based on the acquired correspondence relationship, the calculated flat displacement displacement distribution is corrected to calculate a flat displacement displacement reference distribution.
  • Step (8) A correction amount for matching the target distribution calculated after calculating the reference distribution with the reference distribution is calculated.
  • the distribution of the planar displacement of the trajectory is calculated.
  • the calculated travel distance is expressed on the first axis
  • the calculated flatness displacement is expressed on the second axis orthogonal to the first axis.
  • the travel distance in the calculated distribution of planar displacement is calculated based on the number of rotations of the wheel. Therefore, errors are included due to wheel wear, slipping and sliding.
  • the correspondence relationship between the calculated travel distance at a position where the distance from the starting point is known and the distance (known distance) from the starting point of the position is acquired.
  • a reflector is installed beside two positions on a track whose distance from a predetermined starting point is known by performing precise surveying.
  • Laser light is projected from the photoelectric sensor toward the reflector.
  • the laser beam reflected by the reflector is received by the photoelectric sensor.
  • the travel distance of the business vehicle calculated based on the rotation speed of the wheel at this time is recognized.
  • the correspondence between the position of the track where the distance from the predetermined starting point is known (two places) and the travel distance of the business vehicle at the position, that is, the travel distance of the business vehicle calculated based on the rotation speed of the wheel Relationship is acquired.
  • the two positions on the track are at a distance of X1 km post and Y1 km post from a predetermined starting point
  • the calculated travel distance (travel distance of the business vehicle calculated based on the number of rotations of the wheels) at each position is X2 kilopost.
  • Y2 kilopost Y2 kilopost.
  • the distribution of flatness displacement is corrected based on the acquired correspondence.
  • the distribution of the planar displacement is corrected so that the true travel distance of the business vehicle appears on the first axis.
  • the position of the travel distance (travel distance calculated based on the rotation speed of the wheel) in the distribution of the flatness displacement is actually X1 kilopost.
  • the position of the Y2 kilopost with the travel distance (travel distance calculated based on the rotation speed of the wheel) in the distribution of the planar displacement is actually the Y1 kilopost. Therefore, the distribution of the planar displacement is corrected so that each becomes an actual value.
  • the distribution of the planar displacement is translated and / or expanded / contracted with respect to the first axis.
  • the corrected flat displacement distribution is the reference flat displacement distribution (reference distribution).
  • the target distribution is corrected so that the flatness displacement distribution (target distribution) calculated after the calculation of the reference distribution is matched with the reference distribution.
  • the target distribution is translated and / or expanded / contracted about the first axis so that the target distribution matches the reference distribution by a matching method using a simplex method or the like. This is because the variation in flatness displacement calculated for the same trajectory is relatively small, and if the distribution of other flatness displacement that may include a calculation error for the travel distance is corrected for the first axis, It is based on the idea that it can be matched.
  • the travel distance represented on the first axis of the distribution of the planar displacement after correction as described above approximates the true travel distance.
  • the correction amount is calculated when the target distribution is corrected.
  • the correction amount is the parallel movement amount and / or the expansion / contraction magnification.
  • the method according to the preferred embodiment preferably further includes the following steps (9) to (10).
  • Step (9) A distribution of parameters relating to wheel load, which is used for calculating the planar displacement constituting the target distribution is calculated.
  • Step (10) The parameter distribution is corrected based on the correction amount calculated when correcting the target distribution.
  • the parameter distribution is calculated.
  • the parameter is, for example, the wheel weight itself or the derailment coefficient.
  • the parameter distribution includes, for example, a parameter about the wheel load used for calculating the planar displacement constituting the target distribution, in which the travel distance of the business vehicle calculated based on the rotational speed of the wheel is represented on the first axis. Represented on the second axis.
  • the travel distance in the calculated parameter distribution is calculated based on the rotational speed of the wheel. For this reason, measurement errors occur due to wheel wear or the like.
  • the parameter distribution is corrected based on the correction amount calculated when correcting the target distribution. Specifically, the parameter distribution is corrected by the same amount as the correction amount (parallel movement amount and / or expansion / contraction magnification) with respect to the first axis. This is because the measurement timing of the wheel load used to calculate the planar displacement constituting the target distribution is the same as the measurement timing of the parameter related to the wheel load used to calculate the parameter distribution, and the first axis of each distribution.
  • the travel distance (the travel distance of the business vehicle calculated based on the number of rotations of the wheels) includes the same measurement error, so that the true travel distance of the business vehicle is on the first axis of the parameter distribution. In order to be expressed, it is based on the idea that the same correction should be performed.
  • the travel distance represented on the first axis of the parameter distribution after correction as described above approximates the true travel distance.
  • the travel distance represented by the first axis of the parameter distribution (the travel distance of the business vehicle calculated based on the rotation speed of the wheel) approximates the true travel distance. It is corrected. Therefore, the position of the trajectory where the parameter (derailment coefficient or the like) shows an abnormal value can be specified with high accuracy. As a result, for example, the track can be repaired at an appropriate position.
  • the calculated reference distribution when the parameter distribution is corrected, the calculated reference distribution may be used.
  • the business vehicle measures the state of the track.
  • the business vehicle includes a carriage and a calculation unit.
  • the carriage has four wheels and four primary springs provided corresponding to the four wheels, each supporting the corresponding wheel, and measures the wheel weight of each of the four wheels.
  • the computing unit measures the state of the track based on the wheel weight of each of the four wheels.
  • the computing unit includes a wheel load measuring unit, a spring displacement calculating unit, and a flatness displacement calculating unit.
  • the wheel weight measuring unit measures the wheel weight of each wheel.
  • the spring displacement calculator calculates the displacement of each primary spring based on the measured wheel load.
  • the flatness displacement calculation unit calculates the flatness displacement of the track based on the calculated displacement of the primary spring.
  • the planar displacement of the track on which the business vehicle travels can be accurately measured by the business vehicle. Therefore, instead of using the conventional track inspection and measurement vehicle, the track displacement can be measured on a daily basis by a business vehicle.
  • the calculation unit further includes a travel distance calculation unit, a distribution calculation unit, a correspondence acquisition unit, a reference distribution calculation unit, and a correction amount calculation unit.
  • the travel distance calculation unit calculates the travel distance of the business vehicle from a predetermined starting point based on the rotation speed of any of the four wheels.
  • the distribution calculation unit calculates a distribution of flatness displacement based on the calculated travel distance and the calculated flatness displacement.
  • the correspondence relationship acquisition unit acquires a correspondence relationship between the calculated travel distance at a position where the distance from the starting point is known and the distance from the starting point.
  • the reference distribution calculation unit corrects the calculated flatness displacement distribution based on the acquired correspondence, and calculates the flatness displacement reference distribution.
  • the correction amount calculation unit calculates a correction amount for matching the target distribution calculated after calculating the reference distribution with the reference distribution.
  • the measurement error of the travel distance of the business vehicle can be corrected.
  • the distribution calculation unit represents the calculated travel distance on the first axis
  • the calculated flatness displacement is a second orthogonal to the first axis. Represent on the axis.
  • the reference distribution calculation unit corrects the distribution of the planar displacement and represents the true travel distance of the business vehicle on the first axis.
  • the correction amount calculation unit corrects the target distribution with respect to the first axis in order to calculate the correction amount.
  • the calculation unit further includes a parameter distribution calculation unit and a parameter distribution correction unit.
  • the parameter distribution calculation unit is a parameter related to wheel load, and calculates a distribution of parameters used for calculating the planar displacement constituting the target distribution.
  • the parameter distribution correction unit corrects the parameter distribution based on the calculated correction amount.
  • the position of the track where the parameter (derailment coefficient or the like) shows an abnormal value can be accurately identified.
  • the parameter distribution calculation unit represents the travel distance on the first axis and the parameter on the second axis.
  • FIG. 1A is a diagram illustrating a schematic configuration of a carriage 10 included in a business vehicle 100 according to an embodiment of the present invention and a method for measuring a track state.
  • FIG. 1B is a diagram illustrating a method for calculating the displacement of the primary spring.
  • the business vehicle 100 includes a carriage 10 and a calculation unit 20.
  • the cart is, for example, a PQ monitoring cart.
  • the carriage 10 has four wheels 1, four primary springs 2, and two secondary springs 3.
  • the four wheels 1 are arranged on the front, rear, left and right.
  • the four primary springs 2 are provided corresponding to the four wheels 1, and each supports the corresponding wheel 1.
  • the carriage 10 measures the wheel weight of each wheel 1.
  • a strain gauge is used for measuring the wheel load.
  • the computing unit 20 measures the state of the track R based on the wheel load measurement value.
  • the calculation unit 20 first calculates the displacement of the four primary springs 2 based on the measured value of the wheel load.
  • the calculation unit 20 stores correlation data between the load applied to the primary spring 2 and the displacement in advance.
  • the computing unit 20 calculates the displacement (displacement from the natural length) z of the primary spring 2 based on the wheel load measurement value P and the correlation data stored in advance.
  • the spring constant k of the primary spring 2 obtained from the correlation data is, for example, 500 to 2000 kN / m.
  • the coordinate of the displacement of the primary spring 2 that supports the wheel 1 located on the front left side in the traveling direction of the carriage 10 is P1 out , and the displacement is z1 out .
  • the coordinate of the displacement of the primary spring 2 that supports the wheel 1 located on the front right side in the traveling direction of the carriage 10 is P1 in , and the displacement is z1 in .
  • the coordinate of the displacement of the primary spring 2 that supports the wheel 1 located on the rear right side of the traveling direction of the carriage 10 is P2 in , and the displacement is z2 in .
  • the coordinate of the displacement of the primary spring 2 that supports the wheel 1 located on the rear left side of the traveling direction of the carriage 10 is the origin of the plane coordinate (xy coordinate), the distance between the front and rear axles is 2a, and the distance between the left and right wheels is 2b. 0 .
  • the coordinates of the displacement of each primary spring 2 are P1 out ( 0 , 2a, z1 out ), P1 in (2b 0 , 2a, z1 in ), P2 out (0, 0, z2 out ), respectively. It is represented by P2 in (2b 0 , 0, z2 in ).
  • the calculation unit 20 calculates the coordinates P1 out , P1 in , P2 out , P2 in of the displacement of the primary spring 2 from the calculated displacements z1 out , z1 in , z2 out , z2 in of the primary spring 2. .
  • the calculation unit 20 calculates a plane passing through the coordinates of the displacement of any three primary springs 2 among the calculated coordinates of the displacement of the four primary springs 2.
  • the calculation unit 20 stores information on the track R on which the carriage 10 travels. Therefore, the calculating part 20 can grasp
  • the calculation unit 20 is a plane passing through the coordinates of the displacement of the three primary springs 2 excluding the primary spring 2 that supports the wheel 1 located on the outer gauge side in front of the carriage 10 among the four primary springs 2. calculate.
  • the computing unit 20 has three coordinates P1 in ( 2b 0 , 2a, z1 in ), P2 out (0, 0, z2 out ), and P2 in (2b 0 , 0, z2 in ) are calculated.
  • the plane PL is expressed by the following formula (1), and the plane PL passes through three coordinates P1 in , P2 out , and P2 in . Therefore, the coefficients C 1 to C 4 of the formula (1) are expressed as follows. decide.
  • the xyz coordinates of coordinates P1 out (0, 2a, z1 out ) are input to x, y, and z in the following expression (2), and the planar displacement h is calculated.
  • the absolute value of the planar displacement h expressed by the following equation (2) is the plane PL expressed by the equation (1) and the coordinates P1 out (0, 2a, z1 out ) of the displacement of the remaining primary spring. It corresponds to the distance.
  • the wheel weights of the four wheels 1 are measured. Based on the measured value of the wheel load, the displacements of the four primary springs 2 are calculated. Of the four displacement coordinates of the primary spring 2, a plane passing through the displacement coordinates of any three primary springs 2 is calculated. Based on the distance between this plane and the coordinates of the displacement of the remaining primary spring 2, the planar displacement h is calculated. The coordinates of the displacement of the primary spring 2 change according to the height of the track R at the position where the primary spring 2 is attached. This is because the vertical position of the wheel 1 changes according to the height of the track R, and the displacement of the primary spring 2 changes according to the vertical position of the wheel 1.
  • FIG. 2A is a graph showing an example of a result of measuring the planar displacement in the same curve section by the business vehicle 100.
  • FIG. 2B is a graph showing an example of a result of measuring the wheel load (the wheel load of the wheel 1 located on the outer gauge side in front of the carriage 10) in the same curved section by the business vehicle 100.
  • the circular curve portion is a portion having a constant curve radius
  • the relaxation curve portion connects the linear portion on the inlet side and the outlet side and the circular curved portion, and the circular curved portion from the straight portion to the circular curved portion. This is the part where the radius of the curve gradually becomes smaller. The measurement was performed 10 times each in January 2011, January 2012 and February 2012.
  • the variation in planar displacement is smaller than the variation in wheel load. This is because the wheel load easily changes depending on the number of passengers, the position of the passenger in the vehicle, and the like, but the planar displacement is a twist of the track and does not change easily. Therefore, the planar displacement calculated in the present embodiment is useful for detecting an abnormality in the track R as compared with the wheel load.
  • FIG. 3A is a graph showing a result obtained by averaging the measured values of the planar displacement shown in FIG. 2A every predetermined period.
  • FIG. 3B is a graph showing the result of drift removal (offset correction) from the result shown in FIG. 3A.
  • FIG. 3A shows a result obtained by averaging the measured values of the planar displacement shown in FIG. 2A every month, that is, 10 measured in January 2011, January 2012 and February 2012, respectively.
  • the results of averaging the measured values for the batch are shown.
  • FIG. 3B assumes that there is no flatness displacement immediately after the sales vehicle 100 starts traveling (the wheel load measurement value of each wheel 1 is originally the same). The result after correcting the measured flatness displacement by the offset of the wheel load measurement value immediately after the start of traveling is shown.
  • the variation in results is reduced by performing addition averaging and further offset correction as compared with the case of simply calculating the planar displacement (FIG. 2A). Therefore, it is effective for detecting an abnormality in the trajectory R.
  • the calculation unit 20 preferably performs a time difference process. Specifically, the calculation unit 20 performs a process of subtracting a result of a certain period from the current result for the flatness displacement after offset correction (see FIG. 3B) calculated for the same trajectory R.
  • FIG. 4A is a diagram schematically showing a state in which a part of the track R is replaced with a new rail.
  • FIG. 4B is a graph showing the result of subtracting the flatness displacement before replacement (planarity displacement after offset correction) from the flatness displacement after replacement with a new rail (planarity displacement after offset correction).
  • FIG. 4C shows the flatness displacement after replacement with a new rail (planarity displacement after offset correction) to the flatness displacement after replacement with a new rail (planarity displacement after offset correction), although the measurement time is old. It is a graph which shows the result of subtracting.
  • the old rail near the seam R13 is prevented so that a step does not occur at the seam R13 between the old rail R11 and the new rail R12.
  • a predetermined spacer R14 was installed below the rail R11. Therefore, in the old rail R11, a gradient in the height direction is locally generated in the vicinity of the joint R13. Therefore, the difference in height between the left and right rails changes, and the track R is twisted.
  • the seam R13 is at a position of 12,238 kp.
  • the arithmetic unit 20 performs all of the averaging process, the offset correction, and the time-dependent difference process in this order. However, it is not necessary to perform all these three processes, and only one of these three processes or only two of them can be executed.
  • the planar displacement can be calculated with high accuracy. Specifically, as shown in FIGS. 2A, 3A, and 3B, the variation in the flatness displacement calculated for the same trajectory R is relatively small. Therefore, the measurement error of the travel distance of the business vehicle 100 is corrected by utilizing the small variation in the flatness displacement.
  • this will be specifically described with reference to FIGS. 5A to 5C.
  • FIG. 5A is a flowchart showing processing executed by the calculation unit 20. As illustrated in FIG. 5A, the calculation unit 20 performs measurement and calculation processing (step S1) and distribution calculation processing (step S2).
  • FIG. 5B is a flowchart showing the measurement and calculation processing executed by the calculation unit 20.
  • FIG. 5C is a flowchart illustrating a distribution calculation process executed by the calculation unit 20. Note that the processing executed by the arithmetic unit 20 is not limited to that shown in FIGS. 5A to 5C. The examples shown in FIGS. 5A to 5C are merely examples.
  • the calculation unit 20 acquires the rotation speed and wheel weight of the wheel 1 (step S13).
  • the predetermined section only needs to include a section in which the distribution of the planar displacement is to be calculated. Whether or not it is a predetermined section is determined based on, for example, the rotational speed of the wheel 1.
  • the calculation unit 20 may determine only whether or not the business vehicle 100 is traveling.
  • the rotation speed is obtained from the counter value of the counter stored in the calculation unit 20.
  • the counter updates the counter value every time an output signal of a pulse generator that detects the rotation speed of the wheel 1 is input.
  • the counter value is initialized when the measurement and calculation process is started (step S11).
  • the wheel load is obtained from, for example, a measurement result using a strain gauge.
  • the calculation unit 20 calculates the travel distance of the business vehicle 100 (cart 10) from a predetermined starting point based on the rotation speed of the wheel 1 (step S14). Specifically, the travel distance is obtained by multiplying the circumferential length of the wheel 1 stored in the calculation unit 20 and the rotation speed of the wheel 1. Here, the circumferential length of the wheel 1 is obtained from the outer diameter of the wheel 1 at the start of use. Since the calculated travel distance is based on the number of rotations of the wheel 1, it includes an error caused by wear of the wheel 1 or the like.
  • the calculation unit 20 calculates the displacements of the four primary springs 2 based on the wheel load measurement values (step S15).
  • the method for calculating the displacement of the primary spring 2 is as described above. Therefore, the description thereof is omitted here.
  • the calculating unit 20 calculates the coordinates of the displacement of the primary spring 2 from the calculated displacement of the primary spring 2 (step S16).
  • the calculation method of the coordinate of the displacement of the primary spring 2 is as described above. Therefore, the description thereof is omitted here.
  • the calculation unit 20 calculates a plane passing through the coordinates of the displacement of any three primary springs 2 among the calculated coordinates of the displacement of the four primary springs 2 (step S17).
  • the calculation method of the plane is as described above. Therefore, the description thereof is omitted here.
  • the calculation unit 20 calculates the planar displacement of the trajectory based on the distance between the calculated plane and the coordinates of the displacement of the remaining primary spring (step S18).
  • the method for calculating the planar displacement is as described above. Therefore, the description thereof is omitted here.
  • the calculation unit 20 acquires and stores the correspondence between the calculated travel distance at the position of the track R where the distance from the predetermined starting point is known and the distance from the starting point of the position (known distance). (Step S20).
  • reflectors are installed beside two positions on the trajectory R whose distances from a predetermined starting point are known by performing precise surveying.
  • a light emitting / receiving photoelectric sensor is installed in the business vehicle 100. Laser light is projected from the photoelectric sensor toward the reflector. It is recognized that the business vehicle 100 has arrived at two positions on the track R at the timing (step S19: YES) when the laser beam reflected by the reflecting plate is received by the photoelectric sensor. The travel distance of the business vehicle 100 calculated based on the rotation speed of the wheel 1 at this time is recognized.
  • An output signal of the photoelectric sensor (a detection signal of the reflected laser light) is input to the arithmetic unit 20.
  • the calculation unit 20 stores the distances from the predetermined starting points of the two positions on the trajectory R.
  • the calculation unit 20 acquires a correspondence relationship between the positions (two places) of the track R whose distance from a predetermined starting point is known and the travel distance of the business vehicle 100 calculated based on the rotational speed of the wheel 1 at the position. .
  • two locations on the track R are at a distance of X1 kilometer post and Y1 kilopost from a predetermined starting point
  • the travel distance of the business vehicle 100 calculated based on the number of revolutions of the wheel 1 at each position is X2 kilopost and Y2 kilopost.
  • the relationship that the X1 kilopost corresponds to the X2 kilopost and the Y1 kilopost corresponds to the Y2 kilopost is acquired and stored in the computing unit 20.
  • the calculation unit 20 calculates the distribution of the planar displacement of the track R when the travel of the predetermined section is completed (step S12: NO) (step S31).
  • the distribution of the planar displacement is such that the calculated travel distance is represented on a first axis (for example, the X axis), and the calculated planar displacement is a second axis (for example, the Y axis) orthogonal to the first axis. It is expressed in Here, the travel distance in the calculated distribution of planar displacement is calculated based on the number of rotations of the wheel. Therefore, errors are included due to wheel wear, slipping and sliding.
  • the calculation unit 20 calculates the flatness displacement of the trajectory R based on the correspondence stored as described above. Is corrected (step S33). Specifically, the distribution of the calculated planar displacement of the track R is corrected so that the true travel distance of the business vehicle 100 is represented on the first axis. The calculation unit 20 determines that the travel distance (travel distance calculated based on the number of rotations of the wheel 1) in the distribution of the flatness displacement of the track R is actually X1 kilopost, and the flatness of the track R is one flatness.
  • the travel distance in the displacement distribution (travel distance calculated based on the number of rotations of the wheel 1) is actually the Y1 kilopost at the position of the Y2 kilopost.
  • the distribution of the planar displacement of the track R is translated and / or stretched (corrected) about the first axis so that the true travel distance is represented. Then, the corrected flatness displacement distribution is stored as a reference distribution.
  • the arithmetic unit 20 calculates the distribution of the flatness displacement of the trajectory R, that is, the flatness displacement calculated after the calculation of the reference distribution for the same trajectory R.
  • the flat displacement distribution of the trajectory R is corrected with respect to the first axis so as to match the distribution (target distribution) with the stored reference distribution, and the correction amount is calculated (step S34).
  • FIG. 6A is a graph showing an example of correction for translating the target distribution about the first axis.
  • FIG. 6B is a graph illustrating an example of correction for expanding and contracting the target distribution with respect to the first axis.
  • FIG. 6C is a graph showing a state in which the target distribution is matched with the reference distribution.
  • FIG. 6D is a graph showing the reference distribution and the target distribution before correction.
  • FIG. 6E is a graph showing the reference distribution and the corrected target distribution.
  • the value of the evaluation function f S / l 1 is minimized.
  • l 1 indicates the distance of a predetermined section.
  • S indicates an area formed between the reference distribution and the target distribution in the section of the distance l 1 .
  • the calculation unit 20 translates and / or expands / contracts the target distribution with respect to the first axis so as to match the target distribution with the reference distribution by a matching method using, for example, the simplex method. Do (correct). That is, the parallel movement amount a and / or the expansion / contraction magnification b is determined.
  • the reason for correcting in this way is that the variation in flatness displacement calculated for the same trajectory R is relatively small. Therefore, if the target distribution that may include a calculation error for the travel distance is corrected for the first axis, it matches the reference distribution. It is based on the idea that it can be made.
  • the travel distance represented on the first axis of the target distribution after being corrected as described above approximates the true travel distance.
  • the arithmetic unit 20 stores the correction amount (the parallel movement amount a and / or the expansion / contraction magnification b).
  • the calculation unit 20 calculates a parameter distribution (parameter distribution) related to the wheel load used for calculating the planar displacement constituting the target distribution (step S35).
  • the parameter may be, for example, the wheel load itself or a derailment coefficient.
  • the parameter distribution is such that the travel distance of the business vehicle 100 from a predetermined starting point calculated based on the number of rotations of the wheel 1 is represented on the first axis, and the parameters are represented on the second axis.
  • the travel distance in the parameter distribution is calculated based on the number of wheel rotations. Therefore, it includes errors due to wheel wear and the like.
  • the calculation unit 20 corrects the calculated parameter distribution based on the calculated correction amount (step S36). Specifically, the calculation unit 20 corrects the parameter distribution by the same amount as the correction amount (parallel movement amount a and / or expansion / contraction magnification b) with respect to the first axis. This is because the calculation timing of the planar displacement constituting the target distribution is the same as the calculation timing of the parameter constituting the parameter distribution, and the travel distance (the rotation speed of the wheel 1) represented on the first axis of each distribution.
  • the travel distance of the business vehicle 100 calculated on the basis of the same includes the same calculation error, so that the true travel distance of the business vehicle 100 is represented on the first axis of the parameter distribution. It is based on the idea that it should be done.
  • the travel distance represented on the first axis of the parameter distribution after correction as described above approximates the true travel distance.
  • the travel distance represented on the first axis of the parameter distribution (the travel distance of the business vehicle 100 calculated based on the rotation speed of the wheel 1) is corrected to approximate the true travel distance. . Therefore, the position of the track R where the parameter (derailment coefficient, etc.) relating to the wheel load shows an abnormal value can be specified with high accuracy. As a result, it is possible to perform treatment such as repair of the track R at an appropriate position.
  • the correspondence between the position of the track R whose distance from the predetermined starting point is known and the travel distance of the business vehicle 100 calculated based on the number of rotations of the wheel 1 at the position is only when the reference distribution is calculated. You may get it. For example, a correspondence relationship may be acquired between operation schedules such as midnight, and it is not necessary to frequently project and receive laser light between the photoelectric sensor and the reflector during the day. After calculating the reference distribution, the parameter distribution may be corrected exclusively using the reference flat displacement distribution. For this reason, according to the said aspect, when correcting the traveling distance represented by the 1st axis
  • the calculation unit 20 may calculate the travel distance, the displacement of the primary spring, the coordinates of the displacement, the flat surface, and the flatness displacement after the traveling of the predetermined section is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 営業車両が走行する軌道の平面性変位を当該営業車両によって精度良く測定する方法を提供する。本発明の実施の形態による方法は、営業車両(100)が走行する軌道(R)の状態を営業車両(100)によって測定する方法である。営業車両は、台車(10)を備える。台車は、4つの車輪(1)と、4つの車輪(1)に対応して設けられ、各々が対応する車輪(1)を支持する1次ばね(2)とを有し、4つの車輪(1)の各々の輪重を測定する。上記方法は、各車輪(1)の輪重を測定するステップ(S13)と、測定された輪重に基づいて、各1次ばね(2)の変位を算出するステップ(S15)と、算出された1次ばね(2)の変位に基づいて、軌道(R)の平面性変位(h)を算出するステップ(S18)とを含む。

Description

営業車両を用いて軌道の状態を測定する方法、及び、軌道の状態を測定する営業車両
 本発明は、営業車両を用いて軌道の状態を測定する方法、及び、軌道の状態を測定する営業車両に関し、詳しくは、営業車両を用いて軌道の平面性変位を測定する方法、及び、軌道の平面性変位を測定する営業車両に関する。
 鉄道車両が走行する軌道の状態を管理する指標として軌道変位が知られている。軌道変位には、軌間変位、水準変位、高低変位、通り変位、及び平面性変位の5種類がある。これらの軌道変位が大きくなると、走行する鉄道車両の揺れが大きくなり乗り心地が悪くなる。加えて、軌道変位が大きくなると、鉄道車両の走行安全性に支障が生じ、脱線事故につながるおそれもある。従って、定期的に軌道変位を測定し、適切な時期に軌道を補修する必要がある。
 ここで、平面性変位は、軌道の平面に対するねじれの状態を表すものであり、軌道の長手方向に一定間隔を隔てた2点間の水準変位の差を意味する。水準変位は、軌道を構成する左右のレールの高さの差を意味する。
 従来、軌道変位は、専用の軌道検測車によって測定されている(例えば、特開2001-130408号公報参照)。軌道検測車は、非営業車両であり、台数も少ない。そのため、頻繁には軌道変位を測定できず、深夜などの運行スケジュールの合間に測定する必要がある。従って、軌道検測車を用いる代わりに、営業車両によって日常的に軌道変位を測定可能にすることが望まれている。
 一方、輪重と横圧とを測定可能な台車(PQモニタリング台車)を営業車両に用いることにより、鉄道車両の走行安全性を示す指標である脱線係数を日常的に測定可能とすることが提案されている(例えば、特開2006-88967号公報、「PQ輪軸を用いない車輪/レール接触力の測定方法」日本機械学会論文集(C編)77巻774号(2011-2)p.147-155参照)。
 ここで、輪重とは、鉄道車両の車輪と軌道を構成するレールとの間に作用する垂直方向の力である。横圧とは、車輪とレールとの間に作用する水平方向(車軸に沿った方向)の力である。脱線係数とは、輪重をP、横圧をQとしたときに、Q/Pで表される指標である。
 上記のPQモニタリング台車を用いれば、脱線係数については、営業車両での日常的な測定が可能である。しかしながら、PQモニタリング台車で、軌道変位、特に平面性変位を測定することについては、何ら提案されていない。
 本発明の目的は、営業車両を用いて軌道の平面性変位を測定する方法、及び、軌道の平面性変位を測定する営業車両を提供することである。
 本発明の実施の形態による方法は、営業車両を用いて軌道の状態を測定する方法である。営業車両は、台車を備える。台車は、4つの車輪と、4つの車輪に対応して設けられ、各々が対応する車輪を支持する1次ばねとを有し、4つの車輪の各々の輪重を測定する。上記方法は、以下のステップ(1)~(3)を含む。
ステップ(1):各車輪の輪重を測定する。
ステップ(2):測定された輪重に基づいて、各1次ばねの変位を算出する。
ステップ(3):算出された1次ばねの変位に基づいて、軌道の平面性変位を算出する。
 本発明の実施の形態による営業車両は、軌道の状態を測定する。営業車両は、台車と、演算部とを備える。台車は、4つの車輪と、4つの車輪に対応して設けられ、各々が対応する車輪を支持する1次ばねとを有し、4つの車輪の各々の輪重を測定する。演算部は、4つの車輪の各々の輪重に基づいて、軌道の状態を測定する。演算部は、輪重測定部と、ばね変位算出部と、平面性変位算出部とを含む。輪重測定部は、各車輪の輪重を測定する。ばね変位算出部は、測定された輪重に基づいて、各1次ばねの変位を算出する。平面性変位算出部は、算出された1次ばねの変位に基づいて、軌道の平面性変位を算出する。
 本発明の実施の形態による方法及び営業車両によれば、軌道の平面性変位を測定できる。
図1Aは、本発明の実施の形態による営業車両が備える台車の概略構成、及び、軌道の状態を測定する方法を説明する図である。 図1Bは、1次ばねの変位を算出する方法を説明する図である。 図2Aは、営業車両によって、同一の曲線区間における平面性変位を測定した結果の一例を示すグラフである。 図2Bは、営業車両によって、同一の曲線区間における輪重(台車の前方の外軌側に位置する車輪の輪重)を測定した結果の一例を示すグラフである。 図3Aは、図2Aに示す平面性変位の測定値を所定期間毎に加算平均した結果を示すグラフである。 図3Bは、図3Aに示す結果からドリフト除去(オフセット補正)を行った結果を示すグラフである。 図4Aは、軌道の一部を新しいレールに置き換えた状況を模式的に示す図である。 図4Bは、新しいレールに置き換えた後の平面性変位(オフセット補正後の平面性変位)から、置き換える前の平面性変位(オフセット補正後の平面性変位)を減算した結果を示すグラフである。 図4Cは、新しいレールに置き換えた後の平面性変位(オフセット補正後の平面性変位)から、測定時期は古いものの同じく新しいレールに置き換えた後の平面性変位(オフセット補正後の平面性変位)を減算した結果を示すグラフである。 図5Aは、演算部が実行する処理を示すフローチャートである。 図5Bは、演算部が示す測定及び算出処理を示すフローチャートである。 図5Cは、演算部が実行する分布算出処理を示すフローチャートである。 図6Aは、対象分布を第1軸について平行移動する補正の一例を示すグラフである。 図6Bは、対象分布を第1軸について伸縮する補正の一例を示すグラフである。 図6Cは、対象分布を基準分布にマッチングさせた状態を示すグラフである。 図6Dは、基準分布と補正前の対象分布とを示すグラフである。 図6Eは、基準分布と補正後の対象分布とを示すグラフである。
 本発明の実施の形態による方法は、営業車両を用いて軌道の状態を測定する方法である。営業車両は、台車を備える。台車は、4つの車輪と、4つの車輪に対応して設けられ、各々が対応する車輪を支持する1次ばねとを有し、4つの車輪の各々の輪重を測定する。上記方法は、以下のステップ(1)~(3)を含む。
ステップ(1):各車輪の輪重を測定する。
ステップ(2):測定された輪重に基づいて、各1次ばねの変位を算出する。
ステップ(3):算出された1次ばねの変位に基づいて、軌道の平面性変位を算出する。
 上記方法によれば、車輪の輪重が測定される。輪重の測定値に基づいて、1次ばねの変位が算出される。輪重の測定値に基づいて1次ばねの変位を算出するには、フックの法則を用いればよい。つまり、1次ばねに加わる荷重と変位との相関関係を予め取得しておけばよい。
 上記方法によれば、4つの1次ばねの変位に基づいて、平面性変位が算出される。具体的には、例えば、先ず、4つの1次ばねの変位の座標が算出される。4つの1次ばねの変位の座標のうち、いずれか3つの1次ばねの変位の座標を通る平面が算出される。この平面と残りの1次ばねの変位の座標との距離が算出される。この距離に基づいて、平面性変位が算出される。1次ばねの変位の座標は、1次ばねが取り付けられた位置(車輪の位置に相当)の平面座標(xy座標)と、変位の鉛直座標(z座標)とで表される。この1次ばねの変位の座標は、1次ばねが取り付けられた位置における軌道の高低に応じて変化する。軌道の高低に応じて車輪の鉛直方向の位置が変化し、車輪の鉛直方向の位置に応じて1次ばねの変位が変化するためである。
 従って、仮に平面性変位が生じていなければ、すなわち、軌道の長手方向に一定間隔を隔てた2点間の水準変位(左右のレールの高さの差)の差がなければ、4つの1次ばねの変位の座標は、同一平面上に位置する。換言すれば、3つの1次ばねの変位の座標を通る平面と、残りの1次ばねの変位の座標との距離は、平面性変位(平面性変位の絶対値)にほぼ等しい。従って、上記方法により、精度良く平面性変位を算出することが可能である。
 従来、所定の起点からの営業車両の走行距離は、車輪の回転数に基づき算出される。具体的には、使用開始時の車輪の外径から求まる車輪の外周長と、測定した車輪の回転数とが積算されることにより、走行距離が算出される。しかしながら、車輪の外径は、走行を繰り返すうちに摩耗によって小さくなる。そのため、使用開始時の車輪の外径から算出した走行距離には、誤差が生じる。また、車輪の空転や滑走等も、誤差が生じる原因となる。
 このため、例えば、脱線係数分布(所定の起点からの営業車両の走行距離が横軸に表わされ、脱線係数が縦軸に表わされたグラフ)において、脱線係数が異常値を示したときの営業車両の走行距離を特定したとしても、車輪を使用してから一定期間以上経過している場合には、実際の走行距離と誤差を生じることになる。従って、脱線係数が異常値を示した軌道の位置を精度良く特定することが難しい。
 上記方法によれば、上述のように、精度良く平面性変位を算出できる。具体的には、同一の軌道について算出した平面性変位のバラツキが、比較的小さくなる。
 本発明者らは、上記方法で測定した平面性変位のバラツキが小さいことを利用して、上記の営業車両の走行距離の測定誤差を補正できないかと考え、鋭意検討した結果、以下の好ましい態様を想起するに至った。
 つまり、上記方法は、好ましくは、以下のステップ(4)~(8)をさらに含む。
ステップ(4):4つの車輪の何れかの回転数に基づいて、所定の起点からの営業車両の走行距離を算出する。
ステップ(5):算出された走行距離と、算出された平面性変位とに基づいて、平面性変位の分布を算出する。
ステップ(6):起点からの距離が既知の位置での算出された走行距離と、当該位置の起点からの距離(既知の距離)との対応関係を取得する。
ステップ(7):取得された対応関係に基づいて、算出された平面性変位の分布を補正して、平面性変位の基準分布を算出する。
ステップ(8):基準分布の算出後に算出された対象分布を、基準分布にマッチングさせるための補正量を算出する。
 上記好ましい態様に係る方法によれば、軌道の平面性変位の分布が算出される。平面性変位の分布は、例えば、算出された走行距離が第1軸に表され、且つ、算出された平面性変位が第1軸と直交する第2軸に表される。ここで、算出された平面性変位の分布における走行距離は、車輪の回転数に基づき算出されたものである。そのため、車輪の摩耗、空転及び滑走により、誤差を含む。
 起点からの距離が既知の位置での算出された走行距離と、当該位置の起点からの距離(既知の距離)との対応関係が取得される。具体的には、例えば、精密な測量が行われることにより所定の起点からの距離がそれぞれ既知である軌道の2箇所の位置の脇に反射板を設置する。営業車両に投受光型の光電センサを設置する。この光電センサから反射板に向かってレーザ光を投光する。反射板で反射されたレーザ光を光電センサで受光する。このタイミングにおいて、営業車両が上記軌道の2箇所の位置に到達したことが認識される。このときの車輪の回転数に基づき算出した営業車両の走行距離が認識される。これにより、所定の起点からの距離が既知である軌道の位置(2箇所)と、当該位置での営業車両の走行距離、つまり、車輪の回転数に基づき算出した営業車両の走行距離との対応関係が取得される。例えば、上記軌道の2箇所の位置が所定の起点からX1キロポスト、Y1キロポストの距離にあり、それぞれの位置での算出走行距離(車輪の回転数に基づき算出した営業車両の走行距離)がX2キロポスト、Y2キロポストであったとする。この場合、X1キロポストにはX2キロポストが対応し、Y1キロポストにはY2キロポストが対応するという関係が取得される。
 上記取得された対応関係に基づいて、平面性変位の分布が補正される。例えば、上記の第1軸に営業車両の真の走行距離が表れるように、平面性変位の分布が補正される。具体的には、上記平面性変位の分布における走行距離(車輪の回転数に基づいて算出された走行距離)がX2キロポストの位置は、実際には、X1キロポストである。上記平面性変位の分布における走行距離(車輪の回転数に基づいて算出された走行距離)がY2キロポストの位置は、実際には、Y1キロポストである。そのため、それぞれ実際の値となるように、上記平面性変位の分布が補正される。具体的には、上記平面性変位の分布が、上記の第1軸について平行移動及び/又は伸縮される。補正後の平面性変位の分布が、基準となる平面性変位の分布(基準分布)である。
 基準分布の算出後に算出された平面性変位の分布(対象分布)を、基準分布にマッチングさせるように、対象分布が補正される。具体的には、例えば、シンプレックス法などを用いたマッチング手法により、対象分布が基準分布とマッチングするように、対象分布が第1軸について平行移動及び/又は伸縮される。これは、同一の軌道について算出された平面性変位のバラツキが比較的小さいため、走行距離について算出誤差を含み得る他の平面性変位の分布を第1軸について補正しさえすれば、基準分布とマッチングさせることができるという考えに基づくものである。以上のようにして補正した後の平面性変位の分布の第1軸に表わされた走行距離は、真の走行距離に近似したものになる。
 上記のように、対象分布が補正されるときに、補正量が算出される。対象分布が第1軸について補正されるとき、つまり、対象分布が第1軸について平行移動及び/又は伸縮されるとき、補正量は、平行移動量及び/又は伸縮倍率である。
 上記対応関係は、基準分布を算出する際にのみ取得すればよい。例えば、深夜などの運行スケジュールの合間に対応関係を取得すればよく、日中に頻繁に光電センサと反射板との間でレーザ光を投受光する必要はない。
 上記好ましい態様に係る方法は、好ましくは、以下のステップ(9)~(10)をさらに含む。
ステップ(9):輪重に関するパラメータであって、対象分布を構成する平面性変位の算出に用いたパラメータの分布を算出する。
ステップ(10):対象分布を補正するときに算出された補正量に基づいて、パラメータの分布を補正する。
 上記好ましい態様に係る方法によれば、パラメータの分布が算出される。パラメータは、例えば、輪重そのものや脱線係数などである。パラメータの分布は、例えば、車輪の回転数に基づき算出された営業車両の走行距離が第1軸に表され、且つ、対象分布を構成する平面性変位の算出に用いられた輪重に関するパラメータが第2軸に表される。ここで、算出されたパラメータの分布における走行距離は、車輪の回転数に基づき算出されたものである。そのため、車輪の摩耗等により測定誤差を生じる。
 対象分布を補正するときに算出された補正量に基づいて、パラメータの分布が補正される。具体的には、パラメータの分布が第1軸について上記補正量(平行移動量及び/又は伸縮倍率)と同じ量だけ補正される。これは、対象分布を構成する平面性変位の算出に用いた輪重の測定タイミングと、パラメータの分布の算出に用いた輪重に関するパラメータの測定タイミングとが同じであり、各分布の第1軸に表わされた走行距離(車輪の回転数に基づき算出された営業車両の走行距離)は互いに同じ測定誤差を含んでいるため、パラメータの分布の第1軸に営業車両の真の走行距離が表わされるようにするには、同じ補正を行えば良いという考えに基づくものである。以上のようにして補正した後のパラメータの分布の第1軸に表わされた走行距離は、真の走行距離に近似したものになる。
 上記好ましい態様に係る方法によれば、パラメータの分布の第1軸に表わされた走行距離(車輪の回転数に基づき算出された営業車両の走行距離)が真の走行距離に近似したものに補正される。そのため、パラメータ(脱線係数等)が異常値を示した軌道の位置を精度良く特定できる。その結果、例えば、軌道の補修を適切な位置に施すことができる。
 上記好ましい態様に係る方法において、パラメータの分布を補正するときには、算出された基準分布を用いればよい。
 本発明の実施の形態による営業車両は、軌道の状態を測定する。営業車両は、台車と、演算部とを備える。台車は、4つの車輪と、4つの車輪に対応して設けられ、各々が対応する車輪を支持する4つの1次ばねとを有し、4つの車輪の各々の輪重を測定する。演算部は、4つの車輪の各々の輪重に基づいて、軌道の状態を測定する。演算部は、輪重測定部と、ばね変位算出部と、平面性変位算出部とを含む。輪重測定部は、各車輪の輪重を測定する。ばね変位算出部は、測定された輪重に基づいて、各1次ばねの変位を算出する。平面性変位算出部は、算出された1次ばねの変位に基づいて、軌道の平面性変位を算出する。
 上記営業車両によれば、営業車両が走行する軌道の平面性変位を当該営業車両によって精度良く測定できる。従って、従来のような軌道検測車を用いる代わりに、営業車両によって日常的に軌道変位を測定できる。
 好ましくは、演算部は、さらに、走行距離算出部と、分布算出部と、対応関係取得部と、基準分布算出部と、補正量算出部とを含む。走行距離算出部は、4つの車輪の何れかの回転数に基づいて、所定の起点からの営業車両の走行距離を算出する。分布算出部は、算出された走行距離と、算出された平面性変位とに基づいて、平面性変位の分布を算出する。対応関係取得部は、起点からの距離が既知の位置での算出された走行距離と、起点からの距離との対応関係を取得する。基準分布算出部は、取得された対応関係に基づいて、算出された平面性変位の分布を補正して、平面性変位の基準分布を算出する。補正量算出部は、基準分布の算出後に算出された対象分布を、基準分布にマッチングさせるための補正量を算出する。
 上記の態様に係る営業車両によれば、営業車両の走行距離の測定誤差を補正することができる。
 ここで、分布算出部は、平面性変位の分布を算出するために、例えば、算出された走行距離を第1軸に表し、且つ、算出された平面性変位を第1軸と直交する第2軸に表す。基準分布算出部は、平面性変位の分布を補正して、第1軸に営業車両の真の走行距離を表す。補正量算出部は、補正量を算出するために、対象分布を第1軸について補正する。
 より好ましくは、演算部は、パラメータ分布算出部と、パラメータ分布補正部とをさらに含む。パラメータ分布算出部は、輪重に関するパラメータであって、対象分布を構成する平面性変位の算出に用いたパラメータの分布を算出する。パラメータ分布補正部は、算出された補正量に基づいて、パラメータの分布を補正する。
 上記の態様に係る営業車両によれば、パラメータ(脱線係数等)が異常値を示した軌道の位置を精度良く特定できる。
 ここで、パラメータ分布算出部は、パラメータの分布を算出するために、例えば、走行距離を第1軸に表し、且つ、パラメータを第2軸に表す。
 以下、添付図面を適宜参照しつつ、本発明の実施の形態による軌道の状態を測定する方法、及び、軌道の状態を測定する営業車両について説明する。
 図1Aは、本発明の実施の形態による営業車両100が備える台車10の概略構成、及び、軌道の状態を測定する方法を説明する図である。図1Bは、1次ばねの変位を算出する方法を説明する図である。
 図1Aに示すように、営業車両100は、台車10と、演算部20とを備える。台車は、例えば、PQモニタリング台車である。台車10は、4つの車輪1と、4つの1次ばね2と、2つの2次ばね3とを有する。4つの車輪1は、前後左右に配置される。4つの1次ばね2は、4つの車輪1に対応して設けられ、各々が対応する車輪1を支持する。台車10は、各車輪1の輪重を測定する。輪重の測定には、例えば、歪ゲージが用いられる。演算部20は、輪重の測定値に基づき、軌道Rの状態を測定する。
 演算部20は、先ず、輪重の測定値に基づき、4つの1次ばね2の変位を算出する。
 演算部20には、1次ばね2に加わる荷重と変位との相関データが予め記憶されている。演算部20は、輪重の測定値Pと、予め記憶された相関データとに基づき、1次ばね2の変位(自然長からの変位)zを算出する。なお、相関データから求められる1次ばね2のばね定数kは、例えば、500~2000kN/mである。
 ここで、台車10の走行方向の前方左側に位置する車輪1を支持する1次ばね2の変位の座標をP1outとし、変位をz1outとする。台車10の走行方向の前方右側に位置する車輪1を支持する1次ばね2の変位の座標をP1inとし、変位をz1inとする。台車10の走行方向の後方左側に位置する車輪1を支持する1次ばね2の変位の座標をP2outとし、変位をz2outとする。台車10の走行方向の後方右側に位置する車輪1を支持する1次ばね2の変位の座標をP2inとし、変位をz2inとする。
 台車10の走行方向の後方左側に位置する車輪1を支持する1次ばね2の変位の座標を平面座標(xy座標)の原点とし、前後の車軸間距離を2a、左右の車輪間距離を2bとする。この場合、各1次ばね2の変位の座標は、それぞれ、P1out(0,2a,z1out)、P1in(2b,2a,z1in)、P2out(0,0,z2out)、P2in(2b,0,z2in)で表わされる。
 次に、演算部20は、算出した1次ばね2の変位z1out、z1in、z2out、z2inから1次ばね2の変位の座標P1out、P1in、P2out、P2inを算出する。
 次に、演算部20は、算出した4つの1次ばね2の変位の座標のうち、いずれか3つの1次ばね2の変位の座標を通る平面を算出する。
 ここで、演算部20には、台車10が走行する軌道Rの情報が記憶されている。そのため、演算部20は、現在台車10が軌道Rのどの地点を走行しているかを把握できる。従って、演算部20は、4つの車輪1が現在外軌側又は内軌側のいずれに位置するかを把握できる。演算部20は、4つの1次ばね2のうち、台車10の前方の外軌側に位置する車輪1を支持する1次ばね2を除く3つの1次ばね2の変位の座標を通る平面を算出する。
 台車10の前方の外軌側に位置する車輪1を支持する1次ばね2の変位の座標をP1out(0,2a,z1out)とすれば、演算部20は、3つの座標P1in(2b,2a,z1in)、P2out(0,0,z2out)、P2in(2b,0,z2in)を通る平面PLを算出する。
 具体的には、上記平面PLを以下の式(1)で表わし、この平面PLが3つの座標P1in、P2out、P2inを通ることから、式(1)の係数C~Cを決定する。
 Cx+Cy+Cz+C=0 ・・・(1)
 続いて、演算部20は、算出した上記の式(1)で表わされる平面PLと、残りの1次ばねの変位の座標P1out(0,2a,z1out)との距離に基づき、軌道の平面性変位hを算出する。
 具体的には、以下の式(2)のx、y、zに座標P1out(0,2a,z1out)のxyz座標を入力し、平面性変位hを算出する。なお、以下の式(2)で表わされる平面性変位hの絶対値が、式(1)で表わされる平面PLと、残りの1次ばねの変位の座標P1out(0,2a,z1out)との距離に相当する。
Figure JPOXMLDOC01-appb-M000001
 以上に説明したように、営業車両100及び営業車両100を用いて軌道の状態を測定する方法によれば、4つの車輪1の輪重が測定される。輪重の測定値に基づき、4つの1次ばね2の変位が算出される。4つの1次ばね2の変位の座標のうち、いずれか3つの1次ばね2の変位の座標を通る平面が算出される。この平面と残りの1次ばね2の変位の座標との距離に基づき、平面性変位hが算出される。この1次ばね2の変位の座標は、1次ばね2が取り付けられた位置における軌道Rの高低に応じて変化する。軌道Rの高低に応じて車輪1の鉛直方向の位置が変化し、車輪1の鉛直方向の位置に応じて1次ばね2の変位が変化するためである。
 従って、仮に平面性変位hが生じていなければ、すなわち、軌道Rの長手方向に一定間隔2aを隔てた2点間の水準変位(左右のレールの高さの差)の差がなければ、4つの1次ばね2の変位の座標は、同一平面上に位置する。換言すれば、3つの1次ばね2の変位の座標を通る平面と、残りの1次ばね2の変位の座標との距離は、平面性変位h(平面性変位hの絶対値)にほぼ等しい。従って、営業車両100及び営業車両100を用いて軌道の状態を測定する方法によれば、平面性変位hを精度良く算出できる。
 図2Aは、営業車両100によって、同一の曲線区間における平面性変位を測定した結果の一例を示すグラフである。図2Bは、営業車両100によって、同一の曲線区間における輪重(台車10の前方の外軌側に位置する車輪1の輪重)を測定した結果の一例を示すグラフである。図2A及び図2Bのグラフにおいて、円曲線部は、曲線半径が一定の部分であり、緩和曲線部は、入口側及び出口側の直線部と円曲線部とを繋ぎ、直線部から円曲線部にかけて曲線半径が徐々に小さくなる部分である。測定は、2011年1月、2012年1月及び2012年2月において、それぞれ10回ずつ行われた。
 図2A及び図2Bからわかるように、輪重のバラツキに比べて平面性変位のバラツキは小さい。なぜなら、輪重は、乗客の数や乗客の車内での位置等によって容易に変化するものであるが、平面性変位は、軌道のねじれであり、容易に変化しないからである。従って、本実施形態で算出した平面性変位は、輪重に比べて、軌道Rの異常を検出するのに有用である。
 図3Aは、図2Aに示す平面性変位の測定値を所定期間毎に加算平均した結果を示すグラフである。図3Bは、図3Aに示す結果からドリフト除去(オフセット補正)を行った結果を示すグラフである。
 具体的には、図3Aは、図2Aに示す平面性変位の測定値を1カ月ごとに加算平均した結果、すなわち、2011年1月、2012年1月及び2012年2月においてそれぞれ測定した10回分の測定値を加算平均した結果を示す。また、図3Bは、営業車両100が走行を開始した直後には平面性変位は生じていない(各車輪1の輪重測定値は本来であれば同一である)と仮定し、営業車両100が走行を開始した直後の輪重測定値のオフセット分だけ、測定された平面性変位を補正した後の結果を示す。
 図3A及び図3Bからわかるように、単純に平面性変位を算出する場合(図2A)に比べて、加算平均し、さらにオフセット補正を施すことにより、結果のバラツキが低減する。そのため、軌道Rの異常を検出するのに有効である。
 演算部20は、好ましくは、経時差分処理を行う。具体的には、演算部20は、同じ軌道Rについて算出したオフセット補正後の平面性変位(図3B参照)について、現在の結果から一定期間前の結果を減算する処理を行う。
 図4Aは、軌道Rの一部を新しいレールに置き換えた状況を模式的に示す図である。図4Bは、新しいレールに置き換えた後の平面性変位(オフセット補正後の平面性変位)から、置き換える前の平面性変位(オフセット補正後の平面性変位)を減算した結果を示すグラフである。図4Cは、新しいレールに置き換えた後の平面性変位(オフセット補正後の平面性変位)から、測定時期は古いものの同じく新しいレールに置き換えた後の平面性変位(オフセット補正後の平面性変位)を減算した結果を示すグラフである。
 図4Aに示すように、軌道Rの一部(片側のレール)を新しいレールに置き換えるに際しては、旧レールR11と新レールR12との継ぎ目R13で段差が生じないように、継ぎ目R13の近傍の旧レールR11の下方に所定のスペーサR14を設置した。従い、旧レールR11においては、継ぎ目R13の付近において局所的に高さ方向の勾配が発生する。そのため、左右のレールの高さの差が変化し、軌道Rにねじれが発生する。なお、図4Aに示す例では、継ぎ目R13は、12,238kpの位置にある。
 図4Bからわかるように、平面性変位に経時差分処理を施すことにより、軌道Rの状態が変化した部分、すなわち新レールR12と旧レールR11との継ぎ目R13を精度良く検出することが可能である。一方、図4Cからわかるように、軌道Rの状態が減算処理する双方で変化しない場合には、差分値の変動がない。そのため、軌道Rの状態変化を誤検出するおそれが少ない。
 図3A、図3B、図4A、図4B、図4Cを参照して説明した例は、演算部20が、加算平均処理、オフセット補正及び経時差分処理の全てをこの順で実行するものである。しかしながら、これら3つの処理を全て行う必要はなく、これら3つの処理のいずれか1つのみ、あるいは、いずれか2つのみを実行することも可能である。
 以上に説明した営業車両100及び営業車両100を用いて軌道の状態を測定する方法によれば、精度良く平面性変位を算出できる。具体的には、図2A、図3A及び図3Bに示すように、同一の軌道Rについて算出した平面性変位のバラツキは比較的小さくなる。そこで、平面性変位のバラツキが小さいことを利用し、営業車両100の走行距離の測定誤差を補正する。以下、図5A~図5Cを参照しながら、具体的に説明する。
 図5Aは、演算部20が実行する処理を示すフローチャートである。図5Aに示すように、演算部20は、測定及び算出処理(ステップS1)と、分布算出処理(ステップS2)とを実行する。図5Bは、演算部20が実行する測定及び算出処理を示すフローチャートである。図5Cは、演算部20が実行する分布算出処理を示すフローチャートである。なお、演算部20が実行する処理は、図5A~図5Cに示すものに限定されない。図5A~図5Cに示すものは、あくまでも一例である。
 演算部20は、営業車両100が所定の区間を走行中である場合(ステップS12:YES)には、車輪1の回転数及び輪重を取得する(ステップS13)。ここで、所定の区間は、平面性変位の分布を算出すべき区間を含んでいればよい。所定の区間であるか否かは、例えば、車輪1の回転数に基づいて判断される。なお、演算部20は、営業車両100が走行中であるか否かだけを判断してもよい。回転数は、演算部20に記憶されているカウンタのカウンタ値から取得する。カウンタは、車輪1の回転数を検出するパルスジェネレータの出力信号が入力されるごとにカウンタ値を更新する。カウンタ値は、測定及び算出処理を開始するときに初期化される(ステップS11)。輪重は、例えば、歪ゲージによる測定結果から取得する。
 演算部20は、車輪1の回転数に基づき所定の起点からの営業車両100(台車10)の走行距離を算出する(ステップS14)。具体的には、走行距離は、演算部20に記憶されている車輪1の周方向長さと車輪1の回転数との乗算により求める。ここで、車輪1の周方向長さは、使用開始時の車輪1の外径から求めたものである。算出した走行距離は、車輪1の回転数に基づくものであるため、車輪1の摩耗等に起因する誤差を含む。
 演算部20は、輪重の測定値に基づき、4つの1次ばね2の変位を算出する(ステップS15)。1次ばね2の変位の算出方法は、上述のとおりである。したがって、ここでは、その説明は省略する。
 演算部20は、算出した1次ばね2の変位から1次ばね2の変位の座標を算出する(ステップS16)。1次ばね2の変位の座標の算出方法は、上述のとおりである。したがって、ここでは、その説明は省略する。
 演算部20は、算出した4つの1次ばね2の変位の座標のうち、いずれか3つの1次ばね2の変位の座標を通る平面を算出する(ステップS17)。平面の算出方法は、上述のとおりである。したがって、ここでは、その説明は省略する。
 演算部20は、算出した平面と、残りの1次ばねの変位の座標との距離に基づき、軌道の平面性変位を算出する(ステップS18)。平面性変位の算出方法については、上述のとおりである。したがって、ここでは、その説明は省略する。
 演算部20は、所定の起点からの距離が既知である軌道Rの位置での算出された走行距離と、当該位置の起点からの距離(既知の距離)との対応関係を取得し、記憶する(ステップS20)。
 上記対応関係を取得するには、例えば、精密な測量が行われることにより所定の起点からの距離がそれぞれ既知である軌道Rの2箇所の位置の脇に反射板を設置する。営業車両100に投受光型の光電センサを設置する。この光電センサから反射板に向かってレーザ光を投光する。反射板で反射されたレーザ光を光電センサで受光したタイミング(ステップS19:YES)において、営業車両100が軌道Rの2箇所の位置に到達したことが認識される。このときの車輪1の回転数に基づき算出した営業車両100の走行距離が認識される。演算部20には、光電センサの出力信号(反射されたレーザ光の検出信号)が入力される。演算部20には、軌道Rの上記2箇所の位置の所定の起点からの距離が記憶されている。演算部20は、所定の起点からの距離が既知である軌道Rの位置(2箇所)と、当該位置において車輪1の回転数に基づき算出した営業車両100の走行距離との対応関係を取得する。例えば、軌道Rの2箇所の位置が所定の起点からX1キロポスト、Y1キロポストの距離にあり、それぞれの位置において車輪1の回転数に基づき算出した営業車両100の走行距離がX2キロポスト、Y2キロポストであったとする。この場合、X1キロポストにはX2キロポストが対応し、Y1キロポストにはY2キロポストが対応するという関係が取得され、演算部20に記憶される。
 演算部20は、所定の区間の走行が終了した場合(ステップS12:NO)、軌道Rの平面性変位の分布を算出する(ステップS31)。平面性変位の分布は、算出された走行距離が第1軸(例えば、X軸)に表され、且つ、算出された平面性変位が第1軸と直交する第2軸(例えば、Y軸)に表されたものである。ここで、算出された平面性変位の分布における走行距離は、車輪の回転数に基づき算出されたものである。そのため、車輪の摩耗、空転及び滑走により、誤差を含む。
 演算部20は、基準となる平面性変位の分布(基準分布)が算出されていない場合(ステップS32:NO)、上述のようにして記憶した対応関係に基づき、算出した軌道Rの平面性変位の分布を補正する(ステップS33)。具体的には、第1軸に営業車両100の真の走行距離が表わされるように、算出した軌道Rの平面性変位の分布を補正する。演算部20は、軌道Rの平面性変位の分布における走行距離(車輪1の回転数に基づき算出した走行距離)がX2キロポストの位置は実際にはX1キロポストであり、軌道Rの一の平面性変位分布における走行距離(車輪1の回転数に基づき算出した走行距離)がY2キロポストの位置は実際にはY1キロポストであるため、それぞれ実際の値となるように(第1軸に営業車両100の真の走行距離が表わされるように)、軌道Rの平面性変位の分布を第1軸について平行移動及び/又は伸縮する(補正する)。そして、補正後の平面性変位の分布を基準分布として記憶する。
 演算部20は、基準分布が算出されている場合(ステップS32:YES)、算出した軌道Rの平面性変位の分布、つまり、同一の軌道Rについて基準分布の算出後に算出された平面性変位の分布(対象分布)を、記憶した基準分布にマッチングさせるように、軌道Rの平面性変位分布を第1軸について補正し、その補正量を算出する(ステップS34)。
 図6Aは、対象分布を第1軸について平行移動する補正の一例を示すグラフである。図6Bは、対象分布を第1軸について伸縮する補正の一例を示すグラフである。図6Cは、対象分布を基準分布にマッチングさせた状態を示すグラフである。図6Dは、基準分布と補正前の対象分布とを示すグラフである。図6Eは、基準分布と補正後の対象分布とを示すグラフである。
 図6Cを参照して、マッチングするとき、評価関数f=S/lの値は最小となる。ここで、lは所定の区間の距離を示す。Sは、距離lの区間において、基準分布と対象分布との間に形成される面積を示す。
 演算部20は、図6A~図6Eに示すように、例えばシンプレックス法などを用いたマッチング手法により、対象分布を基準分布とマッチングさせるように、対象分布を第1軸について平行移動及び/又は伸縮する(補正する)。すなわち、平行移動量a及び/又は伸縮倍率bを決定する。
 このようにして補正するのは、同一の軌道Rについて算出した平面性変位のバラツキは比較的小さいため、走行距離について算出誤差を含み得る対象分布を第1軸について補正すれば、基準分布にマッチングさせることができるという考えに基づくものである。以上のようにして補正した後の対象分布の第1軸に表わされた走行距離は、真の走行距離に近似したものになる。演算部20は、上記補正の補正量(平行移動量a及び/又は伸縮倍率b)を記憶する。
 演算部20は、対象分布を構成する平面性変位の算出に用いられた輪重に関するパラメータの分布(パラメータ分布)を算出する(ステップS35)。パラメータは、例えば、輪重そのものであってもよいし、脱線係数であってもよい。パラメータ分布は、車輪1の回転数に基づき算出した所定の起点からの営業車両100の走行距離が第1軸に表わされ、上記パラメータが第2軸に表わされたものである。パラメータ分布における走行距離は、車輪の回転数に基づき算出されたものである。そのため、車輪の摩耗等に起因する誤差を含む。
 演算部20は、算出した補正量に基づいて、算出したパラメータ分布を補正する(ステップS36)。具体的には、演算部20は、パラメータ分布を第1軸について上記補正量(平行移動量a及び/又は伸縮倍率b)と同じ量だけ補正する。これは、対象分布を構成する平面性変位の算出タイミングと、パラメータ分布を構成するパラメータの算出タイミングとが同一であり、各分布の第1軸に表わされた走行距離(車輪1の回転数に基づき算出された営業車両100の走行距離)は互いに同じ算出誤差を含んでいるため、パラメータ分布の第1軸に営業車両100の真の走行距離が表わされるようにするには、同じ補正を行えば良いという考えに基づくものである。以上のようにして補正した後のパラメータ分布の第1軸に表わされた走行距離は、真の走行距離に近似したものになる。
 上記態様によれば、パラメータ分布の第1軸に表わされた走行距離(車輪1の回転数に基づき算出された営業車両100の走行距離)が真の走行距離に近似したものに補正される。そのため、輪重に関するパラメータ(脱線係数等)が異常値を示した軌道Rの位置を精度良く特定できる。その結果、軌道Rの補修などの処置を適切な位置に施すことが可能である。
 また、所定の起点からの距離が既知である軌道Rの位置と、当該位置において車輪1の回転数に基づき算出した営業車両100の走行距離との対応関係は、基準分布を算出する際にのみ取得してもよい。例えば、深夜などの運行スケジュールの合間に対応関係を取得すればよく、日中に頻繁に光電センサと反射板との間でレーザ光を投受光する必要がない。基準分布を算出した後は、専らこの基準平面性変位分布を用いてパラメータ分布を補正すればよい。このため、上記態様によれば、パラメータ分布の第1軸に表わされた走行距離を真の走行距離に近似したものに補正する上で、手間が掛からない上、安全である。
 以上、本発明の実施の形態について、詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施の形態によって、何等、限定されない。
 例えば、演算部20は、所定の区間の走行が終了した後に、走行距離、1次ばねの変位、変位の座標、平面及び平面性変位を算出してもよい。

Claims (10)

  1.  営業車両を用いて軌道の状態を測定する方法であって、
     前記営業車両は、
     4つの車輪と、前記4つの車輪に対応し、各々が対応する車輪を支持する4つの1次ばねとを有し、前記車輪の各々の輪重を測定する台車を備え、
     前記方法は、
     前記車輪の各々の輪重を測定するステップと、
     前記測定された輪重に基づいて、前記1次ばねの各々の変位を算出するステップと、
     前記算出された変位に基づいて、前記軌道の平面性変位を算出するステップとを含む、方法。
  2.  請求項1に記載の方法であって、さらに、
     前記車輪の何れかの回転数に基づいて、所定の起点からの前記営業車両の走行距離を算出するステップと、
     前記算出された走行距離と、前記算出された平面性変位とに基づいて、前記平面性変位の分布を算出するステップと、
     前記起点からの距離が既知の位置での前記算出された走行距離と、前記起点からの距離との対応関係を取得するステップと、
     前記取得された対応関係に基づいて、前記算出された平面性変位の分布を補正して、前記平面性変位の基準分布を算出するステップと、
     前記基準分布の算出後に算出された対象分布を、前記基準分布にマッチングさせるための補正量を算出するステップとを含む、方法。
  3.  請求項2に記載の方法であって、
     前記分布を算出するステップは、前記分布を算出するために、前記算出された走行距離を第1軸に表し、且つ、前記算出された平面性変位を前記第1軸と直交する第2軸に表し、
     前記基準分布を算出するステップは、前記分布を補正して、前記第1軸に前記営業車両の真の走行距離を表し、
     前記補正量を算出するステップは、前記補正量を算出するために、前記対象分布を前記第1軸について補正する、方法。
  4.  請求項2又は3に記載の方法であって、さらに、
     前記輪重に関するパラメータであって、前記対象分布を構成する平面性変位の算出に用いたパラメータの分布を算出するステップと、
     前記補正量に基づいて、前記パラメータの分布を補正するステップとを含む、方法。
  5.  請求項4に記載の方法であって、
     前記パラメータの分布を算出するステップは、前記パラメータの分布を算出するために、前記走行距離を前記第1軸に表し、且つ、前記パラメータを前記第2軸に表す、方法。
  6.  軌道の状態を測定する営業車両であって、
     4つの車輪と、前記4つの車輪に対応し、各々が対応する車輪を支持する4つの1次ばねとを有し、前記車輪の各々の輪重を測定する台車と、
     前記車輪の各々の輪重に基づいて、前記軌道の状態を測定する演算部とを備え、
     前記演算部は、
     前記車輪の各々の輪重を測定する輪重測定部と、
     前記測定された輪重に基づいて、前記1次ばねの各々の変位を算出するばね変位算出部と、
     前記算出された変位に基づいて、前記軌道の平面性変位を算出する平面性変位算出部とを含む、営業車両。
  7.  請求項6に記載の営業車両であって、
     前記演算部は、さらに、
     前記車輪の何れかの回転数に基づいて、所定の起点からの前記営業車両の走行距離を算出する走行距離算出部と、
     前記算出された走行距離と、前記算出された平面性変位とに基づいて、前記平面性変位の分布を算出する分布算出部と、
     前記起点からの距離が既知の位置での前記算出された走行距離と、前記起点からの距離との対応関係を取得する対応関係取得部と、
     前記取得された対応関係に基づいて、前記算出された平面性変位の分布を補正して、前記平面性変位の基準分布を算出する基準分布算出部と、
     前記基準分布の算出後に算出された対象分布を、前記基準分布にマッチングさせるための補正量を算出する補正量算出部とを含む、営業車両。
  8.  請求項7に記載の営業車両であって、
     前記分布算出部は、前記分布を算出するために、前記算出された走行距離を第1軸に表し、且つ、前記算出された平面性変位を前記第1軸と直交する第2軸に表し、
     前記基準分布算出部は、前記分布を補正して、前記第1軸に前記営業車両の真の走行距離を表し、
     前記補正量算出部は、前記補正量を算出するために、前記対象分布を前記第1軸について補正する、営業車両。
  9.  請求項7又は8に記載の営業車両であって、さらに、
     前記輪重に関するパラメータであって、前記対象分布を構成する平面性変位の算出に用いたパラメータの分布を算出するパラメータ分布算出部と、
     前記補正量に基づいて、前記パラメータの分布を補正するパラメータ分布補正部とを含む、営業車両。
  10.  請求項9に記載の営業車両であって、
     前記パラメータ分布算出部は、前記パラメータの分布を算出するために、前記走行距離を前記第1軸に表し、且つ、前記パラメータを前記第2軸に表す、営業車両。
PCT/JP2014/073283 2013-09-06 2014-09-04 営業車両を用いて軌道の状態を測定する方法、及び、軌道の状態を測定する営業車両 WO2015033988A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES14842889T ES2717977T3 (es) 2013-09-06 2014-09-04 Procedimiento para medir el estado de una vía usando un vehículo en funcionamiento, y vehículo en funcionamiento para medir el estado de una vía
US14/916,228 US9963157B2 (en) 2013-09-06 2014-09-04 Method of measuring condition of track using vehicle for commercial operation and vehicle for commercial operation for measuring condition of track
EP14842889.9A EP3042822B1 (en) 2013-09-06 2014-09-04 Method for measuring track state using in-operation car, and in-operation car for measuring track state
CN201480049095.4A CN105517874B (zh) 2013-09-06 2014-09-04 使用运营车辆测定轨道的状态的方法以及测定轨道的状态的运营车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-184620 2013-09-06
JP2013184620A JP6512588B2 (ja) 2013-09-06 2013-09-06 軌道状態測定方法及び軌道状態測定可能な営業車両

Publications (1)

Publication Number Publication Date
WO2015033988A1 true WO2015033988A1 (ja) 2015-03-12

Family

ID=52628455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073283 WO2015033988A1 (ja) 2013-09-06 2014-09-04 営業車両を用いて軌道の状態を測定する方法、及び、軌道の状態を測定する営業車両

Country Status (7)

Country Link
US (1) US9963157B2 (ja)
EP (1) EP3042822B1 (ja)
JP (1) JP6512588B2 (ja)
CN (1) CN105517874B (ja)
ES (1) ES2717977T3 (ja)
TW (1) TWI541155B (ja)
WO (1) WO2015033988A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821728A (zh) * 2016-04-29 2016-08-03 中铁第四勘察设计院集团有限公司 一种cpⅲ平面网测量***

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821727B (zh) * 2016-04-29 2017-12-22 中铁第四勘察设计院集团有限公司 一种cpⅲ平面网测量方法
JP6669600B2 (ja) * 2016-06-30 2020-03-18 株式会社日立製作所 鉄道車両の状態監視システム
JP6642370B2 (ja) * 2016-10-12 2020-02-05 株式会社ダイフク レール検査装置及びレール検査システム
JP2018063225A (ja) * 2016-10-14 2018-04-19 公益財団法人鉄道総合技術研究所 波形データの急進箇所抽出処理方法及び急進箇所抽出処理システム
JP6651234B2 (ja) * 2016-11-30 2020-02-19 公益財団法人鉄道総合技術研究所 転動音予測方法
AT519575B1 (de) * 2017-02-15 2018-08-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Gleismessfahrzeug und Verfahren zur Erfassung einer vertikalen Gleislage
JP7043198B2 (ja) * 2017-08-02 2022-03-29 東日本旅客鉄道株式会社 軌道の健全性評価方法
JP6747598B2 (ja) * 2017-08-31 2020-08-26 日本製鉄株式会社 検査システム、検査方法、およびプログラム
FR3074343B1 (fr) * 2017-11-30 2020-02-28 Sncf Reseau Procede et systeme de detection des defauts de geometrie d'une voie ferree
JP6924440B2 (ja) * 2017-12-07 2021-08-25 日本製鉄株式会社 鉄道車両の摩擦係数演算方法及び走行安全性評価方法並びに軌道の潤滑状態管理方法
CN109866942B (zh) * 2019-03-28 2022-05-06 中国飞机强度研究所 一种用于航空轮胎惯性试验台倾斜调姿装置及调姿方法
JP2022161423A (ja) * 2021-04-09 2022-10-21 株式会社日立製作所 劣化検知システム、劣化検知方法、および劣化検知装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222111A (ja) * 1986-03-12 1987-09-30 Tetsudo Sogo Gijutsu Kenkyusho 長波長軌道狂い測定法
JP2001130408A (ja) 1999-11-02 2001-05-15 Tokyo Metropolis 牽引型軌道検測車
JP2003240626A (ja) * 2002-02-20 2003-08-27 East Japan Railway Co 輪重取得装置、輪重取得方法、鉄道車両、鉄道車両の保守方法、軌道の保守方法
US20040173033A1 (en) * 2001-07-07 2004-09-09 David Gilbert Track monitoring equipment
JP2006088967A (ja) 2004-09-27 2006-04-06 Sumitomo Metal Ind Ltd 横圧測定方法及び鉄道車両用台車
US20080228436A1 (en) * 2007-03-15 2008-09-18 Board Of Regents Of University Of Nebraska Measurement of vertical tract modulus using space curves
US20110276203A1 (en) * 2008-09-23 2011-11-10 Bombardier Transportation Gmbh Method for Determining a Characteristic of a Track Condition Parameter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD141350A1 (de) * 1979-01-12 1980-04-23 Schneider Hans Juergen Vorrichtung zur messung und registrierung der gleislage
AT362818B (de) * 1979-10-05 1981-06-25 Plasser Bahnbaumasch Franz Gleisbearbeitungs- bzw. -transportfahrzeug mit veraenderlicher radlastverteilung
JPS61147102A (ja) 1984-12-21 1986-07-04 Japanese National Railways<Jnr> 水準測定方法
FR2798347B1 (fr) * 1999-09-09 2001-11-30 Matisa Materiel Ind Sa Vehicule de mesure de l'etat geometrique d'une voie ferree
US6323441B1 (en) * 2000-03-10 2001-11-27 Honeywell International Inc. Ultrasonic distance measuring system for monitoring railroad car loads
GB0601819D0 (en) * 2006-01-31 2006-03-08 Aea Technology Plc Track twist monitoring
CN101024400A (zh) * 2007-02-17 2007-08-29 朱倍他 高速铁路轨道安全自动测量监控技术
CN101954916B (zh) * 2010-09-06 2012-04-18 耿直 轨道在线监测方法
CN201951479U (zh) * 2011-02-23 2011-08-31 南车株洲电力机车有限公司 一种轨道工程车转向架
JP5959378B2 (ja) * 2012-09-11 2016-08-02 川崎重工業株式会社 荷重測定方法及び装置、荷重測定装置を備えた鉄道車両、並びに荷重管理システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222111A (ja) * 1986-03-12 1987-09-30 Tetsudo Sogo Gijutsu Kenkyusho 長波長軌道狂い測定法
JP2001130408A (ja) 1999-11-02 2001-05-15 Tokyo Metropolis 牽引型軌道検測車
US20040173033A1 (en) * 2001-07-07 2004-09-09 David Gilbert Track monitoring equipment
JP2003240626A (ja) * 2002-02-20 2003-08-27 East Japan Railway Co 輪重取得装置、輪重取得方法、鉄道車両、鉄道車両の保守方法、軌道の保守方法
JP2006088967A (ja) 2004-09-27 2006-04-06 Sumitomo Metal Ind Ltd 横圧測定方法及び鉄道車両用台車
US20080228436A1 (en) * 2007-03-15 2008-09-18 Board Of Regents Of University Of Nebraska Measurement of vertical tract modulus using space curves
US20110276203A1 (en) * 2008-09-23 2011-11-10 Bombardier Transportation Gmbh Method for Determining a Characteristic of a Track Condition Parameter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Method of Measuring Wheel/Rail Contact Force Without Using PQ Wheel Axel", COLLECTED PAPERS FROM THE JAPAN SOCIETY OF MECHANICAL ENGINEERS (COMPILATION C, vol. 77, no. 774, February 2011 (2011-02-01), pages 147 - 155

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821728A (zh) * 2016-04-29 2016-08-03 中铁第四勘察设计院集团有限公司 一种cpⅲ平面网测量***
CN105821728B (zh) * 2016-04-29 2018-01-09 中铁第四勘察设计院集团有限公司 一种cpⅲ平面网测量***

Also Published As

Publication number Publication date
US20160194013A1 (en) 2016-07-07
TW201512003A (zh) 2015-04-01
CN105517874B (zh) 2017-07-21
TWI541155B (zh) 2016-07-11
ES2717977T3 (es) 2019-06-26
EP3042822B1 (en) 2019-01-09
JP2015051674A (ja) 2015-03-19
US9963157B2 (en) 2018-05-08
EP3042822A4 (en) 2017-04-26
CN105517874A (zh) 2016-04-20
EP3042822A1 (en) 2016-07-13
JP6512588B2 (ja) 2019-05-15

Similar Documents

Publication Publication Date Title
WO2015033988A1 (ja) 営業車両を用いて軌道の状態を測定する方法、及び、軌道の状態を測定する営業車両
JP6610557B2 (ja) 鉄道車両用車輪のフランジ摩耗測定方法
JP2018127882A (ja) 軌道を最適化するための方法
WO2017149954A1 (ja) タイヤの摩耗寿命推定システム
CN110228333A (zh) 用于跟踪轮胎胎面磨损的***和方法
EP1991451B1 (en) A method for calculating forces acting on the footprint area of a tyre and apparatus for calculating said forces
JP6096424B2 (ja) 軌道状態監視装置
US9188439B2 (en) Method and device for determining distances on a vehicle
CN103930312A (zh) 包括用于共同处理信号的融合滤波器的传感器***
CN103644843B (zh) 轨道交通车辆运动姿态的检测方法及其应用
AU2015364756B2 (en) Railway vehicle condition monitoring apparatus
ITBO20130697A1 (it) Apparato e metodo di valutazione diagnostica dell&#39;assetto di un veicolo
JP7146814B2 (ja) 軌道検測車および鉛直方向の軌道位置を検出する方法
JP7178056B2 (ja) 波形データのデータ処理方法
CN108828068B (zh) 轨道表面波浪磨耗及伤损检测装置及方法
KR20130063811A (ko) 노면 거칠기 측정장치 및 그의 신호처리방법 그리고 그를 이용한 시스템
GB2531746A (en) Tyre tread monitoring
CN111601739B (zh) 用于确定轨道车辆的轮轴的角速度的***和相应方法
JP5809091B2 (ja) 台車姿勢検出方法
JP2019219285A (ja) 車輪踏面形状連続測定装置及び方法
JP2022176746A (ja) 軸距の測定システム及び測定方法
JP7328779B2 (ja) 軸梁式台車の異常検知装置
JP2019081458A (ja) アタック角測定装置、及び、アタック角測定方法
JP2022189440A (ja) 車輪の転削計画支援装置、車輪の転削計画支援システム及び車輪の転削計画支援方法
CN117029766A (zh) 轨道局部沉降识别方法及装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014842889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842889

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14916228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE